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field are obtained by using these codes. A detailed stress field in the vicinity of pie-
zoceramic sensors in a laminated plate under impact loading is also obtained by using one of
the modified codes.

Three analytical approaches are identified and incorporated into numerical simulations c
estimate the impact location and the magnitude of the impact pulse at the origin. The first
method uses a moving time window technique to calculate the origin of the signal. The
second method uses the phase difference of signals recorded at two locations to estimate the
origin. The third method makes the first guess of distance of the origin by estimating the
time interval between the maximum and minimum frequency components arriving at the recording
location and the signal is reconstructed by transformation. The iteration procedure used
in this method is based on the fact that the impact pulse at the origin is all positive.
The phase difference method is being evaluated experimentally.

Typically, piezoceramics have an allowable strain-to-failure that is one tenth that
of most graphite/epoxy composties. Residual thermal stresses and strains gain importance
in designing such composite laminates. Accurate analysis of these stresses is critical. If
the thermally induced strains are too large, it is possible to modify the laminate's coeffi-
cient of thermal expansion by adding plies of a dissimilar material such as fiberglass/epoxy
These modifications can relieve much of the thermal stress of the piezoceramic.

The fabrication and curing processes for smart composite laminates involve additonal
parameters arising from the placement of sensors and actuators. We have successfully
fabricated and cured laminated panels with a large number of embedded piezoceramics. Variou
aspects of the fabrication and curing processes for laminates with multiple embedded piezo-
ceramic sensors and actuators have been identified.

Tensile material tests are performed on coupons with and without piezoceramics embedded
in them. These coupons are cut from a single panel to reduce the influence of fabrication
and curing procedures. These test results show that the passive presence of piezoceramics
have a negligible effect on the tensile properties of the laminate. Damage initiation in
the vicinity of a piezoceramic may become critical under complex loading and may also cause
deterioration in the performance of piezoceramics as sensors and actuators. It is well
known that a transverse impact by a foreign object creates extensive damage in the form
of matrix cracking and delamination. A set of impact tests are performed to evaluate the
effect of the presence of piezoceramic wafers on impact induced damage. Initial results
indicate that the presence of the piezoceramic does not adversely effect the incipient
damage due to a transverse impact. Optical microscopic pictures, X-ray radiographs and
ultrasonic C-scans are employed to characterize the impact damage. Piezoceramic wafers
are subjected to the curing cycle's pressure and temperature without embedding them in
a laminate. These wafers are then tested to evaluate the effect of the curing cycle
on the piezoelectric properties.

The research presented in this report merely addresses some of the initial concerns
with the use of structures with embedded sensors and actuators, but it is an important
beginning.
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Chapter 1.

SMART MATERIALS AND STRUCTURES

In the early days, structural integrity was ensured by over-designing. As safety margins
have decreased, requirements for preventive inspection and maintenance have increased. Structures
in the near future will be able to prevent damage to a certain extent, able to sense the damage, and
survive the damage by incorporating adaptive control. They will also be able to alert us to proper
maintenance. These structures are termed as "smart structures". Remarkable inventions in sensor
technology, discoveries of new materials and increase in computing capabilities have made it pos-
sible for the first time to build smart structures. These structures have to be highly redundant, self
testing, damage survivable and fault tolerant.

A conventional structure has an unadaptable geometry and load carrying characteristics. In
recent years, attempts have been made to introduce structures capable of monitoring and adapting
to their environment, providing a "smart" response to external conditions. Although a precise uni-
versal definition of a smart structure is not possible, certain attributes are necessary for a structure
to qualify as a smart structure. In a broad sense, the structure should be capable of sensing a set of
external conditions and responding in a way that is beneficial to its survival. Furthermore, the sens-
ing and responding elements should be integral to the structure (see Figure 1.1). The materials used
in the sensing and responding elements of the structure are commonly called smart materials. Any
synthetic or natural material whose constitutive behavior can be utilized for sensing and/or re-
sponding purposes can be considered to be a smart material.

Integal sesingIntegral responding
N• •constituents------ constituents

SSmart structures respond t

external conditions in a way that
is beneficial to their survival

FIGURE 1.1 Smart structures

The idea of a smart structure is relatively new. One component of a smart structure is the
"active-structural-element" which has become a focus of research due to its potential applications
in the proposed space station. The main thrust of this research has been, until recently, in vibration
control and geometric shape manipulation. The references mentioned below are among the techni-
cal articles that have given impetus to smart materials and structures research. Dean and James [1]
suggested the use of a large number of piezoelectric elements to correct errors in a precision mirror
surface. Swigert and Forward [2,3] used piezoelectric elements directly attached to the structure to
actively damp vibration. Chen [4] used a piezoelectric material to adjust the stiffness of the wires
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to control the response of a structure. Chen, Fanson, Caughey, Hanagud and Baily initiated exper-
imental and theoretical research on smart beam type structures with piezoceramics as integral sen-
sors and actuators [5-9]. Crawley showed that piezoceramic patches can be embedded in composite
laminates to control a precision structure [10, 11].

1.1 Smart Materials
Smart materials are the functional constituents of a smart structure. In general, they posses

constitutive behavior relating mechanical field variables to electrical, magnetic and optical field
variables. Smart materials can be grouped under two broad categories: passive and active. A pas-
sive smart material has a desirable but actively unalterable constitutive behavior. On the other hand,
an active smart material has an alterable constitutive behavior (see Figure 1.2). The alteration in the
constitutive behavior is achieved by a small change in a triggering field variable.

FIGURE 1.2 Smart materials

A piezoelectric material produces electric charges when it is mechanically deformed and
conversely, an electric potential causes mechanical deformation of the material. This property

makes it suitable for sensor and transducer applications in the structural area. Ceramics such as
PZT (Lead-Zirconate-Titanate) and polarized homopolymer of vinylidene fluoride (PVDF) are the
two most commonly used piezoelectric materials. Ceramics are especially useful as actuators be-

cause of their high piezoelectric strain coefficients. On the other hand, the polymer is suitable for
sensor applications because of its high piezoelectric voltage coefficients.

Electrostrictive materials show behavior similar to piezoelectric materials but the relation-
ship between mechanical deformation and electric field is quadratic. The phenomenon of depoling
does not exist as it does in piezoceramics. Lead-magnesium-niobate exhibits the electrostrictive ef-
fect. The nonlinear behavior and the strong effect of temperature on electrostriction are the two
problems with the use of Lead-magnesium-niobate as an actuation constituent. Some ceramics ex-
hibit a large electrostriction without any hysteresis and aging effect during an electric field cycle.
They should find some applications as actuation constituents.

Magnetostrictor materials show a relationship between magnetic and mechanical field vari-
ables. A relatively new actuator material exhibiting extremely high strains is the magnetostrictor
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Terfenol. Its main constituents ar: terbium and iron. A more recent alloy, Terfenol-D, contains an
additional rare-earth element, dysprosium, which leads to "giant" magnetostriction effects. In cer-
tain ferroelectrics, a photostrictive behavior is observed: a constant electromotive force is generat-
ed when the material is exposed to light. This behavior is a result of the coupling between the
photovoltaic and inverse piezoelectric effects.

Smart molecules are designed to receive a stimulus, transmit or process it, and respond by
producing a desirable effect. Modular molecules consisting of oligomers with particular receptor
or functional properties, are synthesized separately and then combined in appropriate ways.

Shape memory materials (SMM) are an active class of thermrnomechanical smart materials.
A plastically deformed material that recovers its original shape when heated is known as a shape
memory material. This phenomenon results from a crystalline phase change known as the ther-
moelastic martensitic transformation. At temperatures below the transformation temperature, the
material is martensitic. In this phase the material is very soft and can be deformed easily. Heating
above the transformation temperture recovers the original shape by a transformation to the auste-
nitic phase. The transformation from austenite to martensite and vice versa does not take place at
the same temperature.

A semiconductive piezoelectric material provides a non-uniform distribution of an electric
field which can be utilized in producing beneficial deformation fields. Magnetostrictive materials
such as Lead Zirconate Stanate-based ceramics reach up to 0.4% strain which is much larger than
that expected in electrostrictor or piezoelectric materials. These strains are associated with phase
transitions from the antiferroelectric to the ferroelectric phase.The magnetostrictive behavior of
rare earth iron alloys and high permeability amorphous magnetic materials make them attractive
for mechanical transduction and ultrasensitive strain detection. A proper balance of magnetic
anisotropy and magnetostriction, and a proper choice of crystal axes in these materials can transfer
a large amount of energy between the magnetic and mechanical states with the application of a
small triggering magnetic field.

Electrorheological (ER) fluids consist of highly-polarizable fine particles dispersed in an
insulating fluid medium. The rheological properties of ER fluids are altered by the application of
an electric field. In addition to ER fluids, certain classes of ionizable polymeric solutions contain-
ing polyacids and polybases a-e capable of undergoing substantial expansions and contractions if
subjected to electrolytic ionization that changes the pH of the solutions.

Optical fibers are also considered to be a smart constituent of a structure. The main advan-
tage of Fiber Optic Sensors (FOS) is their relative immunity to electromagnetic induction. Some
promising FOS concepts are RF- Modulated Phase-Locked Loop sensors, Sag-nac-type Interfer-
ometer strain sensors, Mach-Zehnder strain sensors held at null by a PZT stretcher, Mach-Zehnder
strain sensors with different fiber cores, Double Mach-Zehnder strain sensors with fiber cores, and
elliptic -core two-mode fiber interferometers.

1.2 Smart Structures
Research related to smart structures has increased dramatically in the last few years. Most

of the research has been concentrated on geometric shape modification and vibration and acoustic
control. The details of recent smart structures research have been reported at recent conferences in
the US, Japan, and Europe, and an excellent review of recent developments in smart structures is
presented by Wada [12].

We classify smart structures according to four major categories. The first of these covers
control configured or variable gecmetry structures. Active geometric adaptation is the main feature



4

of this class or structures. Structures which have active damping, vibration suppression, and acous-
tic control capabilities fall into the second category. The third category of smart structures are self
diagnosing and damage monitoring structures. All other special purpose smart structures may be
grouped under the fourth special purpose category as shown in Figure 1.3.

SMART STRUCTURES

I I I I

CONTROL ACTIVE SELF MISCELLANEOUS
CONFIGURED STRUCTURAL MONITORING
OR VARIABLE DYNAMICS
GEOMETRY

FIGURE 1.3 Four categories of existing smart structures grouped according to their main
capability

Martin Marietta is utilizing shape memory alloy wires as embedded actuator elements in
compliant wing sections to develop adaptive control surfaces for aircraft applications. Significant
possible applications include mission adaptive aircraft wings for extended range and expanded
flight envelope, and compliant control fins for submarines and torpedoes to reduce noise, turbu-
lence and system weight. The Jet Propulsion Laboratory has developed a ground based testbed to
validate technologies for future large space structures and lunar missions. The goal of the program
is to reject disturbances in flexible structures and maintain an ultra precise alignment with extreme-
ly small jitter, with a performance several orders of magnitude better than conventional technolo-
gies. Ultrastable structures, based upon controlled structures concepts, have been developed at the
Los Alamos National Laboratory. These structures combine inherent passive stability with the net-
work of motion and acceleration sensors, coupled in a feedback architecture, with force transducers
for actively controlling mechanical stability. The prototype demonstrated a precision of less than
one micro-radian over its 2.5 meter length. Many future space missions will require major advances
in the areas of controlling, aligning, and pointing optical instruments mounted on large flexible
structures. JPL has demonstrated that maintaining the optical path length to better than five nanom-
eters peak to peak is possible with emerging smart structures technologies. A testbed has been de-
veloped (the JPL CSI Phase B testbed) consisting of active and passive flexible truss structures.

Smart tuned mass dampers (TMD) have been developed at CSA Engineering, Inc. by im-
plementing an active control system. The dynamics of the TMD and base structure are sensed and
the temperature of the viscoelastic material in the TMD is controlled for optimum tuning. Damping
characteristics of a structure have been controlled with the help of smart damping materials such
as electro-rheological fluids. A smart helicopter rotor blade with actively suppressed vibrations is
being developed at the University of Maryland. A neural network for state estimation purposes in
a system for active control of structural vibrations and other smart structures applications is being
studied at present. A distributed control system architecture for large space applications based on
artificial neural networks (ANN) will be a realistic possibility in the near future. A control system
of this type does not require accurate knowledge of the structure to be controlled because the struc-
ture "learns" to formulate control strategies from operational experience. An active vibration iso-
lation system for microgravity applications on the space station using piezoelectric actuators is
being developed.
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The thrust toward quieter submarines has resulted in new innovative approaches to active
sound suppression. 0-3 piezoelectric copolymers are used in underwater active sound control sys-
tems. The materials are used to provide both sensing and actuator functions. Vibration and acoustic
control of cylinders for underwater applications has been demonstrated using piezoelectric sensors
and actuators. A current program at NASA Langley Research Center involves the evaluation of al-
ternative sound sources and their application to the noise control problem. Optical fibers and piezo-
electric actuators are proposed for structural acoustic control. Active acoustic echo reduction is
accomplished by using a piezoelectric coating. The possibility to simultaneously reduce transmit-
ted and reflected sound by properly exciting bilaminate actuators used as an integral part of the
structure is also being investigated.

Sensitive interferometric fiber optic strain sensors embedded in a laminated composite
structure are being used to detect acoustic energy associated with the formation of internal damage.
They are also being used to monitor the state of cure of thermoset composites during their fabrica-
tion. Optical fiber sensors coated with linear work hardening elastic-plastic materials provide a
"memory" to the fiber by forcing it to undergo permanent deformations in response to predefined
excursions in the strain field. The possible use of these fibers in structural health monitoring is be-
ing considered at present. Work is currently in progress to develop an advanced Health Monitoring
System (HMS) for application to large airframes. HMS determines structural abnormalities using
a network of distributed sensor modules and signal processors. Using an active sensing technique
and pattern recognition software, the system is taught to interpret the sensor signals and identify
structural damage in real time.

A proximity sensing skin is proposed for collision avoidance in space telerobotic opera-
tions. Smart electromagnetic structures are being studied at present. Based on their sensing capa-
bilities they may be able to detect and modify the EM fields around them as well as their far field
image. A traveling wave with Epecified and controllable phase velocity, amplitude, wavelength and
shape is being considered to generate and trap vortices in the troughs of a flexible wall. Analytical
studies have shown that an appropriate tailoring of traveling waves to flow parameters results in an
ordered vortical flow and associated reduction in drag to a level substantially below flat plate val-
ues. An autonomous swimming robotic structure is being studied at the University of New Mexico.
The robotic structure is like a submariie structure which is partially encapsulated in an elastic or
flexible membrane filled with a counterionic electrolyte. Specifically arranged polyacrylamide or
PVA-PAA polymeric cylindrical fibers or bundles are placed in the electrolyte. The polyacrylamide
fibers are capable of generating propagating transverse waves to propel the partially encapsulated
membrane structure in any direction and in any desired manner. Polymeric muscles that can be di-
rectly and actively controlled by computer to provide expansion and contraction capabilities to the
flexible structure are also a subject of recent research.

1.3 Smart Structures Research at UTA
Research at the University of Texas at Arlington is being conducted under grant no.

DAAL03-89-G-0090 from the Army Research Office. This research is focused on damage-surviv-
able and damage-tolerant laminated composites with optimally placed piezoelectric layers. This re-
port describes accomplishments of the research conducted under the ARO grant.
1.3.1 Analytical Research

An understanding of electroelastic constitutive behavior is critical to predicting the re-
sponse of a structure with embedded piezoelectric material. Our research efforts in this area has
produced a concise formulation of linear constitutive relations [I] that has been extended to the
nonlinear case[lI]. Chapter 2 describes the constitutive behavior of piezoceramic materials.
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The CDA (Composite Delamination Analysis) and SDACLP (Static and Dynamic Analysis
for Composite Laminated Plates) packages have been modified to incorporate piezoelectric cou-
pling in a quasi-3D and plane stress analysis. Edge stresses in the vicinity of an embedded piezo-
ceramic patch [III] and stress distribution in the vicinity of electrodes due to an actuation electric
field [IV] are obtained by using these codes. A detailed stress field in the vicinity of piezoceramic
sensors in a laminated plate under impact loading is also obtained by using one of the modified
codes [V]. The finite element formulations and their applications are discussed in Chapter 3. The
numerical simulation of impact sensing by piezoceramic patches is discussed separately in Chapter
4.

Three analytical approaches are identified and incorporated into numerical simulations to
estimate the impact location and the magnitude of the impact pulse at the origin [VIII]. The disper-
sive signal from the measurement site and the dispersive relations for the medium are the only two
known conditions. The first method uses a moving time window technique to calculate the origin
of the signal. The second method uses the phase difference of signals recorded at two locations to
estimate the origin. The third method makes the first guess of distance of the origin by estimating
the time interval between the maximum and minimum frequency components arriving at the re-
cording location and the signal is reconstructed by transformation. The iteration procedure used in
this method is based on the fact that the impact pulse at the origin is all positive. The phase differ-
ence method is being evaluated experimentally. The research on impact location and magnitude es-
timation is described in Chapter 5.

Typically, piezoceramics have an allowable strain-to-failure that is one tenth that of most
graphite/epoxy composites. Residual thermal stresses and strains gain importance in designing
such composite laminates. Accurate analysis of these stresses is critical [IX]. If the thermally in-
duced strains are too large, it is possible to modify the laminate's coefficient of thermal expansion
by adding plies of a dissimilar material such as fiberglass/epoxy. These modifications can relieve
much of the thermal stress of the piezoceramic. Chapter 6 contains discussion of residual thermal
stresses in laminated composites.

Advanced composite materials suffer from initiation and growth of microcracks even at low
loads. Such growth affects substantially the overall behavior of composite materials under subse-
quent complex loadings. It is important to understand the behavior of materials containing an ac-
ceptable level of damage in order to predict the remaining life. Two continuum damage models are
being developed to understand damage evolution in laminated composites [VI,VII]. The results of
these studies will be used in darnage detection and prevention in smart laminated composites.

The first continuum damage model is based on the possibility of the coexistence and inter-
action of two hypothetical material phases: the damaged phase, characterizing the nucleation and
evolution of microstructures in tOe form of microcracks; and an undamaged phase accommodating
such microstructures. The theory of mixtures or interacting continua is used to describe macroscop-
ic behavior. A rudimentary mechanics-based microscopic constitutive model is presented for the
damaged phase of the material. In addition, a simple damage phase evolution model is introduced.
The model provides an effective tool for describing the influence of microscopic damage evolution
on the macroscopic behavior of a material.

The second model utilizes random material characteristics to predict damage evolution in
laminated composites. It is based on a division of a laminated composite into a statistically large
number of mesovolumes. Damage formation in a ply and in a laminate as a whole for a given plane
stress-strain state are calculated from the probabilities of mesovolume failure. These probabilities
are directly utilized in reducing ply material constants.
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The damage related research is described in a separate report.

1.3.2 Experimental Research
The fabrication and curing processes for smart composite laminates involve additional pa-

rameters arising from the placement of sensors and actuators. We have successfully fabricated and
cured laminated panels with a large number of embedded piezoceramics. Various aspects of the
fabrication and curing processes for laminates with multiple embedded piezoceramic sensors and
actuators have been identified [X]. Fabrication and curing issues are discussed in Chapter 7. Piezo-
ceramic wafers are subjected to the curing cycle's pressure and temperature without embedding
them in a laminate. These wafers are then tested to evaluate the effect of the curing cycle on the
piezoelectric properties. The piezoelectric strain coefficient (d3,) is compared with virgin wafers.-
These results are also included in Chapter 7.

Tensile material tests are performed on coupons with and without piezoceramics embedded
in thenr.. These coupons are cut from a single panel to reduce the influence of fabrication and curing
procedures. The test results show that the passive presence of piezoceramics have a negligible ef-
fect on the tensile properties of the laminate. Experiments are underway to characterize damage
initiation in the vicinity of a piezoceramic at various loading levels up to the ultimate failure load.
Such damage may become critical under complex loading and may also cause a deterioration in the
performance of piezoceramics as sensors and actuators. It is well known that a transverse impact
by a foreign object creates extensive damage in the form of matrix cracking and delamination. A
set of impact tests are performed to evaluate the effect of the presence of piezoceramic wafers on
impact induced damage. Initial results indicate that the presence of the piezoceramic does not ad-
versely effect the incipient damage due to a transverse impact. The damage to piezoceramics in the
vicinity of an impact is also minimal. Optical microscopic pictures, X-ray radiographs and ultra-
sonic C-scans are employed to characterize the impact damage. Material and structural testing re-
sults are presented in Chapter 8.
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Chapter 2.

NONLINEAR CONSTITUTIVE RELATIONS FOR PIEZOCERAMICS

The Curies first showed the presence of piezoelectricity in crystals in 1880. The first prac-
tical use of the piezoelectric effect was during World War I when Langevin's sonar emitter was ef-
fectively used to detect German submarines. Prior to World War II, researchers at MIT discovered
that certain ceramics such as PZT (Lead-Zirconate-Titanate) could be polarized to yield a high pi-
ezo response [1]. Piezoceramics consists of a large number of small crystallites sintered together
and polarized by an external electric field. Kawai [2] discovered that the polarized homopolymer
of vinylidene fluoride (PVDF) developed far greater piezo activity than any other synthetic or nat-
ural polymer. Poled PVDF still dominates all other materials in terms of its intensity of piezo ac-
tivity [I].

Although the behavior of piezoelectric materials in non-structural applications has been in-
vestigated extensively, the treatment is often simplistic. The recent interest in "Smart Structures"
has put especial emphasis on the rigorous understanding of elctroelastic behavior of piezoceramics
as an integral part of a structure.

The nonlinear theory of dielectrics has been studied by Toupin [3], Nelson [4] and Tiersten
[5]. The relation between the equations of linear piezoelectricity and the more general electroelas-
tic equations is discussed by Tiersten [5]. Nelson presented a completely deductive derivation of
the dynamical equations and constitutive relations for elastic, electric, and electroelastic phenom-
ena based on the fully electrodynamic Lagrangian theory of elastic dielectrics. Penfield and Hans
[6] developed a linear piezoelectric theory which does not account for gradient of polarization and
electrostatic interference. Mindlin [7] derived a system of two dimensional equations for high fre-
quency motions of crystal plates accounting for coupling of mechanical, electrical and thermal
fields. Readers interested in this area may refer to books by Nye [8], Berlincourt et.al. [9], and
Landau and Lifshitz [10]. A phenomenological description of the dynamic response of piezocer-
amics to an external electric field, including domain reorientation processes and the dynamics of
dipole moment in each domain, has been developed by Chen et.al. [11, 12, 13, 14].

A concise formulation of linear constitutive equations for piezoelectric materials is present-
ed by Joshi [15]. It has been extended to include some important nonlinear effects encountered by
piezoceramics in "smart structures" applications [16].

2.1 Piezoelectric Field Equations
The physics involved in the piezoelectric theory may be regarded as a coupling between

Maxwell's equations of electromagnetism and elastic stress equations of motion. The coupling
takes place through the piezoelectric constitutive equations.

Maxwell's equations in vector form are written as,

V.b = pf V.B = 0 (1)

V m VXH- (2)

where B is magnetic induction, E is electric field intensity, H is magnetic field vector and
b is electric flux density also known as electric displacement vector. The free-space permeability,
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, is used because piezoelectric materials are nonmagnetic. In the quasi-electrostatic approxima-
tion [161, which is usually adequate for the study of piezoelectric phenomena, time-derivative
terms in the electromagnetic equations may be dropped. Then the electric field may be expressed
as,

E = -. (3)

and the only electromagnetic equation which need to be considered is

V.b= 0 (4)

The elastic stress equation of motion is,

V0 = Pi (5)
where a is stress tensor, p is mass density and i is acceleration vector. Coupling among

eqn. 3-5 is introduced by piezoelectric constitutive equations.

2.2 Linear Constitutive Equations
We will adopt index notations in the remainder of this Chapter for convenience. We will

employ the thermodynamic Gibbs potential to derive constitutive equations and will consider the
a,, (stress components), E, (electric field components), and T (absolute temperature) as indepen-
dent variables.

G = U-a Jij - Ekbk - TS (6)

where G is the Gibbs potential, S is the entropy, and U is the internal energy. For adiabati-
cally insulated reversible system, the total differential of internal energy is

dU = oadc4 E + E hdbk + TdS (7)

and therefore the total differential of Gibbs potential is

dG = - cijdo. -bkdEk - SdT (8)

Expressing the Gibbs potential in Taylor series and neglecting higher order terms, we ob-
tain,

dG= W do.+ ( a)dE + ( W dT (9)
Sii )E.rT •k o.E

From eqs.8 and 9

G b G S WaG=-(•-, b, =- (•T) s =-(•) (10)
.i E,T k a.T o.E

The total differentials of dependent variables E Vt, and S is given as a function of inde-
pendent variables as

d fj aco 'j )&o do I a j- d=M + T dE.+
d•'~i •:"I dI dE+Jr (-•f ) dT

vabh': Ib I Tab , E
db, d=,d +(I k) dE d (+ )

as asd S= dol. + (-•) dE, + (-) o/r

$E.T W , T FT .

where
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E,~ T caei b as
•0,. t•-•,.L., j" t= .• t()• << =

= ' = = = = ('PC`GE = (-Ts

0T.. PT = E (k ooT, T. T ( FT) a, E

are elastic compliance coefficients, piezoelectric strain constants, coefficients of thermal
expansion, dielectric permittivities, pyroelectric coefficients, respectively; and c°' E is the specific
heat and p is the mass density. Integrating eq. 11, we obtain,SEij :•,.o,. dir +•

esEnci +dTEJccAT

b&4Tm-m+_,.. +pA (12)
co, E

AS = aG+ p. E. _•.AT

Piezoceramics are widely used, therefore we will specialize eq. 12 for them. The constitu-
tive equations of the transversely polarized piezoceramics are equivalent to the equations for a pi-
ezocrystal of the hexagonal 6mm symmetry class. In abbreviated subscript notation these equations
may be written as

C, sTo,, + sE•T + sjra,, + 4drE, + asT
C21 = 1'all + s0i,22 + 13 +33

ET E.T +SE.T + d3E3 + cti3 T
£ 3 3 = 1 3 "1 1 + 1 3 022 33 U33

I,$E.T $.

£2 3 =S442TC4I3 +drsE 2 , E13 44 3 513'd lEl, E 12 I 012 (13)

= d15o 1 3 + CO TEI +pAT, b 2 = d, 23 + E- TE2 +pOAT

b3= d, (o + C2) + + c3, TE 3 +p••T

AS = af (oal + 022) + CE3o 3 3 +pC (E, + E2) + p3E 3 +

In cases where temperature variation is negligible, neglecting temperature terms and writ-
ing eq. 13 in compact matrix notation, we obtain

{E} = lSrl {f} .+ [d] {E}

{b} = [dlT{o} + [1 {E} (

Where,

Sit S12 S13 0 0 0 004
S12 Si1 t S13 0 0 0 0 0 d31

S13 S13 S 3 3 0 0 0 0 0d 31  £10 00 (15)

iso] 0 0 0 S" 0 0 [d]- 0 0 d 33  f 0el ce£ 0

0 0 0OS40 dis 0 0 03
0 12 

dis 0 0 
3

0 0 0 0 0 2 0 0 0
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The alternative constitutive formulations may be obtained by considering other potentials.
The final linear constitutive relations in compact matrix notation are presented below. The temper-
ature change is assumed negligible and therefore not included in the relations.

{f) = [CEl {1) - [g] {E}

{b = [tgTI{e} + (e] {E}
or (16)

{a) = [Cbl {E} - (h] {b}

{E} [h] T {e} + (I'i {b}

Where,

[C.) = [SEI-' [g] = [CEl [d] [[d] = [e] - [grild] (17

[&] = ICE] + [g] ] [K][ [hi = [g] [r)] [i'] = le']-
Eqs. 16 gives alternative forms of linear constitutive relations. The coefficients are related

to each other as given by eq. 17.

2.3 Nonlinear Constitutive Equations
The strain, electric displacement and entropy are assumed to depend linearly on the stress,

electric field and temperature (eq. 11) in deriving eq. 12. Some higher order effects can be brought
about by including second order terms in eq. 11, as follows;

dE.= j do, + (N do, (;idj d d) Ob& ( dEbdE,+2 ( )d a -]
( ~ ~ aE. E (; ;E, )d dE +2 bh'da

dt,= da,<,, + (- j dEn+ a~k ) d ,dopq +( Ja E, + 2,
linEýP E"' 2Y L.,) Junpq CIj

(18)

where,

( E dj.,( ) (19)

"'--= t0T0= a E a, a ,,) ,-, L.aET )o

are nonlinear elastic compliance coefficients, electrostriction coefficients, elastostriction
coefficients and nonlinear dielectric permittivity coefficients, respectively. Integrating equation 13,
we obtain,

ca + . - E +m ..uj pq ga (p~q + di,,.,+Kj.(,

1 1b, =d•,,.o,. +EE •. &,..~ + dl (aga.)bk = dk.(11.+i*.E. •',,q°•.a,, + ]c .E.E, + d,..co,.E.

Piezoceramics are brittle materials and elastically behave linearly up to the failure. Elec-
trostriction coefficients are important at high electric field strengths. In cases, where mechanical
stresses are applied in addition to electric field (piezoceramic is constrained from freely deform-
ing), the elastostriction coefficients should be included in constitutive relations. We will neglect
nonlinear elastic compliance coefficients and nonlinear dielectric permittivity coefficients, and



14

write eqs. (15) in an abbreviated subscript notation.

C =S C7P + d.•E. + 1 mdwEnE, + pfE
2 (21)

bk =dkpo + E +ICkp ,(poT + dkpA.pE,.

Where greek subscripts take values one to six and others one to three. The electrostriction
coefficients and elastostriction coefficients are reduced for a piezoceramic poled in the 3-direction
which is also an axis of symmetry. The coefficients associated with the nonlinear terms in the ex-
pression for aa are written in abbreviated matrix form in the following equations.

dill d,2-d 133 0 0 0
d122 dIII d133 0 0 0

d 33 d 33 d333 0 0 0
[d0j,]J= 0 0 d423 0 0 (22)

0 0 0 0 d42 0

1
0 0 0 0 0 1 (di-d,22

K1 1 K12 1 K131 0 00 K121 X121 K132 0 0 0 31 IC132 X133 0 0 0

121 X121 X132 0 0 0 K121 III 131 0 0 0X132 K131 c13 3  0 0 0

[Kct] X 131 K132 K•133 0 00 C132 X131 1C33 0 0 0 K133 X133 K333 0 0 0

0 0 0 41•O0 0 0 0 0 0 0 0 0 0 0 C443 0 0

0 0 0 0 O0 0 0 0044 1 00 0 0 0 K4 3 0
0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 60J

The corresponding vectors EKE, and aE, are
T

[24.E22,E2 3,E2E3,E1 E3,El E2 ,

[oIEI, o2 I' E 3El ' 3 4 I' s EI ' o6E I' I E 2' C 2E 2' o3E2' 04E2' 5E2' 6E2' 1E 3' 02E 3' 3 E 3' 04E3' aE3 0 6E3] T

(24)

The tensors appearing in the nonlinear terms of the expression for b, are written in a con-
venient abbreviated matrix notation as eq. 25 and eq. 26.[il 10 0 d122 0 0d4423 d660 0 0 d660 0d 133 0d, 22 01

d1 0 0 dill 0 d6 d4  0 0 0 d42n 0 0 d" din 0 0 (25)

0 d133 0 0 d423 0 0 d333 d4d 423 0 d133d6 0 0 0 d66

[KIII XK121 K133 K441 0 0 K132 K131 W2

K121 KM2 C133 0 K4u1 0 KX131 C 32 K121  (26)

[ 131 K 13 1 K 3 3 3 K443 K443 C663 K 13 3 KC33 K 132

where d6 = (dl,-d 1,,)/2 and the corresponding vectors oCE. and off are

[oIEI, oIE 2, 1 E 31 72E1 , C2E 2' 02E39 C3 E', 13E 21 A3E3 oC4 EI, Y4E 2, C4 E3, o5 El, C5 E 2 0 C5 E 3, 0 6E1. o6 E2, c6E 3 ] T

[1o 1 , C2 C 2 * a3a3'C4C 4'C, C5 C5 , C6 6 ' Y2 a 3 ' a1C 39 a 10 2 1 T

(27)
Similar expressions can be obtained by considering strain and electric field or strain and
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electric displacement as independent variables. These alternative forms of nonlinear constitutive
relations are presented as eqs. 28 and 29.

Gj iJ jqlm I -- ij.E. + 1jjEE, 1gj,.,y,.FjE
,= ,== C + g eE. +! 1jp -- ,,EE

11a•j = aijim -- 5jf) N " 2 ajlampq~supq -- 2 "" mlu

We will neglect nonlinear stiffness coefficients, nonlinear permittivity and nonlinear dielec-

tric coefficients, and rewrite eqs 28 and 29 in abbreviated subscript notation.

a ~e + S,..Ea - 1arSaEaE, - Yt.apnE.

b, = ,pE+ E. + 1 + ghpepEaA%~~E. + 4k 2•E,
(30)

Ek -h~pc P + Cft"'b. - •'k•p~q~pE:,1 - hap.Fpb.

ganr and h.., have non-zero coefficients corresponding to the non-zero coefficients of d,,.
and have non-zero coefficients corresponding to the non-zero coefficients of %,.. Rela-

tionships between coefficients given by eq. 18 are not applicable to nonlinear constitutive equa-
tions.
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Chapter 3.

FINITE ELEMENT ANALYSIS OF SMART PLATES

The idea of 'smart structures' is relatively new (Wada, et.al. [1]). One component of these
smart structures is the 'active-structural-element' which has become the focus of research in recent
years. The primary function of the active structural element is to induce actuation or sense the re-
quired response. Of the many available sensors and actuators is the piezoelectric sensor. Various
actuation techniques and geometries have been analyzed and tested. Among the most common
have been the application of segmented piezoceramics to the surface of a beam (Forward and
Swigert[2]). Various analytical models of this have been developed (Crawley and Anderson[3]) and
used in output feedback (Bailey and Hubbard[4]), (Hanagud, et al,[5]) and (Lee et al.,[6]) and pos-
itive position feedback (Fanson and Caughey[7]) for active damping and in the modification of
wave propagation. Shape control of plates with surface mounted piezoelectric has also been dem-
onstrated (Crawley and Lazarus[8]).

An alternative to surface bonding of the strain actuation material is to embed the material
inside a composite structure (Crawley and De Luis[9]). The advantage of such embedding is that
the load transfer from the actuation material to the host structure is enhanced and the surface of the
structure is relatively free of fragile components and connections. In addition, embedding affords
the designer to more options for finding the optimal geometry. However, complications of electric
insulation and manufacturing must be faced.

An understanding of the electroelastic constitutive behavior is critical in predicting the re-
sponse of a structure with piezoelectric layers.Due to complexities in satisfying equations of equi-
librium, and boundary conditions, exact solutions to problems of laminated plates with
piezoelectric layers are not available. The complex state of stress in plates and laminated compos-
ites is often determined with the help of the finite element analysis technique. Research in recent
years in this area is now focused on the development of finite element techniques incorporating pi-
ezoelectric constitutive relations to obtain an electro-mechanical response of these structures.

The objective of this chapter is to incorporate constitutive equations of piezoelectrics into
the finite element analysis to determine the structural response of plates with embedded piezocer-
amic layers. Finite Element formulations will be discussed for inplane and through-the-thickness
analysis.The Classical Lamination Theory can be modified to study the inplane response of a lam-
inated plate with embedded piezoelectric layer / layers. Detailed inplane analysis can be achieved
by finite element techniques incorporating piezoelectric constitutive relations. Since these laminat-
ed plates may consist of distinct layers the interlaminnar response and delamination characteristics
of the laminated plates are also important. Discontinuous and singular stress distributions in the vi-
cinity of electrodes and piezoceramic layers in plates are common causes for delamination and
damage in plates and laminates.Two finite element techniques SDACLP (Static and Dynamic Anal-
ysis for Composite Laminated plates) for inplane analysis and CDA (Composite Delamination
Analysis) for through-thickness analysis have been developed. These codes are used to investigate
stress distributions in plates and laminated composites with piezoelectric layers. Stress distribu-
tions in the vicinity of electrodes due to an actuation electric field in piezoceramic layers are ob-
tained using these FEA codes.The following paragraphs and sections will discuss the basis for
finite element formulations for both, inplane and through-the-thickness analysis. Applications of
these codes to solve different problems are also demonstrated.
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3.1 The General Laminate Theory

A laminated plate consists of a number of plies perfectly bonded together. Each ply can
have principal material axes oriented at an angle different from the plate reference axes. The stress-
strain relations in the kth ply in the plate reference axes are given as

Y. 01,1 0 Q16 0 0 E.
oyy 6212 Qý 26 0 0 e,,.
Cxy = Q 16 2 6  6 6  0 0 '•z (31)

0 0 0 Q44Q4s .Y
kYk 0 0 0 3s 5 ksITzk

where Z •., are the reduced stiffness coefficients of the kth ply.
The displacement functions for a laminated plate are assumed to be of the form

u(x,y,z) = u°(x,y) +ze (x,y)

v (x, y, z) = v" (x, y) + zOY (x, y) (32)

w (x,y.z) = wd(x,y)
where u', v°, and w° are the midplane displacement components in the x-, y-, and z- directions,
respectively. The 0. and 8, are the rotations of the cross section perpendicular to the x- and y-
axes. It is assumed that the u and v displacement components vary linearly in the thickness direc-
tions. Thus the in-plane strains, the out-of-plane strains and the curvatures in the k-th ply are giv-
en as

:C = o + Z 
(33)

=

where E° and ic are the mid-plane strains and curvatures and y is defined as

Y~ [' (34)

The stress resultants acting on the laminate are obtained by integration of the stress in each
ply through the thickness. Hence the laminate plate constitutive equations including the transverse
shear terms become

IMH = D8 O ID0 (3•)
0A*

where
h/2 1./2 k/2 h/2

N, i J odz Mi = j azdz Q, j J aYzdz Q, I Oyzdz (36)
-h,/2 -4h/2 .-k/2 -h/2

(AitBij,D J) = h Qj(l, ,Z.)dz i,j= 1,2,6 (37)

-1h/2
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and
k/2

A*= j Q.jdz i,j = 4,5 (38)

-h/2

and h is the total laminate thickness of the laminate.

3.2 Inplane Plate Finite Element Analysis

In this section a finite element formulation is developed for static response of structures us-
ing plate bending elements. Piezoelectric constitutive equations are incorporated into a finite ele-
ment analysis to study the static structural response of structures with embedded piezoelectric
sensors.
3.2.1 Formulation Including Piezoelectric Constitutive Relation.

The constitutive relations of a piezoelectric media can be written as
£ s.T 0 .dEa.T

M jijimi+ * jJfl T (39)

b, = dk,..O, + LEa.rE. + pAT

where symbols are defined in Chapter 2.

The total potential energy of the system is a sum of the internal strain energy and the work
done due the external forces and in matrix notation is given by

U = U-PE = [E] dd - [ v,] dv - f[ ] ds ,49,
I S

where the thermal strains Eh are given by aAT where a is the coefficient of thermal expansion
and AT is the temperature difference from the reference state.The superscript T of a matrix de-
notes the transpose of the matrix and that to a symbol denotes the state of constant temperature.

The above equation clearly shows the distinct components of the internal strain energy. The
first term in eqn. 10 is the mechanical strain energy the second term is the electromechanical and
the third is the thermomechanical energy.

Nine-node isoparametric quadrilateral elements as shown in Figure3.1 are used to model
the laminated plate. Each node has five degrees of freedom, three translations in the coordinate axes
and two rotations about the x- and y- axes for the cross section perpendicular to the axes.

4 7 34 73

9

1 2

5 5 2

FIGURE 3. 1 Nine-noded isoparametric element.
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The plate finite element degrees of freedom are

9 Vi 9

[0 ] W M W M (41)4P, T A.i

The isoparametric plate finite elements use the following shape functions:

For nodes at I; = ±1 and iY - ±1 (comer nodes)

N= (I) (1 +1 ( Q (4 +no-1) ()4

For nodes at • = 0 and q = ±1

N• = (4) (1 -. =) (n.o+,q 2 ) (43)

For nodes at = = ±1 and rj = 0
-1

N,= (4) (~+ 2) (1 - T2) (4

For the center node at 4 = o and n = 0

Nk, = (I - 42) (1 _q2) (45)

In the above shape functions 4 and q are the normalized local coordinates and o = g and
n= where 4, and n, are the natural coordinates of node i as shown in Figure 1.

The first term representing the mechanical strain energy as given in eqn. 1 can be written as

J ]5°I] w dVee 0= 0 dA (40)
A [• 0oA, ,

The strain-curvature vector can be expressed in terms of the derivatives of the shape func-
tions and the nodal displacement vector as

aN0 aN 0

o• ;7y

0 a a 0 0'0 0 0

i wee0 0 00 00 aNkaN (47)

0 00 '~j0 aj0

0 0 0 0 N, aN, -i0000;7
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Thus

'f[ ][]rdV ' J[ý [i [c] [] [a]dA ("

V A

The [ABDA*] in the above equations has been renamed as [c] and represents the modified
stiffness matrix of the plate.

The second term in eqn. 10 represents the electromechanical strain energy. Expressing the
product [d] TiE] as the piezoelectric strain vector {EP} we get

=ET] Ji[ E&Vd V (49)

Also stress vector ({CT can be expressed as (el Trjit

(1 T~d [ E&dV (56)

The piezoelectric strain {FP} with [Qj is the piezoelectric stress ({PW

dE ] dTVE , = [OS] ,,i)

The strain in the plate can be obtained by differentiating the displacements. Expressing the
strain in terms of the midplane strains and curvatures we get and integrating the piezoelectric
stresses through the thickness we get

C.] T[ ]T [E] f = (52)

Expressing the strain- curvature vector in terms of the nodal displacements and derivatives
of the shape functions we have

=& J[]T[]T[ jdA (53)

V rA

The third term in eqn. 10 represents the thermo-elastic strain energy and can be written as

Expressing the strains in terms of the midplane strains and curvatures and integrating the
thermal stresses we get the thermal stress resultants [NtI,Mth,Qth]. Thus

T e YT

e[]T dV [EIj [ArkdA (35)

Expressing the strain-curvature vector in terms of the nodal displacements and derivatives
of the shape functions we have
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TC, [EAdV) B LI] Ar[]d
A A (•l

Thus the sum of the three terms is

1J[]T~T[][i~d .,LT[]rTjdA~j[]E §dA(
A AAPM

The potential energy due to the external work is given by

P= -f iLT[ S (5-)
Differentiating the total potential energy with respect to the nodal load vector, load dis-

placement equations are

AE Mdd + Bjh dA (59)

Alternative formulation of piezoelectric induced loads is shown in Appendix 3A.

3.2.2 Stress Smoothing and Evaluation of Nodal Stresses

In finite element analysis, stresses are usually evaluated at the gaussian points in the ele-
ment. However in problems involving stress discontinuity, they are best desired at the element
boundary, i.e. at nodes on the element. The simplest way of achieving this is by gaussian point av-
eraging, in which stress values at gaussian points nearest to the desired node are averaged and as-
signed to the node.In case of material discontinuity, gaussian point stresses cannot be averaged for
elements with different materials. In such cases gaussian stresses are assigned to the nodes, which
introduces small discontinuity in the display of stress distributions. An example of this is shown in

0.5 0.5

0 0

0.5 -0.54

a) b)

FIGURE 3.2 Stresses distributions obtained using a) gaussian point averaging and b) quadratic least
squares extrapolation scheme.
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Figure 3.2a, which uses gaussian point averaging. This is a distribution of a. in a plate with ma-
terial discontinuity. Even though a. is a continuous function along the x-direction, we see that
gaussian point averaging shows a small discontinuity.

An alternative to the above mentioned scheme is to extrapolate gaussian stresses to nodal
values. The extrapolated stress state must be as representative to the element as the gaussian stress-
es are. In order to achieve this, a least- squares formulation for the error between the true stress state
and gaussian stress state at any point in the element is required. This technique is a form of local
stress smoothing in the finite element domain. Stress distribution plots using this technique can be
seen in Figure 3.2b and are more representative of the state of stress in the structure. Also the pro-
cess gives nodal stresses values for each element. This technique is based on the formulation by
Hinton and Campbell [10]. In their formulation they devised a method to obtain linear stress ex-
trapolation based on only the four corner nodes and gaussian points in an element. Mid-side nodal
stresses were then obtained using bisection. In this analysis a quadratic least squares extrapolation
scheme is used in which all the 9 gaussian points and all the 9 nodes are used. The formulation can
be modified to unequal number of nodes and gaussian points as pointed out in the article[ 10]. The
scheme is most suited to the inplane analysis in this chapter, and examples of its use will be seen
in the sections to follow. Following paragraphs discuss the formulation as computed using symbol-
ic mathematical tools as 'Mathematica'.

The error between the smoothed and unsmoothed stress at any point in the element is given
by

e4.T)= a(,) -g(F., n) (W0

Using a least-squares formulation and expressing the stress at any point in the element as a
combination of the shape functions and nodal stresses, the problem becomes of finding a set of
smoothed nodal stresses which minimizes the functional,

KSp

X =-- y y [(4j,? -1j) 4, q l)= ao9 (,/)

where nsp are the no. of sampling points.

Differentiating the functional with respect to the unknown nodal stresses Z and setting it
equal to zero we get

5 2[ :lj) -N •, =0 ijk= lto9 (62)

or

Nip N,,

_I{ I , = 4X4i(4, ,,j)a,(••,vlj) I .,k= n, o9 (63)

j- 1  ,-I

The above equation in matrix form is then written as

"Nip Nip

j-1 j-1 iF 4, 9(j

fsp NSp

,q-- ( T,9(4j¶m)kg(4j. j) [N9 (4, -L 21
JI j.1
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or

[kk][0] [CF] i(nodes) = I to9 j(nsp) = ItO9 (t

Inverting [kk] and carrying out the product with [ff] we get the transformation from Gaus-
sian stresses to extrapolated nodal stresses. The process is repeated over all the elements and nodal
stresses are obtained. The stress distribution are thus said to be utilizing local stress smoothing.The
transformation matrix for a bi-quadratic nine node quadrilateral element and 3 x 3 Gaussian inte-
gration is given by [T] as in eqn. 36. This matrix [T1 is the same for all the elements.

"2.18694 0.27778 0.03528 0.27778 -0.98588 -0.12522 -0.12522 -0.98588 0.44444
0.27778 2.18694 0.27778 0.03528 -0.98588 -0.98588 -0.12522 -0.12522 0.44444
0.03528 0.27778 2.18694 0.27778 -0.12522 -0.98588 -0.98588 -0.12522 0.44444
0.27778 0.03528 0.27778 2.18694 -0.12522 -0.12522 -0.98588 -0.98588 0.44444

T= 0 0 0 0 1.47883 0 0.18784 0 -0.66666 ('6)

0 0 0 0 0 1.47883 0 0.18784 -0.66666
0 0 0 0 0.18784 0 1.47883 0 -0.66666
0 0 0 0 0 0.18784 0 1.47883 -0.66666
0 a 0 0 0 0 0 0 1.00000

and nodal stresses are given by

3.3 Quasi-3D Finite Element Analysis
A commonly observed failure mode in laminated composites is delamination between its

layers or plies. One of the major causes of delamination is the interlaminar stresses that develop in
the region where structural or material discontinuities exist such as cutouts, free edges or presence
of foreign material in the laminates. The interlaminar stresses exist only in a small region near the
discontinuities and vanish rapidly away from the region. A number of factors influence the magni-
tude of these interlaminar stresses namely stacking sequence, poisson's ratio and coefficient of mu-
tual influence mismatch between the adjacent plies, ply thicknesses etc. Due to complexities in
satisfying equations of equilibrium and boundary conditions, exact solutions are not available.
Hence, finite element methods are used in the analysis.

The complex state of stress in a laminate is often determined with the help of finite element
analysis technique. Interlaminar stresses are the stresses in the thickness direction which, in gener-
al, can be analyzed by the 3-D modelling of the laminate. An accurate 3-D analysis introduces a
large number of degrees of freedom resulting into enormous memory and computational time re-
quirements. A quasi-3D modelling technique is incorporated in this study for an efficient and ac-
curate numerical analysis.

This section is focussed on the quasi-3D finite element analysis to study the interlaminar
stresses in laminated composites and to obtain the detailed state of stress in the vicinity of high
stress gradient regions in piezoelectric layers. The mechanical excitation of a piezoelectric element
is usually performed by means of thin electrodes deposited on the surface of the element and sub-
jected to a given potential difference. It is therefore necessary that these structures be treated by
piezoelectric theory combined with methods for solving boundary value problems with discontin-
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uous boundary conditions. The interaction of surface electrodes with a piezoelectric material, and
the interaction of these piezoelectric layers in laminated composite structures is of particular im-
portance in analysis of smart laminated composites.

S~I_

Piezoelectric Laye t

z Clasvsicto igion

3.3.1 Formu Lato mo init lmnqations

Theory 3

A (u'v'w)

W__. y

FIGURE 3.3 Representative section of laminate for quasi-3D finite element analysis.

The objective of this section is to develop the quasi-3D) analytical method that is capable

for determining the state of stress in plates and lamrinated composites with piezoelectric layers, and

around material and stress discontinuities.

3.3.1 Formulation of Finite Element Equations

The complex state of stress in a laminate can be analyzed by the 3-D modelling of the me-

dium as shown in Figure 3.3. A complete 3-D analysis introduces a large number of degrees of free-
dom resulting into enormous memory and computational time iequirements. A quasi-3D
modelling technique which only models the structure in the two dimensions but allowing a degree
of freedom in the 3rd direction, has been developed to analyze the interlaminar stresses of lami-
nates under a uniform bending, uniform twisting and uniform extensional loads (Chan and Ochoa
[11]). The displacement functions used are as shown below:

U(x,y,z) =EoX+kXZ+U(y,z)

V(x, y,z) = Cxz + v(y,z) )

W. y. Z) =-kx 2- Cxy + w(y, z)
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where co is the uniform extetisic n in the x-direction and k and 2C are the longitudinal "And twist-
ing curvatures, as obtained f )rr

a~w
=-2 k

K -2 --- 2C 
(69)

ýry : TX:2C

thus a constant curvature thiou i the structure is enforced. The finite elements used in the model
were eight-noded isoparame-ric elements with each node having three displacement degrees of
freedom u (y, z), v (y, z) and w (:,, z).

The strains are given )y {e} = {}o+ {f)L where

{e au av CaW a'v+ aw au + OW au C~v i(70J)

and

[(o) (0) (0) (0) (-Cy) (cz)] (71)

The constitutive equations of material subjected to mechanical (c), Thermal (7) as well
as electrical (E) loads are g;veri in section 1.4.1 by eqn. 9.

The internal potential energy can be written as

fl T(CE, rI) JE -riler rT.l I ) ()E
_= •{E{}TIET{&.•E E-I}IE drE-prE

1C dvol (72)

It should be noted tht.t t',e superscript T outside the brackets is referred to the transpose of
the matrix in the bracket. Assining the thermal terms appear only as initial temperature strains E h,
and keeping only the terms thL include the strain EP and also since {.}e = IC&rT {Mh} and
{E} = {E}o+ {E}Lwehave.

d f({f}o+ {'(L ({c}o+ {E}L) - ({c}o+ {fl})TlCE.l {Ll},(

- ({1o + cI L)E, [cJ'rl [d] T{E} + oiher'terms'not'includinge

Let { ,-} be the nodal displa'eirzent matrix and Bi) be the matrix relationship between the ele-
ment strain and nodal displa:enints. Setting {l}, = l] {(i} we have

rQ~iTIJ(Ll 1 !Tl:r T~r B

TB (CEjT I}L~C}*[CF-TI 1j] (ii
1 1I

+1 { = pi (C [B] {I} rU+ (cU [ CE.rl T]{I } (C+TI

fai} ]r CE rl jd] (E} -{ L [d]T{E} + other' terms' not'indluding'

Also potential energ-, dile to external loads is given by
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'p = - ID {a}T{f}dvol (75)

vol

Differentiating the sum of internal and external potential energy with respect to u } we
have from principle of minimum potential

a U ) (76)

which gives

U [j]rT[CI&T] [i]dvol){i} /-=f- T[ ][CF]T {()L)dvol

+(f [j]TICE] I {e,,}) dvol+Lt[B rl[C] [d]T{E})dvol

Expressing the thermal strain in terms of a the above equation becomes

U [j] T[CETJ [BldvoI){u} =f- •J [oj[]T IC&T] ({IL)jdvol

+ (J [B[CE'T] {}aIAT)dvol+ (j[B]rc~r][d] T{E})dvol

The load displacement relation thus becomes

[K] {5} = {F}* ('9)

where I K] is the element stiffness and { F}* is the generalized load vector. They are expressed
as

I[] = f [BjTICET' [iB]dvol (80)
vol

and

IF}* =f- Uf j[ITC&TJ(E {.) L)dvoI+ UI] [ IrCE, T {Ik, )dvol

+ (JI[)TIC• T] [djT{E) )dvol

3.4 Some Numerical Simulations

The results discussed in this section shows application of plate finite element, quasi-3D fi-
nite element and an efficient combination of the two formulations in analysis of plates and lami-
nates with piezoelectric patches.

3.4.1 Inplane Analysis
In order to implement the finite element formulation derived in the previous sections, a

square plate with different shapes of piezoelectric patches was used. Two cases are considered. The
first case has the piezoelectric patch through the entire thickness of the plate and is as shown in
Figure 3.4a. The second case has a piezoelectric patch embedded between two layers of aluminum
plates as shown in Figure 3.4b In both the cases of embedding, four different shapes of patches are
used. Figure 3.4 along with Table 3.1 shows the dimensions of the plate and the orientation of the
piezoelectric patches.
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Piezoelectric PatchJ

a) Through the plate
embedding.

L
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bI

, b) Layered embedding

FIGURE 3.4 A square plate with different shapes of piezoelectric patches.

TABLE 3.2 Dimensions of the aluminum plate and the piezoelectric patches

Plate L = C, W = 4"

Square side = b = I"

Rectangle Height = b = I", Length = c = 2"

Circle radius = b = I"

Ellipse major axis = b = I", minor axis = a = 0.5"

Due to symmetry in the problem, only a quarter of the plate is modelled. Displacement
boundary conditions along the x-axis and y-axis are also shown in the Figure 3.4. Table 3.2 shows
the material properties of aluminum plate and the piezoelectric patches. A constant potential dif-
ference in the thickness direction is applied to the piezoelectric patches in order to induce an elec-
tric field.
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TABLE 3.3 Material properties for aluminum plate and piezoelectric G1195.

Property Aluminum PZT - GI 195

El = E2 (Msi) 69.0 x 109 63.0 x 109

G12 (Msi) 26.0 x 109 22.0 x 109

V12  0.3100 0.3100

d31=d3 2 mnV -166.0 x 10-12

d33 m/V 360.0 x 10-12

d24=d15 m/V 540 x 10"12

Finite element meshes used for the analysis for each cases are as shown in Figure 3.5 below.

Square Piezoelectric Patch Rectangular Piezoelectric Patch

Circular Piezoelectric Patch Elliptical Piezoelectric Patch

FIGURE 3. 5 Finite element meshes for different configurations of the piezoelectric patches
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All the stresses are normalized by the stress, a 0which is due to a Voltage of 1 V (electric
field of 3937 V/m) on a piezoelectric under plane stress conditions. The value of oo thus obtained
is 59.68 kPa and is computed as

a, E3931 [I_ C..EL~3 =0 0, (12)

where symbols are as defined in Chapter 2.

Stress distributions are obtained due to electric field applied to the piezoelectric patches.
The magnitude of the stress is shown along the z-axis and the element coordinates are shown along
x- and y-axes. The grey-scale shade represents the stress magnitude in the elements. The highest
stresses are shown in white and the lowest in black. Only a few representative stress distributions
using grey- scale plots are shown in this section. Some of the figures to follow will show in the up-
per comers of the figures, the embedding case and the layer / layers for which the stresses are
shown.

Figures 3.6 and 3.7 show the distributions of oa and a. in the plate with a square patch.
Since a, is a normal traction on the x-faces the distribution of a. along the x-direction is continu-
ous. The distribution of o along the y-axis is discontinuous. As we move away from the patch,
stresses reduce to zero at the far field of the plate since there are no far field stresses applied to the
edges. However, due to the finite dimensions of the plate, a boundary effect can be seen along the
y-axis for a. and along the x-axis for a., i.e. there is a non-zero stress in the region away from the
patch along the two axes. The distribution of the in-plane stress a, in the plate as shown in Figure
3.7, looks similar to that of the in-plane stress a.. The cy distribution is a rotated image of the cr
distribution which is due to the axial symmetry in the problem. Figure 3.8 shows the shear stress
c y distribution in the plate. The shear stress is zero almost everywhere except in the vicinity of the
comer of the square piezoelectric patch. This is due to the discontinuity of a. and a, in the y and
x directions respectively, around the comer of the patch.

W• 0.5

0 . 0

4 3

FIGURE 3.6 Distribution of normalized stress a. In the plate with square piezoelectric patch
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W 0.5

.• 0

FIGURE 3.8 Stress distribution of Oyin the plate with square piezoelectric patch.
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FIGURE 3.7 Stress distribution of cry in the plate with square piezoelectric patch.

Figure 3.9 shows the distribution of a, in the plate with a circular piezoelectric patch. The
stress changes gradually from a continuous to a discontinuous one as we go from the x-axis to the
y-axis. The normal stress component o, is constant in the piezoelectric due to the cylindrical sym-
metry.
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FIGURE 3.9 Stress Distribution of aoin plate with circular piezoelectric patch

Figure 3.10. shows a plot of the shear stress a in the plate with circular patch.The shear
stress axy is highest at the material interface of piezoelectric patch and aluminum plate at 45' to the
x-axis and almost zero elsewhere on the plate.

NN

PC 0.64
0.46

S 0.2

0

FIGURE 3.10 Distribution of shear stress Iy In plate with circular plezoelectric patch

Figure 3.11 shows the distributions of stresses in the r-O coordinate systems. The radial
stress a, and the tangential stress o. on the aluminum side of the plate along the circumference are
both constant. In Figure 3.12 the stress a. changes sign as we go to the piezoelectric side of the
plate.
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FIGURE 3.11 Distribution of stresses cyp, ao, and 0,9 along the circumference of the circular piezoelectric
patch on the aluminum side.
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FIGURE 3.12 Distribution of stresses a, e, and o,0 along the circumference of the circular piezoelectric
patch on the piezoelectric side.

Also shear stress are along circumference or edge of the piezoelectric is zero. Figure 3.13 shows
the distribution of the radial and tangential stresses radially along a line 450 to the x-axis. The
change in sign of the stress a, from positive to the negative as we move radially from the piezo-
electric to the aluminum side of the plate is much clearly seen. There is a continuous gradual
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drop in the radial stress along the radial direction Again far-field stresses are zero as we move
away from the piezoelectric patch. Shear stress q.0 is zero all along the radial direction.
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Radial distance, r

FIGURE 3.13 Distribution of stresses ar and o0 along the radial direction at 0=- 45* in the plate with the
circular patch.

00
WY

_a 1

FIGURE 3. 14 Distribution of normalized stress ar In the plate with elliptical piezoelectric patch

Stress distribution (a,) in the plate with an elliptical patch is shown in Figure 3.14. The
stress distribution is similar to the one in plate with a circular piezoelectric. The stress is continuous
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along the x-axis and discontinuous along the y-axis. However, due to the aspect ratio of the ellip-
tical patch, the stress is higher in magnitude than that in plate with circular patch. This change in
magnitude was also seen between the cases of plate with square and rectangular patches. Far field
stresses can be seen to approach zero as we move away from the patch.

• 0.6

0.4

2.200

FIGURE 3. 15 Stress distribution of ayIn the plate with elliptical piezoelectric patch.

Figure 3.15 shows the distribution of shear stress as,, in the plate with an elliptical piezo-
electric patch. This distribution is also similar to that in plate with circular patch. However, this case
shows that maximum value of the shear stress does not occur at 450 to the x-axis. In fact the loca-
tion of the maximum has changed to about 200 to the x-axis. Again this is due to the aspect ratio
not being equal to 1.0.

Figure 3.16 shows distributions of the normal and tangential stresses along the circumfer-
ence of the elliptical patch and on the aluminum side of the plate. The normal and tangential direc-
tions at any point on the circumference where computed from the derivative of the equation of the
curve.

Unlike the case with circular patch, the stresses do not remain constant with the angle from
the x-axis. As we approach the y-axis, the normal stress a, reduces in magnitude and the tangential
stress a, increases in magnitude. Also shear stress a., is not zero along the circumference of the
patch. The magnitude of the shear stress is however, much smaller as compared to that of the other
two components an and a,.
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FIGURE 3. 16 Distribution of stresses op. a,, and onlt along the circumference of the elliptical plezoelectric
patch on the aluminum side.
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FIGURE 3. 17 Distribution of stresses a, a, and ayn, along the circumference of the elliptical piezoelectric
patch on the plezoelectricsie

A sim-ilar distribution for the normal and tangential stresses along the circumference of the
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patch on the piezoelectric side of the plate can be seen in Figure 3.17. The tangential stress a, is
positive on this side. The trend for a, is the same as before i.e. increasing with the angle 0.
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FIGURE 3. 18 Comparison of the distributions of a, along the x-axis In the plate for all the patches.
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FIGURE 3.19 Comparison of the distributions of a1 along the y-axis In the plate for all the patches.

Figure 3.18. shows the comparison of the stress distributions (a,) along the x-axis in the
plate with all four types of patches. As observed in the grey scaled plots in this section, they are all
continuous traction distributions. The stresses in the plate with rectangular patch are higher than
the stresses in the plate with square patch due to the width of the rectangular patch being half the
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width of square patch. Similarly, stresses in plate with an elliptical patch are higher than the stresses
in plate with the circular patch.
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FIGURE 3.20 Distribution of a. along the y-axis In the plate.
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FIGURE 3.21 Distribution of oy along the x-axis of the plate.

Figure 3.19. shows a distribution of a, along the y-axis for all four cases. The discontinu-
ous behavior as observed in the grey-scaled plots can be clearly seen. The stresses are higher for
the rectangular and elliptical cases than for the square and circular cases. In the case of square and
rectangular patches, stress increases as we approach the edge of the piezoelectric patch. There is a
30% rise in the stress oa along y-axis for the square case and about a 10% rise for the rectangular
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case. Since the square patch is wider than the rectangular patch, we see a higher rise in the peak
stress for the square patch. Similar discontinuous stress distributions with rise towards the edge of
the patch, have been observed in piezoelectric layers near the edge of the electrode (see section
3.6.4).

Figure 3.20 shows the distribution of ay along the x-axis for the square and rectangular
patches. Again this is not a traction on the interface and therefore shows discontinuous behavior.
In this case the peak stress shows an approximately 30% rise for the square case and about 50%
rise for the rectangular case. Notice that the rise in the case of ay along the x-axis is higher than the
rise of a. along the y-axis for the rectangular patched plate. This is due to the fact that the rectan-
gular patch is wider along the x-axis and shorter along the y-axis.

Figure 3.21 shows the distribution of ay along the y-axis. This is a continuous distribution
which monotonically goes to zero since there is no far field stress applied to the plate. The stress
ay in the cases with rectangular patch and elliptical patch is less than that of the square and circular
patch cases. In the case of plate with circular and elliptical patches, the stress is constant in the pi-
ezoelectric and gradually decreases to zero in the surrounding material. In the case of plate with
square and rectangular patches, the stress starts decreasing in the piezoelectric and continue to de-
crease in the surrounding material.

For the discontinuous stress distributions of a. along y-axis (Figure 3.19) and for ay along
the x-axis (Figure 3.2 1) the drop in stresses at the material interface is the same for all cases. How-
ever, the rectangle patch case shows the highest magnitude of a. along the y-axis and the square
case shows the highest stress magnitude of ay along the x-axis. For the distribution of a. along the
x-axis the rectangular patch case shows the highest stress gradient in the piezoelectric patch and
the plate with ellipse shows the highest stress gradient in the aluminum side of the plate. Also the
stresses in the circular and elliptical patches does not show a rise in the stresses as we approach the
edge of the patch, but remain constant throughout the patch. Also, from previous stress plots it can
be seen that the sharp comers in the cases of square and rectangle patches, show a high shear stress.
These factors show that it would be better to use patches that do not have sharp comers, which is
in favor of the circular and elliptical patches. Based on the aspect ratio of the patch, as in rectangu-
lar and elliptical patches, it seems that stresses and stress gradients within the patch are high and
will probably get higher as the aspect ratio increases. The shape of the patches have a direct effect
on the stress field within the patch and in the surrounding material. The choice of the shape of the
patches depends on the desired stress field, however, in general sharp comers should be avoided.

The stress distributions for the plates with piezoelectric patches that are inserted through
the entire thickness of the plate are discussed in the previous paragraphs. The following paragraphs
will discuss stress distributions for the cases in which the piezoelectric layer is embedded in a lay-
ered plate. Stress distributions in different layers in the plate with an embedded piezoelectric layer
are obtained. Figure 3.22 and 3.23 show the distribution of stress a, along the x-axis in layer 1 and
layer 2, respectively. The positive electric field in the thickness direction of the piezoelectric patch
causes it to shrink in the x-y plane and expand in the z-direction. This induces a compressive in-
plane normal stress in the aluminum layer above and below it. However, since the plate restricts the
piezoelectric patch from free shrinking, the piezoelectric layer itself is subjected to tension in the
x-y plane. The inplane compression in the aluminum and the inplane tension in the piezoelectric
layers can be clearly seen in the Figures. The stress a. in the x-direction as seen in the figures ap-
pears to be a discontinuous distribution. In the plate finite element analysis, only integrated trac-
tions need to be continuous in the x-direction.Therefore traction in the individual plies are
discontinuous at the material interface but the integrated tractions through the thickness are contin-
uous. The stresses in the plate are correct at almost everywhere except in the region very close to
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the material interface. The reason behind this being that the plate finite element code assumes that
strains through the thickness vary linearly. However, at the material interface the strains do not vary
linearly and a detailed 3-D analysis is required to get accurate through-the-thickness stresses and
strains in this region. The interaction between 2-D and 3-D stress analysis to obtain stresses around
the material interface will be discussed in the next section. The present discussion is valid for the
study of the stress state in the layers away from the material interface.
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FIGURE 3. 22 Distribution of a, along the x-axis in the aluminum layer (layer 1) for the layered plate with
square patch and with rectangular patch.
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FIGURE 3. 23 Distribution of ;x along the x-axis in the combined layer (layer 2) for the layered plate with
square patch and with rectangular patch.

Figures 3.24 and 3.25 show the distribution of ay along the x-axis. This is a discor 'ous
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distribution at the interface. It should be noted that this stress distribution is not required to be con-
tinuous. The piezoelectric patch is in tension in the x-y plane and the aluminum above and below
it is in compression. Unlike the case in which the piezoelectric patch was inserted through the entire
thickness, these distributions do not show a sharp stress gradient near the edge of the piezoelectric
(see Figure 3.20).
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FIGURE 3. 24 Distribution of a along the x-axis in the aluminum layer (layer 1) for the layered plate with
square patch anJ with rectangular patch.
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FIGURE 3. 25 Distribution of a along the x-axis in the combined layer (layer 2) for the layered plate with
square patch and with rectangular patch
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Figures 3.26 through 3.29 show similar stress distributions of a. and a, along the y-axis
of the plate for the two cases. The distributions distinctly show inplane tensile in the piezoelectric
and inplane compressive stresses in the aluminum layers. Magnitude of the stresses in the alumi-
num layer not directly above the piezoelectric is small for the two cases. The stresses gradually re-
duce to zero away from the patches.
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FIGURE 3.26 Distribution of ax along the y-axis in the aluminum layer (layer 1) for the layered plate with
square patch and with rectangular patch
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FIGURE 3. 27 Distribution of oa along the y-axis in the combined layer (layer 2) for the layered plate with
square patch and with rectangular patch
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FIGURE 3. 28 Distribution of aY along the y-axis in the aluminum layer (layer 1) for the layered plate with
square patch and with rectangular patch

0.8 square

S0 6

1 0.4

~0.2

Z 0

rEctangle
0.5 1 1.5 2 2.5 3 3.5 4

y
FIGURE 3.29 Distribution of a along the y-axis in the combined layer (layer 2) for the layered plate with

square patch and with rectangular patch

The stress obtained for the different cases of the plate with piezoelectric patches that are
embedded in the plate are valid everywhere in the plate except at the material interfaces. The cross-
section planes at material interfaces do not have linear strains through the thickness as assumed by
the plate finite element analysis. If detailed stresses and interlaminar stresses are required a 3D)
analysis must be performed. However such a 3D analysis is expensive and a sufficiently efficient
Quasi-3D) analysis may prove to be useful. The use of Quasi-3D) analysis to determine detailed state
of stress near the material interfaces in the plate will be demonstrated in the following section.
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3.4.2 Combination of Quasi-3D and Plate Finite Element Analysis.

In the previous section we discussed the validity of stresses in the regions around the ma-
terial interface. Plate finite element analysis assumes that the strains in the thickness direction are
linear. It is true everywhere in the plate except around the material discontinuities where the strains
are non-linear. Thus stresses evaluated using plate FEA are not valid in a small region (about two
to three plate thicknesses) around the material interface.

In order to see a detailed stress distribution around the material interface a quasi-3D anal-
ysis is performed.A small region of the plate around the material interface is modeled in the thick-
ness direction. A typical finite element mesh for this section is as shown in Figure 3.30. Notice that
only a quarter of the plate cross-section needs to be modeled because of the symmetry.

z z

,• ~.',

Plate FE x-y-z coordinate system Quasi-3D FEA x-y-z coordinate system

FIGURE 3.30 Quasi-3-D finite element modeling of the plate around the material interface.

The mid-plane strain (es) distribution along the x-axis of the plate is as shown in Figure
3.31. The strain distribution in the vicinity of the material interface, as circled in Figure 3.31 a and
as seen enlarged in Figure 3.31lb,can be used as the uniform strain of 3000 jie on the cross section
of the plate modelled using Q3D in the thickness direction with out affecting the stress distributions
at the material interface[ 12].
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FIGURE 3.31 Strain distribution along the x-axls of the plate from plate FEM.
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The displacements along the x-axis, from the plate model are used as boundary conditions
for the Q3D model. Figures 3.32 through 3.34 show the stresses obtained by Q3D analysis along
the x-axis at the midplane of the plate in a small region near the material interface. The distribution
of the stress a. along the x-axis of the plate in the piezoelectric in the vicinity of the material inter-
face is shown in Figure 3.32. The stress is continuous at the material interface along the x-axis, un-
like the distribution obtained using plate analysis (see Figure 3.23). Figure 3.33 shows the
distribution of ay along the x-axis. This stress is discontinuous along the x-axis. Comparing the
stress distributions from Q3d and plate analysis (Figures 3.23/3.25 and Figures 3.32/3.33), the
stresses away from the material interface do not agree. This is due to the approximate constant
strain distribution(Ey) applied in the Q3d analysis. Figure 3.34. shows the distribution of o. There
is a sharp gradient of the stress a. at the material interface. The piezoelectric patch is under com-
pression and the aluminum is under tension in the vicinity of the interface, because the piezoelec-
tric patch is constrained to expand in the z-direction.The stress reduces to zero in about two times
the plate thickness.

Figures 3.35 through 3.37 show distributions of a., a and oz along x-axis and just below
the surface of the piezoelectric patch. Figure 3.35 shows the distribution of a in the piezoelectric.
There is a sharp stress gradient as z approaches the surfaces of the piezoelectric patch. Figure 3.36
shows the distribution of a, near the surface of the patch. Figure 3.37 shows the distribution of 0,
at the surface of the piezoelectric layer. The distribution of this stress is similar to that observed at
the midplane, however the magnitude is less than that at the midplane. The aspect ratio of elements
are high even in the vicinity of the comer which is due to computational memory limitations.The
exact nature of stress distribution around the comer of the piezoelectric patch needs further inves-
tigation.

Figures 3.38 through 3.40 show the stress distributions for a., a, and a, in the aluminum
layer near the surface of the piezoelectric patch. The stresses show a sharp gradients near the cor-
ner. The stress q. shown in Figure3.38 shows that the stress first becomes more compressive as it
approaches the comer of the patch and then starts to decrease at very near to the interface Similar
behavior for stress ay is shown in Figure 3.39.

The above stress distributions show that plate finite element analysis cannot be used to de-
termine detailed stress distributions around material discontinuities. The strains through the thick-
ness in plate finite element were assumed to be linear which causes invalid prediction of stress
distributions in a small region around material interfaces. Figure 3.41 shows the strain distribution
through the thickness of the plate. Notice that due to electrical loads the piezoelectric shrinks and
thereby is under compressive strains at the material interface. The plate is also under compressive
strains but much less than the piezoelectric. The strain obtained by plate FEA as shown in the Fig-
ure 3.41 is linear. However a through thickness analysis shows that the strains are non-linear in the
thickness direction. Distribution of strain c. through the thickness is shown in Figure 3.42.

The stresses obtained by this analysis are valid only in a region about two times the plate
thickness from the edge of the piezoelectric. Recall that the strain distribution along the x-axis ob-
tained from the inplane model was approximated by a uniform strain of 3000 ".& at and near x=1.0.
This leads to slight inaccuracy in stress values as you go away from the edge at x=1.0. An abso-
lutely true stress distribution valid all over the plate can only be obtained is the strain distribution
obtained from inplane analysis is fed to the Q3D model. For this analysis it is not necessary to cre-
ate a larger model and stress are sufficiently valid around two times the plate thickness from the
edge of the piezoelectric patch.
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SIGmA-ZZ
0.6

0.4

0.2

0 x

-0.2

-0.4

0.998 1 1.002 1.004

FIGURE 3.37 Distribution of oY along the x-axis In the middle layer near the surface of the patch.
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FIGURE 3.38 Distribution of or along the x-axis in the aluminum layer near the surface of the patch.
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Thus we see that detailed stress analysis in problems involving material discontinuities can
be obtained by using a combination of Plate and Q3D finite element analysis. A complete 3D FEA
is not necessary for this type of analysis and is much more expensive and time consuming. A proper
combination of Plate and Q3D Finite element analysis using planer finite elements provides an ef-
ficient method for problems involving material interfaces and delamination in composite laminates.
The present section discussed the use of these methods for analysis of isotropic plates with piezo-
electric layers. The following sections will discuss the use of the technique to analyze composite
laminates and interlaminar stresses in laminated composites. The technique has also been used to
determine discontinuous stress distributions in surface electroded piezoelectric layers with an array
of electrodes and will be presented in the following sections.
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3.4.3 Quasi-3D Analysis of Laminates with Embedded Piezoelectric Layers

This study is focussed on the analysis of smart laminated composite structure with embed-
ded piezoelectric sensor. The presence of the piezoelectric layer alters the mechanical response of
the laminates. A quasi-three- dimensional finite element model is utilized to obtain the detailed
state of stress in the vicinity of embedded piezoelectric layer in a laminated composite. Interlami-
nar stress distributions for a typical quasi-isotropic [+45,-45,0,90]s graphite/epoxy laminate are ob-
tained with the piezoelectric layer placed at different interfaces. The objective of this work is to
determine interlaminar stress distributions in laminates with embedded piezoelectric layers. The
piezoelectric layer is placed at various interfaces and the interlaminar stress distributions were an-
alyzed to determine its optimal placement in the laminate. Since the graphite/epoxy material is
electrically conductive it is necessary to electrically isolate it from the piezoelectric material.
Glass/epoxy plies around the piezoelectric layer is used to achieve this objective. In this analysis,
the effect of the introduction of glass layers in the laminate is investigated in addition to the place-
ment of piezoelectric layer at various interfaces.

A typical quasi-isotropic layup of (45,0,90)s graphite/epoxy laminate as shown in Figure
3.43 is selected for this analysis. Two types of laminates are studied. The first type of laminate

45
0.005f_ -45
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900.75"

45
PZ

0.0052" -45

90

-" 0.75" pol

45
GL
PZ

S~GL
0.0052" -45

90 .

--- ~0.75" --

FIGURE 3.43 Laminate configuration.

consisted of the graphite/epoxy quasi-isotropic laminate with a piezoelectric layer embedded in
it. This laminate is referred to as the baseline laminate in this analysis. The other laminate con-
sisted of the graphite/epoxy laminate with embedded piezoelectric layer surrounded by glass lay-
ers above and below it. The piezoelectric layer is placed at various interfaces in the two different
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types of laminates described above. The material properties are shown in Table 3.3.

TABLE 3.4 Material properties used in analysis.

Property Graphite/Epoxy Glass/Epoxy Piezoelectric

E1 (Msi) 19.30 6.00 9.14

E2 (Msi) 1.80 1.60 9.14

G12 (Msi) 0.85 0.80 3.49

V12  0.30 0.30 0.31

tply (inch) 0.0052 0.0088 0.01

Due to the symmetry in loading and geometry only a quarter of the laminate is analyzed.
The model consisted of 100 elements and 1350 degrees of freedom. Since the interlaminar stresses
are dominant near the edge, th2 region close to the free edge is modelled with a refined mesh. The
region away from the free edge is modelled with a coarse mesh.

The location of the piezoelectric layer in the laminate for the various cases are listed in Ta-
ble 3.4.

TABLE 3.5 Stacking sequences used for the different cases.

Case Stacking Sequence of Stacking Sequence ofLaminate with GlassCBasic Laminate. Ply

I (+45,0,90,PZ)s (+45,0,90,GL,PZ)s

2 (+45,0,PZ,90)s (+45,0,GL,PZ,GL,90)s

3 (+45,PZ,0,90)s (+45,GL,PZ,GL,0,90)s

4 (+45,PZ,-45,0,90)s (+45,GL,PZ,GL,-45,0,90)s

PZ = Piezoelectric Layer GL = 0' Glass/Epoxy Layer

In case I the piezoelectric layer is located at the midplane of the laminate. In case 2, the
piezoelectric layer is located at the [-/0/90/-] interface. In case 3 the piezoelectric layer is located
at the [- /01-45/-] interface and in case 4 at the [-/-45145/-] interface. For all cases a uniform unit
strain is applied in the x-direction.

Figures 3.44 through 3.47 show the interlaminar stress distributions across the thickness
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near the free edge for the piezoelectric layer placed at the various interfaces in the baseline lami-
nates. The stresses are normalized by the applied load. The results indicate that the peak of the in-
terlaminar normal stress occurs within the 90' plies regardless of the location of the piezoelectric
layer. All the peaks of the interlaminar shear stresses, and are at least less than one half of the mag-
nitude of the interlaminar normal stress. Case 2, the (45,0,pz,90)s laminate, has the highest peak of
the interlaminar normal stress. It should be noted that the interlaminar normal stress within the
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FIGURE 3.44 Free edge interlaminar stress distributions through the thickness in baseline laminates with
piezoelectric layer. (ca ;e 1)
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FIGURE 3. 45 Free edge interlaminar stress distributions through the thickness in baseline laminates with
piezoelectric layer. (case 2)
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piezoelectric layer is in tension for all the baseline laminates except for Case 4. Moreover, the

peak of the interlaminar shear stress between the [-/451-45/-] plies reduces because of the pres-

ence of the piezoelectric layer. Figures 3.48 through 3.51 show the distributions of the interlami-

nar stresses across the thickness near the free edge for the laminates with a glass ply adjacent to

the piezoelectric Payer. A similar stress distribution is observed as shown in Figure 3.44 through

3.47. It is also noted that the compressive interlaminar normal stress exists in the region of the [-I

glass/piezoelectric/glass/-] layers.
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The compressive stress in the region of the piezoelectric layer alleviates the possibility of
delamination between the layer and the composite ply. Comparing the stresses in both laminates,
it is found that the laminates with a glass ply slightly reduces the peak of the interlaminar normal
tensile stress through the thickness and the compressive stress in the piezoelectric layer region. It
is well conceived that delamination initiation is governed by the interlaminar normal tensile stress.
Reducing this stress would result in the increase of delamination strength. Therefore, the addition
of glass layer not only helps in electrically insulating the piezoelectric layer but also increases the
delamination strength.

Figure 3.52 shows the comparison of the normalized interlaminar shear stress at the[-/
glass/piezoelectric/-] interface for all the four cases. As shown in the Figure, Case 4 exhibits the
smallest peak of among the laminates. A comparison of interlaminar shear stress, at the same in-
terface is shown in Figure 3.53. The highest peak is obtained in the Case 4 laminate. However, the
peak of is about one third of the peak of the interlaminar normal stress. Therefore the shear stress
will not be a significant factor that causes delamination failure.

From all the figures, it is observed that the interlaminar stresses, and tend to vanish at the
outer surface of the laminate. This is consistent with the stress free boundary conditions. Further-
more, all the shear stresses and are nil at the midplane. The result confirms the structural response
of symmetric laminates.

Free edge stress analysis of laminates with embedded piezoelectric layers was performed.
It is observed that the addition of glass layer, in general, not only helps in electrically insulating the
piezoelectric layer but also reduces the interlaminar stresses. The placement of the piezoelectric
layer does not alter the peak of the interlaminar normal stress regardless of its location. The place-
ment of the piezo electric layer at the [-/45/-45/-] interface results in a compressive normal stress
in its region. It is suggested that the layer should be embedded at the [45/-45] interface without low-
er the delamination strength. in this study only one laminate stacking sequence was considered.
More work needs to be done with various commonly used laminate stacking sequences.

3.4.4 Response of Piezoelectric Layer Due to Surface Electrodes

An element of piezoeleciric medium of symmetry of 6mm (a piezo-ceramic polarized in
the z-direction) and infinite dimension in the x and y directions as shown in Figure 3.54 is used to
study the stress distributions. The material used in this study was Piezoceramic G 1195 with the ma-
terial properties listed below in Table 3.6

The electroelastic field in the piezoelectric layer z<h is excited by a periodic array of infi-
nitely thin strip electrodes deposited on the surfaces z = h and z=-h. Each electrode on the lower
surface is placed exactly below th! upper surface counterpart, the potential of the two being exactly
equal in magnitude and opposite in sign. The infinite dimensions of the layer result in a plane-strain
state of stress in the piezoelectric layer.

The problem can be treated by electroelastic theory combined with methods for solving
boundary value problems with discontinuous boundary conditions. However an efficient finite el-
ement technique to solve the above problem can be devised to reduce the complexity of the prob-
lem. Due to complexities in satisfying equations of equilibrium and boundary conditions, exact
solution is not available for these types of problems. Hence finite element technique is used in the
analysis.
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TABLE 3.6 Material properties for the piezoceramic G1 195.

Property Cons. Electric Field Cons. Electric Displacement

E1,E2  63 GPa 71 GPa

E3 49 GPa 85 Gpa

G12 24 GPa 24 GPa

G13,G23 22 GPa 38 GPa

v12,v1 3 ,v23  0.31 0.31

d31,d32  -166 x 10-12 mnV

d33 360 x 10"12 m/V

d15 ,d24  540 x 10-12 m/V

Thickness 254 x 10-6 m

Since the electrodes are placed in a periodic array on the piezoelectric later, a repeating unit
as shown in Figure 3.55 is considered for the analysis. It is conceived that high stress gradient oc-
curs at the region near the edge of the electrode. A fine mesh is used in that area. The material is
constrained at z=0 in the z-direction and at y=O and y=L in the y-direction because of its symmetric
boundary conditions. The finite element load is induced only in the region due to electric charge.
The voltage applied in the model was 100 volt per unit thickness resulting in a 1713 Pa of both ox
and ay for this model

Z Electrode
v Vo vo

y

-Vo -VoN

2L

Piezoelectric strip

FIGURE 3. 54 Piezoelectric strip with an array of electrodes
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FIGURE 3. 55 A repeating unit of the strip for finite element analysis

RESULTS
All the stresses presented here were normalized by the corresponding stress, axo [13].The

stress Oxo is computed as

•o =E 3 9 3 1 [ C3 ER3 ] (93)

In order to verify the finite element result, a finite element model with electric charge over
the entire region is conducted. For this case, the boundary condition at y=L in the finite element
model is set to be free. The stress result was confirmed with the value computed by the above equa-
tion.
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FIGURE 3. 56 Distribution of normalized stress oxx versus y/a
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Figures3.56 through3.59 show the stress distribution at various locations for ox, ooz, and
oyz respectively. It is shown that the normal stresses are discontinuous at y/a = 1 which is the edge
oJ the electric charge region. For the region y/a > 1, the piezo layer was in open circuit. The stress
in this region converges to a constant non-zero value. In this stress gradient zone, crx has a higher
gradient at the outer surface (see Figure 3.56), howevercz has at the midplane surfaces (Figure
3.58)
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FIGURE 3.61 Normalized stress c.,, for various sizes of surface electrodes.

Figure 3.60 shows the normalized axx distribution versus y/a for the case of open and
closed circuit in the region without surface electrode charge. The result indicates that except the
peak value having a slight difference the stress is the same. The difference in the peak value of Oxx
is mainly due to the difference in Young's modulus in the z-direction. For the various sizes of sur-
face electrode under a constant voltage per unit thickness, the stress ,xx remains unchanged as
shown in Figure 3.61. It is interesting that the stress only concentrates in the region of about 2 times
the thickness of the piezoelectric layer. This suggest that a minimum distance of periodical array
of electrode is required without aggravating the stress magnitude.

An analytical method was developed to investigate the response of piezoelectric layer due
to electromechanical loads. Finite element equations were formulated to incorporate constitutive
equations for piezoelectric material into a quasi-three-dimensional finite element model. Response
of a piezoelectric layer with a periodic array of electrodes was used to demonstrate the capability
of the analytical method. The numerical results indicate that a singular stress gradient occurs at the
edge of the electrode region.
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Appendix 3A : Nodal Loads Due to Piezoelectric Stress Tractions.

Consider a plate as shown in Figure 3.62

n(nl~n2)

ds/

FIGURE 3. 62 Plate element showing tractions on the plate.

Tractions on the surface ds are expressed as

The stresses produced due to piezoelectric effect can be seen as traction on the element.
Thus work done due to traction can be written as

W = Ju3TidS+ fuiT, dA = fuajjS uand i-- 1,2,3 j = 1,2 (85

S A S

Expressing the displacements as

oX

u = ui+z85  i= 1,2,3 83 =0 (86)

we get

S S A

Let us take the first term in the above equation. This term is due to the extensional displace-
ments in the s,2,3 directions. The work done is given by

w = JukYdSTs i = 1,2,3 j = 1,2 (8)

S
Expressing the displacements as a function of nodal displacements and the nodal shape

functions, and since the normal vector to the surface S is independent of z, the above expression

becomes
W = fud fjl. o= z'jdA=dt i = 1to3 j=1,2 k = lto9 289)

where i are nodal displacements and Ns are the corresponding shape functions.The integration

of the stresses through the thickness gives us stress resultants R1o in the plate.

W = J kkRojnsdl i = lto3 j = 1, 2 k = 1,to9 (2=)

C
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Differentiating w.r.t the nodal displacements Z'k, the nodal forces due to extensional dis-
placements are

Fi = Jf[kRjjn,1d i-- lto3 j = 1,2 k = lto9 (91)

C

Using Green's theorem the above line integral can be converted to area integral over the
area of the element in the x-y plane.

F LNk ,- SR..

= + JN+fkk.dA i = Ito3 j = 1,2 k = 1 to9 (92)
AA

From the equilibrium equations for the plate the second term in the above equation is zero.
Thus

Fik = f -•k R-dA i =lto3 j = 1,2 k-= lto9 (93)

or expanding the above terms for any index i we get

Fik ak ixNk
Fi =f (J ixk + L Riy) dA i = l to3 k = l to9 (9)

A

Resultants Ri5 can be represented in the conventional resultant notations of plate theory as
N,, NY, Ny, and Q, and Qy as given in eqn. 6 in section 1.2. Thus the nodal loads in the x-, y-, and
z- directions are given by

SaNk aNkN d o
F&= J(= Nz+y N k = lto9

A

aNk aNk
Fy = f (;- Ny + 5- NY) dA k = lto9 (9s)

A

a~'k aNk
Fzk = J(;7 Q,+y QY)dA k= lto9

A

The second term in the expression for work as given in eq.4 represents the work due to
bending loads.

W = fzea~n/S j = 1,2 p = 1,2  (
S

Again expressing the rotations in terms of nodal rotation and nodal shape functions, and
since n, are independent of z, we get

W = fpkkk(Japjzdz n,,dl j = 1,2 p = 1,2 k = lto9

The integral over z represents the moment results expressed by MPj

W = f pkk~kM~jn,'d j = 1,2 p = 1, 2 k = Ito9 (M8
C

Differentiating w.r.t the nodal rotations the bending loads on the element are given by

FBPk = fJNkMPjnjdI j = 1, 2 p = 1, 2 k = 1to9 (99)
C
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Again the above line integrals can be converted to surface integral using Green's theorem

FBPk A f(aXkMjN T.- PJ~dA j = 1,2 p =1, 2  k = Ito9 (1(K0)
A

Using the equilibrium equations the above equation becomes

= j- + NkQP dA j=1,2 p=1,2 k Ito9 (101)
A j

Expanding the above equations for a given p we get

raNk aNk
FBPk = f(;-XM +-y MP, + N*QP)dA p = 1,2 k = lto9 (102)

A

Thus the bending loads on the element are

FB.k = f (;7 M,+;y M.,+NkQZ)dA k = Ito9
A (103)

AFByk = f(;7. xy +a•y My +NkQy) dA k = lto9

Similarly the third term in eq.4 represents the loads due to tractions on the element top and
bottom surfaces.

W = JujajodA i = 1to3 (104)
A

Since the only loads that appear on the top and bottom surfaces are the transverse pressures,
expressing the displacement w in terms of nodal displacements and nodal shape functions, we have

W = Jfi'AdA k = Ito3 (105)
A

Thus the nodal loads can be obtained by differentiating the work w.r.t the nodal displace-
ments

Fzk = fNTokzdA k = lto9 (106)
A

The stresses oi used in the above equations to produce traction on the element are comput-
ed using the strain - electric field relations for a piezoelectric material. Thus

C = Cjjkgd.ktE. (107)

The integration in all the expressions for loads derived above, is carried out over all the
gaussian points in a manner similar to the evaluation of the loads given by eqn. 23. The unnecessary
line integrals are thus avoided.
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Chapter 4.

IMPACT SENSING BY PIEZOCERAMIC PATCHES

Piezoelectric material can be used as sensors and actuators in a smart structure because of
its unique electric properties. Piezoelectric material creates an electric charge when it is contracted
or expanded, and conversely expands or contracts when under an electric field. Control systems can
be designed to use piezoelectric elements to detect the onset of loads by measuring the charge they
create under strains and to then apply a charge to react to the loading.

Previous work in this field has investigated the numerical modeling of structures with pi-
ezoelectric elements and the defl:ctions induced by actuator loadings [1]. Successful damping of
both isotropic and laminated cantilevered beams has also been completed [2,3].

The current work involves numerical simulation of a laminated plate under impact contain-
ing piezoelectric patches using a finite element program. The program uses nine-noded, two-di-
mensional elements based on Mindlin plate theory. Linear constitutive relations are used to
calculate the electric field generated by stains on the piezoelectric patches at nine Gaussian points
for each element. The plate is fixed at opposite ends and impacted at the center with a steel ball.
Two different plates are modeled, both containing AS4/3501-6 laminas and G- 1195 piezoelectric
patches.

Several changes were made to expand the capabilities of the finite element program. These
changes included enabling the program to model more than one layup sequence in the same struc-
ture, simplifying the element layup input format, and calculation of the electric field created by the
piezoelectric elements.

The electric field generated by the piezoelectric elements is dependent on the strains in the
structure. Several cases are analyzed to determine the effect the piezoelectric patches had on the
impact load curve and the global stress levels [4]. Cases are also analyzed with piezoelectric patch-
es in different regions of the plate to investigate the effect of patch location on electric field. The
electric field across individual piezoelectric patches with different sizes and shapes is also investi-
gated.

4.1 Linear Constitutive Relations
The interaction between electrical, mechanical and thermal systems can be derived using

thermodynamic relations. Piezoelectric constitutive relationship between mechanical and electrical
variables (ignoring any thermal effect) produces coupling between Maxwell's equations of electro-
magnetism and the elastic stress equations of motion. The following derivation will describe how
the strain on a piezoelectric element is related to the electric field it produces [5].

The electric field [El is related to the strain {I } by:

[E] = -[h]T{e) (1)

where:

[hi = [g] [pE], [g] = [CE) [d], [p]- = [E0] - [glT[d] (2)

In these equations [ C1] is the ply stiffness matrix for the transversely isotropic piezoelec-
tric material, [d] is the matrix of piezoelectric strain constants and [ElI is the dielectric permittiv-
ity matrix. The format of the mat-ices are as follows:
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El = E2 { E} y (3)

0 0 d3l
0 0 f3l [E11 001

[dI= 0 0 d 33  [eCI = 0l £ 1l (4)
0 d15 0 0 0 E3

dis 0 0
o 0 0

Combining the above equations and solving for only the transverse electric field, the rela-
tion becomes:

E3 = (Cnd31 + C1 2d31 + C13d33 ) (c+Y) + (2C 13d31 + C33 d33)Ez

2Cld'C 2 d 4 3d 33 +C33d33 - C33

In the plane stress formulation e. does not exist, therefore transverse strain can be repre-
sented by:

EZ = S13 (1+ O•yy) (6)

where S,3 is a compliance coefficient and

G.. = ClE.+CC12 eY+ Cl3EZ (7)

1ýYy = cl2cX+ Cll ly + C13C Z (8)

The resulting equation representing the transverse strain is:
S13

Tina = (l -2S1 3CJ3) [ (C11+C12) (£xx+cyr)]

This results in an equation for transverse electric field in terms of only the in-plane strains:
E 3 = 'O'P (EX + Ey) (10)

where:

(C1 d31 + C12d3 S + C10 33 + S13 (C11 + C12) (2C1 3d3l + C33d33)

C = ( 2 21 - SC 13
(

2C,1 d•1 + Cl 2d~l + 4C1 3d3 ld 33 + C33d]3 - £ 33

This constant Cp can be calculated using the stiffness and electric properties of the piezo-
electric material and then later multiplied times the sum of the in-plane strains to calculate the
transverse electric field.

4.2 Finite Element Code Modification
The finite element program SDACLP (Static and Dynamic Analysis for Composite Lami-

nated Plates) was used to model the smart plate. The program was developed at Purdue University
and written in Fortran [6].

Some of the capabilities of the program include anisotropic laminate stiffness calculations,
Mindlin plate elements and impact force calculations. The Mindlin plate elements are important in
that they can account for extension, bending and transverse shear deformation [7]. Although the
plates being tested are thin, including the transverse shear deformation can be important due to the
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large shear loading induced by the impact which is perpendicular to the plane of the plate. Calcu-
lation of the impact force of the ball on the plate is made in a subroutine of the program. The ap-
plied load is a function of the radius of the ball, the displacement and velocity of the ball relative
to the impact node on the plate and the compression of the ball [8].

In order to model a plate with piezoelectric elements in small regions of the structure, sev-
eral changes were made to the finite element program. Because the existing program could not
model more than one layup in a single structure, the program's code was changed so that any num-
ber of layups could be included in a single model. This change included expanding the material
property arrays to include the layup number so that any time the mass, stiffness, or thickness prop-
erties were needed in the program, the values for the appropriate layup were used.

To accommodate more than one layup, the format in the input file was modified. The input
data for SDACLP is arranged in macros which specify the type of data which is being input and the
data values. The MATE macro, which inputs the material properties, was changed to specify the
lamina properties in more than one layup. Table 4. 1 shows an example of the MATE macro format.
The line after the macro name specifies the layup number and total number of laminas in that layup.
The properties of each ply are represented by two lines of data. The two data lines for each ply input
the ply mass density, poisson ratio, Young's moduli, shear moduli, ply number, ply angle and thick-
ness.

TABLE 4.1 Macro MATE

mate
1 2
1.52e-6 0.25 1.41e6 1.02e5 5.10e4 5.10e4 5.10e4
1 90.0 0.071667
1.52e-6 0.25 1.41e6 1.02e5 5.10e4 5.10e4 5.10e4
2 0.0 0.071667

2 3
1.52e-6 0.25 1.41e6 1.02e5 5.10e4 5.10e4 5.10e4

1 90.0 0.071667

1.52e-6 0.25 1.41e6 1.02e5 5.10e4 5.10e4 5.10e4

2 0.0 0.071667
1.52e-6 0.25 1.41e6 1.02e5 5.10e4 5.10e4 5.10e4

3 90.0 0.071667

The macro ELEM, which specifies the node connections for each element, was also
changed to allow for more than one layup. The ELEM macro, as shown in Table 4. 2, inputs the
element layup and node numbering in groups (i.e. 1-4,5-8 etc.). The first column of numbers gives
the first element number for that group. The column of numbers labeled A shows the element layup
for that group of elements followed by the nine nodes for each element. The last column of numbers
specify the numbering increment used for node numbering between consecutive elements. The el-
ement layups can also be specified individually. Label B shows the number of elements which will
have a layup specified separately from the element connectivity data. Label C shows the elements
and layup number assigned to them. The ability to specify the element layup number either in the
element connectivities or separately makes the user's job easier when the layup arrangement will
be changed frequently, as in this work.
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TABLE 4.2 ELEM Macro

elem 2 " B

1 1 1 19 21 3 10 20 12 2 11 18
5 1 3 21 23 5 12 22 14 4 13 18
9 1 5 23 25 7 14 24 16 6 15 18

13 1 7 25 27 9 16 26 18 8 17 18

11 2 of---- C

The calculation of the electric field in the finite element program involves multiplying the
sum of the in-plane strains by the constant represented by equation (12). The in-plane strains is a
function of the midplane curvature of the plate element, and the piezoelectric ply's distance from
the midplane. The information needed for calculating the electric field is included in a newly cre-
ated macro PIEZ. An example of the macro PIEZ is shown in Table 4. 3. The input data includes
the layup number the piezoelectric ply is located in, the ply number, the Young's moduli, Poisson
ratio, piezoelectric strain constants, and dielectric permittivity of the piezoelectric material.

TABLE 4.3 PIEZ Macro

piez

1 5 6.43e5 5.OOe5 0.31 0.31 -166e-10 360e-10 1. 505e-6

TABLE 4.4 Lamina and Piezoceramic Properties

Lamina Properties (S4/3501-6) Piezoceramic Properties (G-1 195)

El 138 GPa 63.02 GPa
E2 10 GPa 63.02 GPa
E3 49 GPa

G12 5 GPa 24.06 GPa
nul2 0.25 0.31
nul3 0.31
rho 1490 kg/m 3  7650 kgm3
d31 -166x102 mI/V

d33 360x10- 12 m/V

e33 1.505x10"8 N/V2

thickness 0.143 mm 0.254 mm

The changes stated above were made to the finite element code written in Fortran and run
on the University of Texas System's Convex C220 computer. Two other versions of the program
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were modified to run on a Sun SPARCstation and a Cray Y-MP. The version of the program on the
Convex was created because of the large storage space available, the Sun version was created be-
cause of unlimited free computer time, and the Cray version was created because of its high speed.
This speed was necessary because of the large number of time steps taken.

4.3 Model Properties
Two rectangular plate models were simulated, each containing the same laminate, impact

conditions, and boundary conditions. The plates contained AS4/3501-6 laminates in a [905/05/
9 0 5]T layup. Piezoelectric material G- 1195 was modeled attached to the top of the laminates. The
stiffness and electric properties of the lamina and piezoceramic plies are given in Table 4. 4. The
rectangular plates were rigidly fixed at the two short ends and impacted from below at the center
of the plate with a 12.7 mm diameter steel ball at 1.8 m/s.

Because of the model symmetry with respect to boundary conditions, cross-plied layup and
applied load, only one quarter of the plate was actually modeled.

Model 1 is one quarter of a 152.4x25.4 mm rectangular plate containing 610 rectangular
elements of dimensions 1.249x1.27 mm. Figure 4. 1 shows the element layout for model I which
represents the top left-hand comer of the plate. The left end is rigidly fixed, the right and lower
sides have symmetric boundary conditions, and the lower right-hand comer is the impact location.
For this model, the longer horizontal direction is considered the principle direction and the shorter
vertical direction is the transverse direction.

2\

I i j I 1 1 1 1 1 1 1 1 11II - I !
1 1 1 1- 1 1' J IIIII11L I M JL% . I I

j . I I f 1 I 1 41: I I

__ H + + ' i , i i • I•

SPiezo- patch locations for Model ia Piezo- patch locations for Model lb* Piezo- patch locations for Model lb ipac point

FIGURE 4. 1 Model 1 Layout, Piezo-patch Locations and Numbering

The shaded regions show the locations of the elements containing piezoelectric plies. The
model was run with these piezoelectric patches near the impact as in Model la and also with the
piezoelectric patches away from the impact as in model lb. Note that because of symmetry, the
three piezoelectric patches for each quarter model translates into twelve patches for the full model.
Model I will be used to show how placement of piezoelectric patches near the impact point can
affect the stress levels in the surrounding elements.

Model 2 is a 406x 188 mm rectangular plate with one quarter of the plate modeled with 520
rectangular elements. Each element has t.e dimensions of 7.8x4.7 mm. The boundary conditions
are the same as for Model 1 and the impact point is at the lower right hand comer of the quarter
model.

Figure 4. 2 shows the element layout for Model 2. As in model 1, the longer horizontal di-
rection is considered the principle direction. This model will be used to show how the electric f
created by a piezoelectric patch changes when the dimensions and position of the patch chanr,, ,.
In this model more than one element will be used to model a piezoelectric patch. The patches will
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be modeled with 2x2, 4x4, 6x6, 8x8, 7x5, 5x7 and a triangular group of elements.

Patches which have an equal number of elements on two adjacent sides will be referred to
as square such as the 2x2 patch in Figure 4. 2. Larger square patches such as 4x4, 6x6 or 8x8 are
centered about the same point. Figure 4. 3 shows the patch layout for the 7x5 and 5x7 patch. Figure
4. 4 shows the piezoelectric element layout for the triangular patch.

mpact Point

FIGURE 4.2 Model 2 Element Layout with 2x2 Piezoelectric Patch

5x7 patch

L LA

7x5 patch

FIGURE 4.3 Model 2 Element Layout with 7x5 and 5x7 Piezoelectric Patches

FIGURE 4.4 Model 2 Element Layout with Triangular Piezoelectric Patches
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Model 2 will also be used to compare the electric field generated by patches of the same
size which are located in different regions of the plate. For these cases, a 4x4 element patch is
moved in the plane of the plate as shown in Figure 4. 5. The seven patch locations are labeled a, b,
c, d, e from left to right across the plate and f, g, c, h, i from the lowest to the uppermost patch.

FIGURE 4. 5 Model 2 Element Layout with Nine 4x4 Piezoelectric Patches

4.4 Model Verification
Several test cases were run to ensure the accuracy of the model results. After the changes

to the program code were made, it had to be checked to ensure that some programming error was
not created in the program. The models which were used to produce results were also checked for
solution convergence.

In order to verify the changes to the stiffness property calculations, several static loading
cases were run. Identical models without piezoelectric patches were run on the original program
and the modified program.* The results showed all the stress, strain and displacement results
matched up.

Two more static test cases were run to show how a local increase in stiffness due to a piezo-
electric patch affects the global stresses. According to St. Venant's principle, a localized change in
stiffness should only affect the localized stresses [12]. One case involved a cantilever plate contain-
ing piezoelectric elements under a unidirectional tensile force. A comparison with a similar model
without piezoelectric elements showed :1hat the stress level between the two models converges
within three element widths. A similar case using a uniform moment showed that the stresses be-
tween the two cases with and without piezoelectric elements converges within four element widths.

The final element mesh configurations for Models I and 2 were found by experimentation
with several different element distributions and element sizes. In order to save on computing time,
some of the earlier mesh patterns were nonuniform with smaller elements near areas of particular
interest such as piezoelectric patches. The results of the nonuniform meshes were inconsistent with
each other and did not match the results of uniform mesh cases. These differences can be attributed
to the variation in wave transmission and reflection as they pass between elements with different
sizes.

In order to reduce on the degrees of freedom of the models and reduce computing time, the
in-plane translational degrees of freedom of the models were constrained. This assumption was
made because the transverse impact loading should not create any significant in-plane translation.
To verify this, a two test cases were run with and without the translational degrees of freedom ac-
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tivated. The results of these cases matched very closely.

The modeling of an unbalanced layup with a piezoelectric ply on one side of the laminate
creates a discontinuity in ply stresses due to the laminate midplane being offset.The laminate mid-
plane is shifted by half the thickness of the piezoelectric element, as shown in Figure 4. 6 (a). To
prevent this, a fake or dummy ply with the same thickness as the piezoelectric ply is added to main-
tain the laminate midplane location as shown in Figure 4.6 (b). This dummy ply is specified to have
a mass density of zero and near-zero stiffness properties (for calculation purposes). In order to ver-
ify that the addition of a fake layer does not affect the results of the model, a layup with a fake layer
on top and bottom of the laminate was compared to a layup without fake layups. The results showed
no differences.

2 2
3 7-13

1 F
(a) (b)

FIGURE 4.6 Lamina Offset Using a Fake Layer

4.5 Results And Discussion
The following section reports on the findings of numerous computer runs involving Models

1 and 2. The results show that a piezoelectric patch near the impact point changes the impact load-
ing and affects the stresses of the entire model. The results also show that the electric field gener-
ated by a piezoelectric element is affected by its shape and location on the structure.
4.5.1 Effect of Piezoelectric Patch Location on Load and Global Strain

Results were obtained for model Ia and lb with different piezoelectric ply thicknesses on
the top side of the laminate. Figure 4.7 shows how the impact load history changes when different
thickness piezoelectric elements are used in model la. The solid line is for the plate without any
piezoelectric elements and the dashed lines are for elements with piezoelectric plies of thickness
of one and two times the Standard piezoelectric ply thickness of 0.254 mm. The impact load slightly
increased when the thickness of piezoelectric patch was increased.This trend was also consistent
in the cases of piezoelectric patches one-half and three-half times the standard piezoelectric patch
thickness. The peak impact load increased about two percent due to the presence of the single stan-
dard thickness piezoelectric ply.
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FIGURE 4.7 Load History for Model Ia
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Figure 4. 8 shows the load history for model lb. The thickness of the piezoelectric patches
had no effect on the impact loading on model lb and all the load histories converged to one curve.
Locating the piezoelectric elements near the impact point in model 1 a has a larger affect on the ap-
plied load than for model lb where the piezoelectric elements are farther away from the impact.
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FIGURE 4.8 Load History for Model lb

For the static force and moment cases, the piezoelectric patches have only a localized effect
on the stresses and strains. However, in the case of impact, the location of piezoelectric patches can
effect the load which in turn effects the global behavior of the structure. Figure 4. 9 shows a three-
dimensional plot of the curvatures kx in the lOx 10 element region near the piezoelectric elements
in model I a. The curvature kX is the negative of the change in slope along the plate's principle di-
rection. The impact point can be seen to increase the curvature on lower right-hand corner of the
plot. The effect of the added stiffness of the three piezoelectric elements decreases the local curva-
ture at the piezoelectric patch locations. The larger curvature of the surrounding areas shows these
elements are more flexible.

kx 10
(lxl 0-3/cm) "7.5 30
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2.5 20
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20
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FIGURE 4.9 Curvatures Near Piezoelectric Elements in Model Ia
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Figures 4. 10 and 4. 11 show kx, along the model symmetry line four elements away from
piezoelectric patch number 1 (as labeled in Figure 4. 1) for models Ia and lb. As with the load his-
tories, the curvatures values vary only when the piezoelectric elements are near the impact point as
in model la. This shows that piezoelectric elements near the impact point can affect the global
strains in the plate by changing the applied impact loading.
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FIGURE 4. 10 Curvatures Four Elements Away From Piezoelectric Elements in Model la
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FIGURE 4. 11 Curvatures Four Elements Away From Piezoelectric Elements in Model lb

There are two noticeable differences between the curvatures four elements away from pi-
ezoelectric element number I in models la and lb. The first difference is the larger magnitude of
curvatures in model la versus lb. This is due to the model 1a curvatu.re readings being taken closer
to the impact point. The curvatures in model lb are farther from the impact point, but more impor-
tantly closer to the constrained ends of the plate. The second difference between the models is the
time lag between the curvature peaks. These peaks occur much sooner in model Ia due to its closer
proximity to the impact point.

Two test cases run show that the change in load history in model I a caused by piezoelectric
elements near the impact is due to both the added stiffness and inertial properties of the piezocer-
amic material.
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4.5.2 Electric Field Variation Due to Piezoelectric Patch Location
Both small and large piezoelectric patches were moved in the plane of the plate to observe

how the location of the piezoelectric patch affected the electric field it generated.
Figure 4. 12 shows the electric field calculated at the center node of the three piezoelectric

patches of model la as numbered in Figure 4. 1. The electric field is produced by a single piezo-
electric ply on top of the [905/05/9051T layup. The moment at the middle of the plate is at its max-
imum negative value and therefore the electric field is at a maximum at the middle of the plate near
patch number 3 and decreases toward the fixed ends. Since patches 1 and 2 are farther from the
middle of the plate, the moment, curvature, and therefore electric field are less than for patch 3. The
electric field for the piezoelectric patches number 1 and 2 are similar due to their similar locations
along the principle direction of the plate.

Field 6 ' s•
Field 
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FIGURE 4.12 Electric Field in Model la due to One Piezoelectric Ply

Figure 4. 13 shows the electric field from the three piezoelectric elements near the middle
of the length of the plate in model lb. The electric field generated from the patches in dhe middle
of the plate is much smaller than the electric field generated near the impact point due to the large
distance from the impact point. Again, the electric field generated by patches 1 and 2 are similar
because of their similar location along the principle direction of the plate. The time lag is clearly
visible in Figure 4. 13 because of the different distances from the impact point to patches 3 or land
2.
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FIGURE 4.13 Electric Field in Model lb due to One Piezoelectric Ply
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Figure 4. 14 shows the electric field generated by the top piezoelectric ply in a layup with
piezoelectric elements on both the top and bottom of the laminate. In comparison, with Figure 4.
13, the electric field for a laminate with two piezoelectric plies is simply a scaled down version of
the electric field for one piezoelectric ply. This difference is a result of the added stiffness of the
extra piezoelectric ply which reduces the deformation and curvature of the piezoelectric elements.
The waviness in the electric field curves for model lb in figures 13 and 14 comes from the trans-
verse curvature ky while the overall shape of the electric field curve comes from kx. The waviness
is not clearly visible in model 1 a because of the large magnitude kx which dominates over the effect
of k.

1.5
Field
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FIGURE 4.14 Electric Field in Model 2 due to Two Piezoelectric Plies

Model 2 was used to analyze the effect of location of a 4x4 element patch on the electric
field it generates. Figure 4. 5 shows the locations of the 4x4 element patches labeled a through i.
The location of the piezoelectric patch along the principle direction of the plate can change the av-
erage electric field output and when the electric field is generated. The location of the piezoelectric
patch along the transverse direction has a less dramatic effect due to the similar distance from the
patches to the impact point.

Figure 4. 15 shows the average electric field in the first 125 microseconds after impact for
the horizontally placed piezoelectric patches 'a' and V'. The electric field for patch 'a' is smaller
because it is farther from the impact. Because patch b is closer to the impact point, it generates a
visible electric field sooner.
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FIGURE 4. 15 Average Electric Field Generated by Piezoelectric Patches 'a' and 'b'
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Figure 4. 16 shows the electric field generated by patches 'c' through 'e'. Once again, the
piezoelectric patch furthest from the impact point (patch 'c') generates less electric field and at a
later time than the patches closer to the impact point. Patch 'e', which is closest to the impact point,
begins generating electric field well before the other patches and at a much larger magnitude.
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FIGURE 4. 16 Average Electric Field Generated by Piezoelectric Patches 'c' Through 'e'

The elastic wave created by the impact takes a finite amount of time to travel between the
impact point and the piezoelectric patch. Because of this, the time from impact until some nominal
value of electric field is generated is directly related to the distance between impact and sensor. Fig-
ure 4. 17 shows the time necessary for the piezoelectric patches to generate a minimum average
electric field of 0.002 V/cm. This demonstrates that the time is directly related to the distance from
the impact point. The five data points are fitted to a least squares linear line through the origin.
Since the cross plied layup does not have an equal number of 0 and 90 degree plies, the waves travel
at different speeds in different directions. This accounts for some of the variations about the least
squares line.
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FIGURE 4.17 Time Between Impact and Generation of 0.002 V/cm Average Electric Field

Figure 4. 18 shows the average electric field for the piezoelectric patches f, g, c, h, and i
which run transverse to the length of the plate. As shown in Figure 4. 5, patch 'f' is the lowest patch
and 'i' is the uppermost patch. Figure 4. 18 shows that the piezoelectric patches closest to the im-
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pact point generate more electric field. The lag time from the impact wave traveling along the plate
until it induces an electric field is also clearly visible.
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FIGURE 4. 18 Average Electric Field for Piezoelectric Patches f, g, c, h, and i

4.5.3 Electric Field Variation Due to Piezoelectric Patch Size and Shape
Several cases with square piezoelectric patches were run to find the relationship between

patch size and the average electric field generated. The patches for these cases were far enough
from the impact location so that they did not affect the impact load history.

Figure 4. 19 shows the average electric field generated by 2x2, 4x4, 6x6, and 8x8 element
patches. These square piezoelectric patches were centered about the same point as shown in Figure
4. 2. The trend in the plots demonstrate that as the size of the piezoelectric patch grows, the average
electric field it generates decreases. This decrease is due to averaging out oscillating waves of elec-
tric field. Larger piezoelectric elements are able to average more waves at the same time and there-
by reduce the average electric field generated. This wave averaging will be discussed in more detail
later.

Field 0.04,
(V/cm) 0.02- Piezo Patch Size

0 20 4'0 60 -1160 i 4x4-

-0.02

-0.04 x6 -

-0.06 8x8

-0.08

-0.1

time (microsecs)

FIGURE 4. 19 Average Electric Field for Square Piezoelectric Patches

Several cases were run with different patch shapes covering approximately the same
amount of area. The element shapes were 5x7, 6x6, 7x5 and triangular as shown in figures 2, 3 and
4. The loading curves for these four cases were identical, ensuring that the piezoelectric patch
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shape was not affecting the impact force. The four patches were centered about approximately the
same point on the plate.

Figure 4. 20 shows the average electric field generated by the four patch shapes. The gen-
eral trend seems to be that the patches which are longer along the principle direction of the plate,
such as the triangular patch which is 8 elements long, generate a lower magnitude electric field.
The short patches, such as the 5x7 patch which is 5 elements long, generate more electric field. This
again, is due to the larger patches being able to average the oscillating electric field over more
waves.

Field 0.03
(V/cm) Piezo Patch Shape

0.02 5x7

0.01 Wx/ -x6

0 20 4'0'60- - -O J20,

-0.01

-0.02

time (nmcrosecs)

FIGURE 4.20 Average Electric Field for Different Shaped Piezoelectric Patches

4.5.4 Electric Field Across Piezoelectric Patches
As explained before, the distance between the piezoelectric patch and impact point affects

the magnitude of the electric field generated and the time at which it is generated. This section will
used three-dimensional plots to show how the electric field moves across the piezoelectric patches.

Figure 4. 21 shows ten plots of the electric field generated across the 4x4 element piezo-
electric patch in model 2. The ten plots are taken at 10 microsecond intervals from 30 to 120 mi-
croseconds after the time of impact and show the electric field in V/cm. Figure 4. 21a is 30
milliseconds after impact and shows that no electric field has been generated at this time. Figure 4.
21c shows a slightly negative electric field being generated at the lower right-hand comer of the
piezoelectric patch. This comer of the patch is closest to the impact point and experiences the
strains created by the impact first. As more time elapses, visible waves of positive and negative
electric field begin to grow and move along the length of the patch. Note that the electric field waves
are not aligned along the length of the patch but are moving radially away from the impact point.

Figure 4. 22 shows the electric field plots for the 7x5 element piezoelectric patch. The roll-
ing motion of the electric field is more clearly visible in these plots. Since the 7x5 element patch is
longer in the principle direction of the plate, it can hold more waves of electric field than the 4x4
patch. Because the waves oscillate about the 0 V/cm axis the more waves that are included in the
patch resalt in a lower average electric field across the patch.

The electric field plots for the 4x4 element match up well with the middle of the 7x5 electric
field plots because of their similar location on the plate. This demonstrates that the electric field
does not tend to vary near the edges due to the different material properties of the surrounding
layup.
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FIGURE 4. 21 Electric Field Plots for 4A Element Piezoelectric Patch
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Figure 4. 23 shows a 4x4 element patch in a 105/905/051T layup. This layup was modeled
in order to observe the effect of layup sequence on electric field. The magnitude of the electric field
is the same of for the 19 05/05/9051T layup but the waves have a longer wavelength and are oriented
at a larger angle from the principle direction of the plate. The waves change direction due to the
transverse direction of the plate being more flexible this layup.

4.6 Conclusions And Recomendations
Piezoelectric patches close to the impact point were found to slightly increase the impact

load and subsequently increase the entire plate stresses. The time from impact until the electric field
begins to become nonzero was found to be proportional to the distance between the piezoelectric
patches and the impact point. Use of this data could help in being able to pinpoint the location of
an impact with several piezoelectric patchcs.

The size and shape of piezoelectric patches was found to affect the output voltage readings.
The elements which were short in the principle direction of the plate tended to read higher values
than longer patches which averaged out oscillations in the electric field.

There is still a considerable amount of work left on this project which involves more chang-
es to the finite element program and verification of the current results. The next step in the pro-
gram's evolution should be the addition of piezoelectric actuation and development of a control
loop to be able to lower lamina stresses. Plate impact tests should also be run to verify the program
results. Both plate models were sized for existing test specimens at the University of Texas at Ar-
lington.
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Chapter 5.

IMPACT LOCATION ESTIMATION

Monitoring a structure for an impact event is important in many engineering applications.
For example, the maintenance of a space platform requires knowledge of the severity and the loca-
tion of the impact event in real time. Impact detection techniques are also required in smart struc-
tures. There is a vast amount of research literature which has concentrated on nondispersive waves.
These waves do not change their shapes as they propagate. Consequently, it is easy to keep track
of the waves in space and time. A more complicated range of problems arise when the waves are
dispersive. The ability to identify the waves as they propagate is difficult because the phase speed
is frequency dependent.

Holms (1974) showed that the measurement of time delays and attenuation factors by cor-
relation techniques offers a useful complement to the measurement of the frequency response in
system characterization. The technique is not useful in obtaining the origin of a dispersive signal.
Recompression of the dispersive signal by a time varying pulse-compression filter to give a sharp
arrival time is discussed by Booer (1977) and Brazier-Smith (1981). The scheme is based on the
conversion of the frequency transform of the signal to a wavelength transform as originally intro-
duced for imaging faults in coal seams by Booer (1977). This method can not tell the absolute po-
sition but if there exist multiple reflections then the distance between the boundary can be told.
Whiston and Jordan (1984) and Whiston (1984) presented a different approach. First an estimate
of a position is obtained by the transient duration. This estimate is refined successively until the
reconstructed force has no significant negative portions. The phase difference in signals recorded
at two points to locate the impact source is used by Doyle (1987).

The goals of this research are to find the distance of the origin of the signal from the re-
cording site and the magnitude of the pulse at the origin. The dispersive signals from the measure-
ment sites and the dispersive relations for the medium are the only two known conditions. Three
approaches for achieving the above-mentioned objectives are presented. These three methods are
all based on the Fast Fourier Transform (FFT) and its inverse. Two methods are based on the for-
mulation presented by Whiston (1984) and Doyle (1987).

5.1 Dispersive Signal Analysis
Consider the 1 -D wave equation.

BFa= M (1)

a is real and positive. Assume Ce(*'÷) is a solution of the wave equation. Substituting in eq. 1,
we obtain,

(-k +a'2)C = 0 or k = ±oa (2)

and, therefore, the general solution is,
(X, 0 = 7 i~~~~~e+Ce Jfex =is VC1eiW(@z+ ) + IC2 i ex)

u xt) = _[C'- + C2I- = ,"") (3)

which corresponds to the initial disturbance moving to the left and right, respectively. The phase
speed is constant.

x a 1C =- =- =-- (4)
t a k
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A signal wl'ose frequency components travel with constant phase speed is called a nondispersive
signal. The nondispersive signal maintains its shape as it moves.

Consider the differential equation of motion of an Euler beam,
eu. pA i•l

•-•+ = ocs>

where u is transverse displacement, p is mass density, A is cross section area, E is Young's
modulus, and I is moment of inertia. Assume Ce'<+'+") is a solution of the wave equation. Substi-
tuting in eq. 5, we obtain,

k = ±a=IG or ±iac 0 G

where,

a=( E)

and the phase speed is given by

c-- a 0) ()k a

The phase speed depends on the frequency. The original signal distorts as it travels because
the frequency component of the signal travels with different phase speeds. The signal is considered
dispersive when its phase speed is not constant with respect to frequency.

5.2 Moving Window Approach
If the arrival time difference between frequency components is known, the dispersive dis-

tance can be obtained by utilizing the phase speeds of frequency components and the arrival time
differences. The information about the relation between frequencies and arrival times can not be
obtained by using the power spectrum analysis of the dispersive signal. However, if the signal is
divided into small windows, the power spectrum of each small window differs from other small
windows. Small time windows can be overlapping or adjacent. The time difference between win-
dows in conjunction with the information about the variation of the power spectrum can be utilized
to estimate the arrival time difference between distinct frequency components of the signal.

Let us consider a flexural signal in a Euler beam. The frequency components oa and W.,,
arrives at the sensor location at t, and t. 1 , respectively. The location of the origin of the signal can
be obtained by using eq. 8.

= =c,ý 1W. t.+
At (9)

X"
a

Where, A: = ÷ , - t.. Only the time difference between the arrival of two frequency components
is sufficient for estimating the origin of the signal, as it is evident from eq. 9. The relative arrival
time of a frequency component with respect to the other frequency components is estimated by
comparing the amplitude of the power spectrum of the component in all the windows. The fre-
quency component is assumed to arrive in the window in which its amplitude attains the pre-set
level for the first time. Therefore, the time difference between windows plays an important role
in estimating the origin of the signal. The minimum time difference between the non-overlap-
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ping windows is the window size. The arrival time difference between frequency components
could be small compared to the window size. The only way to reduce the time difference be-
tween the non-overlapping windows is to reduce the window size. If the window size is reduced,
the bias of the power spectrum increases and this reduces the accuracy. On the other hand, the
time difference between the overlapping windows can be reduced by increasing the overlap-
time. The window size remains the same, so the bias of the power spectrum does not increase.

4-

0-

-2-

-3 -

I-4 I I I 1 I -

0 0.2 0.4. 0.6 0.8 1

Um(sec.)

FIGURE 5. 1 Artificial Dispersive signal

Figure 5. 1 shows a hypothetical dispersive signal. A higher frequency sine wave is super-
imposed on lower frequency sine waves after every 0.1 sec. time interval. This simulates the arrival
time difference of 0.1 sec. between frequency components. 200 points (0.2 sec.) of the signal
shown in Figure 5. 1 are taken for each small window. In order to increase the resolution of the
power spectrum of the windows, 200 data points are appended by zeros up to 1024 points in each
small window. These data are multiplied by Dolph-Chebshev data windows and then the power
spectra are estimated for each window. The overlap-time is 0.175 sec. Therefore, the time differ-
ence between the overlapping windows is 0.025 second.

The power spectra of the small overlapping windows are shown in Figures 5. 2 to 5. 7. The
amplitude of the second frequency component attains -5 db (preset level) in the second window
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shown in Figure 5. 2. The amplitude of the third frequency component attains the pre-set level in
the sixth window shown in Figure 5. 7. The arrival time difference between two consecutive fre-
quency components is the time difference between four consecutive windows that is 0.1 sec. This
is an accurate estimate of the arrival time difference used in constructing the signal. The distance
from the origin of the pulse to the recording point can be calculated by using the dispersion relation
for the medium.
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FIGURE 5.2 The first overlapping window (0-200 point of the artificial dispersive signal)
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FIGURE 5.3 The second overlapping window (25-225 point of the artificial dispersive signal)
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FIGURE 5.4 The third overlapping window (50-250 point of the artificial dispersive signal)
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FIGURE 5.5 The fourth overlappin2 window (75-275 point of the artificial dispersive signal)
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FIGURE 5.6 The fifth overlapping window (100-300 point of the artificial dispersive signal)

5.3 Phase Difference Approach
This method is based on the technique presented by Doyle (1987). The relationship be-

tween the phase and the distance from the origin is utilized in this method. Fourier transform of
signals can be obtained easily by using a FFT algorithm. The phase of the signal is deduced from
the transform signal. In the case of a Bernoulli-Euler beam, the relation between the phase and the
position is expressed as:
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=--1 + 0. - k.x
i# io iae EiINX k2A +jikhz hrxj -1kx (10)

Cme = Co.e * [D.e ml e =k.A.[I÷ie e-]e

where €, is the phase of the nth frequency component of the strain signal, ýo, is the initial
phase and 0, is phase of the spatially damped vibration mode. Signals from two locations are used
to eliminate the initial phase. The distance between the recording points and the origin of the signal
can be deduced from eq. 1.

X, +X 2 = L
1. 1 d

X1 = 2 2 dk. I (O 1 - ý2.) - (0I - 2)] (11)

L I d
x2 = j + 5-- [ (,.1 - *2.) - (elm- 02.) ]

Where L is the absolute spacing between the recording points. A good estimate is obtained
for 0 by assuming a x. An iterat~ve scheme is used to improve the guess for the signal origin by
improving the estimate of 0 at every iteration step.

5.4 Reconstruction Approach
This method is based on the technique presented by Whiston (1984). First an estimate of

the impact point is obtained by the arrival time difference between the maximum frequency and the
minimum frequency. This estimate is refined successively until the reconstructed signal has no sig-
nificant negative portions. Timoshenko beam theory is utilized in this method. The high frequency
components of the signal arrive first followed by the lower frequency components. Because phase
speed c (co) asymptotes to c, the highest phase speed is assumed as c, and the lowest is assumed
as c(o00).

x .Xc. tw- •oo(12)

Where t, is the arrival time for the maximum frequency component and rt. is the arrival
time for the chosen minimum frequency component.

T, = t4o- ts (13)

Where r, is the arrival time difference between the maximum frequency and the minimum
frequency. The distance of the origin of the impact point x is expressed as

S- ' 0(14)
c.,- c (0)0

This initial estimate is successively refined to get a single impact pulse at the origin.
An impact force is assum.-d as a concentrated force at the point xo: i.e.,

f(x,t) = N(t)8(x-xo)
where 8 denotes the Dirac Delta function and N(t) denotes an arbitrary impact force-time histo-
ry. It follows that

.. TV (0)) •-lkz °
f (k, o))= (2n) 6)

The expression of T can be written in terms of X [5],

N (ca) = T(x,Co) (Xo) (1,)
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where T(x, () is the spectral transfer function at distance x away from the origin of the impact

force, X (x, (o) is the transfer function of the acceleration field A (x, t) &(X, t) at distance x

away from the origin of the impact force.
If the distance of the origin is known, equations (15-17) can be used to reconstruct the im-

pact force. The formulation for obtaining the transfer function and estimating the distance of the
impact point from the recording point is presented for the case of a transverse impact of a beam.
Timoshenko beam theory is utilized for this purpose.

The equation of motion for the Timoshenko beam is:

I Cv(4 v it =1 f 4 0 Jf

CO 9.i' ý2 c2PYY G_ P

where y is a constant describing the distribution of shear force across a cross-section, I is mo-
ment of inertia, p is mass density, E is Young's modulus, G is shear modulus, A is cross section

E 0 G)
area. Co and c, are defined as (E) and (-- , respectively. Taking successive Fourier trans-

p p
form of eq. 18 to the frequency domain and then to wavenumber domain, we obtain,

S2 1 2- + _A G f (19)
C,•

where

v (k, o,) = (2n) "2f-J [(2,) "f•fv (x, t) d:,,] ikdx

f (k, o) = (2n) -'2- [(2n) 1/flJ(x, t) e7'd : (iO)

Eq. 21 yields a particular solution for i (x, co) by taking inverse Fourier transform of eq. 19.
22

+ C kA -ý<x,co> = 2)-y _ Fl- °"AG 2 .0R 0 xA(1

Substituting eq. 16 into eq. 21 yields,

i (X,) ) =l •+ G e ____A (22)

•(x. () (a)) Fl yAG -'.- + I TAG e-ik.l•-4 (23)
02 2k.(k!_k2) 2k,(k. - k2,)

where
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+2 4 c'+2) ±I[((c2,+c2) 2+4Ac 5 1

k 2 (0)) =CU 2coc,

Eq. 23 is inverted to obtain an expression for R in terms of i (x, w) . In some cases, it may be use-
ful to replace the displacement field i (x, co) by the acceleration field. Substituting the Fourier
transform of A (x, t) in eq. 17 and comparing with eq. 23, the expression for T(x, co) is written as,

T(x, ct) = 1(25)[F1 yA G -ik.Ix-z4 Fp1 +YAG -ik~jzxc2 + 2k22)
2k. (k!-k 2k.(k!

In practice the k. can be neglected if Ix-xo z 0.1 m, so the expression for T(x, co) is simplified as,

"(x, 0) = -,2ic-k (k!-•k•) eik.l-x°l (26)

[i+ 
2J }

5.5 Computer Simulations
The impact force f(t) for the purpose of simulation is given by the eq. 27,

16P(-s 1 ) (t-fr)2 fI:t1,c+t(
f (t) t 4tz t;c t

0 otherwise

where P defines the peak value and r is the duration of the applied force. t, is defined as the time
by which the signal is shifted to the right in the window. The impact force history is calculated
for the following values of the parameters.

P= I KN

= 625g•s

t= 800At

The dispersive signal at 20cm and 40cm from the impact point is obtained by using the Eu-
ler beam dispersive relationship. Each dispersive signal is transformed by using a 4096 point FFT.
The total sampling time used is 40 ms. The A& is total sampling time divided by 4096. This gives a
Nyquist frequency of 51.2 KHz.

5.5.1 Moving Window Simulation
The moving window approach is described in section 5.2 with the help of an artificially con-

structed dispersive signal with a few discrete frequency components. The real dispersive signal has
a continuous frequency spectrum. The area under a function is equal to the value of its Fourier
transform at the origin. The zero frequency has significant magnitude in the power spectra if the
area under the function is non-zero. The area under the function in the small windows are not zero.
In order to avoid the maximum amplitude in the power spectra occurring at zero frequency, the
function is modified according to the following equation:
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"u (I.)
u () = U (W (28)

Small windows cut the signal abruptly. This introduces spurious high frequency compo-
nents in the power spectrum of the small windowed signal due to the Gibbs' phenomenon (Chen,
1979). This causes the difficulty in estimating the arrival time difference between windows. The
power spectrums of small overlapping windows is shown in Figures 5.7 to 5.9. It is difficult obtain
an unambiguous information from these Figures. It appears that the moving window approach may
be applicable to signals which are highly dispersive. In the present case, if the signal has travelled
long enough distance, the moving window approach may distinguish between the arrival time be-
tween frequency components.
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FIGURES .7 The first window of the moving window approach (0-400 points)
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FIGURE 5. 8 The second window of the moving window approach (50-450 points)
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FIGURE 5. 9 The third window of the moving window approach (100-500 points)

5.5.2 Phase Difference Simulation
The dispersive signal at two locations, as required in this method, is numerically obtained

by taking FFT of impact force (eq. 27) and substituting in the following equation.

eir) , ei 9)

-This simulates record-.d strain history due to the impact force given by eq. 27. The phase
t, at two locations are obtained by taking FFFT of the recorded signals. The first guess of the origin
of the impact point is chosen to be in the middle of the two recording locations. ONs are obtained
by eq. 10. 0. and *. are substituted into eq.1I for every frequency component. The moving average
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method is used to take the derivatives in eq. 2. The distance x, and x2 is never greater than the total
distance L because the impact is assumed to be in between the two recording points. Therefore, all
frequencies where the estimate of the distance exceeds L are not considered in calculating the av-
erage values of x, and x2. Figure 5. 10 shows the estimates of location of the impact point after two
iterations. The exact locations of the recording points from the impact location are 0.2 m and 0.46
m, respectively. The accurate position of the impact point can be obtained accurately after two or
three iterations. Once the positirn is known, the pulse can be determined by the force-strain rela-
tionships given by eq. 29.
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FIGURE 5. 10 Estimates of the inpact point after the second Iteration of the phase difference method

5.5.3 Reconstruction Simulation
As described in section 5.4, the minimum frequency and the percentage of the maximum

amplitude of the signal must be chosen to determine r, (eq. 13). Two hundred fifty hertz and five
percent of the maximum signal are chosen to calculate tl. The arrival time difference between the
maximum and minimum frequency components is estimated as the time between the transient ris-
ing to 5% of the maximum amplitude of the signal and then permanently falling down below 5%.
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The first guess of the distance x is made by using eq. 14. The minimum frequency is assumed to
be 250 Hz. The distance x is used to reconstruct the signal at the first estimate of the origin. The
reconstructed signal should be all positive. If the distance is not accurate, the reconstructed signal
will not be all positive. The iterative scheme is adopted to refine the estimate of the origin.

The distance x will be under or over estimated during the iterative procedure. There are
three rules provided to determine the under and over estimation of the distance. In the first rule, the
numbers of local extrema before and after the absolute extremum are evaluated first. If the number
of local extrema before the absolute extremum is greater than the number of local extrema after the
absolute extremum then the distance is under estimated. If the number of local extrema before the
absolute extremum is smaller than the number of local extrema after the absolute extremum then
the distance is over estimated If the number of local extrema before the absolute extremum is equal
to the number of local extrema after the absolute extremum then the other two rules are activated.

The second rule is used when the numbers of local extremum on both sides of the absolute
extremum are equal. If the valu.- of the before the absolute extremum is greater than the value of
the local extremum after the absolute extremum then the distance is under estimated, otherwise it
is over estimated.

The third rule applies when a constructed signal contains only one extremum which means
the accurate estimate of the ori.in of the impact is made. The iterative procedure is terminated in
this case.

The percentage of the maximum amplitude of the dispersive signal used for estimating cl
is varied from the chosen 5% to bracket the distance estimate. Two consecutive percentages which
give an over estimate and an under estimate are obtained and then successively the difference be-
tween the two estimated distances is reduced during the iteration procedure. The difference be-
tween the over estimate and the ,jnderestimate is reduced in half during each iteration. The number
of the local extrema left of the absolute extremum is greater than the number of the local extrema
on the right in Figure 5. 11 whiich shows a signal at an under estimated distance. Figure 5. 12 shows
the signal at the overestimated distance. These signals are obtained by using 4% and 3% of the
maximum amplitude of the dispersive signal, respectively. Therefore, the distance is between 0.143
m and 0.29 m. After some iterations, the under estimate and the overestimate are very close to the
exact value. Figure 5. 13 shows the results of the under estimate after the sixth iteration where the
distance is 0.1989 m. Figure 5. 14 shows the results of the over estimate after the seventh iteration
where the distance is 0.208 m. After the seventh iteration, the exact distance is bracketed between
0.1989 m and 0.208 m. Figure 5. 15 shows the results after the final iteration. The iterative proce-
dure is terminated by the use of the third rule.

5.6 Conclusions
Three different methods are described to accurately locate the origin of a dispersive signal

in space and time. The moving Window approach is suitable for a highly dispersive signal. The ba-
sic problem arises because of the slow dispersion of the signal. This approach can not be used in
case of a transverse impact of a finite structure member. The phase difference approach can accu-
rately locate the position of the brigin of the dispersive signal. The moving window approach and
the reconstruction approach use the arrival time difference between frequency components. The
limited exploratory examples suggest that the phase difference method is suitable for the intended
application of obtaining the impact location in a small structure.
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Chapter 6.

RESIDUAL THERMAL STRESSES IN SMART LAMINATES

In the future, aerospace structures will be "smart structures". Such structures will have a
network of embedded sensors an& actuators. For example, laminated composite plates with embed-
ded piezoceramic patches have been proposed as smart skins for aircraft wings. Typically, piezo-
ceramics have an allowable strain to failure that is one tenth that of most graphite/epoxy
composites. Residual thermal stresses and strains gain importance in designing such composite
laminates. The residual stress field in the vicinity of the edges of a finite size patch in a composite
laminate is three dimensional. This chapter examines the residual thermal stress/strain field in finite
dimensional laminated plates without piezoceramic layers. The results obtained using classical
lamination theory are compared to the results obtained using three dimensional analysis to inves-
tigate the applicability of the classical lamination theory to residual thermal stress problems. The
results of this study are the basis for discussing the placement of piezoceramic patches in laminated
plates.

Raghava et al. (1984) demonstrated a variation of strain through the thickness of a thick
laminated composite. Fulong et al. (1989) experimentally investigated the Coefficient of Thermal
Expansion (CTE) of a composite cube, including edge effects. These studies show a variation in
the planar strain with location through the thickness. Barth et al. (1989), Tsai (1984) and Tauchert
(1989) have utilized closed-form solutions fc, varnous cases of thermally induced strain in lami-
nates. The thermal stress in a sh)Tt fiber composite was investigated by Hatta and Toya (1987).
Bowles (1984) used a two-dimensional finite element method to investigate CTE in laminates. The
effect of element density in finite element modelling of thermally stressed laminates was evaluated
by Crose et al. (1987).

TABLE 6.1 Mechanical properties of the graphite/epoxy used in the analysis

ElI (GPa) 132.7

E22 (GPa) 12.4

E33 (GPa) 12.4

G12 G13 = G23 (GPa) 5.8

V12 =v 13 = v 23  0.3

alI (ram/m OKI -0.45 10-6

a22 (mm/mm OK) 27.5 10-6

a3 (mm/mm 0 K) 27.5 10-6

t (mm) 0.254

6.1 Analysis
A group of simple laminates is selected for the purpose of comparison. These laminates are

[0 4/9 0 4]s, [0 2/9 0 212s, [0/9 0 14s. The residual stress field in the laminates is obtained by assuming
that the laminate's stress-free temperature is 154°C. The stress field is obtained at 24°C. This tem-
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perature history is compatible with the cure cycle that the materials in this study require. Table 6.1
lists the mechanical and thermal properties of the graphite/epoxy composite considered in this
study.

The classical lamination theory assumes a continuous planar shell with small bending dis-
placements. For a balanced and symmetric laminate, with no applied bending stresses, the assump-
tions produce a constant planar strain throughout the thickness of the laminate. This constant strain
is then used to calculate the stress in each lamina (Halpin, 1984). The classical lamination theory
produced no differences in the strain distribution for the three laminates studied. These results are
due to each of the laminates having the same percentage of 00 and 900 plies. These analyses showed
a midplane strain of -3.2449 10' mm per mm in both the X and Y directions for all of the lami-
nates.

The three dimensional analysis in this study is conducted using the ABAQUS version 4.8
finite element analysis code by Hibbitt, Karlsson and Sorensen, Inc. The laminates are typically
modelled as shown in Figure 6. 1. The ABAQUS C3D8 element was used for this analysis. This is
an eight-node linear displacement three-dimensional brick element. In order to obtain an accurate
representation of stress and strair variation through the thickness of each ply, each material orien-
tation is modelled with at leas. two elements in the thickness direction. This is done so that stress
and strain variations through the :hickness of the laminate could be accurately represented.

2.03 mm 8 elnemen
6.35 mm 6.35 mmn

Z 25I-e--- 25eement

FIGURE 6. 1 Typical three-dimensional model used for finite element analysis

In order to ascertain that the finite element analysis provides convergent results and also to
ensure that the thermal stress/strain field is stabilized with respect to the planer coordinates in the
middle part of the laminates, the effect of several model variables is evaluated.

The first variable is the model's physical size. The comparison is accomplished by changing
the X and Y dimensions of the model without changing the number of elements or the dimension
in the thickness direction. As the physical size of the model increased beyond 12.7 mm the X di-
rection strain becomes almost constant through the thickness. The next model variable investigated
is the aspect ratio of the elements. For aspect ratios up to four, the results showed no change. An
aspect ratio of six showed a small variation in the X direction strain. As the final verification of the
effect of the physical size on the measured X direction strain, models of the same physical size are
represented in three different ways. A laminate modelled using four elements in the thickness di-



111

rection is referred to as a four element model. Another model with eight elements in the thickness
direction is referred to as an eight-element model. The third model, referred to as a quarter model,
has the X-y, X-Z and Y-Z planes all defined as planes of symmetry, with the corner nodes falling
on the X or Y axis restrained to only move along the axis. For the four-element and eight-element
models, the physical size is the actual model dimensions in the X or Y directions. For the quarter
model dimension is half that of the physical model size.

As the result of the model variable study, it is concluded that the most accurate model size
was a 50.8 mm model. At this physical size there is no apparent variation in the X direction strain
through the thickness of the model. To achieve this model dimension and minimize the effect of
the element aspect ratio, a quartei model is selected. It should be noted that the X-Z and Y-Z planes
of symmetry can only be used if the laminate being modelled contains only 00 and 90° plies.

6.2 Discussion Of Results
The stacking sequence ccimparison for [04/904]s, [02990212s and [0/9 014s laminates was run

using the 50.8 mm quarter model which was found optimum from the model variable study. Figure
6. 2 shows the results of the comparison. There is no variation in the X direction strain through the
thickness of the laminates at the mid point. However, there is a slight difference in the value of the
strain obtained using three dimensional analysis and the classical lamination theory. The lack of
variation of strain through the thickness of the laminate can be verified by the following analysis:

a 0-.-- [090L•. --4

-10 --
STRAIN IN X DIRECTION Mra/ram

FIGURE 6.2 In-plane normal strain distribution through the thickness of laminates shown sufliciently far
away from the free edges.

Consider a laminated orthotropic plate whose thickness is very small compared to its planar
dimensions. Let us assume that the strain components are not a function of the planar coordinates
sufficiently far away from the edges of the plate, that is e E E , E eE, I , strains are a function
of the Z coordinate only. Using linear elastic constitutive relations, we find that cTm, O,, %, a,,

I, a, stress components are a function of Z only.

Substitute the stress components into the equilibrium equations yield:

a--i- ' 0=1 0; O"Z = 0; ,

which implies that r.= constant, o,,= constant and %..= constant.

Assuming that lateral plate surfaces are traction free (no mechanical loading) implies that:

oIZ = 0; On = 0; On = 0. (2)

Substituting in the constitutive relations, yields E,, = 0, EYZ = 0 and C13E£x+Czar"+ C33E.2 = 0
which implies c,,= constant, c "= constant and c,== constant.
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This shows that the initial assumption is not true. Normal strains are constant and shear
strains are identically zero throughout the thickness of the plate sufficiently away from the edges
(where strains are no longer functions of the planar coordinates). These analytical arguments can
be applied to each layer of the laminate one by one, starting from the surface layer.
6.2.1 Edge Effects

Edge effects will be discussed for [04/904]s, [02/90212s and [0/9014s laminates in this sec-
tion. These laminates are modelled using the quarter model geometry. For the [04/9 0 4]s and [02/
90212, laminates, 25 elements are used in the X and Y directions and eight elements are used in the
Z direction. All models have physical dimensions of 4.06 X 50.8 X 50.8 mam.

The variation of the X direction strain as the distance from the edge increases is shown in
Figure 6.3. The strain shown in this Figure is for the nodes that lie on the X axis of a quarter model.
This represents the midplane strain in the center of the model. The midplane strain is shown for
three different laminates, (04/9 041s, [02/90212s and [0 /9 0 14s, with results of classical lamination the-
ory shown for comparison.

00005* - -

o0.0 m00 . - - 7-

SE .ooio. ,-.---.-- CLASSICAL
0 E -. '-.-- [sojs
POE .0.00150.
o ----- 90s
W -.0002S4-

- ,0030-x 10 20 30 40 5o 60 70 80 90 100

NORMAUZED DISTANCE FROM EDGE x/t

FIGURE 6.3 X-direction strain at the midplane of the laminates with 0* outer-plies.

All three, three-dimensional models converge to the results of the classical lamination the-
ory at a distance of 8.89 mm from the edge of the model. The magnitude of the strain at the free
edge appears to vary in a linear manner with respect to the number of plies of the same orientation
that are located adjacent to one another. The rate of convergence to the classical lamination theory
results varies in the same manner.

Us-

09 3.45

UJ -46.89 1 ---.- ,14.%

-1034 - L L
N 10 20 30 40 50 60 70 o0 gO 100

NORMAUZED DISTANCE FROM EDGE x/t

FIGURE 6.4 Z-direction stress at the first 00190' interface away from the laminate midplane
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The variation of the interlaminar normal stress is also investigated. The interlaminar normal
stress is plotted for the nodes that lie on the first 90P/00 material interface away from the mid plane
of the lamina. For the [04/904]s case, this is the fifth node from the midplane. For the [02190212s and
(0/9 014s laminates, this is the third node from the center. Figure 6. 4 shows the interlaminar normal
stress for the cases studied. Once again the edge effects diminishes with 8.89 mm from the edge of
the model. A high compressive stress can be seen at the edge of the laminate. This stress is com-
pensated for by a tensile stress 2.03-8.89 mm from the edge of the model. The magnitude of the
stress varies in proportion to the number of adjacent similar plies.

In Figure 6. 5 the X-Z shear stress is reported at the same interface as the interlaminar nor-
mal stress. the shear stress shows the same response as reported by Fulong et al. (1989). The shear
stress approaches zero with in four to six lamina thicknesses from the edge of the laminate.

Residual thermal stresses in laminates

S .--------.

co g 13.79

NORMUZEDDISTANCE FROM EDGE x/t

FIGURE 6.5 X-Z shear stress at the first 00/900 interface away from the laminate midplane

The variation of the X direction strain through the thickness of the laminate at the free edge
is shown in Figure 6. 6. The strain at the midplane is equivalent to the strain of a lamina twice the
thickness of the rest of the lamina, due to the midplane symmetry condition used. It can be seen
that the midplane strain of the [04/904]s laminate is the same as the strain of the [0 2/9 021I2s laminate
at the fifth node from the center line. Both of these lamina have two plies of 900 materials at these
locations.

X DE -2 ISTRI

I1 tO 3 0 5 o T o 9 ~
X DIRECTDODISTRANC FRMm/GEMr

FIGURET 6.6 X-direction strain at the free edge shown through the thickness of the laminates with 0f outer
plies
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It can also be seen that at the surface of the models the strains tend toward the strain of an
unrestrained 0 degree lamina. However, the fewer the number of plies in a lamina, the closer its free
surface strains are to the classical approximation. The edge effects seen in the [90/0]s class of lam-
inates are similar to the edge effects seen in the [0/90]s class. The X direction results for the [90/
Os class are identical to the Y direction results for the [0190]s class of laminate. The influence of
the distance from the edge is almost identical. The stresses and strain change sign, as would be ex-
pected when the stacking sequence is reversed. The magnitude of the stresses changes due to the
stiffness of the 0' and 900 material.

The free edge X direction strain for [90/0]s class laminates is shown in Figure 6. 7. At the
surface the strains tend to the strain of an unrestrained 900 lamina. The magnitude of the strain
shows a linear response at the free surface for the one-ply and two-ply layers. The magnitude of
the strain of the four-ply layer is not twice that of the two-ply layer due to its proximity to the mag-
nitude of an unrestrained lamina.

6T

4 SAI- 90 DEG ImuW 2 -: _ 4s- C LASSICAL
0 :.--., - [9O,Als

Oz "2- - [90yo•
-,. • [90/01,p

• 4.5000-3 -3.500*-3 -2.5000-3 -1.5000-3 -5 0(XD-4 $.000e-
STRAIN IN X DIRECTION ram/rmm

FIGURE 6.7 X-direction strain at the free edge shown through the thickness of the laminates with 90* outer-
plies

The X direction strain at the midplane is shown in Figure 6. 8 for the [90/0]s class of lam-
inates which shows similar behavior to the [0/90]s class. In both cases the strains converge to the
value predicted by the classical lamination theory within 8.89 mm from the free edge. However,
the magnitude of the free edge strain is smaller when compared to the [0/90], laminates. This is
caused by the smaller CTE and greater modulus of the 00 material.

.0.00050.0000 ' . . . . . . . . .- - L -

()E o.ooj1o

Z E CLASSICAL
0["g s -[9-- - s

-040020 (90 jj

4000 -0.03× lb 2o 3b 40 50 ,o 70 W Z i
NORMALIZED DISTANCE FROM EDGE x/t

FIGURE 6.8 X-direction strain at the midplane of the laminates with 900 outer-plies
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The interlaminar normal stresses at the 900/00 interface are shown in Figure 6. 9. A tensile
stress can be seen at the free edge of the laminate. This is consistent with the contraction of the 900
plies on the surface of the laminate and the expansion of the 0" plies at the midplane of the lami-
nate.

The X-Z shear stress edge effect, as shown in Figure 6. 10, for the [9010]s laminates dem-
onstrates the same trends as the shear stress of the [0/90]s laminates. In both cases the stress dimin-
ishes within six lamina thicknesses from the edge of the laminate.

It has been shown that for large laminates the in-plane strains do not vary with respect to
the thickness location when observed sufficiently far away from the edges of the laminate. For these
cases, the classical lamination theory predicts an accurate residual thermal stress/strain field inside
the laminates.

0 13.79

W 103U4 -in-

LLI

:: o. ------ [90,/Os

0,o ~ -... ..

a: .3.45-

-. 61- 10 203o40 50 60 70 a 90100
NORMAUZED DISTANCE FROM E•)GE'x/t

FIGURE 6.9 Z-direction stress at the first 90*/0* interface away from the laminate midplane
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FIGURE 6. 10 X-Z shear stress at the first 908/93 interface away from the laminate midplane

The three dimensional analysis has shown that for the laminates studied, the magnitude of
the in-plane strains measured at a free edge is proportional to the total thickness of the adjacent
material with like orientation. Also, the in-plane strains converge to the value predicted by the clas-
sical lamination theory in less than six times the maximum thickness of a single orientation of the
material. The magnitude of the normal interlaminar stress was also proportional to the maximum
total thickness of the adjacent material with like orientation. The analysis also showed that an open-
ing stress at a free edge was compensated for by a compressive stress further away from the edge.
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6.3 Smart Laminate Design Implications
The results of the residual thermal stress analysis presented above implies that the CLT can

be employed to obtain residual stresses in embedded piezoceramic patches of planer dimensions a
few orders of magnitude larger than the thickness dimension. It means that the average residual
thermal stress in a piezoceramic patch is independent of the interface location through the thickness
of a laminate. However, it should be pointed out that the edge stresses, residual thermal or other-
wise, have to be considered for delaminotion initiation analysis.

One method to help the piezoceramic withstand the thermally induced residual stresses
from laminate curing is to modify the CTE of the laminate. This modification will produce a lam-
inate with a CTE that more closely matches the ceramic's CTE. The analysis in this chapter has
shown that, for sensor placement away from the edges of a laminate, the classical lamination theory
may be used to obtain the residual strains.
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Chapter 7.

FABRICATION AND CURING PROCESSES

The fabrication and curing processes for advanced laminated composites have been opti-
mized for the last two decades. Curing processes involve control of pressure and temperature over
the curing time. Recent research in this area has increased our understanding of the curing process-
es and has resulted in real time control of curing parameters (Kranbuehl et.al.,1988). Real time con-
trol of the curing processes has reduced the costs and time associated with a trial and improvement
procedure for thick laminated composites (Tam and Gutowski, 1988).

The fabrication and curing processes for smart composite laminates involve additional pa-
rameters arising from the placement of sensors and actuators. This chapter describes various as-
pects of the fabrication and curing processes for laminates with multiple embedded piezoceramic
sensors and actuators. Graphite epoxy laminates with embedded piezoceramic wafers are discussed
in detail.

Chapin and Joshi (1991)considered residual thermal stresses due to the curing process in
deciding the optimum placement of piezoceramics in a laminate. Shaw et.al. (1990) discussed edge
stress distribution due to the presence of piezoceramic layers in a laminate. Crawley and Luis
(1989) briefly discussed the manufacturing aspects of intelligent structures with embedded piezo-
ceramics. The following is a detailed discussion of fabrication and curing methodology.

7.1 Piezoceramics
The discussion of the fabrication and curing process in the following sections is limited to

the placement of a piezoelectric material known as Lead Titanate Zirconate (PZT). The piezocer-
amic, commercially known as G-1 195, is selected on the basis of some desirable properties such
as curie temperature, relatively high elastic moduli etc. The fabrication and curing processes are
modified to reduce the risk of mechanical or electrical failure to the network of embedded piezo-
ceramics. In addition, it is necessary to minimize the deterioration, if any, of piezoelectric and me-
chanical properties of the sensors and actuators.

7.2 Fabrication
The lay-up and geometry of the structural elements are known at the time of the fabrication.

In addition, the planer positions and through-the-thickness placement of actuators and sensors in
the laminate are provided to the fabricator. Figure 7.1 shows a schematic of a laminated plate lay-
up with multiple piezoceramic wafers. Piezoceramic wafers are placed in cut-outs in a glass-epoxy
prepreg ply. The brass electrodes run on opposite sides of the glass-epoxy ply. This ply with piezo-
ceramics placed in cut-outs is placed between two glass plies to insulate the piezoceramics and
electrodes from the conductive graphite-epoxy plies.

The brass ribbon electrodes (thickness 0.001 inch) cut in a required pattern are bonded to
piezoceramic wafers. Electrodes are bonded to a piezoceramic patch prior to the placement in the
glass-epoxy ply with cut-outs. Echo bond 57C conductive epoxy is used for bonding electrodes be-
cause it does not require the application of heat which can adversely affect the piezoelectric prop-
erties. The bonding epoxy should be applied uniformly. The brass electrodes should cover the
piezoceramic area completely but should not extend over the edges. Electrodes extending over the
edges may short-circuit the piezoceramic wafer. One should also be careful in applying the con-
ductive epoxy to avoid short-circuiting. An uneven application of the conductive epoxy will result
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in cracked piezoceramnic wafers after curing.

S~ - Brass electrode

Piezocerarnic

FIGURE 7. 1 Schematic of a laminated plate lay-up with multiple piezoceramic wafers

ELECTODE PIEZOCERAMIC BONDED
SURFACE

FIGURE 7.2 Brass ribbon electrode patterns, piezoceramic patches and bonding surfaces
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Various electrode patterns tried before an optimum configuration was chosen, are shown in
Figure 7.2. Figure 7.3 shows X-ray radiographs of the laminated panels containing electrode pat-
terns shown in Figure 7.2. The brass electrode configurations are chosen to avoid overlap of reverse
polarity electrodes. Although an insulating glass/epoxy ply is between the electrodes, even in the
case of a cracked glass/epoxy ply, such a pattern will reduce a possibility of sparking. Cut-outs of
the same size as the wafers are cut in the glass/epoxy ply and wafers are placed in the cut-outs with
electrodes running on the opposite sides of the ply. A glass/epoxy ply is placed on each side to en-
capsulate piezoceramic wafers and electrodes to avoid a connection between conductive graphite/
epoxy plies and sensors and actuators. These multiple sensors and actuators encapsulated in glass/
epoxy plies are placed at required locations in a stacking sequence for a graphite/epoxy laminate.
Figure 7.4 shows nine piezoceramic wafers with brass strip terminals in insulating glass/epoxy
plies. The bonding spots are visible in this Figure. An x-ray radiograph of cured laminates showing
cracked piezoceramic wafers as a result of the uneven application of the conductive epoxy is shown
in Figure 7.5. Note that brass electrodes do not cover the whole surface of the wafers which resulted
in cracked wafers after curing. There is no specific requirement on the width of the brass strips ex-
tending out from the wafers to the edges of the laminate. The brass electrodes are chosen on an ad-
hoc basis. They can be replaced by any other type of electrodes.

FIGURE 7.3 X-Ray radiographs showing the electrode configurations in laminated panels with embedded
piezoceramic patches.
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The vacuum bagging procedure is the same as the commonly used bagging procedure. The
procedure may vary depending on the complexity of the structural part. However, extra precautions
should be taken to avoid breaking electrode terminals extending out of the laminate for external
electric connections. Figure 7.6 shows a laminated panel with multiple embedded piezoceramic
patches at various stages of fabrication and vacuum bagging.

la
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f -
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FIGURE 7. 6 A laminated plate with embedded piezoceramic patches being prepared for autoclave curing.

7.3 Curing Procedure
Two curing procedures are tried. The first one is a recommended curing procedure for

graphite/epoxy (AS4/3501-6) laminates of moderate thickness (see Figure 7.7). In our case the
laminate also contains glass/epoxy and piezoceramic wafers (G-1 195). The maximum temperature
and pressure applied in this cycle is 350 degree F and 80 psi, respectively. The 350 degree F tem-
perature is slightly higher ihan one half of the curie temperature. Curie temperature is the temper-
ature at which ceramic lose piezoelectric properties. Piezoelectric properties may deteriorate if the
piezoceramic is subjected to temperatures higher than one half of the curie temperature. Effects of
curing on piezoelectric behavior of the G-1 195 wafer is discussed later in this chapter.

The second curing procedure uses the recommended curing cycle for glass/epoxy laminates
to separately cure glass plies containing piezoceramics (see Figure 7.7). These cured plies are then
placed in graphite/epoxy pre-preg lay-up and cured according to the first cycle. The second curing
procedure almost doubles the curing time, however, it has certain advantages over the first curing
procedure. The second curing procedore minimizes the piezoceramic wafer cracking and shorting
between brass terminals and graphite fibers. The shorting between graphite fibers and brass termi-
nals occurs frequently in the single cure cycle procedure because graphite fiber penetrated the ep-
oxy rich areas of the glassiepoxy pre-preg during co-curing. Cured glass/epoxy plies with
embedded piezoceramics can be screened for cracks in piezoceramics and electric connections be-
fore curing them with the graphite/epoxy lay-up. This results in a higher percentage of undefective
specimens.

The two cycle curing procedure is now routinely used in preparing test specimens at the
University of Texas at Arlington laboratory facilities.
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FIGURE 7.7 Curing cycles for graphite/epoxy and glass/epoxy prepregs.

7.4 Effect of Curing on a Piezoceramnic
Piezoceramic wafers are subjected to the curing cycle's pressure and temperature without

embedding them in a laminate. These wafers are tested to evaluate the effect of the curing cycle on
piezoelectric properties. Electric potential is applied in 10 volt increments. Strain and electric po-
tential is recorded every second. The increment of electric potential is done every ten to fifteen sec-
onds. Figure 7.8 shows the electric potential as a function of time and corresponding variation of
the in-plane normal strain.
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after reversing it to a negative one hundred volts. The other two subsequent tests showed initial
nonlinear behavior which compensated the nonlinear behavior in the reverse potential application.
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FIGURE 7.9 In-plane normal strain induced by the transverse electric field in the uncured piezoceramic
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FIGURE 7. 10 In-plane normal strain induced by the transverse electric field in the uncured piezoceramic
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FIGURE 7. 11 In-plane normal strain induced by the transverse electric field in the uncured piezoceramic
NC4, data-set I.
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FIGURE 7. 12 In-plane normal strain induced by the transverse electric field in the uncured piezoceramic
NC4, data-set 3 and 4
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FIGURE 7. 15 In-plane normal strain induced by the transverse electric field in the uncured piezoceramic
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FIGURE 7.16 In-plane normal strain induced by the transverse electric field in the cured piezoceramic C1,
data-set 1, 3 and 6
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FIGURE 7. 19 In-plane normal strain induced by the transverse electric field in the cured piezoceramic C4,
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Figures 7. 16-7. 20 show response of cured (subjected to curing cycle) piezoceramics to the
electric poential. A quadratic least square fits to the first set of recorded data for uncured and cured
piezoceramic specimens are presented below. Electric field is measured in MVolts/meter and strain
is measured in micro-strain.

IE =- 219.8E- 15.3E2  0< E< 0.525

NCI f = - 37.6 - 245.OE + 181.IE 2  -0.525 < E< 0.525

54.7 - 229.4E - 73.3E2 -0.525 < E< 0

E =-- 122.0E-96.5E' 0< E< 0.525

NC3O - 12.4- 212.2E+ 134.1E2 -0.525 < E < 0.525
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NC4 E - 8.9 - 224.8E + 119.8E2 -0.525 < E < 0.525
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FIGURE 7. 21 Domain reorientation in piezoceramic (NC2...200) when subjected to corrosive electric field



130

Figure 7.21 shows domain reorientation in piezoceramics when subjected to a corrosive
electric field. It appears that curing does not affect the piezoelectric properties permanently. Appli-
cation of the electric field in the poling direction appears to align the domain orientation and there-
fore increase the piezoelectric strain coefficient. The application of a reverse electric field of the
same strength does not seem to deteriorate the piezoelectric strain coefficient to the same extent.
The nonlinear behavior is dominated by domain reorientation rather then electrostrictive proper-
ties.
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Chapter 8.

EXPERIMENTAL CHARACTERIZATION OF SMART LAMINATES

A key aspect of the research described in this report is an experimental verification of smart
laminates. It is essential to demonstrate that the insertion of the piezoelectric patches within the
laminate creates no microstructural defects that may be detrimental to the structural performance.
In order to validate these performance characteristics of the smart laminates a full compliment of
experimental evaluations are performed. Some of the results presented in this chapter should be
considered as typical rather then definite because of the insufficient number of tests performed.
Limited number of tests were performed because of budgetary constraints.

Panels with embedded pitizoceramic patches are fabricated and cured according to the pro-
cedure described in chapter 7. A ,-anel with a piezoceramics patch (2.5 in X 1.5 in X 0.0075 in) in
a cut-out in the middle glass ply of the lay-up [02 Gr/9 0 2 Gr/0 3 G1/902 Gr/0 2 GIT is cured to evaluate
the bonding and fracture due to residual thermal stresses and edge stresses. Figure 8.1 shows a mi-
croscopic picture of a cross sectibn containing piezoceramic edges. The brass electrodes are also
visible in the lay-up seen in Figure 8. 1. A high magnification cross section microscopic picture
(Figure 8.2) clearly shows the conductive epoxy between piezoceramic and brass electrodes. The
quality of bonding is critical to the success of both embedded and surface adhered piezoelectric
patches. The microscopic pictures show that a good quality bonding is achieved between the em-
bedded piezoceramic patches and surrounding glass/epoxy plies. Extensive microscopic inspection
showed no microcracks in the piezoceramic patch, conductive epoxy, electrodes and surrounding
glass/epoxy plies.

FIGURE 8. 1 Microscopic cross section view of an embedded piezoceramic patch.
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FIGURE 8. 2 High magnification microscopic view showing conductive epoxy and brass electrodes

In order to ascertain that the piezoceramic subjected to the curing cycle temperature and
pressure does not have microscopic damage, scanning electron microscope pictures are taken of
the cured and uncured piezocerarnic. The surface of the piezoceramic patches are etched by 10%
hydrofluoric acid, 10% Nitric acid and 80% distilled water by volume. The electron microscope
pictures of uncured and cured piezoceramic patches is shown in Figures 8. 3 and 8. 4, respectively.
These Figures suggest that pie:,oceramics subjected to curing temperature and pressure do not sus-
tain microstructural damage.

5UN
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1~log

FIGURE 8.3 Scanning electron truicvoscope photograph or uncured piezoceramic
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FIGURE 8.4 Scanning electron microscope photograph of cured piezoceramic

8.1 Mechanical Properties Characterization
Hercules AS4/3501-6 graphite/epoxy and 3M S250 glass/epoxy plies are laid up and cured

at the Composite Materials Center autoclave facility at the University of Texas at Arlington. The
fabrication and curing procedure is described in the previous chapter. Square panels (9 inch X 9
inch) are fabricated and cured. The placement of piezoceramic patches in a panel is schematically
shown in Figure 8.5.

7

FIGURE 8. 5 Schematic of the 9 inch X 9 Lich panel showing placement of piezoceramic patches, brass

terminals and test coupon outlines
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The piezoceramic patches are two and a half inch long and one inch wide. They are placed
in cut-outs in a middle glass/epoxy ply of the [02 Gr/ 0 3 GI/ 0 2 Gr] lay-up. The panels are X-ray radio-
graphed to mark the coupon cutting lines accurately so that the cuts do not pass through the piezo-
ceramic patches. Each panel prcduced four test coupons with embedded piezoceramic patches and
three test coupons without piezoceramic patches. The test coupons are of nominal 1 inch width and
9 inch long with one and a half inch tabs bonded on each end. X-ray radiographs are again used to
reject the test coupons with cracked piezoceramics. Strain gages in longitudinal and transverse di-
rection are mounted on each coupon. A Servo-hydraulic MTS machine is used for tensile testing.
Load and strain data are recorded using an automated data acquisition system. The stress-strain
plots for coupons with embedded piezoceramic patches and without piezoceramic patches are
shown in Figure 8.6. All graphite/epoxy plies and all glass/epoxy ply bounds are also shown in the
Figure. The difference in apparent modulus of laminates with and without piezoceramic patches is
insignificant.
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FIGURE 8. 6 Stress-strain plots of coupons with and without symmetrically placed piezoceramic patches
subjected to longitudinal tensile load

The final failure occurs at about 14,000 microstrain which is fiber failure strain in graphite
epoxy plies. The glass/epoxy plies remain intact but the piezoceramic encapsulated in glass/epoxy
plies cracks into small pieces. The failure of graphite epoxy plies is a typical brittle failure with
debonding and matrix failure in the transverse direction. The photographs of the failed specimens
showing a broom-type failure mode are shown in Figure 8.7.

Another set of coupons with and without piezoceramic patches are subjected to incremental
tensile load. The load increments are in 20% of the ultimate failure load. The test coupons are C-
scanned and X-ray radiographed after each load increment. The specimens are subjected up to 60%
of the ultimate tensile load at which extensive transverse matrix cracking near the edges occurred
due to improper placement of the tabs. The X-ray radiographs revealed no cracks in the piezocer-
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amic patches up to 60% of the ultimate load. There is no definite evidence of delamination from C-
scans and microscopic inspection of the edges of the test coupons. Destructive microscopic inspec-
tion of the sequence of longitudinal and transverse cross sections providing definite evidence of
cracks and delaminations has not been done.

FIGURE 8.7 Photographs showing mode of failure of unidirectional laminated composite with embedded
piezoceramic patches

8.2 Impact Induced Fracture
It is well known that a transverse impact by a foreign object creates extensive damage in

the form of matrix cracking and delamination [1-5]. A set of impact tests are performed to evaluate
the effect of the presence of piezoceramic patches on impact induced damage. Initial results indi-
cate that a presence of a piezoceramic patch does not adversely affect the incipient damage due to
a transverse impact. The damage to piezoceramics in the vicinity of an impact is also minimal. Op-
tical microscopic pictures of selected cross sections, X-ray radiographs and ultrasonic C-scans are
employed to characterize the impact damage.

The coupons for impact testing are cut from the panels used to demonstrate the placement
of multiple piezoceramic patches in laminated composites. The base laminate is chosen to be [05/
905/051 graphite epoxy cross-ply. Three glass plies with zero degree orientation with piezoceramics
in cut -outs in the middle ply are placed at each 0/90 interface. The test coupons are 1.5 inch wide
and 9 inch long. Three piezoceraraic patches are placed at each 0/90 interface. Piezoceramic patch-
es are 0.5 inch wide and 1 inch long. The piezoceramic patches are placed at the same planer loca-
tions at two interfaces. The piezoceramic and terminal strips placement is shown in Figure 8.8.
Some Coupons have a different pattern of terminal strip placement but all of them have the same
placement of piezoceramic patches.

An equal number of specimens are impacted at the center of the center piezoceramic patch,
at the edge of the center piezoceramic patch and between the center and left or right side piezoce-
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ramic patch, respectively. A half inch diameter steel ball is used as an impactor. A pressurized air
gun is employed to propel the steel ball to a nominal speed of 30 m/sec. The specimens are clamped
six inches apart.

FIGURE 8.8 Schematic showing placement of piezoceramic patches and terminals at each 0/90 interface of
the base laminate

Each specimen is X-ray radiographed after impact to identify cracks in the piezoceramic
patches. Major cracks in piezoceramics can be identified this way. However, microcracks are hard
to identify because of the placement of piezoceramics at the same planer locations at two interfac-
es. C-scans are produced with the transducer focused at three planes through the thickness. The
scanned planes are the top interface, mid-plane and bottom interface. The C-scans are taken from
both sides producing six scans for each specimen. The C-scans of the base lay-up specimens (with-
out piezoceramic patches) showed the typical delamination pattern. However, the presence of pi-
ezoceramic patches made the interpretation of C-scans for delamination a difficult task. The
observation of C-scans in the vicinity of piezoceramic patches showed less delamination compared
to the base laminates.

All the specimens are cut at selective cross sections and photographed through an optical
microscope. The base laminates showed typical incipient damage due to transverse impact. Figure
8.9 shows a transverse cross section at the impact center. Shear cracks in the proximal plies that
turn in to delamination between 00 glass/epoxy plies and middle 900 graphite/epoxy plies are clear-
ly seen in the cross section micrograph. The flexural crack in distal plies that results into delami-
nation of 90' graphite/epoxy plies and 00 glass/epoxy plies is also clearly visible. Figures 8. 10 and
8. 11 show a transverse cross section at the impact point of a laminate with embedded piezoceramic
patches. The laminate is impacted at the center of the middle piezoceramic patches. The shear
crack in proximal layers cracks the piezoceramic patch and debonds the brass electrodes. It should
be noted that electrodes do not cover whole surfaces of the piezoceramic patches as shown in Fig-
ure 8.8. The flexural crack in the distal layer results in extensive damage to the piezoceramic patch
in the distal side glass/epoxy plie3. Figure 8.12 shows a longitudinal cross section passing through
the impact center. The shear cracks in the middle 90° graphite/epoxy plies and piezoceramics are
visible The piezoceramic patch on the distal side shows flexural cracks in the vicinity of the impact
center. Delamination is restricted to a 900 graphite/epoxy middle layer and 0° glass/epoxy distal
layers.

C-scans and X-ray pictures are also utilized in characterizing the impact induced damage.
These observations support the cgnclusions drawn from the microscopic cross sectional views of
incipient damage due to transverse impact.
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FIGURE 8. 10 Part of the transverse cross sectional view of an impacted specimen containing embedded
piezoceramic patches.
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