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A. Statement of problem studied.

The purpose of this paper is to report some of our recent results on nonlinear filtering
which appeared only in preprint form [Ya]. We have constructed a new class of filters
explicitly which includes both Kalman-Bucy filters and Benes filters as special cases.

The filtering problem considered here is based on the following signal observation
model:

{dx(t) = f(z(t))dt + g(x(t))dv(t) (O) = zo

(1) dy(t) = h(x(t))dt + dw(t) Y(O) = 0

in which z, v, Y and w, are, respectively, R", R', RWI and RW' valued processes, and v
and w have components which are independent, standard Brownian process. We further
assume that n = p, f, h are C°O smooth, and that g is an orthogonal matrix. We will refer
to X(t) as the state of the system at time t and y(t) as the observation at time t.

Let p(t, z) denote the conditional probability density of the state given the observation
{y(s);0 _< s < t}. It is well-known that p(t,z) is given by normalizing a function, a(t,x),
which satisfies the following Duncan-Mortensen-Zakai equation:

(2) do(t, x) = Loo(t, x)dt + Ljo(t, z)dy(t), o(O, x) =

where

t1 n _2 n a=

and for i = 1,... , m, Li is the zero degree differential operator of multiplication by hi. ao
is the probability density of the initial point, zo.

Equation (2) is a stochastic partial differential equation. In real applications, we are
interested in constructing robust state estimators from observed sample paths with some
property of robustness. Davis studied this problem and proposed some robust algorithms.
In our case, his basic idea reduces to defining a new unnormalized density

t(t, x) = exp- h,(x)yi,(t) a(t, X).
/ 1I

It is easy to show that C(t, z) satisfies the following time varying partial differential equation

(3) = Lot(t, z) +

2 y E 11(t)yij(t)[[L,,O ,L1(tz

i,jff1

~(0, Z) = a00

where [Lo, Li] denotes the Lie bracket of Lo and Li.
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Definition. The estimation algebra E of a filtering problem (1), is defined to be the Lie
algebra generated by {Lo, LI,... ,L,,}, or E = (Lo, LI,... ,Lm)L.A.

If in addition there exists a potential function 0 such that f, = j for all 1 < i < n,
then the estimation algebra is called exact.

The estimation algebra is said to be with maximal rank if zi + ci is in E for all
1 < i < n where ci is a constant.

The problem is to solve explicitly equation (3). In particular, we want to construct
all possible finite dimensional filters via Wei-Norman approach. This includes solving the
Brockett problem on classification of finite dimensional estimation algebras.

B. Summary of the most important results.

Recently Tan, Wong and the present author [T-W-Y 1,2] have examined the properties
of finite dimensional estimation algebras and the Wei-Norman approach in detail. There
a class of filtering systems having the property that the drift-term f of the state evolution
equation is a gradient vector field was considered. In [Wo 2], the concept of fl is introduced,
which is defined as the n x n matrix whose (i,j)-entry is i - •L," In view of Poincare
lemma, f is a gradient vector field if and only if (I = 0. In 'ra1, ], we consider a more
general class of filtering systems having the property that • - • are constants for all
i, j i.e. 11 is a skew symmetric constant matrix.

Theorem 1. P-PA * c - are constants for all i and j if and only if (ft,...

(V,... ,, ) + (iu,"", O- ) where 1,... ,4 are polynomials of degree one and V is a
C' function.

Notice that in the statement of Theorem 1, if V =_ 0 on R", then we are in the situation
of the Kalman-Buchy filtering system; while if (1,... , 4) -- 0, then we have the Bene's
filtering system as special case.

Define
DA-_ z fi

and
afI fi2 + h7= f+

Theorem 2. Let E be a finite dimensional estimation algebra of (1) satisfying a-
cii where cii are constant for all 1 < i, . < n. then h1,... h. are polynomials of degree at
most one.

Theorem 3. Let F(zl,..., z.) be a C' function on R". Suppose that there exists a path
C: R -- R" and 6 > 0 such that lrn IIC(t)II = o and rlino sup(C(t)) F = -00, where

B§(C(t)) = {z E R" 1: - C(t)II < 6). then there are no Coo functions fl,f2,... ,f, on
R" satisfying the equation

"nof, n5
+z +f,2= F.
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Corollary. Let F(zi,... , z,) be a polynomial on R.. Suppose that there exists a poly-
nomial path C : R --+ R" such that Bin llC(t)II = oo and imn F o (t) = -oo. Then
there is no CI functions f,; f2,... ,fn on R" satisfying the equation

"n 8A

Definition. Let E be an estimation algebra of (1) satisfying cii - - where cii

are constants for all 1 <_ i, j S n. If E is finite dimensional, then the matrix

H = [Vhl,Vh 2,... ,Vhm]

is a constant matrix in view of Theorem 2. H is called the observation matrix of (1).
The following result provides a simple characterization of when the dimension of an

estimation algebra is finite dimensional.

Theorem 4. Let E be an estimation algebra of (1) satisfying ah - = = c,3 where cii

are constants for all 1 _5 i, j _< n.

(i) if q is a polynomial of degree at most two, then E is finite dimensional and has a basis
consisting of E0 = L 0 , differential operators E 1,... ,E. (for some p) of the form

E aijDj + Pi
j3=

where ai,'s are constants and j#i's are affine in z, and zero degree differential operators
Ep,+,... ,Eq, I (form some q > p) where Ei's are afine in z for p+1 < i < q. Moreover

the quadratic part of rl - • h? is positive semi-definite.

(ii) Conversely if E is finite dimensional, then hl,... , h. are anie in z i.e. the observation
matrix is a constant matrix. Furthermore if the observation matrix has rank n (in
particular m _ n), then q is a polynomial of degree at most two.

Theorem 5. Let E be an estimation algebra of (1) satisfying Z., - ps = cij where cii
are constants for all 1 _, j :_ n. Suppose m > n and the observation matrix is a constant
matrix with full rank. If E is finite dimensional, then it is of dimension 2n + 2 with basis
given by 1, ,,, ... ,z., Di,... ,Dn and Lo.

Finally the following theorem describes the finite dimensional filters explicitly.

Theorem 6. Let E be an estimation algebra of (1) satisfying S - ;, = cj where cij

are constants for all 1 : i, j _5 n. Suppose E is finite dimensional, then q7 = a 0jj,3jZ +

Sbixi + d where ai,, bi and d are constants for all 1 <,j _ n and the observation

matrix is a constant matrix. Suppose further that m >_ n and the observation matrix has
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full rank. Then the robust Duncan-Mortensen-Zakai equation (3) has a solution for all

t >_ 0 of the form:

(4) #(t, X) -= T(t)er.(t)x. ... rl(t)zt s.(I)Dn... eei(0De*Louo

where T(t), rl(t),..., r.(t),.s(t),... , s,(t) satisfy the following ordinary differential equa-
tion (5), (6) and (7). For 1 < i < n

(5) -L(t) = r,(t) + F "s(t)cj, + F hki.(t)
iffl k=1

where hk(t) - hkjij + ek, for 1 <5k 5 m; hkj and ek are constants.
j=1

For I n<j _ n
drj. (t)

(6) dt(t) i(t)ij

and

(7) d-(t) = I -r(t) 32(t) c?,- ,
""---1 i 1 --

+ E S,(t)Sk(t) Ecjcjk+-•a,
1<i<&<ft (j=

n n

- ,(t)ci) + rs,(_
ij=2 = i=I

J=I k=1
+ j yt)(t ,hk

The proofs of these theorems are presented in [Ya 3].
Let n be the dimension of the state space. It turns out that all finite dimensional

estimation algebras with nontrivial observation are automatically exact with maximal rank
if n = 1. We are able to classify all finite dimensional estimation algebras with maximal
rank if the dimension of the state space is at most two. Theorem 8 below is the most
important step towards the complete solution of the famous Brockett problem. The major
difference between our Theorem 7 and the corresponding theorem in Tam-Wong-Yau [T-
W-Y 1, 2] is that we are able to remove the exactness assumption in their Theorem. The
novelty of the problem is that there is no assumption on the drift term of the nonlinear
filtering system. However, in the course of this proof of Theorem 8, we show that the drift
term cannot be very arbitrary if the estimation algebra is finite dimensional. In fact we
show that the drift term must be linear vector field plus gradient vector field.
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Theorem 7. Suppose that the state space of the filtering system (1) is of dimension one.
If the estimation algebra E is finite dimensional, then either

(i) E is a real vector space of dimension 4 with basis given by 1, z, D = ' - f and
Le = ½(D2 - Y) or

(ii) E is a real vector space of dimension 2 with basis given by 1 and L0 = 1(D2 - i) or

(iii) E is a real vector space of dimension 1 with basis given by L0 = (D -

Theorem 8. Suppose that the state space of the filtering system (1) is of dimension two.
If E is the finite dimensional estimation algebra E with maximal rank, then E is a real
Lie algebra of dimension 6 with basis given by 1, zX, Z2, DI, D2 and L0 .

The complete proof of this theorem is in [Ch-Ya].
It is quite easy for people to think that the Wei-Norman approach is a way to solve

P.D.E. (3) by means of O.D.E. This is not exactly the case. As it was shown for example
in Theorem 6 that the robust Duncan-Mortensen-Zakai equation (3) has a solution for all
t > 0 of the form

C T(0er.(t) .... ert(t)zie*%(t)D" ... •hl(t)Dl etLooo

where Di =f, and T(i), ri(t),... ,r,(t), s(t),... , s,(t) satisfy a certain system of
ordinary differential equations. However one still has to write down etLo ao explicitly. This
means that one has to solve the so-called Kolmogorov equation. In what follows we shall
outline the scheme on how to solve the Kolmogorov equation explicitly. The full details
can be found in [Ya-Ya 1, 2]. In fact, using the similar technique introduced here, one can
actually solve some special class of Duncan-Mortensen-Zakai equation (2).

Formal solution to Kolmogorov equation.

Lemma 9. Equation (3) is equivalent to the following equation

(8) 8(t,X) = f 8i ,2

S1 (.T) + f2(z)+ h (z)) }u(t, z)

d1 i" l i=1
U(0, Z) = U0(z).

Theorem 10. The equation (3) has a formal asymptotic solution on Rn if hi(z) are
constants for all 1 < i < m. In fact, the solution is of the following form

(9)
C'o CO 1 t-n/2 p

U(tz)= "L (v•-)" exp(-- (zj -_ j)2/2t b(t, z, f)oo(C)df 1,... , .
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where b(t, z,)= ak(X, )t*. Here ak (-T, are described explicitly as follows. Let
k=O

(10) a(z, 1)=j0Gt -4,f( + i(x - ~)dt.

Then

(1)ao (z,) e-14

Suppose that ak..(, ) is given. Let

(12)

)=(X, E fi(z)..T 'z) - iakIX

j=1 C~

Then, for k > 1

(13) ak(Z, ea) I -0 e't j - e- i(x - ),)dt.

Theorem 11. The equation (3) has a formal solution on Rn if hi(xT) are constants for all

1 i<m. In fact the solution is of the following form

(14) t ) -/ x (T_ j2

D i- yi)f, (y +t(z - V)) dt) -[i + al (Z' y)t

+...+Gik(ZVY)ik+...IOO(l)dl~l,... ,dn

where 40(zT,y) - j0 tk-1 k(Y + t(z - y), y)dt and

Wk(X[j Y:;(X t Y) + 1 U(8 ())2 - z)TVY

h)- 1: fi(z)Iak-l (X,Y).
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Theorem 12. For t . * so that
1 1

4Nt2 +nCt< and nC<
8

are satisfied, the following series converges.

0100

ý6N(va+j1, Z , Zm+1)eN(rm, Xm+1, X.)eN(rm l.im, Xm-1) .. CN(,r2, ii)

and it represents a kernel 0S(t, z, y) which satisfies

lim (t,z,y)= bs(v).
t-4O-

In this way, for t _ -, we have found an explicit kernel for the equation. When time is

equal to T which may be large, we can find the kernel up to time T by the formula

TN

Here K is the smallest integer greater than .

Corollary 13. The fundamental solution O(t, z, y) in Theorem 12 is approximated by

K

qN(t, X, Y) + E X, Y)
m=O

which is readily computable. Here

j j j J~, ~ *J N(t -ti, z,zmn+1)eN(tl t2, Xm+1, wTn)

CN(t2 - t3, x,,m-j) .". eC(tn - t m+l, X2 , x1)eN(tm+1, X1, Y)dt,+l ... dti.

The error for such an approximation is given by

E (-1),n+lo.(t,.T, Y)

mmK+l

which can be estimated by

(1 + %/tIzI)2NV(1 + ViMjY) 2 N expjX - Y). fAX) + (4Nt + 1) Ivi2 ex+p ( -

m-K+I 
(M+

which clearly tends to zero rapidly if t is small and K is large.
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