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1. INTRODUCTION

In performing any gun interior ballistic calculations, the buming rate or the rate of regression of the
burning propeliant is one of the most significant input parameters (Haukland and Bumett 1972). The
buming rate is used in interior ballistics computer codes with the propellant density and the geometry of
the propellant grains to compute the mass generation rate. The mass generation rate is integrated to
determine the instantaneous mass of propellant bumed. Using an equation of state to calculate the average
pressure in the gun chamber and a pressure gradient equation, the projectile base pressure is calculated.
With the projectile base pressure known, the acceleration, velocity, and travel of the projectile can be

determined.

The closed bomb, which is most frequently used to generate experimental bumning rate data for gun
propellants, is a closed vessel in which propellant is bumed and the resulting pressure is monitored as a
function of time. Theoretically, the burning rate at all pressures, up to the maximum pressure attained in
the bomb, can be determined. Propellants have, in general, a monotomically increasing buming rate as
a function of pressure. When the logarithms of the buming rates are plotied vs. the logarithms of the
pressures, one obtains straight-line segments which frequently have distinctly different slopes. This

behavior is difficult to explain with either flamespread or variable thermodynamics.

The work described in this report was conducted to establish a database for propellant grains
containing only nitrocellulose (plus the residual solvents necessarily remaining from the processing). It
was also hoped to determine if the additives frequently used in gun propellants, such as basic lead
carbonate, diphenyl amine, or potassium sulfate, caused or affected the changes in the slopes of the
buming rate curves. The work was planned to include various nitrogen levels of nitrocellulose (NC)
without any additives and at least one sample with basic lead carbonate for comparison. Both closed
bomb and strand burning rate tests were included in the test program. Production, tests, and analysis were
performed at the Naval Ordnance Station, Indian Head, MD, between 1979 and 1981.

2. EXPERIMENTAL APPROACH
The three NC nitrogen levels selected for evaluation were those most frequently used in conventional

gun propellants, nominally, 12.0, 12.6, and 13.15%. The actual levels of the NC used for the propellant

samples were 12.02, 12.65, and 13.11%. Two grain configurations, zero- and seven-perforation right




circular cylinders, were selected for the closed bomb testing, and solid strands were used for the strand
buming rate tests. In addition to the "pure” NC samples, an additional 12.65% nitrogen sample was made
with 0.85% of basic lead carbonate, which was processed in the seven-perforation right circular cylinder

granulation.

The propellant samples were manufactured using the conventional processing techniques of mixing
with solvent in a horizontal, sigma-blade mixer, extrusion, and cutting to length. All samples for each
nitrogen level were processed using the same batch of NC and the same ratios and levels of solvents; the
solvent levels did vary from one nitrogen level to another. The grains and strands were dried very slowly
in order to minimize shrinkage, maximize straightness, and produce a relatively nonporous, smooth surface

texture.

The zero-perforation grains were extruded to a nominal 0.318 cm diameter and cut to a length of
0.64 cm; the seven-perforation grains had nominal dimensions of 0.64 cm in diameter and 1.3 cm in
length, and had perforations diametcrs of 0.038 cm. The strands were nominally 0.64 cm in diameter.
The actual grain dimensions and residual solvent levels are given in Table 1. It should be noted that the
12.02% nitrogen level samples were not as smooth as the samples of the two other nitrogen levels and
had some uncolloided NC dispersed throughout the grains. It is felt that the surface area definition for
solvent-processed extruded grains, because of shrinkage and rough surfaces, is not as correct as for

solventless extruded propellant grains, but bumning rate trends can probably be captured.

The thermodynamic properties of the propellants used ir the data reduction for the closed bomb tests
were calculated with the Blake code (Freedman 1974) (Table 1). Values for the 0.25 g/cm3 loading

density were chosen. No variable thermodynamic properties were used in the calculations.

The igniter system for the closed bomb tests consisted of an M100 match boosted with 1.1 g of
Dupont 700x. A series of five shots was conducted for each grain type in the 182.4-cm> closed bomb at
ambient temperature. The first two firings were at reduced charge weights to determine a charge weight
which will give a nominal peak pressure of 310 MPa. The pressure data were digitized at 25-ps intervals
and stored on magnetic tape. Buming rates were then computed from the pressure history with two
different programs. The first, CIBOM (Wynne 1976), is a program which computes the time rate of
change of mass bumed (dm/dt) from the time rate of change of pressure (dP/di). Using least squares,

dP/dt is obtained by fitting the pressure data to a cubic polynomial and evaluating the differentiated




"IMBUOGIND PRI| SIS8Q %CR')

10 sT0 18ST°1 0820°1 695T | 8T so't T 1T ¥'¥6 8910 (0 00 vet'l £790 b

Pd-L w09
- - - - - - 'l 80'¢ 61 L't6 - - - - - spung 619
It0 sTo £09T'1 sveo'l $8ETT | €EV'T &7l 8T 8l 1'v6 - - - 0190 0tE0 suun

P40 619

1Pa7] wonIN %10°TH

00 fv41) 6svTl | ¥6660 | tzrer | esL'z | st SL0 Ll S6'46 $91°0 ofne | 6200 08zl 2690 sumn
“Had-L «865

£¥£0 4] SISTY | LoTol ] Lioer | 889 | €Lt JAR A L'¥6 8910 9500 1500 T £99°0 swun
gL 819
— - - - - - 80 | ZET Lt 6'€6 - - - - - spimig 8i9

£PE0 sT0 goszt | zuioy | eszver | o' | s 80'1 sl 66 - - - 0290 | sico swmn
"Had0 009

19a] w3oNIN %5971

ED sT0 £8€T'1 | 97660 | szzvz | 110e | o1z 00'0 91 £96 $91°0 900 1900 el $€9°0 swsn
‘Pag-L L6s
- - — - - - 05E 000 €1 256 - - — - - SpURIg 665

weo $T0 el | 8100t | eseez | vie'z | o082 000 ol 96 - - - w0 | szeo swan
‘Bad-0 665

1PAY] wBosIN %1€l

O4-8/1w2) wof8) ® oD (%) (%) (%) (%) (wo) (wo) (w) (wo) (up)

WN{oA isudp | wwund g w dun | sopg | joyoop | sswm ON uNUD pad pad y8ur] nq Knauoan ‘ON YN
unsuod Suipeor] awnjoa Jwmo iy 14U ¢ ] “piad Jauw 1300
® Ayowded ) -0 uaImInq » J»
"°H Whn0 3p00 AV 1A Pmud | wa p wa

sojdures weradaid reluowuadxyg 10§ SanfeA [ J[qeL




polynomial. The second, FRBOM (Robbins and Horst 1976), computes dm/dt by calculating the mass
at a pressure and the mass at some higher pressure and equating dm/dt to the change in the calculated
mass bumed in an integral number of sample time intervals (Am/At). Both programs fit, by a least squares
analysis, the bum rate-pressure data to a power law in specified pressure ranges.

The strand bumer tests were conducted at ten pressures, ranging from 3.5 to 55.2 MPa. Testing was
limited by the capability of the existing strand bumer facility to a maximum pressure of 55.2 MPa. An
average of three or four shots at each pressure was used to determine the buming rate.

3. RESULTS

The buming rate descriptions, coefficient and exponent, for straight-line segments are given in Table 2.
Buming rates calculated with CIBOM and FRBOM differ by approximately 0.5%. The plots cannot be
distinguished from each other when overlaid, except that one is smoother because of smoothing techniques
intrinsic to the separate programs (Figure 1). The difference in tail-off is caused by different slivering
routines of the programs.
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Figure 1. Comparison of Burning Rates Determined by CIBOM and FRBOM.
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The variation from shot to shot (Figure 2) was determined to be approximately 1% at the higher
pressure range (207 MPa) and 2% at the lower pressure range (28 MPa) as calculated from values of the
coefficient (a) and exponent (n) in Table 2.
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Note: (12.65% Nitrogen; Zero-Perforation)

Figure 2. Shot-to-Shot Variations in Bumning Rate Curves.

3.1 Buming Rate as a Function of NC Nitrogen Content. A composite of representative burning rate
curves for the zero- and seven-perforation grains for the three nitrogen levels are given in Figure 3. Select

comparisons are given in Figures 3a-e. As would be expected, for both grain geometries, the buming
rates are higher for the higher nitrogen level grains. The curves on each figure appear paraliel, though
the high-pressure portions of the 12.02% NC curves have a slightly larger burning rate exponent than the
higher nitrogen NC curves (0.89-0.83 for the zero-perforation and 0.84-0.64 for the seven-perforation

grains).

It is evident that the curves of all three nitrogen levels have slope breaks (Figures 3a and 3b) and at
least three separate sections. Further, for each grain geometry the slope breaks occur in nearly the same
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pressure range for all nitrogen levels. For the zero-perforation grains, the first major break occurs around
20 MPa and the second major break occurs at 35 to 50 MPa with some suggestion that the second one
occurs at the lower end of the range for the higher nitrogen levels. For the seven-perforation grains, the
breaks are at 21 to 28 MPa and at 34 to 70 MPa. However, the break in the 12.02% nitrogen level tends
to be much higher for the seven-perforation grains (up to 90 MPa) than for the zero-perforation grains (up
to 48 MPa).

The humps at high pressure for the seven-perforation grains are caused by smoothing through the
pressure-time curve at slivering with a cubic polynomial. Even though the program (FRBOM) has an
exact solution for the surface function routine, the cubic equation cannot adjust itself well enough to

compensate for the discontinuous dp/dt at that point.

The parallelism of the different segments of the burning rate vs. pressure curve would suggest that
rationalization of the buming rates, as proposed by Irish (1979) and supported by data of Riefler (Riefler
and Lowery 1974) and Grollman (Grollman and Nelson 1977) is a viable technique which should allow
easy ranking of propellants with respect to their buming rates. In Table 3, three exponents have been
chosen and the corresponding coefficients have been calculated for the seven-perforation propellant. The
ranking according to nitrogen level is evident with a higher coefficient for higher nitrogen levels. In
Figure 4, the coefficients for the three nitrogen levels and the two grain geometries, assuming a burning
rate exponent of 0.8, are plotted vs. adiabatic flame temperature (which is proportional to nitrogen level
with minor perturbations due to volatile levels). This figure shows the usefulness of having one number

to characterize a whole section of a buming rate curve.

3.2 Comparison of Zero- and Seven-Perforation Grain Buming Rates. The bumning rate data for zero-

and seven-perforation grains are compared for the three nitrogen levels in Figures 3c-e. All seven-
perforation buming rates above 21 MPa are higher than those of the corresponding zero-perforation grains
of the same nitrogen level, but the rates merge at about 210 MPa just before slivering occurs. This would
suggest that, since the volatile levels did not vary greatly for each nitrogen level and there was no pattern
of difference in volatile levels in the two grain geometries, the elevation of the buming rate for the

seven-perforation grains is a function of the perforations.

If the apparent buming rate augmentation is a function of the perforations, a higher mass generation

rate inside the perforations is suggested as the cause. This, in turn, suggests a higher pressure inside the
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Figure 4. Buming Rate Coefficient vs. Flame Temperature.
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perforations or an increase in the surface area by expansion or splitting. (There is evidence, however, that
grains do not split [Naval Ordnance Station 1979a, 1979b; Robbins and Bingham 1981)].) This typothesis
should be studied with a computer model to determine what pressure differential must be maintained in

that pressure regime to cause the apparent enhancement in buming rate.

This geometry effect was not noted in a similar study with NOSOL, an easily ignited double-base
propellant (Mitchell and Horst 1976). The data reduction technique and closed bomb collection procedure
for the NOSOL and pure NC samples were the same, but the NOSOL perforations were two to three times

larger than those of the pure NC samples.

3.3 Strand Bumer Data. The strand buming data are given in Table 4 and plotted in Figure 5. The
corresponding zero-perforation grain closed bomb bumning rates are provided in Figure 5. The strand data
have not been corrected for their total volatile content. Corrected data would be slightly higher on the
graphs since all solvent levels are higher for the strands than for the grains. Notwithstanding uncorrected
strand data, it is considered noteworthy that the strand data exhibit the same trends with respect to nitrogen

content (including characteristic slope breaks) as the closed bomb data.

Tl strand buming rate data at low pressures are lower than that extrapolated from closed bomb data
using mid-pressure ranges. The technique of extrapolation closed bomb data from mid-pressure range to
low pressures is often the procedure used in determining the bumning rate input for two-phase flow interior
ballistics codes such as NOVA (Gough 1977) where flamespread is modeled. It has been assumed that
the first high slope section between 5 and 20 MPa is a combination of flamespread and the intrinsic
buming rate of the propellant and, therefore, should not be used in a flamespread model. The low
pressure bumning rate data obtained from the strand burner tests suggest that extrapolation of closed bomb
data to low pressures may, however, involve incorrect assumptions about the influence of flamespread.
Simulations of the 5-inch, 54-caliber gun system were made with the NOVA code to illustrate the effect
of the low-pressure buming rate data. Two computations were made with only one difference: one
extrapolated the closed bomb mid-pressure buming rate data to low pressures (as has been done
traditionally) and the other used the low-pressure buming rate data from the closed bomb. The resulting
pressure-time curves for two gauge locations (case base and case mouth) and the associated pressure
diffcrence (AP) curve are compared in Figure 6. The use of the actual low pressure data has the effect

of reducing the magnitude of the calculated pressure difference and causing a longer ignition delay.
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Table 4. Strand Buming Test Data

Pressure Buming rates at 25° C Average buming rates
(MPa) (cm/s) (cm/s)
Mix 619; 12.02% Nitrogen NC
345 0.292, 0.358, 0.300 0.318
6.89 0.569, 0.569, 0.589 0.577
10.34 %, 0.759, *, 0.826 0.792
13.79 0.925, 0.927, 1.036, 1.156 1.011
20.68 1.400, %, 1.435, 1.278 1.372
27.58 1.748, 1.524, 1.692, 1.699 1.666
34.47 2.670, 2.261, 2.479, 2.583 2.49
41.37 2.101, 2.182, 1.986, 2.139 2.103
48.26 2.642, 2.250, 2.291, 2.162 2.337
55.16 2.344, 3.078, 3.124, 2.731 2.819
Mix 618; 12.65% Nitrogen N
3.45 0.310, 0.315, 0.315 0.312
6.89 0.640, 0.612, 0.617 0.622
10.34 0.866, 0.848, 0.907 0.872
13.79 1.100, 1.107, 1.107 1.105
20.68 1.565, 1.600, 1.575 1.580
27.58 1.872, 1.887, 1.902 1.887
34.47 2.146, 2.159, 2.106 2.136
41.37 2.377, 2.334, 2.375 2.362
48.26 2.670, 2.647, 2.662 2.659
55.16 3.005, 3.028, 3.094 3.043
Mix 599; 13.11% Nitrogen NC
3.45 0.427, 0.439, 0409, 0417 0.424
6.89 0.813, 0.836, 0.846 0.831
10.34 1.128, 1.135, 1.133 1.133
13.79 1.461, 1.461, 1.473 1.466
20.68 1.925, 2.007, 1.979 1.971
27.58 2,405, 2.492, 2.423 2.441
34.47 2.835, 3.272, 2.880 2.995
41.37 3.213, 3.368, 3.203 3.261
48.26 4.115, 4.158, 4.069 4.115
55.16 4234, 4.216, 4.257 4237

8 Test strand flashed.
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Figure 5. Comparison of Buming Rates of Strands and Zero-Perforation Grains.

4. CONCLUSIONS AND RECOMMENDATIONS
The following conclusions resulted from the study:

(1) A database of bum rate equations has been presented for pure NC grains for three nitration levels
and for NC with a basic lead carbonate additive for a 12.65% nitrogen level.

(2) The buming rate plots for pure NC show the characteristic slope changes of propellants with

additives.

(3) The data suggest an enhanced buming rate associated with the presence of perforations in the

grain.

18




Pressure-Time for Two Points

400['
o Extrapolated valuz below 27 .6 MPa
=== Extrapolated vaiue below 27.6 MPa
—— = Actusl value below 276 MPa
——.— Actuadl value below 27 .6 MPa

300

Gas prossuro {MPa)
»
s

100+

o - Y 3 e
0 4 8 12 16 20
Time (ms)
Pressure Difference
100(

Extrapolated values below 27.6 MPa
75r — = Actual! values below 27.6 MPs
501 " ||

a

! 4\

| X
25 H
1
\)

i

]

!

[}

H v A v Lz 2~ ~
(]
t
Y

Prossure dilforenco (MPa)

0
¥
-25
-50k-
~75. 1 1 ! 2 :
[¢] 4 8 12 16 20
Time (ms)

Figure 6. Nova Code Simulations of 5-inch, 54-Caliber Pressure-Time and Pressure Difference
Curves.

19




(4) Two data reduction computer programs were run on the same data with no significant difference

noted in calculated bumn rates between the programs.

(5) The low-pressure strand buming rate data agree with the low-pressure closed bomb burning rate

data and suggest that the low-pressure section of the closed bomb buming rate curve is significant.

(6) The maximum difference in calculated buming rates from one closed bomb firing to another of

the same propellant at the same loading density was in the order of 2%.

The following recommendations are offered:

(1) In a continuation of the study, high-pressure strand buming data should be obtained and the

effects of solvent level should be studied.

(2) The use of measured low pressure bum rate data is recommended to provide improved simulation

of the flamespread event with two phase flow interior ballistic codes.
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