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ABSTRACT

Digital 1logic testing occurs in two different test
environments, digital simulation and actual hardware testing.
A computer aided design (CAD) tool applies a set of
stimulus/response test vector patterns to check the
functionality of a digital circuit design. Once manufactured,
the chip with this design is tested by a hardware tester
system (i.e. automatic test equipment (ATE)). The ATE
performs many tests in addition to the functionality test.
However, the stimulus/response test vector formats used in
these two environments are different and, therefore,
incompatible in present form.

This thesis is aimed at two major objectives. First, a
system study will be performed on the GenRad-125 VLSI Hardware
Tester System, including its usage, test capabilities and
limitations. Secondly, this thesis addresses the problem of
test vector format incompatibility between the two testing
environments. Special UNIX tools, Lex & Yacc, are used to
create a software translator which changes the CAD simulation

file into the GenRad-125 Hardware Test System format.
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I. INTRODUCTION

A. DESIGN FOR TESTABILITY BACKGROUND
Electronic circuit testing has become an extremely crucial
step in SSI/LSI/VLSI digital circuit design and manufacturing.
In the past, digital component testing was considered at best
a "post-design" activity [Ref. 1]. Digital testing seemed to
occur last in the R&D, design, prototype, and production
sequence. However, manufacturing industries of today are
discovering that the high costs associated with testing amount
up to 60% of the total production costs [Ref. 2:p. v].
Furthermore, recent increases in digital design complexity
give rise to a situation where a circuit designer can produce
a digital circuit which is wvirtually un-testable completely.
Therefore, the only way to reduce this cost is to incorporate
test activities into the design process, hence, creating a
"testable design" [Ref. 2].
In order to pursue a testable design it is necessary to

define the term "circuit testability".

A circuit is testable if a set of test patterns can be

generated, evaluated and applied in such a way as to

satisfy pre-defined levels of performance, defined in

terms of fault-detection, fault-location and test-

application criteria, within a pre-defined cost budget and
time scale [Ref. 2:p. ix].




B. DESIGN TESTING PROCESS

Modern digital circuit testing occurs within two design
environments, simulation tests and actual hardware testing.
A Computer Aided Design (CAD) tool with an interactive logic
simulator tests the functionality of a digital circuit design.
This CAD logic simulator allows a specific design test cycle:
stimulus application, simulation, results analysis, and design
modification. This thesis will utilize the Mentor Graphics
Quicksim CAD tool for an actual design conducted within the
computer simulation environment.

Actual hardware testing using Automatic Test Equipments
(ATE), such as the GenRad GR125 VLSI Tester, compose the
second test environment. Once a digital chip is manufactured,
a series of testing is performed. In addition to logic
functionality, modern ATEs also perform D.C. Parametric, A.C.
Parametric, Functional and Power Supply tests. This thesis
will analyze the capability of the GenRad GR125 VLSI Test
System and examine the testing cycle within the integrated
hardware testing environment.

As described above, a chip design will be tested in both
environments. Testing for functionality allows the digital
chip designer to determine if his design responds correctly to
a given input stimuli (i.e. does the chip logic function work
as expected). To test this aspect of the design, a set of
stimuli and expected response patterns are applied to the

chip's input and output pins. This set of input stimuli and




expected response patterns are known as test vector patterns.
However, both the Mentor Graphics Quicksim, and the ATE,
GenRad GR125 VLSI Test System are stand-alone systems. The
test vector pattern syntaxes used in each environment are not
compatible. As a result, presently, test vector patterns for

two separate formats must be generated.

C. THESIS OBJECTIVES

This thesis has two major objectives achieved within the
hardware and software design and test environments. First, a
thorough study was performed on the GenRad GR125 VLSI hardware
test system, which reveals its usage, test capabilities and
limitations. Secondly, this thesis provides a solution to the
problem of test vector pattern incompatibility between the
simulation and tester environments. Special UNIX tools, Lex
and Yacc, are used to create a software translation program to
bridge this incompatibility gap. This translation program
provides an interface between the test vector patterns
generated from the Mentor Graphics Quicksim simulator and the
required format for the GenRad-125 VLSI hardware tester

system.




II. HARDWARE TEST ENVIRONMENT

Automatic Test Equipment (ATE) provides the capability to
thoroughly test a digital logic chip in a power on situation.
There are many modern ATE's similar in functionality.
However, this thesis will be focused on one specific ATE: the
GenRad GR125 VLSI Test System (GR-125). In order to reveal
the complete hardware test system, three major areas will be
discussed. The first area provides a comprehensive overview
of the GR-125 focusing on its characteristics, main component
layout and system software implementation. Secondly, the
overall programming and execution methodology for component
testing will be analyzed. This methodology will be described
in four major phases (Data Input, Translation, Execution and
Results). The discussion concerning the software interface to
the GR-125 will lead to discussion in chapters III and IV of
this thesis. Finally, the third major area of discussion

identifies some special testing capabilities of the GR-125.

A. SYSTEM OVERVIEW (GENRAD-125)

The GenRad GR-125 tester provides a broad range of digital
logic testing capability. However, in order to effectively
utilize this capability a basic understanding of GR-125
characteristics, system structure and system software is

required. Therefore, the purpose of this system overview is




to provide a logical, comprehensive and user-friendly
documentation for the GR-125 tester operation. The approach
taken here will focus on the user's perspective instead of
technical manual details.
1. General

The GR-125 is classified as a low voltage digital
logic tester. Although originally designed for high guantity
output production testing, the GR-125 provides an excellent
research testing platform for diagnostic analysis of
individual chips. As the name implies, the GenRad GR125 VLSI
test system has the flexibility to accommodate a wide range of
chip component complexity. The entire spectrum of complexity
from Small Scale Integration (SSI) to Very Large Scale
Integration (VLSI) are accommodated by the GR-125. The
complexity of the digital component under test is limited only
by its maximum number of pins.

2. Rating Characteristics

The GR-125 has the capability to test any digital
device up to a maximum of 64 pins. As discussed above, these
pins consist of low voltage only (}0-8) volts). Of the total
pin count, half the pins can function as drive elements and
half the pins can function as sense elements. Drive pins are
used to put a desired digital stimulus signal on a pin. Sense
pins, however, use comparators to compare the actual pin

condition signal with the expected pin condition values. The




timing signals for chip testing are generated by a 12.5 Mhz
clock. Memory capacity of the GR-125 limits each test pin to
64 Kbytes of test vectors. Table I provides a summary of

these general characteristics for the GR-125.

Table I GR-125 RATING CHARACTERISTICS
[ e

64 pins low voltage
(0-8 volts)

... 12.5 Mhz clock speed

.. 64 Kbytes of test vector memory
per pin

.. 32 Drive pins

.. 32 Sense pins

3. Basic System Structure
The GR-125 test system consists of two subsystems:
main assemblies and peripheral Input/Output (I/O) devices.

Refer to Figure 1 for an overall structure layout.
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Pigure 1 GR-125 Cverall Structura Laycut [from Ref. 3]

a. Main Assemblies

There are two main subsystams which make up the GR-
125 test system: Mainframe and Test Head. The Mainframe
functions as the central control urnit which houses the power
supply, computer, and test sicgral generator of the taster.
The Test Head houses various interface adaptor boards which
connect to the Device Under Test (DUT) via plug-in connectors.
Circuits located within the Test Head prcvide an interface for
the test signals between the main frame and DUT. Three
subassemblies are contained in the Mainframe: the System Power

Supply Bay, CPU Card Cage, and Test Electronics Card Cage.

Refer to figure 2.
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Figure 2 GR-125 Main Assembly Structure [from Ref. 3]

b. Peripheral I/O Devices
Various peripheral I/0 devices are also
incorporated within the GR-125 test system. The VT-220 Video
Display Terminal presents menu formatted user screens to set

up detailed test requirements, to observe test results and to




interact with the CPU via a UNIX based software. In its
present set up conditions, the Printer works in a screen dump
mode allowing the Print Screen command only. Although
restrictive, this set up is adequate for obtaining a hard copy
test result. The Keypad (refer to figure 1) was designed to
be used when performing routine testing under high production,
high volume test conditions. Because of the low volume and
research orientation of this thesis, the operation of the
keypad will not be addressed. On the front of the Mainframe
is a control panel which holds the main power switches. A
magnetic disk and tape unit is located next to these switches.
This disk and tape I/O device provides an electronic copy
capability for program and data storage as well as system
backups. Because an Ethernet card is not available, the
present GR-125 hardware tester is a stand alone system.
4. System Software Description

The heartbeat of the GR-125's operation is its system
software. The GR-125 test system utilizes UNIX and custom
software packages to form the backbone operating system for
the GR-125 tester. Because of its wide acceptance in
industrial and engineering applications, UNIX software
provides an interactive and general purpose operating system.
The version of UNIX software installed in the GR-125 is the

UniPlus+ software (v2.0), which runs on the Motorola 68000 CPU




chip. This UniPlus+ software resides in a 15 Mbyte space on
the 85 Mbyte hard disk.
a. Operating System

The UniPlus+ consists of both an operating system
and its utilities. The custom software works as a link
between the user and the GR-125 test system controlling
several I/O functions. Refer to figure 3. This custom
software permits the extensive use of interactive user menu
screens. These screens, which will be covered 1later in
detail, allcw an operator to set up the GR-125 to test a
device as well as developing new test programs (on-line or

off-line).

T/ICES SISPLAY v /7 <ARD 2ISK ™\
“ERMINAL : SRIVE

LEY®A0
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Figure 3 UniPlus+ Operating System [from Ref. 3]

b. Utilities
In addition to its operating system, the UNIX

software package also contains many help utilities. See

10




Figure 4. These utilities enarle a user to develop new test
programs and make modificaticrns to existing programs. The
file system consists of both ASCII taxt and binary data files
stored on the hard disk. The main purpcse of the file system
is to act as a storage mechanism for test programs and system

configuration data associated with particular test programs.

UniPlus+
OPERATING
SYSTEM

FPigure 4 UniPlus+ Utilities [from Ref. 3]

The UNIX software packace also supports three
different editors: ACE, vi, and uEMACS. The More command
allows a text file to be read one screen at a time. As a
stand alone system, this particular GR-125 setup does not
suppcrt Electronic Mail. The RCS (Revision Control System)
makes up the last of the major UNIX utilities supported by the
GR-125 test system. The RCS manages software libraries. It
stores and retrieves multiple rsvisions of program and test

files. Furthermore, the RCS maintains a complete history of

12




changes between test program versions so that one can easily
find the changes made between different versions. For more

details on RCS refer to Ref. B.

B. TEST PROGRAMMING AND EXECUTION METHODOLOGY

Test programming and execution methodology describes the
overall GR-125 testing procedure from data input to observable
test results. This section will present the four main phases
of the GR-125 procedure: Data Input, Translation, Execution,
Results. Refer to Figure 5. The first phase of the testing
procedure includes a software interface to the GR-125 tester
as illustrated in Figure 6. Test pattern information and
parameter specification data are input during this phase.
Next, during the translation process, ASCII formatted data in
the software interface is translated to binary code for use by
the GR-125 tester. Once the required binary £files are
obtained, the GR-125 can support a variety of test executions
By manipulating different support screens within the test
execution phase, the user can produce several desired output
formats. The Results phase produces several categories of
results depending on the option chosen during the Execution
phase. In the following discussion, the purpose 1is to
describe this testing methodology in a manner which provides

the most benefit to the GR-125 user.

12




Figure 5 GR-125 Testing Procedure Phases

1. Data Input Phase
Two software files are used to enter the Device Under
Test (DUT) specification to the GR-125 tester. The test
pattern processor (.tpp) file defines the actual pin mapping
and test vector configuration of the GR-125. Secondly, the
parameter specification file contains the bulk of the

programming information necessary to perform a successful

13




test. Data is placed into this file through the use of custom
Programming Screens. These screens prompt the user for a wide
range of component parameters from pin current 1levels to
timing specifications.

a. Test Pattern (.tpp) File

The first step in the development of a GR-125 test
program is the generation of a .tpp file. This file contains
the tester pins to device pins mapping information.
Additionally, the actual test vector patterns which are
applied to the DUT are also incorporated into this file. It
is important to note that the .tpp file is an ASCII text file
created by any generic text editor. Figure 7 illustrates a
basic .tpp file for a 7404 Hex Invertor.

The .tpp file is made up of three sections:
PINDEFS, ADAPTOR, and MODULE. The PINDEFS and MODULE sections
are mandatory. The ADAPTOR section contains the only optional
entries. [Ref. 5:p. 1-5]

(1) PINDEFS Section. The PINDEFS section is
composed of columns of information to inform the GR-125 tester
of the physical (adaptor) connections between the GR-125's
tester channels and the DUT. This section contains the tester
pin mapping information. Figure 8 illustrates a typical pin
assignment for a 74F374 Octal D-Type Flipflop. In this
example, the 74F374's pin #1 (output enable line "/oe") is

connected to the GR-125 tester channel #3. Note, however,

14




TPP PARAMETER SPEC FILE
Via
FILE Prog Screens Support
(Primary)
TPP TRANSLATOR

T
FILE

PARAMETER SPEC FILE
Via Direct ASCII
Text Input

(Alternate)
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Figure 6 GR-125 Testing Methodology

15




{7404 HEX INVERTERS!

ACAPTCR UNITDAB/Z4
FTABID = 1;
FABREV = J;
JABID = J;
DABREV = J;

SND;

INDEFS
pizname

inl

in2a
in3a
in4a
insa
inéa

nede

0O

{

outly
outly
outlyv
outay
outsy
Jutsy

Groun
Vee z
=ZND;

3

MCDULZ
2ATTERN

7404 :

8]

G UL LN

TN
HOwWWw

1

GND

:

[o)
[+

W W uw st
'y
-

[ Sl Al

a

I3 ]
O W oy N

.J
-

[$]
B
g

VVVVVViO

{Funczicral & Paramecric Test Patcerns)

{VIX Test})
/000200
Tast}
/000000 =EEHHH/ TOI
/000000 / TO01

Test}
/111131 Liiiii/ 7ot
111l / 701
(Simple Functicnal Test}
/000000 HEMMHH/ T01
/012101 HLHELEL/ TOl
/102920 LALALH/ TO:

¢ ICCk

lalaad

{ CCL

S

LRI ]

/100000 LEHH/ TO1
/020000 =LAMHH/ TO01

...... -

b et et ded 4t £

701

VVVVVY

[¥S

14

Figure 7

16

74S04 Hex Inverter .tpp File




that the 74F374's power and ground pins are not ccnnectad to
GR-125 tester channels. Ground and power pins (pins #10 and
#20 on the device socket) are already internally wired to the

adaptor. [Ref. 5:p. 4-5]

T4F374
1XX tester chappel 3 -~ [oe — 1 \Y} 20 — Vee —

gl?\g(( tester chanael ¢ —_— /qo -2 18 — q7 — GRIXX tester channel 31
QRIXX tester chamnel § — d0 — 3 18 — 47 — QRIXX tester chapnel 20
@R1XX tester chappel 8 - d1 - 4 17 — d8 — QRIXX tester chsnnel 19
CRIXX tester chasnsel 7 —_ gl — § 16 — q6 — GRIXX tester chaasel 15
QRIXX tester chasonel 8 - q2 = 8 15— g5 — GRIXX tester chappel 17
GRIXX tester chapnel 9 - 42 - 7 14 — d6 — GRIXX tester chaapel 18
GRIXX tester cbappel 10 — d3 — 8 13— d4 — QRIXX tester chassel 15
GRIXX tester cbagpel 11 — q3 — 9 12— q4 — GRDXX tester chaanel 14

- God —10 11 — elk — CRIXX tester chapmel 13

Figure 1-1. GR1XX Tester Channel Assignment

Figure 8 GR-125 Tester Channel Assignment [from Ref. 5]

(2) ADAPTOR Section. The ADAPTOR section is the
only optional section within the .tpp file. This section
allows the GR-125 user to specify the Device Adaptor Board
(DAR) and Tester Adaptor Board (TAB) to be used with the test
program. [Ref. S:p. 4-12]

(3) Test Pattern MODULE. This section of the .tpp
file contains the actual test vector pattern elements. These
elements define whether a pin functions as a driver for

stimulus or a comparator (mcnitor) for response. A test
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pattern MODULE section is mandatory. The drive and comcare
state information (used by the tester to seguance the DUT
through the functicnal takle) is placsd hera using the values
specified in the manufacture's data bock. Nct2 that these
pattern elements are then storsd in memory behind =ach tester
pin. Valid test pattern slemsnts arzs listed in Table II.
"Drive" indicates the stimulus appiied to the iInput pins by

the GR-125. "Monitcecr" indicatas the sen
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output pins.

Table II GR-125 VALID TEST PATTEZRN ZLEMENTS
e R e

Pattern Vector Element Explanation

Drive low, neglect response
Drive high, neglect response
Driver off, neglect response

e = O
-~

X(

—

Driver off, monitor low
Driver off, monitor high
Driver of, monitor tri-state

Drive low, monitor low
Dnive high, monitor high
Drive low, monitor Aigh
Drive high, monitor low

Klunk (CLOCKMODE only)

lock (CLOCKMODE only)
1 in Alternate format (CLOCKMODE only)
0 in Alternate format (CLOCKMODE only)

? Repeat previous state
- (dash) Hoid pin state

0 -0OXR CN<Z I

(a) Format. Thrzee £:isld entriss ars ragquired
to make a wvalid test pactern: MCLDULE, PATTERN, =NT. The

MODULE input provides for a name £isl1d associataé with zhis




section of the .tpp file. The PATTERN entry stores the actual
test vector patterns. A test vector pattern has a pin control
field which contains a pattern vector element for each device
pin. Proper syntax requires test vector patterns to be
buffered by slashes "/". Refer to Figure 9. Note, the number
of elements must be equal to the number of columns listed in
the PINDEFS section of the .tpp file. Embedded spacing is
ignored by this syntax. Ref 5 discusses four optional fields
which can also be added to these pattern vector elements.

[Ref. 5:p. 4-14]

/110010 HLHLLH/

Figure 9 GR-125 Sample Test Vector Pattern

(b) Include statement. A special use of an
INCLUDE statement permits the user to input a large test
vector pattern code without having to retype each pattern
element into the .tpp ASCII text file. The INCLUDE statement
actually helps to modularize test vector patterns. This
statement will be used to input a test vector file translated
from a CAD simulation file. Chapter IV of this thesis will

concentrate on this translation process.
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b. Parameter Specification File

The parameter specification file is also composed
of data taken from a chip manufacturer's data handbook. This
data is then used to test the DC parametrics and AC timing of
a DUT. Data input into this file can occur via two methods.
The first method utilizes custom Programming Screens which
prompt the user for data input. The second method for
inputting data into the parameter specification file does not
use menu driven screens support. This method uses a simple
ASCII text file format generated by the user from any text
editor. Note, however, that the input data is in the same
format for both methods.

(1) Programming Menu Screens. Programming Menu
Screens are provided by the GR-125 which allow the user to
enter data for a particular device of interest. These screens
work in coordination with the test pattern vectors listed in
the .tpp file. The Programming Menu Screens are subdivided
into five categories. Refer to Table III. This section will
discuss the primary purpose of each of these five categories.
Furthermore, every screen contained in these major categories
will be listed for easy reference. Refer to Ref 5 for a

detailed description of each individual screen.
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Table III GR-125 PROGRAMMING MENU SCREENS

(CATEGORIES)

[ Category Function Kcyj
DEVICE DESCRIPTIONS ‘Fe"
ANALOG DATA SETS Fr*
TIMING DATA SETS "F&*
VECTOR TRUTH TABLE F10°
TEST OPERATIONS F9"

. _/

(a) Device Descriptions. The Device

Descriptions screens make up the bulk of the DUT parameter
specification file. The screens listed here describe the
device and test plan, including such parameters as package
size, device technology, pin types, pin names, pin condition
sets, pin test sets, etc. Table IV lists the screens located
in this category. [Ref. 5:p. 2-4]

(b) Analog Data Sets. The Analog Data Sets
screens category defines the force and measurement levels used
in functional and parametric testing. Supply voltage and
current limits are also specified in these screens. Finally,
all of the drive and compare pin levels for the functional
tests are input during this set of screens. Table V lists the
screens located in the category. [Ref. 5:p. 2-23]

(c) Timing Data Sets. The Timing Data Sets
screens category provides a wide range of timing information.

Period and edge times defining the test program vectors are
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Table IV DEVICE DESCRIPTIONS CATEGORY

(DEVICE DESCRIPTIONS [F6])

O Device Describe

o Device Adaptor Pin Mapping
o Pin Condition Set

o Pin Test Set

entered here. The resolution of the timing edge is determined
by the largest period used for the test. Additionally, this
category of screens provides a mechanism for assigning the
formats and edge selections used for each pin condition set.
Finally, several screens in this category produce a pictorial
and/or tabular representation of the timing relationships of
various input waveforms. Table VI lists the screens found in
this category. [Ref. 5:p. 2-33]

(d) Vector Truth Table. The Vector Truth Table
screens are used to edit data located in the test vectors
memory. Changes can be temporary or made permanent by editing
the source file. This set of screens is used in conjunction
with a special GR-125 diagnostic tool, "Learn". The function
of this special output is covered later in this chapter.
Table VII lists the screens found in this category. [(Ref. 5:p.

2-47]
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Table V ANALOG DATA SETS CATEGORY
e e e SR

(ANALOG DATA SETS [F7] )

o0 Default Pin Levels

o Pin Levels Set

o Power Supply Levels Set
o Load Relay Set

(e) Test Operations. The Test Operations
screens provide the user with the capability to describe how
a particular test :s to be performed. Each type of test
represents a particular AC or DC parameter that the GR-125
test system can measure. In summary, the screens in this
category allow the wuser to modify various parameters
associated with the test categories defined by the GR-125.
These test categories will be addressed in the Test Execution
phase discussion later in this chapter. Table VIII lists the
screens found in this category. [Ref. 5:p. 2-53]

(2) ASCII Text File Format. An alternate method of
inputting information into the parameter specification file is
through a direct ASCII text file as shown in Figure 6. This
method may prove to be a more streamed-line approach by
bypassing the Programming Screens menus; however, the required

data input is the same for both processes. Aprendix A of
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Table VI TIMING DATA SETS CATEGORY
e

(7”“”%3£#U7\SETSAHQW D)

© Timing Array Set

o Edge & Format Set

o Timing Waveforms

o Timing Data Table

o_Timing Data Sets(Combined),

(Ref. 5) presents detailed information on the syntax required
for this method of data input.
2. ASCII To Binary Translation Phase

Recall that the two major files produced during the
Data Input Phase of the GR-125 test procedure were in an ASCII
text format. However, the GR-125 requires that these ASCII
input files be translated into machine-coded binary files for
proper tester implementation. This translation process is
accomplished through the use of two separate compilers within
the GR-125 test system.

a. Test Pattern Processor (TPP) Compiler

The TPP compiler translates the .tpp ASCII text

file into a machine-coded binary Vector Truth Table (.vtt)
file. The .vtt file is actually used to perform the machine-
coded functions specified in the .tpp file. The user must

compile the .tpp file prior to testing. Table IX illustrates
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the command line entry required to compile the .tpp file.
[Ref. 5]
b. ASCII to Par (ATP) Compiler

The ATP compiler translates the parameter
specification file (ASCII text file format) into a machine-
coded binary parameter specification (.par) file. Table X
illustrates the command line entry required to compile the
ASCII formatted parameter specification input file. Note,
however, that the parameter specification input file produced
through the Programming Menu Screens does not require a
separate compilation process. Refer to Figure 6. Once data
is entered into an individual Programming Menu Screen, the GR-

125 internally compiles it into a binary .par file.

Table VII VECTOR TRUTH TABLE CATEGORY
e

(VECTOR TRUTH TABLE [F10])

© Truth Table Edit
o Truth Table Column Mapping
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Table VIII TEST OPERATIONS CATEGORY
S PR

(TEST OPERATIONS [F9] )

o Test Operation

o Vector Set

o Bin Mapping & Control
o Binning Sequence -

Table IX TPP COMPILER (COMMAND LINE ENTRY)

prompt> tpp filename one.tpp

Table X ATP TRANSLATOR (COMMAND LINE ENTRY)

prompt> atp filename_ two.atp

3. Test Execution Phase
Test execution in the GR-125 is designed and initiated
by the system user through the "system test menu screens".

These screens are actually a series of menus similar to the
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Programming Menu Screens used to create the .par file. These
system test menu screens provide a convenient method for
configuring the GR-125 tester for a test operation. This
configuration determines which part of a test program will be
executed as well as establishing which type of format the
output produces. Furthermore, this series of menus guides the
user through a decision-making and data selection process.
Modifications to these screens can be temporary for current
testing or made permanent by overwriting the program or
creating a copy.

The system test menu screens described above can be
organized into three broad categories: Test Execution, Results
Display, and Input/Output. The following paragraphs will
outline the actual screens in each of these categories. Due
to the emphasis on the overall testing procedure, this section
will not discuss every detail of each individual screen.
However, specific references to the applicable technical
manuals will be made.

a. Test Execution Menu Screens

These screens provide the majority of control over
the Test Execution Phase. Manipulation of these test
execution menu screens actually determines the output format
of test results. The usage of these screens can be defined in
four categories. Refer to Table XI. Certain individual

screens denoted by " (RSVD)" are for GENRAD usage only.
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Table XI

TEST EXECUTION MENU SCREENS

DEBUGGING CONTROL F14]

\ /

 / Characterization Control-Combined |
aracterization Gontroh-3etup |
haracterization Control- |

Hardware Control

u
all bmgg’

Debugging Control-Sys Debug (RSVD)

(EECUTION CONTROL 1]

T

(DATALOGGING CONTROLF7]
I |

Batch/Lot Test Control-Execution (RSVD
Wafer Test Control-Execution ﬁﬁg )
':: Charactenzauon Contro ecution
rgﬂencmg -Execution
on Control-Execution
Hardware Control-Execution

:r
9_

(ANALYSIS CONTROL[F12]

BatchiLot Test Controk- AnaJysls (RSVD)
Waler Test Confrol-Analysis
Charactenzatnn Contro-Analysis

Device Sequencing Control-An

Test Operation Contro-Analysis RSVD)

+ Master Output Control

% Teming| Output Control

% Printer Output Conirol
g&n;) Datalog mgOontroI

Datalogging Control
Datalogggg H e? r#ormation

(OUTPuT COMTROL 3 )

Batch/Lot Test Control Outpul SVD)
Wafer Test Control-Ouiput %
Charaaenza'aon Gontrol 8

Device Sequencing Control-Output
Tes! Operation Gonlrol -Output

% Screans also locatad in Charactarization Control -Combined Screen [ )
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(1) Debugging Control. The screens in this

category are used to set up the GR-125 tester to perform a one
dimensional (1D) or two dimensional (2D) plot of wvarious
current, voltage or timing parameters. These engineering
characterization (i.e. "shmoo") plots will be discussed in the
Test Results Phase portion of this chapter. Additionally, the
hardware control screen allows the user to vary the times for
system calibration. Note, the GR-125 takes approximately 4 to
10 minutes for a full system calibration. [Ref. 4:p. 2-22]

(2) Execution Control. The execution control
screens provide two major functions in the test executiorn
procedure. First, the decision to perform a single test or
multiple tests is made within this set of screens. Secondly,
the specific type of test results desired for each test is
annotated. Specifically, these results options include
pass/fail, full tabulated results, special plots, etc. These
test result options will also be covered in detail in section
4 of this chapter. [Ref. 4:p. 2-38]

(3) Analysis Control. The analysis control set of
screens were designed to keep track of statistical failure
rate data during high volume production testing. As a result,
this particular subcategory of test screens are not required

for individual component testing. [Ref. 4:p. 2-48]
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(4) Output Control. All of the output control
screens are reserved for use by GenRad, Inc. except for the
specific Characterization Control-Output screen. However,
this screen is an identical duplicate screen listed in the
Debugging Control category of system test screens. Therefore,
the screens in this output control subcategory are presently
not required for individual component testing. [Ref. 4:p. 2-
55]

(5) Datalogging Control. The screens located in
this category perform three major functions. First, the user
must determine the distribution of data desired during
testing. Secondly, the selection of the Terminal Output
Control screen establishes the format of the test data
outputted to the system terminal. Finally, the Datalogging
Output screen is used for the accumulation of test result data
for a statistical evaluation of long term trends. [Ref. 4:p.
2-63]

In summary, the Test Execution Menu Screens only
require the user to manipulate the Debugging Control,
Execution Control and Datalogging Control categories of
screens. This condition will exist wuntil a software
modification is installed to the GR-125 test system.
Additionally, note that the asterisks "*" in Table XI annotate

five separate screens which are conveniently collocated in one
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combined screen. This utility saves the user a great deal of
time during the screen editing process.
b. Results Display Menu Screens

These result display screens contain the results of

the most recent test performed. These screens provide the

user with a real-time display within the test format desired.

Table XII illustrates the screens available in this category.

[Ref. 5:p. 2-112]

Table XII GR-125 RESULT DISPLAY MENU SCREENS

(RESULTS DISPLAY [F20] )

© Batch/Lot Test -Results
o Wafer Test -Results
o Characterization{Plot) -Results
o Characterization{Prod) -Results
o Device Sequencing  -Results
o Test Operation

o Vector History RAM
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c. Input/Output Menu Screens

The Input/Output (I/0) Menu Screens provide the
user with file manipulation and screen configuration control.
These screens help to stream-line the testing process by
giving I/O control to the user. Table XIII shows the
organization of these screens.

Table XIII GR-125 INPUT/OUTPUT MENU SCREENS

{ FILE SYSTEM CONTROL [F18] )

\

© Program Load

© Program Store /3

o File System Manipulation éCREENS CONFIGURATION [F19]
© Backup Restore Operation

< Initialization Configuration

| o Function Key Mapping
‘ o Print Screens

| o Printer Configuration
o Version/Configuration

(1) File System Control. The File System Control
screens provide a broad range of user functions. The Program
Load screen provides the initial starting point for the
testing process. This particular screen allows the user to

load a specific test file for editing or test execution.
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Additionally, this set of screens provides a means for storing
modifications made to an existing test file. Finally, this
set of screens allows the user to manipulate other UNIX files
while still within the test operation "mtest" mode. [Ref. 4:p.
2-10] The "mtest" mode is the application level above UNIX
for GR-125 operation.
(2) Screens Configuration. The Function Key
Mappings screen located in this set of screens allows the
user to define SHIFT Function keys on the VT220 keyboard.
Once a key is defined, the user can call a screen of interest
directly. In essence, this capability offers the convenience
of avoiding menu prompts and therefore, saving setup time.
[Ref. 4:p. 2-89]
4. Test Results Phase
The Test Results Phase allows the user to consider
which type of output result he desires from a fully edited
test program. The GR-125 produces an output in one of three
categories of test results. The three categories consist of
a pass/fail output, actual measured values, and a pair of
special diagnostic functions. This section will discuss each
of these categories. Particular emphasis is given to how to
edit the previously discussed system test screens in order to

achieve a desired test result.

33




a. Pass/Fail Results
The pass/fail mode of testing provides a Go/No-Go
test result. This pass/fail mode requires Jjust two test
screens to be edited in the Test Execution Phase. Recall that
the Characterization Control-Combined screen actually contains
five separate screens. Table XIV provides a summary of

entries required to obtain a pass/fail result.

Table XIV PASS/FAIL MODE (REQUIRED SCREEN ENTRIES)

4 )
Egu:bn Scresn Name Required Entry

Fi1 Test Operation Controi-Execution [Pasy/Fail Mode]
Fi4 Charactertzation Controf-Combined
Characterization Controi-Execution  [Product Teating]
Device Sequending Cnti-Exscution {Execute Binning Sequence)

Master Output Control [Console; Test Op level]
Terminal Outpat Controt {Display Test System stats]
Printer Output Control {Print Test System stats]

\. J

b. Actual Measurement Results
In addition to a Go/No-Go test, the GR-125 can
produce the actual measurements obtained during the testing
process. Actual floating point values can be obtained for
tests which involve AC and DC parametric measurements.
Exceptions to this rule arise for tests which require only a

pass/fail result such as a simple functional test. Section C
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of this chapter will discuss the various types of tests the
GR-125 is capable of doing. As with the pass/fail result,
only two test screens require editing. Table XV provides a
summary of the entries required to obtained an actual measured

result.

Table XV ACTUAL MEASURMENT (REQUIRED SCREEN ENTRIES)
e

4 )
Egr,\dbn Screen Name Required Enty

Fi1 Test Operation Control-Execution [Full Results Mode]

Fi4 Characterization Control-Combined
Characterization Control-Execution  [Product Testing]
Devics Sequencing Cnti-Execution [Peform Only Specified Test

-kist specific test # hero 1
Master Output Control [Console; Test Op level]
Terminal Output Control [Dispiay Summartzed ResX]
Printer Output Control [Print Summarized Results]
\ /

c. Special Functions
The GR-125 test system provides two special
diagnostic functions in the Test Results Phase of the Test
Programming and Execution Methodology. These special
functions give the user some reverse engineering capability.
By using these two special functions, an engineer can plot
various engineering characteristics data as well as determine

a chip's functionality to a certain extent.




(1) "Shmoo" Plots. Test =2xecution screens can be
edited to produce a detailed 1D or 2D engineering
characterization (i.e. "shmoo") picet. A wide variety of
values can be plotted on a set of labeled axes. These values
include current levels, voltage levels and timing data. An
example of a 2D "shmoo" plot is given in Figure 10. Note, the
"shmoo" plot can only be generated by executing a simple
functional test. To obtain a "shmoo" plot, a total of four
test execution screens must be edited. Table XVI summarizes

the entries required to obtain a "shmco" plot. [Ref. 4:p. 2-

22]
CGHRACIERIZATION RESLTS
Handler Bia =10
Plot Nams: 741374 Cutput Sirobe Thmag Semsitivisy se Pomr Swppiy Veliage
Cummet: Asguss 31, (PR
8.0V . . . . . .
r P 1 4 . - 1 4 | 4
2.00 V . P P P P 1. 4 r
. P P P 1 | 4 1 4 P
Handler Bin = 10 SOV -, P P 4 P r r 4
Device Serral: 2 o P P 4 1 4 1 4 1 4 P
Vafer locatios ( O, o) $.00 V —. P P r b 4 ) 4 14 | 4
Duvies tested one ' | P 4 4 P | 4 [ 4 ) 4
€00V . . . . . .
.00V =~ . . . . . . . . . .
[N SN FUUUIU IRY SURIN SIRO0) SO Ty ey ey
0.00 ¢ 100.00 TO.as N.00 .08 0.2 000.05 TM.a¢ 0.3s 000.as 1.00ws
Oaspes Sirche [edge 10)
- Pomer Seppiy Voltage - Vee

Figure 10 GR-125 "Shmoo" Plot Example [from Ref. 4]

(2) "Learn" Function. The "Learn" function also
produces a reverse engineering capability. This function
allows a user to determine the functionality of a specific

chip. 1In essence, given the input test vector patterns, the
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GR-125 will produce the output response pattern. Therefore,
the chip function can be determined through a comparison of
the input stimulus and the expected output response of the
test vector patterns. The first step in executing the "Learn"
function is to retrieve the Truth Table Edit screen (VT220
function key "F10"). Next, replace all the output test vector
elements in the simple functional test to a "L", "H", or "X".
Next, retrieve the Test Operation screen (VT220 function key
"F9") for the simple functional test operation. With the

curser placed on the word "Simple", toggle the space bar to

get the desired "Learn" function. Once this editing is
complete, execute the testing sequence. No special test
screen editing is required. Upon completion of the test,

return to the Truth Table Edit screen and record the new

output vector element values. [Ref. 5:p. 2-64]

C. TESTING CAPABILITIES SUMMARY

The GR-125 hardware test system performs many different
types of tests. This section will briefly describe each of
the major test areas.

1. PFunctional Tests

A functional test uses test vector patterns to cycle

a DUT through its truth table sequence. After applying an
input stimulus pattern, the GR-125 compares the DUT's output

pattern with its expected output pattern. A successful

37




Table XVI "SHMOO" PLOT (REQUIRED SCREEN ENTRIES)

2 N
Egyncﬂon Screen Name Required Entry
F11 Test Operation Control-Execution [Full Resuits Mode]
Fi14 Chasacterization Control-Combined
Characterization Control-Execution  [1 or 2 Dimensional]
Device Sequencing Cnti-Execution [Peform Only Specified Test
<Sist function test # hers
Master Cutput Control [Console; Char. level]
Terminal Output Control [Display Summanzed ResN]
Printer Qutput Control [Primt Summarized Results]
F14 Characterization Control-Output [ !able "X andjor *Y™ ws ]
F14 Characterization Control-Setup [ salect "Timing Array® or “Power
Supply” o *Pin Leveie® ]
\ J

functional test requires a successful comparison of these
output patterns. [Ref. 3:p. 1-44]
2. Power Supply Tests
The power supply test measures the current drawn from
a selected power supply when the DUT is operating in either a
static or dynamic state. [Ref. 3:p. 1-53]
3. DC Parametric Tests
Various tests for dc parametrics determine dc
electrical characteristics by current and voltage
measurements. These test can be classified as input or output
dc parametric tests. [Ref. 3:p. 1-57]
a. Input DC Parametric Tests
(1) Iil Test. Leakage current is measured at a DUT

input pin while forcing a logic low voltage.
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(2) Iih Test. Leakage current is measured at a DUT
input pin while forcing a logic high voltage.

(3) Vik Test. Voltage is measured at a DUT input
pin while forcing a current.

b. Output DC Parametric Tests

(1) Iol Test. This test measures the DUT drive
current at an output pin set low while forcing a logic low
voltage.

(2) Ioh Test. This test measures the DUT drive
current at an output pin set high while forcing a logic high
voltage.

(3) Vol Test. This test measures the voltage at a
DUT output pin while forcing the specified current with the
device in the low state.

(4) Voh Test. This test measures the voltage at a
DUT output pin while forcing the specified current with the
device in the high state.

(5) Iozl Test. This test measures the current at
a DUT output pin while the pin is in the tri-state condition
and while forcing a logic low voltage.

(6) Iczh Test. This test measures the current at
a DUT output pin while the pin is in the tri-state condition

and while forcing a logic high voltage.
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(7) Ios Test. This test measures the current at a
DUT output pin while the pin is in the logic high state and
while forcing a zero voltage.
4. AC Functional Tests
AC functional tests perform certain ac measurements on
the DUT. These measurements include setup time, propagation
delay, pulse width, hold time, and transition time. [Ref.
3:p.1-66])
5. Contact Tests
Contact tests can be classified as continuity tests.
These tests check that a non-shorted énd non-open path exists
from a given tester pin through the DUT to ground or a power
supply connection. During testing, all of the ground pins on
the DUT are connected to ground, and all of the power supplies

to the DUT are set at 0 volts. [Ref. 3:p. 1-66]

40




IITI. CAD SIMULATION ENVIRONMENT

The CAD simulation environment provides the first major
testing platform in the digital design process. Once a
schematic design 1is obtained, a series of simulations
determine the functional characteristics of the design. This
process is repeated until a desired functionality is achieved.
Figure 11 1illustrates this process. When a successful
simulation is obtained, a graphical plot and simulation output
file are produced. The output file contains all of the
stimulus and response information observed in the graphical
plot. Additionally, this simulation output file is produced
in an ASCII file format. Chapter IV of this thesis will
discuss how to change the test vector information found in
this simulation output file into the .tpp file format required

by the GR-125 tester.

A, SIMULATION OVERVIEW (MENTOR GRAPHICS)
Because of availablity, this thesis utilized the Mentor
Graphics IDEA Series Version 7.0 CAD package for analysis.

CAD simulation incorporates two basic design steps:

® Schematic Capture

® Test Simulation
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A short discussion of these two design steps will illustrate
the framework of the design process. The objective of this
simulation overview is to provide a brief background to

simulation within the CAD environment.

Schematic
Design

Test
Simulations

No SUcCEssFUD
DESIGN

Yes DESIGN COMPLETE

Figure 11 CAD Design/Simulation Process

1. Schematic Capture
The first step in the design simulation process is to
generate a schematic diagram of the desired digital component.
This process 1is known as "schematic capture." Schematic
capture is accomplished on an IDEA Series workstation through

the use of a network editor and a symbol editor. The network
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editor (NETED) allows a designer to create hierarchical
(multi-level) designs using a top-down approach. The symbol
editor (SYMED) works with the NETED. SYMED allows the
designer to draw and edit component symbols that can be placed
on NETED schematic sheets. These symbols can represent basic
design elements such as logic gates, transistors and off-the-
shelf integrated circuit (IC) components. Together, these two
schematic editors provide the resources for producing a
testable design. [Ref. 6:p. 1-1]
2. Test Simulation

Once a designer has completed the schematic editing
phase, he enters the actual testing procedure - simulation.
As discussed previously, CAD simulation enables a designer to
check the functionality of a component design. By defining
input stimuli and observing the output responses, the
designer’s simulation is identical to the simple functional
test portion of the GR-125 hardware tester. Quicksim is the
simulation program used to perform the actual simulation.
This CAD software tool is also included in the Mentor Graphics
IDEA Series (v 7.0) package.

Quicksim is an interactive logic simulator that allows
a designer to verify the functionality of the designs produced
with SYMED and NETED, the schematic capture tools. Quicksim

is a 12-state, timing-wheel simulator that can simulate MOS,

TTL, and ECL logic. With Quicksim one can apply stimulus to




the design, run the simulatiocn, analyze the results, and then
modify the design based on those rssults. Stimulus is defined
as the input stimuli and the expected output resuits data.
Basically, a stimulus consists of a set of test vectors as
discussed in chapter II. [Ref. 7:p. 1-1]

Quicksim accepts and produces a variety of stimulus
data. This data includes various graphical and text file
formats. Figure 12 illustrates the variety of Quicksim’s
input and output data. The input is the stimulus as defined
above. The output contains the actual results of the
simulation. Next, one specific output file, the List Window

File will be discussed.

Save State
File

Logtile <> R
MISL File .
= Moageifiles Keyooard

Extract !
Data | Graphic
! 3ase | ‘nput !
i 1 : , , . f
Y Y A4 I J 4 A 4 v

QuickSim

Dispiay RAM/RCM
Fiieg

Figure 12 QuickSim Input/Output Files [from Ref.7]
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B. SIMULATION OUTPUT FILE

The simulation output file, List Window, contains all of
the stimulus and response data from a simulation sessicn
executed within the Quicksim environment. The command "List"
is used to create the List Window file. Figure 13 shows a
typical List Window £file. Notice that this file contains
three sections of information: time, pin labels, and pin
values. The following paragrarhs will briefly discuss the

structure of these specific sections.

USER: ;oedb.Zdesign.eng.l777

JESIGN: /user/joedbs/sim/work_areascontrol. skt design.arel

REV: .0

VERSION: LOGIC SIMULATICON SERVER V7.J_)..5 Moncay, January 30, 1989
3:30:29 om (PST)

W M N

# SATE: Friday, ZTescruary L2, 1989 S:23:33 zm (PST)
3 SCALZ USEZR TIME: 1.2000C0 NS
3 TIME 3TEP: 0..00000
3 TRANSPCRT SWITCH: Inerz:ial delays
+ SPIKZ MCDEL: X_TMmediate
3 TIMING MODEL: Tyrical Timung Model
2.2 5 1 I I X X X X %
.70 00 1L LI X X 232 9 x
22,42 202 L I 1 X 1L 02 3 x
13,99 2 1 1 L X L 92 0 :
0.0 ) L L I X 1 2 2 :
00.293 L L L L X I 3 2
106.30 - 1 I L 2 1 3 3 -
6.0 1 L 1 L % 3 3 92 .
0.0 T 1 1 I 232 232 3 2 .
200.30 3 L 2 L 3 0 3 2
2222.402 90 L L I 9 1 3 9
250.009 3 L L 1 3 L 2 0 L
300.2 2 0 . O I O 1 Q0 0 .
TIME “clock Tz “xl x4
“clear -3 “x2
b “out “x3

Figure 13 QuickSim List Window Display {(from Ref. 7]
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1. Structure
a. Time Values
Specific time values occupy the first column of the
List Window file. These times are actually user scaled units.
A designer can scale these units to any desired value. For
clarity, the wuser time unit is scaled to nanoseconds
throughout this thesis. Note that a new time value is
generated at every instance an input or output pin changes
state. This condition allows a designer to observe how long
a component takes to reach a desired output state. This time
is defined as delay time.
b. Pin Labels
The pin labels section of the List Window file
appears at the very end of the file. These labels actually
break the List Window into separate columns. Each column is
reserved for a specific input or output pin value. The first
column, reserved for the time values, provides the one
exception to this rule. By convention, the input pin values
occur prior to the output pin values.
c. Pin Values
The pin values section consists of the wvarious
columns of single digit numbers located directly above the pin
labels. These pin values can contain one of three separate
signal levels, ("0", "1", "X"), Table 17 describes each of

these signal levels.
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Table XVII QUICKSIM SIGNAL VALUES

[ s SIGNAL )
DESIGNATION LEVEL
0 LOW
1 HIGH
X UNKNOWN
N J

In summary, once a successful simulation is complete,
a designer can obtain an ASCII file containing all of the List
Window data information. This new ASCII simulation output
file is generated by invoking the Quicksim command summarized
in Table XVIII. The sim_output file now contains all of the
stimulus and response test vector data in an ASCII format.
Chapter IV of this thesis will show how to translate the ASCII
data from the sim_output file into the .tpp ASCII file format

required by the GR-125 tester.

Table XVIII QUICKSIM WRITE LIST ENTRY

prompt> WRite LIst sim_output
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2. Design Example (74S181 ALU)

An example can better illustrate a typical simulation
output from the Quicksim environment. The 74S181 Arithmetic
Logic Unit (ALU) provides an excellent design example for
analysis. In order to illustrate the CAD simulation data
discussed previously, this design example will be introduced

in three areas:

® Circuit Description
® Input Stimulus

® Output Simulation File

a. Circuit Description
The 745181 ALU performs binary arithmetic or logic
operations on two 4-bit words. Figure 14 illustrates the
connection diagram. Additionally, Table 19 describes the pin
designations. These arithematic operations are selected by
the four function select lines (S0,S1,S2,S3), and it includes
addition, subtraction, decrement and straight transfer. The
internal carries must be enabled by applying a low level
voltage to the carry_in (Cn). A full carry look-ahead scheme
is available for fast carry generation by means of two
cascaded outputs (P,G). [Ref. 8:p. 5-100]
b. Input Stimulus
The input stimulus to the 74S181 is applied through

a .misl file (Refer to Figure 12). For this particular
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example, the input pin values are forced to change every 10

nanoseconds. Figure 15 shows a pcrtion of the 74S181 .misl

file.

nouTS ouTRuTS
VEC A1 BY A2 B2 A3 83 G Cuuq P AmS F3

ztlz:!zzlnlnlu!uln ulvs 14 |13

LT

T T
|

1|2:4$87|0l101111
80 40 S3 S2 S1 SO C, M FO F1 F2 GWO
»eUTS ouTPUTS

Figure 14 74S181 ALU Connection Diagram

Cc. Output Simulation File
After the stimulus data is entsred and the List
Window screen is set up within the Quicksim environment, the
simulation is started. The "Write List" command is executed
at the end of the simulation. The successful ccmpletion of
each of these staps produces an ASCII formatted simulation
output file. TFigure 16 shows a pcrtion of the siﬁulation

output file obtained for the 74S181 design example.
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Table XIX 74S181 PIN DESIGNATIONS [from Ref. 8]

| Demignstion | PnNow. | Function i
| A AZ, A1, AO i 19, 21,23, 2! Word A lnours |
| 83.32,31.30 ' 18.20. 22, ¢! Worg B Inouts |

1§3,52.51.50 . 3.4.5.3 * F“M:Tmi«ocx !
; ull ]
l

i Ca : 7 ! inv. Carry Inout

| i ; ,
: " ; 3 i Mode Controt :
: : ! inout i
PR RPN, R 13,01, 00, 3 Function Qutouts

i Am=3 ; 14 *  Comoarator Outout |
! : ‘ Carry Procacate !
| B ; - H ;
i : Cutout |
; Ca—de ‘ ‘8 ‘ inv. Carry Qutout g
! 3 | 17 Carry Generate

{ : Qutout

! Ve " 24 : Suoery vonage i
i GNO i 12 ; Grouna
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CIRCIUIT 748151 =ast;

timedef per:

(X
(8]
6]
"
b
($]
[71]

INPUT s3 s2 s sO m zin ad al a2

OUTPUT » g ab cout 30 1 22 ZZ;

a3 20 »l »2 23;

/* check out arithmetic Sunctizsns  */

s3=L0; s2=¥I; sl=HI; s0=LC;

m=L0; ¢in=L0;

a0=HI; al=Ll; a2=L{; al3=LC;

b0=LC; bl=HI; »2=Ll; 23=L0 3

s3=L0 at 1lns; sZ=HI at 10ns; si=HI at

m=L0 at l0ns; cin=Ld at ilns;

al0=HI at 10ns; a.=EI at 1Cns;, aZl=Ll at

b0=L0 at 1Clns; bi=LJ at 1Cns; 22=LJ0 at

s3=L0 at 20ns; si=HI at 20ns; sl=HI at

m=L0 at 20ns; cin=LC at 20ns;

a0=HI at 20ns; al=Ll at 20ns; 22=HI at

b0=L0 at 2Cns; pi=2I at 20ns; tZ=HI 2at

s3=L0 at 2{ns; si=EI at 30ns; si=HI at

m=L0 at 30ns; cia=Ll at 30rns;

a0=HI at 3Cns; ai=BI at 3Cns; 22=HI at

»0=L0 at 30ns; bi1=LC at 23Cns; =2=LC at

§3=L0 at 4Cns; sZ=8I at 40ns; si=HI at

m=L0 at 4Cns; cin=Ld at 40ns;

a0=HI at 40ns; al=LJ 2t 4Cns; al=Ld at

b0=L0 at 40ns; oi=HI at 4Cns; =2=L0 at

s3=L0 at S0ns; sZ=HI at 30ns; si=HI at

m=L0 at 30ns; cin=LJ avr 30ns:

a0=HI at 30ns; al=HI at 30ns; 22=L0 zat

b0=L0 at 3Cns; 2i=LJ at 3Cns; =2=HI at

s3=L0 at 6Cins; s2=HI at 50ns; sl=HI at

m=L0 at 60ns; cin=LJ at 350ns;

al0=HI at 6ins; al=L) at 50ns; 2a2=#I at

b0=L0 at 5Cns; bl=HI at 30ns; 22=HI at

s3=L0 at 7Cns; s2=HI at 70Ons; sl=HI at

m=L0 at 70nas; zin=LO at 7Ons;

a0=HI at "0Cns; ai=Ld at 70ns; al=L0 zat

b0=HI at 70ns; bi=HI at 70rns; 22=L0 at
PY o
L o

10ns; s0=LO

10ns; a3=L0
10ns; b3=HI
20ns; s0=LO
20ns; a3=L0
20ns; b3I=LO

30ns; sO0=LD
3Cns; a3=Ll
30ns; 3=HI
40ns; s0=LD
40ns; a3=HI
40ns; b3=HI

30as; s

50ns; a
S0ns; b

6Cns; sC=LO

50ns; al3=HI

50ns; b3=HI
70ns; s0=L2
70ns; a2=Lo
70ns; b3=LO

at

at
at

at

at
at

at

at
at

at

at
ac

at

at
at

at

at
at

at

at
at

10ns:;

10ns;
10ns

20ns;

20ns;
20ns

30ns:;

30rs:
30ns

40ns:

40ns;
40ns

50ns:

S0ns:
S0ns

§0ns;

60ns:
50ns

70ns;

70ns;
70ns

$

3

3

$

$

5

-

2

Pigure 15 74S181.misl Stimulus File
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IV. SOFTWARE TRANSLATION METHODOLOGY

A. DISCUSSION

This thesis has addressed two separate digital testing
environments. As discussed in chapter III, the GR-125
hardware tester enables a designer to perform many different
types of tests including a functional test. Additionally,
chapter IV described how the QuickSim CAD simulator offers a
functional test capability within the simulation test
environment. A close comparison of the functional test
requirements within each of these environments reveals an
interesting similarity: the stimulus/response data required
for each test environment contains the same general
information. The only difference lies in its structural
format.

As discussed in chapters II and III, the stimulus required
for both test environments is composed of test vector
elements. Although these test vector elements contain
essentially the same stimulus information, their input format
is quite different between the GR-125 and the QuickSim test
environments. Recall that the GR-125's test vector stimulus
is located in the ASCII formatted .tpp file (refer to Figure
7). In contrast, test vector stimulus for the QuickSim

simulator originates in a .misl file (Figure 15). After
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simulation these test vector stimulus elements and their
response patterns are recorded in the list window .list file
(Figure 16).

An enormous amount of time and effort is required to
generate a set of stimulus test vector patterns. These
patterns can easily exceed thousands of 1lines of data
elements. Furthermore, manually copying these test patterns
into two formats can lead to many inadvertent editing errors.
Accordingly, finding a way to make these two test environments
compatible with each other is extremely advantageous. As a
result, developing a software translation program will
effectively link the digital simulation environment with the
GR-125 hardware tester environment. This process will
translate the test vector patterns generated by the QuickSim
simulator into an acceptable format for the GR-125 .tpp file.
The desired translation process is illustrated in Figure 17.

The software translation procedure described above reads
an input file, performs various editing, and produces a
desired output file. This process is actually performing the
function of a mini compiler or interpreter. This chapter will
discuss how various software tools can be used to build such
an appropriate translator. Finally, chapter V will present

the actual translator results.
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Figure 17 Test Vector Translation Procedure
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B. INTERPRETERS AND COMPILERS

As discussed above, a compiler and/or interpreter are the
heart of any scoftware language translation. A compiler inputs
a program and converts it into a set of instructions that can
be performed by the computér. The input for a compiler
typically spans multiple lines. In comparison, an interpreter
acts immediately on the user's typed input, one line at a
time. Compilers and interpreters are very similar in how they
process input and generate output; therefore, this thesis will
use the term compiler to mean both interpreter and compiler.
The input to a compiler is a character stream. Alternately,
the output of a compiler is an action or series of actions,
possibly as simple as printing an output identical to the
input.

The compiler performs its function in three separate

stages:

® lexical analysis
® parsing

® actions

The first stage, lexical analysis, scans the input stream and
converts various sequences of characters into groups known as
tokens. Tokens are groups of characters predefined by the
compiler writer. 1In the second stage, a parser reads these
newly created tokens and assembles them into language

constructs. The constructs of a language actually describe
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how expressions, identifiers, and keywords can be combined to
form statements. For example, the "if-then" statement in Ada
is a language construct. Finally, in the third stage of a
compiler, actions were taken once a token is matched. Every
stage is important. The completion of one stage provides the
input for the next stage. However, in 1less complex
applications, the action stage can immediately £follow the
lexical analysis stage. Figure 18 summarizes these stages.
A programmer could write a custom analyzer or parser in any
computer language. However, there exists some special C based
UNIX tools which offer superior flexibility and capability in

compiler design. [Ref.9]

Lexical
Analyzer‘* Parser ACTIONS

3
ACTIONS

Figure 18 Compiler Processing Stages
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C. UNIX TOOLS OVERVIEW

Special UNIX tools exist which makes compiler design
rather simple and straight forward. This chapter will analyze
two specific UNIX utilities which can be used to design a

translation program:

® Lex (Lexical Analyzer Generator)

® Yacc (Yet Another Compiler Compiler)

Lex and yacc are specifically designed for writing compilers.
These tools create C routines that analyze and interpret an
input stream of characters to produce a desired output
product. Both of these utilities were developed at Bell
Laboratories in the 1970's. Additionally, lex and yacc have
been standard UNIX utilities since Version 7. Figure 19
provides a graphical comparison of the power of various tools
in the UNIX programming toolkit. Note that lex and yacc are
powerful but still provide a programmer with tools not so

complex as C itself. [Ref. 9:p. xiv]

D. LEXICAL ANALYZER GENERATOR (LEX)
1. Background
Lex performs the lexical analysis function of a
compiler. Specifically, lex reads an input file containing
regular expressions for pattern matching and generates a C
routine that performs lexical analysis. As discussed

previously, this routine will read a stream of characters and
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match predefined sequences as tokens. These input streams are
byte streams in UNIX. Lex, therefore, breaks these byte
streams up into tokens. Once these tokens are assembled, lex

can choose between two options:

(1) pass the tokens to yacc for future action

(2) perform immediate action based on a token match

C
YAGC
LEX
AWK
SED
GREP
CAT

Complexity of Use

Figure 19 UNIX Toolkit Hierarchy

2. Lex Specification Format
The structure of a lex program is known as a lex
specification file. Figure 20 delineates the three sections

which form a full or complete lex specification. The first
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and last sections are optional entries. Consequently, a lex
specification can actually be composed of only the rules
section. Although each section will be addressed, only the
rules section will be covered in detail. By convention, the

lex specification is created in a file using a ".1" suffix.

o N N

>

definitions

% %

rules

% %

user routines

Figure 20 rull Lex Specification Format

a. Rules Section
The main section of a lex specification is composed
of a set of rules. Two percentage signs "%%" are a required
symbol to indicate the start of this section. Each rule
contains a regular expression that is matched against an input
stream. Once this match is made a specified action is taken.
These pattern matching rules are expressed in UNIX regular

expression syntax. Figure 21 illustrates a simple lex
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specification with a single rule. In this rule "Navy" is a
regular expression in which each character is interpreted
literally. The action is composed of the C library function
"printf". Basically, this lex specification states that if
the token "Navy" is recognized in the input stream, then "Beat
Army" is printed. Note, however, that if the input does not
match any of the regular expressions explicitly defined in the
rules, a default action is executed. This default action will
copy the input to the output with no modifications made.
Therefore, a lex specification with no specified rules will
completely copy or echo the input to the output.
Consequently, if a programmer wants to restrict the output,
explicit rules must be written to match the input and then

discard it.

%% 26
Navy printf("BEAT ARMY™) ;

Figure 21 Lex Specification Rule

A lex specification can actually be thought of as
an input scanner which scans the input stream and executes a
set of actions. This is the concept which will be implemented
to develop the translator program in chapter V. The key to an
effective input scanner 1is properly defining the regular
expressions in the rules section. Analyzing a specific

regular expression with specifically defined expression
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operators will help to explain its usage. Table XX provides
a simple example of a regular expression representing real
numbers. These real numbers consist only of digits and
decimal points. It is advantageous to break this regular
expression into two parts for analysis. Looking at the second
part first reveals:
[0-9]+

The brackets [] enclose a set of exclusive choices. A
consecutive range of digits or letters within brackets can be
abbreviated by the use of a hyphen. This particular
expression matches any single digit from 0 to 9. A plus "+"

symbol means one or more of the preceding. Therefore, this

part of the expression matches "2", "223", or any segquence of
digits. Now, a look at the first part of this expression
reveals:

([0-9]*\.)*

The asterisk "*" means 2zero or more of the preceding.
Parentheses " ()" are used to group an expression so that it
can be modified as a single unit. As a result. the asterisk
following the expression in parentheses makes the entire
expression optional. Additionally, the asterisk following the
"[0-5]" makes the digits preceding the decimal point optional
as well. The dot "." normally is used to match any character
except a newline "\n". However, in this example, a backslash
"\" is used to make the dot be taken literally. Therefore,

this part of the expression matches a decimal point preceded
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by any sequence of digits. Table XXI provides a listing of
the regular expression operators used in lex. For a more
detailed discussion of the syntax required for regular
expressions, refer to chapter 6 of Ref. 9.

Table XX LEX REGULAR EXPRESSION EXAMPLE

r ™
Numbers desired to match:

223
22
2
22.32

Regular expression:

([0-8]*\)*[0-9}+

b. Definition Section

The definition section of a lex specification is
optional. However, this section does allow a programmer to
define simple macros for use in the rules section discussed
above. For example, the regular expression expressed in Table
XX could be defined in the definitions section as follows:

real_num ([0-9]*\.)*[0-9]+

Therefore, the term "real num" followed by an appropriate
action would constitute a valid rule without having to rewrite

the full expression.
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User Routine Section

The user rouctine section 1s also an optional
section in the lex specification. This section can contain
any valid C coded rcutines. Frequently, however, this section
will have no code sincs the necessary routine will be provided
by the lex library. This lex library is discussed in the next
section on usage.

Table XXI LEX REGULAR ZXPRESSION OPERATORS [from

Ref. 9]
- |

Charac:zrlMeaning

Mawches any singie characier fexcept newline).

S Maiches the end of the line as zauling context

- Maiches beginning of line, sxcept inside {] when it means “compie-
ment”.

[] Marches any of the specified charac:er

- Inside {], if it is not the first or last characier, means “the range oi™.

? The previous regular expression is optional (e.g., 1079 is 109 or 19).
. Any number of repetidons. including zero.
+ Any posigve number of repedtons. but not zero.
| Allows alternation berwesn two expressions (e.g., 10{ 11 maiwches
10or 11).
() Allows grouping of expressions.
/ Mawches an expression if foilowed by the next expressions
{e.g.. 10/11 matches 1011),
{} Allows repeations or subsgrutes 3 dednigon.
<> Defines a start conditon.

3. Usage
There are three steps reguired to run lex. Figure 22

describes each of these steps. It Iis important to note that
d

the lex.yy.c file, is not a complete



program. It contains a 1lexical analysis routine called

"yylex". Consequently , there are two ways to call lex:
Yy y YY

® Supply a hand-coded main routine that calls yylex()
® Integrate the 1lexical analyzer with a yacc-generated
parser

The second method of calling yylex() will be addressed in the
next section on yacc. The actual translator program, which is
developed in chapter V, will utilize a separate main routine
to call yylex(). Finally, the program compilation in step 3
requires the "-11" option. This compiler option is required.
By invoking this "-11" option lex.yy.c is linked with the UNIX

standard library "libl.a".

E. YET ANOTHER COMPILER COMPILER (YACC)
1. Background

Recall that the second stage of a compiler process
involves a parsing routine. Refer back to Figure 18. As
mentioned earlier, the parser reads the tokens created by the
lexical analyzer and assembles them into language constructs.
These constructs will then be used to describe how
expressions, identifiers, and keywords combine to form
statements. Yacc performs the duty of a parser. Basically,
yacc reads a specification file that codifies the grammar of
a language and generates a parsing routine. This parsing

routine will then group the tokens produced from a lexical

65




step 1 : Create a lex specification file

lex_spec_file .I

step 2 : Run lex on the ".I" file
prompt> lox lex_spec_file ./

A\
lex.yy.c file

step 3 : Compile lex.yy.c and any other
related source files

prompt> CC -0 outfile1 lex.yy.c -lf

Figure 22 Lex Usage Steps

analyzer into meaningful sequences and take action as
specified in the action routines. Figure 23 taken from Ref.
9 describes the basic function of a parser. In summary, it is
important to recognize the fact that a parser like yacc must
have an associated lexical analyzer to provide it with tokens.
Yacc will not function as a stand alone routine like lex.
2. Yacc Specification Format

The yacc specification format closely parallels the
lex specification format. Figure 24 illustrates the three
sections which form a full yacc specification. The

declarations section and the grammar rules section are both
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The iingua franca of a Pay Phone

To understand whar a parser does, let’s describe it by
anaiogy :0 a pay telephone. To place a call, it costs
20 cents, and that 20 cents can be paid using nickels and
dimes. Each coin represents one token. The syntax of
our !anguage must stals what combinations of wokens
make up -0 cents. The {ollowing rules describe these
combinations:

AR B
&S @&
S-e-& @8

For example, if the irst coin is a nickel and the second coin is a dime. we do
not vet have a valid combinaton. and '10 produce one. ve need a third coin that
is a nickel. Each of these lines can be considered nuies for producing a valid
combinarion 'otaiing exactly 20 cents. The “machine” is able to appiy these
rules by “ruling cut” the ones that are no longer valid. For insmnce, if the first
coin is a dime, ve know that only the last two rules can be applied. If the next
coin is a nickel, then only the fourth rule is left :0 be applied on remaining
input. Parsing, hen. Is the ability ‘0 recognize certain sequences of iokens.

The above set of ruies have the same acton associated with them, which might
be “connect caller.” We could write ruies 10 recognize other tokens and 10
specify different acdons. For instance, we might have a rule for pennies and
slugs, dropping “he :cken into the coin remurn slot Similarly, we couid have a

8- 8]

and specify an acaon that rerurns the nickel and makes the connection. {Thi
of course, is not a real pay phone.) The set of rules constitute 3 grammar. In
other words, a2 zrammar describes the combinadons of tokens that sroduce
meaningful resuits.

Figure 23 Parsing Sescripticn [frcm Ref.
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required for a complete yacc specification. By convention, a

yacc specification file uses a ".y" suffix.

declarations

% %

grammar rules
% % <

C programs

Figure 24 Full Yacc Specification Format

a. Declarations Section

The declarations section establishes the framework
throughout the parser. The tokens and operators, which
originated from the lexical analyzer, are defined here. The
actual form of the token is declared as well as any other
global variables that will be used. These token Z2finitions
describe all the possible tokens that the lexical analyzer
will return to the parser. Recall, yacc was developed to help
translate one software language into another. Any generic
language will have text, comments, commands, numbers, etc.
Therefore, tokens are used to define these different language

elements. Table XXII shows a typical declaration in a yacc
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.specification. As discussed abcve, the declaration section
also defines the operators used in the parser. Table XXIIT
lists several keywords and theilr associzcad meanings which can
be used in the declaraticn secticn. Refer to chapter 7 of

Ref. 9 for additional infeormation.

Table XXII YACC DECLARATION ENTRY
S
4

N
% token <val > NUMBER |
% token < text> COMMENT !
% token <cmd > COMMAND |
!
|

% token <text> TEXT

. J/
L

Table XXIII YACC DZECLARATICON SECTION

KEYWCRDS [from Ref. 9]
|

% token Declare the names of (okens.

%left Define left-associaive operators.

%right Dedine right-associative operators.

%nonassoc  Define operators that may not associate with themselves,
%type Declare the type of nonterminais.

“%union Declare multpie data rypes for semanuc values.

%ostart Declare the start symbol. Detauit s drst in rules section.
% prec Assign precedence 10 a ruie.

I \



b. Grammar Rules Section
The grammar rules section of the parser is where
all of the action in yacc takes place. As in lex, there are
prcduction rules followed by action statements. However, the
rules section in yacc is quite a bit more complicated than
lex. A complete grammar rule in this section is composed of

three elements:

® symbol
® definition

® action

Figure 25 shows the format of a yacc grammar rule.

definition

{action}

Figure 25 Yacc Grammar Rule Format

(1) Symbol. There are two types of symbols used in
yacc: "terminal" and "nonterminal". A terminal symbol is an
actual token or literal character that is recognized by the

lexical analyzer. Conversely, a nonterminal is strictly
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defined as a non-token. By convention, the names of
nonterminal symbols are written in lower case letters while
the names of terminal symbols are capitalized. These two
symbols should not be confused with the symbol location in the
left hand side of the grammar rule. Only a nonterminal symbol
is allowed in this symbol location. Alternatively, the right
hand side of the grammar rule, the definition location, can be
made up of both terminal and nonterminal symbols.

(2) Definition. The definition portion of a yacc
grammar rule consists of zero or more symbols made up of
terminal and nonterminal symbols. The syntax of this section
is essentially a hierarchical structure which uses a top-down
structure relating various terminal and nonterminal symbols.
Table XXIV provides an example of how these various symbols
interrelate. Recall that the capitalized words are tokens
(i.e. terminal symbols). The first rule in this example
states that a nonterminal symbol, "list", is made up of either
an object or of a 1list and an object. Note the use of
recursive definitions. The pipe "|" symbol is used as a union
operator. Finally, the last rule in Table XXIV specifies that
the nonterminal symbol number is either a NUMBER, a NUMBER
with a plus "+" in front, a NUMBER with a minus "-" in front,
or two numbers separated by a decimal point ".".

The construction of this grammar clearly shows

a bottom-up process. Each grouping is included in larger
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groupings until there is a single top-level grouping that
includes all other groupings. This top 1level 1language
construct is referred to as the "start" symbol. In the sample
of Table XXIV "list" is the start symbol. When the start
symbol is recognized and there is no more input, then the yacc
parser knows it has seen a complete program. [Ref. 9:p. 12]
(3) Action. The action within a yacc grammar rule
consists of one or more C language statements similar to a lex
action statement. These actions are executed each time a
corresponding rule is matched. Actions usually manipulate the

values of tokens.

Table XXIV YACC GRAMMAR RULE ELEMENTS

it &— object | kst objedt
obied &— Sting | number
sy &— TEXT | COMMENT | COMMAND

number <—— NUMBER | '+ NUMBER | NUMBER | NUMBER ' NUMBER
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c. C Programs Section
The C programs secticn of a yacc specification is
composed of C coded routines. This section performs the
identical function of the user routine section found in the
lex specification.
3. TUsage
There are five steps to creating a yacc parser.

Figure 26 describes each of these steps.

step 1: Write a yace specification file
yace_spec_file y

step 2. Create a lex specification file
lex_spec, file 1

step3: Runlex on the "' file

promet>  fox Jex_spec file./
Mes\l"
lex.yy.c file

step4 . Runyaccon the "y file

propt > Yace yax; spec_file .y

NS
gmm;\EQC;

) ylabc file

step 5: Compile and link source files for parser and
lexical analyzer
pompt> 0C -0 062 y.fab.c lexyy.c y -

Figure 26 Yacc Usage Steps
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The y.tab.c file is not a stand alone routine similar to the
lex.yy.c file. Step 5 of Figure 26 requires the "-ly" opticn
in addition to the "-11" option. The order is important
between the lex and yacc library extensions. The overall use

of lex and yacc are summarized in Figure 27.

Specificauon

Custom
c
routnes

UNIX

Ubranes

- ee .
;
I L.zi.a

\idy.a
program

Figure 27 Lex And Yacc Usage Summary [from Ref. 2]
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4. Flow Control Summary
Lex and yacc have each been analyzed separatsly.
However, the lexical rcutine creatad by lex, yylex, and the
parsing routine created by yacc, yyparse, work together.
Figure 28 illustrates the flow of control in lexical and

parsing routines.

evaluate
1nout

main()

-etum 2 f input
'S vand
e titnot

-equest
~ext :gken

srocess - -eturn 'cken
vaie ! “umoer
. sr 0t ECF
—_—v % ___ r-eagcnars
; rominput ST
yylvai e yyiext) nout '
: sass vaie

J1 1Sken

Figure 28 Lex And Yacc Flow Control [from Ref. 3]

The main program invokes yyparse to evaluate whether the input
is valid or not. Next, yyparse invokes the yylex routine sach
time it needs a token. The lexical routine reads the input

strzam and returns a token number to the parser fcr =2ach tcken
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it matches. The token number lets yacc know which token has

been received. The token number corresponds to the ASCII
value of each ASCII character (0 to 256). Thus special user-
defined tokens begin at 257. These special user-defined

tokens are defined in the definitions section of a 1lex
specification. Additionally, the 1lexical routine can also
pass the value of the token using the external variable
"yylval". Once the lexical routine has exhausted the input,
it returns a "O" to the parser. If the parser has recognized
the start rule, then the parser returns a "0" which means that
the input is valid. If the parser receives a token number or
a sequence of tokens that it does not recognize or if the
lexical routine returns 0 (end of file) when the start symbol
has not been recognized, then the parser returns 1, reporting
a syntax error. [Ref. 9:p. 14]

This chapter has described the software translation
procedure by comparing it to a compiler process. The special
UNIX tools, lex and yacc, provide ideal resources for building
such a language translation program. Although lex and yacc
work well together, lex is extremely powerful on its own.
Lex's ability to both scan an input and take actions based on
that input data makes lex an effective "stand alone" compiler
system. As a result of this capability, lex alone will be
used in chapter V to build an actual translator to modify a
CAD simulator output file into the compatible format required

by the GR-125 tester system.
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V. TRANSLATOR DESIGN RESULTS

Chapter IV discussed the benefit of developing a software
translation tool to link the digital design environment with
the GR-125 hardware tester environment. Additionally, a
software translation methodology was presented incorporating
special UNIX tools such as lex and yacc. This chapter will
present the results of an actual translation process which
provides a solution to the test vector incompatibility problem
between these two test environments. After a brief overview,
the structure, usage, and results of this translator program

will be presented.

A. OVERVIEW

The overall objective of this translator program is to
translate the test vector patterns generated by the QuickSim
simulator into the structural format required by the GR-125
.tpp file. The List Window file produced by the QuickSim
simulator will provide the input for this translator. The
output file produced from the translator will then be included
in the GR-125 .tpp file (refer back to Figure 17). Because of
the extreme capability and flexibility of the lexical analyzer
generator (lex), this special UNIX tool alone will provide the
backbone for this translator design. Furthermore, in order to

maintain continuity for discussion, this translator program
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will perform manipulations on the 748181 ALU simulation files
developed back in chapter III. The name of this translator

program is "vector _map".

B. PROGRAM STRUCTURE

The Dbasic components of the translator program,
vector_map, consist of a main program and a lex routine. The
main program, vector map.c, is a C based program which calls
the lex routine, vector_map.l, to perform the token matching
and corresponding execution functions. The lex routine is the
heart of the vector_map translator. This section will discuss
the composition of each of these two routines.

1. Main Program (vector map.c)

The entire vector_map.c program is presented in Figure

29. This main program performs two major functions:

® provides a location for inputting the number of input pins

® calls the lex routine

The correct number of input pins are required by vector_map.1l
in order to function properly. As discussed in chapter IV,
vector map.c uses the function yylex() to call the 1lex
routine.
2. Lex Routine (vector map.1l)
As stated above, the lex routine does most of the work
in the vector_map translator. Figure 16 presents a typical

input file scanned by the vector map.l routine. In order to
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produce a test vector stimulus file compatible with the GR-125
.tpp file format, three major alterations must be performed.
Table XXV delineates these translation requirements. The
vector_map.l routine ,provided in Figure 30, scans different
stimulus elementé by keeping track of the number of spaces
encountered. These spaces are defined as a "field_count" in

this specific lex routine.

/**t** vecTosr map. o *EXXXX /

/* Usage: veCcIcr_map aux
Ahers "aum" is the numzer I input pias Izom the
....input Iile ... Ior sur ta2st czse, the inmput Iile
"T4318L.2ist" nas 14 Lngut 2iss
*/
int input_num:

main(arge, argv)
int argc:
char *argv!(;:

{

if(argec >i

yylex();

}

Figure 29 "vector_map.c"

As mentioned in chapter IV, every character a lex
routine encounters on input will be copied directly to the

output unless explicitly defined as a token with a
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corresponding action statement. Consequently, the first
requirement, listed in Table XXV, is satisfied by matching
unwanted characters and/or character strings and deleting
these matched tokens with a semicolon ";". This action is
accomplished in the 1last four 1lines of the vector_map.l

routine.

Table XXV '"vector map.l" COMPILATION STEPS

a N\
1. Remove unwanted Characters

2. Produce input vector pattern immediately followed
by the final state output pattern

3. Change output pattern elements "0" and "1" to
"L" and "H" respectively

Lex creates an external variable named "yytext" that
contains the string of characters that are matched by the
regular expression defining the token. Therefore, changing
the value of this variable provides a solution to the third
translation requirement of Table XXV. Because yytext is a
string type variable, the C function "atoi" is used to convert

it to an integer value prior to comparing it to the integer
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values 0 or 1. The following code shows a portion of the
vector map.l routine which satisfies this translation
requirement to change the output vector elements to a "H" or

IILII :

if (atoi(yytext) == 0) {
printf (" L");
break;

The second translation requirement listed in Table XXV
poses the most challenging programming algorithym. A close
observation of the 748181.list file in Figure 16 reveals
several output vector states for every set of input vector
stimuli. These output vector elements change state until the
end of a delay time is encountered. The delay times for the
748181 ALU chip in the simulator environment lasts
approximately 6-7 nanoseconds. Although this intermittent
state change information is interesting, it would confuse the
GR-125 tester. The test vector elements placed in the GR-125
.tpp file require a set of input stimulus elements followed by
expected ocutput result elements. If every test vector in the
QuickSim .list file were put into the GR-125, the functional
test would always produce a failed result. Accordingly, only
the initial input stimulus elements followed by the final

state output elements are chosen to form a valid test vector.
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By using various "arrays" of input elements and "for" loops,
this lex routine provides a look ahead capability to determine
which set of input and output elements to record for an

accurate test vector.

C. PROGRAM USAGE

The main program and lex routine must be compiled and
linked to form a wusable translator program. Table XXVI
reviews these required steps. This section will address the

usage of the newly developed translator program, vector_map.

Table XXVI "vector_map" COMPILATION STEPS

step 1 : Write lex spetification—— vettor_map.l

step 2 : Runlex:
pompt>  Jox vector_maeap.l
step 3 : Complie and link with main program (vector_map.c)

pompt> CC -O VCIOr_map vector_map.c fex.yy.c -l
.

vector_map

1. Input File
As stated previously, the input file used by the
vector_map translator is composed of the List Window file

produced from the QuickSim simulator. This .list file must
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have the input elements listed before the output elements.
This requirement is easy to obtain since the programmer can
order the list window in any desired way within the QuickSim
environment. Secondly, the actual number of input pins must
be known prior to invoking the translator program. The next
section will discuss the placement of this input number.
2. Command Line Entry

The command line entry required to obtain a wvalid
test_vector_out file is illustrated in Table XXVII. Notice
that this entry uses the UNIX tools cat and pipe "|" to funnel
the input file through the translator to produce the valid
output file. Additionally, the number immediately following
vector_map is the required location for inputting the number
of input pins. In this example, the number 14 represents the

14 input pins in the 748181 ALU chip.

Table XXVII “"vector_map" COMMAND LINE ENTRY

@mw cat input_file.list | vector_map 14 > test_vector_ out)

D. RESULTS
The output file created from the command line entry
described above, contains input and output pin states in

proper test vector pattern format. This .tpp file format was
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di~-ussed back in Figure 9 of chapter 1II. Figure 31
illustrates the output file produced by invoking the
vector map translation program on the 74S181.l1ist simulation
file developed in chapter III.

The final action required to fully link the CAD simulator
and hardware tester environments is to include this newly
created output file into the GR-125 .tpp file. Chapter II
referenced the use of the "INCLUDE" statement in the PATTERN
section of the .tpp file. Only one line is added to the
existing .tpp file to incorporate this newly created output
file. The additional line of code is placed in the PATTERN
section of the GR-125 .tpp file. Table XXVIII illustrates the
proper line of code required to incorporate this 74S181.v_out

file into a GR-125 .tpp file.

Table XXVIII INCLUDE STATEMENT FOR GR-125 .tpp
FILE

INCLUDE " 74S181.v_out”

The wvector_map translator program, developed in this
chapter, has produced an extremely useful tool for hardware
testing using the GR-125. Highly accurate test vector data,
produced in the computer simulation environment, can now be

directly placed into the GR-125 .tpp file without the need for
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time consuming test vector edits or rewrites. Additionally,
the chance for errors occurring within these test vectors also
decreases significantly. As a result of these
characteristics, this translator program has successfully
solved the incompatibility problem between the digital design

and hardware test environments.
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VI. CONCLUSIONS

A. SUMMARY OF RESEARCH

This thesis analyzed the digital testing process within
two separate test environments. Chapter II focused on the
hardware test environment by performing a detailed system
description of the GENRAD (GR-125) Hardware Tester System.
Therefore, chapter II accomplished the first major thesis
objective. This description provided a detailed overview of
the methodology required to successfully program and execute
a GR-125 digital 1logic test. Additionally, the specific
testing capabilities of the GR-125 were also evaluated. Next,
chapter III described the digital test process inside the
computer simulation (i.e. software) environment. The Mentor
Graphics IDEA Series (v 7.0) QuickSim simulator provided the
platform to analyze this digital design and test process
within this environment. The emphasis of the discussion is
centered on the test vector stimulaticn/response information
format produced in the QuickSim simulator output file. This
output file contains all of the basic information required by
the test pattern portion of the GR-125 .tpp input file.
However, the structure formats of the two environments are

quite different and ,therefore, incompatible.
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Chapter IV provided a general methodology of using special
UNIX tools, lex and yacc, to produce a successful computer
language translation. This discussion gave the necessary
background information required to solve the specific test
vector format incompatibility problem between the QuickSim
simulator output file and the GR-125 .tpp input file. Chapter
V provided the actual solution to the second major thesis
objective. This chapter presents the actual code used to
translate the test vector stimulus/response information in the
simulator output file into the format required by the GR-125
.tpp input file. Therefore, a successful link between the

software and hardware test environments has been accomplished.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis discussed two extremely powerful programs in
the standard UNIX toolkit (lex & vyacc). These programs
provide an extremely useful mechanism for translating from one
computer language to another. Although lex by itself provided
an adequate capability to build the successful translator
program, vector _map, developed in chapter V, a host of
increasingly more difficult translator applications are
possible with lex and yacc.

The test vector translation program developed in this
thesis successfully linked a computer simulator output with a
hardware tester input. However, both the computer simulator

(QuickSim) and the hardware tester (GR-125) are stand alone
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systems. This situation requires a new translation program to
be developed whenever a different simulator or ATE is used.
Figure 32 illustrates this dilemma. Fortunately, a new IEEE
standard is forcing more standardization. This standard is
known as WAVES (Waveform And Vector Exchange Specification).
Basically, this standard will force all of the CAD simulation
programs to produce a standard test vector format. Once this
standard is fully implemented industry wide, only one
simulator file format will be produced. As a result, the
number of different translation programs required decreases
drastically. Figure 33 jillustrates this scenario. Now, all
of the different hardware testers would use a common input
test vector file format. Conforming with WAVES development of
more generic test vector translation applications would be

extremely advantageous.
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