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EXECUTIVE SUMMARY

Problems and Objectives: The use of diesel engine-powered warehouse forklifts was initiated
to reduce the logistical burden of supporting the operation of propane- and electric-powered
vehicles. The use of intemnal combustion engines in poorly ventilated areas such as ammunition
igloos necessitated tailpipe emission specifications. The evaluation of JP-8 in warehouse forklifts
was performed to determine if the emissions characteristics of the engines were altered.

Importance of Project: To support the "One Fuel Forward" scenario, the knowledge of
emissions, performance, and durability impacts on clean-burn engines while operating on JP-8
was considered necessary. The vehicular performance and fuel consumption impacts of JP-8 fuel
on Material-Handling Equipment rough-terrain forklift trucks were also viewed as important,

Technical Approach: The clean-burn diesel engines were evaluated for gaseous and particulate
emissions and performance deviations using MIL-T-83133C grade JP-8 and MIL-F-46162C
referee diesel fuel. In addition, an Isuzu C-240 engine underwent 210-hour high-duty cycle
evaluations for durability with both fuels. The rough-terrain forklift trucks were evaluated for
fuel consumption and power availability using JP-8 and a commercial grade diesel fuel.

Accomplishments: The results of this study indicate lower overall gaseous and particulate
emissions from the clean-bum engines when JP-8 is utilized. The performance results indicate
an averaged power decrease of 5 percent and a mean fuel consumption increase of 2 percent.
The durability of the Isuzu C-240 engine with JP-8 appeared to be superior to the MIL-F-46162C
fuel. The rough-terrain forklifts performance results indicate an averaged 4-percent increase in
fuel consumption and a mean 3-percent decrease in vehicular performance.

Military_Impact: The reduced gaseous and particulate emissions with JP-8 indicate the
warchouse forklifts are not adversely affected by the use of JP-8. The knowledge of fuel
consumption increases and performance loss will provide operators with guidelines for estimating
fuel quantities and labor. The durability results indicate the Isuzu C-240 engine would not te
adversely affected by JP-8 usage. The rough-termain forklift truck fuel usage and performance
results will enable mission requirements to be adjusted for operation with JP-8,
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I. INTRODUCTION

The use of diesel engine-powered warehouse forklifts was initiated to red:ice the logistical burden
of operating electric- and propane-powered forklifts. However, internal combustion engines wiui
the accompanying emissions in poorly ventilated areas such as ammunition igloos necessitat: -
tailpipe emission specifications. These specifications were defined by emissions performane
testing of low-emissions versions of candidate industrial diesel engines.(1-3)* The engines t* -
meet the emission specifications that have been incorporated into the purchase specif. “ation
MIL-T-52932C, entitled "Military Specification, Trucks, Lift, Fork, Internal Combus: : 1 Engine,
2000-400C-6000-Pound Capacity," (4) are considered clean-bum diesels.

Il. BACKGROUND

The "One Fuel on the Battlefield" concept requires that warehouse forklifts with clean-burn diese!
engines operate sufficiently on JP-8 in the areas of emissions, performance, and endurance.
Additionally, material-handling equipment rough-terrain forklifts must also be c=nable of

performing their mission utilizing JP-8 fuel, without adverss impact on power or performance.

Previous experience with DE-1/Iet A (§) in diesel-powered transit authorily buses indicates that
the smoke opacity and particulate levels with JP-8 should be lower for the clean-burn diesel
buses than with DF-2. The lower volumetric heat of combustion and viscosity of JP-8 could
result in {ull-rack power loss on the order of 3 to 7 percent (§); however, this result appears to
be dependent on the fuel injection system geometry and engine sensitivity to thermal cfficicncy
improvements with the lighter JP-8 fuel. Partial-rack fuel-consumption debits should be on the
order of the heating value difference between JP-8 and DF-2. Endurance testing with combat and
tactical vehicle engines irdicates lower oil contamination levels, lower combustion chamber

deposits, and lower top ring wear when operating with JP-8.(2)

* Underscored numbers in parentheses refer to the list of references at the end of this report.

1




lil. APPROACH

A.  Clean-Burn Diesel Engines

The emissions, power, and performance characteristics of four clean-burn diesel engines were
evaluated. The four engines were tested for comparative performance characteristics between
MIL-F-46162C (Fuel, Diese!, Referee Grade) (8) 1-percent sulfur referee fuel and MIL-T-83133C
(Turbine Fuel, Aviation Kerosene Type, Grade JP-8) (9) grade JP-8 fuel. These are the referee
fuels specified by U.S. Army Regulation, AR 70-12, for standardization of fuels for vehicle
propulsion engines. Generally, durability specifications must be met in accordance with
MIL-F-46162C, and power and performance specifications must be met with MIL-T-83133C.(10)
These engines included an Isuzu C-240 engine utilized in 1814- and 2722-kg (4000- and 6000-1b)
capacity Hyster forklifts, a Deutz F3L912W engine used in 1814-kg (4000-1b) capacity Still
forklifts, a Deutz F4L912W engine used in 2722-kg (6000-1b) capacity Still forklifts, and a

Perkins 4.154 engine being considered as a candidate engine for future forklifts.

The comparative emission performance tests were performed utilizing the modal steady-state
procedure required in the 13-mode Federal Test Procecure.(11) The test modes and
measurements acquired for each fuel/engine combination, plus duplicates, are shown in
TABLE 1. The steady-state performaice measurements of each engine were analyzed to reflect
the power deviations between JP-8 and DF-2 at the full-rack conditions and the fuel-consumption
variations at the partial-rack conditions. For both emission and performance measurements, the
engines were operated at equivalent brake mean effective pressures, regardless of fuel, for the

partial-rack conditions.

The endurance testing was performed with the Isuzu C-240 engine on both test fuels. The Isuzu
C-240 engine was chosen for evaluation due to the number of fielded units that utilize this
engine. The endurance test used in this evaluation was a 210-hour wheeled vehicle cycle, whici
is a high-load factor cycle consisting of a cumulative 150 hours at rated power and 60 hours at

idle. Historically, the 210-hour cycle lubricant degradation and wear metal concentrations
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TABLE 1. Test Matrix for 13-Mode Federal Test Yrocedure for Evaluation of
Emissions and Performance of Clean-Burni: Diese! Engines Operating on
Specifications MIE.-F-46162C and i{L-T-83133C

Engine Load,
Mode Engine Speed % Measurement*
1 Idle -- Group I, Performance
2 Pe-k Torque 2 Group I, Performance
3 Tcak Torque 25 Group I, Group II, Performance
4 Peak Tonjue 50 Group I, Group II, Performance
5 Peek Torque 75 Group 1, Performance
6 Peak Torque 100 Group I, Group II, Performance
7 Idie - Group I, Performance
8 Rated Power 100 Group 1, Group I, Performance
9 Rated Power 75 Group I, Performance
10 Rated Power 50 Group I, Group II, Performance
11 Rated Power 25 Group I, Group 1I, Performance
12 Rated Power 2 Group I, Performance
13 Idle - Group I, Performance

* Group I includes CO, CQ,, HC, NOy, Bosch smoke number.
Group II includes particulate.
Performance includes fuel flow, load, air/fuel ratio, etc.

correspond to 20,000 vehicle miles. In fuel’s performunce evaluations, this cycle has revealed
severe fuel injection system performance degradation that can be attributed to the high-load
factor.(D)

The engines were disassernbled for inspection and measurement before and after cach endurance
test.  Any parts that exceeded the manufacturer’s tolerances were replaced, and all other pant

conditions and nmweasurements were recorded. The measurements included bearing weights, piston




ring end gaps, cylinder bore diameter, cylinder bore taper, piston skirt diameter, valve guide-to-
stem cleararice, valve recession, and fuel injection system calibrations. Both pre- and post-test
power curves were performed to determine any power loss at the conclusion of the endurance

runs.,

B. Roughk-Terrain Forklifts

Material-Handling Equipment (MHE) rough-terrain forklifts were evaluated at the U.S. Army
Belvoir Research, Development and Engineering Center (Belvoir RDE Center) Engineering
Proving Grounds. The forklifts evaluated included an M4K 1814-kg (4000-1b) capacity Rough-
Terrain Forklift Truck (RTFLT) powered by a JI Case G207D engine, an M6K 2722-kg (6000-1b)
capacity Variable Reach Rough-Terrain Forklift Truck (VRRTFLT) powered by a Cummins
6BT5.9C engine, and an M10A 4536-kg (10,000-1b) capacity RTFLT powerad by an International
DT-466B engine. These forklifts were tested back-to-back with 2 referee grade diesel fuel and
MIL-T-83133C grade JP-8 fuel for comparisons of fuel consumption and performance. The
testing included load-placement, steady-state fuel consumption, acceleration, and gradability tests.
TABLE 2 summarizes the test matrix for the rough-temrain forklift wuck evaluations. Each
vehicle was instrumented for fuel inlet, fuel return, oil sump, and exhaust temperatures, along
with fuel flow instrumentation, which included a fuel totalizer. All measured engine variables

were recorded with a data logger and transferred to a computer for data reduction and analysis.

IV. EXPERIMENTAL RESULTS

A. Clean-Burn Diese! Engines

All evaluations, including emissions, performance, and durability, for the clean-bum diesel
engines were performed utilizing the fuels listed in TABLES 3 and 4. The two fuels are shown
compared to their xespactive specifications and are representative of fuels purchased againsi those

specifications.




TABLE 2. Matrix for Rough-Terrain Forklifts (Three Total)
Evaluation With JP-8 Versus DF-2

Load Placement Steady-State Fuel Consumption
Time, hr Vehicle Speed, km/hr (mph) Loading
1 16 (10) Capacity
24 (15) Capacity
Acceleration Times Gradability

Time-to-Distance, m (ft) Loading Speed on 45% Grade

0 to 46 (0 to 151) 0

0 to 46 (0 to 151) Capacity Capacity Load
0 to 92 (0 to 302) 0

0 to 92 {0 to 302) Capacity

A test cell was nodified to accept the clean-burn diesel engines, along with the instrumentation
to support the perfurmance cnd enussion measurements. TABLE § lists the instrumentation
utilized for the performance and emicsion measurements throughout the program. The gaseous
exhaust emission instrumematior, Fig. 1, was connected to the engine through an exhaust pipe
probe and 2 keated sample line. The gas-ous emission instrumentation calibration carves were
devcloped with traccable standards in the foulowing detector ranges, and the instrument span and

zero adjustments were performed with gases of 2-percent rscuracy and nitrogen. respectively.

Instrument Calibrations Span Adjustments
Low High Low __Hn_gl_.“
HC 100 ppm 500 ppm 35 ppm 153 ppm
CO 1000 ppm 3000 rpru 863 ppm 2866 ppm
CO, 6% 16% 5.406% 14.51%%
NO, 250 ppm 1000 ppm 210 ppm 825 ppm
0, 10% 25% 8.85% 21%




TABLE 3. MIL-T-83133C Property Requirements and Test Fuel Inspections

Property

Color
TAN, mg KOH/g
Aromatics, vol%
Olefins, vol%
Sulfur, mass%
Mercaptan Sulfur, mass%
Hydrogen, mass%
Distillation, °C
Initial Boiling Point
10% Evaporation
20% Evaporation
50% Evaporation
90% Evaporation
End Point
Residue, vol%
Gravity, °API
Density, kg/L
Freeze Point, °C
Flash Point, °C
K. Vis, cSt, at
-20°C
40°C
70°C
Net Heat of Combustion,
Ml/kg
Btwlb
Btw/gal.
Smoke Point, mm
Thermal Stability, JFTOT
Change in Pressure Drop, mm of Hg
Visual Rating
Cetane Number
Cetane Index
Existent Gum, mg/100 mL
Particulate Contamination, mg/L
Accelerated Stability, mg/100 mL
FS1, vol%
Fuel Conductivity, pS/m
Corrosion Inhibitor, mg/L
Visual
Microscparometer
Water Reaction Interface Rating

¢ NR= No Requirement.
** ND = Not Determined.

ASTM
Method

D 156
D 3242
D 1319
D 1319
D 4294
D 3227
D 3178
D 86

D 1298
D 1298
D 2386
D93

D 445
D 445
D 445
D 240

D 1322
D 324!

D 613
D 976
D 381
D 2276
D 2274

D 4176
D 3948
D 1094

MIL-T-83133C
JP-8

Requirements

Report
0.015, max
25,0, max
5.0, max
0.30, max
0.002, max
13.4, min

Report
205, max
Report
Report
Report
300, max
1.5, max
37to 51
0.840 to 0.775
-47, max
38, min

8.0 max
NR‘
NR

428, min
18,400, min
NR

25.0, min

25, max

<3

NR

Report

7.0, max
1.0, max
NR

0.10 t0 0.15
150 to 600
QPL-25017
Clean/Bright
Note 7

1b, max

Test Fuel
AL-19225-F

+18
0.006
20.2
14
0.07
<0.001
13.68

166
191
197
211
241
272
1
414
0.818
46
59

528
144
G.99

42.873
18,432
125,705
202

0

4 Peacock
42

417

11

1

0.1

0.17

195
ND“
Clean/Bright
0.0

1




TABLE 4. MIL-F-46162C Property Requirements and Test Fuel Inspections

MIL-F-46162C
ASTM 1% S DF-2 Test Fuel
Property Method Requirements AL-~19298-F

TAN, mg KOH/g D 974 0.2, max 0.06
Aromatics, vol% D 1319 Report 55.2
Sulfur, wt% D 4294 0.95to0 1.0 0.95
Hydrogen, wt% D 3178 Report 12.29
Distillation, °C D 86

Initial Boiling Point Report 181

10% Evaporation 220, min 224

50% Evaporation 255 to 305 276

90% Evaporation 310 to 360 332

95% Evaporation 315 to 365 345

End Point 385, max 359

Residue, vol% 3.0, max 1.3
Gravity, °API D 1298 Report 29.6
Density, kg/L D 1298 Report 0.873
Flash Point, °C D 93 52, min 77
Cloud Point, °C D 2500 -13, max -31
Pour Point, °C D 97 -18, max -37
K. Vis, cSt, at

40°C D 445 1.9t 4.1 31
Net Heat of Combustion, D 240

Ml/kg Report 4243

Btu/lb Report 18,241

Btu/gal. NR* 132,881
Cetane Number D 613 37t0 43 394
Cetane Index D 976 Report 40.6
Ash, wt% D 482 0.02, max 0.01
Carbon Residue, 10%

Bottoms, wt% D 524 0.20, max 0.16
Particulate Contamination, mg/L D 2276 10.0, max 4
Accelerated Stability, mg/100 mL D 2274 1.5, max 1.3
Copper Strip Corrosion D 130 1, max 1
Free Water and Particulate

Contamination D 4176 Pass Pass

* NR = No Requirement.




TABLE 5. Test Cell Instrumentation for Evaluation of Clean-Burn Diesel Engine
Performance and Emissions

Engine Speed
Digalog Dynamometer Controller

60-Tooth Gear

Engine Load
General Electric 160-bhp Eddy Current Dynamometer

BLH 227-kg (500-1b) Electronic Load Cell
3- to 15-psig Air Throttle

Fuel Flow
Flow-Tron 0 to 45 kg/hr (0 to 100 1b/hr) Mass Flow Indicator

Inlet Airflow
Calibrated Flow Nozzle 0 to 227 kg/hr (0 to SC0 1b/hr) Mass Flow
U-Tube Manometer 0 to 747 N/m* (0 to 30 in.) H,0 AP

Gaseous Exhaust Emissions
Beckman Model 402 Flame Ionization Detector for Unburned Hydrocarbons
Beckman Model 315B Infrared Analyzer for Carbon Monoxide
Beckman Model 315B Infrared Analyzer for Carbon Dioxide
TECO Chemiluminescence Analyzer for Oxides of Nitrogen
Beckman Model OM-11 EA Polarographic Oxygen Analyzer

Particulate Exhaust Emissions

Bosch Spotmeter
20-cm (8-in.) Full-Flow Exhaust Dilution Tunnel




e e Y

Figure 1. Gaseous exhaust emission _instrumentation

The particulate mass emissions were collected by diluting the engine exhaust to the collection
tilter face temperature of 52°C (125°F) with ambient air via a 20-cm (8-in.) dilution tunnel with
a positive displacement-type blower. The Bosch smoke number was determined using a constant
volume sampler, which impinges an exhaust sample onto a controlled density paper filter. The
filter is then evaluated utilizing a reflectance meter. The absorption of light is proportional to the

concentration of soot on the filter. The smoke number sampling probe was located at the exhaust

manifold head pipe.

1. Engine Description
a. Isuzu C-240 Engine

The Isuzu C-240 engine is a water-cooled, four-cylinder, in-line, indirect injected. four-cycle
industrial diesel engine. The specifications for the C-240 are in TABLE 6, and a photograph of

the engine is shown in Fig, 2. Of particular interest with this engine is the use of a throttle body
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TABLE 6. Isuzu C-240 Engine Specifications

Rated Pcwer 36 kW at 2400 rpm
Rated Teique 142 Nm at 2000 rpm
Bore 86 mm

Stroke 102 mm
Displacement 2369 cm’®
Compression Ratio 20:1

Injection Timing (BTDC Static) 14°

Injection Pump

Bosch In-Line A Type With Automatic Timer

Govemor Pneumatic and Mechanical Variable Speed
Injection Nozzle Bosch Throttling Pintle
Combustion Chamber Swirl Chamber

®

R
&
RS

Rkl

Figure 2. Photograph of Isuzu C-240 engine
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on the intake manifold. Operator input actuates a butterfly valve in the throttle body, which
alters the vacuum supply to the injector pump rack actuator. The injection system, a pump-line-
nozzle arrangement, uses a Bosch-licensed four-barrel and plunger in-line pump, and Bosch pintle
nozzles. This engine, which was supplied as Government-Furnished Equipment (GFE), had
previously been operated. The engine was inspected, tuned to factory specifications, then

operated through a break-in cycle.

b. Deutz F3L.912W Engine

The Deutz F3L912W engine is an air-cooled, three-cylinder, in-line, indirect injected, four-cycle
industrial diesel engine. The specifications for the F3AL912W engine are in TABLE 7, and a
photograph of the engine is shown in Fig. 3. The injection system, a pump-line-nozzle
arrangement, uses a Bosch three-barrel and plunger in-line pump and Bosch pintle nozzles. This
engine was supplied as GFE and had previously been operated. The engine was inspected, tuned
to factory specifications, operated through a break-in cycle, and then the clearances of the valves
were checked according to specifications. A Deutz dealer recommended that the valve lash

adjustments be checked periodically on the air-cooled Deutz engines.

c. Deutz F41.912W Engine

The Deutz F4L912W engine is an air-cooled, four-cylinder, in-line, indirect injected, four-cycle
industrial diesel engine. The specifications for the F4L912W engine are in TABLE 8, and a
photograph of the engine is shown in Fig. 4. The injection system uses a Bosch four-barre] and
plunger in-line pump, and Bosch pintle nozzles in a pump-line-nezzle arrangement. This engine
had also been operated previously, The engine was inspected, tuned to factory specifications,
then operated through a break-in cycle, after which the lash clearances of the valves were

checked with specifications.
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TABLE 7. Deutz F3L912W Engine Specifications

Rated Power 34 kW at 2650 ipm
Rated Torque 147 Nm at 1600 rpm
Bore 100 mm
Stroke 120 mm
Displacement 2827 em’
Compression Ratio 19:1
Injection Timing, BTDC

<2300 rpm 15°

22301 rpm 18°
Injection Pump Bosch In-Line A Type
Governor Mechanical
Injection Nozzle Bosch Throttling Pintle
Combustion Chamber Two-Stage (Swirl Chamber)

N R AN
. AT

Figure 3. Photograph of Deutz F3L912W engine
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TABLE 8. Deutz F4L912W Engine Specifications

Rated Power 44 kW at 2300 rpm
' Rated Torque 202 Nem at 1500 rpm
1 Bore 100 mm
Stroke 120 mm
Displacement 3770 em®
Compression Ratio 19:1
Injection Timing, BTDC
<2300 rpm 15°
Injection Pump Bosch In-Line A Type
Govemor Mechanical
Injection Nozzle Bosch Throttling Pintle
Combustion Chamber Two-Stage (Swirl Chamber)

2
i
8
:
9

| Figure 4. Photograph of Deutz F4L912W engine
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d. Perkins 4.154 Engine

The Perkins 4.154 engine is a water-cooled, four-cylinder, in-line, indirect injected, four-cycle
industrial diesel engine. The specifications for the 4.154 engine are in TABLE 9. The injection
system, a pump-line-nozzle arrangement, uses a Bosch-licensed four-port rotary distributor pump
and Bosch pintle nozzles. Since this engine was purchased new for the evaluations, in
accordance with specification MIL-T-52932C, it was operated for an extended 80-hour break-in
before the start of testing.

TABLE 9. Perkins 4.154 Engine Specifications

Rated Power

Rated Torque

Bore

Stroke

Displacement

Compression Ratio

Injection Timing (BTDC Static)
Injecticn Pump

Govemor

Injection Nozzle

Combustion Chamber

41 kW at 2600 rpm
159 Nm at 1800 rpm
89 mm

102 mm

2500 cm®

211

14°

Bosch Rotary VE Type
Mechanical

Bosch Throttling Pintle
Swirl Chamber

[ o

Evaluations

a. Emissions

The brake specific emissions results for all the four clean-bumn dicsel engines, on both JP-8 and
MIL-F-46162C, were computed to evaluate the deviations in emission response between the two
Army referee fuels, not to certify the engines under MIL-T-52932C. A summary of the mean
results for the calculated weighted averages, Society of Automotive Engineers (SAE) J1003 (12),
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is shown in TABLE 10. The weights utilized for calculating the weighted averages were 0.2 for
the average of the three idle modes and 0.08 for each of the other ter modes. The modal

emission results, plus duplicates, for all test engines are included in the Appendix. Overall, the

weighted average emissions are generally lower with JP-8 fuel when compared to the

MIL-F-46162C referee diesel fuel for all four engines tested. The Isuzu C-240 engine revealed

equivalent weighted average carbon dioxide emissions, and the Deutz F3L.912W engine did have

higher weighted average unburmed hydrocarbon emissions when utilizing JP-8. A more thorough

discussion and analysis of the emission results are included in this report.

TABLE 10. Materials-Handling Equipment Clean-Burn Diesel 13-Mode
Weighted Average Emissions

Emission
HC
CO
NOy
Cco,
Part
(HC + NOy)

Emission

#/bhp-hr

(HC + NOy)

Perkins 4.154 Isuzu C-240
1% S DF-2 JP-8 A % 1% S DF-2 JP-8 A, %
0.732 0.527 -28.0 0.644 0.627 -2.6
6.602 2.988 -54.7 8.205 2.9% -63.5
3.334 2.738 -17.9 5.150 4.193 -18.7
565 539 -4.6 565 567 0.4
0.978 0.333 -66.0 4.215 1.862 -35.8
4.067 3.265 -19.7 3.800 4.820 169
Deutz F3L912W Deutz FALO12W

1% S DF-2 Jp-8 A % 1% S DF-2 JP-§ A %
0.312 0.353 13.1 0.602 0.399 -33.7
2430 1.745 -28.2 2937 1.850 -37.0
§.333 7.724 -13 4.920 4.759 -3.3
592 573 -3.2 561 541 -3.6
2.196 1.095 -50.1 1.529 0.861 -43.7
8.645 8.077 -6.6 5522 5.158 -6.6




Since the brake sy iuc particulate emis-ions are usually rot included in the weighted averages,
it was chosen to include them in the sui:mary - reflect the average particulate emissions for
both test fuels. The paificuls + emissions were not measured for all 13 modes; thus weighing
factor of 0.167, or the simple average of the 6 modes measured, was utilized in the weighted
average particulate emission calculations, When compared to the MIL-F-46162C 1% S referee
diesel fuel, a reduction in particulate emissions for all engines is realized when MIL-T-83133C
grade JP-8 is utilized in the clean-burn diesel engines. A more thorough discussion and analysis

of the fuel property effects on the particulate emissions is included in this report.

b. Performance

The performance " :ta were analyzed for the 13-mode cycle. Performance variables at the peak
torque and pr .- power modes (TABLE 11) indicate that, for three of the engines tested, the
power decrement with JP-8 is on the order of the volumetric heating value (Btu/gal.) difference
of the t:..; fuels. The volumetric heating value decrement for the JP-8 fuel was 5.4 percent. The
power loss due to use of JP-8 is closely related with reduced energy input offset by thermal
efficiency gains (due to increased volatility of JP-8 and its effect on the premixed combustion
heat release fraction).(13) The reduced energy input is due in part to the lower volumetric

heating value of JP-8 and increased leakage in the injection system due to the lower viscosity.

TABLE 11. Percent Deviations for Peak Torque (PT) and Peak Power (PP) Modes

Perkins Isuzu Deutz Deutz
4.154 C-240 F3L9ITW F4L912W
PT PP PT PP PT PP PT PP
Energy, Btu/cycle -12.8  -143 -5.3 -74 -1.7 5.9 -112 -94
Thermal Efficiency, % +1.9 467 +1.1 +34  +11.0 446 +6.5 +25
Power, Bhp -11.1 -8.6 4.3 4.3 +2.3 -1.6 -5.4 -71
BSFC, lb/bhp-hr -3.5 -1.8 2.7 4.8 -11.3 -5.9 -7.6 40
BSVC, gal./bhp-hr +3.0 -1.6 +39 +16 -54 +0.4 -14 +25
Bosch Smoke Number -39.1 699 -220 -333 <212 -19.6 -398 464

Deviations calculated zs [(JP-8 - DF-2)/DF-2J*100,
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The Perkins 4.1354 engine displays a performance debit greater than would be expected based on
heating value comparisons. The Perkins engine uses a rotary distributor injection pump, which
was unique from the other three engines. This configuration indicates the rotary distributor pump

is more sensitive to fuel viscosity than the in-line pumps used on the other ¢ngines.

The Brake Specific Fucl Consumption (BSFC) values indicate the effective conversion of fuel
chemical energy to mechanicai work. The values at peak torque and peak power conditions
indicate that each engine utilizes JP-8 more efficiently than MIL-F-45162C. The Brake Specific
Volumewic Consumption (BSVC) is a measure of the effective range of an engine, for a given
fuel volume. The data indicate that the Perkins 4.154, Isuzu C-240, and Deutz FAL912W engines
would have reductions in range when utilizing JP-8, which mirrors the lower volumetric heating
value of the fuel. The Deutz F3L912W engine reveals an incressed range at the peak torque
mode. TABLE 12 is a brief summary of the averaged 3SVC of all modes at the rated torque

and rated power speeds for each engine.

TABLE 12. Percent Deviations in Brake Specific Volumetric Consumption foi
Averaged Rated Torque and Rated Power Speeds

Perkins Isuzu Deutz Deutz

Speed 4,154 C-240 F3L912W F4L912W
Rated Torque (all modes) 0.7 -33 2.90 -2.30
Rated Power  all modes) -2.9 -3.2 -3.94 -2.61

C. Durability

The Isuzu C-240 engine was disassembled, cleaned, measured, off-specification parts replaced,
injection pump calibrated, and then installed on a test stand. A break-in and power check were
completed for a durability evaluation with JP-8, and the engine was filled with an SAE 15W-40
lubricant. A 210-hour wheeled vehicle cycle, a high-load cycle that corresponds to 32,187
vehicle kilometers (20,000 vehicle miles), was completed with the Isuzu C-240 engine while

operating on JP-8. This test is performed without an oil change, other than the daily additions
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to makeup for the engine oil consumed during the test. Post-test wear measurements and
performance evaluations indicated the engine was still within specifications. The 210-hour used
engine oil analysis revealed a viscosity increase from 13.55 ¢St at 100°C to 61 ¢St at 100°C, and
a Thermal Gravimetric Analysis (TGA) soot level of 6.93 percent. The Total Acid Number
(TAN) was 4.76 at 210 hours, increasing from an initial 2.35 mg KOH/g, and the Total Base
Number (TBN) was 1.40, decreasing from an initial 8.02 mg KOH/g.

The engine was disassembled, measured, cleaned, inspected for worn parts; then reassembled and
installed on the test stand for a durability evaluation with the MIL-F-46162C fuel. The test
evaluation with the MIL-F-46162C fuel was halted at 70 hours due to rough engine operation and
severe oil thickening. When the oil was changed, the engine proceeded to run rough, at which
time the test was terminated. Upon engine inspection, it was found all rings in cylinder three
were stuck, which was leading to excessive blowby and poor engine performance. A Thermal
Gravimetric Analysis (TGA) of the oil revealed 8.76-percent soot in the 70-hour oil sample with
the MIL-F-46162C fuel. The 70-hour oil sample viscosity with MIL-F-46162C was 4,832 ¢St
at 100°C. The oil used for both fuel evaluations was identical with an initial viscosity of 13.55
cSt at 100°C. The TAN was 8.70 at 70 hours, increasing from an initial 2.35 mg KOH/g, and
the TBN was 0.27, decreasing from an initial 8.02 mg KOH/g.

The Isuzu C-240 engine was rebuilt with new cylinder components, and the test initiated with
the MIL-F-46162C fuel. The test was tenminated at 30 hours due to poor engine operation.
Upon inspection, the rings in all cylinders were stuck, primarily due to oxidation and subsequent
deposition of the engine oil. A Thermal Gravimetric Analysis (TGA) of the used engine oil at
30 hours revealed 5.89-percent soot. The viscositv increased to 544 ¢St at 100°C from an initial
13.55 cSt at 100°C. The TAN was 3.90 at 30 hours, increasing from an initial 2.35 mg KOH/g,
and the TBN was 1.19, decreasing from an initial 8.02 mg KOH/g. A summary of the new and
used oil analysis for the tivee tests is shown in TABLE 13,

fiurn the particulate ernissions data shown in TABLE 10, it can be noted the Isuzu C-240 enginc
produced significantly higher levels of particulate matter with the DE-2 fuel compared to the
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TABLE 13. New and Used Oil Analysis for the Isuza C-240 Engine
Durability Tests With JP-8 and MIL-F-46162C

Fuel JP-8/DF-2 DF-2 DF-2 JP-8
Test Hours 0 30 EOT* 70 EOT 210 EOT
Viscosity at 100°C, ¢St 13.55 544 4832 61.0
TGA Soot, % 0 5.89 8.76 6.93
TAN, mg KOH/gr 2.35 3.90 8.70 4.76
TBN, mg KOH/gr 8.02 1.19 0.27 1.40

¥ EOT = End of Test.

levels with JP-8. The excess exhaust particulate appears to be detrimental to the engine
durability. A synopsis of the durability results indicated that the engine performed well with JP-8
for the 210-hour wheeled vehicle cycle, while it appeared to have an oil thickening, oxidation
problem with the 1% S MIL-F-46162C referee fuel. The results of this testing indicate that the
utilization of JP-8, at least in the Isuzu C-240 engine, provides improvements in durability over
a representative high-sulfur fuel such as MIL-F-46162C. Although some level of improvement
was expected in the oil oxidation and engine deposit levels, the broad separation in performance

realized was not envisioned.

B. Rougqgh-Terrain Forklifts

All rough-terrain forklift evaluations, load placement, steady-state fuel consumption, acceleration,
and gradability were performed utilizing the JP-8 fuel shown in TABLE 3 and the Reference
No. 2 diesel fuel (Cat 1-H) shown in TABLE 14.

Each vehicle during its respective evaluatdon was instrumented with the equipment shown in

TABLE 15. The load-placcment tests were performed for 1 hour, in duplicate, with a course
layout and spacing as described in MIL-T-53038(ME).(14) The steady-state fuel-consumption
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TABLE 14, Inspection Properties of Diesel Fuel Utilized for
Rough-Terrain Forklift Evaluations

Property

Sulfur, wt%
Hydrogen, wt%
Carbon, wt%
Distillation, °C
Initial Boiling Point
10% Evaporation
50% Evaporation
90% Evaporation
95% Evaporation
End Point
Residue, vol%
Gravity, °API
Density, kg/L
Flash Point, °C
Cloud Point, °C
Pour Point, °C
K. Vis, cSt, at 40°C
Net Heat of Combustion,
MJ/kg
Btu/lb
Btu/gal.
Cetane Number
Cetane Index
Ash, wt%
Carbon Residue, 10% Bottoms, wt%
Particulate Contamination, mg/L
Water and Sediment, vol%

* NR = No Requirement.

AST™M
Method

D 4294
D 3178
D 3178
D 86

D 1298
D 1298
D93
D 2500
D 97
D 445
D 240

D 613
D 976
D 482
D 524
D 2276
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Ref, No. 2
Diesel Fuel

Requirements

0.48 to 0.42
NR*
NR

NR

NR

260 to 277
310 to 327
NR

343 to 366
NR

33.0 to 35.0
NR

60, min
NR

-7, max
2.0t0 4.0

NR

NR

NR

47 to 53
NR

0.01, max
0.20, max
NR

0.05, max

Test Fuel

AL-19657-F

0.4
13.15
86.85

207
239
268
321
338
351
0.8
34.2
0.853
84
-4
-9
2.93

42.42
18,235
129,658
48.9
46.2
0.001
0.1

0.6
0.012




TABLE 15. Instrumentation Utilized for Materials-Handling Equipment
Rough-Terrain Forklift Evaluations

Vehicle Speed
Fifth Wheel With Speed and Distance Computer (GFE)

Fuel Flow
EMCO/Fluidyne PDP-3D 0 to 100 gal./hr Positive Displacement Transducer
EMCO DFP-1120-RT-24VDC Digital Flow Rate Indicator With Totalizer
EMCO 1201D Return Fuel Day Tank

Fuel System
External 114-liter (30-gal.) JP-8/DF-2 Fuel Tanks

Holley Model 12-802 416-liter/hr (110-gal/hr) at 14 psig Electric Fuel Transfer Pump
10-micrometer Primary Fuel Filter

Return Fuel Heat Exchanger

Braided 13-mm (1/2-in.) Fuel Lines With Quick Disconnects

Temperatures
Type J Thermocouple — Fuel Inlet, Fuel Return, Fuel Day Tank, and Oil Sump

Type K Thermocouple — Exhaust System Qutlet

Data Recording

Metrosonics dl-714 Analog Programmable Data Logger
Zenith Z-180 Laptop Personal Computer

evaluations were performed by driving the vehicle around the Belvoir Engineering Proving
Grounds (BEPG) 2100-meter (1.3-mile) test track for three circuits at the test speed. The
distance was measured with a fifth wheel, and the time was kept with calibrated stop watches.
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Although the BEPG track did contain grades, the operator was able to maintain the test speeds

for the complete circuit.

The accelerations were performed on a time-to-distance basis, o:1 a level vortion of the BEPG
test circuit, utilizing prepositioned course markers. The acceleration times wer: periormed with
and without capacity loads, and measured six times per loading. The gradability portion of the
evaluations was performed on a 45-percent slope available at the BEPG. A 11-meter (35-foot)
test section was positioned on the grade, at a point where the grade was reasonably constant,
utlizing dual markers at the start and stop section of the test section. The forklifts were operated
utilizing a capacity load, with the operator starting or stopping the stopwatch when the course
markers were aligned with the vehicle operator. The speed-on-grade evaluations were performed
six times.

TABLE 16 summarizes the rough-terrain forklift evaluations. The load-placement results indicate
fuel consumption under an operating condition typical to the forklifts. The results show higher
fuel-consumption rate for the M4K and lower consumption rates for the M6K and M10A when
utilizing JP-8. The steady-speed fuel-consumption determinations were to measure the part-rack
fuel-economy deviations. The MOK revealed equivalent average fuel consumption at the two
speeds evaluated, while the M10A showed an unexpectedly large decrease in fuel economy with
JP-8. The decrease in fuel economy was expected to be on the order of the reduction in
volumetric heating value of the JP-8.

The accelerations and speed-on-grade are measures of power availability with the test fuels.
Under acceleration, the time-to-distance was longer for both the M6K and M10A in both the
loaded end unloaded conditions. This increased time-to-distance indicates less power available
with JP-8. The M4K revealed mixed results for the time-to-distance under the two loadings. For
the speed-on-grade, the M4K revealed equivalent times using JP-8. The M6K displayed a
reduced speed larger than expected from the volumetric heating value difference between JP-8
and DF-2, The M10A had a faster speed-on-grade when utilizing JP-8.




TABLE 16. MHE Rough-Terrain Forklift Evaluations Summary
Percent Deviations of JP-8 From DF-2

Test Vehicle
M4K M6K M10A

Load Placement Fuel Consumption,

liter/hr (gal./hr) 5.8 2.4 -5.9
Steady-Speed Fuel Consumption, mpg

16 km/hr (10 mph), with capacity load ND* 1.9 -19.3

24 km/hr (15 mph), with capacity load ND¥ -1.9 -10.9
Acceleration to 46 m (151 ft), seconds

With capacity load -0.6 49 1.1

Without capacity load 2.1 1.8 d
Acceleration to 92 m (302 ft), seconds

With capacity load 4.2 5.0 1.1

Without capacity load 0.0 1.6 3.
Speed on 45-Percent Grade, m/s (ft/s)

With capacity load 0.0 -174 23

* ND = Not Determined due to unavailability of fifth wheel.

V. DISCUSSION OF RESULTS

A. Clean-Burn Diesel Engines

1. Emissions

The exhaust emission of a diesel engine is a function of engine configuration, engine power
levels, and fuel properties. The two basic engine types, direct injected (DI) and indirect injected
(IDI), exhibit different exhaust emission characteristics. IDI diesel engines typically exhibit
greater air utilization, resulting in lower smoke and particulate levels than the DI counterpart
engines at equivalent air/fuel ratios.(13) Carbon monoxide emissions, typically low in DI diesel

engines due to lean air/fuel ratios, are generally lower in the IDI engine. This lower emission
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rate is due to high primary and secondary swirl, which mixes the unburned fuel and air and tends
toward more complete combustion. Unburned hydrocarbons are lower with the IDI due to the
turbulent fuel/air mixing, hotter combustion chamber walls, which reduce quench zones, and fuel
rich combustion zones, which avoids overleaning.(16,17) NOy is lower with the IDI engine
because fuel-rich combustion occurring in the swirl chamber reduces NO formation (NOy
precursor), with peak NOy occurring around half load.(17) The engines evaluated as clean-burn

diesels were all indirect injected diesel engines.

Engine speed and engine load are two factors that combine to describe the power level at which
an engine is operating. Engine speed is defined as the crankshaft angular velocity in revolutions
per minute (rpm). Engine speed affects exhaust emissions by affecting the time available for
specific physical events to occur. For example, higher engine speeds decrease residence time for
heat transfer, while increasing the mass motion, which affects the convective heat transfer
coefficient. Heat transfer influences flame quenching and gas temperatures, which have an effect
on unburned hydrocarbons and NO, respectively. The variation of mass motion with engine
speed also impacts fuel/air mixing. This fuel/air mixing may result in overleaning or

undermixing, affecting unburned hydrocarbons.(16)

The engine load is the work in N-m (ft-1bf) produced by the engine. The diesel engine operates
unthrottled, thus for a given engine speed, a similar mass of air is consumed regardless of shaft
work produced. The mass fuel consumption (energy input) is the variable that govemns the
capability of an engine to produce an amount of work. Intuitively, the fuel is the source of all
exhaust emissions, and the mass air/fuel ratio (AFR) is the relative measure of the oxidizer and
fuel available for the combustion process, The chemically correct quantity of a specified fuel
and air for complete combustion is known as the stoichiometric AFR. For a diesel engine the
AFR has a major influence on the exhaust emissions. Generally, the AFR affects the
temperatures reached during combustion, which, in tum, affect NOy, formation, and the oxidation
of particulate and hydrocarbons. Carbon monoxide emissions are considered unimportant in

diesel engines because these engines operate on the lean side of the stoichiometric AFR.(16)
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As the primary source of emissions, it is expected that fuel properties would have an effect on
diesel exhaust emissions. These effects have prompted the Environmental Protection Agency
(EPA) and the California Air Resources Board (CARB) to regulate several diesel fuel properties.
These regulations are set to be enacted in October 1993 for all diesel fuels sold in National
Ambient Air Quality Standard nonattainment zones. Several fuel properties being regulated
include fuel sulfur, cetane number, and aromatic hydrocarbons. The sulfur content has a
profound effect on diesel engine particulate. The present ASTM D 975 specification level of
0.5 wt% is being reduced to 0.05 wt% by the emission regulating bodies.(18) The cetane number
affects both cold start white smoke and black smoke under load. Higher cetane numbers decrease
all regulated gaseous emissions and lower particulate. EPA will require a 40 cetane number
minimum, while CARB will require 45 minimum. Lowering fuel aromatic content will reduce
both gaseous aud particulate emissions, with the effects being more pronounced during transient
emission testing.(18) The EPA requirement for fuel aromatic content will be 35 wt% aromatic

maximum, while CARB will be 10 wt% aromatic maximum.

Fuel properties can also affect diesel exhaust emissions by affecting the power production of the
engine. In this fuel comparison, the lower energy content, lower viscosity, and lower density of
JP-8 result in lower AFR at full rack with JP-8. This leaning effect at full-rack accounts for most
of the emissions variations between the two fuels. From TABLES 3 and 4, it can be seen that
sulfur, cetane number, and aromatic content vary considerably for the test fuels. The values for
MIL-T-83133C JP-8 were 0.07-percent sulfur, 42 cetane number, and 20-percent aromatic
content. The MIL-F-46162C 1% S referce diesel fuel had 0.95-percent sulfur, 39.4 cetane
number, and SS5-percent aromatic content. With respect to the fuel properties and the afore-
mentioned discussion, the clean-bum diesel engines should realize lower emissions with the JP-8

fuel.

a. Isuzu C-240 Engine

The averaged brake specific hydrocarbon and NOy emissions for the Isuzu C-240 engine are
shown in Fig. 5 for all loads at the two speeds evaluated. The 2000-rpm engine speed represents
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the speed for maximum torque, and 2400 rpm is the speed for maximum power. The data for
each speed are plotted as a percentage of the maximum engine load obtained with the referee
DF-2 fuel. The unburned hydrocarbon results generally indicate that JP-8 lowers emissions,
except for the lightest load at 2000 rpm and the 50-percent load at 2400 rpm. Both the JP-8 and
DF-2 show hydrocarbon emission increases, which appear uncharacteristic at the 50-percent load,
2400-rpm condition. The high value for JP-8 was influenced by an extremely high hydrocarbon
reading during the second evaluation. The higher engine speed reveals lower hydrocarbon
emissions, most likely due to better fuel/air mixing and less flame quenching due to the reduced
residence time for heat transfer. The NOy results for the two speeds indicate reduced emissions
utilizing JP-8 for most of the loads evaluated. Lower NOy emissions generally indicate lower
maximum flame temperatures during combustion. Both unburned hydrocarbons and NOy, react

photochemically to form ground-based ozone, which is an irritant.(17)

The averaged brake specific carbon monoxide and particulate emissions for the Isuzu C-240
engine are shown in Fig. 6 for all loads evaluated at the two speeds. The carbon monoxide
results are generally equivalent or lower when JP-8 is utilized. The exception appears to be the
50-percent load at 2400 rpm, which is consistent with the unburmed hydrocarbon results. Carbon
monoxide is a product of incomplete combustion, most prevalent at light loads and full rack, and
is affected by AFR. The full-rack data (100% load) demonstrates the leaning effect of using
JP-8. The engine speeds reveal similar carbon monoxide emission response. The particulate
results for the two speeds indicate reduced emissions utilizing JP-8 for all the loads evaluated.
The fuel sulfur difference contributes to the lower particulate emissions with JP-8, but so does
the leaning effect at full rack. Particulate increases at light Joads are most likely due to mixture
leaning, incomplete fuel droplet combustion, and reductions in particulate and hydrocarbon
oxidation. Particulate in the IDI engine is dominated by hydrocarbons at light-load and carbon
particles at high loads.(18) The speed effects indicate the highest particulate levels are gencerally

at the speed for maximum torque and full rack.
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b. Deutz F3L.912W Engine

The averaged brake specific hydrocarbon and NOy emissions for the Deutz F3L.912W engine are
shown in Fig. 7 for all loads at the two speeds evaluated. The 1600 rpm and 2650 rpm engine
speeds represent the speeds for maximum torque and maximum power, respectively. Again the
data for each speed are plotted as a percentage of the referee DF-2 load. The unburned
hydrocarbon results indicate JP-8 has lower or equivalent emissions at 1600 rpm, except at light
loads. The hydrocarbon emissions increase with JP-8 at all loads at 2650 rpm. The higher
engine speed reveals greater overall hydrocarbon emissions, which indicate possible flame
quenching and undermixing. Undermixing occurs when poorly atomized fuel at the end of the
injection event results in locally fuel rich zones. The NOx results indicate equivalent emissions

when utilizing JP-8 for the loads and speeds evaluated.

The averaged brake specific carbon monoxide and particulate emissions for the Deutz F3L912W
engine arc shown in Fig. § for all loads evaluated at the two speeds. The carbon monoxide
results are generally equivalent or lower when JP-8 is utilized. The leaner AFR at full rack with
JP-8 demonstrates the leaning effect on carbon monoxide emissions. The engine speeds reveal
similar carbon monoxide cmission response.  The particulate results for the two speeds indicate
reduced emissions utilizing JP-8 for all the loads evaluated. Again fuel sulfur and leaner AFR
at full rack contnibute to the lower particulate emissions with JP-8. Particulate increases arc seen
at light loads for reasons discussed carlier. The highest particulate mass emussions for both fuels

appear at the speed for maximum torque and full rack.

c. Deutz F4L912W Engine

The averaged brake specific hydrocarbon and MOy, emissions for the Deutz FALI12W enginc are
shown in Fig. 9 for the loads and speeds cvaluated. The 1500 rpm and 2300 rpm engine specds
represent the speed for maximum torque and maximum power, respectively. Data for each speed
arc plotied as a percentage of the referce DF-2 load. The unbumed hydrocarbon results indicate

JP-8 has cquivalent emissions at 1500 rpm at all loads. The hydrocarbon enussions decrease
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slightly with JP-8 at all loads at 2300 rpm. The higher engine speed reveals equivalent overall
hydrocarbon emissions, except at light load with the 1% S referee DF-2. The NOy results
indicate higher emissions for JP-8 at 1500 rpm and light loads. This condition indicates higher
flame temperatures with JP-8 at light loads. At 2300 rpm, the JP-8 NOy emissions are slightly
lower. Overall, NOy emissions appear to be lower at the higher engine speed.

The averaged brake specific carbon monoxide and particulate emissions for the Deutz F4L.912W
engine are shown in Fig. 10 for all loads and speeds evaluated. Similar or lower carbon
monoxide emissions result with the use of JP-8, at both 1500 and 2300 rpm. The leaner full-rack
AFRs with JP-8 are seen as lower carbon monoxide emissions. The engine speeds reveal similar
carbon monoxide emission response, except at the light load with DF-2. This result coincides
with the hydrocarbon data, indicating possible overleaning and incomplete combustion at light
load with the DF-2. The particulate results for the two speeds indicate reduced emissions
utilizing JP-8, except for the 25-percent load at 1500 rpm. At this load condition, the AFR was
richer with JP-8, which contributes to the higher particulate. Fuel sulfur and leaner AFR at full
rack contribute to the lower particulate emissions with JP-8. Particulate emissions show a speed
dependency with the Deutz F4L912W engine. The increases seen at light loads at 2300 rpm
coincide with data seen earlier. The highest particulate mass emissions for JP-8 appear at the

speed for maximum torque and full rack.

d. Perkins 4.154 Engine

The averaged brake specific hycrocarbon and NOy, emissions for the Perkins 4.154 engine are
shown in Fig. 11 for the loads and speeds evaluated. The 1800 and 2600 rpm engine speeds
represent the speed for maximum torqué and maximum power, respectively. The unburned
hydrocarbon results indicace JP-8 has similar emissions at 1800 rpm with lower values at the light
loads. The JP-& hydrocarbon emissions are comparable to DF-2 at the 2600-rpm load. The two
engine speeds reveal similar response to load of the unburned hydrocarbon emissions. The NOy
results indicate diminished emissions for JP-8 at both speeds and all loads. Except at the lightest

load, overall NOy, cmissions appear to be equivalent at the two engine speeds.
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The averaged brake specific carbon monoxide and particulate emissions for the Perkins 4.154
engine are shown in Fig. 12 for all loads and speeds eval:ated. Similar or lower carbon
monoxide emissions result with the use of JP-8, at both 1800 and 2600 rpm. The increased
engine speed tends to lower carbon monoxide emissions at light loadings, except for the DF-2
response. Particulate results for the two speeds indicate reduced emissions utilizing JP-8, except
for the 25-percent load at 1500 rpm. Light-load particulate increase is due to incomplete
combustion of fuel droplets. Substantially leaner full-rtack AFR contribute to the lower
particulate emissions with JP-8 at the full-rack loads. It should be noted that the reduced full-
rack loads with JP-8 are due to pumping losses in thi¢ fuel iijection pump and the lower fuel
energy density. A speed sensitivity of the particulate emissions is seen with the Perkins 4.154
engine. The highest particulate mass emissions for JP-8 appear at the speed for maximum torque

and partial rack.

In reviewing these results, it should be kept in mind that a deviadon from the 13-mode procedure
occurred for these evaluations at the lightest load condition at each speed. The procedure calls
for 2-percent load, which indicates a mo‘oring dynamometer would be required to overcome
engine and driveline friction to maintai loading. A motoring dynamometer was not available
for these evaluations, so the tests were performed at the minimum stable load obtainable, which
was generally around 10 percent. Overall, the emission results presented indicate the clean-burn
diesel engines respond to the fuel properties, which are known to affect emissions. In general,
MIL-T-83133C grade J¥-8 lowers emissions with respect to the MIL-F-46162C 1% S referee
diesel fuel.

2. Pe rformance

Performance “-ariables for each engine were evaluated for all loads at each of the two test speeds.
The partial-ioad points for each engine at each speed were performed as a percentage of the
maximum obtained load with the refereec DF-2. This procedure simulates an operator extracting
the same work from the engine regardless of fuel being used. The partial-load points should
reflect the fuel-consumption differences between the fuels. The full-rack points dictate the

maximum torque and power difference between the test fuels.
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a. Isuzu C-240 Engine

The brake horsepower and air/fuel ratio at both speeds are illustrated in Fig. 13 for the Isuzu
C-240 engine. The partial-load points indicate the engine evaluations at constarit power with both
fuels were quite consistent. The results also indicate lower maximum power at full rack, for both
speeds, when the engine is operated on JP-8. Generally for both speeds, at the loads evaluated,
the air/fuel ratios for JP-8 are leaner than for the referee DF-2. Leaner air/fuel ratios are higher
numerical values. The approximate stoichiometric air/fuel ratio for middle distiliate fuels is
14.7:1,

Fig. 14 is a record of the fuel energy input into the engine and the brake specific volumetric fuel
consumption (BSVC). The energy input values at part load coincide with the brake horsepower,
i.e., equivalent power output is dictated by equivalent energy input. The curvature of the energy
input line is most likely due to differences in engine conversion efficiencies at the various loads.
The BSVC is essentially a measure of the work available for a volume of fuel. Since equipment
fuel cell volumes are generally fixed, it is an indication of range of a vehicle. The results
indicate an increase in fuel consumption when utilizing JP-8. A rule of thumb estimate for this
increase is the heating value difference of the test fuels, which for these evaluations was

5.4 percent.

Engine thermal efficiency and Bosch smoke number are displayed in Fig. 15 for both speeds.
The Isuzu C-240 engine shows similar thermal efficiencies at both speeds. The largest difference
in thermal efficiency appears at 2400 rpm and full rack. The smoke numbers indicate equivalent

or lower concentration of soot in the exhaust when utilizing JP-8.

b. Deutz F3L912W Engine

The brake horsepower and air/fuel ratio at both speeds are shown in Fig. 16 for the Deutz
F3L912W engine. The partial-load points indicate the engine evaluations at constant power were

consistent. The results indicate higher full-rack power at 1600 rpm when the engine is operated
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on JP-8. The peak power at 2650 rpm is slightly less with JP-8. At 1600 rpm, the air/fuel ratios
for JP-§ are leaner than for the referee DE-2 and similar at 2650 rpm. Overall, the Deutz
F3L912W engine operates at leaner air/fuel ratios than the Isuzu C-240 engine.

Fig. 17 is a record of the fuel energy input into the engine and the brake specific volumetric fuel
consumption. The energy input values for 1600 rpm are lower across the load range with JP-§,
especially at full rack. At 2650 rpm, the energy input is similar with JP-8 except at the full-rack
condition. rhe differences at full rack are due to injection system pumping losses and lower fuel
energy content. The results at 1600 rpm indicate no increase in fuel consumption when utilizing
JP-8 at the peak torque speed. At 2650 rpm, there appears to be light-load fuel-consumption

increase, which reduces to no change at full rack.

Engine thermal efficiency and Bosch smoke number are displayed in Fig. 18 for both speeds.
The Deutz F3L912W engine shows improvements in thermal efficiencies at 1600 rpm at all
loads. This improvement accounts for the ability of the engine to produce equivalent power with
lower energy input when utilizing JP-8. The thermal efficiency at 2650 rpm explains the
variation in the BSVC from light to full loads. The F3L912W engine reveals higher thermal
efficiencies at the maximum torque speed. The smoke numbers indicate equivalent or lower
concentration of soot in the exhaust when utilizing JP-8. The smoke number is higher at peak

torque, which is consistent with the particulate emission results.

c. Deutz F4L.912W Engine

The brake horsepower and air/fuel ratio at both speeds are shown in Fig. 19 for the Deutz
FAL912W engine. The constant engine power evaluations at part loads appear consistent at both
speeds. There is a maximum power decrement when operating on JP-8 at both speeds. Except
for 25-percent load at 1500 rpin, the airffucl ratios with JP-8 and DF-2 were similar. The engine
was operating at a richer air/fuel ratio with JP-8 at this load. The 25-percent load point coincides
with vaniations seen in the engine NOy and particulate response at this load and speed. At
2300 rpm, the air/fuel ratios for JP-8 are slightly leaner than for the referce DF-2. Overall, this

cngine operates at leaner air/fuel ratios than any of the other engines evaluated.
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Fig. 20 is a record of the fuel energy input into the engine and the brake specific volumetric fuel
consumption. The energy input while operating on JP-8 at 1500 rpm is slightly lower than with
DF-2. The energy input curves at 2300 rpm show similar values for both fuels. At 1500 rpm,
a fuel-consumption penalty for using JP-8 is absent. The results indicate an increase in fuel

consumption when utilizing JP-§ at heavier loads and 2300 rpm.

Engine thermal efficiency and Bosch smoke number are displayed in Fig. 21 for both speeds.
The engine shows improvements in thermal efficiencies at 1500 rpm at all but the lightest load.
This improvement accounts for the ability of the engine to produce equivalent power with lower
energy input when utilizing JP-8. The thermal efficiencies at 2300 rpm reveal little variation
between the test fuels. Like the F3L912W engine, the FAL912W engine reveals higher thermal
efficiencies at the maximum torque speed. The smoke numbers indicate equivalent or lower
concentration of soot in the exhaust when utilizing JP-8. The higher smoke number at peak

torque 1s consistent with the particulate emission results.

d. Perkins 4.154 Engine

The brake horsepower and air/fuel ratio at both speeds are shown in Fig. 22 for the Perkins 4.154
engine. The partial-load points indicate consistent constant power operation except at 75-percent
load, 2600 rpm with JP-8. Lower maximum power and maximum torque at full rack are realized
when this engine is operated on JP-8. This engine showed the greatest power decrement with
JP-8, which indicates the rotary fuel injection pump installed in this engine is more sensitive to
fuel viscosity and density variations. The part load air/fuel ratios for JP-8 are leaner at 1800 rpm
and similar at 2600 mpm. The full-rack air/fuel ratios with JP-8 are leaner than the referee DF-2

at both speeds.

Fig. 23 is a record of the fuel energy input into the engine and the brake specific volumetric fuel
consumption. The fuel energy input at 1800 rpm are lower for partial loads with JP-8 and
significantly reduced at full rack. At 2600 rpm, the energy input is similar with JP-8 at part load,

with a sizable reduction at the full-rack condition. The differences at full rack are due to fuel

47




asuodsas uondumsuod jany 311jWN[oA o1y3ds axelq pue ndus A313ud uidud A ZI6TPA ZIMA( 07 2431y

« ‘puot eu|bugy
agt 08 0og or 224

E2T: —con

edf —0O— #dY 00ET

% °‘pwon] sujbug
001 o (1] oy ('14

A WdH 00€2 Bot 03

o T T T v T . g T e

eo0

100

o
©
o

Y00

300

ge

9

e

sy

o

RN/ UondWnsu0D ANeWNOA dlUlaeds exmig

{uizpn ‘indu) ABJeu3

% ‘pwoeuiBul

09

or

G-dr

Md¥ 0035

1

(111 1]

% ‘pwoy euBul

0
—

or
Y

AdY 0051

v

8-dr

00

"
Q
o

N-BAA VOSWALOD HISUNOA Joedg sXsIg

800

o0

L 2 3

e

Yy

lupen indui ABseuz

re




2su0dsa1 JoqUINU YOUIS ISOF PUE AJUIDIYS [BULIBY] JUIZUD JUTIUI MZT6 104 ZInaQ "7 24nBig

% ‘peo eujduzy

oot o8 0g oy 0z 0
v ¥ Y T T L v T —
O \\\\\ i
AW .
240  --O--
MdH 0082 @dP  —O— -
%% ‘pwo sujbuz
001} oe [+]-} oy 0z 0
v T v T r - v T r
o
[ 5 zda  --o-] ]
g-dff —{—
Wdd 0082 ’

00

(4

oe

oS

00

e

(-1
©
% ‘b ‘Aoueioiig rauneyl

Q
<
~

oze

o'oY

*ON eYoui§ yasog

% ‘pyo eujBul
(118 o8 co oy

!b.t!!l!"l'

et fo]

\ﬁ‘

f
Z40  --O-
ML 0054 9-df —O—

Q0

% ‘peo euBuz
oot 1] o8 oy oz

r T v r v Y v T .

NdH 0051

[}

os

‘ON S30E 42800

oy

o's

00

o'e

o
©
-

o
-
o

% °'u ‘Asusidtis syl

oze

(1 4

49




3sU0dsaJ onjes Pny/11e pue Jamodosioy Ixelq SUBUD PST°p SUMII] "77 2:ndlyg

o ‘peo1 euibuy
41V XY 08 0% 3 4

0¢

1 v 1 4 7 1 v ]

S-df —O—

Ndd 0002

i M

% ‘puo sujBuzy
0o} 08 08 or

! v ] v L v T

NdH 0092

9-df

——

ot

e

L 14

4

(13

"

14

08

ousy vy

MY ‘lemod

% ‘p¥o eujBul
6ol cg 09 oy oz
T v ¥ T A 4 v 1
O..._.
t4Q
s-of Méu 008
% ‘proyeuitul
oot o8 o9 or oz
L] v L] ¥ v 1 4 v L)
t#@ --O--
ndi ocsi $-df 5

114

o4

49

e

o9

oasy A7y

AN ‘es0g




asuodsaa uondwnsuod [any JL1jUIN[0A d11ads ayjelq pue Jndug £319u3 JuBud PST 'y SUMIA ‘€T aLndig

%, ‘peo- eujbug

004 08 09 ov 0z 0
¥ M ¥ ' 1) v 1 4 ] v
g-df  —j~ NdY 0082 .
% ‘peoT eujbugy
00} o8 09 or 0z 0
¥ v ¥ L4 ¥ ¥ | | ' 1 v

A

4

P

KdY 0092 8-df —O— ]

o’ ]

Coo'0

800°0

9100

¥20°0

2E0°C

Y-MW/1 ‘uojidwinsuod opjewnioA oj10ads axeig

oro’0

€

¢'c

fupzex nduy ABseuz

s

% ‘PO eufug
004 0@ g9 or gz :
T Y T d T v T i L
O - S 1
1
24§ --0-
s Mau 0081 1
o)
«% ‘peo eulug
o0t 08 09 or L 1
- - ' Y T 7 M L
4
L MY 0081 edf -0~ ]
o

0000

§00°0

Q100

»Z0°0

TE00

IN- AN UORAWNILGY ISWNRIOA O1}108ds exg

0y0°0

L

)4

[uizen “indu: ABJsu3

9

51




injection system pumping losses and lower fuel energy content. The BSVC results indicate
similar fuel consumption at 1800 rpm, at all loads. A fuel-consumption increase is scen at the

lighter loads at 2600 rpm when utilizing JP-8.

Engine thermal efficiency and Bosch smoke number are displayed in Fig. 24 for both speeds.
The engine shows improvements in thermal efficiencies at 1800 rpm at all loads. This
improvement offsets the lower energy input when utilizing JP-8 and allows the engine to produce
equivalent power at part loads. The thermal efficiencies at 2600 rpm reveal little variation
between the test fuels except at full rack with JP-8. Lower concentrations of soot in the exhaust
when utilizing JP-8 are evident from the smoke numbers. The lower maximum load smoke

numbers reveal the effect of the leaner full-rack air/fuel ratos with JP-8.

Overall, clean-burn diesel engines performance is satisfactory with JP-8. Equipment operators
may notice slight power loss at full rack, but will not lose any part-rack performance. Some
fuel-consumption increase should accompany the use of JP-8. However, as seen in the JP-8
demonstration program (19), duty cycles can affect fuel usage as much as differences in fuel
properties. The benefit of reduced black smoke seems to compensate for any performance

decrement.

3. Durability

The Isuzu C-240 engine was operated to determine engine durability when functioning on JP-8,
with respect to the 1% S referee diesel fuel. The 1% S referee diesel fuel is utilized to qualify
engine durability by the U.S. Army Tank-Automotive Command (TACOM) in a 400-hour North
Atlantic Treaty Organization (NATO) cycle evaluation. The 210-hour test chosen for these
evaluations consists of repeating 14-hour scgments of modes of 2 hours at full power and | hour
at idle, with the segment ending with a 2-hour full-power mode. The resulting evaluation
consists of 150 hours of full-power operation and 60 hours at idle. The cngine oil used for these

evaluations was an SAE 15W-40 lubricant. A fresh charge was used at the beginning of each

evaluation, and only makeup oil was added during the testing.
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a. Rebuild Measurements

Before each endurance evaluation, the engine was disassembled and the wear critical components
were measured. If any parts exceeded the worn limits, they were replaced. TABLE 17 shows
the engine part measurements taken before the JP-8 evaluation. The measurements indicate that
the cylinder liners were within the new part limits for diameter, out-of-round, and taper, and well
within the worn limits for diameter. The pistons were also within the new limits for the smaller
sized piston available for this engine. When the liner-to-piston clearance is checked, the
clearance indicates the larger of the two piston sizes available should have been used for this
build. Since these were the original parts for this engine, it was decided to perform the
evaluation with the slightly enlarged piston-to-liner clearance. It was expected this larger
clearance would increase blowby, effect oil degradation, and establish a worst-case evaluation.
The piston ring end gaps are slightly greater than the new limits, but well within the worn limits.
The piston pin bushing measurements were checked to ensure that excessive piston secondary
motion would not occur due to sloppy piston pin fits. Excessive piston secondary motion can
lead to piston/liner contact and increase risk of scuffing. All main bearings, connecting rod
bearings, and camshaft bearings were well within specifications. All valves and valve guides in

the cylinder head were replaced prior to the JP-8 evaluation.

TABLE 18 records the engine part measurements taken before the first MIL-F-46162C
evaluation. The cylinder liners were within the new part limits for diameter, out-of-round, and
taper, and well within the worn limits for diameter. The pistons were still within the new limits
for the smaller sized piston, even after the 210-hour JP-8 evaluation. It was decided to continue
with the original build and perform the evaluation with the slightly enlarged piston-to-liner
clearance. Again it was expected blowby would increase and establish a worst-case evaluation.
The piston ring cnd gaps are slightly greater than the new limits, but well within the worn limits,
The piston pin bushing measurements were within limits. All main bearings and connecting rod
bearings were within specifications. The camshaft bearings were screened after the first

evaluation, and revealed no change, which is typical of steady-state operating conditions,
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TABLE 19 records the engine part measurements taken before the second of the MIL-F-46162C
evaluations. The cylinder liners were within the new part limits for diameter, out-of-round, and
taper, and well within the worn limits for diameter. New pistons were installed for this test, due
to the stuck rings in the previous eveluation. The new pistons were within specificaticns for the
smaller sized pistons. The evaluations were performed with a slightly enlarged piston-to-liner
clearance. Again it was expected blowby would increase and establish a worst-case evaluation.
The new piston ring end gaps were slightly greater than the new limits, but well within the wom
limits. The ring end gaps are measured by installing the rings at the top of the cylinder bores.
Some wear in the bore at this location may have accounted for the wider end gap measurements.
The piston pin bushing measurements were within limits. All main bearings and connecting rod

bearings were within specifications.

b. Wear Measurements

The wear measurements for the Isuzu C-240 engine upon completion of the 210-hour JP-8
evaluation are shown in TABLE 20. The measurements shown are for the cylinder bores, ring
end gaps, and valves. These areas are considered to be the most wear prone of the engine and
the most critcal for engine peiformance. Individual and average bore measurements indicate
litde, 1f any, measurable wear occurred during the evaluation. The presence of negative values
indicate bore wear was probsbly less than the measurcment accuracy. The ring end gap wear
results reveal the oil control nng, Ring No. 4, has the greatest end gap increase. The overall
average wear rate for the nngs would be on the order of 132 micrometer/hour for the JP-§

cvaluation. The valve to guide clearance wear was low for the evaluation. The valve depth

<

hange, or valve recession, reveals a 1040 micrometer/hour intake valve recession and a

315 micrometer/hour exhaust valve recession.

The wear measurements for the Isuzu C-240 engine upon completion of the initial 70-hour
MIL-F-46162C cvaluaton are shown in TABLE 21, Individual and average bore imcasurements
indicate litde, if any, mcasurable wear occurred duning the evaluation, which 1s not unexpecied

after only 70 hours of operation. Again, the presence of negative values indicate bore wear was
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TABLE 20. Isuzu C-240 Engine Wear Measurements After JP-8 Evaluation

Cylinder No.

Middle
Bouom

Cylinder No.

Top
Middle
Bottom

Cylinder No.

Rin& No

ok $iD e

[N

Cylisder No.

Valva

Intake
Fahaust

Cylinder Nev.

Valve

Intake
Exhaust

Test: 1 Lubricant: 18750 Fuel: JP-8
Cylinder Bore Diameter Changes
1 2
T-AT* F-B T-AT F-B
in. mm in mm in. mm in. mm
0.0000 0.000 -0.0013 0.033 0.0003 0.008 -0.0001 -0.003
-0.0002  -0.005 0.0000 0.000 0.0001 0.003 -0.0003  0.008
-0.0004 0.010 0.0000 0.000 -0.0008  -0.020 -0.0001 -0.003
3 - 4
T-AT F-B T-AT F-B
in mm n mm in. mm in. mm
0.0001 0.003 -0.0001 0.003 0.0001 0.003 -0.0001 -0.003
0.0000 0.000 -0.0001 -0.003 0.0000 0.000 -0.0003 -0.008
-0.0008  -0.020 -0.0003 -0.008 -0.0014 -0.036 -0.0001 -0.003
Average Change
— T-AT F-B
in. mm in. mm
Top 0.0001 0.003 -0.0004 0.010
Middie 0.0000  0.001 0.0002 -0.004
Boltom 0.0008 0.022 <0.3001 -0.003
Piston Ring End Gap Change
2 3 4 Average
n. mm in. mn in mm in, mm i mm
0.0000  0.000 Q.001¢6 0.2 0.0000 0.000 0.0000  0.000 0.0003 0.006
0.0010  0.025 0.0010  0.25 0.0010 0.025 0.0060  0.000 0.0007 0019
0.0010 0.025 0.0010 0.5 0.0010 0.025 Q0010 0.025 0.0010 0025
0.0020 0051 0.0030 0076 0.0020 0.051 030 0076 0.0035 2.083
QOvenll Average Change: 0001t in.  0.029 mum
Valve Qlearanee Change
2 _ 3 4 Avenpe
n. mm m. mm wn mm . o . nm
0.0001 0.003 G000 0.000 0.0004 0.010 0004  0.010 0.0002 0005
0.0001 0.003 Q000s  0.010 0.0000 0.000 00000  0.000 0.0001 0.003
Valve Degabh Change
2 3 4 Avenape
th, mimn in. mm in mm in. mm w. mmn
0.0147 [VRLYA] 0.0002  0.005 Q.0087 0.221 0.0106 0.209 00086 017
220016 0.041 0009 0.014 0.0083 0.216 00005  0.0i3 0.0026  0.085

¢ T.AT = Thust-Antithrust Darectson; F-B = Front-Back Duscuon.
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TABLE 21, Isuzu C-240 Engine Wear Measurements After First 1% S DF-2 Evaluation

Test: 2 Lubricant: 18750 Fuel: 1% S DF-2

Cylinder Bore Diameter Changes

Cylinder No. 1 2
T-AT* F-B T-AT F-B
in mm in. mm in. mm in mm
Top 0.0000 0.000 -0.0001 0.003 -0.0001 -0.003 0.0000 0.000
Middie 0.0001 0.003 -0.0001 -0.003 0.0000 0.000 0.0002 0.005
Bottom -0.0001 0.003 -0.0001 -0.003 0.0000 0.000 0.0001 0.003
Cylinder No. 3 4
T-AT F-B T-AT F-B
in _mm_ in. mm in. mm in. mm
Top €.0000 0.000 0.0600 0.000 -0.0001 <0.003 0.0000 0.000
Middie 0.0002 0.005 0.0003 0.008 0.0003 0.008 0.0004 0.010
Bottom 0.0011 0.028 -0.0001 -0.002 0.0000 0.000 0.0001 0.003
Average Change
AT 2
in. mm in. mm
Top 0,0000  0.00t £0.0000  -0.001
Middle 0.2002 0.004 0.0002 0.005
Bottom 0.0003 0.006 0.0000 0.000

Piston Ring End Gap Change

Cylinder No. 1 2 3 4 Average

Ring No. . mm in. mm in mm 8. mm in. nm
1 0.0040 0102 0.0050 0.203 Swick - 0.0060 0.152 0.0060 0152
2 00070 0178 0.0080  0.203 Stuck - 00070 Q.178 0.0013  0.186
3 0.0080 0203 070 Q178 Suck - 00070 0178 0.0073 Q.86
) 0.0050  0.127 00090 0229 0.0100 0.254 00030  0.102 00070 Q178

Ovonl]l Average Change: 0.00F in. 0176 mm

Valve Clearanoe Change

Cylinder No. ! 2 3 4 Avenage
Valve n. mm n. ma in. mm in. mm n. mm
Intake 0.0008 0.013 0.0007  0.018 0.0003 0.008 00002 0005 0.0003 0.008
Exhaust 0.0000 0.000 0.0003 0008 00008 0.020 00003 0008 0.0002 Q005

Yalve Depth Change

Cylinder No. 1 2 3 4 Average
Valve . mm . nun . min in. mm in. mm
Intake 0.0010 0.025 0.0010 9.MmSs 0.0003 0.008 0.0032 0.08) 0.0014 0.035
Exhaust 0.0030 0.076 0.0002  0.005 0.0005 0.013 00005 G013 0.0008 0.020

* T.AT = Thiust-Anuthrust Dyection; F-B = Front-Back Direcuon.
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probably less than the measurement accuracy. The ring end gap wear results indicate sizable end
gap increase on all rings, with the top three rings on Piston No. 3 being stuck. The overall
average wear rate for the rings would be approximately 2504 micrometer/hour for the 1% S
referee diesel fuel evaluation. Valve-to-guide clearance wear was low for the evaluation. The
valve depth change, or valve recession, reveals a 508 micrometer/hour intake valve recession and

a 290 micrometer/hour exhaust valve recession for the 70-hour evaluation.

The wear measurements for the Isuzu C-240 engine upon completion of the second
MIL-F-46102C evaluation, which lasted 30 hours, are shown in TABLE 22. The individual and
average bore measurements exhibit a relatively large amount of bore wear for such a short
evaluation. The increased bore wear could be attributed to the new rings running in on the bores,
and the increased wear due to the stuck fire control rings. The ring end gap w 2ar results indicate
negligible end gap increase except for the oil control ring. All fire control rings were stuck, with
the second and third rings stuck on Cylinder No. 3 also. The overall average wear rate for the
rings would be on the order of 170 micrometer/hour for the second 1% S referee diesel fuel
evaluation. Valve-to-guide cicarance and valve depth change were not determined due to the

brevity of this ¢valuation.

C. Qverall Results

Before cach endurance evaluation, a power curve was performed on the Isuzu C-240 engine with
the test fuel. The plan then was to perform a post-test power curve to determine the extent of
power loss due to wear in the engine. Due to the high oil oxidation rates and stuck rings during
the MIL-F-46162C evaluations, post-test results could not be performed. The results of the initial
power curves for the three evaluations are exhibited in Fig. 25. Also included with the figure
is the post-test evaluauon for JP-8. The cvaluation with JP-8 indicates only a slight decrease in
power after 210 hours of operation. The curve for the first DF-2 evaluation indicates the engine
was slightly down on power after rebuild, compared to the initial and post-test JP-8 run. This

slight decrease may have occurred as a result of the worn cylinder components. The second
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TABLE 22. Isuzu C-240 Engine Wear Measurements After Second 1% S DF-2 Evaluation

Test: 3 Lubricant: 18750 Fuel: 1% S DF-2
Cylinder Bore Diameter Changes
Cylinder No. 1 2
T-AT* F-B T-AT F-B
in. mm in. mm in. mm in mm
Top 0.0050 0.127 0.0051 0.130 0.0051 0.130 0.0051 0.130
Middle 0.0051 0.130 0.0052 0.132 0.0052 0.132 0.0052 0.132
Bouom 0.0058 0.147 0.0054 0.137 0.0067 0.170 0.004¢9 0.124
Cylinder No. 3 4
T-AT F-B T-AT F-B
in mm in. run in. mm in mm
Top 0.0051} 0.130 0.0051 0.130 0.0052 0.132 0.0053 0.135
Middle 0.0050 0.127 0.0051 0.130 0.0051 0.130 0.0051 0.130
Bouom 0.0057 0.145 0.0054 0.137 0.0066 0.168 0.0055 0.140
Averge Change
T-AT F-B
in mm in. mm
Top 0.0051 0.130 0.0051 0.131
Middle 0.0051 0.130 0.0051 0.13
Boiom 0.0052 0.157 0.0053 Q.135

Piston Ring End Gap Change

Cylinder No. ! 2 3 4 Averge
Ring No. . mm in. mm i m in. ik in. mun
1 Stuck . Swek - Susek .- Sweck - - -
2 0.0010 0.028 0.0020 0051 Swck - 0.0000 0.000 0.0002 0.006
3 0.0000 0.000 00010 0.(0s Swck - 0.0010  -0.025 00005 001
4 0.0010 0.023 0.0010 005 0.0020 0.051 0.0030 0.076 0.0017 0.044

Overall Average Change: 0.00R in.  0.006 mm
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Figure 25. Isuzyu C-240 engine durability power curves

DF-2 power curve displays expected results based on the heating value difference between the
JP-8 and the MIL-F-46162C fuel. This build did include new pistons and rings, although, as seen

carlier, the piston-to-liner clearances were slightly large.

The fuel injection pump was calibrated to factory settings by factory technicians before each
evaluation. The check before the JP-8 run showed the pump was performing acconding to
specification, which indicates it was properly functioning during the emission evaluations. The
post-test evaluation indicated the pump met performance specifications, although the pump
appeared to be sluggish when returning to idle from full rack. The injection pump barrel and
plungers were replaced, and the onginal sets were inspected.  When inspecied, there was no
indication of wcar, scuffing, or scratching of the barrel and plungers. The inspections after the

1% S DF-2 cvaluations indicated no performance change in the fuel injection pump.

The used oil analysis is one of the best tools for indicating how the engine is performing with

different fuels. The oxidation of the engine oil and soot buildup in the oil led to the wermination




of the MIL-F-46162C evaluations. The iron accumulation results displayed in Fig. 26 are
indicative of cylinder liner and piston ring wear. These data suggest slightly lower iron
accumulation rates with MIL-T-83133C grade JP-8 fuel. Some of the variation in the wear

metals accumulations is due to oil additions.

Engine oil usually has some acidity as measured by the Total Acid Number (TAN) and some
reserve alkalinity measured by the Total Base Number (TBN). The TBN is present to neutralize
the acids formed by both oil degradation and combustion by-products. The increase of TAN
usually follows a decrease of the TBN. In other words, when the reserve alkalinity is expended,
the acidity of the lubricant tends to increase. The rate at which these events occur is a known
function of the fuel sulfur content. Fig. 27 illustrates the TAN and TBN histories of the three
durability evaluations. The results with JP-8 follow a typical trend of base number depletion and
acid number increase. The referee grade 1% S DF-2 results show rapid TBN depletion,

corresponding to a TAN increase.

One measure of oil oxidation is the lubricant viscosity increase as a function of time. Rapid oil
oxidation rates were not expected for these cvaluations, so the viscosity was scheduled to be
measured every 70 hours of testing. The DF-2 evaluations had high oil oxidation and oil
thickening, and the time for the oil to exceed the viscosity range for & 15W-40 grade lubricant
was not accurately determined. Fig. 28 represents the extent of the oil viscosity data, but clearly
shows the rapid oxidation of the lubricant with the 1% S DE-2. The oxidation of the lubricant
can also be catalyzed by soot and, to some extent, wear metals, Emissions results indicate soot
should be greater with the DF-2 fuel. The oil thickening and soot led to the formation of
deposits, which stuck the rings during the DF-2 evaluations.

The durability results indicate JP-8 was not detrimental to the durability of the engine. The use
of MIL-F-46162C appears to affect durability substantially. Such a wide differcnce in ¢engine

durability with these fucls was not expected at the onsct of the program.
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B. Rough-Terrain Forklifts

The rough-temain forklift evaluations with JP-8 were in two performance categories: fuel
consumption and power availability. The fuel consumption was estimated by the load-placement
cvaluations and the steady-speed measurements. The power availability was determined by

cmploying time-to-distance accelerations and the speed-on-grade on a 45-percent slope.

1. Fuel Consumption

The fuel consumption and fuel economy deviations for the rough-terrain forklifts are shown in
Fig. 29, along with the deviation between the volumetric heat of combustion of the two test fuels.
For these evaluations, the volumetric heating value for the JP-§ was approximately 3 percent
lower than the reference DF-2. The fuel consumption data, in liters per hour (gallens per hour),
were gencrated during the load-placement tests. The fucl cconomy data, km per liter {miles per

gallon), were gencrated duning the stcady-speed measurcments.
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Figure 29. Fuel consumption and economy for rough-terrain forklifts

The M4K RTFLT was evaluated for fuel consumption (liters/hr) utilizing the load-placement test
only. The data indicate the typical fuel consumption increase for the M4K would be
approximately 5.8 percent. While utilizing JP-8 during the load-placement tests, the M4K did
not display any operational problems. The operator felt that the vehicle performed satisfactorily
with JP-8.

The M6K VRRTFLT was evaluated for fuel usage utilizing both load-placement and steady-speed
tests. The load-placement test was performed twice with JP-8 and once with DF-2. The average
fucl consumption (liters/hr) decrease for the M6K with JP-§ was approximately 2.4 percent,
While utilizing JP-8 during the load-placement test, idle roughness and stalling were noted,
particularly after the vehicle and fuel reached eperating temperatures. The M6K VRRTFLT has
parasitic hydraulic loads whilc idling. The lower viscosity of heated JP-8 and the ensuing

increased injection pump leakage resulted in lower injected fuel quantities at idle. The

combination of the parasitic loads and the lower injection Quantities with JP-8 resulied in the idic




roughness and stalling. An adjustment of the idle speed or idle fuel flow would eliminate the
hot-idle stalling problem with JP-8 in the M6K vehicle.

The M6K VRRTFLT was evaluated for fuel economy (km/liter) at two speeds, while carrying
a capacity load. The operator was able to maintain the average speed targets around the BEPG
test track, which did include a graded section. At a test speed of 18 km/hr (10 mph), the M6K
revealed an approximate 2-percent improvement in fuel economy while utilizing JP-8. At the
28-km/hr (15-mph) test speed, the M6K indicated an approximate 2-percent decrement in fuel
economy while utilizing JP-8. All fuel usage measurements for the M6K revealed fuel
consumption differences less than would be predicted from the volumetric heat of combustion
difference of the test fuels. Overall, the fuel usage deviations with JP-8 in the M6K is on the

order of a 1-percent decrease with respect to DF-2.

The M10A RTFLT was also evaluated for fuel usage using both the load-placement and steady-
speed tests. The fuel consumption (liters/hr) decrease for the M10A with JP-8 was on the order
of 5.9 percent. While utilizing JP-8 during the load-placement tests, the M10A did not display
any operational problems. The operator felt that the vehicle performed satisfactorily with JP-8,

The M10A RTFLT was evaluated for fuel cconomy (kmyliter) at two speeds, while carying a
capacity load, Again, the operator was able to maintain the average speed targets around the
BEPG test wack. At a test speed of 18 km/hr (10 mph), the M10A revealed a decrement in fuel
economy, with respect to DF-2, on the order of 19.3 percent while utilizing JP-8. At the 15-mph
test speed, the M10A indicated an approximate 10.9-percent decrement in fuel economy while
utilizing JP-8. The fucl usage mcasurements for the M10A revealed fuel consumption
differences, which vary significandy from the values predicted from the volumectric heat of
combustion difference of the test fuels. It i3 not known why thesc large fuel consumption
deviatons exist with the MI0A. An overall average of the fuel usage deviations with JP-8 in

thc M10A reveals an approximate increase in fuel usage of 8.1 percent with respect to DF-2.
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2. Power Availability

Acceleration time-to-distance was measured for all vehicles both with and without their respective
capacity loads. Fig. 30 represents the acceleration times for the unloaded rough-terrain forklifts
at each of the two measured distances. Similarly, Fig. 31 displays the results for the loaded
forklifts.

From Fig. 30, it can be seen that the unloaded M4K has 2.1 percent longer times to 46 meters
(151 feet) and equivalent times to 92 meters (302 feet) while consuming JP-8. From Fig. 31, the
loaded vehicle acceleration times for the M4K were roughly equivalent at 46 meters and
4.2 percent longer at 92 meters. The overall average increase in acceleration times for the M4K
was approximately 1.4 percent when JP-8 was consumed. This value is lower than the energy

content difference between the test fuels.

The unloaded M6K reveals 1.8 percent longer times to 46 meters (151 feet) and 1.6 percent
longer times to 92 meters (302 feet) when consuming JP-8. ‘The loaded vehicle acceleration
times for the M6K were 4.9 percent longer at 46 meters and 5.0 percent longer at 92 meters.
The overall average increase in acceleration times for the M6K was on the order of 3.3 percent
when JP-§ was consumed. This value reflects the energy content difference between the test

fuels.

The unladen M10A reveals 3.1 percent longer times to 46 meters and 3.3 percent longer times
to 92 meters while JP-8 is consumed. The acceleration times for the M10A while carrying a
capacity load were 1.1 percent longer at 46 meters and 1.1 percent longer at 92 meters. The
averaged increase in acceleration times for the M10A was on the order of 2.2 percent when JP-8
was being consumed. This value is slightly lower than the encrgy content difference between

the test fuels.
All vehicles performed satisfactorily duning the acceleration tests with JP-8. One observation
voted during the testing was the reduced exhaust smoke signature when JP-8 was used in all

vehicles.
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A 45-percent slope was used to observe the speed-on-grade of the rough-terrain forklifts. The
vehicle speeds were calculated from the elapsed time through a 10.7-meter (35-foot) constant
slope test section. All evaluations were performed with the vehicle carrying a capacity load. The
speeds obtained on the grade for both fuels are shown in Fig. 32 for all three test vehicles. All
results shown are the average of six timed climbs. The grade-climbing ability of the M4K was
not affected by the use of JP-8. The M10A showed a slizht increase in grade speed when JP-8

was combusted. The operator felt the performances of these vehicles with JP-8 were satisfactory.
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Figure 32. Speed on 45-percent grade for capacitv-loaded rough-terrain forklifty

The MOK revealed a 17.4-percent reducuion in grade speed, much greater than would have been
expected from the energy content of the fuels. It is interesting that the MOK uscs the same
design fucl injection pump as the Perkins 4.154 engine discussed carlier. As noted during the
discussion of the Perkins 4.154 performance data, the Perkins engine had suffered a performance
loss greater than expericnced by the other engines evaluated. The performance of the MéK
scems to confinm the speculation that particular design of fuel injection pump appears to be

sensitive (9 fuel viscosity and A=nsity vanations.




The acceleration results indicate some decrease in power avai'ability when JP-8 is utilized in the

rough-terrain forklifts. The speed-on-grade results indicate that for the M4K and MI10A, the

power available using JP-3 to perform their mission is adequate. The M6X, however, reveals a

loss of grade climbing ability, or insufficient power availability, when JP-8 is utilized.

A.

Vil. CONCIL.USIONS

Clean-Burn Dieset Engines

In general, the gaseous exhaust emissions of the four clean-burn diesel engines evaluated were
lower with MIL-T-83133C grade JP-§ than with the MIL-F-46162C referee grade diesel fuel.
The Deutz F3L.912W engine revealed higher unburned hydrocarbon emissions with JP-8.

All engiiies revealed substantial reductions in particulate mass emissions when utilizing JP-8.

The three engines with in-line injection pumps revealed performance decrements with JP-8
that were on the order of the difference in heating values of the test fuels. The engine that
utilizes a rotary injection pump displayed a performance decrement larger than expected from
the heating value of the fuels.

A 210-hour evaluation with the Isuzu C-240 engine operating on JP-8 indicates that the use
of JP-§ would not affect the durability of the engine. The same evaluations indicate
substantial improvements in durability with JP-8 are realized when compared to the
MIL-F-46162C referee grade diesel fuel.

Rough-Terrain Forklifts

The M4K RTFLT in load-placement testing revealed a S5.8-percent increase in fuel
consu:mption with JP-8. The M4K performance during the accelerations and grade climbing

indicate adequate power is available when consuming JP-8.
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» The M6K VRRTELT in load-placement and steady-speed evaluations revealed an overall
1-percent decrease in fuel usage during JP-8 utilization. The M6K displayed acceleration time
increases with JP-8 on the order of the heating value differences of the test fuels. The grade-
climbing ability was decreased with the use of JP-8.

o The M6K revealed a hot-idle and stalling problem when JP-§ was utilized, particularly when

the engine and fuel reach operating temperatures.
* The MI0A RTELT in load-placement and steady-speed evaluations displayed an overall
8.1-percent increase in fuel usage when JP-8 was utilized. The M10A performance during the

acceleration trials and grade climbs indicated the power availability when utilizing JP-8 was

adequate for the vehicle to perform its mission.

Vill. RECOMMENDATIONS

The following recommendations are made as a result of this study:

» The required idle speed and fuel flow settings for the M6K to eliminate the hot-idle

and stalling concerns when JP-8 is utilized should be determined.

« The required fuel injection pump adjustments for the M6K to recover the grade

climbing performance loss when JP-8 is utilized should be determined.

» The reason for the unexpectedly large increase in fuel usage with JP-8 of the M10A

during the steady-speed evaluations should be determined.
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REDSTONE ARSENAL AL 35898-3243

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN: AMXSY-CM (MR NIEMEYER)
AMXSY-CR 1
ABERDEEN PROVING GROUND MD
21005-5006

Pt

CDR

US ARMY CHEMICAL RD&E CENTER

ATIN: SMCCR-MUS 1
ABRERDEEN PROVING GROUND MD
21010-5423

HQ, US ARMY T&E COMMAND
ATTN: AMSTE-TA-L (LIVE FIRE QOFFICE)
AMSTE-CM-R-0O
AMSTE-TE-T (MR RITONDO) 1
ABERDEEN PROVING GROUND MD
21005-5006

[YSRY

CDR

US ARMY DEPOT SYSTEM COMMAND

ATTN: AMSDS.RM-EFO 1
CHAMBERSBURG PA 17201
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CDR

US ARMY RESEARCH OFFICE

ATIN: SLCRO-EG (DR MANN) 1
SLCRO-CB 1

RSCH TRIANGLE PARK NC 27709-2211

CDR

US ARMY WATERVLIET ARSENAL

ATTN: SARWY-RDD 1
WATERVLIET NY 12189

CDR

US ARMY FOREIGN SCIENCE & TECH CTR
ATTN: AJAST-RA-ST3 (MR BUSI) 1
220-TTH STREET NE

CHARLOTTESVILLE VA 22901

CDR

S ARMY LEA

ATTN: 1LOEA-PL (MR LEVAN) 1
DEFENSE DISTRIBUTION REGION EAST (DDRE)
NEW CUMBERLAND PA 17070

PROJECT MANAGER

PETROLEUM & WATER LOGISTICS

ATIN: AMCPM-PWL 1
430G GOODFELLOW BLVD

ST LOUIS MO 63120-1798

CDR
US ARMY PETROLEUM CENTER
ATIN: SATPC-Q (MR ASHBROOK)

—

SATPC.QR !
SATPC-QE, BLDG 85-3
(MR GARY SMITH) 1
NEW CUMBERLAND PA 17070-5008
CDR
US PETROLEUM FIELD OFFICE WEST
ATTN: SATPC-QW (MR ECCLESTON) 1

DDRVW, BLDG 247, TRACEY LOCATION
P O BOX 96001
STOCKTON CA 95296-0560

CDR

US ARMY COLD REGION TEST CENTER
ATIN: STFCR-TA l
APQ SEATTLE WA 98733

CDR
US ARMY RSCH, DEV & STDZN GROUP (UK)
ATIN: AMXSN-UK-RA

(DR REICHENBACH) |
BOX 65
FPO NEW YCRK 09510-1500




CDR

US ARMY COMBAT SYS TEST ACTY

ATTIN: STECS-EN-T 1
ABERDEEN PROVING GROUND MD
21005-5059

CDR

US ARMY BIOMEDICAL R&D LABORATORY
ATTN: SGRD-UBZ-A (MR EATON) 1
FORT DETRICK MD 21702-5010

CDR

US ARMY YUMA PROVING GROUND

ATIN: STEYP-MT-TL-M 1
YUMA AZ 85364-9103

CDR

US ARMY EUROPE & SEVENTH ARMY

ATTN: AFAGG-FMD 1
AEAGD-TE 1

APQ NEW YORK 09403

CDR

CONSTRUCTION ENG RSCH LAB

ATTN: CECER-EN i
P G BOX 9005

CHAMPAIGN IL 61826-9005

HQ, 172D INFANTRY BRIGADE (ALASKA)
ATIN: AFZT-DI-L 1
DIRECTORATE OF INDUSTRIAL OPERATIONS
FORT RICHARDSON AK 99305

PROGM EXEC OFF, COMBAT SUPPORT

PM LIGHT TACTICAL VEHICLES,

ATIN: SFAE-CS-TVL i
PM MEDIUM TACTICAL VEHICLES,

ATTN: SFAE-CS-TVM 1
PM HEAVY TACTICAL VEHICLES,

ATTIN: SFAE-CS-TVH i

US ARMY TANK-AUTOMOTIVE COMMAND
WARREN MI 48397-5000

FROGM EXEC OFT, CLOSE COMBAT

APEQ SYSTEMS, ATTN: SFAE-ASM-S i
PM ABRAMS, ATTN: SFAE-ASM-AB 1
PM BFVS, ATTN: SFAE-ASM-BY 1
PM 113 FOV, ATTN: SFAE-ASM-AFAS i
PM M9 ACE, ATTN: SFAE-ASM-FARVA 1
PM IMP REC VEH, ATTN: SFAE-ASM-CMV |
US ARMY TAMNK-AUTOMOTIVE COMMAND
WARREN MI 48397-5000

DOD PROJ MGR, MOBILE ELECTRIC POWER
US ARMY TROOP SUPPORT COMMAND
ATIN: AMCPM-MEP-TM (MR WADSI) 1
7500 BACKLICK ROAD

SPRINGFIELD VA 22150

CDR

US ARMY FORCES COMMAND

ATIN: AFLG-REG 1
FCJ4-TRS 1

FORT MCPHERSON GA 30330-6000

HQ

US ARMY TRAINING & DOCTRINE CMD

ATIN: ATCD-SL-§ 1
ATCD-W (MR WILSCN) 1

FORT MONROE V4 23651-5000

HQ. US ARMY ARMOR CENTER

ATTN: ATSB-CD-ML 1
ATSB-TSM-T 1

FORT XKNOX KY 40121

CDR

101ST AIRBORNE DIV (AASLT)

TIN:  AFZB-KE-J 1

AF§SB-KE-DMMC 1

FORT CAMPBELL KY 42223

CDR

US ARMY QUARTERMASTER SCHOOL
ATIN: A1SM-CDM (MR C PARENT)

ATSM-PWD (LTC GIBBONS)
FORT LEE VA 23501

-

CDR
US ARMY COMBINED ARMS & SUPPT CMD
AND FT LEE
ATIN: ATCLCD 1
ATCL-MS 1
FORT LEE VA 23801-6000

CDR

US ARMY FIELD ARTILLERY SCHOOL

ATIN: ATSF-CD i
FORT SILL OK 73503-5600

CDR

US ARMY TRANSPORTATION SCHOOL
ATIN: ATSP-CD-MS 1
FORT EUSTIS VA 23604-5000
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CDR

US ARMY INFANTRY SCHOOL
ATIN: ATSH-CD-MS-M

FORT BENNING GA 31905-5400

CDR

US ARMY AVIATION CTIR & FT RUCKER
ATTIN: ATZQ-DI

FORT RUCKER AL 36362

CDR
COMBINED ARMS COMBAT DEV ACTY
ATIN: ATZL-CAT-E
ATZL-CAT-A
FORT LEAVENWORTH KS 66027-5300

CDR

US ARMY ENGINEER SCHOOL

ATTIN: ATSE-CD

FORT LEONARD WOOD MO 65473-5000

CDR

US ARMY ORDNANCE CENTER & SCHOOL

ATIN: ATSL-CD-CS APO NEW YORK 09128
ABERDEEN PROVING GROUND MD
21005 CDR

US ARMY RESEARCH LABORATORY
CDR VEHICLE PROPULSION DIRECTORATE
US ARMY SAFETY CENTER ATTN: AMSRL-VP, MR ROBERT BILL
ATTN: CSSC-SPS 21000 BROOKPARK ROAD
PORT RUCKER AL 36362 CLEVELAND OH 44135

Department of the Navy

OFFICE OF CHIEF OF NAVAL RESEARCH CDR
ATTN: OCNR-12E (DR ROBERTS) NAVAL AIR WARFARE CENTER AIRCRAFT
ARLINGTON VA 22217-5000 DIVISION

ATIN: PE-33 (MR D'ORAZIO)
CDR P O BOX 7176
NAVAL SEA SYSTEMS COMMAND TRENTON NJ 06828-0176
ATTN: CODE 05M32 (MR DEMPSEY)
WASHINGTON DC 20362-5101 CDR

NAVAL PETROLEUM OFFICE
CDR ATTN: CODE 40 (MR LONG)

DAVID TAYLOR RESEARCH CENTER
ATIN: CODE 2759 (MR STRUCKQ)
ANNAPOLIS MD 21402-5067

CDR

NAVAL FACILITIES ENGR CENTER
ATTN: CODE 1202B (MR BURRIS)
200 STOVAL STREET
ALEXANDRIA VA 22322
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CDR

MILITARY TRAFFIC MGM COMMAND
ATIN: MT-SA

WASHINGTON DC 20315

CDR

US ARMY WESTERN COMMAND
ATIN: APLG-TR

FORT SCHAFTER HI 96858-5100

CINC

US SPECIAL OPERATIONS COMMAND
ATIN: SOJ4-P

MACDILL AFB FL 33608

CDR

US CENTRAL COMMAND
ATIN: CINCCEN/CC J4-L
MACDILL AFB FL 33608

HQ, EUROPEAN COMMAND
ATTIN: ECJ4LT (L3C CUMBERWORTH)
VAIHINGEN, GE

CAMERON STATION
ALEXANDRIA VA 22304-6180

DEPARTMENT OF THE NAVY
HQ. US MARINE CORPS
ATTN: LPP-2 (MAJ TALLERI])
WASHINGTON DC 20380




OFFICE OF THE CNO CDR

ATIN: OP-731D 1 NAVAL SHIP SYSTEMS ENGINEERING
DEPT OF NAVY STATION
WASHINGTON DC 20350 ATIN: CODE 053C 1
PHILADELPHIA PA 19112-5083
JOINT OIL ANALYSIS PROGRAM -
TECHNICAL SUPPORT CENTER 1 DEPUTY COMMANDING GENERAL
BLDG 780 USMC RD&A COMMAND
NAVAL AIR STATION ATIN: PM GND WEAPONS (CB6T),
PENSACOLA FL 32508-5300 LTC VARELLA 1
SSEA (LTC PHILLIPS) 1
CDR QUANTICO VA 22134-5080
NAVAL AIR SYSTEMS COMMAND
ATTN: CODE 53632F (MR MEARNS) 1 COMMANDING GENERAL
WASHINGTON DC 20361-5360 USMC RD&A CMD
ATIN: CODE SSCMT 1
CDR WASHINGTON DC 20380-0001
NAVAL RESEARCH LABORATORY
ATTN: CODE 6180 1 H&S BATTALION
WASHINGTON DC 20375-5000 ATTN: MCCDE (CODE WF12El) 1
WARFIGHTING CENTER
US MARINE CORP LIAISON QUANTICO VA 22134-5010
ATIN: USMC-LNO (MAJ OTTO) 1
US ARMY TANK-AUTOMOTIVE COMMAND
(TACOM)
WARREN MI 48397-5000
Department of the Alr Force
HQ. US AIR FORCE 615 SMSQA.GTV (MMEP) 1
ATIN: LEYSF 1 BLDG 100 ROOM 234
WASHINGTON DC 20330 EGLIN AIR FORCE BASE FL 32542-5000
CDR CDR
US AIR FORCE WRIGHT AERO LAB USAF 3902 TRANSPORTATION SQUADRCON
ATIN: POSF (MR DELANEY) 1 ATIN: LGTVP (MR VAUGHN) 1
WRIGHT-PATTERSON AFB OH 45433-6563 OFFUTT AIR FORCE BASE NE 68113
CDR CDR
SAN ANTONIO AIR LOGISTICS CTR DET 29
ATIN: SAALC/SFT (MR MAKRIS) 1 ATTN: SA-ALC/SFM 1
SAALC/LDPE (MR ELLIOT) 1 CAMERON STATION
KELLY AIR FORCE BASE TX 78241 ALEXANDRIA VA 223046179
CDR

WARNER ROBINS AIR LOGISTIC CTR
ATTN: WRALC/LVR-1 (MR PERAZZOLA) !
ROBINS AIR FORCE BASE GA 31098
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Other Organizations

NATIONAL AERONAUTICS AND SPACE DEPARTMENT OF ENERGY
ADMINISTRATION 1 CE-151, ATTN: MR JOHN RUSSELL

LEWIS RESEARCH CENTER 1000 INDEPENDENCE AVE, SW

CLEVELAND OH 44135 WASHINGTON DC 20585

DEPT OF TRANSPORTATION ENVIRONMENTAL PROTECTION AGENCY

FEDERAL AVIATION ADMINISTRATION AIR POLLUTION CONTROL

AWS-110 1 2565 PLYMOUTH ROAD

800 INDEPENDENCE AVE, SW ANN ARBOR MI 48105

WASHINGTON DC 20590
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