
AD-A260 849

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

S
EET

S N FEB 2 3 19930

C

7GR AD%3

THESIS
A DIGITAL HARDWARE

TEST SYSTEM ANALYSIS
WITH

TEST VECTOR TRANSLATION
by

James T. Loeblein

December, 1992

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

93-03648M 11!i1 !I~lI'I 9); ei,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

55

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Progrdam. Femen: No ProjeCl No TaA No Work Unit Accession

Number

11. TITLE (Include Security Classification)

A DIGITAL HARDWARE TEST SYSTEM ANALYSIS WITH TEST VECTOR TRANSLATION

12. PERSONAL AUTHOR(S) James T. Loeblein

73a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To December 1992 109
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Digital testing, simulation, lex, yacc, language translation, test vector

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Digital logic testing occurs in two different test environments, digital simulation and actual hardware testing. A computer aided design (CAD)
tool applies a set of stimulus/response test vector patterns to check the functionality of a digital circuit design. Once manufactured, the chip with
this design is tested by a hardware tester system (i.e. automatic test equipment (ATE)). The ATE performs many tests in addition to the
functionality test. However, the stimulus/response test vector formats used in these two environments are different and, therefore, incompatible
in present form.

This thesis is aimed at two major objectives. First, a system study will be performed on the GenRad- 125 VLSI Hardware Tester System,
including its usage, test capabilities and limitations. Secondly, this thesis addresses the problem of test vector format incompatibility between
the two testing environments. Special UNIX tools, Lex & Yacc, are used to create a software translator which changes the CAD simulation file
into the GenRad-1 25 Hardware Test System format.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

ElUNCLASSIHWEIUNLIMIUD) 1 SAME AS RtPORI13 D1IC UStERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Chin-liwa Lee (408)646-2190 EC/Le

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

A Digital Hardware

Test System Analysis

With

Test Vector Translation

by

James T. Loeblein

Lieutenant, United States Navy

B.S., United States Naval Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1992

Author:
James T. •,eblein

Approved by: V•n-Hwa Lee T~i-v

Herschel Loomis, Second R) •.r

Department of Electrical and Computer Engineering

ii

ABSTRACT

Digital logic testing occurs in two different test

environments, digital simulation and actual hardware testing.

A computer aided design (CAD) tool applies a set of

stimulus/response test vector patterns to check the

functionality of a digital circuit design. Once manufactured,

the chip with this design is tested by a hardware tester

system (i.e. automatic test equipment (ATE)) . The ATE

performs many tests in addition to the functionality test.

However, the stimulus/response test vector formats used in

these two environments are different and, therefore,

incompatible in present form.

This thesis is aimed at two major objectives. First, a

system study will be performed on the GenRad-125 VLSI Hardware

Tester System, including its usage, test capabilities and

limitations. Secondly, this thesis addresses the problem of

test vector format incompatibility between the two testing

environments. Special UNIX tools, Lex & Yacc, are used to

create a software translator which changes the CAD simulation
!Lccesio • F~or7-

file into the GenRad-125 Hardware Test System format. .
NTSCRA&I • -

DTIC TAfj
UnannouncedI 0
Justification

DTIC QUALITY INSPECTED 3

8y
D~istidbution• I

Avdilabifity Codes
SAVdu| aw~dtIor
S.\ v d, I

____________ _ _

TABLE OF CONTENTS

I. INTRODUCTION 1

A. DESIGN FOR TESTABILITY BACKGROUND 1

B. DESIGN TESTING PROCESS 2

C. THESIS OBJECTIVES.. 3

II. HARDWARE TEST ENVIRONMENT 4

A. SYSTEM OVERVIEW (GENRAD-125) 4

1. General 5

2. Rating Characteristics 5

3. Basic System Structure 6

a. Main Assemblies 7

b. Peripheral I/O Devices 8

4. System Software Description 9

a. Operating System 10

b. Utilities 10

B. TEST PROGRAMMING AND EXECUTION METHODOLOGY 12

1. Data Input Phase 13

a. Test Pattern (.tpp) File 14

(1) PINDEFS Section 14

(2) ADAPTOR Section 17

(3) Test Pattern MODULE 17

b. Parameter Specification File 20

iv

(1) Programming Menu Screens 20

(2) ASCII Text File Format 23

2. ASCII To Binary Translation Phase 24

a. Test Pattern Processor (TPP) Compiler 24

b. ASCII to Par (ATP) Compiler 25

3. Test Execution Phase 26

a. Test Execution Menu Screens 27

(1) Debugging Control 29

(2) Execution Control 29

(3) Analysis Control 29

(4) Output Control 30

(5) Datalogging Control 30

b. Results Display Menu Screens 31

c. Input/Output Menu Screens 32

(1) File System Control 32

(2) Screens Configuration 33

4. Test Results Phase 33

a. Pass/Fail Results 34

b. Actual Measurement Results 34

c. Special Functions 35

(1) "Shmoo" Plots 36

(2) "Learn" Function 36

C. TESTING CAPABILITIES SUMMARY 37

1. Functional Tests 37

2. Power Supply Tests 38

3. DC Parametric Tests 38

v

a. Input DC Parametric Tests 38

(1) Iil Test 38

(2) Iih Test 39

(3) Vik Test 39

b. Output DC Parametric Tests 39

(1) Iol Test 39

(2) Ioh Test 39

(3) Vol Test 39

(4) Voh Test 39

(5) Iozl Test 39

(6) Iozh Test 39

(7) Ios Test 40

4. AC Functional Tests 40

5. Contact Tests 40

III. CAD SIMULATION ENVIRONMENT 41

A. SIMULATION OVERVIEW (MENTOR GRAPHICS) 41

1. Schematic Capture 42

2. Test Simulation 43

B. SIMULATION OUTPUT FILE 45

1. Structure 46

a. Time Values 46

b. Pin Labels 46

c. Pin Values 46

2. Design Example (74S181 ALU) 48

a. Circuit Description 48

vi

b. Input Stimulus 48

c. Output Simulation File 49

IV. SOFTWARE TRANSLATION METHODOLOGY 53

A. DISCUSSION 53

B. INTERPRETERS AND COMPILERS 56

C. UNIX TOOLS OVERVIEW 58

D. LEXICAL ANALYZER GENERATOR (LEX) 58

1. Background 58

2. Lex Specification Format 59

a. Rules Section 60

b. Definition Section 63

c. User Routine Section 64

3. Usage 64

E. YET ANOTHER COMPILER COMPILER (YACC) 65

1. Background 65

2. Yacc Specification Format 66

a. Declarations Section 68

b. Grammar Rules Section 70

(1) Symbol 70

(2) Definition 71

(3) Action 72

c. C Programs Section 73

3. Usage 73

4. Flow Control Summary 75

vii

V. TRANSLATOR DESIGN RESULTS 77

A. OVERVIEW 77

B. PROGRAM STRUCTURE 78

1. Main Program (vector map.c) 78

2. Lex Routine (vector map.1) 78

C. PROGRAM USAGE 83

1. Input File 83

2. Command Line Entry 84

D. RESULTS 84

VI. CONCLUSIONS 88

A. SUMMARY OF RESEARCH 88

B. RECOMMENDATIONS FOR FURTHER RESEARCH 89

LIST OF REFERENCES 93

INITIAL DISTRIBUTION LIST 94

viii

LIST OF TABLES

Table I GR-125 RATING CHARACTERISTICS 6

Table II GR-125 VALID TEST PATTERN ELEMENTS 18

Table III GR-125 PROGRAMMING MENU SCREENS

(CATEGORIES) 21

Table IV DEVICE DESCRIPTIONS CATEGORY 22

Table V ANALOG DATA SETS CATEGORY 23

Table VI TIMING DATA SETS CATEGORY 24

Table VII VECTOR TRUTH TABLE CATEGORY 25

Table VIII TEST OPERATIONS CATEGORY 26

Table IX TPP COMPILER (COMMAND LINE ENTRY) 26

Table X ATP TRANSLATOR (COMMAND LINE ENTRY) 26

Table XI TEST EXECUTION MENU SCREENS 28

Table XII GR-125 RESULT DISPLAY MENU SCREENS 31

Table XIII GR-125 INPUT/OUTPUT MENU SCREENS 32

Table XIV PASS/FAIL MODE (REQUIRED SCREEN ENTRIES) . 34

Table XV ACTUAL MEASURMENT (REQUIRED SCREEN ENTRIES) 35

Table XVI "SHMOO" PLOT (REQUIRED SCREEN ENTRIES) . . 38

Table XVII QUICKSIM SIGNAL VALUES 47

Table XVIII QUICKSIM WRITE LIST ENTRY 47

Table XIX 74S181 PIN DESIGNATIONS [from Ref. 8] . . 50

Table XX LEX REGULAR EXPRESSION EXAMPLE 63

Table XXI LEX REGULAR EXPRESSION OPERATORS [from Ref.

9]. 64

ix

Table XXII YACC DECLARATION ENTRY 69

Table XXIII YACC DECLARATION SECTION KEYWORDS [from Ref.

9]. 69

Table XXIV YACC GRAMMAR RULE ELEMENTS 72

Table XXV "vector map.l" COMPILATION STEPS 80

Table XXVI "vector-map" COMPILATION STEPS 83

Table XXVII "vectormap" COMMAND LINE ENTRY 84

Table XXVIII INCLUDE STATEMENT FOR GR-125 .tpp FILE 85

x

LIST OF FIGURES

Figure 1 GR-125 Overall Structure Layout [from Ref.31 7

Figure 2 GR-125 Main Assembly Structure [from Ref. 3] 8

Figure 3 UniPlus+ Operating System [from Ref. 3] 10

Figure 4 UniPlus+ Utilities [from Ref. 3]. 11

Figure 5 GR-125 Testing Procedure Phases 13

Figure 6 GR-125 Testing Methodology 15

Figure 7 74S04 Hex Inverter .tpp File 16

Figure 8 GR-125 Tester Channel Assignment[from Ref.5] 17

Figure 9 GR-125 Sample Test Vector Pattern 19

Figure 10 GR-125 "Shmoo" Plot Example [from Ref. 4] 36

Figure 11 CAD Design/Simulation Process 42

Figure 12 QuickSim Input/Output Files [from Ref.7] . 44

Figure 13 QuickSim List Window Display [from Ref. 7] 45

Figure 14 74S181 ALU Connection Diagram 49

Figure 15 74S181.misl Stimulus File (partial) 51

Figure 16 74S181.1ist Simoutput File (partial) . . 52

Figure 17 Test Vector Translation Procedure 55

Figure 18 Compiler Processing Stages 57

Figure 19 UNIX Toolkit Hierarchy 59

Figure 20 Full Lex Specification Format 60

Figure 21 Lex Specification Rule 61

Figure 22 Lex Usage Steps 66

Figure 23 Parsing Description [from Ref. 9) 67

xi

Figure 24 Full Yacc Specification Format 68

Figure 25 Yacc Grammar Rule Format 70

Figure 26 Yacc Usage Steps 73

Figure 27 Lex And Yacc Usage Summary [from Ref. 9] 74

Figure 28 Lex And Yacc Flow Control [from Ref. 9] 75

Figure 29 "vector map.c" 79

Figure 30 "vectormap.l" Code 81

Figure 31 "74S181.vout" File 87

Figure 32 Translation Summary Without WAVES 91

Figure 33 Translation Summary With WAVES 92

xii

ACKNOWLEDGEMENTS

A special note of thanks goes to the Naval Maritime

Intelligence Center whose sponsorship made the GenRad-125

Digital Tester available for this research. Additionally,

without Mrs. Janet Hooper's material and administrative

support surrounding this GenRad-125 Tester this thesis could

not have been possible.

I also wish to recognize John Sweeney, John Groat, and

Damon Baker from the Nuclear Effects Directorate at the White

Sands Missile Range. Their patience and knowledge provided

tremendous insight into the operation and capabilities of the

GenRad-125 Tester.

The guidance, direction, and constant encouragement

provided by Dr. Chin-Hwa Lee, my thesis advisor, was

invaluable to the completion of this thesis. Furthermore, Dr.

Herschel Loomis' constructive review greatly enhanced its

readability.

Finally, I wish to thank my wife Carol for her love and

support during the entire thesis process. She helped keep a

smile on my face.

xiii

I. INTRODUCTION

A. DESIGN FOR TESTABILITY BACKGROUND

Electronic circuit testing has become an extremely crucial

step in SSI/LSI/VLSI digital circuit design and manufacturing.

In the past, digital component testing was considereri at best

a "post-design" activity [Ref. 1]. Digital testing seemed to

occur last in the R&D, design, prototype, and production

sequence. However, manufacturing industries of today are

discovering that the high costs associated with testing amount

up to 60% of the total production costs [Ref. 2:p. v].

Furthermore, recent increases in digital design complexity

give rise to a situation where a circuit designer can produce

a digital circuit which is virtually un-testable completely.

Therefore, the only way to reduce this cost is to incorporate

test activities into the design process, hence, creating a

"testable design" [Ref. 2].

In order to pursue a testable design it is necessary to

define the term "circuit testability".

A circuit is testable if a set of test patterns can be
generated, evaluated and applied in such a way as to
satisfy pre-defined levels of performance, defined in
terms of fault-detection, fault-location and test-
application criteria, within a pre-defined cost budget and
time scale [Ref. 2:p. ix].

B. DESIGN TESTING PROCESS

Modern digital circuit testing occurs within two design

environments, simulation tests and actual hardware testing.

A Computer Aided Design (CAD) tool with an interactive logic

simulator tests the functionality of a digital circuit design.

This CAD logic simulator allows a specific design test cycle:

stimulus application, simulation, results analysis, and design

modification. This thesis will utilize the Mentor Graphics

Quicksim CAD tool for an actual design conducted within the

computer simulation environment.

Actual hardware testing using Automatic Test Equipments

(ATE) , such as the GenRad GR125 VLSI Tester, compose the

second test environment. Once a digital chip is manufactured,

a series of testing is performed. In addition to logic

functionality, modern ATEs also perform D.C. Parametric, A.C.

Parametric, Functional and Power Supply tests. This thesis

will analyze the capability of the GenRad GR125 VLSI Test

System and examine the testing cycle within the integrated

hardware testing environment.

As described above, a chip design will be tested in both

environments. Testing for functionality allows the digital

chip designer to determine if his design responds correctly to

a given input stimuli (i.e. does the chip logic function work

as expected). To test this aspect of the design, a set of

stimuli and expected response patterns are applied to the

chip's input and output pins. This set of input stimuli and

2

expected response patterns are known as test vector patterns.

However, both the Mentor Graphics Quicksim, and the ATE,

GenRad GR125 VLSI Test System are stand-alone systems. The

test vector pattern syntaxes used in each environment are not

compatible. As a result, presently, test vector patterns for

two separate formats must be generated.

C. THESIS OBJECTIVES

This thesis has two major objectives achieved within the

hardware and software design and test environments. First, a

thorough study was performed on the GenRad GR125 VLSI hardware

test system, which reveals its usage, test capabilities and

limitations. Secondly, this thesis provides a solution to the

problem of test vector pattern incompatibility between the

simulation and tester environments. Special UNIX tools, Lex

and Yacc, are used to create a software translation program to

bridge this incompatibility gap. This translation program

provides an interface between the test vector patterns

generated from the Mentor Graphics Quicksim simulator and the

required format for the GenRad-125 VLSI hardware tester

system.

3

II. HARDWARE TEST ENVIRONMENT

Automatic Test Equipment (ATE) provides the capability to

thoroughly test a digital logic chip in a power on situation.

There are many modern ATE's similar in functionality.

However, this thesis will be focused on one specific ATE: the

GenRad GR125 VLSI Test System (GR-125). In order to reveal

the complete hardware test system, three major areas will be

discussed. The first area provides a comprehensive overview

of the GR-125 focusing on its characteristics, main component

layout and system software implementation. Secondly, the

overall programming and execution methodology for component

testing will be analyzed. This methodology will be described

in four major phases (Data Input, Translation, Execution and

Results). The discussion concerning the software interface to

the GR-125 will lead to discussion in chapters III and IV of

this thesis. Finally, the third major area of discussion

identifies some special testing capabilities of the GR-125.

A. SYSTEM OVERVIEW (GENRAD-125)

The GenRad GR-125 tester provides a broad range of digital

logic testing capability. However, in order to effectively

utilize this capability a basic understanding of GR-125

characteristics, system structure and system software is

required. Therefore, the purpose of this system overview is

4

to provide a logical, comprehensive and user-friendly

documentation for the GR-125 tester operation. The approach

taken here will focus on the user's perspective instead of

technical manual details.

1. General

The GR-125 is classified as a low voltage digital

logic tester. Although originally designed for high quantity

output production testing, the GR-125 provides an excellent

research testing platform for diagnostic analysis of

individual chips. As the name implies, the GenRad GR125 VLSI

test system has the flexibility to accommodate a wide range of

chip component complexity. The entire spectrum of complexity

from Small Scale Integration (SSI) to Very Large Scale

Integration (VLSI) are accommodated by the GR-125. The

complexity of the digital component under test is limited only

by its maximum number of pins.

2. Rating Characteristics

The GR-125 has the capability to test any digital

device up to a maximum of 64 pins. As discussed above, these

pins consist of low voltage only (10-81 volts). Of the total

pin count, half the pins can function as drive elements and

half the pins can function as sense elements. Drive pins are

used to put a desired digital stimulus signal on a pin. Sense

pins, however, use comparators to compare the actual pin

condition signal with the expected pin condition values. The

5

timing signals for chip testing are generated by a 12.5 Mhz

clock. Memory capacity of the GR-125 limits each test pin to

64 Kbytes of test vectors. Table I provides a summary of

these general characteristics for the GR-125.

Table I GR-125 RATING CHARACTERISTICS

... 64 pins low voltage

(0-8 volts)

... 12.5 Mhz clock speed

... 64 Kbytes of test vector memory
per pin

... 32 Drive pins

... 32 Sense pins

3. Basic System Structure

The GR-125 test system consists of two subsystems:

main assemblies and peripheral Input/Output (I/O) devices.

Refer to Figure 1 for an overall structure layout.

6

07 IL

Figure 1 GR-125 Cveral.. Struc:ure Layout [from Ref. 3]

a. Main Assemblies

There are two main subsystems which make up the GR-

125 test system: Mainframe and Test :-Tead. The Mainframe

functions as the central control unit which houses the power

supply, computer, and test signal generator of the tester.

The Test Head houses various interface adaptor boards which

connect to the Device Under Test (Dt•) via plug-in connectors.

Circuits located within the Test Head provide an interface for

the test signals between the main frame and DUT. Three

subassemblies are contained in the Mainframe: the System Power

Supply Bay, CPU Card Cage, and Test Electronics Card Cage.

Refer to figure 2.

7

-- - - - ------- ------- -----------
MAINFRAME

Ii I
CARD CAGE DEVICES

230 SYSTEM SDC
VAC -I POWE R SUPPLY

SUPPLY SAY VOLTAGESI _o... ,.,v .,•,

!TEST
ELECTRONICS
CARD CAGE

- - -- - - - - - - ---- - - -!

TEST HEAD

INTERFACE
ADAPTOR
BOARDS

OUT

Figure 2 GR-125 Main Assembly Structure [from Ref. 3]

b. Peripheral I/O Devices

Various peripheral I/0 devices are also

incorporated within the GR-125 test system. The VT-220 Video

Display Terminal presents menu formatted user screens to set

up detailed test requirements, to observe test results and to

8

interact with the CPU via a UNIX based software. In its

present set up conditions, the Printer works in a screen dump

mode allowing the Print Screen command only. Although

restrictive, this set up is adequate for obtaining a hard copy

test result. The Keypad (refer to figure 1) was designed to

be used when performing routine testing under high production,

high volume test conditions. Because of the low volume and

research orientation of this thesis, the operation of the

keypad will not be addressed. On the front of the Mainframe

is a control panel which holds the main power switches. A

magnetic disk and tape unit is located next to these switches.

This disk and tape I/O device provides an electronic copy

capability for program and data storage as well as system

backups. Because an Ethernet card is not available, the

present GR-125 hardware tester is a stand alone system.

4. System Software Description

The heartbeat of the GR-125's operation is its system

software. The GR-125 test system utilizes UNIX and custom

software packages to form the backbone operating system for

the GR-125 tester. Because of its wide acceptance in

industrial and engineering applications, UNIX software

provides an interactive and general purpose operating system.

The version of UNIX software installed in the GR-125 is the

UniPlus+ software (v2.0), which runs on the Motorola 68000 CPU

9

chip. This UniPlus+ software resides in a 15 Mbyte space on

the 85 Mbyte hard disk.

a. Operating System

The UniPlus+ consists of both an operating system

and its utilities. The custom software works as a link

between the user and the GR-125 test system controlling

several I/O functions. Refer to figure 3. This custom

software permits the extensive use of interactive user menu

screens. These screens, which will be covered later in

detail, allow an operator to set up the GR-125 to test a

device as well as developing new test programs (on-line or

off-line).

Figure 3 tUniPlus+ Operating System [from Ref. 3]

b. Utilities

In addition to its operating system, the UNIX

software package also contains many help utilities. See

/0

Figure 4. These utilities enable a user to develop new test

programs and make modificaticns to existing programs. The

file system consists of both ASCII text and binary data files

stored on the hard disk. The main puz-ose of the file system

is to act as a storage mechanism for test programs and system

configuration data associated with particular test programs.

Figure 4 UniPlus+ Utilities [from Ref. 3]

The UNIX software package also supports three

different editors: ACE, vi, and uEMACS. The More command

allows a text file to be read one screen at a time. As a

stand alone system, this particular GR-125 setup does not

support Electronic Mail. The RCS (Revision Control System)

makes up the last of the major UNIX utilities supported by the

GR-125 test system. The RCS manages software libraries. It

stores and retrieves multiple revisions of program and test

files. Furthermore, the RCS maintains a complete history of

i:

changes between test program versions so that one can easily

find the changes made between different versions. For more

details on RCS refer to Ref. B.

B. TEST PROGRAMMING AND EXECUTION METHODOLOGY

Test programming and execution methodology describes the

overall GR-125 testing procedure from data input to observable

test results. This section will present the four main phases

of the GR-125 procedure: Data Input, Translation, Execution,

Results. Refer to Figure 5. The first phase of the testing

procedure includes a software interface to the GR-125 tester

as illustrated in Figure 6. Test pattern information and

parameter specification data are input during this phase.

Next, during the translation process, ASCII formatted data in

the software interface is translated to binary code for use by

the GR-125 tester. Once the required binary files are

obtained, the GR-125 can support a variety of test executions

By manipulating different support screens within the test

execution phase, the user can produce several desired output

formats. The Results phase produces several categories of

results depending on the option chosen during the Execution

phase. In the following discussion, the purpose is to

describe this testing methodology in a manner which provides

the most benefit to the GR-125 user.

12

Figure 5 GR-125 Testing Procedure Phases

1. Data Input Phase

Two software files are used to enter the Device Under

Test (DUT) specification to the GR-125 tester. The test

pattern processor (.tpp) file defines the actual pin mapping

and test vector configuration of the GR-125. Secondly, the

parameter specification file contains the bulk of the

programming information necessary to perform a successful

13

test. Data is placed into this file through the use of custom

Programming Screens. These screens prompt the user for a wide

range of component parameters from pin current levels to

timing specifications.

a. Test Pattern (.tpp) File

The first step in the development of a GR-125 test

program is the generation of a .tpp file. This file contains

the tester pins to device pins mapping information.

Additionally, the actual test vector patterns which are

applied to the DUT are also incorporated into this file. It

is important to note that the .tpp file is an ASCII text file

created by any generic text editor. Figure 7 illustrates a

basic .tpp file for a 7404 Hex Invertor.

The .tpp file is made up of three sections:

PINDEFS, ADAPTOR, and MODULE. The PINDEFS and MODULE sections

are mandatory. The ADAPTOR section contains the only optional

entries. [Ref. 5:p. 1-5)

(1) PINDEFS Section. The PINDEFS section is

composed of columns of information to inform the GR-125 tester

of the physical (adaptor) connections between the GR-125's

tester channels and the DUT. This section contains the tester

pin mapping information. Figure 8 illustrates a typical pin

assignment for a 74F374 Octal D-Type Flipflop. In this

example, the 74F374's pin #1 (output enable line "/oe") is

connected to the GR-125 tester channel #3. Note, however,

14

.TPP P PARAMETER SPEC FILE
via l Via DirectASlt

FILE Prog ns SupText

(PdmarA (Atea)

TPP TRANSLATOR ATASAO

I

FILE 7FILE

TEST EXECUTION

OPTIONS

TEST RESULT -PASS/AIL
-MEASURED RESULTS

CATEGORIES aLWNI
.'SHMOO' PLOTS

Figure 6 GR-125 Testing Methodology

15

*7404 z:TX VETS

AZAPTCR jNIBAB/24

FABREEV - 0;

DA.BR.EV - 3;

?PI.NEFS
pinname mode column dutzin mapping :asterppi

4n2a 2 3 > ;
in'-a > " :0;
in4a 4 9 14
i-n~a 5 U2 > 16;
4ina 6 2.3 > 8;

ou:.yV 7 2 >7;
outzy 3 4 >9;
out~y 9 6 > 12;
ouz:,v :0 a B3
ouz5v .: 10 >~
out~y :-2 12 >.7

Ground GINO 7;
Vcc ?WR 1.4;

MCOU7LE 7404:

i'Tuncticnal~ Parametric Test Patternsý

jV:X Tesc}
//TO,-
/000000.......I TO:. STOP

,i~C~ -rest)
/000000 701/To
/000000....... 70i STOP

{:CC:L Test)
I:::LLL.LL./ TO:

...... / TO: STOP
.SIm~e F'.Unctional Testi

/000000 -r±. TO:-m/ 0
/011:01 "f.=iLHL,' TO:
1:0:0io:0 iiHLH/ 7O:
/!!:::I: L:LLL/ TO:
/2.00000 Lra-:Mi TO1
/0":oOOO :-La-r~ To1

'111:10 LLLLLH/ TO: STOrP

Figure 7 74S04 Hex Inverter .tpp File

16

that the 74F374's power and ground pins are not connected to

GR-125 tester channels. Ground and power pins (pins #10 and

#20 on the device socket) are already internally wired to the

adaptor. [Ref. 5:p. 4-51

74F374

RIXCC teeter channel 3 - /os - 1 \/ 20- Vcc -
Il.\C tester channel 4 - qO - 2 1g9- q7 - GRI.O tester channel 21

GR=CC tester channel S - dO - 3 18i- V7 - GR= Lester channel 20

GRI•C tester channel 5 - dl - 4 17 - d8 - GLR.C tester chaSnel i1

LJ.XX tester channel 7 - qi - 5 16S- qO - C]t= tester channel 18

GRICX tester channel a - q2 - 6 is1- qS - (R= tester channel 17

CR1C•(tester channel g - d2 - 7 14 - dS - aR= tester channel 16

GR1.=C tester cbannel 10 - d3 - 8 13 - d4 - (]1CC tester chsnnel 15
U.XXC tester channel 11 - q3 - 9 12 - q4 - (3R=1 tester channel 14

- God - 10 11-- elk - G]RC tester channel 13

Figure 1-1. GR1.-(Teter Channel Assignment

Figure 8 GR-125 Tester Channel Assignment [from Ref. 51

(2) ADAPTOR Section. The ADAPTOR section is the

only optional section within the .tpp file. This section

allows the GR-125 user to specify the Device Adaptor Board

(DAB) and Tester Adaptor Board (TAB) to be used with the test

program. [Ref. 5:p. 4-121

(3) Test Pattern MODULE. This section of the .tpp

file contains the actual test vector pattern elements. These

elements define whether a pin functions as a driver for

stimulus or a comparator (monitor) for response. A test

17

pattern MODULE section is mandatory. The drive and comcare

state information (used by the tester to sequence the DUT

through the functional table) is placed here using the values

specified in the manufacture's data book. Note that these

pattern elements are then stored in memory behind each tester

pin. Valid test pattern elements are listed in Table I7.

"Drive" indicates the stimulus applied to the input pins by

the GR-125. "Monitor" indicates the sensing -ondition rf the

output pins.

Table II GR-125 VALID TEST A:TE.RN ELEMENTS

Pattern Vector Element Explanation

0 Drive low. neglect response
1 Drive high, neglect response

X (or.) Driver off, neglect response

L Driver off, monitor low
H Driver off, monitor high
T Driver off, monitor tri-state

N Drive low, monitor low
Y Drive high, monitor high
Z Drive low, monitor high
U Drive high, monitor low

K Klunk (CLOCIMODE only)
C Clock (CLOCIO4ODE only)
i I in Alternate format (CLOCKMODE only)
o 0 in Alternate format (CLOCKMODE only)

? Repeat previous state
- (dash) Hold pin state

(a) Format. Three field entries are rea'uired

to make a valid test pattern: MODULE, PATTERN, END. The

MODULE input provides for a name field associated -w4•:h. •.h.i-s

section of the .tpp file. The PATTERN entry stores the actual

test vector patterns. A test vector pattern has a pin control

field which contains a pattern vector element for each device

pin. Proper syntax requires test vector patterns to be

buffered by slashes "/". Refer to Figure 9. Note, the number

of elements must be equal to the number of columns listed in

the PINDEFS section of the .tpp file. Embedded spacing is

ignored by this syntax. Ref 5 discusses four optional fields

which can also be added to these pattern vector elements.

[Ref. 5:p. 4-14]

/110010 H LH LLH/

Figure 9 GR-125 Sample Test Vector Pattern

(b) Include statement. A special use of an

INCLUDE statement permits the user to input a large test

vector pattern code without having to retype each pattern

element into the .tpp ASCII text file. The INCLUDE statement

actually helps to modularize test vector patterns. This

statement will be used to input a test vector file translated

from a CAD simulation file. Chapter IV of this thesis will

concentrate on this translation process.

19

b. Parameter Specification File

The parameter specification file is also composed

of data taken from a chip manufacturer's data handbook. This

data is then used to test the DC parametrics and AC timing of

a DUT. Data input into this file can occur via two methods.

The first method utilizes custom Programming Screens which

prompt the user for data input. The second method for

inputting data into the parameter specification file does not

use menu driven screens support. This method uses a simple

ASCII text file format generated by the user from any text

editor. Note, however, that the input data is in the same

format for both methods.

(1) Programming Menu Screens. Programming Menu

Screens are provided by the GR-125 which allow the user to

enter data for a particular device of interest. These screens

work in coordination with the test pattern vectors listed in

the .tpp file. The Programming Menu Screens are subdivided

into five categories. Refer to Table III. This section will

discuss the primary purpose of each of these five categories.

Furthermore, every screen contained in these major categories

will be listed for easy reference. Refer to Ref 5 for a

detailed description of each individual screen.

20

Table III GR-125 PROGRAMMING MENU SCREENS
(CATEGORIES)

atgory Funotion Key

DEVICE DESCRIPTIONS TV"

ANALOG DATA SETS "F7T

TIMING DATA SETS F8"

VECTOR TRUTH TABLE F10

TEST OPERATIONS Fr

(a) Device Descriptions. The Device

Descriptions screens make up the bulk of the DUT parameter

specification file. The screens listed here describe the

device and test plan, including such parameters as package

size, device technology, pin types, pin names, pin condition

sets, pin test sets, etc. Table IV lists the screens located

in this category. [Ref. 5:p. 2-4]

(b) Analog Data Sets. The Analog Data Sets

screens category defines the force and measurement levels used

in functional and parametric testing. Supply voltage and

current limits are also specified in these screens. Finally,

all of the drive and compare pin levels for the functional

tests are input during this set of screens. Table V lists the

screens located in the category. [Ref. 5:p. 2-23]

(c) Timing Data Sets. The Timing Data Sets

screens category provides a wide range of timing information.

Period and edge times defining the test program vectors are

21

Table IV DEVICE DESCRIPTIONS CATEGORY

(DEVICE DESCRIPTIONS fF61)

"O Device Describe

"o Device Adaptor Pin Mapping

"o Pin Condition Set

o Pin Test Set

entered here. The resolution of the timing edge is determined

by the largest period used for the test. Additionally, this

category of screens provides a mechanism for assigning the

formats and edge selections used for each pin condition set.

Finally, several screens in this category produce a pictorial

and/or tabular representation of the timing relationships of

various input waveforms. Table VI lists the screens found in

this category. [Ref. 5:p. 2-33]

(d) Vector Truth Table. The Vector Truth Table

screens are used to edit data located in the test vectors

memory. Changes can be temporary or made permanent by editing

the source file. This set of screens is used in conjunction

with a special GR-125 diagnostic tool, "Learn". The function

of this special output is covered later in this chapter.

Table VII lists the screens found in this category. [Ref. 5:p.

2-47]

22

Table V ANALOG DATA SETS CATEGORY

(ANALOG DATA SETS IF77

o Default Pin Levels

o Pin Levels Set
o Power Supply Levels Set
o Load Relay Set

(e) Test Operations. The Test Operations

screens provide the user with the capability to describe how

a particular test as to be performed. Each type of test

represents a parz.icular AC or DC parameter that the GR-125

test system can measure. In summary, the screens in this

category allow the user to modify various parameters

associated with the test categories defined by the GR-125.

These test categories will be addressed in the Test Execution

phase discussion later in this chapter. Table VIII lists the

screens found in this category. [Ref. 5:p. 2-53]

(2) ASCII Text File Format. An alternate method of

inputting information into the parameter specification file is

through a direct ASCII text file as shown in Figure 6. This

method may prove to be a more streamed-line approach by

bypassing the Programming Screens menus; however, the required

data input is the same for both processes. Appendix A of

23

Table VI TIMING DATA SETS CATEGORY

(TMING DATA SETS fF8)

"o iming Array Set
"o Edge & Fornat Set
"o Timing Waveforms
"o iming Date Table
"o Timing Dat Sets(Combined)

(Ref. 5) presents detailed information on the syntax required

for this method of data input.

2. ASCII To Binary Translation Phase

Recall that the two major files produced during the

Data Input Phase of the GR-125 test procedure were in an ASCII

text format. However, the GR-125 requires that these ASCII

input files be translated into machine-coded binary files for

proper tester implementation. This translation process is

accomplished through the use of two separate compilers within

the GR-125 test system.

a. Test Pattern Processor (TPP) Compiler

The TPP compiler translates the .tpp ASCII text

file into a machine-coded binary Vector Truth Table (.vtt)

file. The .vtt file is actually used to perform the machine-

coded functions specified in the .tpp file. The user must

compile the .tpp file prior to testing. Table IX illustrates

24

the command line entry required to compile the .tpp file.

[Ref. 5]

b. ASCII to Par (ATP) Compiler

The ATP compiler translates the parameter

specification file (ASCII text file format) into a machine-

coded binary parameter specification (.par) file. Table X

illustrates the command line entry required to compile the

ASCII formatted parameter specification input file. Note,

however, that the parameter specification input file produced

through the Programming Menu Screens does not require a

separate compilation process. Refer to Figure 6. Once data

is entered into an individual Programming Menu Screen, the GR-

125 internally compiles it into a binary .par file.

Table VII VECTOR TRUTH TABLE CATEGORY

(VECTOR TRUTH TABLE fF1OJ)

o Truth Table Edit

o Truth Table Column Mapping

25

Table VIII TEST OPERATIONS CATEGORY

(TEST OPERA TIONS [F9]

o Test Operation

o Vector Set

o Bin Mapping & Control

o Binning Sequence

Table IX TPP COMPILER (COMMAND LINE ENTRY)

prompt> tpp filename one.tpp

Table X ATP TRANSLATOR (COMMAND LINE ENTRY)

prompt> atp filenametwo.atp

3. Test Execution Phase

Test execution in the GR-125 is designed and initiated

by the system user through the "system test menu screens".

These screens are actually a series of menus similar to the

26

Programming Menu Screens used to create the .par file. These

system test menu screens provide a convenient method for

configuring the GR-125 tester for a test operation. This

configuration determines which part of a test program will be

executed as well as establishing which type of format the

output produces. Furthermore, this series of menus guides the

user through a decision-making and data selection process.

Modifications to these screens can be temporary for current

testing or made permanent by overwriting the program or

creating a copy.

The system test menu screens described above can be

organized into three broad categories: Test Execution, Results

Display, and Input/Output. The following paragraphs will

outline the actual screens in each of these categories. Due

to the emphasis on the overall testing procedure, this section

will not discuss every detail of each individual screen.

However, specific references to the applicable technical

manuals will be made.

a. Test Execution Menu Screens

These screens provide the majority of control over

the Test Execution Phase. Manipulation of these test

execution menu screens actually determines the output format

of test results. The usage of these screens can be defined in

four categories. Refer to Table XI. Certain individual

screens denoted by "(RSVD)" are for GENRAD usage only.

27

Table XI TEST EXECUTION MENU SCREENS

DEBUGGING CONTROL [F14J)

v Characerization Control-Combined
Qharacerization nt-roletup

haracterization Contml-O ulu
Hardware Contol.Calibradon
Debugging Contol-Sys Debug (RSVD)

EXECUTION CONTROL [F11J: (DATALOGGING CONTROL[F1 71)

.atclVM Test Control-ExecutionR SVD) * Master Output Control
Wafer est Control-Execution RVD) Termilnal OututControl

, Characterization Control-Execution Printer Outp Conmol
*_Devi Senuecing Contr, -Exeution Nt m D ing. ontrol

Test Ope on Coitrol-.Excution C aln*, bato, Cong tnrol
Hardware Control-Exe on Datalogging H2erl5ormation

(ANALYSIS CONTROL F112j ,OUTPUT CONTROL [F1`31

Bat4LOt Test Conl-Analysis (RSVD) Batch/Lo Test Control.Ouut (RSVD)

Wter Test Contro.-Analysis Wafer Tes Control-O ut (RSVD)
CharacteriMian Control.-Analis Characterization ConoI-Olput
Devic Sequencng Control-An•a lis ,DeVic Sequencing Contrl-Output
Tet *,rlbn Cofto-,Analys $RSVD) Test Opedon Control-Output

* Screns also located in Cracterization Control -Combined screen [

28

(1) Debugging Control. The screens in this

category are used to set up the GR-125 tester to perform a one

dimensional (ID) or two dimensional (2D) plot of various

current, voltage or timing parameters. These engineering

characterization (i.e. "shmoo") plots will be discussed in the

Test Results Phase portion of this chapter. Additionally, the

hardware control screen allows the user to vary the times for

system calibration. Note, the GR-125 takes approximately 4 to

10 minutes for a full system calibration. [Ref. 4:p. 2-22]

(2) Execution Control. The execution control

screens provide two major functions in the test executior

procedure. First, the decision to perform a single test or

multiple tests is made within this set of screens. Secondly,

the specific type of test results desired for each test is

annotated. Specifically, these results options include

pass/fail, full tabulated results, special plots, etc. These

test result options will also be covered in detail in section

4 of this chapter. [Ref. 4:p. 2-38]

(3) Analysis Control. The analysis control set of

screens were designed to keep track of statistical failure

rate data during high volume production testing. As a result,

this particular subcategory of test screens are not required

for individual component testing. [Ref. 4:p. 2-48]

29

(4) Output Control. All of the output control

screens are reserved for use by GenRad, Inc. except for the

specific Characterization Control-Output screen. However,

this screen is an identical duplicate screen listed in the

Debugging Control category of system test screens. Therefore,

the screens in this output control subcategory are presently

not required for individual component testing. [Ref. 4:p. 2-

55]

(5) Datalogging Control. The screens located in

this category perform three major functions. First, the user

must determine the distribution of data desired during

testing. Secondly, the selection of the Terminal Output

Control screen establishes the format of the test data

outputted to the system terminal. Finally, the Datalogging

Output screen is used for the accumulation of test result data

for a statistical evaluation of long term trends. [Ref. 4:p.

2-63]

In summary, the Test Execution Menu Screens only

require the user to manipulate the Debugging Control,

Execution Control and Datalogging Control categories of

screens. This condition will exist until a software

modification is installed to the GR-125 test system.

Additionally, note that the asterisks "*" in Table XI annotate

five separate screens which are conveniently collocated in one

30

combined screen. This utility saves the user a great deal of

time during the screen editing process.

b. Results Display Menu Screens

These result display screens contain the results of

the most recent test performed. These screens provide the

user with a real-time display within the test format desired.

Table XII illustrates the screens available in this category.

[Ref. 5:p. 2-112]

Table XII GR-125 RESULT DISPLAY MENU SCREENS

RESULTS DISPLAY [F20]j

"o Batch/Lot Test -Results
"o Wafer Test -Results
o Characterization(Plot) -Results
o Characterization (Prod) -Results
"o Device Sequencing -Results
"o Test Operation
"o Vector History RAM

31

c. Input/Output Menu Screens

The Input/Output (I/O) Menu Screens provide the

user with file manipulation and screen configuration control.

These screens help to stream-line the testing process by

giving I/O control to the user. Table XIII shows the

organization of these screens.

Table XIII GR-125 INPUT/OUTPUT MENU SCREENS

FILE SYSTEM CONTROL [Fi8]

V
"o Prgram Load
"o Program Store 1
"o Fle System Manipulation S
"o Backup Restore Operation
"o Initialization Configuration

o Function Key Mapping
o Print Screens
o Printer Configuration
o Version/Configuration

(1) File System Control. The File System Control

screens provide a broad range of user functions. The Program

Load screen provides the initial starting point for the

testing process. This particular screen allows the user to

load a specific test file for editing or test execution.

32

Additionally, this set of screens provides a means for storing

modifications made to an existing test file. Finally, this

set of screens allows the user to manipulate other UNIX files

while still within the test operation "mtest" mode. [Ref. 4:p.

2-10] The "mtest" mode is the application level above UNIX

for GR-125 operation.

(2) Screens Configuration. The Function Key

Mappings screen located in this set of screens allows the

user to define SHIFT Function keys on the VT220 keyboard.

Once a key is defined, the user can call a screen of interest

directly. In essence, this capability offers the convenience

of avoiding menu prompts and therefore, saving setup time.

[Ref. 4:p. 2-89]

4. Test Results Phase

The Test Results Phase allows the user to consider

which type of output result he desires from a fully edited

test program. The GR-125 produces an output in one of three

categories of test results. The three categories consist of

a pass/fail output, actual measured values, and a pair of

special diagnostic functions. This section will discuss each

of these categories. Particular emphasis is given to how to

edit the previously discussed system test screens in order to

achieve a desired test result.

33

a. Pass/Fail Results

The pass/fail mode of testing provides a Go/No-Go

test result. This pass/fail mode requires just two test

screens to be edited in the Test Execution Phase. Recall that

the Characterization Control-Combined screen actually contains

five separate screens. Table XIV provides a summary of

entries required to obtain a pass/fail result.

Table XIV PASS/FAIL MODE (REQUIRED SCREEN ENTRIES)

Dpcioon Sa, en Name Requited Entry

F11 Test Operaton CnoUnol-Execution (Psa#FO Mode]

F14 Characterizatlon Contl-Combirod
Cfremctermstana 0ontro-ExecutOio [Product Teadng]
Devic Sequencng CnSDExoulon [Execulte Bhng Sequenoe]
Mater Output Control [COrsole; Teot Op levell
Terminal OutpAt Cordro |D0Splay Test S""yStf stats
Pdnter Output Control [Print Tedt System stats]

b. Actual Measurement Results

In addition to a Go/No-Go test, the GR-125 can

produce the actual measurements obtained during the testing

process. Actual floating point values can be obtained for

tests which involve AC and DC parametric measurements.

Exceptions to this rule arise for tests which require only a

pass/fail result such as a simple functional test. Section C

34

of this chapter will discuss the various types of tests the

GR-125 is capable of doing. As with the pass/fail result,

only two test screens require editing. Table XV provides a

summary of the entries required to obtained an actual measured

result.

Table XV ACTUAL MEASURMENT (REQUIRED SCREEN ENTRIES)

~i cdon Screen Name Required Entry

F11 Test Operaton Control-Execution [Full Results Mode]

F14 Cartactrzatlon Control-Comblred
Characterization ControI-Execuadon [Product Tewdngo
Devioe Soquendng Cntexeoullon [Peformn Only Specified Test

.1st sp0rf test# h.M I

Mater Output Control [Console; Teot Op leWVl
Terminal Output Control [DOsfpay Summarled Re*WQ
Pdnter Output Control Print Surnmarz•ed Results]

c. Special Functions

The GR- 125 test system provides two special

diagnostic functions in the Test Results Phase of the Test

Programming and Execution Methodology. These special

functions give the user some reverse engineering capability.

By using these two special functions, an engineer can plot

various engineering characteristics data as well as determine

a chip's functionality to a certain extent.

35

(2) "Shmoo" Plots. Test execution screens can be

edited to produce a detailed ID or 2D engineering

characterization (i.e. "shnmoo") piot. A wide variety of

values can be plotted on a set of labeled axes. These values

include current levels, voltage levels and timing data. An

example of a 2D "shmoo" plot is given in Figure 10. Note, the

"shmoo" plot can only be generated by executing a simple

functional test. To obtain a "shmoo" plot, a total of four

test execution screens must be edited. Table XVI summarizes

the entries required to obtain a "shmoo" plot. [Ref. 4 :p. 2-

22]

Ri--dlert Bin -is
Awgh, 31. -1W

7.00 V P le l .

p. P P P P
HeadIier B i. V p p p P P P

Device2 I. p pe P P P p e
VWer lAin"6, j O. Op LUV-... p P P p P P P
D .f t*i an6 I- P P P P P P P

4.00 V -..

I. V1.00 V -..

O.0 I* .m MO. m 440.w h M.u .M.u t in1 Mi 60.s 1.0a.

. , Swiy Voltage • Vce

Figure 10 GR-125 "Shmoo" Plot Example [from Ref. 4]

(2) "Learn" Function. The "Learn" function also

produces a reverse engineering capability. This function

allows a user to determine the functionality of a specific

chip. In essence, given the input test vector patterns, the

36

COPY MVLILABLE TC LTIC DOLS INCT PLP•MIT FULL7 LT-, IBL':1 !PLRODIUM0N

GR-125 will produce the output response pattern. Therefore,

the chip function can be determined through a comparison of

the input stimulus and the expected output response of the

test vector patterns. The first step in executing the "Learn"

function is to retrieve the Truth Table Edit screen (VT220

function key "F10"). Next, replace all the output test vector

elements in the simple functional test to a "L", "H", or "X".

Next, retrieve the Test Operation screen (VT220 function key

"F9") for the simple functional test operation. With the

curser placed on the word "Simple", toggle the space bar to

get the desired "Learn" function. Once this editing is

complete, execute the testing sequence. No special test

screen editing is required. Upon completion of the test,

return to the Truth Table Edit screen and record the new

output vector element values. [Ref. 5:p. 2-64]

C. TESTING CAPABILITIES SUMMARY

The GR-125 hardware test system performs many different

types of tests. This section will briefly describe each of

the major test areas.

1. Functional Tests

A functional test uses test vector patterns to cycle

a DUT through its truth table sequence. After applying an

input stimulus pattern, the GR-125 compares the DUT's output

pattern with its expected output pattern. A successful

37

Table XVI "SHMOO" PLOT (REQUIRED SCREEN ENTRIES)

prnicton Saeoen Name Required Entry

F11 Test Openru3an Control-Exeoution [Full RSSu1ts Mode]

F14 CharAerlzatlon Control-Comblned
Chell rix.lO Gorntrol-Executon 11 or 2 DlmrmsionalJ
Devloe Sequendng Cnt-Ekxouilon [Peform Only Specfied Test

.-1 fution tostw hero I

Maser Output Control (Console Char. lewQ
Terninal Outpu Control [Display Summazed RSe&
Pdnter Output Control [Pft Sumnrarzed Results]

F14 CharacterU lan Corlol-Output [iale-X- ewer Y--4-]
F14 Characterzation Control-Setup $**a nrmk AMW oriTower

supph" or "ph •wem-

functional test requires a successful comparison of these

output patterns. [Ref. 3:p. 1-44]

2. Power Supply Tests

The power supply test measures the current drawn from

a selected power supply when the DUT is operating in either a

static or dynamic state. [Ref. 3:p. 1-53]

3. DC Parametric Tests

Various tests for dc parametrics determine dc

electrical characteristics by current and voltage

measurements. These test can be classified as input or output

dc parametric tests. [Ref. 3:p. 1-57]

a. Input DC Parametric Tests

(1) Iil Test. Leakage current is measured at a DUT

input pin while forcing a logic low voltage.

38

(2) Iih Test. Leakage current is measured at a DUT

input pin while forcing a logic high voltage.

(3) Vik Test. Voltage is measured at a DUT input

pin while forcing a current.

b. Output DC Parametric Tests

(1) Iol Test. This test measures the DUT drive

current at an output pin set low while forcing a logic low

voltage.

(2) loh Test. This test measures the DUT drive

current at an output pin set high while forcing a logic high

voltage.

(3) Vol Test. This test measures the voltage at a

DUT output pin while forcing the specified current with the

device in the low state.

(4) Voh Test. This test measures the voltage at a

DUT output pin while forcing the specified current with the

device in the high state.

(5) Iozl Test. This test measures the current at

a DUT output pin while the pin is in the tri-state condition

and while forcing a logic low voltage.

(6) Iczh Test. This test measures the current at

a DUT output pin while the pin is in the tri-state condition

and while forcing a logic high voltage.

39

(7) los Test. This test measures the current at a

DUT output pin while the pin is in the logic high state and

while forcing a zero voltage.

4. AC Functional Tests

AC functional tests perform certain ac measurements on

the DUT. These measurements include setup time, propagation

delay, pulse width, hold time, and transition time. [Ref.

3:p.1-66]

5. Contact Tests

Contact tests can be classified as continuity tests.

These tests check that a non-shorted and non-open path exists

from a given tester pin through the DUT to ground or a power

supply connection. During testing, all of the ground pins on

the DUT are connected to ground, and all of the power supplies

to the DUT are set at 0 volts. [Ref. 3:p. 1-66]

40

III. CAD SIMULATION ENVIRONMENT

The CAD simulation environment provides the first major

testing platform in the digital design process. Once a

schematic design is obtained, a series of simulations

determine the functional characteristics of the design. This

process is repeated until a desired functionality is achieved.

Figure 11 illustrates this process. When a successful

simulation is obtained, a graphical plot and simulation output

file are produced. The output file contains all of the

stimulus and response information observed in the graphical

plot. Additionally, this simulation output file is produced

in an ASCII file format. Chapter IV of this thesis will

discuss how to change the test vector information found in

this simulation output file into the .tpp file format required

by the GR-125 tester.

A. SIMULATION OVERVIEW (MENTOR GRAPHICS)

Because of availablity, this thesis utilized the Mentor

Graphics IDEA Series Version 7.0 CAD package for analysis.

CAD simulation incorporates two basic design steps:

"* Schematic Capture

"* Test Simulation

41

A short discussion of these two design steps will illustrate

the framework of the design process. The objective of this

simulation overview is to provide a brief background to

simulation within the CAD environment.

Schematic
Design

Test
Simulations

INo SUES

+ DESIGN GOMPLETE

Figure 11 CAD Design/Simulation Process

1. Schematic Capture

The first step in the design simulation process is to

generate a schematic diagram of the desired digital component.

This process is known as "schematic capture." Schematic

capture is accomplished on an IDEA Series workstation through

the use of a network editor and a symbol editor. The network

42

editor (NETED) allows a designer to create hierarchical

(multi-level) designs using a top-down approach. The symbol

editor (SYMED) works with the NETED. SYMED allows the

designer to draw and edit component symbols that can be placed

on NETED schematic sheets. These symbols can represent basic

design elements such as logic gates, transistors and off-the-

shelf integrated circuit (IC) components. Together, these two

schematic editors provide the resources for producing a

testable design. [Ref. 6:p. 1-li

2. Test Simulation

Once a designer has completed the schematic editing

phase, he enters the actual testing procedure - simulation.

As discussed previously, CAD simulation enables a designer to

check the functionality of a component design. By defining

input stimuli and observing the output responses, the

designer's simulation is identical to the simple functional

test portion of the GR-125 hardware tester. Quicksim is the

simulation program used to perform the actual simulation.

This CAD software tool is also included in the Mentor Graphics

IDEA Series (v 7.0) package.

Quicksim is an interactive logic simulator that allows

a designer to verify the functionality of the designs produced

with SYMED and NETED, the schematic capture tools. Quicksim

is a 12-state, timing-wheel simulator that can simulate MOS,

TTL, and ECL logic. With Quicksim one can apply stimulus to

43

the design, run the simulation, analyze the results, and then

modify the design based on those results. Stimulus is defined

as the input stimuli and the expected output resulits data.

Basically, a stimulus consists of a set of test vectors as

discussed in chapter II. [Ref. 7:p. 1-1]

Quicksim accepts and produces a variety of stimulus

data. This data includes various graphical and text file

formats. Figure 12 illustrates the variety of Quicksim's

input and output data. The input is the stimulus as defined

above. The output contains the actual results of the

simulation. Next, one specific output file, the List Window

File will be discussed.

:Lotle_

,=i

Cuic~ans~MISLlRe J [j SvSae
BL~s acr File Moefls Keyooard

QuickSim

7ra'ce File

Disolay Stmuu

F es Force File

Figure 12 QuickSinm input/Output Files [from Ref.7]

44

B. SIMULATION OUTPUT FILE

The simulation output file, List Window, contains all of

the stimulus and response data from a simulation session

executed within the Quicksim environment. The command "List"

is used to create the List Window file. Figure 13 shows a

typical List Window file. Notice that this file contains

three sections of information: time, pin labels, and pin

values. The following paragraphs will briefly discuss the

structure of these specific sections.

4 JSER: :oen.Jies-n.enq.D77-
4 DESIGN: /user,/'oe_,/s:m/work_a:ea/cocn-ol. zkt,zdes4gn. erel
* REV: 10
* VERS:-ZN: LOGIC 5L2MLqATGCN 5ERVR 77.3 3. 16 Monday, January 30, 1989

3:30:29 om (PST)
; ATE: Trlday, Fecrua-- -3, i989 Z:12:03 :m :?ST)
SSC-A.E U:SER .3000CC NS

: T,.1E STEP: 0.100000
* TRANSPORT SWITC:.: :.nert-.ai ielavs
4 SPIKE MCDEL; X_- Mmediate
STLMI2'G MODC..; nypqca1 T--g Model

.-3 3 : " " X X X X X
. 3 3 1 1 i X X 3 3 X

'2.4 3 3 ! 1 1 X _' 3 3 x
!3.9 0 3 1 2 : X " 0 0 2
50.3 3 3 2 " " X 3 3 2.

:00.3 3 . .i 2 X 1 3 0 _
i06.9 0 : i 2 3 1. 3 3 _
!16.9 0 I ! I ! 3 3 3 3 2
i50.3 3 0 2 1 i " 3 3 0 2.
200.3 3 3 0 : 2. 3 3 3 ,3 .
21:.4 3 0 1 1 ". 1 3 3 .
250.3 0 3 : : 0 : 3 0 i
300.3 0 3 1 0 0 3 3 2.

T'_X -Clock X -x4
-clear - x2

-b -out - X3

Figure 13 QuickSim List Window Display (from Ref. 73

45

1. Structure

a. Time Values

Specific time values occupy the first column of the

List Window file. These times are actually user scaled units.

A designer can scale these units to any desired value. For

clarity, the user time unit is scaled to nanoseconds

throughout this thesis. Note that a new time value is

generated at every instance an input or output pin changes

state. This condition allows a designer to observe how long

a component takes to reach a desired output state. This time

is defined as delay time.

b. Pin Labels

The pin labels section of the List Window file

appears at the very end of the file. These labels actually

break the List Window into separate columns. Each column is

reserved for a specific input or output pin value. The first

column, reserved for the time values, provides the one

exception to this rule. By convention, the input pin values

occur prior to the output pin values.

c. Pin Values

The pin values section consists of the various

columns of single digit numbers located directly above the pin

labels. These pin values can contain one of three separate

signal levels, (1"01", 'l,, "X"). Table 17 describes each of

these signal levels.

46

Table XVII QUICKSIM SIGNAL VALUES

SIGNAL SIGNAL
DESIGNATION LEVEL

0 LOW
1 HIGH
X UNKNOWN

In summary, once a successful simulation is complete,

a designer can obtain an ASCII file containing all of the List

Window data information. This new ASCII simulation output

file is generated by invoking the Quicksim command summarized

in Table XVIII. The simoutput file now contains all of the

stimulus and response test vector data in an ASCII format.

Chapter IV of this thesis will show how to translate the ASCII

data from the simoutput file into the .tpp ASCII file format

required by the GR-125 tester.

Table XVIII QUICKSIM WRITE LIST ENTRY

prompt> WRite List simoutput

47

2. Design Example (74S181 ALU)

An example can better illustrate a typical simulation

output from the Quicksim environment. The 74S181 Arithmetic

Logic Unit (ALU) provides an excellent design example for

analysis. In order to illustrate the CAD simulation data

discussed previously, this design example will be introduced

in three areas:

"* Circuit Description

"* Input Stimulus

"* Output Simulation File

a. Circuit Description

The 74S181 ALU performs binary arithmetic or logic

operations on two 4-bit words. Figure 14 illustrates the

connection diagram. Additionally, Table 19 describes the pin

designations. These arithematic operations are selected by

the four function select lines (S0,S1,$2,$3), and it includes

addition, subtraction, decrement and straight transfer. The

internal carries must be enabled by applying a low level

voltage to the carryin (Cn). A full carry look-ahead scheme

is available for fast carry generation by means of two

cascaded outputs (P,G). [Ref. 8:p. 5-100]

b. Input Stimulus

The input stimulus to the 74S181 is applied through

a .misl file (Refer to Figure 12). For this particular

48

example, the input pin values are forced to change every 10

nanoseconds. Figure 15 shows a portion of the 74S181 .misl

file.

H~rfllfl'uTS

VCC Al S1 A2 B2 A3 93 Q cqt.- P A-6 F3

11 12 13 1- 1 -a-I j 1 8 Ila 111 112
SO AO S3 52 Si So c" m Fepi Fl 2 am

NdUr3 OUTPUTS

Figure 14 74S181 ALU Connection Diagram

c. Output Simulation File

After the stimulus data is entered and the List

Window screen is set up within the Quicksim environment, the

simulation is started. The "Write List" command is executed

at the end of the simulation. The successful completion of

each of these steps produces an ASCII formatted simulation

output file. Figure 16 shows a portion of the simulation

output file obtained for the 74S181 design example.

49

Table XIX 74S181 PIN DESIGNATIONS [from Ref. 81

Oeami~n inIq Nog F'uOnco,

A3. A2. A 1. AO 19. 21. 23.21 wrd A Vfl= I
33. 32. 31.30 18. 20. 22. 1 " 'a, Incurs

S3. S2. S1. SO, 3.4,.5. 5
inv.cutsInout

7 c
mod* Coiwr

inout

= "3.2. =0. Q 13. !1. !0. ; Function Outouts

A 34 Camoarstor Outout

Cam~ ?iocagwe
Cutgut IiT

. :n Car Outaut•

t ~Carry Generate,

Outout

, V * 24 Suocy VortagO i

GNO 12 Ground

50

~Cu:RCJ: 74S:E: :est;

:'.nedef Perýýzd = !s

:NPtJT s3 s2 s- sO m ::n aO a! a2 a3 *-O bl b2 b3;

OUTPUT P g ab zouz fO f! f2f1,

/* check out arit!hmetiýc func,:ion s
s3=LO; s2=w:; si=H1i; sw'=LO;
m=LO; cin=LO;
aO=HI; al=L'; a2=LO; a3 =To;
bO=LO; bl=HI; b2=LO; h3=L0 5

s3=LO at .Cns; sd"=H at i-Ons; sl=HI at IOns; sO=LO at !Ons;
m=LO at i0ns; cirn=L3 at ':Crs;
aO=HI at i3ns; al=wU. at COns; a2=LO at i0ns; a3=LO at iOns;
bO=LO at I.Crs; b.!=L3 at !Cns; b2=LO at IOns; b3=HI at IOns$

s3=LO at 2Orns; sZ=w7 at 2Cris; sl=Hl at 2Ons; sO=Lo at 2Ons;
m=LO at 2Ons; cin=L3 at 2Ons;
aO=HI at 21.nrs; al=LC at 2Ons; a2=Hý at 2Ons; a-=LO at 2Ons;
bO=LO at 2Crns; bi=w: at 2Ons; h-2=HI at 2Ons; b:;=LO at 2Ons S

s3=LO at 3Cns; s2=w: at 30ns; s =I at 3On~s; sO=Lo at 3Ons;
m=LO at 3Ons; cirz=LO at 3Ons;
aO=HIl at 3Cns; a.!=w at 2Czns; a2=w7- at 3Cns; a3=L3 at 30rns;
bO=LO at 3Cz-s; h-I=L0 at 30rs; '-2=TLZ at 3Ons; b3=H1 at 3Ons $

s3=LO at 4Cns; s2=wT- at 4Ons; s>iat 4Ons; SO=rO at 4Ons;
m=LO at 4Cns; cin=LO at 4Ons;
aO=KI at 40-s; al=LO at 40-s; a2=LO at 4Ons; a3=HI at 4Ons;
bO=LO at 40'.s; !D!=wii at 4Crns; b2=LO at 4Ons; b3!=Hi at 4Ons S

s3=LO at 5Cris; s2=9:. at :Oris; s!=HiI at 30ns; sO=LO at 50ns;
m=LO at 50ns; cir.=LO air 30ns;
aO=Hl at 5uns; a.l=w-. at :rOns; a2=LO at 50ns; a3=H: at 50ns;
bO=LO at SCrns; bh=L3 at 3Cns; !:2=HT at 5SOns; b3=-H! at SOns S

s3=LO at 60ns; s2=;ý- at 60n's; slH- at E0ns; sO=Lo at 60ns;
rn-LO at 6Cns; clrnýL3 at 60ns;
aO=iiI at 60ns; ail-T at 6Cns; a2=H7* at iOns; a2=HT at S0ns;
bO=LO at ;Cns; bzI=rU at 60r~s; z-2=Hii at 60ns; b3=ril at 60ns S

s3=LO at -Cr'.'s; s2=HZ at 'O0ns; sl=H7 at 7Ons; sO=LO at 7Ons;
m=LO at 7Ons; ::n.=LO at -Ons;
aO=;iI at 7Ons; al=LO at 7 0ns; a2=LO at 7Ons; a3-TO at 7Ons;
bO=EiI at 7Ons; bl=H: at "Ons; t2= LO at "Ons; b3=LO at 7On~s S

Figure 15 74S181.miJsl Stimulus File (partial)

51

0.30 - " 3 3 3 1 0 0 0 0 i 0 0 x x x x x x x x
4.3 3 1 1 3 3 3 1 0 0 3 0 0 0 0 1 X X X X x x x
5.30 1 0 3 3 3 1 0 0 0 0 1 0 0 1 0 X X 1 i x x
6.33 1 1 0 3 3 1 0 0 0 0 1 0 0 1 0 X 1 1 I i
7.33 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 -

10. 3 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 i 1 i I
14.3 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 I 1 1 0 1 1
15.3 3 i 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0
16.0 3 : 1 0 0 0 1 1 0 0 0 0 0 i i 0 0 1 I 1 0 i
20.303 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1
24.30 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1
25.303 1 1 0 0 0 i 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0
26.0 3 1 1 0 3 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1
27.3 0 1 1 0 3 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1
30.3 3 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1
34.0 3 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1
35.3 0 1 1 0 3 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1
36.3 1 1 3 0 3 0 1 1 0 0 0 0 1 1 0 1 1 1 I 1 i
40.0 3 1 1 0 0 3 0 3 0 1 0 1 0 1 1 0 1 1 1 1 1 1
44.3 3 1 : 0 3 3 1 3 0 1 3 1 3 1 1 1 1 1 1 0 3 0
45.3 3 1 1 3 3 0 1 3 0 1 0 1 0 1 1 0 0 0 1 1 3 0
46.0 3 : 1 3 3 0 1 0 0 1 0 1 3 1 " 0 0 1 1 1 1 "
47.0 3 1 1 0 3 3 1 0 0 1 3 1 0 1 1 0 1 I 1 1 1 1
50.0 3 " 0 0 0 0 1 1 0 1 0 3 : 1 1 0 1 1 1 1 1 1
54.33 10333 - . 1 131
55.3 0 - 1 0 3 0 1 0 1 0 0 1 1 1 0 0 0 1 11 0
56.3 1 0 0 3 1 1 0 1 0 0 1 1 1 3 3 1 *

57.3 3 - "1 0 0 3 1 1 0 1 0 0 1 1 1 0 1 .
60.0 3 1 1 0 0 0 1 0 1 1 0 1 i 1 1 0 1 1 1 1
64 .3 0 1 3 0 3 1 0 1 1 0 1 1 1 1 1 1 1 3 3

5439 . 0 0 3 " 0 3 0 " " i 0 i 0 0 0 0 i 1

590. 1 3. 0 1 3 0 3 0 3 3 1 0 1 1 0 0 0 0 1 1
593.3 9 3 3 " 3 1 3 3 0 3 0 1 3 0 1 3 3 0 3 1 1
594.3 " 3 3 1 3 1 1 0 0 3 3 0 1 0 0 3 3 1 1 0 1
i95.3 3 3 1 0 " 1 0 0 0 3 0 3 0 0 i 1 0 1 0

5040. 1 3' 3 i 3 1 0 0 i 1 0 i 0 0 i 0 1 3503.0 3 3 0 1 0 1 1 3 0 0 i i 0 1 0 0 0 1 3 1 0
603 3 " 0 1 - 1 0 0 1 0 1 0 3 1 0 1 0
i04.3 3 0 1 1 1 0 0 31 3 0 1 0 0 1 0 1 0
i10.3 1 3 3 i 3 1 1 3 " 1 1 0 0 0 0 1 0
520.3 1 3 3 03 1 1 1 0 0 1 0 0 i : 0 0 0 3 1 0
i14 .3 1 3 0 1 0 1 1 0 0 3 1 0 0 1 0 0 0 0 1 0
625.3 1 3 3 1 0 1 0 0 0 1 0 0 0 1 o 0 0 o 0 1 o
620.3 1 3 3 1 3 1 1 0 0 0 1 0 ! 0 1 3 0 3 0 a 0654.3 1 3 3 1 0 " 1 0 0 0 1 3 1 0 1 0 0 10 1 1 3

i30.0 " 3 0 " 3 1 1 1 0 0 0 0 0 1 1 0 0 1 3 1 1 0
634.3 " 3 3 " 1 1 0 3 0 3 0 1 : 0 3 1 0 0 0 i
635.01 " 3 3 1 3 0 3 0 1 3 3 1 " 0 0 1 0 0 ^f:

'-SC 'in ^a! ~a3 -Z1 IZ3 ; =U ^: f! ^f2

Figure 16 74S181.list Sim-output File (partial)

52

IV. SOFTWARE TRANSLATION METHODOLOGY

A. DISCUSSION

This thesis has addressed two separate digital testing

environments. As discussed in chapter III, the GR-125

hardware tester enables a designer to perform many different

types of tests including a functional test. Additionally,

chapter IV described how the QuickSim CAD simulator offers a

functional test capability within the simulation test

environment. A close comparison of the functional test

requirements within each of these environments reveals an

interesting similarity: the stimulus/response data required

for each test environment contains the same general

information. The only difference lies in its structural

format.

As discussed in chapters II and III, the stimulus required

for both test environments is composed of test vector

elements. Although these test vector elements contain

essentially the same stimulus information, their input format

is quite different between the GR-125 and the QuickSim test

environments. Recall that the GR-125's test vector stimulus

is located in the ASCII formatted .tpp file (refer to Figure

7). In contrast, test vector stimulus for the QuickSim

simulator originates in a .misl file (Figure 15). After

53

simulation these test vector stimulus elements and their

response patterns are recorded in the list window .list file

(Figure 16).

An enormous amount of time and effort is required to

generate a set of stimulus test vector patterns. These

patterns can easily exceed thousands of lines of data

elements. Furthermore, manually copying these test patterns

into two formats can lead to many inadvertent editing errors.

Accordingly, finding a way to make these two test environments

compatible with each other is extremely advantageous. As a

result, developing a software translation program will

effectively link the digital simulation environment with the

GR-125 hardware tester environment. This process will

translate the test vector patterns generated by the QuickSim

simulator into an acceptable format for the GR-125 .tpp file.

The desired translation process is illustrated in Figure 17.

The software translation procedure described above reads

an input file, performs various editing, and produces a

desired output file. This process is actually performing the

function of a mini compiler or interpreter. This chapter will

discuss how various software tools can be used to build such

an appropriate translator. Finally, chapter V will present

the actual translator results.

54

QuickSim Environment

sbmuiusIi
",, (.misl) J

"SIMULATOR

SimoUtput fileý

G GR-125 Test Environment

.tpp file

Figure 17 Test Vector Translation Procedure

55

B. INTERPRETERS AND COMPILERS

As discussed above, a compiler and/or interpreter are the

heart of any software language translation. A compiler inputs

a program and converts it into a set of instructions that can

be performed by the computer. The input for a compiler

typically spans multiple lines. In comparison, an interpreter

acts immediately on the user's typed input, one line at a

time. Compilers and interpreters are very similar in how they

process input and generate output; therefore, this thesis will

use the term compiler to mean both interpreter and compiler.

The input to a compiler is a character stream. Alternately,

the output of a compiler is an action or series of actions,

possibly as simple as printing an output identical to the

input.

The compiler performs its function in three separate

stages:

"* lexical analysis

"* parsing

"* actions

The first stage, lexical analysis, scans the input stream and

converts various sequences of characters into groups known as

tokens. Tokens are groups of characters predefined by the

compiler writer. In the second stage, a parser reads these

newly created tokens and assembles them into language

constructs. The constructs of a language actually describe

56

how expressions, identifiers, and keywords can be combined to

form statements. For example, the "if-then" statement in Ada

is a language construct. Finally, in the third stage of a

compiler, actions were taken once a token is matched. Every

stage is important. The completion of one stage provides the

input for the next stage. However, in less complex

applications, the action stage can immediately follow the

lexical analysis stage. Figure 18 summarizes these stages.

A programmer could write a custom analyzer or parser in any

computer language. However, there exists some special C based

UNIX tools which offer superior flexibility and capability in

compiler design. [Ref.9]

LexicalPaACTI ONS
Analyzer P 44Ar=

Figure 18 Compiler Processing Stages

57

C. UNIX TOOLS OVERVIEW

Special UNIX tools exist which makes compiler design

rather simple and straight forward. This chapter will analyze

two specific UNIX utilities which can be used to design a

translation program:

"* Lex (Lexical Analyzer Generator)

"* Yacc (Yet Another Compiler Compiler)

Lex and yacc are specifically designed for writing compilers.

These tools create C routines that analyze and interpret an

input stream of characters to produce a desired output

product. Both of these utilities were developed at Bell

Laboratories in the 1970's. Additionally, lex and yacc have

been standard UNIX utilities since Version 7. Figure 19

provides a graphical comparison of the power of various tools

in the UNIX programming toolkit. Note that lex and yacc are

powerful but still provide a programmer with tools not so

complex as C itself. [Ref. 9:p. xiv]

D. LEXICAL ANALYZER GENERATOR (LEX)

1. Background

Lex performs the lexical analysis function of a

compiler. Specifically, lex reads an input file containing

regular expressions for pattern matching and generates a C

routine that performs lexical analysis. As discussed

previously, this routine will read a stream of characters and

58

match predefined sequences as tokens. These input streams are

byte streams in UNIX. Lex, therefore, breaks these byte

streams up into tokens. Once these tokens are assembled, lex

can choose between two options:

(1) pass the tokens to yacc for future action

(2) perform immediate action based on a token match

YACCD
LEX 0

AWK
SED E

0

GREP 0
CAT

Figure 19 UNIX Toolkit Hierarchy

2. Lex Specification Format

The structure of a lex program is known as a lex

specification file. Figure 20 delineates the three sections

which form a full or complete lex specification. The first

59

and last sections are optional entries. Consequently, a lex

specification can actually be composed of only the rules

section. Although each section will be addressed, only the

rules section will be covered in detail. By convention, the

lex specification is created in a file using a ".1" suffix.

definitions

rules

user routines

Figure 20 Full Lex Specification Format

a. Rules Section

The main section of a lex specification is composed

of a set of rules. Two percentage signs "%%" are a required

symbol to indicate the start of this section. Each rule

contains a regular expression that is matched against an input

stream. Once this match is made a specified action is taken.

These pattern matching rules are expressed in UNIX regular

expression syntax. Figure 21 illustrates a simple lex

60

specification with a single rule. In this rule "Navy" is a

regular expression in which each character is interpreted

literally. The action is composed of the C library function

"printf". Basically, this lex specification states that if

the token "Navy" is recognized in the input stream, then "Beat

Army" is printed. Note, however, that if the input does not

match any of the regular expressions explicitly defined in the

rules, a default action is executed. This default action will

copy the input to the output with no modifications made.

Therefore, a lex specification with no specified rules will

completely copy or echo the input to the output.

Consequently, if a programmer wants to restrict the output,

explicit rules must be written to match the input and then

discard it.

Figure 21 Lex Specification Rule

A lex specification can actually be thought of as

an input scanner which scans the input stream and executes a

set of actions. This is the concept which will be implemented

to develop the translator program in chapter V. The key to an

effective input scanner is properly defining the regular

expressions in the rules section. Analyzing a specific

regular expression with specifically defined expression

61

operators will help to explain its usage. Table XX provides

a simple example of a regular expression representing real

numbers. These real numbers consist only of digits and

decimal points. It is advantageous to break this regular

expression into two parts for analysis. Looking at the second

part first reveals:

[0-9]+

The brackets [] enclose a set of exclusive choices. A

consecutive range of digits or letters within brackets can be

abbreviated by the use of a hyphen. This particular

expression matches any single digit from 0 to 9. A plus "+"

symbol means one or more of the preceding. Therefore, this

part of the expression matches "2", "223", or any sequence of

digits. Now, a look at the first part of this expression

reveals:

([0-91]*\.) *

The asterisk "*" means zero or more of the preceding.

Parentheses "1)" are used to group an expression so that it

can be modified as a single unit. As a result. the asterisk

following the expression in parentheses makes the entire

expression optional. Additionally, the asterisk following the

"[0-9]" makes the digits preceding the decimal point optional

as well. The dot "." normally is used to match any character

except a newline "\n". However, in this example, a backslash

"\" is used to make the dot be taken literally. Therefore,

this part of the expression matches a decimal point preceded

62

by any sequence of digits. Table XXI provides a listing of

the regular expression operators used in lex. For a more

detailed discussion of the syntax required for regular

expressions, refer to chapter 6 of Ref. 9.

Table XX LEX REGULAR EXPRESSION EXAMPLE

Numbers desired to match:

223

2.2

2

22.32

Regular expression:

([0 - 9 1 *f1 0 - 9 ii+

b. Definition Section

The definition section of a lex specification is

optional. However, this section does allow a programmer to

define simple macros for use in the rules section discussed

above. For example, the regular expression expressed in Table

XX could be defined in the definitions section as follows:

real num ([0-9]*\.)*[0-9]+

Therefore, the term "realnum" followed by an appropriate

action would constitute a valid rule without having to rewrite

the full expression.

63

c. User Routine Section

The user routine section is also an optional

section in the lex specification. -his section can contain

any valid C coded routines. Frequently, however, this section

will have no code since the necessary routine will be provided

by the lex library. This lex iobrary is discussed in the next

section on usage.

Table XXI LEX REGULAR EXPRESS:ON OPERATORS [from
Ref. 91

Claracmr I Menig

.Matches any sangle charmer (exc,-t newline).
S Maxhes .he end of the Line as u-ling contexL

.Matches beginning of lin except inside [] when it means "comple-
mentC.

I Ma=ches any oi the speci~ed cha=nc-s.
- Inside 0, 1f it is not the drst or last cý.,arac=r. means "1he range of".
SThe prmous regular expression is optonal (e.g., 10.?9 is 109 or 19).

Any number of repetitions. including zero.
Any positive number of repetitions. but not zero.
Allows airnation between :wo expressions (e.g.. 101 1 matches
10 or 11).

() Allows gouping of expressions.
/ Matches an expression if followed by the next expressions

(e..., 10/11 mawches 1011).
{] Allows repetitions or substtutes a dexiution.
< > Defines a start conditon.

3. Usage

There are three steps required to run lex. Figure 22
describes each of these steps. -t is important to note that

the lex.yy.c file, created in step 2, is not a complete

64

program. It contains a lexical analysis routine called

"yylex". Consequently , there are two ways to call yylex:

"* Supply a hand-coded main routine that calls yylex()

"* Integrate the lexical analyzer with a yacc-generated
parser

The second method of calling yylex() will be addressed in the

next section on yacc. The actual translator program, which is

developed in chapter V, will utilize a separate main routine

to call yylex(). Finally, the program compilation in step 3

requires the "-11" option. This compiler option is required.

By invoking this 11-111 option lex.yy.c is linked with the UNIX

standard library "libl.a".

E. YET ANOTHER COMPILER COMPILER (YACC)

1. Background

Recall that the second stage of a compiler process

involves a parsing routine. Refer back to Figure 18. As

mentioned earlier, the parser reads the tokens created by the

lexical analyzer and assembles them into language constructs.

These constructs will then be used to describe how

expressions, identifiers, and keywords combine to form

statements. Yacc performs the duty of a parser. Basically,

yacc reads a specification file that codifies the grammar of

a language and generates a parsing routine. This parsing

routine will then group the tokens produced from a lexical

65

step 1 Create a lex specification file

Iex...specj-ile .1

step 2 Run lex on the ".1 file

prompt> lex lex.spec_file .1

lex.yy.c file

step 3 Compile lex.yy.c and any other
related source files

prompt> cc-O outfilel lex.yy.c -/

Figure 22 Lex Usage Steps

analyzer into meaningful sequences and take action as

specified in the action routines. Figure 23 taken from Ref.

9 describes the basic function of a parser. In summary, it is

important to recognize the fact that a parser like yacc must

have an associated lexical analyzer to provide it with tokens.

Yacc will not function as a stand alone routine like lex.

2. Yacc Specification Format

The yacc specification format closely parallels the

lex specification format. Figure 24 illustrates the three

sections which form a full yacc specification. The

declarations section and the grammar rules section are both

66

The Iingua franca of a Pay PhoneI M M To understand what a parser does, let's describe it by
analogy to a pay telephone. To place a call it costs

ag 0 cents, and that 20 cents can be paid using nickels and
dimes. Each coin represents one token. The syntax of

four language must state what combinations of tokens
Lmake up 0 cents. The following rules describe these

combinations:

For example. if the :hrst corn is a nickel and the second coin is a dime. we do
not yet have a valid combination, and to produce one. we need a third corn that
is a mckel. Each of hese. lines can be considered rules for prodcing a valid
combination totaling exactly :0 cents. The "machine" is able to apply these.
rules by "rling 3ut" the ones that ae no longer valid. For instance, if the first
coin is a dime, we know that only the last nwo rules can be applied. if the next
coin is a nickel, "hen only :he fourth ruleis left :o be applied on remaining
input. ?arsing, then. is the ability to recognize certain sequences of tokens.

The above set of rules have the same action associated with them. which might
be "connect --ai-er." We could write rules to recognize other tokens and to
specify different actions. For instance, we might have a rule for pennies and
slugs, dropping -he token into the coin return slot. Simiaurly, we could have a

rule:

and specify an action that returns the nickel and makes the connection. This,
of course, is not a real pay phone.) The set of rules constitute a grammar. In
other words, a gammar descr•ibes the combinanons of tokens that produce
meaningful results.

Figure 23 ParS g Des _-- ' n [frcm Ret . 37

required for a complete yacc specification. By convention, a

yacc specification file uses a ".y" suffix.

declarations

grammar rules

C programs

Figure 24 Full Yacc Specification Format

a. Declarations Section

The declarations section establishes the framework

throughout the parser. The tokens and operators, which

originated from the lexical analyzer, are defined here. The

actual form of the token is declared as well as any other

global variables that will be used. These token .efinitions

describe all the possible tokens that the lexical analyzer

will return to the parser. Recall, yacc was developed to help

translate one software language into another. Any generic

language will have text, comments, commands, numbers, etc.

Therefore, tokens are used to define these different language

elements. Table XXII shows a typical declaration in a yacc

68

.specification. As discussed abcve, -he declaration section

also defines the operators used in the parser. Table XXIII

lists several keywords and their associazed meanings which can

be used in the declaraticn section. Refer to chapter 7 of

Ref. 9 for additional information.

Table XXII YACC DECLARAT:ON ENTRY

% token < val > NUMBER

% token < text > COMMENT

% token <cmd > COMMAND

% token <'text,- TEXT

Table XXIII YACC DECLARATO_-N SECTION
KEYWORDS [from Ref. 9]

%token Declare the mnames of tokens.
%left Define left-associative operators.

%right Define right-associatve operators.
%nonassoc Define operators that may not assoc=ate with themselves.
%type Declare the type of nonterminals.

%union Declare multiple data types for sem.anuc values.

%start Declare the stan symbol. Defauit :s f•rst in rules section.
%prec Assign precedence to a ruie.

69

b. Grammar Rules Section

The grammar rules section of the parser is where

all of the action in yacc takes place. As in lex, there are

prcduction rules followed by action statements. However, the

rules section in yacc is quite a bit more complicated than

lex. A complete grammar rule in this section is composed of

three elements:

"* symbol

"* definition

"* action

Figure 25 shows the format of a yacc grammar rule.

sy bl definitionl

Figure 25 Yacc Grammar Rule Format

(1) Symbol. There are two types of symbols used in

yacc: "terminal" and "nonterminal". A terminal symbol is an

actual token or literal character that is recognized by the

lexical analyzer. Conversely, a nonterminal is strictly

70

defined as a non-token. By convention, the names of

nonterminal symbols are written in lower case letters while

the names of terminal symbols are capitalized. These two

symbols should not be confused with the symbol location in the

left hand side of the grammar rule. Only a nonterminal symbol

is allowed in this symbol location. Alternatively, the right

hand side of the grammar rule, the definition location, can be

made up of both terminal and nonterminal symbols.

(2) Definition. The definition portion of a yacc

grammar rule consists of zero or more symbols made up of

terminal and nonterminal symbols. The syntax of this section

is essentially a hierarchical structure which uses a top-down

structure relating various terminal and nonterminal symbols.

Table XXIV provides an example of how these various symbols

interrelate. Recall that the capitalized words are tokens

(i.e. terminal symbols). The first rule in this example

states that a nonterminal symbol, "list", is made up of either

an object or of a list and an object. Note the use of

recursive definitions. The pipe "I" symbol is used as a union

operator. Finally, the last rule in Table XXIV specifies that

the nonterminal symbol number is either a NUMBER, a NUMBER

with a plus "+" in front, a NUMBER with a minus "-" in front,

or two numbers separated by a decimal point "".

The construction of this grammar clearly shows

a bottom-up process. Each grouping is included in larger

71

groupings until there is a single top-level grouping that

includes all other groupings. This top level language

construct is referred to as the "start" symbol. In the sample

of Table XXIV "list" is the start symbol. When the start

symbol is recognized and there is no more input, then the yacc

parser knows it has seen a complete program. [Ref. 9:p. 12]

(3) Action. The action within a yacc grammar rule

consists of one or more C language statements similar to a lex

action statement. These actions are executed each time a

corresponding rule is matched. Actions usually manipulate the

values of tokens.

Table XXIV YACC GRAMMAR RULE ELEMENTS

rot <--*dI hto 0"

d*<--TX ICUMMUI COMMAND

numbr <-- MER NUMBER I" NUMBER I NUMBER '1. NUMBER

72

c. C Programs Section

The C programs section of a yacc specification is

composed of C coded routines. This section performs the

identical function of the user routine section found in the

lex specification.

3. Usage

There are five steps to creating a yacc parser.

Figure 26 describes each of these steps.

step 1: Write a yacc spedification file
yac.specjile .y

step 2: Create a lex specificaon file
lexspecile .

step 3: Run lax on the'J' file
p"mp> /a lex/_sp/e.fi/,.,,

lex~yy.c file
step 4: Run yam on the '.y' file

prom> wec yacckspecl .y

y.tab.c fib
step 5: Cwm and Ink source files for parser and

odcal analyzer
"pw> cc.o o•/e2 y.tab.c lexyy.c .4y .4

Figure 26 Yacc Usage Steps

73

The y.tab.c file is not a stand alone routine similar to the

lex.yy.c file. Step 5 of Figure 26 requires the "-ly" option

in addition to the "-11" option. The order is important

between the lex and yacc library extensions. The overall use

of lex and yacc are summarized in Figure 27.

Lox vacc
Specificaton Specification

'ex. yy.: v.Za.y a

YYlOX() YYParSe(Custom
lexical parser C
routine - routine routines

cc UNIX
Uibranes

Sprogram

Figure 27 Lex And Yacc Usage Summary [from Ref. 9]

74

4. Flow Control Summary

Lex and yacc have each been analyzed separately.

However, the lexical routine created by lex, yylex, and the

parsing routine created by yacc, yyparse, work together.

Figure 28 illustrates the flow of control in !exica! and

parsing routines.

evaluate

': main() J ,hOUr
J-,mm : ,f inou, II m

I ,s ,,=,cJ / °
:r ", •t not %1" -eauest

y•/parseO [*.ext:oKen
! "• ',•,n:•=• I

a•]ons i
•mcess ' | "eturn :cKen

vaiue : JJ "•umDer

So,-,, I

Figure 28 Lex And gacc Flow Control [from Ref. 9

The main program invokes yyparse to evaluate whether •he input

is valid or not. Next, y•!parse invokes the yylex routine each

time it needs a token. The lexical routine reads the input

stream and returns a token number to the parser fcr each zoken

75

it matches. The token number lets yacc know which token has

been received. The token number corresponds to the ASCII

value of each ASCII character (0 to 256). Thus special user-

defined tokens begin at 257. These special user-defined

tokens are defined in the definitions section of a lex

specification. Additionally, the lexical routine can also

pass the value of the token using the external variable

"yylval". Once the lexical routine has exhausted the input,

it returns a "0" to the parser. If the parser has recognized

the start rule, then the parser returns a "0" which means that

the input is valid. If the parser receives a token number or

a sequence of tokens that it does not recognize or if the

lexical routine returns 0 (end of file) when the start symbol

has not been recognized, then the parser returns 1, reporting

a syntax error. [Ref. 9:p. 14]

This chapter has described the software translation

procedure by comparing it to a compiler process. The special

UNIX tools, lex and yacc, provide ideal resources for building

such a language translation program. Although lex and yacc

work well together, lex is extremely powerful on its own.

Lex's ability to both scan an input and take actions based on

that input data makes lex an effective "stand alone" compiler

system. As a result of this capability, lex alone will be

used in chapter V to build an actual translator to modify a

CAD simulator output file into the compatible format required

by the GR-125 tester system.

76

V. TRANSLATOR DESIGN RESULTS

Chapter IV discussed the benefit of developing a software

translation tool to link the digital design environment with

the GR-125 hardware tester environment. Additionally, a

software translation methodology was presented incorporating

special UNIX tools such as lex and yacc. This chapter will

present the results of an actual translation process which

provides a solution to the test vector incompatibility problem

between these two test environments. After a brief overview,

the structure, usage, and results of this translator program

will be presented.

A. OVERVIEW

The overall objective of this translator program is to

translate the test vector patterns generated by the QuickSim

simulator into the structural format required by the GR-125

.tpp file. The List Window file produced by the QuickSim

simulator will provide the input for this translator. The

output file produced from the translator will then be included

in the GR-125 .tpp file (refer back to Figure 17). Because of

the extreme capability and flexibility of the lexical analyzer

generator (lex), this special UNIX tool alone will provide the

backbone for this translator design. Furthermore, in order to

maintain continuity for discussion, this translator program

77

will perform manipulations on the 74S181 ALU simulation files

developed back in chapter III. The name of this translator

program is "vector-map".

B. PROGRAM STRUCTURE

The basic components of the translator program,

vectormap, consist of a main program and a lex routine. The

main program, vectormap.c, is a C based program which calls

the lex routine, vector map.l, to perform the token matching

and corresponding execution functions. The lex routine is the

heart of the vectormap translator. This section will discuss

the composition of each of these two routines.

1. Main Program (vector map.c)

The entire vectormap.c program is presented in Figure

29. This main program performs two major functions:

"* provides a location for inputting the number of input pins

"* calls the lex routine

The correct number of input pins are required by vector map.l

in order to function properly. As discussed in chapter IV,

vectormap.c uses the function yylex() to call the lex

routine.

2. Lex Routine (vectormap.l)

As stated above, the lex routine does most of the work

in the vectormap translator. Figure 16 presents a typical

input file scanned by the vectormap.l routine. In order to

78

produce a test vector stimulus file compatible with the GR-125

.tpp file format, three major alterations must be performed.

Table XXV delineates these translation requirements. The

vectormap.l routine ,provided in Figure 30, scans different

stimulus elements by keeping track of the number of spaces

encountered. These spaces are defined as a "fieldcount" in

this specific lex routine.

/**T*T vector •a~ •,

/* Usage: vectczrmap uam
.... where "nm" 4s the nurber zf input onis "rom :he

.. inpu fi.e f.. cr Zur .. esz :ase, :he in:uz file
"*2' 4Si.Ii~'- has :4:nuz pins

main(argc, ar-v)
4int azgc;
char wargv[' ;

If(argc >)
input_n= at=i(ar~v"):

else
i nnut num I,

yylex();

Figure 29 "vectormap.c"

As mentioned in chapter IV, every character a lex

routine encounters on input will be copied directly to the

output unless explicitly defined as a token with a

79

corresponding action statement. Consequently, the first

requirement, listed in Table XXV, is satisfied by matching

unwanted characters and/or character strings and deleting

these matched tokens with a semicolon ";". This action is

accomplished in the last four lines of the vector map.l

routine.

Table XXV "vector map.l" COMPILATION STEPS

1. Remove unwanted Characters

2. Produce input vector pattern immediately followed
by the final state output pattern

3. Change output pattern elements "0" and '1U to
'V and 'H' respectively

Lex creates an external variable named "yytext" that

contains the string of characters that are matched by the

regular expression defining the token. Therefore, changing

the value of this variable provides a solution to the third

translation requirement of Table XXV. Because yytext is a

string type variable, the C function "atoi" is used to convert

it to an integer value prior to comparing it to the integer

80

04 -

c.,). -,0
5 0 0. Q M C6

-- -r t aC

00 0 C c

o0 000 0 1. ut 0
61 0, -.

0- Xa 0
z 0. 0 16 W IJ =.

63 0C4. -. '.C asI
I~~~~ .4.1 c~.4 ~ -a -

LA~0 0 I ~ -C 0.4. '.C a' .

Figur 30 "vctOa .1 Code0030--6 a

values 0 or 1. The following code shows a portion of the

vector_map.l routine which satisfies this translation

requirement to change the output vector elements to a "H" or

"OIL":

if (atoi(yytext) == 0)

printf (" L");

break;

}

The second translation requirement listed in Table XXV

poses the most challenging programming algorithym. A close

observation of the 74S181.1ist file in Figure 16 reveals

several output vector states for every set of input vector

stimuli. These output vector elements change state until the

end of a delay time is encountered. The delay times for the

74S181 ALU chip in the simulator environment lasts

approximately 6-7 nanoseconds. Although this intermittent

state change information is interesting, it would confuse the

GR-125 tester. The test vector elements placed in the GR-125

.tpp file require a set of input stimulus elements followed by

expected output result elements. If every test vector in the

QuickSim .list file were put into the GR-125, the functional

test would always produce a failed result. Accordingly, only

the initial input stimulus elements followed by the final

state output elements are chosen to form a valid test vector.

82

By using various "arrays" of input elements and "for" loops,

this lex routine provides a look ahead capability to determine

which set of input and output elements to record for an

accurate test vector.

C. PROGRAM USAGE

The main program and lex routine must be compiled and

linked to form a usable translator program. Table XXVI

reviews these required steps. This section will address the

usage of the newly developed translator program, vectormap.

Table XXVI "vector-map" COMPILATION STEPS

step 1: Writ lox specificaton-- vectorýmap.I

step 2 : Run lox:
,ipt> lex vectoiLmap.l

step 3 : Compile and link with main program (vectormap.c)

prmpt c- vetoormep vectomap. c lex.yy.c -1/

1. Input File

As stated previously, the input file used by the

vector_map translator is composed of the List Window file

produced from the QuickSim simulator. This .list file must

83

have the input elements listed before the output elements.

This requirement is easy to obtain since the programmer can

order the list window in any desired way within the QuickSim

environment. Secondly, the actual number of input pins must

be known prior to invoking the translator program. The next

section will discuss the placement of this input number.

2. Command Line Entry

The command line entry required to obtain a valid

test vector out file is illustrated in Table XXVII. Notice

that this entry uses the UNIX tools cat and pipe "I" to funnel

the input file through the translator to produce the valid

output file. Additionally, the number immediately following

vectormap is the required location for inputting the number

of input pins. In this example, the number 14 represents the

14 input pins in the 74S181 ALU chip.

Table XXVII "vector-map" COMMAND LINE ENTRY

pmmpt> ~ ~ ; ca nu ieIsI vector map 14 >test vector Out

D. RESULTS

The output file created from the command line entry

described above, contains input and output pin states in

proper test vector pattern format. This .tpp file format was

84

di,-'ussed back in Figure 9 of chapter II. Figure 31

illustrates the output file produced by invoking the

vectormap translation program on the 74S181.list simulation

file developed in chapter III.

The final action required to fully link the CAD simulator

and hardware tester environments is to include this newly

created output file into the GR-125 .tpp file. Chapter II

referenced the use of the "INCLUDE" statement in the PATTERN

section of the .tpp file. Only one line is added to the

existing .tpp file to incorporate this newly created output

file. The additional line of code is placed in the PATTERN

section of the GR-125 .tpp file. Table XXVIII illustrates the

proper line of code required to incorporate this 74S181.v out

file into a GR-125 .tpp file.

Table XXVIII INCLUDE STATEMENT FOR GR-125 .tpp
FILE

INCLUDE "74S181.v_out"

The vectormap translator program, developed in this

chapter, has produced an extremely useful tool for hardware

testing using the GR-125. Highly accurate test vector data,

produced in the computer simulation environment, can now be

directly placed into the GR-125 .tpp file without the need for

85

time consuming test vector edits or rewrites. Additionally,

the chance for errors occurring within these test vectors also

decreases significantly. As a result of these

characteristics, this translator program has successfully

solved the incompatibility problem between the digital design

and hardware test environments.

86

/013.OOOIIccCCC:

/O11ooo1oc:ý:a1 1 /
/O110001iC:Oo::-

/O11O0oiO::3,'' -/

/O110001ooa:--oo :HE/
/011000 10,101I'.10__

/011000100-1010 FE ./

/0110002012.O:oJ l 2EL:
/01100010000010 ~

/01100010C:zll:

/0110011.0000100 ~

/0110011,0::::::
/OlO10 O.10cco0.1a 0 I.:aL;ET

/10110011:oooo.001 L1
/01010011O-00:1o HLZ

/010100110:001100 L~~

Figue 31 " /01810.'v'! ou"T'~

/Ollolloc87l

VI. CONCLUSIONS

A. SUMMARY OF RESEARCH

This thesis analyzed the digital testing process within

two separate test environments. Chapter II focused on the

hardware test environment by performing a detailed system

description of the GENRAD (GR-125) Hardware Tester System.

Therefore, chapter II accomplished the first major thesis

objective. This description provided a detailed overview of

the methodology required to successfully program and execute

a GR-125 digital logic test. Additionally, the specific

testing capabilities of the GR-125 were also evaluated. Next,

chapter III described the digital test process inside the

computer simulation (i.e. software) environment. The Mentor

Graphics IDEA Series (v 7.0) QuickSim simulator provided the

platform to analyze this digital design and test process

within this environment. The emphasis of the discussion is

centered on the test vector stimulation/response information

format produced in the QuickSim simulator output file. This

output file contains all of the basic information required by

the test pattern portion of the GR-125 .tpp input file.

However, the structure formats of the two environments are

quite different and ,therefore, incompatible.

88

Chapter IV provided a general methodology of using special

UNIX tools, lex and yacc, to produce a successful computer

language translation. This discussion gave the necessary

background information required to solve the specific test

vector format incompatibility problem between the QuickSim

simulator output file and the GR-125 .tpp input file. Chapter

V provided the actual solution to the second major thesis

objective. This chapter presents the actual code used to

translate the test vector stimulus/response information in the

simulator output file into the format required by the GR-125

.tpp input file. Therefore, a successful link between the

software and hardware test environments has been accomplished.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis discussed two extremely powerful programs in

the standard UNIX toolkit (lex & yacc). These programs

provide an extremely useful mechanism for translating from one

computer language to another. Although lex by itself provided

an adequate capability to build the successful translator

program, vectormap, developed in chapter V, a host of

increasingly more difficult translator applications are

possible with lex and yacc.

The test vector translation program developed in this

thesis successfully linked a computer simulator output with a

hardware tester input. However, both the computer simulator

(QuickSim) and the hardware tester (GR-125) are stand alone

89

systems. This situation requires a new translation program to

be developed whenever a different simulator or ATE is used.

Figure 32 illustrates this dilemma. Fortunately, a new IEEE

standard is forcing more standardization. This standard is

known as WAVES (Waveform And Vector Exchange Specification).

Basically, this standard will force all of the CAD simulation

programs to produce a standard test vector format. Once this

standard is fully implemented industry wide, only one

simulator file format will be produced. As a result, the

number of different translation programs required decreases

drastically. Figure 33 illustrates this scenario. Now, all

of the different hardware testers would use a common input

test vector file format. Conforming with WAVES development of

more generic test vector translation applications would be

extremely advantageous.

90

CAD ATE
Simulators Hardware Testers

(i.e. QuickSi ••)R.125)

#2 B

#4 D

Figure 32 Translation Summary Without WAVES

91

CAD ATE
Simulators Hardware Testers

(i.e. QuickSim) W (ie GR.125)

E

0 D

Figure 33 Translation Summary With WAVES

92

LIST OF REFERENCES

1. Fujiwara, Hideo, Logic Testing and Design for Testability,
MIT Press, 1985.

2. Bennetts, R. G., Design of testable logic circuits,
Addison-Wesley Publishers Limited, 1984.

3. GR125 Manager's Guide, v. 2.3, GenRad, Inc., Concord,
Massachusetts, 1990.

4. GR125 Operator's Guide, v. 2.3, GenRad, Inc., Concord,
Massachusetts, 1990.

5. GR125 Programmer's Guide, v. 2.3, GenRad, Inc., Concord,
Massachusetts, 1990.

6. IDEA Series Schematic Capture User's Manual, v. 7.0,
Mentor Graphics, Corp., Beaverton, Oregon, 1989.

7. QuickSim User's Manual, v. 7.0, Mentor Graphics, Corp.,
Beaverton, Oregon, 1989.

8. 1984 LOGIC DATA BOOK, vol II, National Semiconductor
Corp., Santa Clara, California, 1984.

9. Mason, T., and Brown, D., lex & yacc, O'Reilly and
Associates, Inc., 1990.

93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Chin-Hwa Lee, Code EC/Le 4
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Herschel Loomis, Code EC/Lm
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA -93943-5000

6. Naval Maritime Intelligence Center
ATTN: Mr. Charles Bradley
Building 75
5803 Bayside Road
Chesapeak Beach, ID 20730

7. Naval Maritime Intelligence Center
ATTN: Mrs. Janet Hooper
Building 75
5808 Bayside Road
Chesapeak Beach, MD 20730

8. LT James T. Loeblein 2
410 Brownrigg Road
Salisbury, NC 28144

9. STEWS NE-A
ATTN: John Sweeney
Building 21225
White Sands Missile Range
White Sands, NM 88002

94

