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I C'.U* ITY INSPECTED 3

The variational theory of three dimensional motion of curved twisted and extensible elastic
rods is obtained based entirely on the kinematical variables of position and rotations. The
constitutive relations that define the resistive couples and the axial force as gradients of the
strain energy function are established. A candidate for the strain energy function, derived
on the basis of classical assumptions, is presented.

INTRODUCTION

In the Historical Introduction of the "A Treatise on the Mathematical Theory of
Elasticity," Love 331892) narrates that in 1742 Daniel Bernoulli wrote to Euler suﬁgating
that the differential equation of the elastica could be found by making the integral of the
work done or the square of the curvature a minimum. Acting on this suggestion Euler was
able to obtain the differential equation of the elastica and the various forms of it. Thus the
concept of the strain energy was born and the foundation of the variational theory of elastic
rods were laid out. The equilibrium equations that were much later developed by Love are
applicable to an initially bent and twisted rod.

Our aim in this paper is to establish a variational formulation for the title problem and in
the process infer the existence of the strain energy function and determine the constitutive
relations that relate this function to the bending and twisting couples and the axial force
within the rod. This development together with equations of motion and the geometry of
deformation define a direct approach and an exact nonlinear theory for the three
dimensional motion of 8 one dimensional elastic medium capable of resisting bending
twisting and extension. Going a step further, in order to actually construct an explicit
form for the strain energy function, we enter the realm of hypothesis and use Kirchhoff’s
description of deformations in a thin rod. This view enables us to determine a strain
energy function that can be used in engineering applications.

The recent history of investigations of the rod theories consists of developments along two
separate streams, the direct approach and approximations from three—dimensional
continuum. In the direct approach a one—-dimensional continuum view is pursued and the
medium is supposed endowed, in addition to its position, with vector fields, the directors,




that are to be interpreted appropriately to defire bending, twist and extension properties of
a rod. This approach has its origin in the work of E. and F. Cusserat (1909) and numerous
investigations have contributed to it among them Naghdi (1982), Naghdi and Rubin
%1984), Whitman and DeSilva (1972&, Green and Laws (1966), and Eriksen (1970).

xtensive investigation into the qualitative aspects of the nonlinear theory such as
questions of existence of solutions and global behavior have been carried out by Antman
(1976). His basic work entitled "The Theory of Rods" (1972) describes these theories both
as approximations to the three—dimensional continuum theory and as a one—dimensional
continuum with directors. = The work presented here, although pertains to a
one—dimensional continuum does not use directors, but is formulated entirely on the basis
of kinematical quantities consisting of the position vector of points along the curve of
centroids and the orientation es of the cross sections of the rod relative to a fixed
coordinate system. It is a generalization of the work of Tadjbakhsh (1966) in which the
theory of planar motion of the extensible elastica was described.

The history of construction of approximate theories in the context of three—dimensional
nonlinear continuum theory is also varied and to it many investigators including some of
the above authors have contributed, see for example, Naghdi and Wenner (1974).

KINEMATICS

An elastica is a nearly uniform slender rod of finite length. In the unstressed state the
centroids of the cross section form a space curve C that 1s called the reference curve with
an arc length s. The orientation of the principal axes of the cross section vary continuously
along the rod. This means that in the unstrained state the rod has arbitrary twist and
curvatures. With respect to an inertial Cartesian frame x the position of a point s in the
unstrained state is demoted by X = Xj(s)mi, i = 1,2,3, with n; being the dextral unit
vectors of the frame x.

The cross sectional area can be slowly varying function of s and will be denoted by A(s).
As the rod deforms the curve C acquires new configuration ¢ that changes with time. The
arc length along c is denoted by £ that depends upon 8 and t,i.e. { = £ (s,t). The position
of a point 8 on ¢ at an arbitrary time is x (s,t) so that

x(8,80) = X(s), &(s,80) = 8 (1a,b)
where t, is a reference time at which the rod is in the unstrained state. Also
Kt =(xyxpt (2)

where prime denotes differentiation with respect to time and summation over a repeated
index is implied. The strain e is defined by

e=¢ -1 (3)

where e > 0 denotes extension and e < 0 contraction. The strict positivity of £ implies
that -1 < e < o.




Attached to any point s of ¢ a Cartesian coordinate frame y will be assumed and
will be referred to as the body reference frame. The coordinate axes of the body frame are
Yu Y2 Y3 With the y, axis pointing in the direction of increasing s and y, and y, being the

principal axes of the cross section. The dextral unit vectors of the y frame will be denoted
by e;, i = 1,2,3, with their orientations at the reference time t, being E;.

Denoting by 1;;(s,t) and Ly;(s) the elements of the matrices of direction cosines of
the dextral sets e; and E; one has

n; = 111 ej = L”EJ (4)

and

ei = 111 n. . Ei = Lunj (Sa,b)

The angles y, represent rotations between the 'corresponding pairs of E; and e; when
these directions are assumed to issue from a common origin, Fig. 1. These angles are
determined through

cosp; =¢; - By=1;; L;; ,i=1,2,3 (sum only on j) (6)

The direction cosines 1;; are characterized non—uniquely by three orientations angles
0,(s,;t), 0Oy(s;t) and Oy(s,t). These angles can be selected in a variety of ways and
represent three finite rotations about unit vectors e; or m;. If these rotations are properly
selected the fixed orientation m; may be brought to any arbitrary body orientation e;.
Kane et al. (1983) list at least 24 possibilities for the order of rotations of the angles 4,, ,,
8, about the body set of unit vectors e; or the fixed set of unit vectors n;.

Regardless of the particular choice of orientation angles the angular velocity
w = w;e; of a cross sectional element Ads, Fig. 1 of the rod is determined uniquely from

Wi =Nigh liglin » ("= %) (7)

wheren, = €5y (€5 + 1)/2, (no sum on i.jk) and ¢;;, is the alternator tensor with the
non-zero componentl fﬂ. = f," = 53’1 =+ 1 and 5“3 = 532‘ = 52“ = -1,

The curvature vector K = Kje; of the rod can be defined in a similar way with K,

representiné twist and Kj;and Kjrepresenting bending curvatures about the principal
directions of the cross section. Using the dynamical analgfy of E.I. Routh, Love (1944) has
noted that if the frame y were to move with unit speed along the curve ¢ such that at any
point £ of c it has the orientation of the % frame at that point then the angular velocities w;
and w; will be the principal curvatures K, and K of the rod. Also the angular velocity w;




will be the twist curvature Ky of the rod. Thus the formulas that define the angular
velocities from direction cosines can be used to determine curvatures, provided time
differentiation is replaced by differential with respect to £&. Therefore one has

Ki = nign g%'i‘lih =‘1é§‘7’ighlig lihilﬂ_g, (8)

where differentiation with respect to ¢ has been replaced with differentiation with respect
to s and curvature parameters k; = (1+e)K; is also introduced. For future use one may
note the formulas for derivatives of direction cosines li; and the unit vectors e;.

lij = (1+€) €ghj lig kn 13 = egnj lig wn (9a,b)

/ .
ei = exji kj e €i = €kji Wj €k (10a,b)

if K be the curvatures of the rod in the unstrained state (e = 0) then from (8)

Ki = nign Lig Lin (11)

Since ey and dx/d¢ are both unit tangents to the central line one has

xi = (1+e)lis (12)

We assume that the center of mass of the cross sections coincide with the centroids.
The linear and the central angular momentum per unit length are then given by

p = pA xing (13)
and
H = plw = p(1;; wiey + 123 wa €3 + 153 wyes) (14)

where p is the mass density per unit unstrained length and I is the diagonal moment of
inertia tensor with components

2 2
lu= [y2dA,In= [ydA, In=Iu+1Ia (15)
A A

Equations of Moti

Referring to the body set of axes e; one can define the vector F of the resultant
shear stresses F'; and F; and the axial stress resultant Fy. Similarly, one may define the
couple stress vector M consisting of the bending moments M; and M; and the torque M;.
Explicitly we have

F=Fie; and M= M;e; (16)

The well known dynamic equilibrium of the rod can be expressed by the equations
of the balance of linear momentum




F+f=p (17)

and of the balance of angular momentum

M +x' xF+m=H (18)

wherein f and m represent distributed force and moment acting on the rod. The scalar
components of these equations can be referred to the body set of axes. For this purpose one
needs to express all vector quantities in terms of unit vectors e; and use (9)—? 10). Then
(17) becomes

F, + kFy-kFot £ = pA %) 1, (19a)

Fy + kyF— kFot £ = pA % 1, (19b)

Fy + kFy=kF o+ £ = pA % 15 (19¢)
while (18) assumes the form

M: + kM, — kM, — (1+e)F, + m)] = ol (w, + wywy) (20a)

M, + kM, — kM, — (1+€)F, + m} = ply(w, + wws) (20b)

M + kM, — kM, + m) = p[Jisy + (I, = I)wwy] (20¢)

whereI, =1, ,I,=1,, and I =Jgy =1, + I;. The superscript y on the components of {
and m denote the components of these vectors in the body reference frame.

To erfress the equations of motion in the inertial frame we introduce the
80

components of the stress resultants in that frame. Thus
b < X
Then (19) becomes
Fi +1; = pA%, (22)
and (20) assumes the form
M:’-(l+e)l", + m’: = oLy 1y o + €gy Ly g wywr) (23a)

M ~(1+&)F, + mj = p(l; Ly by + egyy Ly Log wyur) (23b)




x x :
My +my=p(I;ly & + €grj Lsj Llag wswh) (23¢)

Either of the set of equations (19)-;20) or (22)—(23) can be considered as the governing
differential equations of motion. These equations will have to be supplemented with
constitutive relations that define resultant axial stress Fy and the resultant bending and
twisting couples M, M2, M; in terms of the axial strain e and curvatures k;, ko, k3. In the
next section we consider the derivation of these constitutive relations.

Qn. IVB!I

We assume that the motion of the elastic rod is equivalent to the stationarity of the
Hamiltonian H which is defined by '

t 83
Hlly (0), xie] = [ [ Zdsdt +
t18,
t2 82 83 ta
f[Fixi+Mi‘.Pi] dt-f[pAGixi] ds -
th 8y 84 ty
82 ta
f "[Il wy g+ 1y wy 9 + Juy %] ds (24)
81 t

where .#is the action density function

.L’=ipAiiii+}p(11w§+l,u:+.lw:)—w(e,ki)+
Ml (14€) = x; ] + £, Y
illss - Xy i Xy +mj ¢ (25)

and F; , M, and F: , M: are the applied forces and moments at ends s, and s, respectively.

Also 3:’2 and D:’z are the initial and final linear and angular velocities. The strain energy

function w depends upon the kinematical variables e and ki. The precise nature of this
dependence is the conmstitutive relations that we seek and is a consequence of the
stationarity of H. The functions A; are the Lagrange multipliers that allow the constraints
(12) to be incorporated within the Hamiltonian. As a result x; and l;; can be regarded as
independent variables. Additionally the constraint (12) implies the d’eﬁnition 28)—(3) for
the strain e and hence in (24) e can also be viewed as an independent variable. To see this
we need to note that if each side of (12) is multiplied by itself we obtain X X =

(1+€)q13ls3 = (14+¢)? which is restatement of (2)—3). The terms f; x; and m’; @; in (25)

represent the density of the potential of the applied forces and moments on the rod. As
stated in (5) the angles o, are the rotations from E, to e;.




With th,ese preliminaries we note that the Euler equation corresponding variations
bxi is simply A; + f: = pA X; which when compared with (22) reveals that A, = F;‘. Next
considering the variations with respect to e we obtain

S% =Fily=F, (26)

which is the constitutive relationship determining the axial force F; as the derivative of
strain energy with respect to axial strain e.

We now turn to the Euler equation corresponding to the variation §p,. For this
purpose we note that lj;, wi and k; depend on 4. For orientation angles of the cross
section we select the sequence of body rotations first fe;, second fye; and the third f.e,
with 8, = ;. In this sequence the last rotation is through ¢; with respect to which
variation is sought. The matrix 1 of the direction cosines is given by

C3Csy C;C3S34+ 5153 SiC3S3 + CiS,
1=B (02)C(03)A(0;) = Ss C 1Ca —5,Cs (27)

~S2C3 C;S3S3+S5:C; —-S,5,.5; + C.C,

where

Ci=Cos 8, Si=Sinb (28)

1 0 0 ] cosd 0 sind
A(6)=|0 cosd —sinf B#=] 0 1 0

| 0 sind cosé —sinf 0 cosd

[ cosf —sinf 0]
C(f) = | sin@ cosf 0 (29)
0 0 1]
Subsequently, we find from (7) and (8)

wi=0, Sy + 0, wa=0y CCs+ 03 Sy, wy=—0,S,Cs + 8:C, (30)

ky=03 S + 01, ka=083 C,C + 03 Sy, ky=—0 S,Cs + 65C, (31)




From (24) we have

W 0k; L 8 (W Ok XTI9lyy 0 (0l;
{ ETH#+E(3EW)+(1+8)Fi [a% "5(3711)]}*'1“{

_9 Owy _ 1, Ow
[” et w\] plawn gt —Plus, (32)
Notmg that 4, = ¢, we have from 530) Owy/ 6¢1 = 1 30)2/ 0o = wy, Ows/dp, = —w
Also from (31) Jk;/dp, = 0, Fksfdpy = ks, = —k; and from (27) 6113/3% = ~ljq.

Using these results and the inverse of (21a), (32) becomes

(ar)l + kra‘r;“ k:!';;t—2 ~(1+€)F; + m] = ply(én + wyws) (33)

In exactly the same manner one can proceed o determine the Euler equation for a
variation §p;. Now the comsecutive sequence of body rotations fye;, Oe; and O.e; is
selected with 8; = ;. Without going into details one obtains

(m)' + k,-a-rl-— km —~(1+e)F, + mj = Pl + wiwy) (34)

For variation of py we adopt the consecutive sequence of body rotations ée;, §z€;
with ;3 = 3. The matrix of direction cosines is

C3Cs —C2Ss S:
1=A(6,)B(63)C(fs)=| S,5:Cs + CiSs —5,5:5:+C,Csy —5,C; (35)
~CS2:Cs+ Sy CiS28s+S,Cs C,C;
with angular velocities of the cross section and the curvatures given by

wy = §;CsCs + 0:Ss, wa= 8:C3— 0,CsSy, ws= 8 + 8,8, (36)

ki = 0,CsCs + 02S3, ka= 02Cy— 0,CaSy, ks =03 + 0,S; (37)

F:t t.this case lis does not depend on 0y and hence the Euler variational equation assumes
the form

() + ke~ kafp- + m} = pfJin + (13~ Iwrw] (38)
The specified boundary conditions at s = s,, 53 must be consistent with

< s
[(F; - F; )éxi + (Mg - Mi)ﬁml: =0 (39)

for ubntruzntnd independent variations 6x; and §py. Similar restrictions are imposed on
initial and final data, i.e.




{pA()'u - ¥1)8x5 + p{li(wy — @) by

t
+4ma-mﬁm+Jwrm@wﬂ:=o (40)
1

Comparison of equations (33), (34) and (38) with equations (20a,b,c) respectively,
establishes the constitutive relations

M= erV; i=123 (41)

A STRAIN ENERGY FUNCTION

In order to ﬁn an insight into the nature of the strain energy function we consider the
strain of the lines and angles in the cross section of the rod. For this purpose we invoke the
Kirchhoff hypothesis which assumes that the plane cross sections of rod that are normal to
the axial direction in the unstrained state remain normal to the strained axial direction

during deformation. Therefore the position vector to a material point in the cross—section
before and after deformation can be given by

R = X(s) + y:Eq(s) + y2Ea(s) (42)
and

= x(3) + ofs)[y.ei(s) + yzea(s)] (43)

respectively. The parameter a(fs) is to be fixed by enforcing traction—free boundary
conditions on the lateral surface of the rod.

Using the concept of extensional strains for stretching of line elements and distortion of
angles between pergendicnlar lines as shear strains (Wempner, 1991), we define
components of strain by

€1j = (81 - & —Gi -+ Gj) (44)

where
8=%= aey, Sz=g;—z= oRs,

B =7, = a’ye; + a’'y: + aye; + ayes + (1+e)e; (45)

Gy = -g% = y:E': + yzE; + By (46)
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Using (8) we can establish
eli + € = €ijmka (47)
Ei - Ej = €ijuKa (48)

where K; is the curvatures and twist in the unstrained state. Therefore (9) yields as the
strain components

en=¢€n=4a?—1),e2=0
€13 = $[afa’y1 — ayaks) + y2Ky]
€23 = ta{a’y2 + ayzks) — yiKs]

€33 = e + e — yi(1+e)aks — Kj] + ya(1+e)ak, — K] — yiya(a?kks — K\K») +
tyila’? + a3(kj + kj) — K3 - K3)

+iyffart + ok + k) ~ Ki— K} (49)

For & linear isotropic elastic material the non—zero stress components per unit strained
area are :

ot=(A+G)(a?=1)+ Ae33, o12=0
o =(\+G)(ad—1) + A3, o2 = 2Gen
038 =)(a2-1) + (A +2G)e, o3 =2Gey (50)

where A and G are Lame’s constant and the shear modulus, respectively. The traction per
unit undeformed are is then given by

t3 = glig; (51)

One can define the axial stress resultant Fy by
Fs= [tdxesdA =
J

= A (1+e) [(A+2G)(e—+§e2) + A(a? - 1)]
+ (A+26) [1,((1 + €)ak; — Kjjak; + I{(1 + e)aks ~ Kjak,
+h(1 + e)(a’? + a%? — K? + a%k2 ~ K2)

+ Jo1 + e)a’? + a%2 — K2 + a%2 ~ K3)| - (52)




Similarly we have

M,= fayi - egdh = aM+2GIL[(1 + e)aky~Ki(1 + )

+ I,a’kx[z\(aﬂ ~1) + (A +26)(e + 4e?)

M,=—f oyt e;dA = a(,\+2G)1,[(1 + e)aks — Kz](l +e)
A

+ Iza2kz[A(a2 -1)+ (X +2G)(e + }e’)]

M =—[ oyt - e;—y,t* - €)dA = IGa¥(a%ks - K)
A
+ Jaﬁk,[)\(az2 -1)+ (A +2G)(e + }e’)]

One may note that the integrability conditions
dFy oM, dFy _dM; OF; _ M
s =Fe Ok = e ' Os = Ge
oM;_oM; M;_oM; M;_M
3%; = 3k, 9k; = 9K, IK; ~ Ik»

11

(54)

(85)

(56)

are satisfied. Hence existence of a strain energy function is assured and by integration we

have
W = A242Cer(1 e+ E) - AN(1-0%)(e+4e?)

2
+ALa3(at-1)5l + (A+2G)! 1ak,[ﬁ§’—+£ak,-<1+e)x,]

ks 1+2e3+4e
+AL;a¥a2-1)K3 + (,\+2G)Igak2[—-z——akr(1+e)l(z]

+i§-29(1+e)=[1,(a’2 + kK1) + I{a’7 + azkf-xi)]

+,\Jaa(a=-1)§; + 2428504 1e7)(atks—K3) + §GIof aksK,)?

(57)

For an initially straight rod K; should be set equal to zero. The above form of W reflects

material isotropy, i.e. W(ek, kj, kg) = W(e, kj, k;, k), provided that I, = I.
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We note that positive curvatures imply positive bending moments and conversely negative

curvatures imply negative bending moments provided that e>(~1+1/{3) for @ = 1. This
shows that equations (53) have a limited range of validity if the sense correspondence
between moments and curvatures is to be retained. We also note the second order coupling
between the squares of the curvatures and the axial strain e in (52), which implies that
axial force can be generated by bending or twist only.

The parameter afs) depends on the boundary conditions applied at the lateral surface of
the rod. If the lateral surface is fixed, then afs) = 1. For zero tractions on the lateral
surface, a condition appropriate for thin flexible rods is adopted according to which the
average of o!t and 032 over the cross—section should vanish, i.e.

./;a“dA = ./;cr?’dA =0 (58)
The above condition reduces to

B(akie) = a’d + a¥(liki + Iks + Jks + 2)

(LK + 1K: + JK3) + 2Ae(1 + fe) ~ 2 = 0 (59)

This equation should be interpreted as a differential equation for ofs) when k; and e are
known. To achieve this (52) is solved in an iterative procedure in which at every step k;

and e are known. We begin by writing (52) as 1113%1 H(a,,, k3, e,) =0withn=0,1,2, 3,
... For the first iteration (n=0), ¢ = 0, k} = K, a, = 1, and the six equations (15) — (16)

after using (22), (33) and (57) contain only six unknown quantities F,, F,, e, and k! when
the externally applied forces and moments are prescribed. Solution of this set of equations
enables one to use k! in the curvature—orientation angle relations such as (31) to determine

the latter i.e. 6;. Now lj; (6) are known and one proceeds to determine g; from (21) and
xi from (9) using the appropnate boundary conditions. The solution for the first iteration

is complete. One enters (52) with e, and k] and computes a; and the iteration proceeds.
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