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The variational theory of three dimensional motion of curved twisted and extensible elastic
rods is obtained based entirely on the kinematical variables of position and rotations. The
constitutive relations that define the resistive couples and the axial force as gradients of the
strain energy function are established. A candidate for the strain energy function, derived
on the basis of classical assumptions, is presented.

INTRODUCTION

In the Historical Introduction of the "A Treatise on the Mathematical Theory of
Elasticity," Love (1892) narrates that in 1742 Daniel Bernoulli wrote to Euler sugesting
that the differential equation of the elastica could be found by making the integral of the
work done or the square of the curvature a minimum. Acting on this suggestion Euler was
able to obtain the differential equation of the elastica and the various forms of it. Thus the
concept of the strain energy was born and the foundation of the variational theory of elastic
rods were laid out. The equilibrium equations that were much later developed by Love are
applicable to an initially bent and twisted rod.

Our aim in this paper is to establish a variational formulation for the title problem and in
the process infer the existence of the strain energy function and determine the constitutive
relations that relate this function to the bending and twisting couples and the axial force
within the rod. This development together with equations of motion and the geometry of
deformation define a direct approach and an exact nonlinear theory for the three
dimensional motion of a one dimensional elastic medium capable of resisting bending
twisting and extension. Going a step further, in order to actually construct an explicit
form for the strain energy function, we enter the realm of hypothesis and use KirchhofPs
description of deformations in a thin rod. This view enables us to determine a strain
energy function that can be used in engineering applications.

The recent history of investigations of the rod theories consists of developments along two
separate streams, the direct approach and approximations from three-dimensional
continuum. In the direct approach a one-dimensional continuum view is pursued and the
medium is supposed endowed, in addition to its position, with vector fields, the directors,
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that are to be interpreted appropriately to define bending, twist and extension properties of
a rod. This approach has its origin in the work of E. and F. Cusserat (1909) and numerous
investigations have contributed to it among them Naghdi (1982), Naghdi and Rubin
(1984), Whitman and DeSilva (1970), Green and Laws (1966), and Eriksen (1970).
Extensive investigation into the qualitative aspects of the nonlinear theory such as
questions of existence of solutions and global behavior have been carried out by Antman
(1976). His basic work entitled "The Theory of Rods" (1972) describes these theories both
as approximations to the three-dimensional continuum theory and as a one-dimensional
continuum with directors. The work presented here, although pertains to a
one-dimensional continuum does not use directors, but is formulated entirely on the basis
of kinematical quantities consisting of the position vector of points along the curve of
centroids and the orientation angles of the cross sections of the rod relative to a fixed
coordinate system. It is a generalization of the work of Tadjbakhsh (1966) in which the
theory of planar motion of the extensible elastica was described.

The history of construction of approximate theories in the context of three-dimensional
nonlinear continuum theory is also varied and to it many investigators including some of
the above authors have contributed, see for example, Naghdi and Wenner (1974).

KINEMATICS

An elastica is a nearly uniform slender rod of finite length. In the unstressed state the
centroids of the cross section form a space curve C that is called the reference curve with
an arc length s. The orientation of the principal axes of the cross section vary continuously
along the rod. This means that in the unstrained state the rod has arbitrary twist and
curvatures. With respect to an inertial Cartesian frame x the position of a point s in the
unstrained state is denoted by X = Xi(s)ni, i = 1,2,3, with nt being the dextral unit
vectors of the frame x.

The cross sectional area can be slowly varying function of s and will be denoted by A(s).
As the rod deforms the curve C acquires new configuration c that changes with time. The
arc length along c is denoted by ý that depends upon s and t, i.e. C = • (s,t). The position
of a point s on c at an arbitrary time is x (st) so that

x(s,to) = X(s), f(s,to) = a (la,b)

where to is a reference time at which the rod is in the unstrained state. Also

= =(xlx (2)

where prime denotes differentiation with respect to time and summation over a repeated
index is implied. The strain e is defined by

e (3)

where e > 0 denotes extension and e < 0 contraction. The strict positivity of • implies
that -1 < e <a.
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Attached to any point s of c a Cartesian coordinate frame y will be assumed and
will be referred to as the body reference frame. The coordinate axes of the body frame are
YL, Y2, Y3 with the Y3 axis pointing in the direction of increasing s and y, and y2 being the
principal axes of the cross section. The dextral unit vectors of the y frame will be denoted
by ej, i = 1,2,3, with their orientations at the reference time to being EB.

Denoting by lij(s,t) and Lq(s) the elements of the matrices of direction cosines of

the dextral sets ej and Bi one has

ni -- lij ej -- LjEj (4)

and

ei = lij nj , E = Lijnj (5a,b)

The angles Vi represent rotations between the corresponding pairs of Ei and ei when
these directions are assumed to issue from a common origin, Fig. 1. These angles are
determined through

cos(pi = •E - ljL=1ji , i=1,2,3 (sum only on j) (6)

The direction cosines lij are characterized non-uniquely by three orientations angles
91(s,t), 02(s,t) and 03(s,t). These angles can be selected in a variety of ways and
represent three finite rotations about unit vectors ej or ni. If these rotations are properly
selected the fixed orientation ni may be brought to any arbitrary body orientation ej.
Kane et al. (1983) list at least 24 possibilities for the order of rotations of the angles Op, 027
03 about the body set of unit vectors et or the fixed set of unit vectors ni.

Regardless of the particular choice of orientation angles the angular velocity
U = wiei of a cross sectional element Ads, Fig. 1 of the rod is determined uniquely from

Wj =qgh " =a (7)

ig 1k' (0 ~

wherel~ijk = fijk (eijk + 1)/2, (no sum on i.j.k) and (ijk is the alternator tensor with the
non-zero components %, = i2st = cf21 f + 1 and e1,, = 6321 2 C213 = -'.

The curvature vector K = Kjea of the rod can be defined in a similar way with K 3

representing twist and Kjand K2representing bending curvatures about the principal
directions o the cross section. Using the dynamical analogy of E.I. Routh, Love (1944) has
noted that if the frame y were to move with unit speed along the curve c such that at any
point f of c it has the orientation of the y frame at that point then the angular velocities w,
and w2 will be the principal curvatures K, and K2 of the rod. Also the angular velocity U)3
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will be the twist curvature K3 of the rod. Thus the formulas that define the angular
velocities from direction cosines can be used to determine curvatures, provided time
differentiation is replaced by differential with respect to ý. Therefore one has

al I7g = 1 ?7ig
Ki = nigh - l ---- nigh I is lih +e, (8)

where differentiation with respect to f has been replaced with differentiation with respect
to s and curvature parameters ki = (1+e)Ki is also introduced. For future use one may
note the formulas for derivatives of direction cosines lij and the unit vectors ej.

lij = (1+e) eghj lig kh ij = Eghj 115 Wh (9a,b)

ei = ckjE kj ek ei =kji Wj Ck (10a,b)

if K1 be the curvatures of the rod in the unstrained state (e = 0) then from (8)

Kt = nigh Lig Lih (11)

Since e3 and 8x/84 are both unit tangents to the central line one has

Xi = (1+e)lh3 (12)

We assume that the center of mass of the cross sections coincide with the centroids.
The linear and the central angular momentum per unit length are then given by

p = pA xint (13)

and

H PLw = P(III w1e1 +122 W2 e2 + 133 we3) (14)

where p is the mass density per unit unstrained length and I is the diagonal moment of
inertia tensor with components

1 2= y dA, I22 y (15)
Lt =f y d,122 f YidA, 133 = III + 122

A I

Equations of Motion

Referring to the body set of axes el one can define the vector F of the resultant
shear stresses 1 and F2 and the axial stress resultant F3. Similarly, one may define the
couple stress vector M consisting of the bending moments MI and M2 and the torque M3.
Explicitly we have

F = Fie, and M = M1 . (16)

The weil known dynamic equilibrium of the rod can be expressed by the equations
of the balance of linear momentum
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F' +f~b(17)

and of the balance of angular momentum

M' +x' xF+m=A (18)

wherein f and m represent distributed force and moment acting on the rod. The scalar
components of these equations can be referred to the body set of axes. For this purpose one
needs to express all vector quantities in terms of unit vectors ej and use (9)--10). Then
(17) becomes

F1 + k2F-k 3 F 2+'= pAk• li (19a)

F2 + k3F- k1F3+ f• pA, A l'j (19b)

F + F k1 Fj-k I+ f' = pA L Is (19c)

while (18) assumes the form

'/ y

1 + k2M 3 - k3M 2 - (1+e)F 2 + mI = PI 1(W1 + ••W3) (20a)

M2 + k3M, -k 1M 3 - (1+e)F 1 + m, = p12(w2 + WtW3) (20b)

M3 + ktM2 - k2MI + m3 p[J413 + (12- I1 •I)W•J (20c)

where 11 -= , I' -- 122 and I = J33 = 11 + I1. The superscript y on the components of f

and m denote the components of these vectors in the body reference frame.

To express the equations of motion in the inertial frame we introduce the
components of the stress resultants in that frame. Thus

lij Fj Mz = lMj (21a,b)

Then (19) becomes

Fi +f= pAkI (22)

and (20) assumes the form
M:'--(I+e)F2 + mz , P(Irj lj r + Epj Isj Izg wswr) (23a)

M2'-(I+e)Fl + mz = P(Irj 12j Wr + egrj Isj 12g w5wr) (23b)
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M3 + M3m] = p(Irjl 3 j 6)r + 'grj Is 3g WsWr) (23c)

Either of the set of equations (19)-(20) or (22)-(23) can be considered as the governing
differential equations of motion. These equations will have to be supplemented with
constitutive relations that define resultant axial stress F3 and the resultant bending and
twisting couples M1, M2 , M3 in terms of the axial strain e and curvatures k1 , k2, k3. In the
next section we consider the derivation of these constitutive relations.

Constitutive Relations

We assume that the motion of the elastic rod is equivalent to the stationarity of the
Hamiltonian H which is defined by

t 2 82

H[lij (jp), xi, el = f f .edsdt +

ti Si

t 2  S2 S2 t2

t Si Sl t1

S2 t2

f P ds (24)
91 ti

where .ais the action density function

.•'= IpA *kixi + ½p (I w +12 2 + J ) - w (e, k2) +

A1il, (1+e) - x' ] + fx xI + my vi (25)
I -t . -2

and Pi, Mir and P', Mi are the applied forces and moments at ends s, and 32 respectively.
-12 -12

Also vi' and wi' are the initial and final linear and angular velocities. The strain energy

function w depends upon the kinematical variables e and ki. The precise nature of this
dependence is the constitutive relations that we seek and is a consequence of the
stationarity of H. The functions A1 are the LagInge multipliers that allow the constraints
(12) to be incorporated within the Hamiltonian. As a result xt and lj can be regarded as
independent variables. Additionally the constraint (12) implies the definition (2)-(3) for
the strain e and hence in (24) e can also be viewed as an independent variable. To see this
we need to note that if each side of (12) is multiplied by itself we obtain x' x =

(t+e)2ltalts - (1+e)2 which is restatement of (2)-(3). The terms ?I xi and mi Y in (25)

represent the density of the potential of the applied forces and moments on the rod. As
stated in (5) the angles W are the rotations from ER to e•.
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With these preliiminaries we note that the Euler equation corresponding variations
6xi is simply Ai + = pA 1, which when compared with (22) reveals that A1 = F'. Next

considering the variations with respect to e we obtain

8-e Fi l 3 - F 3  (26)

which is the constitutive relationship determining the axial force F3 as the derivative of
strain energy with respect to axial strain e.

We now turn to the Euler equation corresponding to the variation 6ýpl. For this
purpose we note that lij, wi and ki depend on Vj. For orientation angles of the cross
section we select the sequence of body rotations first 82e2, second 03e 3 and the third Ole,
with 01 = V1. In this sequence the last rotation is through V, with respect to which
variation is sought. The matrix I of the direction cosines is given by

0 C2C3 -CIC2S3+$1S2 SIC 2 S 3 +0CIS 2 1
I= B (92)C(P3)A( i) S3 C0C3 -S C3  (27)

-SC CI S 2S3 + SIC2 -SiS 2S3 + CIC2

where

Ct = Coso t, St = Sin at (28)

1 0 0 cosG 0 sine]

A($)= 0 cosO --sinf B(8) 0 1 0
0 sin$ cos@ --sinO 0 cosi-

cosa -sin# 01

C(8)= sine cosD 0O (29)

0 0 1

Subsequently, we find from (7) and (8)

w- 19 S3 + 01, (2t2 CIC3 + 03 St, U3-=2 SIC$ + 03CI (30)

k S I I I Ikl1 =92 53 + 91, k2=92l C1Ca + 8| S1, k3=-92 SjCI + 9:01 (31)
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From (24) we have

f8~N~k9 OW 8k 1
1  ao~0~l.- ••k-qt•.l + lý)Fi Lo~l W, m

= •- [pIi,,-•] - PI2W, • -plJ (32)

Noting that 01 B V, we have from (30) 8WI/8•i = 1, 9W2/81,I = )3 , w3/0• 1  -W2.
Also from (31) &t/L9V = 0, 8Jk2/ 8• = k3, 8k0/8 1 = -k 2 and from (27) 0/Ol = -112.
Using these results and the inverse of (21a), (32) becomes

(•-) + k4ay-k4y---(1+e)F2 + myl = pIi(411 + W2W3) (33)

In exactly the same manner one can proceed o determine the Euler equation for a
variation 6923. Now the consecutive sequence of body rotations #3e3 , P1e, and 82e2 is
selected with 0 92. Without going into details one obtains

(kd)y + k,--kr 3-(l+e)Fl + W2=pI2C&2+ wIw3) (34)

For variation of V3 we adopt the consecutive sequence of body rotations O1e,, 02e3
with 03 = V3. The matrix of direction cosines is

C2C3 -C2SS 1
I=A(0)B(2)C(3)=I SIS2Cs + C0S3 -SS 2S3+C0C 3 -SI02 (35)

with angular velocities of the cross section and the curvatures given by

Wl = OI0 2C3 + 02S3, 92 = 02C,- 9,02S3, Ws = 03 + OIS2 (36)

k, = O;C2C3 + e Ss, k2 = 0 -3 jC2S$, k3 = 03 + OIS2 (37)

For this case l10 does not depend on 03 and hence the Euler variational equation assumes
the form

+k 8 + m P(J&1:+ (I2-I)ww] (38)3••)' + krffl' - kryrq + m, =p., (2I)I2

The specified boundary conditions at s = s1, 82 must be consistent with

[(Pt- Fy )ixt + (?It - Mi)6•0i] s =-0 (39)

for arbitrary and independent variations 6xt and 64ot. Similar restrictions are imposed on
initial and final data, i.e.
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{ pA(xt - V j) ht + p[I 1(wi -6) 6p

+ 12(w2 - W2) 6P2 + J(W3 - D3)64 31 = 0 (40)
ti

Comparison of equations (33), (34) and (38) with equations (20a,b,c) respectively,
establishes the constitutive relations

S- i i = 1,2,3 (41)

A STRAIN ENERGY FUNCTION

In order to gain an insight into the nature of the strain energy function we consider the
strain of the lines and angles in the cross section of the rod. For this purpose we invoke the
Kirchhoff hypothesis which assumes that the plane cross sections of rod that are normal to
the axial direction in the unstrained state remain normal to the strained axial direction
during deformation. Therefore the position vector to a material point in the cross-section
before and after deformation can be given by

R = X(s) + yiE. 1(s) + y2E2(s) (42)
and

r = x(s) + a(s)[yiel(s) + y2e2(s)] 
(43)

respectively. The parameter a(s) is to be fixed by enforcing traction-free boundary
conditions on the lateral surface o the rod.

Using the concept of extensional strains for stretching of line elements and distortion of
angles between perpendicular lines as shear strains (Wempner, 1991), we define
components of strain by

eij = (gi "j -G " Gj) (44)

where

Or

93 = W-3 a'y=e1 + a'y2eI + aylel + ay2e2 + (1+e)e, (45)

G01= 77=yZ1, G2 = + y2+ = (46

G3 = OR =yIZ. + Y2Z; + F13(46
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Using (8) we can establish

et • ej = eij.ku (47)

Ei • Ej = eijoKa (48)

where Ki is the curvatures and twist in the unstrained state. Therefore (9) yields as the
strain components

e11 = e22 = 4(a• - 1), C12 = 0

C 3 = ½[o(a'yi - aTY2k) + y 2K3]

C23 = ½a(a'Y2 + aY2k3) -yiKs]

E= e + +e2 - yt[(l+e)ak2 - K21 + Y2[(l+e)ak, - K1] - yIy 2(a 2klk2 - KIK 2) +

+y2[a 2 + a2(k + k2)- K2- K2)

+ *y2[a'2 + a2(k• + k )- K2-K ) (49)

For a linear isotropic elastic material the non-zero stress components per unit strained
area are

tll = (A + G)(a2- 1) + AeS3, 02= 0

0r22 = (A + G)(a2 - 1) + AC33 , o,23 =G 2

oss =A(a 2 - 1) + (A + 2G)eCS, on = 2Ge31  (50)

where A and G are Lame's constant and the shear modulus, respectively. The traction per
unit undeformed are is then given by

t3 = o31gi (51)

One can define the axial stress resultant F3 by

F3 = f t x e3 dA -
A

- A (l+e) [(A+2G)(e+fe2) + A(a2 - 1)]

+ (A+2G) [IJ(1 + e)akt - Kdak, + 12[(1 + e)ak2 - K2]ak:

+ 1I(1 + e)(a" + a2k2- K + a2k3 - K2)

+k+ e2(a2, ak2- K2,+ a2k2 - K3) (52)
2 2 3 3
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Similarly we have

MI = f7ay2t. e3 dA = a(A+2G)Ii[(1 + e)akk - K1] (1 + e)
I

+ Ila2k,[A(a2 - 1) + (A + 2G)(e + ½e2)] (33)

M2 = -f faYt 3 e3 dA = 4(A+2G)I4[(l + e)ak2 - K2] (1 + e)
A

+ 12cAk2[A(a2 - 1) + (A + 2G)(e + *e2)] (54)

M 3 = -fc(y-t 3 • e3 - y2t 3 • e,)dA = JGa2(a2ks - K3)

+ Ja2k4[A(\a2- 1) + (A + 2G)(e + *e2)] (55)

One may note that the integrability conditions

am am am a I M = M(56)

are satisfied. Hence existence of a strain energy function is assured and by integration we
have

W = A- 2  i2(+e+ 2 ) - AA(1-a2)(e+ie 2)

+AIia2(a2--)jl + (A+2G)I iki [l+2!+4akl-(l+e)K 1]

+AI 2 a -a2-l)j? + (A+2G)I 2 ak2 [1+24+4ak<-(l+e)K2]

+ 1+e)2 l,1(a'2 + a2ký,-K,) + 12(a' 2 + a201-K2)

A+2G 2(k..K + 1 )2(57)

+AJa2(Ca2--l) + 2 Gj-(e--e2)(aki-K3)+ 2rGJa(ak--K 3)5

For an initially straight rod Ki should be set equal to zero. The above form of W reflects
material isotropy, i.e. W(e,kI, k2, ks) = W(e, k2, ki, k2), provided that It = 12.
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We note that positive curvatures imply positive bending moments and conversely negative
curvatures imply negative bending moments provided that e>(-1+1/"") for a = 1. This
shows that equations (53) have a limited range of validity if the sense correspondence
between moments and curvatures is to be retained. We also note the second order coupling
between the squares of the curvatures and the axial strain e in (52), which implies that
axial force can be generated by bending or twist only.

The parameter a(s) depends on the boundary conditions applied at the lateral surface of
the rod. If the lateral surface is fixed, then a(s) = 1. For zero tractions on the lateral
surface, a condition appropriate for thin flexible rods is adopted according to which the
average of al and a 22 over the cross-section should vanish, i.e.

f adA = f a22dA =0 (58)

The above condition reduces to

H(a,ki,e) =-a'J + a2I2+12 2+ Jk 2 +Aa2(Iiki+ 12 + + A

-(IK + I2K2 + JK3) + 2Ae(1 + *e) - 0 (59)

This equation should be interpreted as a differential equation for a(s) when ki and e are
known. To achieve this (52) is solved in an iterative procedure in which at every step ki
and e are known. We begin by writing (52) as Iim H(i.a 1, kn, e.) = 0 with n = 0, 1, 2, 3,

n-45

... For the first iteration (n=0), eo = 0, k9 = Ki, at = 1, and the six equations (15) - (16)

after using (22), (33) and (57) contain only six unknown quantities F, F2, el and k! when
the externally applied forces and moments are prescribed. Solution of this set of equations
enables one to use k! in the curvature-orientation angle relations such as (31) to determine
the latter i.e. 8j. Now lij (&k) are known and one proceeds to determine oj from (21) and
xi from (9) using the appropriate boundary conditions. The solution for the first iteration
is complete. One enters (52) with el and k' and computes a2 and the iteration proceeds.
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