
AD-A261 102
S11111ltlll111111 111 11

(0Ilil

RL-TR-92-302
In-House Report
November 1992

1991 DISE SUMMARY REPORT

Anthony M. Newton, Vaughn T. Combs, Cheryl L. Blake, 2 Lt,
USAF, Francis A. Dilego, Jr., Scott M. Huse,
Patrick M. Hurley, Terrance Stedman, Jerry L. Dussault,
Robert M. Flo

APPROVED FOR PUBLIC RELEASE, DIS TRIUTION UNLIMITED.

-_ LCTE

93-03713 FEB2 3 1993,

Rome Laboratory ------.
Air Force Materiel Command

Griffiss Air Force Base, New York

98 2 22 045

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-302 has been reviewed and is approved for publication.

APPROVED:I

ANTHONY F. SNYDER, Chief
C2 Systems Division
Command, Control & Communications Directorate

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3AB) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE OrMB Vproved-1
PLO3Ic ueapmkd butda fa Vie - ' , d = : In eetkd towuagmp I hm~ per1 recpki,g ft *m tom w~woing Vaukwft asemlo astrig cue sauces,

wiiui wid Wit* CO mriuAwt iUw w* theodb dM h t Sw - wiv. -Weg aring the bue aerid. or any,~ adw aspero of thts
, ',~ d a oi i~b~ ckxk forw rad.J*g 0* b~umbe to Wmt*Vtm, Ho.Juties Srn~m Dhictra. for Womtmidon Opurmaa,.wxRepots. 1215 Jeffeson

D"v Hl~atal. &*m 12014. Aafim~ VA Z2043O wid to the Offlas d Meauginsw "d Budgi Paperwok 9soIaxaka Prp (0704-M0l. WaiWI0cr DC200

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

INovember 1992 In-House

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
1991. DISE SUMMARY REPORT PE - 62702F

PR - 5581
6LAUTHOR($) Anthony M. Newton, Vaughln T. UombS, uneryl L; TA - 28
Blake, 2 Lt, USAF, Francis A. Dilego, Jr., Scott M. Huse, WU - 17

Patrick M. Hurley, Terrance Stedman, Jerry L. Dussault,
Robert M. Flo_______________

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION
Rome Laboratory (C3AB) REPORT NUMBER
525 Brooks Road RL-TR-92-302
Griffiss AFB NY 13441-4505

9. SPONSORINGIMONIFTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGiMONrUORING
Rome Laboratory (C3AB) AGENCY REPORT NUMBER
525 Brooks Road
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Anthony I.. Newton/C3AB (315) 330-3623

1 2a. DISTRIBUTIONIAVNILABIUITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited. I______________

13. ABSTRACT~wmad~l 2- Mora

The 1991 DISE Summary Report is a progress report on the activity of the Rome Laborator

in-house work in distributed processing systems. In addition to the progress report,
there are six condensed articles on the individual research, development, and applica-

tion projects currently underway within the in-house group. These articles describe

two distributed applications, a distributed instrumentation package, two reference

papers on distributed database and object management systems, and an evaluation of the

Informix Database Management System.

14. SUBJECT TERMS lf E OPAS
Distributed Operating System, Distributed System, Distributed .. J8

Application, Distributed Database I a PRICE CODE

17. SECURITY CLASSIFICATION 18.SECURITY CLASSIFICATION 19.SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF B~ IFlEDOF TIS OF ABSTRACT

UNCLASSI FIED UNCLASSIFIED SAR

NSN 7540.01 .2U46M Stdd r W(e 4
PeaS-i d byAS32dZ91

1991 DISE Summary Report

Table of Contents

F orew ord .. 2
B c gr .. 3
Progress Report ... 3
A Reliable Distributed AF Application ... 5
DAIT: Distributed Application Instrumentation Tool 10
Object Translation into Relational Databases ... 13
Information Exchange in Allied Operations ... 16
An Informix Analysis and Evaluation .. 19
DDES: Distributed Database Experiments ... 23

DTIC QUALITY 16lCTEED 3

Aaoession For

1qTIS GR.A&I
DTIC TAB 0
Unamno,•nned 0
Jus'. 1.- ý!Pnt i on

i By ___ -

AVs)411' OIL I

-Dist

Foreword

This report Is organized Into three major sections. The Background section gives information
on the history of this effort. The Progress Report section details the work performed under the
1991 fiscal year, beginning October 1990 and ending September 1991. The final section exists
as a set of associated articles that describe some of the year's efforts. The articles are done in
research paper format.

2

Background

The Command, Control, and Communications (C3) systems that the Air Force (AF) currently
uses are a collection of independent and interdependent systems. While sounding like a
contradiction, the systems were usually procured for a particular function first, then
integrated into the Command and Control (C2) structure later. Each system retains a measure
of independence, but the information processed by the collection of systems is critical to our C2
measures and countermeasures. Our interest and thrust within this C2 environment is to
provide the capability for all of the individual systems to be integrated into a distributed
system (i.e. a system of systems). This entails having a set of heterogeneous hosts that
communicate and are Jointly managed in a timely fashion with fault tolerance, reliability.
survivability, et cetera. This system needs to be capable of adjustment as new demands,
capabilities, and technologies are integrated through software or hardware additions.
Moreover, all of this must be done at a reasonable cost.

After realizing that the current level of research in Distributed Operating Systems (DOS) had
reached a degree or maturity, the Computer Systems Branch of the Rome Laboratory (RL)
established an in-house capability called the DIstributed Systems Environment (DISE) in
fiscal year 1987; wherein, we planned to continue the development of distributed systems
technology areas and to provide a demonstration capability for our funding sources. The DISE
seeks to provide a setting where: researchers can investigate and demonstrate the issues of
concern for Distributed Computing Environment technology, developers can design, create,
experiment with, and verify distributed applications, and policy makers and technology
managers can see the benefits of distributed technology.

Progress Report

During our fifth year of operation, we continued our role of research and application
development. During fiscal year 1991, 5 major projects (2 application development, 1 research,
1 systems development, and 1 training), with 2 minor projects (1 research, and 1 systems
development) were undertaken.

The Joint Directors of Laboratories (JDL Tri-service Experiment is an ongoing application
development project originally started in fiscal year 1989. Since its inception and with
manpower distributed between Rome Laboratory (RL), Communications and Electronics
COMmand (CECOM) and Naval Ocean Systems Center (NOSC), the project has developed and
demonstrated the feasibility of integrating separate service applications for joint operations.
During the past fiscal year (1991), most of the effort has been put into increasing the reliability
and survivability of the federated applications (further information on the AF application can
be found in the article: A Reliable Distributed AF ApplIcation). Work has been performed to
integrate data from the object model-based applications into the relational databases most
likely to be used by our respective services (Informix, Oracle, and Sybase). This would allow
greater access and reliability to the information gathered by the applications for users or
programs not conversant with our current environment (further information on the model
changes necessary are contained in the article: Object Translation into Relational Databases).
We will be extending this capability by replicating and maintaining the data among the three
relational database systems. Another major effort was in moving the application and system
graphics to the X window development package. This allows us to separate the display
processing from the display presentation, enhancing the survivability of the presentation
graphics.

3

The distributed application Instrumentation project is an ongoing, two-year research program
that started in fiscal year 1990 and was slated for completion during fiscal year 1991. The
instrumentation package has been completed, with most of the year devoted to
Implementation, Integration, and testing. The display and presentation modules have not
been completed, so the project will overrun Into fiscal year 1992. Further Information on the
instrumentation package is contained within the article: DAIT: A Distributed Application
Instrumentation Tool.

The Australian Experiment is an ongoing application development and research project
Conceived during fiscal year 1989, the project has proceeded slowly as international
technology agreements and laboratory manpower agreements were negotiated. The joint
development program has both Rome Laboratory (US) and the Electronics Research
Laboratory (Australia) cooperating to share distributed operating system and intelligent
network technology. During the 1991 fiscal year. key contacts at the ERL have been established
to allow us to proceed with the development process. Most of the research work for this
experiment will be carried out contractually. Most of the application development will be
jointly done by contractual and laboratory engineers. Towards the latter part of the fiscal
year, an application began to take shape.

The Alpha Development Environment was a systems development project tasked to design and
implement a means of incorporating the Alpha real-time distributed operating system (DOS)
into the available DISE structure. The final solution, which minimized networking impact on
the principle DISE net and maximized access to the new DOS. involved creating a subnet to
absorb the expected data transfer load, populating the environment with multiprocessor
workstations and process servers, and establishing a sentinel to limit traffic flow between the
subnet and principle DISE net. We were unable to acquire the Alpha system software needed to
generate the application and sentinel software.

The RDBMS/Informix Study was designed to provide a greater understanding of the database
technology and to evaluate the appropriate use of the Informix database management system
in several of our current and future projects. A full report on the effort has been published
locally at Rome Laboratory. The article An Informix Analysis and Evaluation contains an
abbreviated version of that report.

The Distributed Database Experiments was a research project to develop a survivable
database management system. What is meant by survivable is that users will have continued
access to correct data in spite of various types of failures, such as network partitions, local or
remote host failures, and application or system software failures. A full report on this effort
has been published locally at Rome Laboratory. The article DDES: Distributed Database
Experiments contains an abbreviated version of that report.

The Demonstration Configuration was a systems development project tasked to create a new
facility for use by the in-house group. It was outstanding in its execution as the upgrading of
mechanical and electrical systems, the movement of computer resources, and the acquisition
of furniture was completed in minimal time and with minimal disruption to the group.

4

A Reliable Distributed AF Application
Scott M. Huse

Anthony M. Newton

Computer Systems Branch (C3AB)
Rome Laboratory

Grlffiss AFB. NY 13441-5700

i. Overview operation of distributed applications. It
The reliable Air Force application provides a coherent and integrated systems
discussed within this paper is a subset of approach to the development of computer
broader work produced by the Trh-Service applications which will be spread among
Distributed Computing Technology several computing resources. Cronus runs
Experiment[I]. The Tri-Service on a variety of different heterogeneous
Experiment is an unclassified activity hardware bases and operating systems.
Initiated under the auspices of the Joint Cronus operates as a set of user-level
Directors of Laboratories (JDL) Technology processes within the native operating
Panel for Command, Control and system of the hardware base. By executing
Communications (TPC3). The Networks at this level, application developers can
and Distributed Processing (N&DP) sub- utilize both the support facilities of their
panel of the JDL technology panel local computing environment and the
identified the issue of survivable remote support facilities of Cronus.
information processing and distribution
networks as one of several research areas. By using an object-oriented approach,
The Trn-Service Experiment is conducted at application components or modules within
three sites: Rome Laboratory (RL), Naval the Cronus environment are highly
Ocean Systems Center (NOSC). and transportable. Application components
Communications - Electronics Command are called managers. Each manager is a
(CECOM). separate self-contained process that is

responsible for manipulating some data
(a.k.a. objects), and which has an address

2. Experiment Platform (a.k.a. a unique identifierj through which it

The Tri-Service Experiment established a can be contacted. Managers accept
platform for the development of requests, called operations, by other
distributed, survivable applications. This managers or clients. Operations instruct
platform consists of a distributed the manager to perform a pre-defined
computing environment (Cronus[2]) , a sequence of instructions. Managers can be
synchronization mechanism, a universal relocated or replicated at different
storage mechanism, and a set of displays. computers by recompiling the source code.
On top of this platform, each service built a Once compiled and executed, a manager can
distributed target tracking simulation, be seen and reached by every other
based on typical command and control networked computer system that is running
requirements. The platform provided the the Cronus software environment.
basis for integrating the three service
applications into a unified whole. 2.2 Experiment Synchronization

The Tri-Service Experiment offers a remote
2.1 Cronus DistributedComputing timing mechanism called the Timer

Environment Manager. Time, in the Trn-Service
Cronus, developed by BBN Systems and Experiment, is measured by tick interm;als.
Technologies Corporation, is an A tick roughly corresponds to a second
environment for the development and interval. When requested through an

5

operation. the Timer Manager provides the Manager is to get target information from
number of ticks which have elapsed since the Target Simulation Manager, process it.
the start of any Trn-Service Experiment test and forward It to the Target Filter Manager.
or demonstration. Thus, events in the T11- Additional information is obtained
Service Experiment can be coordinated, through the Timer and Weather Managers.

2.3 Experiment Storage Sensor objects represent an airborne or

The Trn-Service Experiment offers a remote satellite observation platform. The Sensor

storage capability through a software Manager uses the epoch time measurement
module called the SimulationData to determine the location it should occupy
Manager. This storage capability can be and the field of vision that it can see. The
used by experiment components to store occupied location and field of 'vision are
information, share information, or both. considered to be the sensors mission. Each
Application components fill a buffer with mission has a start and stop time

the desired information to be stored, associated with It. A sensor can run

Application components also fill a multiple missions during the course of a
template describing the information to be simulation, as long as they do not involve
stored. Both the template and buffer are occupying two different locations at the
sent to the SimulationData Manager, where same time.
they are categorized and stored within
relational database systems (Informix, The Sensor Manager receives detection data

Sybase. Oracle) at remote sites. The from the Target Simulation Manager. In

SimulationData Manager also accepts addition, it also queries the Weather
LookUp requests for information. These manager for weather conditions that affect
requests are sent to the manager in the its visual region. Based upon the weather
form of a relational database query, based report, false detections are generated to
upon the Standard Query Language (SQL) simulate the effect of adverse weatherinterface. conditions. These false detections are

merged with the real detections to produce a

detection report of the visual region. This
3. Prototype Aplicaton detection report is forwarded to the Target

Peirotote Application iFilter Manager for further processing.
The Air Force application is based on a

previously developed command and control
application called C2 Internet[3]. Software 3.2 Weather Manager
components of that original work were The Weather Manager maintains
updated and extended to operate within the information about the state of weather for a
framework of the Trn-Service Experiment. particular region. It allows the user to
The scenario for the Air Force application create weather reports which will be used
is a high altitude or orbiting sensor throughout the simulation by the Sensor
platform which is observing the Manager. The Weather Manager will
Mediterranean Sea region. The targeting periodically query the Timer Manager for
information provided by the sensor is the epoch time so that weather information
filtered by the Target Filter manager for can be stored in the Simulation Data
content and accuracy. It is then fed into the Manager for use by the User Interface.
universal storage mechanism provided by
the Tri-Service Experiment platform. The When the Weather Manager receives a
Air Force application synchronizes with GetWeatherinRegion request it queries the
the rest of the Tri-Service Experiment by Timer Manager, replies to the requester,
accessing the Timer manager. and then notifies the Simulation Data

Manager of the new or updated weather

3.1 Sensor Manager report. Typically. only after a time-out
The Sensor Manager is one of the interval, will the Weather Manager invoke
cornerstone managers of the Tri-Service a Create or Update operation on the
Experiment. The role of the Sensor Simulation Data Manager to supply

information to the User Interface.

6

3.3 Target Simulation Manager
The Target Simulation Manager works in The Target Filter Manager also maintains
conjunction with the Sensor and Weather various statistics. It keeps track of the
Managers to emulate an Air Force airborne number of detections processed, the number
or satellite observation platform where raw of real and false detections arising from the
observations are generated, processed, and total detections processed, the total number
reported. Clock synchronization for these of FilterDetection Invocations, the number
components is provided by the Timer of SensorData records, sensor identifiers,
Manager. and the number of detections sent by each

sensor. In addition, the Target Filter
The Target Simulation Manager is Manager provides the capability to remove
responsible for providing target detections any history of previous targets that it has
to the Sensor Manager. The Target seen in the simulation.
Simulation Manager implements the
GetTargetInRegion operation for the
exclusive use of the Sensor Manager. Upon 4. Reliability Issues
receipt of the operation, the Target When making an application reliable, one
Simulation Manager will invoke the of two approaches must be taken: either
GetEpoch operation on the Timer Manager. ensure that the hardware utilized by the
The Target Simulation Manager will then application is fault resistant, or manage
use the results from the Timer Manager to the replicated copies of your application
return a list of the targets for a particular software necessary to contend with
region. hardware faults. In studying this

application, replication of key components
3.4 Target Filter Manager was chosen to increase the reliablilty

The Target Filter Manager receives all measure. A review of the hardware failure
detections from the Sensor Manager, filters effects on the AF application was
out false detections, and stores real targets undertaken.
within the Simulation Data Manager. In
addition, if there are other Target Filter The Weather Manager is not a critical
Managers running, It will update them as it component in the application. Failure to
stores targets within the Simulation Data receive weather information does not
Manager. A detection is identified as either impair the ability of the application to
real or false based on the TargetUID field. provide meaningful data, so the Weather
Detections which have a valid UID in the Manager has not received any additional
TargetUID field are considered to be real attention.
targets. Detections that have a NULL
TargetUID field are considered to be false The Sensor Manager is a vital and critical
targets. Real targets are stored in the component within the application. Failure
Simulation Data Manager. False targets of the Sensor Manager would result in an
are discarded in this version of the Tri- inability to collect targeting information.
Service Experiment. Given the design of the sensor components,

there is no need to replicate information to
In future versions, for a more realistic multiple copies of the Sensor Manager that
simulation, false targets might be stored may be executing. To imitate sensory
internally and checked against any devices, each Sensor Manager operates
previous false detections. A false detection independently. Thus, reliability can best be
could then be upgraded to semi-real target attained by executing simultaneous copies
status if. for example, it: (1) was detected of the Sensor Manager and assigning some
twice within a 50 cubic mile region of the level of overlapping coverage to the surface
original location, (2) had the same target area that they observe.
description, and (3) had the same target
type. Such semi-real targets would be The role of the Target Simulation Manager
stored within the Simulation Data is to provide the targets that will drive the
Manager as unknown threats.

7

AF application. The sensor components Efforts are presently underway to replicate
use the target information to create the the SimulationData manager and to enable
tracking information used in other the SimulationData manager to store data
portions of the application. Thus, the in all three databases.
Target Simulation Manager is critical to
the operation of the application. It is A startup configuration expert system is
insufficient to replicate the target presently under development. It is being
simulation functionality by having copies written in the C Language Integrated
of the Target Simulation Manager Production System (CLIPS). CLIPS is a
executing at the same time. The target forward-chaining rule-based language in
database must also be replicated. Creation which data points are stored as facts and
of new targets and updates to existing the knowledge base is stored as rules.
targets are made on one database, then Overall execution is controlled by an
copies of the new or updated target are inference engine. This expert system will
spread to all copies of the target database. help to automate the experiment setup
To enforce consistency (the measure of process by assessing connectivity and
sameness among copies of the database), resource status.
read-write quorums and version vectors
have been established on the target Cronus 2.0 has recently been released. The
databases. Tri-Service Experiment modules are

currently being upgraded in order to run
The TargetFilter Manager receives target under Cronus 2.0.
track information from the sensor
components. This track information is Documentation of the Tri-Service
scanned for accuracy and submitted to the Experiment is currently being written. A
experiment storage facility. For each target Maintenance manual and an
track submitted to storage, a key is kept Installation/User manual will be
that allows updates to be made to the target published. In addition, an annual
track. In attempting to make the Technical Report will be produced.
TargetFilter Manager more reliable, this
key must be maintained among any
replicated copies of the manager that are 6. Future Work
executing. To simplify the key One limitation in the current AF
management. TargetFilter Managers that application is the lack of feedback
fail are not replaced by new managers. information. Currently, the target track
Thus, all TargetFilter Managers must be information flows into the experiment
available at the start of the application. As storage facility, but, nothing other than the
new keys are acquired from the storage display uses the information. Ideally,
facility, the information contained within decision aid components should utilize the
the key is passed to all TargetFilter information, perhaps to generate threat
Managers that are running. If any target assessments or intercept sorties.
filters fail, the other copies can continue to
process information for the failed copy Another look at the TargetFilter Manager
since all copies of the manager have the should also be made. The filtration
vital key information, algorithm is simplistic and should, ideally,

be replaced with some type of correlation
filter. Also, a better solution should be

5. Current Efforts found to the key management problem.
Currently, the SimulationData manager is Allowing new Target Filter Managers to
capable of storing data in any one of three start while the application is underway
databases, i.e.. Informix. Sybase. or Oracle. would greatly increase the reliability
This is inadequate from the standpoint of characteristics of this part of the
survivability since loss of the application.
SimulationData manager or loss of the Finally. development of a resource
database would be fatal to the experiment, monitoring facility is planned. This

8

capability would enable the Tri-Service survivability and performance-driven
Experiment to perform real-time adaptability.
configuration management for both

End Notes

[1] Gadbois, M., and Anthony M. Newton, Tri-Service Distributed Technology Experiment,
1990 Symposium on Command and Control Research, SAIC-90/1508, pp. 150-157, June 1990.

121 Schantz, Richard E., and Robert H. Thomas, Cronus Functional Definition and System
Concept, BBN Systems and Technologies Corporation Report No. 5879, 4 0 p., September 1989.

13] BBN Systems and Technologies Corporation, C2 System Internet Experiment:
System/Subsystem Specification, Final Technical Report, RADC-TR-88-133, Vol. III, June
1988.

9

DAIT: Distributed Application
Instrumentation Tool

Cheryl L. Blake
Vaughn T. Combs

Computer Systems Branch (C3AB)
Rome Laboratory

GrIffiss AFB, NY 13441-5700

i. Overview information about object states and
As applications for parallel and distributed interactions which can show unexpected
computing continue to grow in complexity, behavior. The DAIT is a monitoring device
the need for tools which provide which allows a user to monitor application
information on the overall execution of events. It does not provide control over
these applications is becoming critical. To program flow or state variables. The tool is
meet this need, the Distributed Systems in- designed to run at application run-time, but
house group is building a flexible does not provide real-time monitoring.
monitoring environment to aid application Instead, the tool will collect event
designers in designing and understanding information as the application is running
the behavior of their distributed and present it when requested. Events can
applications. The tool consists of a general be viewed at run-time; but delays must be
query based system for the collection of expected in gathering and presenting
events that occur within an application, information.
and a display system for processing and
presenting the events. These events are 2. Architecture
collected through the use of probes which The DAIT architecture consists of four
register events with a distributed database. subsystems: the Extraction subsystem, the
Procedure calls to these probes are Collection subsystem, the Display
embedded within the application code to be subsystem, and the Instrumentation
instrumented in order to mark the Information Service. The extraction
occurrence of a specific event. The subsystem is responsible for the detection
instrumentation tool provides a library of of events and for reporting these events to
predefined probes, which are based on the collection subsystem for storage. The
events that adhere to the object/thread collection subsystem is responsible for
model, and also allows for user-defined accepting information from the extraction
probes. The provided display represents subsystem and storing it in a logical
these object/thread interactions. The fashion. The collection subsystem uses
design is flexible so as to permit a wide multiple collection objects to allow the
range of events and displays to be used with extraction subsystem to offload events
the tool. quickly thus reducing the intrusiveness of

the instrumentation tool. The collection
The DAIT is designed to be a multi-purpose subsystem also processes queries received
tool. It can be used to show interactions from the display subsystem to retrieve the
between distributed objects within an stored event information. The display
object-oriented application and to show subsystem provides data processing
how the application reacts to changes in the routines for organizing and formatting the
distributed environment. Although not data received from the collection
designed as a debugger, it can aid in subsystem. It also provides a user interface
debugging an applicatien by providing for presenting the information to the user.

10

The application Information service is used of storage that would be needed to provide
to provide and maintain information the entire object state.
associated with the instrumentation events
and instrumented applications that are Threads are the impetus for changing state
running in the environment. These four within an object. A Thread Create event is
subsystems are integrated to provide the formed whenever a new thread of
monitoring functions of the DAIT. processing is created. The Thread Exit

event occurs when this thread leaves the
2.1 The Extraction Subsystem boundaries of an object as it traverses to

The extraction subsystem serves as the another object. A Thread Entrance event
interface between the user's application occurs when the thread arrives at the
and the collection subsystem. It consists of boundary of another object.
predefined and/or user-defined probes
which have been embedded into the Clients are a Cronus manifestation which
application code. These probes must not differ from object managers in that they do
adversely affect the execution of the not have any object instances. Clients are
application code. To accomplish this the high-level language programs which
probes must be designed so that they do not invoke operations on object managers, but
change any variables of the application or can not have invocations made on them.
alter the flow of execution. They must also Thus the Client Thread Entrance and Exit
be designed to be minimally intrusive. For events map to the Thread Entrance and Exit
the provided probes this requires events. These six probes are automatically
minimizing the amount of internal provided by the instrumentation package
processing done in forming an and do not need to be inserted into user's
instrumentation event to be shipped out to application code. They can be enabled
the collection subsystem. This is within the application's manager
controlled for the provided probes. Since initialization code.
we have no control over the probes that the
user defines himself, it is up to the designer 2.2 The Collection Subsystem
of user-defined probes to adhere to this The collection subsystem includes
requirement or to recognize the potential collection objects and data storage objects
for adverse effects on the execution of his (DSO). The collection objects are
application if they are not adhered to. In essentially a store and forward capability.
order to aid the user-defined probe designer, Each instrumentation probe embedded
we have provided a library of procedures for within the application objects sends events
the extraction of event information and to a collection object. The collection object
have provided a skeleton probe that can be simply acknowledges receipt of the event
used by the designer to minimize these and buffers the event. When a time or size
affects. threshold is reached the collection object

ships the events that it has maintained to a
Six events are provided by the DSO for further processing and storage.
instrumentation tool which map to an The DSOs essentially comprise a special
object-oriented view of the application, purpose distributed database. They
These events are: State Change, Thread categorize, store, and retrieve event data.
Create, Thread Exit, Thread Entrance, The display subsystem can then query for
Client Thread Entrance and Client Thread particular events or categories of events
Exit. These allow the user to monitor the needed for the display. Some of the
critical interactions between objects and categories include: events that have not
the effect of these interactions. The object been seen previously, events associated
state information, which is to be collected with a particular object or thread, and
for the State Change event, is dictated by events associated with a particular
the user. This allows the user to see only application. Query modifiers such as and,
the state information which is of or ,and not can be used within the query.
importance to him and reduces the amount

11

2.3 The Display Subsystem relieve the processing burden of the display
The display subsystem provides routines since graphics are notoriously CPU
for the sorting and processing of data from intensive.
the collection subsystem as well as a
mouse/menu driven interface to the user.
This subsystem consists of a session object 3. Hardware/Software
which provides event processing and the Requirements
user interface. The DAIT is not tightly The DAIT runs within the Cronus
bound to the provided display subsystem distributed operating environment and is
and has been designed to allow a different compatible with the set of heterogeneous
display package to be integrated into the hardware and operating systems supported
collection subsystem. The display by Cronus (Unix, VMS, Mach, etc./Sun 3.4.
subsystem provided is designed to provide MASSCOMP, VAX, etc.). Cronus 1.5 is
an object-oriented view of the interactions currently used, but the tool is upgraded to
within an application based on the run with Cronus 2.0. A root level make is
provided probes. Limited monitoring is available to allow easy compilation of the
provided for user-defined events (i.e. textual instrumentation package for the installer,
representation). and libraries are provided to aid the

developer in instrumenting his code.
The user interface provides two Overall, the package has been designed to
presentation options to the user: flexibly run on a commonly used set of
application play/replay and thread trace. machines and operating systems and
Application play/replay provides a allows users to define the information to be
representation of all instrumented events monitored which they feel is important or
occurring in the user's application. Thread meaningful to their understanding of their
trace provides a representation of all application's execution.
instrumented events which happen along a
particular line of processing. Both
presentation options provide information
on objects state, represented as values of
internal variables, and inter-object
operation history, listing operations
invoked between objects. Strict ordering is
maintained at the object level so that all
events along a single line of processing will
be presented in the order in which they
occurred. Objects are represented on the
display as circles and operations as arrows
between objects. Objects can be grouped and
named by the user to assist in recognizing
and understanding the application
behavior. The user interface provides
options to freeze the representation and
step through at any time.

The session object formulates queries for
the DSOs based on what the user in
currently viewing, queries the DSOs. orders
the response and formats the response 'or
the display. The session object is not
critical to the DAIT and may be left out. If
this is done, however, the display must
generate queries and the events returned
will not be ordered or grouped in any way.
The session object primarily serves to

12

Object Translation into Relational Databases

Anthony M. Newton

Computer Systems Branch (C3AB)
Rome Laboratory

Griffiss AFB, NY 13441-5700

1. Overview processes within the native operating
The ideas discussed within this paper are a system of the hardware base. By executing
subset of broader work produced by the Tri- at this level, application developers can
Service Distributed Technology utilize both the support facilities of their
Experimentil]. The Tri-Service local computing environment and the
Experiment is an unclassified activity remote support facilities of Cronus.
initiated under the auspices of the Joint
Directors of Laboratories (JDL) Technology By using an object-oriented approach.
Panel for Command, Control and application components or modules within
Communications (TPC3). The Networks the Cronus environment are highly
and Distributed Processing (N&DP) sub- transportable. Application components
panel of the JDL technology panel are called managers. Each manager is a
identified the issues of survivable separate self-contained process, that is
information processing and distribution responsible for manipulating some data
networks as one of several research areas. (a.k.a. objects), and which has an address
The Tri-Service Experiment is conducted at (a.k.a. a unique identiflerj through which it
three sites: Rome Laboratory (RL), Naval can be contacted. Managers accept
Ocean Systems Center (NOSC). and requests, called operations, by other
Communications-Electronics Command managers or clients. Operations instruct
(CECOM). the manager to perform a pre-defined

sequence of instructions. Managers can be

2. Competing Philosophies relocated or duplicated at different

Within the experiment, one of the issues to computers by recompiling the source code.

be faced in designing a universal storage Once compiled and executed, a manager can
sytem, f which utilized off-the-shelf be seen and reached by every othersystem, whc tlzdoftesef networked computer system that is running

database technology, was the conflict the conus syste envIrunnt.

between the view of the distributed the Cronus software environment.

computing environment and the relational Managers are also the only means of

database interface. providing access to the object. Nothing,
other than the manager responsible for an
object, can access the object directly. Any

2.1 Cronus Distributed Computing client or manager that wishes to access an
Environment object must use the operation defined and

Cronus [21, developed by BBN Systems and supported by the object's manager.
Technologies Corporation, is an
environment for the development and 2.2 Relational Database
operation of distributed applications. It Environment
provides a coherent and integrated systems The three databases that were part of the
approach to the development of computer experiment were Informix, Oracle, and
applications which will be spread among Sybase. Each provided access to the data
several computing resources. Cronus runs stored by using a Standard Query Language
on a variety of different, heterogeneous (SQL). For databases, in general, and for
hardware bases and operating systems. relational databases. it is true that the
Cronus operates as a set of user-level

13

structure of data is of critical importance to which can map the object structure into a
the database environment. Relational schema that the relational database can
databases optimize storage and retrieval of understand.
the data based upon the fields having some
common link (that is to say. some fields in One element of contention is the ability of
the database are related to other fields). To object structures to contain other object
facilitate this, the database requires users structures. This is the ability to create
to define the construction of the data fields compound/complex datatypes within an
that will be stored. Furthermore, object. The relational database, however.
references into the database are highly does have a similar perspective. While one
specific and structured, so, anyone who part of a database cannot "hold" another
accesses the database must: (1) know the part, parts are connected (related) to one
structure of the database and (2) be another. So, it is possible to look at the
responsible for the changes made to the structure of objects and create a relational
database. map that describes the ways in which

certain object datatype structures are
connected.

3. Model Integration The solution is formulated by breaking the
When contemplating the integration of boundary that surrounds an object. Within
both the object and relational the object type structure, the canonical
philosophies, it is best to start at a common datatype defines the structure(s) contained
point. As discussed above, the object model within the object. Each of these canonical
and the relational database model differ indatatypes would translate to a database
one fundamental way. The object model is table (the corresponding element of
built presuming that the data and its structure within relational databases).
structure is hidden from the user's view. Each record maintained under that table
The relational database model, however, would correspond to part of the object being
presumes that the user is intimately stored. If the object contained only one
familiar with the format and structure of canonical datatype, the record in the
the data. One common point that can be database table would contain the entire
found is the manner in which objects and object data. The unique identifier that is
relational databases are constructed. object data. Te identfe thaStructure is the key element. An object part of every object would be used as the
needstustructure d efinednsothat te m gert primary key for all records. Thus, by using
needs structure defined so that the manager the unique identifier and applying it in aof the object can properly manipulate the query to all tables, it is possible to
object. A relational database imposes reconstruct all of the object data. This
structure to optimize storage and access allows other parts of the system which
characteristics. operate within the object model to access

3.1 Tflon vs. the object data using familiar terms.
3.1 oAlternate keys could be formed by

DatabaseSchema performing pattern matches on the
In Cronus, objects are classified according canonical datatype fields to detect
to object type. The object type defines the similarities. While field names might vary
structure of the data contained within the wildly in a general purpose system, in
object. TypeDefinition Is the name given to command and control systems differing
the process of declaring a new object type. objects tend to present common field names
The manager in Cronus which maintains (e.g. longitude, latitude, speed, direction,
information on all object types is called the etc.). Likewise, mechanisms could be
TypeDefinition Manager. By accessing the provided which would define relations
TypeDefinition manager, managers can between canonical datatype fields at the
understand the structure and content of the time the first datatype is stored. A locking
objects they manage. It is therefore mechanism would provide the serial access
possible to take this information and use it to objects that is normally provided by the
as the basis of a conversion algorithm object manager.

14

In its earliest form, the SimulationData
4. Tri-Service Experiment Links Manager allowed the services to store

The Trh-Service Experiment established a Information without regard to the
platform for the development of underlying structure of the data in the
distributed, survivable applications. In object. This was accomplished through the
addition to the Cronus distributed use of the native Cronus object database
computing environment, this platform facility. When upgrading this manager to
consists of a synchronization mechanism, use the relational databases, a two phased
a universal storage mechanism, and a set of approach would be used.
displays. On top of this platform, each
service built a simulated application, based In the first phase, the translation between
on typical command and control object types and relational database
requirements. The platform provided the schemas were hand-coded and
basis for integrating the three service implemented. The SimulationData
applications into a unified whole. The Manager formed the object model interface
scenario for the AF application is a high with the relational database capability.
altitude or orbiting sensor platform which Application components filled a buffer
is observing the Mediterranean Sea. The with the desired information to be stored.
Navy implemented an application to Application components also filled a
simulate the on-board tracking systems of template describing the information to be
their surface vessels. The Army scenario stored. Both the template and buffer were
simulated the operational reports coming sent to the SimulationData Manager. where
from multiple, mobile, land-based they were categorized and stored within
command posts. relational database systems at remote sites.

The SimulationData Manager also accepted
So, to effectively integrate the three service LookUp requests for information. These
applications, the Tri-Service Experiment requests were sent to the manager in the
needed a remote, distributed, and universal form of a relation database query, based
storage capability. This storage capability upon the Standard Query Language (SQL)
would accept different object structures interface.
from applications running in the
distributed environment and integrate In the second phase, the SimulationData
them into a single, federated database that Manager would be extended to
could be used and shared by all three automatically perform the conversion
services as a data source. This software between object types and relational
module was called the SimulationData database schemas by the methods discussed
Manager. above. This phase is not yet scheduled.

End Notes
Ill Gadbois, M., and Anthony M. Newton, Tri-Service Distributed Technology Experiment,
1990 Symposium on Command and Control Research. SAIC-90/1508. pp. 150-157, June 1990.

[21 Schantz, Richard E., and Robert H. Thomas. Cronus Functional Definition and System
Concept, BBN Systems and Technologies Corporation Report No. 5879, 40p., September 1989.

15

Information Exchange in Allied Operations

Francis A. DiLego
Jerry L. Dussault

Anthony M. Newton

Computer Systems Branch (C3AB)
Rome Laboratory

Griffiss AFB, NY 13441-5700

1. Overview operation of distributed applications. It
The application design discussed within provides a coherent and integrated systems
this paper is a subset of broader work approach to the development of computer
produced by the Australian Experiment, an applications which will be spread among
unclassified activity initiated under the several computing resources. Cronus runs
auspices of the 1988 Memorandum of on a variety of different, heterogeneous
Understanding (MOU 88/102) "Cooperative hardware bases and operating systems.
Communicating Networks" and partially Cronus operates as a set of user-level
funded by the US government under the processes within the native operating
Nunn Amendment. Rome Laboratory (RL), system of the hardware base. By executing
in the United States, and the Electronics at this level, application developers can
Research Laboratory (ERL), in Australia. utilize both the support facilities of their
are the two participating agencies, local computing environment and the

remote support facilities of Cronus.
The Australian Experiment seeks: (1) to
establish new networking technology based By using an object-oriented approach.
on the research topic of policy-based application components or modules within
routing, (2) to implement a distributed the Cronus environment are highly
application across multiple networks in transportable. Application components
the US and Australia, and (3) to experiment are called managers. Each manager is a
with the issues involved in sharing separate self-contained process, that is
information and resources in a command, responsible for manipulating some data
control, and communications (a.k.a. objects), and which has an address
environment. (a.k.a. a unique identifier) through which it

can be contacted. Managers accept
2. Unified Environment requests, called operations, by other

managers or clients. Operations instructOne of the problems with current, joint the manager to perform a pre-defined
allied operations is the (clumsy) way in sqenceo to Mer s c be

whic daa isexcange. Dfferng ata sequence of instructions. Managers can bewhich data is exchanged. Differing data relocated or replicated at different

formats and classifications make direct
information transfer difficult at best. The computers by recompiling the source code.

Once compiled and executed, a manager canenvironment that we are creating would be seen and reached by every other
allow for the transparent transfer of data networked computer system that is running
among multiple applications within a the Cronus software environment.
distributed environment. Managers are also the only means of

providing access to the object. Nothing.2.1 Cronus Distributed other than the manager responsible for an
Environment object, can access the object directly. Any

Cronus, developed by BBN Systems and client or manager that wishes to access an
Technologies Corporation, is an object must use the operation defined and
environment for the development and supported by the object's manager.

16

system operators and network managers
2.2 Policy-Based Information will be investigated.

Transfer
With the development of the policy-based The scenario will demonstrate: (1)gateway, information can be routed distributed processing. (2) information
through computer networks based on an access control, (3) transparent access toincreased number of factors. distributed data, and (4) informationTraditionally, information is routed exchange using policy-based networks (i.e.,through computer networks by minimum routing enforced by policy-based gateways)throughcaculationsetworks whnic m awhich are subject to dynamic change. Bothdistance calculations.the American (US) and Australian forceconnected with gateways that implement th e Am er sed.
policy-based routing algorithms are roles can be reversed.
capable of moving information through
networks based on the contents of the
information. Thus, factors such as 3.2 Application Components
security, priority, classification, Each site will have a set of networks
sensitivity, etc., may be combined to form a interconnected by policy-based gateways to
set of constraints (i.e. a policy) defining the simulate an internet environment. The two
conditions for transmittal and delivery of internet environments will be connected
information, with a set of policy-based gateways to allow

communication between the internets. The
3. Demonstration Application Cronus distributed computing environment

The application chosen for demonstration will be installed on machines in both
will simulate a distributed regional internets and will be used to create an
surveillance system. To represent this application across both sites. Traffic
environment, each country will have a injectors will probably be used to simulate
distributed set of software modules that varying system and network loads during
will simulate a particular surveillance the experiments.
platform (e.g., an Over-The-Horizon radar
or AWACS). The configuration flexibility The software structure for the 0TH radar
afforded by Cronus will be used to perform application will consist of a set of sensoryexperiments in resource management and modules, a set of tracking filters, and a
fault-tolerance, database repository. Multiple, independentsensory modules will report to a set of

3.1 Application Scenario cooperating tracking filters. The tracking
filter modules will formulate and identify

The scenario depicts a Joint exercise hostile and friendly tracks, then store thebetween the US and Australian forces, information within the database

Hostile incursions into the island chain off repository. For survivability, the database
Australia's northern coast have resulted in repository suld vbe licated.

the need for increased surveillance of the repository should be replicated.
region which is being provided by The software structure for the AWACS
numerous surveillance systems including radar application will consist of modules
Australia's OTH fadar and a US AWACS. which emulate the AWACS plane and a
The transparent sharing of surveillance database repository. The AWACS modules
information between US and Australian will combine sensory and filtration
forces will be demonstrated using the functions so that each AWACS module will
distributed system and Cooperative execute independently. The AWACS
Communications Network. As the system's modules will report tracks to a replicated
performance degrades due to network database repository which is separate from
overloading or component failures, the the OTH database repository.
system will be configured to maintain
adequate performance and insure Each database repository will be
continued access to surveillance data. The constructed with facilities for exchanging
need for more dynamic interaction between information between them. These

17

database repositories will be accessed and control check to determine whether the
manipulated by a Mission Data Manager. information can be exchanged. Separately.
There will be multiple mission data the policy based gateways will arbitrate to
managers each managing a country's see if the information can actually pass
associated database. When data is between sites given the current network
exchanged between countries, the Mission topology and policy agreement.
Data Manager will perform an access

The designs and ideas expressed in this paper are in the initial stages of development and are
subject to change.

18

An Informix Analysis and Evaluation

F)rancis A. DiLego
Robert Flo

Computer Systems Branch (C3AB)
Rome Laboratory

Grtffiss AFB, NY 13441-5700

3) Employs advanced query optimization to
1. INTRODUCTION perform complex queries used in

The main objective of this In-house task reporting and decision support.
was to conduct an analysis and evaluation 4) Supports applications that require
of INFORMIX-SQL. This evaluation was database availability 24 hours a day.
done In order to determine the system's seven days a week.
strengths, weaknesses, ease of use, and 5) Features an advanced logging,
potential in future In-house R&D efforts. checkpoint, and recovery scheme that

will automatically recover databases
INFORMIX is an of-the-shelf relational after system interruption.
database management system (RDBMS). It 6) Utilizes the UNIX "shared memory"
runs in either stand-alone or networked facilities.
environments on a number of UNIX- based 7) Supports its own disk mirroring
computer systems. User-designed capability which protects data from
applications can be developed using magnetic disk failures.
INFORMIX-SQL application tools. which is 8) Supports the "client-server" model.
based on the ANSI-standard Structured 9) Supports multimedia databases.
Query Language (SQL) to provide access to
the INFORMIX-SQL databases. INFORMIX- 3. INVESTIGATION METHODOLOGY
SQL supports commercial database The following is a brief overview of the
applications, such as on-line transaction INFORMIX-SQL evaluation process. Each
piocessing, reporting, and decision support. step of the evaluation process is discussed
Applications may reside on the same UNIX in detail, with the results of each test used
system as INFORMIX-SQL. INFORMIX-SQL as criteria to evaluate the INFORMIX-SQL
may also be accessed transparently from system in its aforementioned capacity.
other UNIX servers or UNIX and PC
workstations across a network. 1) Documentation. The initial step in the

INFORMIX-SQL evaluation was to review
2. FEATURES OF THE INFORMIX SYSTEM all available and relevant INFORMIX-

The following is a list of the major features SQL documentation, the INFORMIX-
of INFORMIX-SQL. According to the SQL Reference Manual and the
INFORMIX-On-LineTech Sheet, supplied by INFORMIX-SQL User's Guide. Each of
Informix Software, Inc., INFORMIX-SQL these documents was read and evaluated
has the following capabilities: completely.

2) INFORMIX-SQL Installation. After we
1) Optimizes the processing of high volumes reviewed all pertinent INFORMIX-SQL

of data from very large databases shared documentation, we then proceeded to
by many concurrent users. install the INFORMIX-SQL software on

2) Maximizes the performance benefits of the Sun Microsystems 3/260 and 4/100
parallel processing on multiprocessor workstations running on the UNIX
UNIX operating systems. operating system here at Rome

Laboratory.

19

3) INFORMIX-SQL Familiarization. After INFORMIX-SQL as a relational database
successfully installing the software here management system are also noted. Each
at Rome Laboratory, we then proceeded of the following ten (10) sections represents
to familiarize ourselves with INFORMIX- a different, yet specific, testing area. We
SQL by implementing, executing, and thoroughly discuss the testing procedure
testing the various INFORMIX-SQL (i.e.. what we did and how we did it), our
capabilities that are outlined in the rationale for testing this area of
INFORMIX-SQL User's Guide and INFORMIX-SQL, and report the results of
experimenting with the sample the testing and evaluative procedures (i.e.,
demonstration examples that were what happened, what should have
provided with the INFORMIX-SQL happened) in the technical memo.
software.

4) Install Testing Databases. This task In keeping with our investigation
involved a survey of local databases that methodology listed above, when reviewing
showed potential for use in the testing the documentation we found It to be
routines used to evaluate INFORMIX-SQL adequate with room for improvement. This
capabilities. After surveying the local is with reference to the documentation of
community for possible testing errors. This area of the documentation was
databases we chose several based upon, somewhat confusing and cumbersome to
among other factors, size, data, and work with. This fact, however, did not
format. become apparent until the testing phase of

5) Design Testing Routines. Throughout the evaluation. This aside, the
this task when necessary, we designed documentation of features and examples of
and coded testing routines to evaluate use were most acceptable. Overall. we found
INFORMIX-SQL's capabilities, each manual contained useful information
functionality, and performance. The that could be used as reference material
testing routines were grouped into ten throughout our testing procedures.
(10) areas the results of which are
documented fully in the Evaluation The installation task for INFORMIX-SQL is
section of the technical memo(RL-TM- trivial and only a limited knowledge of the
92-1 "An RDBMS Evaluation"), each constituent operating system is required.
under the heading of the testing area The installation procedure was automated
name (e.g.. Test 4 - Environment), and following the installation guide

6) Perform Tests. This task involved provided was not difficult. The installation
performing the tests that were designed went smoothly and no problems were
in the previous task, and documenting encountered.
the results.

7) Test Evaluation. In this task. we At this point we proceeded to familiarize
reviewed the results of the tests ourselves with some hands -on training.
performed and the tests themselves. We We followed the beginners guide and
also checked for errors in both the completed the sample demonstration
testing procedures and INFORMIX-SQL's examples provided. This went very well.
responses to the testing procedures. We also attempted to do things (e.g., Table
Retesting was done when deemed updates, deletes, Joins, creations other SQL
necessary. commands) that were not part of

8) INFORMIX-SQL Evaluation. In this task demonstration workout but were along the
we analyzed, interpreted and commented same lines as the examples provided. We
on the results of the INFORMIX-SQL found everything to execute as expected.
testing.

4. EVALUATION The test database chosen contained many
In our analysis and evaluation of data formats of various length, many
INFORMIX-SQL we determine its ease of use tables, and it varied in the amount of data
and potential for use in future in-house contained in each table. The database we
R&D efforts. The strengths/weaknesses of choose originated from an Oracle RDBMS.

20

An ASCII dump of the tables was made and window of execution. In the case of error
one of the utilities supplied with detection and correction mechanisms, the
INFORMIX-SQL, namely the dbload utility, problems came from undocumented errors
was used to convert the data into the and anomalies. For example, where errors
INFORMIX-SQL format. Once this was done are concerned, we managed to generate
we could then move on to the testing area of errors that were not listed in the reference
the evaluation, manual. These errors would show up on the

screen but would not have an associated
The following is a list of the ten tests which listing in the reference manual so that a
we designed for the evaluation, solution to correct the problem could be

sought. An example of what we refer to as
1) Data Type Boundary Values an anomalies was when we compiled a form
2) Case Sensitivity specification file. The file used as a form
3) Operational Semantics specification file for an INFORMIX-SQL
4) Environment form was really an executable program. We
5) Error Detection, and Correction did this deliberately to see what kind of
Mechanisms errors would occur. This was done simply
6) Capacity by putting a .frm extension on the "bogus"
7) System Degradation file at the operating system level: Then
8) Security Features entering back into the INFORMIX-SQL
9) Recovery Capabilities environment and telling it to compile this
10) SQL Grammar file. The thing to note here is that the

software tries to help the user by entering
When we implemented these tests, we encountered errors into the form
documented the results for later analysis. specification file for easy debugging. This
Not only did we cite our results in the is a very useful tool. However, this
designated test areas but we also compiler, unlike many compilers,
commented on what would have been nice continued to generate an error file in "/tmp"
to have, and our overall impression of what even when a very large number of errors
resulted. Again, the results of this was encountered. This became a problem
evaluation were documented more fully and because the file grew beyond the remaining
published in a technical memo (RL-TM-92- file systems capacity of 35 megabytes. The
1 "An RDBMS Evaluation"). compilation should have stopped at some

predetermined number of errors and
To summarize, the testing and evaluation notified the user to fix the errors already
phases of this effort went smoothly. detected and then recompile to get the rest.
INFORMIX-SQL on the whole performed in So, as you can see there are a few bugs but
a manner consistent to its intended design nothing that we found was insurmountable.
specification. This is not to say, however, Therefore, because of its ease of use,
that INFORMIX-SQL did not have its flaws relatively low cost, and performance gained
or draw backs. For instance, INFORMIX- in various areas that INFORMIX-SQL
SQL does not support nested transactions, definitely has potential for use in C3
This Is a feature which is nice to have since applications. We also feel that conclusions
it adds versatility for the user and can save concerning INFORMIX-SQL as a RDBMS
time when searching for flaws in a drawn from its performance in each of the
transaction log relative to rollforwards and testing areas, should be viewed from the
rollbacks. In the cases where we ran into point of view relative to the user's needs.
problems while testing it was usually a
problem with the supplied user interface or For the readers convenience, we have
error detection and correction included, at the end of the published tech.
mechanisms. The user interface supplied memo (RL-TM-92-1 "An RDBMS
with the software can be cumbersome to Evaluation"), a "Glossary" and two
work with at times. The controlling key "appendices" (Appendix A and Appendix B).
strokes changed form window to window Both the "Glossary" and the "Appendices"
and from one thing to another within one can assist the reader in further

21

understanding the scope of the in-house
task. The "Glossary" includes a collection
of important definitions relating to
database technology. "Appendix A"
included a discussion of the general
characteristics and components of a
relational (database) system. "Appendix W"
Includes a collection of figures (e.g..
program segments, charts, diagrams) that
are referred to throughout the report. The
information included in these three
sections will allow the user to become more
familiar with databases, database concepts,
and relational (database) systems.

22

DDES: Distributed Database Experiments

Patrick M. Hurley
Terrance Stedman

Computer Systems Branch (C3AB)
Rome Laboratory

Griffiss AFB, NY 13441-5700

1. Introduction As shown above, there is always a trade-off
A survivable database management system between availability and consistency

(DBMS) would be desirable for many because of the overhead required to
applications including military command maintain consistency. Consistent systems
and control, airline reservation, banking, are less available because of this overhead
and other systems where access to correct and similarly available systems are not
data is crucial. What is meant by highly consistent because they delay this
survivable is that users will have continued overhead in order to achieve fast access.
access to correct data in spite of various
types of failures, such as network 3. DDES Design Overview
partitions, local or remote host failures, A survivable DBMS will continue to
and application or system software function even in the event of
failures. The Distributed Database hardware/ software failures. This
Experiments (DDES) project was survivability can be attained by
undertaken in an attempt to produce a maintaining mutually consistent,
survivable DBMS using off-the-shelf replicated copies of the DBMS in a manner
hardware and software components. which is transparent to its users. These

replicated copies must be kept on separate
2. Background hosts in the network in order to achieve the

Availability and consistency are two desired level of survivability. The
fundamental issues involved with management involved with maintaining
replicated database systems. Those which these replicated copies includes the
stress availability are interested in underlying communication between them
providing a high degree of access to the and some form of DBMS replication
data. This high degree of access is attained strategy. The use of a distributed operating
by making a number of copies of the system would handle the communication
database reachable by its users. Issues issues and quite possibly aid in the
involved with keeping all of the copies implementation of the replication strategy
consistent are emphasized less because of itself.
the desire to provide fast access. To design replication and consistency

Consistent database systems, on the other control mechanisms, the object model was
hand, provide a high degree of confidence in considered. Briefly stated, the object model
the sameness of all copies of the database. says that an object is comprised of both
In consistent systems, users will receive the state information and rules to govern how
same data from every copy of the database. the state information may be examined or
This high degree of consistency is achieved changed. Our design strategy therefore is to
by coordinating updates for all replicated encapsulate the DBMS into the object
database copies and involves considerable model, i.e.. by considering the DBMS as the
overhead. Issues involved with availability state information and defining rules to
are stressed less because of the desire to examine or change the data contained
maintain consistency. within the DBMS.

23

The replication strategy chosen uses full Cronus does, however, have its
replication of the data because the DDES shortcomings. Cronus does not support
system stresses survivability. Partial replication of the Informix RDBMS which
replication was considered but not used is a must from a survivability standpoint.
because it is inherently less survivable This is because Cronus only provides an
than full replication. Another interface to the Informix RDBMS which
consideration in the design of the means that Informix is not a Cronus object
replication strategy is the trade-off between and therefore cannot be replicated. This is
availability and consistency. Remember where DDES comes into play by providing
the definition of survivability defined in the mechanism to maintain consistent
this paper is to ensure access to correct replicated copies of the Informix RDBMS.
(most recent) data in spite of various types
of failures. By stressing consistency, the 5, DDES Overview
DDES system will ensure that a user will The DDES system consists of a User
never receive old, possibly incorrect data Interface (Sunview) , Clients (Cronus),
from database queries. Transaction Managers (Cronus), RDM

Replicated Database Managers (Cronus
One way to maintain such a highly replicated managers used to maintain
consistent system is with the use of a consistency of the replicated DBMS's). and
locking mechanism and transaction N copies (two copies in our experiment) of
logging. The locking mechanism locks the the Informix RDBMS. Figure 1 shows the
data, allowing asynchronous updates if software layout of DDES and what type of
possible, and then releases the locks. The hardware it runs on in our configuration.
transaction logging is necessary to bring Each of the software modules are briefly
previously inaccessible databases back to de- -i .,:d below.
consistency before they are restored to
service.

4. DDES Implementation
CRONUS

While keeping the design issues in mind, a C[]
search was conducted to see what CRONUS f~7 DBMS1

technology existed to support the SUN3

implementation of such a system. The
search resulted in the selection of the CRONUS

Cronus distributed operating environment
and Informix, an off-the-shelf relational
DBMS (RDBMS). Cronus was selected

because It provides many desirable SUN 4

characteristics of a distributed computing FigureI z DDES Dmip OverAew

environment. Cronus is object based,
supports object replication, and has an The user interface and the embedded clients
object locate mechanism. Cronus currently act as one functional system. The user
provides support for the Oracle, Sybase. and interface is a mouse driven menu system
Informix database systems with a user that allows the user to select what
interface and development environment, transaction(s) to perform at the click of a
The Informix RDBMS was chosen because it button. Once the transaction has been
was readily available, however either selected, the user interface calls the
Sybase or Oracle could have been used with appropriate embedded client to interact
minimal modifications to the system. All with the user. The client prompts the user
that is really required from the DBMS is an for information required to perform the
interface to Cronus and support for SQL requested transaction. Once the client has
(Structured Query Language). SQL was all the required information, It invokes the
developed by IBM and has become an appropriate Cronus Transaction manager
industry-standard database query to perform the transaction. The client also
language.

24

displays the results of the requested becoming accessible by applying updates
transaction through the user interface, from transaction logs.

The Cronus Transaction manager's job is to Several experiments were performed on the
perform the transaction(s) requested by the DDES system to confirm that the desired
client while maintaining database level of survivability and consistency was
consistency. It accomplishes this job with achieved. These experiments consisted of
the use of the RDM (Replicated Database subjecting the DDES system to various
Manager) which allows the Cronus types of failures, such as network
Transaction manager to lock the table(s) partitions, local host failures and several
necessary on each of the replicated different software failures. A network
databases. If the lock is successful on all partition failure was accomplished by
accessible databases, the Transaction manually removing a host from the
manager performs the transaction(s) in network, a host failure was accomplished
parallel on each copy of the replicated by abruptly bringing down a host, and
database. Once this transaction is software failures were accomplished by
completed on each database, the killing the process of the software being
Transaction manager uses the RDM to tested. The software failures tested
release all locks obtained by the included the user interface, the transaction
transaction. The results are then returned manager, the RDM, the Informix RDBMS,
to the calling client, and Cronus. Within limits, these failures

were tested in combination with each other.
The RDM is really the heart of the DDES As noted previously, the DDES system was
system. It is mainly responsible for able to maintain a desired level of
keeping persistent knowledge of the state of survivability and consistency in spite of
the DDES system. This state information these various types of failures.
is highly survivable because it uses Cronus
replication. It keeps state information Although no formal bench marking was
such as DBMS status which includes DBMS performed on the DDES system. good
availability and table lock information, overall system performance was
The RDM uses all this information to give experienced due to updating the databases
locks to Transaction managers. The RDM asynchronously. In the future, we need to
also maintains transaction logs in order to benchmark the system to determine its
automatically bring recovered DBMS's overall performance. This bench marking
back to consistency. will also aid in determining where future

performance enhancements can be made.
6. Conclusion Thought has also been given to

The goal of this project was to produce a incorporating the DDES software into
survivable DBMS. By using a simple design Cronus to make it easier to use and to
approach, existing technology, and a newly possibly increase the speed of operation.
designed locking mechanism, we were able
to obtain the desired level of survivability
and therefore meet our goal.

In addition to survivability, we wanted the
DDES system to be highly consistent in
order to ensure that users would have
continued access to correct data. We were
able to maintain consistent, replicated
copies of the database at all times. At no
time were any accessible databases
inconsistent with one another, thus
guaranteeing that only correct data would
be accessed. Inaccessible databases were
brought back to consistency before

2 5 -US. GOVERNMENT PRINTING OFFICE . . .

