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The investigation of biological, meteorological, acoustic, etc.
phenomena within the framework of biological clocks, the perception of
external information by living systems, physics of the atmosphere, and
statistical methods of predicting the weather, etc. require the
analyzing of processes which are of a complex random nature. As is
known, the linear theory describes such processes with correlation
functions and mathematical expectations. For determining them the
averaging should be based on distributions, which as a rule are
unknown, or in practice we have only segments of a limited number of
realizations or one unique realization. In this case it is possible to
calculate, as an example, by the method of moving averaging, the
estimates of mathematical expectations, correlation functions and
harmonic components. For this the methods of the theory of stationary
processes are used, and also the concepts, which within the framework
of that theory have a natural interpretation. In particular, the
operator of moving averaging in the theory of stationary processes is
invariant, i.e., it converts a stationary process into stationary.

However, the mentioned processes which actually exist in nature in
the majority of cases have a nonstationary rhythmic nature, as a result
of which the need arises for matching methods, developed for analyzing
stationary processes, with the characteristics of the phenomena being
studied. Many authors, Solberger [1], Romanenko and Sergeyev [13] in
particular, note that it is not to the purpose to use these methods for
such essentially nonstationary processes as these - biological rhythms
for example. Therefore it is necessary to develop methods which are
based on the properties namely of these nonstationary processes. It is
necessary that the statistical methods recommended by natural science
investigators have a simple interpretation in terms of the concepts of
the science which encompasses the area of their investigations.




i1t is advisable that the statistical analysis of a complex
phenomenon begin with the development of the appropriate model, since
the direct application of the so-called classical methods (statistical
methods of random variables), which do not correspond to the essence of
the phenomena being investigated, gives very inaccurate results, the
interpretation of which is completely unsatisfactory [10, 14].
Pitendray (see [1]) points out that such models may be provided by
specialists in applied physics and mathematics, who will require the
most significant of the known factors concerning the natural processes
being studied.

This motivates the necessity of substantiating a simple
mathematical model of natural rhythmic processes as the basis for
developing methods of their statistical analysis and the interpretation
of the results obtained.

The idea of developing the model which is proposed in this paper
(describing only the periodic nature of one period; the superimposing
of the rhythms of other periods in the experimental data is eliminated
by the appropriate selection of the interval of the moving averaging)
is that based on the most significant facts about natural rhythmic
processes, known from the literature and obtained in investigations of
the reactions to external factors on the part of certain organisms
which can predict a change in weather, to establish the general
regularity in the class of random processes which describe rhythmic
phenomena, which would make it possible to identify the processes under
study by means of an experimental determination (based on realization)
of the estimates of their characteristics. Here it is understood that
the characteristics and the methods of determining them should have a
natural interpretation within the framework of the model.

As a rule the tracings of rhythmic phenomena which are obtained
experimentally have a "noise-like" nature. This means that they
cannot be predetermined even with the help of a complex analytical
expression, one can only speak of the probabilistic characteristics of
the entire set, i.e., to consider a random process, the realization of
which they are. From here follows the first feature of the model - it
should be a random (stochastic) process.

Experimentally the noisy nature is demonstrated by the fact that
with an increase in the frequency of the readings the new values of
realization do not lie on a smooth curve, which connects the values
obtained at a lesser frequency of readings, but display an irregular
structure of a higher order. Figure 1 shows the intensities (in
relative units) of the motor activity of groundlings (Misgurnus
fossilis L.), determined over a period of 5 min once a day (a), every
hour (b)), and every 10 min (c).
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Figure 1. Examples of realizations of intensity of motor activity of
groundlings at different frequencies of readings.
Key: (1) relative units:- (2) t, days; (3) t, hours; (4) t, min.

A specific periodic nature is observed in rhythmic phenomena,
therefore naturally a question arises concerning its expansion into
simple harmonic components. A classical analysis of time series, in an
analogy with the study of tides and variable stars, rests on concepts
of the presence of discrete harmonic components in the tracings and the
attempt to connect them with the action of certain periodic causes:
each period has its own cause [17]. If these methods are applied to
phenomena which do not have such properties, but represent a specific
type of noise, where all frequencies, even those the total energy of
which is negligible [7, 16], have a noticeable influence on the nature
of the phenomenon, then they lead to misunderstandings and inaccurate
results, since in a number of cases low-energy components cause
significant aftereffects. For example, it is shown in [6] that
disregard of weak gravitational waves in models of numerical prediction
entails errors, since the superpositioning of these waves can be the
cause of development of a nongeostrophic situation which exerts a
considerable influence on the process of weather formation.

Consequently, in the study of rhythmic phenomena it is necessary
to consider random processes, which permit expansion into harmonics,
the frequencies of which in a general case have a continuous spectrum.
For stationary processes such an expansion is made simply; its




correlation function RS (u):EE (t+u) ((t) is the derivative, averaged
Wwith respect to distribution, of values of the process §(-) at the
moments (t+u) and t. It depends only on the shift and based on the
Wiener-Khinchin theorem is a Fourier-transform from the spectral
function F( A ), increases of which give the dispersions of the

oD
harmonics of the process: Rg(u)ng'ldF(),) . The harmonics here are
-

uncorrelated. However, rhythmic phenomena are essentially
nonstationary, therefore for their model it is necessary to take a
process with that class of nonstationary for which harmonic expansion
makes sense. This class should be characterized either through the
properties of the correlation function r(s, t)=E §(s) $(t), this time
already dependent on two variables - the moments of the averaged values
of the process, or through the properties of its two-dimensional
Fourier-transform.

Since from the point of view of exposing the periodic nature in
the structure of the process harmonic analysis has a simpler
interpretation and produces more valuable information in comparison
with the information supplied by the correlation function [16], then it
is natural to begin the characterization of the class of processes of
the harmonic expansion of their realizations. Keeping in mind that the
simolest processes, having the representation

HOES fe“"d; ™) (1)

—20

in the form of the superposition of harmonics, the amplitude and phase
of which are determined respectively by the modulus and argument of
increases of random spectral measures d z( A), will be harmonized
processes [9]), it is natural to assume that the model of a rhythmic
phenomenon should be one of such processes.

From formula (1) follows the harmonizability of the correlation

function of the process, i.e., the validity of its representation in
the form

n(s )= _" S' EAMhdus (A, p). (2)

1f{f the two-frequency spectral function S({ 2,/4) is differentiable for
both arguments (which is always valid, at least in the sense of the
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theory of generalized functions), then the derivative 3@49==—%%¥1

characterizes the correlation of the harmonics with frequencies 4 and
/4. In particular for a stationary process, since its harmonics are
uncorrelated, this derivative will have the form:

s( 2,/‘)=f(ﬁ.) &(?L-/.q.), where f(ﬂ.) - spectral density of the
process, and §(-)- J§ - the Dirac function. Then the integral (2)
transforms correspondingly into an integral of the form

{4
fs—
’(3-0-—-3" e [A)A =Ry (s—1) . If the substitution of s=t+u is made and
-

for the characteristic of the correlation bond of the values of the
process the new function

htu)=r(t+uo), (3)

is introduced, then for the stationary process we obtain

4
htuw={ e"‘f(l)dl=R¢(u). -

—c0

from which it follows that the function b {(t, u) for a stationary
process in the case of all u does not depend on t. Thus the dependence
of the function of correlation by (t, u) on t can serve as an indicator
of the nonstationary nature of the process. Having placed u=0 in
formulas (3) and (4), the result is that such an indicator will be the
dispersion of the process

(5)
a3 () = by (1. 0).
constant for a stationary process: og(t)zRg (0).
Introducing the representation (also in the sense of tue theory of
. oo o0
((ud—1v)
generalized functions) b (1. u) =\ I‘ fA.v)ddv | ¢or the function of

the correlation bond of the harmonics we obtain

(6)
sA.p)=fR p—2).




The third important feature of rhythmic phenomena is a form of
t' ir realizations which is close to amplitude-modulated random
processes [18]. This makes it possible to require that for a model of
such oscillations the dispersion, and, according to formula (5), the
function of correlation b’ (*, u) be periodic functions of time. The
latter property uniquely determines the class of random functions,
since it is a characteristic for periodically correlated processes,
although the period of correlativity is not determined uniquely by the
period of dispersion.

Also for the indicated processes, according to the determination
in [8] the mathematical expectation will be periodic with the same
period, i.e., my (t+T)=m; (t), by (t+T, u)=b} (t, u) with all i and u.
Then for such a model the correlation function has the form

> &=
btwy= % e By, )
Ran—o®

where functions By(°+) are called the correlation components. It
follows from this formula [4] that the correlation function of the
harmonics is determined through the spectral components of the process

f,@)=5l;-§ B, (u)e~™dy (8)

by the correlation sQA\Rp)= Ef.(l)ﬁ(p—-k-{-kz-;-);
|

It is evident from the last formula that the harmonic of frequency

A

2n
0 is correlated only with harmonics of frequency k-—kﬁr when

R = — oo, 2

. The coefficients of correlation are determined by the
spectral components ( ). On the other hand, the function fi(‘) is
the k-th harmonic of change in spectral density of the current
spectrum, which is evident from the representation of the correlation

-
function through the current spectrum: Q(I,u):je’"‘f(t,k)dl; its change
—ce

is periodic with a period equal to the period of correlativity of the

bag Wik
process, since f({,A)= Y, @) e T,
Aen—ao




From such a type of correlativity of harmonics it follows that the
. . A n . .
filter, the half band width of which —§-<<7r , makes it possible to

eliminate the influence of harmonics which are correlated with filtered
out. Therefore in this case all the results of the theory of
filtration of stationary processes remain in force. It is not
difficult to obtain the other properties of periodically correlated
processes from its representation through stationary and
stationary-correlated components [4] gk(t):

o ko
t= X § e T (9)
o0

[ 2%

QT(

From here for the mathematical expectation we have mg(l)= 2 m,¢e
| Y

where mk=E§ (t), from which it follows that it can be zero in the case
of centrality of the components (all mg=0); a periodic function with a
period equal to the period of correlativity of the process if all my=0;
constant if mg=0 with ka0 and mo&0.

Fu

-]
The expression of dispersion °§(0= 2 By (O)e , obtained from
f=—cO

formulas (6) and (7), shows that in a general case the dispersion is
periodic of the same period as the period of correlativity; it may be
periodic with a half period and it may be constant. If Bypp,(u)==0 in
the case of all u and all whole p, then the function of correlation
will have a half period. And in order that the mathematical
expectation would have the same period it is necessary that the odd
components in formula (9) be centered, i.e., E Eh(t)=0. If Bi(u)=0
with all u and kq&O, and Bo(u)750, then the process degenerates into
stationary relative to correlation.

When Bpo(u)=0 it degenerates into a determinate function. And if
the periodically correlated process is the result of the conversion of
stationary with the help of a system with periodically changing
parameters in a steady-state mode, then this process possesses a period
of correlativity half that of the period of change in the parameters of
the system.

Taking this into account, we arrive at the conclusion that the
dispersion of a periodically correlated process is more informative
than mathematical expectation, since it reflects the periodic nature of
the structure of the process more deeply.
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Figure 2. Change in the null correlation component (Bg(u)) and the
dispersion (03) of the motor activity of groundlings over the course of
a month.

Key: (1) relative units; (2) t, days.

Since the period of mathematical expectation is determined by the
centrality of stationary components, and the period of dispersion is
determined by the values in the null of the correlation components,
then all the mathematical expectation and dispersion can be used as
independent criteria for the preliminary establishment of the precise
period of correlativity of the process, although it is not determined
uniquely. Also the null correlation component will be such a criterion
when it is a periodic function. This criterion is independent of the
previous, since the null correlation component does not have to be
periodic, but in the case of periodicity its period is a multiple of
the period of correlativity.

Figure 2 depicts the changes in the null component of the
correlation function and dispersion over the course of a month,
calculated based on the data ~f motor activity of groundlings during
August-September 1968 [3] using the formula

1 N | N N
Tf'z 53:4--—_”32%. Y tes ¥
Bo (u) —_ r(u) — Rum] atahﬂl‘-l Sl . rae az — W. 2 (E. J— mi)ﬁ.

-

As is evident from the drawing, the biocactivity of groundlings is a
nonstationary process with dispersion, having a period which is half
that of the period of correlativity.




Since according to work [4) in formula (7) only Bpo(u) is a
positively determined function, then /-;(2.))0 and this function
characterizes the harmonics which make up the process, therefore in a
physical sense it cannot be negative. The remaining correlation
components Big(u) are not positively definite, therefore the spectral
components fk(ﬂ') when kzk0, generally speaking, will be complex, since
they describe the correlation of different harmonics. A stationary
process which has the same set of harmonics as a given nonstatioconary,
and with the same dispersions, is called a stationary approximation of
the latter [12].

Consequently a stationary approximation differs from the process
itself by the absence of a correlation between harmonics. Its
correlation function is determined [12, 15] by the expression

T
¥
Rmh=ym+s b (tu)dt . It is demonstrated in work [4] that in this
- om r
case R{u)=Bg{u), i.e., the null correlation component in formula (7)

determines the stationary approximation of the process.

For the statistical analysis of rhythmicality in processes of a
different scale the need arises for their normalization
(standardization), i.e., in place of E (t) the following process is
considered

bod E(')—’";(o
E(0=—a‘—m'—‘
For a normalized process m?==0,c?==l , and the function of
¢ )= by (. 4)
correlation %4'“y"'%u4unﬁ(o will always be periodic with respect

to t, with a period equal to the period of correlativity, in other
words, the periodic correlativity is invariant with respect to
normalization [5].

Only for the case when a periodically correlated process has the
nature of simple modulation, i.e., has the form

EOD=n0)f(@), (10)
where M (t) - stationary process, and f(t) - actual periodic function,

after standardization we obtain a stationary process, since then

Ry (u)
QU-“)=‘-£T—'=15(“) . The reason here lies in the fact that a process
n




of form (10) belongs to a class of processes which are normalized
(reducible) to stationary [11]. Consequently the reducibility of a
periodically correlated process to stationary can serve as a
characteristic sign of its affiliation to processes of the type of
simple modulation.

In order to analyze the nature of the nonstationary state with a
period of more than 24 hours in meteorological and biophysical
phenomena, to evaluate the comparative biometeorological information
content of mathematical expectation and dispersion, and also the
influence of standardization of realizations of these processes,
investigations were made of changes in atmospheric pressure * and the
motor activity of groundlings over the period of time from 9 through 27
September 1965 with a frequency of sampling of one reading an hour [2].

* These measurements of atmospheric pressure were courteously made
available to us by Yu.Il. Bershchenskiy, head of the L'vov Weather
Service.

Figure 3 shows (from the bottom up) segments of realization
respectively of bloact1v1ty (A) and atmospheric pressure (P), their
moving average (&, P) and moving dispersions (gt, f }, and also the
results of standardization of these realizations ( AA and A?H The
interval of the moving average is equal to 25 h. Under the dispersions
the wedges show the presence of precipitation at ten stations in the
L'vovskaya Oblast, and the diamonds - the passage of fronts in the city
of L'vov. The drawing shows the evident presence of a periodicity of
the average and dispersion, both of biocactivity and atmospheric
pressure with a period of seven-eight days (approximately half of the
semimonthly rhythm, see Fig. 2), a greater procnostic biometeorological
information content of dispersion with respect to precipitation, and
also the invariabilitv of the structure of periodicity of the
investigated realization in the case of standardization. This shows
that the realizations agree satisfactorily with the proposed model,
however, are not always processes of the type of simple modulation,
therefore the methods for investigating them are in need of further
development.

Thus it is evident from the analysis made that the proposed model
provides a natural description of the rhythmic nature of a random
process, agreeing satisfactorily with data from investigations of
natural rhythmic processes which are so diverse in their nature as the
change in atmospheric pressure and biocactivity of groundlings, it
substantiates the possibility of standardization of the results of
measurements of the parameters of rhythmic phenomena and the
application of modified classical methods for their analysis, it
demonstrates the information content of mathematical expectation, the
null correlation component and dispersion; also it represents a
general model of rhythmic phenomena, including the known models:

10
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additive - of the type of a periodic process on a background of
stationary noise, and multiplicative - of the type of the process of
simple modulation. The first of these is obtained if in formula (9)
the stationary components are noncentered and noncorrelated, and the
second - when any of the components is equal to a constant number, its
own for each component, and multiplied by the same stationary process.
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Figure 3. Results of measurements and processing of the biocactivity of
groundlings and atmospheric pressure and their comparison with elements
of weather.
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