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Dual-Surface Magnetic-Fietu integral Equation
Solution for Bodies of Revolution

1. INTRODUCTION

Conventional solutions of the magnetic-field integral equation fail to produce a unique
solution at frequencies equal to the resonant frequencies of the interior cavity.1' 2 These
spurious resonances severely corrupt the numerical solution of the magnetic-field integral
equation. Yaghjian 3 proved that the original magnetic-field integral equation allows spurious
resonances at these frequencies because it does not restrict the tangential electric field to zero
on the surface of the scatterer. Tobin, et al.4 derived the dual-surface magnetic-field integral

Received for Publication 1 May 1991
'Murray, F.H. (1931) Conductors in an electromagnetic field, Am. J. Math., 53:275-288.
2Maue, A.W. (1949) On the formulation of a general scattering problem by means of an integral equation,

Zeitschrift fur Physik, 126(7/9):601-618.
3 Yaghjian, A.D. (1981) Augmented electric and magnetic field integral equation, Radio Science, 16:987-

1001.
4Tobin, A.R., Yaghjian, A.D., and Bell, M.M. (1987) Surface integral equations for multi-wavelength,

arbitrarily shaped, perfectly conducting bodies, Digest of the National Radio Science Meeting, (URSI),
Boulder, CO.



equation and applied it to a three-dimensional, multi-wavelength, perfectly conducting body.
This numerical solution showed that the dual-surface magnetic-field integral equation did
indeed eliminate the spurious resonances associated with the interior cavity modes. The
solution of the dual-surface magnetic-field integral equation first appeared in Tobin, et al.",
and the proof of uniqueness and derivation for both the dual-surface electric-field integral
equation and magnetic-field integral equation will appear5 in March, 1991.

Mautz and Harrington derived the combined-field integral equation solution6 to elimi-
nate the spurious resonances associated with the interior cavity modes. The combined-field
integral equation, as the name implies, combines the solution of the magnetic-field integral
equation with the electric-field integral equation. The combined-field integral equation's
main drawback is that it involves the solution of both the magnetic-field integral equation
and the electric-field integral equation, therefore, additional programing ability and computer
run-time are required compared with the original magnetic-field integral equation.

One application of the combined-field integral equation and dual-surface magnetic-field
integral equation solutions is plane wave scattering from a body of revolution. As an alter-
native to the combined-field integral equation, a body of revolution solution was formulated
using the dual-surface magnetic-field integral equation to determine if it was advantageous
to use because of increased accuracy or decreased computer run-time. The body of revo-
lution formulation of the dual-surface magnetic-field integral equation solution parallels the
body of revolution formulation in Mautz et al." However, the numerical solution to the body
of revolution dual-surface magnetic-field integral equation uses a single pulse and impulse
approximation for basis and testing functions instead of the triangular basis and testing func-
tions used in Mautz et al.6 The combined-field integral equation solution requires a more
complicated set of basis and testing functions due to the inclusion of the electric-field inte-
gral equation. The different basis and testing functions are necessary to accurately model
the derivative of the surface current in the electric-field integral equation. This derivative
is not present in the magnetic-field integral equation. Also, summations for the integration
use a simple rectangular rule rather than the more complex Gaussian quadrature integration
scheme.

5Woodworth, M.B., and Yaghjian, A.D. (1989) Derivation, application and conjugate gradient solution
of the dual-surface integral equations for three-dimensional, multi-wavelength perfect conductors, PIERS-5:
Applications of the Conjugate Gradient Method to Electromagnetic and Signal Analysis, Sarkar, T.K. and
Kong, J.A., eds., Elsevier; also RADC TR-89-142, Hanscom AFB, MA, ADA229076.

6Mautz, J.R., and Harrington, R.F. (1987) H-field, and combined-field solutions for bodies of revolution
Arch. Elecktron. Ubertragungstech. (Electron. Commun.), 32(4):157-164.
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Results from the dual-surface magnetic-field integral equation F-nd combined-field integral

equation body of revolution solutions are compared using a perfectly conducting sphere.

The accuracy of the solutions and computer run-times are also compared to investigate the

benefits and pitfalls of both solutions. Far-field results for the truncated and flat-back cones,

as well as the truncated circular cylinder, are compared with the results of a wire-mesh

computer code obtained from Ohio State University.7 The predicted radar cross section of

the truncated circular r-linder is also compared with measured data over a wide range of

aspect angles.

2. STATEMENT OF PROBLEM

It is desired to determine the scattered far field from a perfectly conducting body of

revolution excited by a plane wave. Figure 1 shows the geometry and the coordinate system

used for the body of revolution, where p, 4), and z are the cylindrical coordinates and t and

4 form an orthogonal curvilinear coordinate system on the body of revolution surface S. lt

and fi# are orthogonal unit vectors in the I and 4 directions, respectively. Figure 2 shows

the coordinate system for plane wave scattering. The propagation vector for the incident

plane wave is kt, Ot defines the the transmit angle, 0,. and 4), are the receiver spherical angles

defining the direction along which the scattered far field is observed, and A,. is the receiver

propagation vector, which points from the receiver location to the origin. Note that k, is

limited to the xz-plane (ot = 0). Figure 2 shows that t4, fii, fi, and fii are unit vectors in

the O,, y, 0,, and 0,. directions respectively. The notation follows basically that of Mautz

and Harrington.'

7Wang, C.W. (1983) Scattering From Rotationally Symmentric Conducting Body, Ohio State University
Electroscienoe Laboratory Tech. Rep. 714614-2, Columbus, Ohio.
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(',nsidcre( separately is an incident plane wave (HO) defined by

,i e,, (A:, x 11o -'1) "(l

ai ldl ii(llU l)ld( ll" waVt (110) defined by

/i,, (A/ x ":,' "" "(2)

where lii, is the in(cid(ent iimagnetic field, f is the position vector from the origin, k is the free
sjta' wa n Ill]Ileir. and 1 is the free space intrinsic impedance (using ejw"t time dependence).
"I'lle incident plhne wave gives rise to electric currents directed in both the 0 and t directions
on tlhc surface 5 as well as scattered far fields in the 0, and Or directions.

3. MAGNETIC-FIELD INTEGRAL EQUATION

3.1 Formulation

IV.i•nc t3 ilist raltes all arbitrarily shaped body with a plane wave incident on the body.
I\ (I,'ilii l ( ), f , l sIf • ali r ld chl'ttric and ii liagmi tic fields,

/•(,') /L., • /;,,.(3)

I" r tlhte p)osition vcct()r r' not on the surface S

I V x (5)
/I'"

wvhere

I_,, .J " - ., J.- .I ,.,L,,.' • ./ ,.. • , d,, .(6;)



z

Hi'c (r) -)

Ej.,
0

x

Figure 3. Geometry of Perfect Conductor for Plane Wave Scattering

Substituting for ACQ() in Eq. (5), the scattered magnetic field becomes

H,,() = f (F") x v'tkdS4, (7)

where

(8)

For - inside the sphere, /•(f) and fl(r) equal zero from the boundary conditions at the
surface, and thus

H,(c)= -A--h, . (9)

Snbstituting If(fO) from Eq. (9) into Eq. (7) we obtain

1
-' 4(7r) = • i L Jf() x V'O d,5 (F inside S). (10)

As r' approaches S from inside the surface,

6



where f denotes the principal-value surface integral evaluated by excluding the singular
point with a circular "principal area" 3 and f is the integration over the small circular patch
as F approaches S, i.e. as c/b --* 0 in Figure 4. At F near f', f(r•) f(f'). Therefore,

Sf(f") xV'WO'dS' = Ar )X V'kdS'. (12)

1'igure 4 shows that for the small patch where r--+ r'

IF-_ 'I = p1 + 2 =- R, 2 , (1)

and therefore

V', dS'= V'(-1-)p'dk'dp' (14)

where

= ? k (15)

and

= R'f' + R1 R+ ' . (16)

Substituting for f,

k• = •p A+ 1z. (17)

-R' R' (7

Evaluating Eq. (14) with Eq. (17) leads to

f V'bdS' = -27rh, (18)

and therefore

f(A×) X V'OdS' = -f() x 27r. (19)

Making these substitutions in Eq. (10) and taking ii cross both sides we obtain the magnetic-
field integral equation

47 2s:: 'd': (20)71

-• x/,.o( = •x •7



J.c (f")

S I • L. M
0 812

Figure 4. Geometry of Singularity Integration

This derivation was for a circular "principal area", but Yaghjian3 shows that this deriva-
tion holds for any shaped "principal area" excluding the singularity in the integrand of Eq.
(20). Using the vector relationship

f(f') x ='-- ( 1 ) jk - e"- X f(e), (21)

Eq. (20) becomes

fi× H.(0 ---

13 + -/ -e "-"' "x [('- f') x J(e')]dS' (22)

8



for f on S. The outward normal fi is defined as A = fio x fit. Using the notation in Reference
6 and letting

= fili t (1,1 0) + fi4JO(t',41), (23)

where Wi and V. are unit vectors in the t and 4 directions respectively, Eq. (22) expands to

f , + 3f 'dt'j d'GJt (t',q' + 4)[((p' - p) Cosv'

-(z' - z) sin V) cos4)' -2pcosv'sin
2 (0-)]

+ k f p'dt' f2 dO'GJ (t', -0' + 4)(z' - z) sin Y}

+ u {O (t, ) + k3puf-t'o 2 do'GJt(t', 4/ + 0) (p' sin vcosv'

-p sin vt cos v - (z' - z) sin v sin v) sin4)'

k+3 f owdf2o dOeGJ*(t', e + ±) [((p' - p) os v

-(z' - z) sin v) cos q5 + 2p'cos v sin'( -)]j = ft x Hln, (24)

where

G= 1 + e-j. R (25)
k3 R 3

and

R= /(p - p) 2 + (z - z') 2 + 4pp sin2(t-). (26)

In Eq. (24), both fi and kt are to be evaluated on S at t and 4). The angle v between fit and
the z-axis is positive when fit points away from the z-axis and is negative when fit points
toward the z-axis. The primed variables are functions of t' and therefore are evaluated at t'.

9



We want to take advantage of the geometry of the body of revolution by separating the
4) and t dependence of Jt and J4. To accomplish this, Jt and 4 are expanded in a Fourier
series in 4):

00

Jt (t, E)) = (t)ei (27)

n=00

J(t,•) (te' (28)

n=-o

Jy(t',4' + 4) = j j(tI)'' (0+#) (29)
n=-oo

met o! + o) = 1: jn,(t)ein(*+#'). (30)

The fit and fi# components of Eq. (24) will be evaluated given an HO polarized incident
wave. For the fit component, substituting for JP(t, 4)), JO(t, 4)), JY(t', 4)'+±0), and J (t', 0'+'±)
in Eq. (24) yields

00 00]E j'•(t)ejn* +Kj (t', 0) E int ('"•n(o+#)j
fl=-oo n=-o0

fl00
+K2(t', 1') E jnO(tl)e#O"+#) = -k cos Oejj-" (31)

where K, (t, t', 4') and K2(t, t', 4)') are the known portions of Eq. (24) that depend on t, t',
and 4). The functions of t', jn,(t) and j#(t'), are the unknown Fourier coefficients. The

expression on the right side of Eq. (31) is the fit component of fi x Hi. for the HO polarized
incident wave.

Since we have an ejn# in each term on the left side of Eq. (31), we will multiply both
sides by e-j'm and integrate both sides from -w to 7r with respect to 0. The integral on the
left side of Eq. (31) is zero if m 4 n and 7r if m = n (applying orthogonality). Evaluating
the right side of Eq. (24) for the fi# component of the HO polarized incident wave where

k •-r--= -k(pcos 0 sin O + zcosOt), (32)

we have

[f-k coo Oek(Pam' OSsinG+sc '*)e-jm#] d. (33)

10



WVe cal evalliate this 11t e".'ral using IBcssl fillctions with

.I,, ( r) 2 1 j ,., ,, ,, ,

for rn = O,±1I,2.... (341)

"The right si(de ( f [q. (31) using Eq. (34) eqUals

-'-k" J.,, I(kp sill Ot) - J,_ I(kp sin Or)]. (35)

WC I n (0 l-,} tii t S iti I( substittionl its for the iit component of the HO' poiarized incihclit
wave for .1 (t. (). J:,'(I. P)(. dJt(t',' + 0), and .'1'(t', 15' t q) in Eq. (24). Th1 integral oil the
rigi t side of I'q. (24) is

I'.in '. (3 1) .(th1u s Ihis integrial to
J ,, _ (A:/) Sill O ) 1 / 0 (A•:p Sill Ot.)]. (3 7 )

\Vhe• we usc the sac til approach for the 11' polarized incident wive, the fit component is

- o (,, z O, 0 J l J,,-,(kp sin, 0 ) + .J,, ,(kp sin o)], (38)

nllld tile it,, ('(OlJ)Ol] Qll is

.(.ikz cosO,, (27, (c .•s Isin Otj],,(kp sin Ot) -

silI co('s,0',1, " ' (J,,+I (kp sin Ot) - .,+ I(kp sin Ot)) . (39)

owii i ljg F1" (21). w\-', find that he II ('Ol)ponent of the J¢ incident wave is

t - /,(/ .1" W,(•) it o'd("':" Gi(1) - p) cos" ,I

2 1w .1

(- z) sinc') cos q' - 2p cos v' Sinl2 (-)]
2

-d u' d ,(( z) sin ll

,/ ... " ., (A psii .I ) - .I,, 1 (kp sin Ot)I.

11



and the fi# component of the HO incident wave is
jn#_ k 3 , ,t ,

+ -wdepdt3(te) d2Z nG(. sin v cos
2

-p sin v' cos v - (z' - z) sin v sin v') sinq'

+7- OdJ : (t') j dO'e-•G[((p' - p) cos v

- (z' -z) sin v) cos, I +2p'cos vsin 2 (t4

k sin nee + Ijn--2 J,+ (kp sin Ot) - jJ,-JI (kp sin Ot)]. (41)

For the H' incident plane wave, the fit component is

j'.(t) fpdt'jn(t,) 2[( p) cos V
2 4w- 1o

- (z' - z) sin v') cos -2p cos v' sin2

P3 f pdt'j!(t') 2dw'(e,"1G(z' - z) sin 4

_k

2 CO Ote , •''j [Jn+4 (kpsin t) + Jn_,(kpsin O)], (42)

and the fi# component,

jO(t) k+ V + pdt' j (t') f 2 d4, d G(Ok sin v cost/

-p sin v' cos v - (z' - z) sin v sin v') sinq'

+ !3 j,#,'(t,) jf 2 ,•'I"jn'Gj((pI - p) COS v

-(z'- z)sin v) cos + 2p'cos v sin 2(--

12



= kew"" [21r cos v sin OjJn(kp sin Ot)

- sin v cos O1rFj+l (J,,+1 (kp sin Ot) - J,,+, (kp sin Ot))]. (43)

The t, t' and 4Y integrations can be converted to direct summations. Dividing the t and t'
integrals into discrete segments, we evaluate the integrand at the center of each segment
and then sum over the number of t- and t'-segments. The 0' integral is divided into small
patches, again approximating the integrand at the center of each patch. In moment method
terminology, this equates to using pulse basis functions and unit impulse testing functions.
The well-behaved condition of the magnetic-field integral equation allows such simple basis
and testing functions to be used.

Rewriting Eqs. (40) and (41) with the t' and 0/ integrations represented as summations,
we have

Al M M
"2 + At E Ku(t,,t,),,,," + At _ Kr(ti,t,,)j j, = S.(ti,O )

m=! t----

m#l m0L

for L= 1,2,...M, (44)

and

M M

"-AtE t,,)j.,, + At K;ý(tt,, ,i)j,,m = S•. (ti, Ot)2
m=l 1m#5 wi$1

for l=1,2,...M, (45)

where n is the mode number, I is the number of the t-segment, and m the segment number
for the t' integration. The first superscript indicates the direction of the current and the
second superscript indicates the vector component. M is the maximum number of t- and
t'-segments, and At is the length of the t-segment.

For a given t(l) and t'(m) the only unknown quantities in Eqs. (44) and (45) are jt and
j*. Thus for a given n, t, and t', Eqs. (44) and (45) can be represented as

13



K ... Kft Kt ... K S(46)

K#I... K' 4t t IKM ... K# K ... K# # M
K Mt, ... KM' K#Ok ... KkS• .J. L itJ LtJ

where K and S are known functions of t, t', 4, and t and eg, respectively and the j's are the
unknown Fourier series coefficients of the current.

The superscripts of the j and S variables indicate the vector component, and the sub-
scripts indicate the segment. This square matrix equation can be solved for j, and j# for
each n, and the currents can be found from j, and j# by using Eqs. (27) and (30).

Evaluating the 4/ integration in Eqs. (40) and (43) at t = t' (p = p' and z = z') yields
R = 2psin(4/2). Therefore, at t = t', the phi integration does not converge. This lack
of convergence is not due to the magnetic-field integral equation but to our separation of
the 4/ and e' integrations. To obtain convergence at t = t', one must evaluate the 4/i' area
integration more carefully. In Appendix A, it is shown that the 4' integration can be done
properly, when the 0' integration is separated from the e' integration, if the modified Green's
function

1 1

G= Ip +---3 [(1 + jkl•)e-ik&-1 (47)
k3R2 k Ra

replaces G in Eq. (25), where

& = (At/2)2 + (p4/)2 (48)

p. = (At/2)214 + (p4) 2  (49)

and At is the size of the t-segment.
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3.2 Far Field

To obtain the scattered magnetic far field, let r > r' in Eq. (7) to get

H(= - k'4, fe(Fl)ejkfX'dS' (50)
4irr S

Noting that

r x i = -cos(O - 0')i0e + cos0sin(O - O')t-a (51)

r x fit = sin(O - 01) sin v0io8 + cos 0 cos(O - 0') sin vlfi, (52)

F 1 : sin 0, cos(O - 0) + z'cos 0 (53)

Eq. (50) can be written as

H. = () - ekr j T j 2
1r t')(- COs -40))

+ Jt(4,, t')(sin(O - 0') sin v')] eik(Psinecos(O-i')+z'cose)d4'p'dtl (54)

and

kejkr I T 12r [, t')(- sin(O - 0') cos 0)

+ Jt (', t')(- sin 0cos v' + cos(O - 0') cos 0 sin v')]

ejk(p'sinO o•(O-O')+z' CO) d¢,lp, dt, (55)

where, according to Eqs. (27) and (28)
00

Jt(¢',t') = , j•(t')dn' (56)
n=oo

gP(e',t')= jo('dn' (57)
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The superscripts 0 and .0 designate the components of the scattered field. Substituting Eqs.
(56) and (57) into Eq. (54) and using Eq. (34), Eq. (54) is rewritten as

H( = _jkeik, { Tt~eh7j~
Hwer-) 4wr 1 =0

[Jn+l(kp sin 0) - Jn.-.(kp' sin 0)] + j, (t')e e3•'ccI7r sin v'fj

[J.+,(kp' sin0) + Jn-i(kp' sin0)] } p'dt (58)

and Eq. (55) as

Ho. (r-) = _1, 1j(t/)ejneI Or

[J+•.i(kpl sin 0) - Jn-, (kp' sin 0)]

+jnt(t)end'• 9 i 7rn'[2 sin 0 cos V'J.(kp' sin 0) - cos 0 sin v'j

(J.+l (kp' sin0)- J-, 1 (kp' sin0))]} p'dt'. (59)

The radar cross section a is defined as

o = lim 47rr 2 I/-[I (60)

For a He incident wave Eq. (60) becomes

o= lim 47rr 2 IH:12 + 1H.0 2  (61)

and for a H# incident wave Eq. (60) becomes

a = lim 4 r 2 HZI12 4I-HjI 2  (62)
r-ooo JJlW12

where the first and second superscripts designate the components of the incident and scat-
tered fields, respectively.
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For the plane wave incident along the positive z-axis, only the ± 1 modes are needed
in the Fourier series to represent Jt and A•. For an incident plane wave off the z-axis, the
number of modes n was chosen as

n = (1.1kr sin Ot + 2) (63)

where r is the maximum radius of the body of revolution measured from the z-axis.' The
reactive fields of the scatterer are extremely small for n > kr. Assuming the number of far-
field fluctuations per solid angle are roughly the same in all directions, the far-field variations
with 0 will be less near the z-axis. Therefore, the number of modes needed to expand the field
will become less as one approaches the z-axis, since the higher order modes which represent
the more rapidly varying parts of the field, will not be needed to expand the slowcr variations
with 0. This demonstrates that the maximum number of modes needed to represent the 'ar
field at the angle Ot is approximately ka sin Ot. The addition of the extra two modes was
determined by the examination of results of the code for different number of modes.

Typically five to ten segments per wavelength are used for both the number of t-segments
and phi-segments. The criterion for the number of phi-segments is based on having square
patches for the phi integration. Other shaped patches were used, but the results proved most
accurate for square or approximately square patches.

3.3 Numerical Results

Figure 5 is a plot of the normalized radar cross section a/ira' in the backscattering
direction from a sphere computed using the magnetic-field integral equation and the Mie
srics9s 10 with the incident wave along the positive z-axis. The Mie series is an exact an-
alytical solution for the scattering from spheres only and cannot be used to validate the
dual-surface magnetic-field integral equation solution for other geometries.

8Yaghjian, A.D. (1977) Near Field Antenna Measurements on A Cylindrical Surface: A Source Scattering-
matrix Formulation, NBS Technical Note 696.

9 DiBeneditto, J.P. (1984)Bistatic Scattering from Conducting Calibration Spheres, RADC-TR-84-93,
Hanscom AFB, MA, ADA154173.

l°Stratton, J.A. (1941) Electromagnetic Theory, McGraw-Hill, New York.
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Figure 5 shows that the magnetic-field integral equation solution contains spurious reso-
nances at the interior cavity resonance frequencies of 2.744, 3.870, 4.973, 5.763, 6.062, 6.988,
7.140, 8.183, 8.211, 9.275, and 9.356."1 The limitations of the magnetic-field integral equa-
tion are dearly demonstrated by Figure 5.

4. DUAL-SURFACE MAGNETIC-FIELD INTEGRAL EQUATION

4.1 Formulation

The following derivation and proof of uniqueness of the dual-surface magnetic-field in-
tegral equation closely follows the work on the dual-surface magnetic-field integral equation
presented by Yaghjian.5 The dual-surface magnetic-field integral equation can be derived
by beginning with Eq. (10), the "interior" or "extended" magnetic-field integral equation,
which is rewritten here

j (F f(=') x V'1b dS' (i inside S). (64)

The current f(i) in Eq. (64) is uniquely determined at every frequency if Eq. (64) is satisfied
for all r inside S.1 2

"11Harrington, R.F. (1961) Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York.
12Waterman, P.C. (1965) Matrix formulation of electromagnetic scattering, Proc. IEEE, 53:805-812.
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Figure 5. Backscattering Cross Section Versus ka of a Perfectly Conducting Sphere Com-
puted with the Original Magnetic-Field Integral Equation and the Mie Series
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Figure 6 shows the surface S and a surface S6 parallel to, and some distance 65 > 0,
inside of S.

By adding cti cross Eq. (64) at points r- on S6 to the corresponding points on S in the
original magnetic-field integral equation, one obtains the dual-surface magnetic-field integral
equation:

5

firx H-V) 1f x f(e) x V'Vb(r-, e)dS' (65)

where

HoIW? H. Hi. V - bil) (66)

o( I ' F) 7W e)+,? - bfif') r, (67)

and, as usual

=(68)

r/

Figure 6. Geometry of Perfect Conductor for Dual-Surface Magnetic-Field Integral Equation
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The dual-surface magnetic-field integral equation will have a unique solution for f at all
real frequencies if a is imaginary and the positive real constant 6 is less than approximately
A/2.

By considering the fields radiated by the solution currents, uniqueness of solution can be
shown for the dual-surface magnetic-field integral equation. H1(r) will be the magnetic field
radiated by the solution J

H(F) f=(F) x V'iOdS' (r not in S). (69)

If fis the unique scattering current for Eq. (64), then /te(r') is the correct scattered field
for all r- not in the surface current. Because it is not known that J is the correct unique
solution, Eq. (64) only defines an unknown magnetic field H,(r").

Taking the curl of the curl of Eq. (64) shows that this unknown magnetic field satisfies
the homogeneous vector wave equation for all F not in the surface current J, that is,

VxVxlHl-k 2 /H=O (FnotinS). (70)

Let F approach S in Eq. (64) from the inside of S and using the principal value formula'

JS(rýS) V'OdS' = is V'OdS' - 27rfi, (71)

as explained above in the derivation of the magnetic-field integral equation, Eq. (64) can be
written as

H.(r_ = r 1-(.) x V'O(r-, f")dS'- h x T(r (F•on S), (72)

where r.- indicates the field evaluated just inside the surface current. Since Eq. (64) is true
for all F inside S, H, on the parallel surface S5 can be written as

1l(f-6bf)= - fJ(F') x V'O(f- bf,)dS' (r on S). (73)

Multiply Eq. (73) by a, add to Eq. (72), and then take fi cross the results to obtain

ft X [JI.(r-) + aJI.(r'- 6n•)] = ft x j V'VA(F F') dS' 2

(r on S). (74)
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Comparing Eqs. (74) and (65), which J must satisfy, shows

t [X(AV-) + ±,(r + alL(f- M) + a•/,•(f- ,i•)] = 0 (r on S). (75)

The incident magnetic field must also satisfy the vector wave equation
V xV x H,, - =0. (76)

Adding Eq. (70) to Eq (76) and rewriting Eq. (76) to arrive at the interior boundary value
problem

VxVxH-k2fH=0 (f inside S), (77)

,h x [/1(r-) + all(f- 6hi)] = 0 (f- - S from inside), (78)

where /(r-) is the total magnetic field given by

/t(r) =/Ii,(r-) + /,(r-9). (79)

Now it needs to be shown that the boundary value problem of Eqs. (77) and (78) has
only the trivial solution, /(r-) = 0, for the total field throughout the volume enclosed by
the surface S, provided the constant a is imaginary and the positive real constant 6 is
smaller than approximately X/2. Rewrite the boundary condition Eq. (78) explicitly for the
magnetic field tangent to the the surface S to get,

/•(r-) + a/I7(r-- 6b) = 0 (F-- S from inside). (80)

Rewrite the tangential magnetic fields in Eq. (80) in terms of a magnitude and phase

fi1 (r-) = I/ 1t(r-)I e") (F'-+ S from inside), (81)

/R,(e- 6&) = (l HIf + A ,(;, - 6)] ei, ')+ (e-. S from inside), (82)

where IW•t and AO are the differences between the magnitudes and the phases of It(r-f) and

fIh(f- 6ft). Now using Eqs. (81) and (82) in Eq. (80) results in
IHHI + a(IqI + Ali,)(cos AO + j sin AO) = 0. (83)

Since IHtl, Aiht, and AO are real numbers, by letting the constant a be an imaginary number
(jaj), we can equate the real and imaginary parts of Eq. (83) separately to give

AiI - aj(lHtl + A-It) sin AO = 0, (84)
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and

(It I + Ai) CosAO -= 0. (85)

For small b, AO will be small (much less than -90o), and thus Eqs. (84) and (85) imply
that IHI1 = 0 and AZit = 0, or

fH(r-) = 0 (F--.- S from inside) (86)

/Ht(r- 6fi) = 0 (r'-- S from inside). (87)

This says that when the constant a is chosen imaginary and 6 is not large, the two separate
tangential fields in the boundary condition are zero, meaning that the tangential magnetic
field on both surfaces is zero.

The boundary condition of Eq. (86) restricts the nonzero solutions of Eq. (77) to the
resonant modes of the cavity formed by a perfectly magnetically conducting surface S. These
modes form standing waves within the cavity with magnetic and electric fields that can be
chosen real and imaginary, respectively.13 The tangential magnetic field near the surface can
be expressed approximately as

Ht (r',, r) -- A (r-, r.) sin -yr., (88)

where (r-, r.) are the coordinates tangent and normal to the surface S, -y is a positive real
propagation constant with a value equal to or less than the free space constant k , and the
amplitude A(,,r,,) varies with r,, slowly compared to the variation of sin tr,. If r, equals
zero on S, the boundary condition of Eq. (86) is satisfied by Eq. (88). The boundary
condition of Eq. (87) applied to Eq. (88) requires that

-6 = mr (89)

for m equal to a positive integer. (It is assumed is that there will be some portion of S where
A is nonzero.) Since the maximum value of -y is k = 2ir/A, Eq. (89) cannot be satisfied for

0 < 6 0< \/2. (90)

An approximate sign is included in Eq. (90) because Eq. (88) is an approximate expression
for the standing wave field near the surface.

13Borgnis, F.E. and Papas, C.H. (1958) Electromagnetic waveguides and resonators, Encyclopedia of
Physics, S. Flugge, ed., 16: Springer-Verlag, Berlin.
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To summarize, the only solution to Eqs. (77) and (78) for a imaginary and 0 < 6 -<.\/2
is the trivial solution, /i(r) = H ±,(r +/ .(r-) = 0 throughout the volume enclosed by S.
Since 9 = -V x Hl/jwco, the electric field E(f) =--/•,,( + Eo(r within this volume is
also identically zero. It can be proved 12 that the current that produces the negative of the
incident electromagnetic fields throughout the volume enclosed by S is the correct unique
current for the exterior scattering problem. Since this unique solution is derived from the
solution current of Eq. (65), the dual-surface magnetic-field integral equation has a unique
solution.

The existing magnetic-field integral equation solution is easily modified to obtain the
dual-surface magnetic-field integral equation. The values of Hj,, and 0 are now calculated
at both the outer surface and an inner surface some distance 6 inside. This requires that the
computer program be modified to simply evaluate these functions at 9-- 6& as well as at 9.

For the body of revolution solution, a was chosen to be j (V/2-T) to weight the field on
S and Ss equally in the boundary conditions of Eqs. (77) and (78). To keep the surface S6
about an equal distance between the two critical values, 6 =0 and \/2, 6 was selected to
equal \/4.5

4.2 Numerical Results

Figure 7 plots the normalized radar cross section a/ra2 in the backscattering direction
from the same spherical scatterer, as we did above with the magnetic-field integral equation,
using the dual-surface magnetic-field integral equation and the Mie series with the incident
wave along the positive z-axis. The spurious resonances are eliminated by use of the dual-
surface magnetic-field integral equation, and there is excellent agreement out to ka "• 10.
At ka = 10, there are five t-segments per wavelength, and as this number of t-segments falls
below five per wavelength, the dual-surface magnetic-field integral equation solution rapidly
degrades. This is expected because a general rule of thumb for moment method solutions
for the magnetic-field integral equations is to have no less than about five segments per
wavelength. 5

24



4.0

MIE SERIES
3.5 - - - DSMFIE

3.0

N 2 .5

N 2.0
b

1.5

1.0 
1

0.5

0.0
0 1 2 3 4 5 6 7 8 9 10 11 12

ka

Figure 7. Backscattering Cross Section Versus ka of a Perfectly Conducting Sphere Com-

puted with the Dual-Surface Magnetic-Field Integral Equation and the Mie Series
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Figure 8 shows the comparison of the Mie series, dual-surface magnetic-field integral
equation, and the combined-field integral equation6 for the same spherical model with the
incident wave along the positive z-axis. The dual-surface magnetic-field integral equation
and combined-field integral equation are in good agreement up to ka = 5 (ten segments
per wavelength) where the combined-field integral equation starts to deviate from the Mie
series solution. As stated previously, the dual-surface magnetic-field integral equation does
not show a significant deviation until ka 5 10. The computer run times for the dual-surface
magnetic-field integral equation and combined-field integral equation were approximately
equal for the spherical model with the same number of patches per wavelength. However,
the dual-surface magnetic-field integral equation requires less segments per wavelength for
the same accuracy.

The dual-surface magnetic-field integral equation solution was computed as a function of
bistatic angle for a sphere of ka = 20 with the incident field along the positive z-axis. This
result was compared with the Mie series solution, and again the agreement is excellent as
seen in Figures 9 and 10.

To ensure that an adequate number of modes are being calculated, according to the
criterion of Eq. (63), the same spherical model was used and the incident field was moved to
the positive z-axis. Figures 11 and 12 show the comparison of the dual-surface magnetic-field
integral equation and the Mie series. Again, t0e agreement is excellent.

To verify the accuracy of the solution for bodies large with respect to wavelength, the
cross section of a sphere with ka = 70 with the incident field coming in along the positive
z-axis was also computed. These results are summarized in Figures 13 and 14. Due to a
limitation on computer time, however the case of the same sphere with the incident field
along the positive x-axis was not computed. An attempt was also made to obtain a result
from the combined-field integral equation with the incident field along the positive x-axis
for a sphere with ka = 20, but this was unfruitful. The results obtained were meaningless,
but the reason for this is unclear.

Although the sphere results show that the dual-surface magnetic-field integral equation
solution appears to work well for a sphere, results from other geometries would increase
the confidence in its answers. Wang7 plotted the results of plane wave scattering from
rotationally symmetric conducting bodies computed from a wire-mesh code. A copy of
the code was obtained and several cases presented in Reference 7 were run. Figures 15-24
compare the results of the dual-surface magnetic-field integral equation and the Ohio State
code applied to truncated and flat-back cones and the circular cylinder. The radar cross
section was calculated as a function of bistatic angle for incident plane waves along the
positive and negative z-axes, respectively.
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Figures 15 and 16 show no significant difference in the results of the dual-surface
magnetic-field integral equation and OSU code for the circular cylinder. As the circular
cylinder's radar cross section is identical for the incident wave along the positive z-axis and
the negative z-axis as a function of bistatic angle, only the case of the incident wave along
the positive z-axis is shown.

Figures 17-20 show the results of the truncated flat-back cone. '1he Eplane results for
the two codes again show no significant difference. The H-plane results have slight deviations
of up to 1 dB but are almost identical for the whole range of bistatic angles.

The results for the flat-back cone are shown in Figures 21-24. The maximum difference
in the results for the E-plane is approximately 3dB. This occurs for the incident wave along
the positive z-axis from about 135 to 140 degrees bistatic angle. The E-plane results for the
incident field along the negative z-axis are in excellent agreement showing differences of a
fraction of a dB. The difference in the H-plane results for the flat-back cone are the opposite
of the E-plane results. There is less than a 0.5 dB difference for the incident field along the
positive z-axis and a maximum of 3 dB difference from 40 to 110 degrees bistatic angle for
the incident field along the negative z-axis.

Overall there is good agreement between the two codes. Figure 25 shows the results from
the OSU code for a circular cylinder for backscatter versus ka where a is the radius and
one-half the length of the cylinder. As ka increases, both the length and diameter of the
cylinder change appropriately. It is seen that the OSU code has spurious resonances like the
magnetic-field integral equation solution. These spurious resonances may be the reason for
the difference in the results of the two codes.

Another reason may be the difference method used to approximate the currents on the
body with the OSU code using wire-segments and the dual-surface magnetic-field integral
equation solution using patches. The results for the dual-surface magnetic-field integral
equation were obtained using ten segments per wavelength and the OSU code with 11.8
segments per wavelength. Figure 26 shows the comparison of the results for the OSU code
for the flat-backed cone using 10.0 and 11.8 segments per wavelength. There is a 1 dB
difference in the two results at backscatter. This seems to indicate that the dual-surface
magnetic-field integral equation has increased accuracy over the OSU code for the same
number of segments per wavelength as the results from the two codes show little difference
if the OSU code uses 11.8 segments per wavelength.

Figures 27 and 28 show the E-plane and H-plane monostatic scattering from a circular
cylinder respectively. The measurements were performed at the Rome Laboratory's electro-
magnetic experimental scattering facility. The results for both polarizations show a difference
of approximately 1.5 dB at the specular angles. Modifying the measured values by the dif-
ference of the physical optics approximation and the measurements at the specular angles
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would produce excellent agreement for the E-plane results. A larger difference in the H-plane
results would be due to experimental error, as is demonstrated by the lack of symmetry in
the measured results. The experimental error for the measurements is ± 1.5 dB and thc
difference between the measurements and predicted values are within these bounds. For
monostatic results, the body of revolution code must compute a new current solution at
every observation angle. The results for the circular cylinder with a radius of 1.2675 A and
a length of 6 A required 72 hours of CPU time on a VAX6000. This enormous amount of
computer time prevented the comparison of the dual-surface magnetic-field integral cquation
with other measured monostatic results.
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Computed with the Dual-Surface Magnetic-Field Integral Equation and the OSU Code;
O= 180, H-Plane 41
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Figure 22. Radar Cross Section Versus Bistatic Angle of a Perfectly Conducting Flat-Backed
Cone Computed with the Dual-Surface Magnetic-Field Integral Equation and the OSU Codc;
Oc = 0, H-Plane 43
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Figure 23. Radar Cross Section Versus Bistatic Angle of a Perfectly Conducting Flat-Backed
Cone Computed with the Dual-Surface Magnetic-Field Integral Equation and the OSU Code;
Og = 180, E-Plane 44
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Figure 24. Radar Cross Section Versus Bistatic Angle of a Perfectly Conducting Flat-Backed
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5. CONCLUSIONS

It has been demonstrated that the dual-surface magnetic-field integral equation eliminates
the spurious resonances associated with the magnetic-field integral equation for plane wave
scattering from bodies of revolution. It was an extremely simple modification to convert the
original magnetic-field integral equation computer program to the dual-surface magnetic-
field integral equation program. As the magnetic-field integral equation is very well behaved,
simple pulse basis and impulse testing functions provide excellent results for as few as five
segments per wavelength.

The accuracy of the dual-surface magnetic-field integral equation was shown to be equal
or better than the accuracy of the combined-field integral equation for a perfectly conducting
sphere. The combined-field integral equation incorporates both the magnetic-field integral
equation and the electric-field integral equation, which requires more complicated basis and
testing functions for accurate results. These more complicated functions, along with the
necessity to incorporate the the electric-field integral equation, make the combined-field
integral equation solution more difficult to program than the dual-surface magnetic-field
integral equation solution. Even with the more complicated basis and testing functions,
the combined-field integral equation started to decrease significantly in accuracy below ten
segments per wavelength. This was not true for the dual-surface magnetic-field integral
equation. The computer run-times of the two solutions were approximately equal for the
perfectly conducting sphere for equal number of segments per wavelength.

The dual-surface magnetic-field integral equation results were also in good agreement
with results produced by a wire-mesh body of revolution code.7 The results were identical
for a circular cylinder but deviated by as much as 3 dB for the truncated and fiat-back cones.
The differences in the two results may be due to the different methods used to approximate
the current on a solid surface and the fact that the OSU code does not eliminate the spurious
resonances.

The comparison of the measurements with the dual-surface magnetic-field integral equa-
tion results for a circular cylinder also were quite good, demonstrating that the dual-surface
magnetic-field integral equation computes accurate results over a wide range of incident an-
gles. The difference in the results from the two different polarizations were within the limits
of experimental error. Due to the excessive computer run time required to obtain these
results, however, no other measured monostatic results were compared with the dual-surface
magnetic-field integral equation solution.

50



The next obvious step is to attempt to decrease the computer run time of the dual-surface
magnetic-field integral equation solution when the angle of incidence is far from the z-axis of
revolution. This can be accomplished by using a fast Fourier transform (FFT) to compute
the phi integration for each mode. The FFT will save computer run time, for cases with
the incident field off the z-axis, of about 2 log2 N/N times the current run time where N is
approximately kr (see Eq. (63)) for the body of revolution program. The drawback to the
FFT is the additional memory requirement. This could be overcome by using direct access
files on disk as is discussed in Woodworth.14 By using direct access files, however, there is
the added difficulty in computer programming, a greater CPU time requirement, and the
possibility of a large increase in input/output time.

The addition of a geometry package allowing the user to input a variety of geometry types
would greatly aid the use of the program. At the present time, the program accepts spheres,
conespheres, cylinders, and cylindrical shaped frustums as input. The code was originally
written to accept only a sphere as an input but the geometry input package of Reference 7
was modified to allow the other shapes to be used as input to the code. Other shapes would
provide additional validation of the dual-surface magnetic-field integral equation solution as
well as providing useful results to the users of the body of revolution program.

14Woodworth, M.B. (1988) Large Matrix Solution Techniques Applied to an Electromagnetic Scattering
Problem, RADC-TR-88-268,Hanscom AFB, MA, ADA206917.
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Appendix A
Integration Correction

The purpose of Appendix A is to obtain Eq. (47). For this integration let t' - t = t' by
letting t = 0. As shown in Figure Al, the integration of the Green's function for the ring
containing the self patch involves the integral

I = f o "I '112 (AI1)

This can be rewritten as

f2r it/2 sin 2 0'/2 '(A2)

J ýo't/2 [(p - p') 2 + (z - 4'-4 4pplsin 2 (p//2)]3/2 (t

by sub)stituting for I? from Eq. (26). For a fixed 0' the P' inetgration in Eq. (A2) can' be•
writ tel aws

f tl2 I
]1ýt12 R3/2 t (A3)
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For OY small

Rn: • ¢Rý + t,2, (AM)

where

nc = p0' (A5)

and

t' (p-p') 2 + (z - z') 2. (A6)

Therefore

R r p2e¢' + t,2, (A7)

and so

1, 2 j (t/2 1 dt'. (A8)
+ (p22 + )3/2

For a small fixed 0' and integrating Eq. (A8), one obtains

2 At/2 ] (A9)

IFor a siiiall fixcd b' and At approaching zero,

A At (AIO)

The same result will be obtained for a small fixed q' from the following equation

A (All)
Sp sin 3 0'/2
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4ATR

Figure Al: Phi Integration Correction for Self-Patch

This means that we are integrating

A tf2-,. sin1((P/2) (A 12)
I Sp3 siu I'(0V/2)

and( we should be integrating

At f sin2(0'/2) do'. (A 13)
1(At/2)2 +

By substituting Eqs. (A9) and (AlO) into Eq. (A12)

I Azt. / 2 I?,. '. (A 14)
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This l/(R2 Ra) in Eq. (A14) is the approximation for the most singular part of the Green's
function in the phi integration that contains the self patch. For the remaining less singular
part of the Green's function, R, can be approximated by the mean distance

Ra (At/2)14 + (p,) 2. (A 15)

Combining this Ra approximation to the lesser singular part of the Green's function with
1/(R 2 R,) in Eq. (A14), one obtains Eq. (47). The R, approximation was originally derived
for R so that the phi dependence could be integrated in very fine increments, but after
running the program with phi integration. segments much finer than At, it was determined
that phi-segments approximately equal to At gave the greatest accuracy. It was also seen
that the accuracy was better using the R, correction than the correction of Reference 6.
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