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PREFACE

This Note records the results of a review and analysis of the status of the
computational fluid dynamic (CFD) modeling techniques related to the
National Aerospace Plane (NASP) operation. It was undertaken as a task in
the study, "The National Aerospace Plane (NASP): Development Issues for
Follow-on Systems," performed within the Technology Applications
Program of Project AIR FORCE. The research sought to evaluate
independently the degree of uncertainty and the technical risk involved in
predicting the NASP performance using numerical simulation of aerothermal
and chemical/combustion processes. This Note covers the technical review
portion and identifies the areas for research emphasis so that the predictive
reliability of the NASP's potential performance parameters can be improved.

Sponsored by the Air Force Directorate of Program Planning and
Integration (SAF/AQX), the project has also required close cooperation with
the NASP Joint Project Office (JPO).

This study should interest those concerned with the aerospace plane
development in general, and hypersonic CFD modeling in particular.
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SUMMARY

Computational fluid dynamic (CFD) simulations are now gradually
replacing many ground experiments, becoming one of the major design tools
for aerospace engineers. There are several reasons for using CFD models:

Technical: Computational limits on speed and memory are

rapidly decreasing with time, but the limits on experimental

facilities (wall effects, distortion, etc.) have not decreased,
Economical: Computer speed has increased faster than its cost,

Energy saving: Wind tunnel experiments consume vast amounts of

energy,
Convenience: Computational results are immediately obtainable

but experimental results are difficult to measure, calibrate, and
interpret.

Potential application and major hypersonic aerodynamic issues that may
be addressed by CFD modeling are:

L/D (lift/drag) ratio of a given airframe configuration,
The aerodynamic heat distribution vs maneuverability,
Performance parameters of the supersonic ramjet (SCRAMJET),
Aerodynamic stability within the NASP flight envelope,
Boundary layer transition,

Boundary layer/shock interaction,
Other viscous effects.

For transonic or low Mach number aircraft design, engine and airframe
simulations are usually made separately. But for the hypersonic plane, the
entire aircraft has to be schematized into a single model, because the highly
integrated hypersonic plane design requires dynamic coupling of the engine
and the airframe. A model containing the entire aircraft and the internal
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combustion computation process in a SCRAMJET engine would eliminate
problems associated with the specification of redundant model boundary
conditions. Consequently, there is a tradeoff between a lower spatial

resolution for both airframe and the SCRAMJET simulation and a higher
level of predictive uncertainty for a given computational resource.

To construct a CFD model covering a complete hypersonic plane with
reasonable grid-space resolution, the model needs substantial computing
resources. At the present time, a model with 900,000 grid points can be

simulated with the state-of-the--art computer system, but certain tradeoffs
have to be made. Simple and less-efficient numerical integration schemes
have to be employed so that only limited neighboring computational points
reside within the computer's main memory at a given time. Extensive
data-swapping has to take place between the CPU and the external memory
units. As a tradeoff, a simulation will take a longer time depending on the
numerical scheme and the computational hardware involved.

In a CFD model, the friction coefficient is usually expressed as a function
of the computed velocity profile perpendicular to the wall, whereas the heat
transfer coefficient is usually expressed as a function of the computed
temperature gradient perpendicular to the wall. Consequently, it is important
to provide proper boundary conditions at the wall so that the effect of
interdependency is minimized during the computation of the aerothermal field

around the NASP.
For the past 35 years, the speed and memory of the most powerful U.S.

computers have increased an order of magnitude every seven years. The
present speed limit of the arithmetic unit is between one and two billion
floating point operations per second (FLOPS) depending on the degree of

vectorization of the code.
At present, a typical computer system used for large-scale CFD simulation

has approximately 16 million words of main memory with possibly one or
more external memory units, typically 8-mega words each. Supercomputers

are nearly all vector machines. On the average, the relative improvement in
speed of a typical CFD code is approximately six times after vectorization.

Beginning in the spring of 1989, CFD codes are expected to be simulated

on CRAY's Y-MP/832, which offers two to three times the performance of
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the X-MP. The system has 8 CPUs, operates on a 6-nanosecond clock cycle,

and has a central memory capacity of 32 million 64-bit words. The next wave

of supercomputers being developed by companies such as CRAY and NEC will

be five times faster. They are expected to be introduced within five years.

Since there are more unknowns than just the number of (Navier Stokes)

equations for turbulent flows, it is necessary for CFD models to "close" the

information gap using turbulence modeling. Theoretically, higher-order

turbulence models are more universally applicable than the lower-order

models under various aerodynamic conditions. However, this has not always

been the case in hypersonic applications. Most published models for NASP

application use a zeroth-order closure scheme (see Table 4, Sec. 5, for

example). This particular low-order scheme can make better predictions than

many higher-order models in benchmark tests. Simpler models (usually with

fewer constants), if designed by experienced aerodynamicists, can sometime

outperform higher-order models with more "closure constants." Therefore,

lab and design experiences also play an important part in CFD modeling. At

present, areas with low predictive reliability in turbulence modeling that

should be emphasized in future research include

1. Improvement in prediction of the location and length of the

laminar-turbulent boundary transition zone, particularly in the upper

hypersonic flight range. The uncertainty in the transition process

translates directly into uncertainties in the prediction of NASP

performance, weight, and other control parameters. It also influences

the ability to predict engine inlet characteristics.

2. Validation of higher-order turbulent closure models to reduce the level

of uncertainties in the area of low predictive reliabilities, such as:

Strong aerodynamic curvature.

Intermittency and large structures in the flow.

Rapid compression or expansion.

Kinematically influenced chemical reaction.
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Low Reynolds number effects.

Strong swirl.

Turbulence, which is strongly influenced by body force acting

in a preferred direction.

Uncertainties in boundary-condition specification.

Compressibility effects on turbulence.

Dynamic stability and intermittency in the high-wave--
number turbulent eddies in the SCRAMJET combustion process.

Improvement in the modeling of compressible turbulence, particularly

near the engine inlet where boundary layer and shock layer may induce

substantial density variability and unstability.

3. Improvement in conserving mass, momentum, and energy in the

numerical schemes for solving the Navier Stokes equations involving
nonorthogonal grid transformation. Need effective methods for
handling sharp gradient and discontinuity.

4. Improvement in treatment of boundary conditions, particularly in an

interdependent, nested modeling system in which different grids are

used. Need effective numerical scheme for handling nonreflective

boundary conditions associated with, for example, a three-dimensional

full Navier Stokes (FNS) numerical solver. Reverse flow must be

addressed effectively.

5. Development of quantitative estimates of reductions in computational

accuracy near the nose and leading edges when implicit schemes (e.g.,

alternating direction implicit) are combined with the coordinate

tranformation.

6. In-depth analysis of various hypotheses associated with turbulence

modeling and the universality of turbulence closure constants.

7. Development of methodologies for the quantitative assessment of

uncertainties in the hypersonic CFD simulations. It is important that
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the uncertainties in the simulation results be estimated and published as
a function of the vehicle speed and location along the vehicle so that
designers and policymakers can make reasonable assessment of the
vehicle's projected performance.

There is no need for "turbulence closure" if a prototype aircraft is
represented by a model containing the number of grid points approaching the
9/4 th power of the highest flight Reynolds number. For the anticipated range

of flight Reynolds number of NASP, say 107, it would need a computer at
least 105 times more powerful than the present system. Consequently,
turbulence modeling will still be needed for the foreseeable future. The
present trend is to build higher-order "strpts-component" type models. The
simplest stress-component model so),- ý'en extra partial differential
equations in addition to the basic N~vjer Stokes equations of motions and

continuity.
Many of the present CFD models are based on the "parabolized" Navier

Stokes equations (PNS), which makes the numerical solution process much
simpler and more efficient. The parabolization technique neglects the
convective-diffusive process parallel to the aircraft surface. For NASP
applications, many layers are generally used to resolve the normal gradient by
means of stretched coordinates, so that parabolization is often justified.
However, comparison of PNS and FNS solutions should be made to evaluate
the importance of the eliminated convective terms in the governing equations

to justify the use of a PNS code.
The majority of the present CFD models for hypersonic aircraft use the

finite-difference scheme schematized over a boundary-fitted coordinate

system. Coordinate transformation becomes one of the major efforts in CFD
modeling. Combination of the (simpler) finite-difference method (FDM) and
the coordinate transformation replaced the finite-element method (FEM),
which enjoyed some popularity during the 1970s because of its geometric
flexibility. Since the finite-element models need to invert extremely large

matrices involving the variables of the entire aircraft, they are
computationally much less efficient than the finite-difference models. The
present trend is to use the most straightforward numerical scheme, so that
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only a few points reside within the CPU. By doing so, a hypersonic aircraft

can be schematized into a very large number of grid points.

In terms of modeling accuracy, with the maximum allowable spatial

resolution, the present accuracy of CFD models at the lower hypersonic range

(M Lv 6) is 5 to 7 percent in terms of pressure. When the predicted values are

compared with the experiments, the larger deviations are located near the

sharper geometric transitions. This indicates that higher spatial resolutions

will likely improve the simulation results. A higher-order turbulence model

may also improve the results around the curved surfaces. Both imply the need

for bigger and faster computers.

As far as hypersonic laminar-turbulent transition, it may be years before

we have either the data or the model to go beyond crude semi-empirical

models. Similarly, not enough is known about compressible turbulence to

establish suitable closure models for hypersonic flows, including the possibility

of large turbulent structures or perhaps even relaminization from a turbulent

state.

Judging by past trends, by the year 2000 the expected speed of the fastest

computer for hypersonic aircraft applications will be in the neighborhood of

10-50 billion floating point operations per second. However, if the heat

dissipation problem is drastically reduced by superconductive material, the

potential CPU speed may substantially improve in the future.

Because of the lack of suitable verification data at high speed, CFD codes'

ability to predict depends to a great extent on the universality of their

turbulence models. In other words, the values of the "closure constants" used

in these models would have to stay the same within their predictive range.

However, several well-known universal constants in fluid mechnics (e.g., the

Kolmogorov's universal constant) were found to be variable. In Kolmogorov's

case, when a 3-D turbulence is reduced to a 2-D turbulence, a localization

adjustment factor is needed when computing the spectral distribution of

turbulent energy near a wall. Hypersonic modeling may be affected if

parabolization is involved.

At present, major hypersonic CFD research is conducted in government

research centers. To apply CFD methodologies effectively in hypersonic

aircraft design, these modelers not only have to work with experienced
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designers in the industry but also have to work with material engineers to

extend fluid-dynamic models into "aerothermoelastic" design codes.

Furthermore, it is urgent that an effective government/industry relationship

be established at the technical level so that research codes developed in

government labs can become production code that designers can use. It is also

important that the uncertainties in the CFD simulation results be estimated

and published as a function of the vehicle speed and location along the vehicle

(tip to tail), so that the NASP design teams and policymakers can estimate

the consequences of these uncertainties on vehicle performance.
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GLOSSARY

A, B = Jacobians of flux vectors F and G
A+ = a turbulent closure constant in Baldwin-Lomax

zero-equation model
a- = the amount of fluid/fragment interfacial area

per unit volume
ADI = Alternating Direction Implicit (scheme)
3AF = three-factor approximate factorization (scheme)
AFMAL = Air Force Wright Aeronautical Laboratories
an = Fourier coefficient in spectral method

ARC = Ames Research Center
BL = boundary layer

bn = Fourier coefficient in spectral method

BWB = blended-wing-body
c = speed of sound or subscript for concentration-

related flux vectors
C = mass concentration

C = a programming language use for connection machines
CAD = computer-aided design
Ccp = Clauser constant

CDC = Control Data Corporation
Ck, c = turbulence modeling constants

CNS = compressible Navier Stokes
Cd = tubulent closure constant for dissipation

CD = drag coefficent

C0 = Courant number

Cf = skin friction coefficient

CFD = computational fluid dynamics
CL = lift coefficient

CPU = central processing unit
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d = body diameter

D = binary diffusion coefficient

DCR = dual combustor RAIJET

DEC = Digital Equipment Corp. (VAX machines)

del = deformation operator

D s = diffusion coefficients in a coupled

dynamic/chemistry model

e = total SGS energy per unit mass

ETAIO = the latest model of CYBER series supercomputer

(ETA Corp, production stopped in spring 1990)

f 12 = interfacial friction between two fluids

FDS = flux difference splitting

FCT = flux-corrected transport

FFT = fast Fourier transform

F, G, B = vector flux

FKIleb = a turbulence modeling parameter (zero-equation

model) involving Klebanoff intermittency factor

FLOPS = floating-point operations per second

FNS = full Navier Stokes

FVS = flux vector splitting

Fwake = a parameter in turbulence modeling (zero-equation

model) involving the difference between the max and

the min total velocity

g1 1 , g2 2 = components of the contravariant metric tensor,

or gjk

gv = acceleration due to gravity

h = enthalpy

10 = total enthalpy

1FF = Ames hypervelocity free-flight facility

HGG = hyperbolic grid generator

HGV = hypersonic glide vehicle
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i,j,k = integer index

I = inter-fluid source term in a two-fluid model

Isp = specific impulse

I/o = input/output

J = Jacobian of a transformation

JFN = Journal of Fluid lechanics

k = sub-grid-scale turbulent kinetic erergy, ergs/unit

mass
K = a subscript

K = Knudsen number, = 1.26 r- -

L = characteristic length

LACE = liquid air cycle engine

LaRC = Langley Research Center

LDV = laser Doppler velocimetry

Le = Lewis number, which represents the relative rate

of diffusion of mass and heat
LHS = left-hand side (of an equation)

LOX = liquid oxygen

M = Mach number

m, I = integer index

NAS = numerical aerodynamic simulator
NASP = national aerospace plane

NDV = NASP-derived vehicle

n, N = integer index

Ns = number of species

ODE = ordinary differential equation

p = static pressure
PARIS = commands (used together with C language for

increasing processing speed in connection machines

PBR = Ames pressurized ballistic range

PDE = partial differential equation

Pe = Peclet number = Pr x Re (Prandtl No. x
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Reynolds No.)i_
p - control functions in grid generation
PNS = parabolized Navier Stokes

Pr = Prandtl number, which is the ratio of rate of

diffusion of vorticity and of heat

Prt = turbulent Prandtl number

q = heat flux

R = volume fraction of two-fluid model

Re = free stream Reynolds number

RHS = right-hand side (of an equation)
RHYFL = Rockdyne Hypersonic Facility (a shock tube)
IUS = root-mean-square

RNS = reduced Navier Stokes

R x = mass diffusion term such as in a species equation

R i = Richardson number, a measure of vertical dynamic

stability
Rcr = critical Richardson number

S = source term within fluid

S c = Schmidt number, which represents the relative

rate of diffusion of vorticity and mass

SGS = sub-grid-scale

SSD = solid-state storage device

t = time
T = static temperature

te = trailing edge

[ IT = transposed form of a vector
TIN = time iterative marching

TKE = turbulent kinetic energy

TLNS = thin-layer Navier Stokes

TVD = total variation diminishing

U = dependent variable

UNS = unsteady Navier Stokes
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UPS = upwind PNS solver

VAST = vector and array syntax translator (for CFD code

vectorization)

u, v, w = velocity components in the x, y, z, direction

u',v' wI= velocity fluctuation components

u, v, w = diffusion velocity components for air species in

the x, y, x direction

V = weighting function in a moving adaptive grid system

W = transposed form of air chemistry source term

1-30 = an experimental aerospace plane

Ymax = the y-distance at which Fmax occurs, in turbulence

modeling

y = law-of-the-wall distance (i.e., 1pw-7- y/Aw)

V = Cartesian gradient vector operator

Ax = grid spacing

6 = characteristic length of viscous layer; boundary

layer thickness

b ij = Kronecker delta

f = eddy viscosity or isotropic part of turbulent energy

dissipation in a turbulence model

A = second viscosity coefficient, or conductivity

r = diffusion coefficient within one fluid of a

two-fluid model
S= first viscosity coefficient, dynamic viscosity

At = turbulent eddy visicosity

V = kinematic viscosity

W = vorticity

W = air chemistry source term

P = density

p = density of the lighter of the two fluids in a

two-fluid model
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P = average density

p = variation of density

= fluid property

I = gas specific heat ratio (1.4 for perfect gas)

= constants in the transformed space, x = x(ý,n,(),

y = y(,,) z = (,•)

0 ( uk = turbulence modeling constants

r = body thickness

rij = shear stress components
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1. INTRODUCTION

Advances in computational fluid dynamic (CFD) methods and the
increasing capabilities of computers will play a crucial role in the development

of the National Aerospace Plane (NASP). Because it is not yet practical to

conduct continuous flight experiments at speeds much above Mach 8,

aerodynamic behavior and the potential performance of the NASP beyond this

speed have to be predicted using the CFD methods without sufficient

verification data. Therefore, the degree of certainty or the confidence limits

associated with CFD predictions for various NASP applications are at this

moment difficult to quantify (Mehta, 1990b). This is particularly true for the
newly developed computational codes based on the full Navier Stokes (FNS)

equations with finite-rate chemistry. It is a challenging task to prove the
validity of supersonic combustion processes and the performance parameters

associated with the SCRAMJET engine at upper hypersonic speed ranges

using a computer simulation.

Since CFD models are based on numerical solutions of a set of governing
equations (under certain assumptions over a finite-grid network), to simulate

the aerospace plane's integrated external flow field and propulsion system, a
numerical model must cover several different flight regimes. Although much

progress has been made in solving aerodynamic design problems, many new

developments are still needed before the complete three-dimensional equations

for unsteady compressible viscous flow can be solved routinely with high

enough resolution and certainty in the entire operating range of the NASP.

OBJECTIVE

The research reported in this Note sought to evaluate independently the

degree of uncertainty and the technical development risk involved in

predicting NASP performance using numerical simulation of the highly
integrated air frame/propulsion system. This Note presents a technical review

and a summary of four interrelated fields.
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ORGANIZATION OF THIS REPORT

Section 2 gives the hypersonic environment within which the NASP is

expected to operate. It summarizes governing dynamic equations and reviews

many forms of the reduced equation sets. Section 3 reviews the important

numerical schemes upon which CFD codes are based. It discusses advantages

and disadvantages as well as the computational requirement associated with

each numerical scheme. It also covers one of the important characteristics of

the hypersonic aerodynamic process -the existence of a shock wave in the flow

field- as well as the use of a numerical technique and finite computational grid

to resolve this shock wave.

Section 4 addresses a new technical field in computational fluid dynamics:

the grid generation technique. An essential as well as a time-consuming step

in CFD modeling is to generate a proper grid around an air frame or through a

duct system. Theoretically, each time a numerical integration step is carried

out over a transformed grid system, a certain amount of mass will be lost.
The aspects of conservation of mass, energy, and momentum associated with a

transformed computational domain are also discussed in this section.

Section 5 discusses the computational needs for various types of turbulence

modeling. Inasmuch as the speed and the size of present-day computers

cannot yet represent the flow field with high enough resolution, we still ineed

to model sub-grid-scale turbulence. Turbulent flow will occur within the

flight regime of the aerospace plane and the supersonic combustion process of

the SCRAMJET engine. The modeling of turbulence is essential in predicting

the advective process of momentum and heat transfer within the boundary
layer of the aerospace plane. This in turn determines the potential

performance and the temperature distribution throughout the NASP This

section also describes the zeroth-, first-, and second-order as well as

stress-component turbulence closure schemes. Computational needs for

various types of turbulence modeling are discussed in this section.

Section 6 discusses the trends in development of computers that have been

used to carry out CFD modeling. To use a CFD model effectively, good

hardware and software support are essential. Code development has to match

the type of machine for efficient simulations. Programming and CFD

modeling can be carried out more effectively by using proper computers.

Some predictions are also included.
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Section 7 summarizes CFD modeling needs and discusses its uncertainties.

It is beyond the scope of this Note to give a quantitative analysis of technical

risk associated with predicting the NASP performance using CFD simulation.

This Note does, however, point out several aspects pertaining to the needs in

NASP design using CFD.

Section 8 presents conclusions.
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2. HYPERSONIC ENVIRONMENT AND THE GOVERNING

NAVIER STOKES EQUATIONS

Numerical models designed to simulate the external aerodynamics or the duct

flow (of SCRAMJET for example) of an aerospace plane should rest on a set of
appropriate governing equations. These equations must:

Include essential physical parameters in the basic formulation,

Operate under appropriate assumptions and limits, and
Have the necessary initial and boundary conditions for the computa-

tion.

To make a reasonable assessment of the computational needs, the range of the

aerospace plane's operat:.-nal parameters is discussed first. This discussion
includes speed, skin temperature, air-density range, and other physical factors

that are essential to the plane's aerodynamics.

THERMO- AND AERODYNAMIC OPERATING RANGE OF THE

AEROSPACE PLANE

The aerospace plane is propelled by both RAMJET and SCRAMJET

air-breathing engines at different speed ranges. The primary difference bet ween
the two engines is that air passes through the RAMJET at subsonic speeds and

through the SCRAMJET at supersonic speeds. In a RAMJET, air is slowed

down to about Mach 0.2; fuel is then added. At hypersonic speeds, the
SCRAMJET is designed to compress and decelerate the incoming air to about
Mach 1. Adding heat to the duct slows air further. The resulting back pressure

creates a shock wave in the inner diffusor behind the inlet through but ahead of
the combustion chamber. At around Mach 6 (1800 m/s), inlet temperature is
approximately 2540 OF (Mackley, 1986). At that speed, the inlet air speed is
slowed to about 1500 m/s. Air speed at the hydrogen injector is also around 1500
m/s. Hydrogen resides in the combustor for approximately one millisecond.
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Unlike conventional aircraft, the fuselage of the aerospace plane has to supply

part of the compressional surface for the engine. The same is true for the aft

portion of the plane and exhaust nozzle for propulsion. Therefore, the

aerodynam~ic computation of the engine and fuselage not only has to be

dynamically coupled but also properly posed, otherwise it may create redundancy

in specifying the boundary conditions.

The external temperature of the aerospace plane during supersonic cruise

varies at different flight regimes within the air-breathing operational range.

Figure 1 superimposes the continuous flight corridor (Masson and Gazley, 1956)

over the aerospace plane's flight envelope. The maximum ranges of external

temperature at various points of the aerospace plane are estimated

(Korthals-Altes, 1987) and appear in Table 1.

Table 1

The Maximum Range of External Temperature at

Various Points of the Aerospace Plane

Location Estimated max. temp.

N ose ....................................................... 3260 OF

Outside of the crew cabin ....................... 2000 OF

Fuselage structure ................................... 1800 °F

Outside passenger and cargo area ............ 1600 OF

Outside liquid-hydrogen tanks ................. 1400 OF

W ing structure ....................................... 2650 OF

Air inlet and propulsion unit ................... 1600 0F

Control surface ........................................ 3250 OF

Leading edges .......................................... 2650 OF

The equilibrium skin temperature listed here is the temperature at which the

convective heat transfer to the surface equals the radiation heat transfer from the

surface.



-6-

Too Slow I
Weight > lift + centrifugal force Aerospace plane

flight envelope \
0

- _ Air-breathing,x flight corridor,

"Orbital< - ." •• . ...... .... ascent

" ': : "" : ::;;: ..... .... Too H ot

Hypersonic cruise Skin temperature > 20000 F

0 5 10 15 20 25 30

Mach number

SOURCE: Adapted from Masson and Gazley (1956).

Fig.1-Assumed Prototype NASP/NDV Characteristics and the Flight
Envelope of the Aerospace Vehicle
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The range of Reynolds number per foot of characteristic length within the
flight regime is from 104 to 108. Boundary-layer transition from laminar flow to

turbulent flow will probably occur along the hypersonic body. The type of fluid
flow for the numerical modeling will include a viscous shock layer and viscous
boundary layer. In the air-breathing flight regime, the air-density ratio relative

to the sea-level value and the mean free path is reflected in Table 2.

Table 2

The Air-Density Ratio Relative to the Sea-Level Value

in the Air-Breathing Flight Regime

Air Density
Altitude (ft) Mean Free Path (ft) Relat i ve t o Sea Level

0 2.18 x 10-7 1
100000 1.61 x 10-5 1.35 x 10-2

200000 8.45 x 10-4 2.57 x 10-4

300000 1.25 x 10-1 1.75 x 10-6

From Table 2, the Knudsen number within the aeroplane's air-breathing

operating range is between 2.18 X 10- 7 to around 0.1 per foot of characteristic
length (body dimension or boundary-layer thickness). In a strict sense, flow with
the Knudsen number greater than unity should be classified as r.arefied gas flow
which is not in a continuum regime. Therefore, it might not be properly

described by the compressible Navier Stokes equations. Certain fully merged
layer regimes can only be classified as near-continuum, and the Navier Stokes
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equations should be used only for crude estimates of the local skin friction and

heat transfer over that area. However, experimental evidence indicates that the

Navier Stokes equations have an appreciably wider range of empirically justified

validity than their theoretically defensible range. Our analysis will cover the

aerodynamics of the air-breathing flight regime of the aerospace plane that can be

described by the Navier Stokes equations.

FLOW COMPUTATION IN THE SCRAMJET

A major component of the aerospace plane is the supersonic-combustion

RAMJET (SCRAMJET). SCRAMJET adds heat either to product gases or by

direct injection of the fuel into the supersonic air stream with simultaneous

mixing and burning in the combustion chamber at supersonic flows. The ideal

SCRAMJET cycle is based on Rayleigh flow in which friction losses are neglected.

The thermo-gas dynamic processes involved are (a) heat addition at supersonic

speeds (Rayleigh flow), (b) isentropic nozzle expansion to atmospheric pressure,

and (c) heat rejection at constant pressure by exhaust to the atmosphere.

A unique characteristic of the SCRAMJET engine is that the ratio of kinetic

jet energy to input heat ranges from approximately 1.5 to 3.0 (Ferri, 1964). In

fact, a SCRAMJET is the only propulsion system capable of generating relative

jet kinetic energy to input energy ratios greater than unity (turbojet's ratio is 0.3

and rocket's 0.4). The idealized overall efficiency of a SCRAMJET system is

generally quite high and increases with increasing flight Mach numbers. On the

other hand, phenomena such as combustion-shock wave interaction and frictional

effects may set limitations and constraints on the simplified SCRAMJET cycle.

The addition of heat to the combustion process creates combustion waves

(detonation or deflagnation). Combustion and shock wave interaction in a

supersonic RAMJET system is quite complex, particularly if frictional effects

and chemistry are also considered. Most important is the question of whether

adequate mixing can occur in a reasonable length, or will the SCRAMJET be

inefficient in practice? These aspects need extensive analysis using models

containing all the essential variables.

In designing a SCRAMJET, the area of the combustor has to be increased
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slightly to prevent thermal choking. But the amount of increase must be
carefully controlled so as not to extinguish the flame. The overall system
efficiency of a SCRAMJET is very sensitive to internal skin friction loss (Waltrup
et al., 1979; Schetz et al., 1987). The internal flow dynamics of a SCRAMJET
engine can be characterized by a strong nonuniform supersonic inflow followed by
a nozzle with no contraction (throat) as in rockets, RAMJETs or jet engines.
Therefore, to simulate the flow characteristics within the SCRAMJET accurately,
a numerical model must be able to resolve the strong convective components with
chemical reaction effects present in significant amounts at the end of the
combustor.

Because of the strong convective acceleration and possible separation within
the SCRAMJET engine's combustion system, simplified numerical schemes often
used for NASP's external flow simulations (e.g., PNS, discussed in Sec. 3) may
not be suitable for SCRAMJET. For gas chemistries, a numerical model should
at least include the molecules formed with H, N, C, and 0. The potential
performance of a SCRAMJET engine depends to a great extent on the calculation
of its nonuniformity of flow, and the turbulent mixing/combustion process. These
aspects put stringent demands on the turbulence modeling computational resource
and require sufficient data for model verification.

Until recently, modeling of combustion processes in a SCRAMJET engine was
often assumed to be mixing-controlled combustion (complete reaction). Based on
this assumption a two-dimensional unsteady Navier Stokes code (TWODLE) has
been developed at NASA Langley for simulating SCRAMJET combustion flow in
the NASA modular SCRAMJET engine. This CFD code is formulated to
compute the combustion of hydrogen/air mixture using a complete reaction model
in which instantaneous reaction is assumed at any point where both fuel and air
are present. Boundary conditions at the wall are assumed to be adiabatic and
noncatalytic (White et al., 1987). Chemical reactions in a SCRAMJET

combustion process are generally controlled by kinetics and not mixing. However,
under certain conditions it may be that both reaction time and mixing time are
critical. NASA Langley, together with Johns Hopkins University Applied Physics
Laboratory, recently developed a 9-species, 18-equation finite-rate chemistry
code named SPARK to simulate the hydrogen-air combustion to describe the
important reactions of various SCRAMJET designs (White et al., 1987).
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Time-dependent solutions of chemically reacting flow in SCRAMJET are

often quite "stiff" numerically. In other words, the characteristic time scale

associated with the chemical reactive flow varies widely. The wide range in time
scale comes from the fact that to resolve the fine details of the flow field, the

computational grid needs to be small to have higher spatial resolution thus

resulting in a very small time step (see Sec. 3).

GOVERNING EQUATIONS FOR THE THREE-DIMENSIONAL FLOWS

The three-dimensional Navier Stokes equation in a Cartesian coordinate
system in a conservation-law form (Anderson et al., 1984) is as follows:

aU OF o0G OH--Tt- + -ux- + -T-+ = o-

pu pu+P-rxx

U- pv F Puv--xy
pw puw - r
Et (t +p )u-Urxx-VrXy-W7-z-qx

pv
pv u-r

G- Pv 2+plýypvw - r
(E +p)v-urvr -wY -Zqyt + xy y z Y

pw
pwu--rxz

H = pwv--rH pw 2+p yz - r z
(Et +P)w-urxz-V7 yz-WTrzz-qz

where U = dependent variable;

F, G, H = flux vector;

Et = total energy per unit volume;
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p = static pressure;

q = heat flux;

r = viscous stress components;

The complete Navier Stokes equation is highly nonlinear, and it does not

possess any known analytical solution. At the present time it can be solved only

4pproximately using numerical methods. Solutions to the Navier Stokes have

many applications in aerodynamic design. For example, the skin friction

coefficients for a given design can be computed with proper initial and boundary

conditions. The skin friction coefficient Cf can be defined as:

•w (-oE)w

au

p u 2 L
'/'w ____u

"M GL
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* u
/z *w - -

Re

where Y +

A U
U

u

Re denotes the free stream Reynolds number. The derivative represents the

velocity profile normal to the surface. These velocities are the computed

velocities resolvable by a model's grid network. Similarly, a local heat transfer

coefficient can also be estimated as a function of the computed local temperature

gradient.
Models based on the complete set of Navier Stokes equations require

substantial computational resources. To improve the computational efficiency, the
variables on the continuous physical space are first mapped onto a discrete,

transformed network for modeling. For most practical applications in hypersonic

aerodynamics, a thin-layer approximation further improves the computational

efficiency.

PARABOLIZATION AND THE REDUCED FORMS OF

NAVIER STOKES EQUATIONS

Even though the governing Navier Stokes equations provide an excellent

description for fluid flow, they are of an elliptic type for which the numerical

techniques are lengthy and cumbersome. They often require iterative solutions.
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The presence of thin shock and shear layers makes it difficult and costly to solve

within an acceptable level of accuracy. But, if one can neglect all the

stream-wise viscous diffusion terms and modify the stream-wise convective flux
vector to permit stable time-like marching of the equations downstream from the

initial data, then mathematically the nature of the Navier Stokes equation

changes from elliptic-type to parabolic-type. The equations can then be solved

by advancing an initial "plane" of data in space rather than by advancing an
initial "cube" of data in time. The modeling efficiency drastically increases.

From the physical point of view, parabolization neglects the diffusion process

parallel to a surface but retains all three momentum equations and makes no

assumption about the pressure. The diffusion term involving derivatives parallel
to the surface for the high Reynolds number turbulent flows near the

vorticity-generating surface is usually extremely small. Many layers are needed
to resolve the normal gradient by means of stretched coordinates, so that the

thin-layer approximation is often justified. In fact, many of the hypersonic
aerodynamic computational schemes presently available are of the parabolized

Navier Stokes (PNS) type. Detailed derivation of the PNS equations from the

complete Navier Stokes equations can be found in Rudman and Rubin (1968) or
in text books such as Anderson et al. (1984).

There are several other simplified forms which deviate slightly from PNS.

Barnett and Davis (1985) added the stream-wise dependence to PNS by means of

a pressure relaxation scheme. This reduced Navier Stokes (RNS) method is valid

for air flows in which the stream-wise interaction is weak. The same is true for

the thin layer Navier Stokes equations (TLNS) introduced by Pulliam (1984). In
TLNS, the viscous terms containing derivatives in the directions parallel to the

body surface are neglected in the unsteady NS equations, but all other terms in

the momentum equations are retained. By retaining the terms that are normally
neglected in boundary-layer theory, separated and reverse flow regions can still

be calculated (Anderson et al., 1984).

Numerical models based on the simplified Navier Stokes equation have played

a key role in the design of future aerospace planes because they reduce the

computational effort by at least an order of magnitude. On the other hand, a
simplification scheme such as the "zonal modeling" technique may also create

potential computational problems. For example, there are potential
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incompatibilities in establishing the mutual boundary conditions for the patched

models, particularly when the flow fields of these models are dynamically coupled,

as in the case of the aerospace plane.

L-ke many other types of the Navier Stokes-based numerical models,

sometimes substantial efforts are required to establish a proper boundary

condition so the interior solution is not influenced by the reflective boundaries.

Theoretically, computers will never be large enough that the model boundaries

can be placed to represent the truly far field unless we know the solution

beforehand. To establish a dynamically suitable non-reflective boundary in a

moving coordinate system with shock is understandably quite complex.

Past experiences in Navier Stokes modeling have indicated that more accurate

numerical s generally need better treatment at the boundaries. This is

because 'jc- -,r-order (more accurate) numerical schemes involve higher spatial

deriv• tives that need to be specified at the boundaries during the integration

process. As a consequence, models based on different solution schemes require

different boundary treatments. They will be discussed together with the schemes

themselves in the Sec. 3.

THREE-DIMENSIONAL SYSTEM IN A TRANSFORMED SPACE

The shape of most aerodynamic bodies consists of curved surfaces.

Consequently, the Navier Stokes equation formulated on a Cartesian coordinate

system loses its resolving power in aerodynamic applicatioDs. To improve

computational efficiency, it is more desirable to formulate the equation in

curvilinear coordinates. An arbitrary shape in the physical domain can be

mapped onto a rectangular, discrete computational domain through coordinate

transformation. The transformed space is usually, but not necessarily, a

rectangle. It could be a circular disk or a sphere such as the earth ellipsoidal

coordinate (Liu and Leendertse, 1987). The great majority of the coordinate

system generation methods are based on solving partial differential equations

using a coordinate transformation from the physical domain to an orthogonal

computational domain (see Fig. 2). Using this approach, local refinements of the

mesh can be achieved by introducing an appropriate mesh control function into
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Fig. 2-Mapping of the Physical Domain on a Rectangle Via Coordinate Transformation
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the governing equations. Boundary fitted coordinate generation methods are

discussed in Sec. 4.

Three-dimensional, mass-averaged, Navier Stokes equations in the

transformed space (ý,77,() for the dependent variable U, are:

OF -JF 07F

-T-+ (ýxy,,) I + (177,17y,?77) - I + (cx,(yz) 7 =0
Iaii aH IallO7 W -J

F = pu,p-rxx pUv-r ,puw-7 ,peu- y(pr + Vr) ae

-(ur x+ vrY +wr )]T

G pv,puV- x,r XPV2_- yjpVW-r yz~pev- -y( Pr + c t)

(Uyx+ vsy +wz'J]W

H = pwpPuW-r-p y,pwý-rx,pew- -(ikr + pt)

-(Ur-zz+ vr y +WýZz)] T

rij = (p+c)(def U-)ij- [ -- (/[±2)(v.-)+Pj ij

where an eddy viscosity model is assumed and where:

=ij Kronecker delta;

del - deformation operator;

C -- eddy viscosity;

Pr = Prandlt number;

Prt-- turbulent Prandtl number;

F,G,H = vector flux ;

U = dependent variables;
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ý,77,( = constants in the (ý,77,() space, x=x(6,77,(), y=y(6,7,), etc.

For the orthogonal three-dimensional transformed system, g 12 = g13 = 923

gij = 0 (iDj)

The quantity gj in curvilinear coordinates specifies the geometry considered and

constitutes the matrix tensor of that space. gij is proportional to the cosine of the

angle between a coordinate line along which the curvilinear coordinate •i varies

(the other two coodinates being constant along such a line).

The Laplacians

= (g1 1922 g3 3 ) 67 (g 2 2 93 3/g 1 1)

V77 = (g1 1 g2293 3 ) 5 7 (/gx 1g3 3/g 2 2)

9= (glg2293 3 )-.5 6' (1g1 192 2/ 3 3 )

For two-dimensional orthogonal system

= (g 11 g2 2) 9Z (1§2 2Tg1 1)

= (g11922 5•-'7 (491 1 /g 2 2)

It must satisfy the condition within the flow field:

k4-(xVg 11 T22) + W-y~gll/g22) = 0
a a_ aý91

_--(r__922_gx11 + V-n(?y4922/g11) 0

or

k(xy 2 2ý9 1 1 ) + ./-(x?7/g 11 /g 2 2) = 0

(Y yg 2 2 g-]11 ) + a-(Ygi 1/g22) 0
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Two-dimensional orthogonal systems must satisfy these conditions on the

boundaries:

x =77/g 22/g 11  •y =

x77 = -yCvg 22/g 1 1  y7 7  x-Cg 2 2 g1 1

If the system is orthogonal, it has the least extra terms in the transformed

PDE to account for the curvature of transformation and the centrifugal force of

the flow. One characteristic of the orthogonal system is the vanishing of the

off-diagonal elements of the matrix tensor.

Therefore, the basic orthogonally transformed equations are, if we define

Jacobian of the coordinate transformation,

where

g = g11 22

g+ [+ [19]2

which measures the area of a cell (volume in a three-dimensional system).

K = cell aspect ratio which measures the ratio of the length of the sides.

THREE-DIMENSIONAL DYNAMIC SYSTEM COUPLED WITH

NONEQUILIBRIUM CHEMISTRY

When the aerospace plane reaches high altitudes where the atmosphere is
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characterized by low-density effects and reacting gas chemistry, to simulate the

flow field properly the governing reacting gas chemistry equations have to be

dynamically coupled to the Navier Stokes equations. Recently Hoffman et al.

(1988) made some tests using the simple Baldwin/Lomax zero equation

turbulence model (Sec. 5) in the full Navier Stokes equation formulation

dynamically coupled with nine chemical equations for air. According to Hoffman

et al., nine species (include electron density) have been found to be important in

the dynamic coupling. However, when the equation set is solved using an implicit

numerical scheme to remove the chemistry stiffness problem, the size of the block

matrix becomes very large. For example, even with the simplest turbulent

closure scheme (i.e., zeroth-order scheme, see Sec. 5), the size of the block matrix

becomes 14 x 14 in which five are Navier Stokes components. Using the strong

conservation form, in Cartesian space the equation set is as follows:

c O F' O G' O H'U + + c- + W

Ot Lx Oy Oz

where

Uc = [pI ...... , pNs, pu, pv, pw, el T

PV P21 ...... , Ns = density of the species

Ns = number of species

N s

p = total density = E ps
s=1

u, v, w = Cartesian velocity components

W chemistry source term, = [W,.,. WNs 0 0 ,01

Wl = source term for each species

F' Gc, Hc = coupled dynamics/chemistry flux vectors

each with an invicid and a viscous part.
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In each of the above vectors F'c, G'c' H'c , the left-hand-side member

represents the invicid part and the right-hand-side member represents the

viscous terms.
Furthermore, UP,..., UNs are diffusion velocities for species 1 through N, in

the x direction. Similarly, v and w are diffusion velocity components in the y and

z direction. In numerical simulations, these diffusion velocity components are

often assumed to be proportional to the local concentration gradient of the

species. To estimate the rate of diffusion, diffusion coefficients such as Ds are

used.

In a strict sense, to model chemical reactions, one has to consider the
nonequilibrium internal energy modes. The total internal energy is the sum of

the energy due to translation, rotation, vibration, chemical

disassociation/association, electronic state, and the kinetic energy in the air flow.
However, for the Navier Stokes equation to be valid, it is often assumed that the

translation and rotational modes are in equilibrium.
A significant portion of the energy of air behind the bow shock may be

associated with the dissociation of molecules into atoms. Dissociation effects

begin at about Mach 10. When the chemical reaction rates are fast (i.e.,

equilibrium), the heat transfer process is independent of the mode of transfer (by
conduction or diffusion). However, in modeling high-speed, low-density flows,
the boundary conditions at the wall often have to consider the efficiency of the
wall in catalyzing the recombination of atoms into molecules. The efficiency has

a significant effect on heat transfer. Chemical kinetics of catalytic surface

reactions in a hypersonic viscous shock layer of a nonequilibrium gas has been

studied by Chung (1961). Wray (1962) considered seven-species ionization and

Bittker and Scullin (1984) and Hoffman et al. (1988) formulated a nine-species

air chemistry reaction model with wall catalysis.

One problem of modeling low-density real gas flow is the "curse of
dimensionality," i.e., the size of the matrix grows rapidly with the number of

species being considered. This is particularly true when higher-order turbulence

closure schemes are used in the model. These aspects are discussed in Sec. 5.
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3. NUMERICAL SCHEMES

Perhaps the most important factor that determines the computational

requirement in modeling is the principal scheme used for the integration of the

governing Navier Stokes equation. For a given physical problem the

numerical scheme determines not only the solution accuracy but also the

requirements in computer memory, the amount of arithmetic operations, and

the treatment at the model's boundaries. In this section we will cover the

state-of-the-art scheme, the most popular scheme, and those with the highest

potential for future aerospace plane applications considering the trend of

computer developments. Only the basic numerical scheme will be treated

here. The method of coordinate transformation is discussed in Sec.4

FINITE DIFFERENCE METHODS

Explicit Scheme

The original explicit finite difference scheme proposed by MacCormack

(1969) was the primary modeling algorithm for nearly a decade until other

relatively more efficient schemes became more popular. However, because of

its simplicity, the basic scheme enjoys extensive use. For example, the

majority of recent numerical studies involving SCRAMJET simulations still

use this simple and straight forward algorithm. The major advantage of this

method is its ease to program and to debug. Its major disadvantage is the

stability conditions that limit the permissible size of the forward integration

time step.

The MacCormack explicit scheme is a predictor-corrector type of

algorithm. It uses a split-operator technique, which is second-order accurate

in time and space. When it was first used for the Euler equation, artificial

diffusion was employed thus permitting the prediction of shocked flows.

Recently, the scheme has been used for the following NASP applications:
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Hypersonic turbulent mixing and reaction of hydrogen fuel and air near

the injectors of a SCRAMJET (Weidner and Drummond, 1982);

The SCRAMJET flow field over a rearward facing step with a transverse

H injector that includes the detail binary diffusion of hydrogen and air
2

along with variable Lewis number (Berman and Anderson, 1983);

The SCRAMJET flow field with no strut, one strut, and multiple struts

(Kumar, 1982);

Wing fuselage aerodynamic interaction (Shang, 1984).

The explicit numerical algorithm contains essentially a predictor and a

corrector part. For illustration purposes, we only use the simplified governing

equation (see Eq. (2.10)) in the conservation-law form:

S+ G 0(3.1)

The solution of dependent variables in the direction normal to the surface

(normal gradient) are solved by two steps in succession:

1. Predicting new values of u(P) from the current solution ui

U(.) = (G..At -G (3.2)

ui = i,j -Ty-- • ,j i,j-1

2. Correcting the predicted value

u(c) 1u u(p) At G(P) _Gp] ]
uJi,j + I, i,j--A - - G (P (3.3)

The u(c) becomes the "current value" of u for the net prediction step, and
Ili

so on. The stability conditions associated with this explicit scheme in the x

and y direction are, respectively:
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Atjx < c + (-L) Ax (3.4)

At y <_ A (3.5)

where

c = speed of sound;

7 = ratio of specific heat of gas;

A,/ = viscosity coefficients;

Pr = Prandtl number.

For NASP applications, a typical SCRAMJET model (e.g., 30 x 109

nodes) using an explicit scheme takes 30,000 time steps to reach a

steady-state internal flow condition. Using a first-generation vector machine

such as the Control Data Cyber 203 (equivalent to a CDC 7600 non-vector

machine), it takes approximately one to two hours for the numerical

integration process (Weidner and Drummond, 1982).
Vectorization of the computer code can also improve efficiency. When the

explicit scheme is vectorized and run on a CRAY-1 vector mechine (rated at
160 million floating point operations per second, FLOPS), the vectorized

program outperforms the original scalar code by a factor of 8.31 (Shang,

1984). Using the original explicit scheme, a typical wing-fuselage

aerodynamic interaction simulation (56,730 grid points, M=6) requires about
1.4 hour CPU time on a CRAY-1 (Shang, 1984).

The basic explicit scheme has also been modified and coupled to a general

interpolants algorithm (GIM, Prozen et al., 1977) designed to take advantage

of a "pipeline" feature on certain computers such as the CDC STAR 100

machine. To compute hypersonic flows (M > 5), a factor of 6 (in speed) was

obtained as compared to the equivalent scalar machine (CDC 7600).
In all of the above computations; the explicit scheme is coupled to the
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algebraic turbulence models proposed by Baldwin and Lomax (1978) and

discussed in Sec.5
Even though the scheme is unconditionally "stable" according to linear

stability analyses (Beam and Warming, 1976; Pulliam and Steger, 1980),

experience indicates that the scheme with centered spatial differences has only
limited range of Courant numbers CO (Thomas, 1988). In a Cartesian

context, the limiting Courant number is

At
CO --

I Amajx

where

A A

for perfect gas
where

c = the local speed of sound

Co = the Courant number

At = the maximum allowable time step

u = the vehicular velocity

I max = the largest eigenvalue of the invicid flux vector Jacobian

matrix.
In the stream-wise direction, the alternating direction implicit (ADI)

scheme is limited to a Courant number of unity (i.e., one). In the direction
normal to the body, a much higher Courant number can be used. In addition,

the implicit ADI scheme's stability is sensitive both to spatial resolution of
the grid and to the degree to which the instantaneous solution departs from
the real one (Thomas, 1988). To satisfy this, the initial time steps for the
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integration must be small. Tassa and Conti (1987) suggested using different

time steps for each grid point as time proceeds. For example, for a

two-dimensional flow, to determine the variable time step size, the averaged

eigenvalues in two directions have to be evaluated.

Implicit-Explicit and Hybrid Schemes

When used for viscous or turbulent flows, the explicit method described

above is penalized by the stiffness of the discrete Navier Stokes

approximation. Sometimes it is very inefficient in simulating flow in the
flight Reynolds number range. In the explicit method, unknown variables are

solved using known variables that are explicitly defined from the earlier steps
in a marching manner. In the implicit methods, however, unknowns are first
grouped together before they are solved simultaneously, usually by means of a

matrix inversion technique.
Implicit methods can often be designed so they are not subject to certain

linear stability conditions. Therefore, they are often more efficient than their

explicit counterpart by being able to use larger permissible time steps.
In fact, the efficiency of aerodynamic modeling is also governed by other

factors. For example, at high Reynolds numbers the magnitude of the inertial

force described by the hyperbolic terms of the Navier Stokes equations is

much larger than the viscous force described by parabolic terms. A numerical
scheme can be made more efficient by splitting the equations into a hyperbolic

and parabolic part. MacCormack (1976) proposed a method that solves the

hyperbolic part explicitly by using characteristic theory and solves the

parabolic part by using implicit parabolic method. Both methods are fully

conservative and stable. According to MacCormack, under the thin layer
assumption, the velocity component normal to the solid surface is very small

compared to the streamline direction. As a consequence, the stability

condition involving the normal velocity is much less restrictive than the

parabolic part. The stability condition for the explicit part is:
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At <(3.6)

The parabolic part solves the simple tridiagonal matrix and is
unconditionally stable. The semi-implicit scheme requires roughly 1/6 of the
time of the explicit scheme. Knight (1984) also developed a hybrid method
that combines the explicit scheme, described earlier, and an implicit scheme
for the viscous sublayer and transition wall regions of the turbulent boundary
layers. When the hybrid algorithm is coded in the SL/1 vector programming
language (developed at NASA Langley), the computational efficiency
improved by a factor of 16 to 21 as compared to a vectorized version of the
MacCormack time-split alogorithm.

Alternating-Direction Implicit Scheme

The most adapted multi-dimensional implicit method is the ADI
algorithm introduced by Douglas (1955), Peaceman and Rachford (1955), and
Douglas and Gunn (1964). The ADI scheme was modified and applied for the

compressible Navier Stokes equation (Beam and Warming, 1976). The
scheme is second-order accurate, non-iterative, and linearly unconditionally

stable. Even though the scheme is a three-time-level scheme, it requires only
two-time-level of data storage. The algorithm allows the spatial
cross-derivative terms to be included efficiently in a spatially factored

manner.
Being perhaps the most popular implicit scheme for any application,

particularly in modeling multi-dimensional fluids, it consists of essentially an
explicit and an implicit portion. Starting from the specified initial field, the

two portions are •.pplied in an alternating manner in the process of
integration.

Several codes other than the one posed by Beam and Warming (1976) are
based on the general ADI scheme (Steger, 1977; Pulliam and Steger, 1980;
Schiff and Steger, 1980). The generalized ADI scheme, when used for solving

a hyperbolic nonlinear two-dimensional system in conservation-law form, is
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oGu , + (u) = o (3.7)

where

u = unknown p-component vector;
F, G = given vector functions of the components u;

u(t) = u(nAt) = u

Let Jacobian matrices A=-- ; B--u F= Au and G=Bu. (3.8)

The second-order recursion algorithm can be grouped in the following
sequences:

UjT+-7 Un rAt I n n n n
k--u ''iY- k.1 uk1 - B jk-1u jk-1] (3.9)

j i j+l,k j+l ,k +j ,k IJ-l,k Uj--l,k

r AtI A iT+T [ n+ [t A t j r! u-n+

= - n j+l,k Uj+lk + uj, k + j-lk Uj-l,k

(3.10)

At B n u n+1 rAt) B1 Bn +1 _ -TTU j , k+1 jTk+1 jk-_i j,k-1 jk-1-Ujk

(3.11)

uj ,k = uj,k 46yk-] (3.12)
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Predictor-Corrector Type Implicit Scheme

In the solution process, an ADI implicit scheme, as discussed in Sec. 3,
usually involves the inversion of tri--diagonal matrices. Because of the
recursion and inversion procedures associated with an implicit scheme, it may

reqiiire nearly twice as many operations per integration step as an explicit

scheme. Since the permissible time step size for the implicit scheme is usually
much larger than the explicit scheme, it thus justifies the increase in the

number of operations. It would be, on the other hand, more desirable to
design an implicit scheme that reduces the number of operations per
integration step. MacCormack (1982) proposed a scheme that is basically
implicit, but it allows explicit operation in the region away from the aircraft

where mesh spacing is larger. The method is based on a predictor-corrector
principle. In the process, it solves block bi--diagonal matrix systems rather
than the block tri--diagonal one associated with the standard ADI scheme.
Therefore, for the overall efficiency for hypersonic applications, this scheme
outperformed the pure ADI code discussed previously. The method is stable
for unbounded At and second-order accurate under the condition that the

following term remains bounded:

(Alp)[ I t 2(.3

Min(Ax ,At2) ] (3.13)

In practical computations in the Re range between 3x105 to 3x107 ,
simulation codes based on this method can make stable simulations with

Courant number as high as 1000 (MacCormack, 1982). Considering the
governing Navier Stokes equation in the conservation form as:

+ + --, = 0 (3.14)

The equation may be numerically integrated in time by a

predictor-corrector sequence outlined as follows:
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1. Prediction step:

AUA+F I +
A nj = -ax ay

I -At AI-A+t B "1! AU , (3.15)

U _ + b n +TT

1 ,j 1,j + ,J

2. Correction step:

A FIn+ 1 A G+
AU-, -At --I 1 - +J . LLl , Ax Ay

I+At A ! ]A I+At A_ BI brI+ , AU7 TT

uF1 I _ - [U + UU+ bU
i 'j = L jT3 ,

(3.16)

where A and B are the Jacobians of vectors F and G defined by A=OF/OU,

B=OG/OU. I is identity matrix. The upstream and downstream differencing
operators are defined by:

A Z . - zIA Zi • Z. xZi-1,

A xJiK. _ Zi 2 i~ lUi- Zl ili . (3.17)

for variables in the x direction; the same is true for the y direction.

Here, only the essence of the numerical scheme is outlined. Since this

scheme may be the highest potential for the aerospace plane application in the
near future, several of its operational aspects will be discussed herein. These

include stability, memory requirement, and the relative speed as compared

with the other schemes, particularly with respect to the traditional ADI
implicit scheme discussed in Sec. 3



-31-

Stability limit: Even though the scheme is linearly unconlitionally

stable, the Navier Stokes equations are highly nonlinear, so the

stability limit for various applications varies. Numerical experiments

using parabolized codes indicate that the practical limits are between

Courant number of 100 to 1000. The maximum limit for the

predictor-corrector explicit scheme is around 1.5.

When the Courant number exceeds 5000, the skin-friction coefficients

computed using this method become inaccurate. However, on fluid

systems with free surfaces, the order of accuracy of the computed

velocity distribution begins to drop when the Courant number exceeds 3

using the ADI scheme.

Memory requirement: The predictor-corrector scheme requires 30

percent less computer memory than the ADI scheme because it does

not need to store the entire block tri-diagonal matrix system. Instead,

it forms block bi--diagonal systems and inverts with one sweep while

storing only two 4 x 4 matrices at a time. For the same reason, ADI

schemes involve longer computer codes than this scheme.

Integration speed: Theoretically, since this scheme involves only

bi-diagonal matrices as opposed to tri-diagonal matrices, it should be

much faster than the ADI scheme. But in practice, the speed gain is

somewhat less dramatic, particularly when the computational

grid-network is evenly spaced so that only the implicit mode is involved

during the integration process. Another major factor that reduces the

speed is that for every integration time step, the I B I matrix on the

right-hand-side (RHS) has to be inverted twice. The same is true for

all of the RHS terms. Strict theoretical analysis indicates that two

block bi-diagonal systems can be inverted about 10 percent faster than

one block tri-diagonal systems. It may be concluded that for the

predictor-corrector type of implicit scheme to be more efficient than the

ADI scheme, the former must contain more points that can be

computed explicitly. In other words, the grid spacing in the far field

should be much larger than the spacing near the aircraft. This is

usually the case, however.
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FINITE-ELEMENT METHODS

Before the finite-element method was used for aerodynamic computation,

it was used mainly to analyze static structure systems. As early as 1956 the

method was employed in aircraft frame analysis. Geometric flexibility has

been the primary feature of the finite-element scheme. The finite-element

method is often used because it yields good accuracy on a coarse

computational grid. The method has received somewhat less attention lately

because good spatial resolution can be obtained by using an efficient finite

difference scheme coupled with a coordinate transformation technique. For
NASP applications, the finite-element method competes directly with the

finite difference/coordinate transfor~nation technique as the primary

aerodynamic design tool in the higher speed range.

The finite-element method was originally formulated for linear problems

until it combined the method of weighted residuals (Finlayson, 1972) and the
Galerkin criterion (Galerkin, 1915), and it then became capable of handling

problems described by the complete nonlinear partial differential equations

such as the Navier Stokes equations. For time integration, explicit schemes

always seem to use the finite-element method.

The recent establishment of an implicit finite-element solution algorithm

(Baker and Soliman, 1979, 1983) has substantially advanced the solution

technique. Using von Neumann linearized stability analysis, the
Baker-Soliman algorithm is fourth-order phase accurate with third-order

dissipation in the large Reynolds number range. The principle of the
Baker-Soliman (1979) implicit scheme is based on the Galerkin weighted

residual formulation. For parabolic and hyperbolic partial differential

equations, the method first generates linear, quadratic, and two cubic

polynomials. A finite-difference procedure is then used to solve the resultant

ordinary differential equation system.

From a theoretical point of view, modelers who use the finite-element
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method, emphasize that the method will provide a thoroughly structured

procedure to transform the Navier Stokes equation into a large orderly

equation system written on the selected discrete variables via calculus and

vector-field theory. For nonlinear aerodynamic problems, the finite element

formulation is usually associated with the inversion of large matrices, which is

deemed to be computationally undesirable. Not so well developed in the

hypersonic fluid-dynamic modeling field as the finite-difference method, the

finite element method does appear to give robust and accurate algorithms.

Software support for the finite-element models are relatively limited at the

present time. Recently Bivens (1989) made some assessments on the

reliability of using finite element techniques.

SPECTRAL AND PSEUDO-SPECTRAL METHODS

Relatively speaking, numerical methods such as the finite-difference

methods (FDM) or the finite-element method (FEM) generally use

lower-order difference approximation for derivatives. As a consequence, phase

errors result. Representing the derivatives with spectral method drastically

reduces these kind of errors.

Historically, it has been a standard technique to seek a solution to a

dynamic equation as a series of known functions, so that each spectral

component in the decomposition of the solution is easier to solve than the

complete solution, usually via an analytical method. Laplace and Fourier

transforms were often used to reduce the degree of transcendency for solving

numerous differential equations. (Through transformation, partial differential

equations become ordinary differential equations, for example.)

The spectral method was first used on a sphere by expansion of a flow field

in a series of surface harmonics (Silberman, 1954). The main difficulty in

employing the spectral technique at that time seemed to be the considerable

amount of arithmetic operation, and the computer memory required to store

the iteration coefficients for each mode. In the pseudospectral method

(Orszag, 1970a), the mode equations are not actually transformed as they are

in the spectral method (Orszag, 1970b), but the derivatives are evaluated by
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the fast Fourier transforms (FFT). The FFT method, which requires only N
log N operations per time step, has improved the operation substantially as

compared to the conventional Fourier transformation, as long as the N is a

power of 2. This is called the Cooley-Tukey algorithm. In the computation, N

is the number of modes or the cut-off frequency to be considered.

Theoretically, spectral simulation is infinite-order more accurate than the

other numerical methods in the aerodynamic computation because errors

decrease more rapidly than any finite power of 1/N as the N goes to infinity.

The higher the value of N, the more resolution the model will have, but at the

cost of higher computational effort, however. The original FFT algorithm of

Cooley and Tukey can handle series only with the cut-off frequency N being

the power of 2, which is quite inconvenient in some cases. More recently, with

an arbitrary-radix algorithm available, the amount of arithmetic operation is

still much more economical than the conventional Fourier transform.
For aerodynamic problems with periodic boundary conditions, a Fourier

spectral method is particularly efficient and accurate. It can also be used in

conjunction with multi-dimensional Navier Stokes equations using spectral

approximation in one of the spatial directions. For certain applications, this

approach has been shown to be more accurate than other numerical methods

as indicated from theoretical analysis. For example, when computing an

aerodynamic flow field passing a cylinder or hemispheric cylinder, Fourier

spectral approximations can be used to compute appropriate derivatives in its

circumferential direction and a finite-difference scheme in the other directions.

Using a spectral approximation of the derivatives in the convective terms, it is

possible to achieve a particular level of accuracy with fewer circumferential
points than is possible with a fourth-order finite difference scheme (Reddy,

1983). In the circumferential direction, the components of derivatives are

approximated spectrally by the even and odd discrete Fourier transforms.

Let f- = f(O.),
J

where 0. "J , j=0,1,2,3 ..... N
N
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The derivative of f at the discrete nodes 0. can be approximated by
3

df N-1.
-3T na11nan cos( v n)j_0,1,2 ..... NJ n=1 N

where the spectral coefficient an is

an=_2 N 1j -sin [ J ] n n= 1,2, ..... N-1

This is quite similar to the traditional Fourier transform of the odd (sin)

function. Sometimes high-order spectral schemes will develop nonlinear

instabilities in strong convective air flows. Under this condition, a low-pass

filter has to be used. Gottlieb et al. (1981) proposed a filter function that

operates on the Fourier coefficient an.

The spectral method can also be used in conjunction with the transformed

computational space (i.e., ý,i7,(. For example, a three-dimensional

aerodynamic flow along a cylindrical body can be computed using a

curvilinear grid, in which the coordinate ý varies streamwise (along the body)

and 77 in the circumferential direction. When a derivative of a component
A A

estimator (F) is calculated in the transformed direction 77, (ie, 8F/D7), by the

spectral method, the discrete Fourier transform consists of the usual even and

odd parts. For example, in modeling the aerodynamic flow field over a

missile-shaped, semi-sphere cylinder, Reddy (1983) used even functions to

represent the velocity components u,w and coordinates x,z in the

circumferential direction (i.e., n7); odd functions represent v and y. In the

stream-wise direction ý, an implicit finite--difference scheme (Pulliam and

Steger, 1980) is used. On a vector computer, the spectral method requires

approximately 15 percent more time but has twice the accuracy when both

were compared with wind-tunnel experiments (Hsieh, 1976). Therefore, the

overall performance of this spectral method was concluded to be 40 percent

more efficient than a fourth-order finite-difference scheme. However, it is
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this writer's opinion that this method should be used only in one of the

curvilinear coordinates; to quantify the overall efficiency may not be so
straightforward. For most hypersomc aerodynamic applications, the spectral
scheme has been associated with problems with periodic boundary conditions.

For incompressible subsonic aerodynamic boundary layer flow, the

pseudospectral method has been coupled to the polynomial subtraction
technique for the evaluation of spatial derivatives at certain nonperiodic
boundary problems (Lee and Shi, 1986). Their technique is essentially to
subtract the polynomial portion of the solution to form a periodic function.
Potential NASP application includes the circular-type duct flow associated

with the turbo-ramjet. It may be simulated with the pseudospectral method
for higher-order accuracy than is possible with the traditional finite-difference
scheme, which is usually of second or fourth order accuracy.

In terms of numerical accuracy, some theoretical comparisons are made

between the spectral method and the finite-difference methods. For the sake
of convenience, these comparisons are usually made with fluid dynamic

problems in which accurate analytical solutions exist. One such problem is

the aerodynamic flow around a sphere. A simple case is that the flow is first

subsonic, then supersonic, and finally subsonic again. This kind of flow was

first analyzed by Ringleb (Ringleb, 1940), and it is also a good example of the

shock-capturing technique used in the spectral method. This type is
presented at the end of this section together with the shock-capturing

methods associated with other numerical schemes. Recently, Canuto et al.

(1988) compared solution accuracy between the spectral method and the

popular second-order MacCormack finite difference scheme for the simulation

of Ringleb flow. The maximum error in the computed pressure against the

analytic solution for the transonic and supersonic ranges appears in Table 3.
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Table 3

Maximum Error in Wall Pressure as Computed by

Spectral and Second-Order Finite-Difference Solution

(Adapted from Canuto et al., 1988)

Speed range Grid MacCormack Spectral

transonic 8 x 4 2.6 x 10- 2  2.2 x 10-2

transonic 16 x 8 1.1 x 10-2 1.9 x 10-3

transonic 32 x 16 3.2 x 10-3 5.0 x 10-5

supersonic 4 x 4 2.2 x 10-2 7.5 x 10-4

supersonic 8 x 8 4.1 x 10-3 1.1 x 10-6

supersonic 16 x 16 1.0 x 10-3 6.6 x 10-11

Ringleb flow was selected for the evaluation of numerical accuracy because

an exact analytical solution exists for the steady, isentropic flow as was

explained above.

Even though spectral methods yield more information about the exact

solution than other low-order numerical schemes, when the exact solution is

discontinuous or contains large gradients, the extra information is then hidden

in the form of numerical oscillations. Typically, when the spectral method is

used to simulate a flow with shocks, it yields an oscillatory solution. The

oscillations occur not only near the shock but all over the field because the

spectral method is global in nature. Like artificial dissipation terms in the

finite-difference schemes, diffusion and antidiffusion terms have been added in

the spectral methods (Taylor et al., 1981) for calculating shock waves,

rarefaction waves, and contact surfaces. This point is discussed further below.



-38-

NUMERICAL TREATMENT OF SHOCKS

One dynamic characteristic of supersonic flow is the existence of shock
waves. To resolve shock within a finite computational grid structure requires

special treatment. These methods vary according to the basic numerical
solution scheme associated with the simulation model. Several techniques

discussed are possible.

Shock Tracking Technique

In the traditional numerical analysis, shock surface is handled like an
interior boundary of discontinuity (Courant and Friedrichs, 1948). This

method is more conservative in terms of physical state but it also has some

drawbacks (Rizzi and Engquist, 1987). One disadvantage is that the nature

and interaction of discontinuity have to be known ahead of time to set up

computational points in the model to handle them properly. Because of the

difficulties in programming, the method has been replaced by the other
methods.

The Random Choice Method of Glimm

In solving an initial-value problem for a hyperbolic system, Glimm (1965)
used a constructive random choice method similar to one developed by

Godunov in 1959. The principle is to make a change in the grid function
averaged for a certain number of time steps. The number varies according to

the time the shock passes a grid point. The change can be done on the

average time steps using an algorithm based on random numbers. The
method had worked mainly in one-dimensional problems including reacting

gas flow (Chorin, 1977) but it has never worked well for multi-dimensional

systems. Chorin also worked on the numerical solution of Boltzmann's

equation applied to the problem of shock structure in a one-dimensional flow.
That specific numerical method is more accurate than the Monte Carlo
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methods for solving Boltzmann's equation particularly in the high Mach
number region (Chorin, 1972).

Shock-Capturing Technique

This method is used in the majority of numerical models in the hypersonic
aerodynamic simulation associated with NASP analysis. Its major advantage
is its simplicity in programming, which assumes no prior knowledge of the
nature and the location of the shock front. The shock-capturing technique
was originally proposed by von Neumann during the 1940s. Substantial
progress has been made during the last two decades (Godunov, 1970; Jameson,
1989). The method is based on the principle that we have to make a
compromise between the accuracy of the solution value and the accuracy of
the shock location. The final result is to give up a certain degree (first order)
of accuracy in the immediate vicinity of the sharp discontinuity. However, if
the numerical scheme used for simulating hypersonic flow is nondissipative,
numerical i iscosity must be artificially added to capture the shock wave.

To add artificial viscosity, it is desirable that the shock transition layer
not extend over more than a few grid spacings and that the artificial viscosity
be independent of the shock strength. It is also desirable that the transition
layer travel at very nearly the correct speed through the air. Sometimes it is
also desirable to perform some numerical filtering to smooth out short waves
caused by nonlinear instabilities in the smooth air flow away from the shock.
The numerical filter will be turned off automatically when the shock wave is
not present. In a numerical study of shock boundary layer interaction,
MacCormack and Baldwin (1975) devised a normalized second-difference
sensor using the computed pressure across three grid spaces of the form:

I Pj+1 - 2p + pjl (3.18
aJ= I pj+l + 2 pj + p H

For applications in two-dimensional and three-dimensional supersonic
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flows, the same principle can also be extended and is carried out dimension by
dimension. The same concept can be implemented in models using total
variation diminishing (TDV) schemes. General conditions on coefficients that
result in total variation diminishing were proved by Jameson and Lax (1984)

(see also Jameson, 1989; Yee, 1987, 1989a and 1989b; Yee and Shinn, 1986;
Yee et al., 1988, 1990). TDV methods can give sharp discrete shock waves
without oscillations, but, as expected, the price for obtaining a stable solution
by filtering is the slight loss of accuracy of the numerical solution.

Capturing vortex sheets in a numerical simulation is somewhat more
involved. Presently, no well-established technique seems to be available.

Spatial Switching for Shock Resolution in the ADI Scheme

The class of ADI schemes discussed in the previous subsection is
nondissipative, so that they are not good for hyperbolic equations when shock
waves occur as in hypersonic aerodynamic conditions. Some dissipative terms
have to be added. One of the often-ased algorithms is to let

AX4 j v- 6 u

=-[•L [un4+2 -4U l+ 6u n -4un -_4u,_+ u- 2 ]

According to the von Neumann stability condition, a one-dimensional
implicit numerical scheme is stable if the value of w is between zero and unity.
For multi--dimensional cases, some experiments have to be made. The

often-used value of w has been 0.5.
Adding a dissipative term to reduce post-shock oscillations works under

certain situations. But there are cases in which adding a dissipative term has
to be accompanied by another treatment for resolving shock waves. Sometime
a second-order explicit step which switches difference operator from "central"
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to "upwind" (one-sided) across a discontinuity can greatly reduce the spurious

oscillations. The method is quite commonly adapted in CFD modeling of

marine pollutant transport simulation if a pollutant with high concentration is

injected into currents.

Shock-Capturing and Fitting Technique in Spectral Method

Even though the spectral method generally gives more accurate numerical

results, the ability for resolving the shock is generally not as good as the

time-domain numerical schemes such as the finite-difference method. In

spectral simulations shock waves are usually represented as a series of

oscillations. To resolve the shock, different types of smoothing filters are

usually employed as a post-processing step. Commonly used filters include

exponential, Lanczo, or other types of cosine filters (Canuto et al., 1988).

Numerical filtering across the frequency domain between 0 and 27r usually

resolves the location of the shock.

Another technique to solve the shock-induced oscillation in the spectral

method is to treat the shock front as an internal computational boundary.

The shape of the shock front is determined during the computation. This

technique is termed shock-fitting (Moretti, 1968, 1972; Salas et al., 1982;

Zang et al., 1984; Hussaini et al., 1985; Canuto et al., 1988). Up to now, the

spectral shock-fitting schemes have been applied only to the numerical models

based on the Euler equations, which neglect viscous terms.

Numerical Treatment of Subsonic Regions in a Supersonic Flow

When an aerospace plane flies at supersonic speed, its configuration may

consist of some subsonic regions (pockets) in the generally supersonic flow.

These areas could be developed as a result of gradual compression or caused

by flow separation. These phenomena need special numerical treatments.

The traditional approach is to use different marching codes for space and for

time. Recently, Chakravarthy et al. (1988) handled this problem by using a
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unified marching scheme for both space and time using the relaxation method.
In their unified solution algorithm (USA code), the FNS solver is based on the
total variation diminishing (TVD) formulation using the finite-volume

approach. With the Baldwin/Lomax and one-equation turbulence closure

method (see Sec.5), a fully upwind, not-flux-limited scheme is used in the

supersonic region external to the subsonic part of the boundary layer. This
region involves only a forward marching sweep. For subsonic regions, the

solution is to first march forward with one or two subiterations, then to follow
with a backward marching sweep. The TVD formulation as described above

captures shock wave in the subsonic region.
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4. GRID GENERATION AND COORDINATE TRANSFORMATION

TECHNIQUES

INTRODUCTION

One major advance in the field of aerodynamic modeling has been the

development of a grid-generation technique. This technique, when combined

with efficient finite-difference methods, gradually evolves into a major

aircraft design tool supplementary to ground experiments. The difference

between a grid-generation system and a moving adaptive grid-generation

system is that the former generates an aerodynamic computational network

before carrying out the calculation, the latter generates grid during

computation according to certain criteria such as the pressure gradient.

However, the adaptive methods often use the regular grid-generation method

to create the initial grid as the starting condition. At present, nearly all the

NASP-related hypersonic aerodynamic computations involve grid generation

of some type. In many cases, the grid system involves the segmentation of

the aerodynamic flow field into subregions, with grids being generated in each

subregion. Continuity is then enforced at the interface. This section reviews

the methods commonly used in numerical grid generation for the NASP

applications.

METHODS AND PRINCIPLES OF GRID GENERATION

An accurate description of the numerical grid generation process,

according to Thompson (1984), may be described as follows:

Difference representations on curvilinear coordinate systems are

constructed by first transforming derivatives with respext to

Cartesian coordinates into expressions involving derivatives with

respect to the curvilinear coordinates and derivatives of the Cartesian

coordinates with respect to the curvilinear (metric) coefficients. The
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derivatives with respect to the curvilinear coordinates are then replaced

with difference expressions on the uniform grid in the transformed

region.

A grid system can usually be generated using one of the following

methods (Thompson, 1984; Thompson et al., 1985, Thompson and Ferziger,

1989):

* Algebraic system,

* Conformal mapping system,

* Elliptic, parabolic and hyperbolic systems.

Three-dimensional, mass-averaged Navier Stokes equations in a

transformed space are presented in Sec. 2.

ALGEBRAIC SYSTEM

In an algebraically generated grid system, the spacings are basically

interpolated among boundaries. This type of generating method is

well-suited when used together with computer-aided-design

(CAD/interactive graphic system). The characteristics of this method are:

Fast,

* Allows explicit control of grid distribution, or

* No inherent smoothing mechanism (even though cubic spline may be

used),

Often uses transfinite interpolation as for sculptured surfaces. This

is similar as in the CAD system which primarily uses the Boolean sum

projector method from the boundaries.

In one-dimensional cases, the interpolation scheme often included

Lagrangean polynomial interpolation, Hermitian interpolation, cubic spline,

tension spline, B-spline, etc. For two- to three-dimensional cases, transfinite
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interpolations are usually applied, for example, if linear interpolation

functions are needed in each curvilinear direction (2-D, N by M) from a set N

+ M intersecting curves. These functions are:

N
r 1 ,) 1 ý,h[i i- (6n,77) [- [ (4.1)

n=1

M

m=-I

The interpolation matches the function on the boundary defined by 6=0
and 6=I in the first equation, or 77=0 and 77=J in the second equation. The
interpolation is transfinite if the match on the entire boundary at a

non-denumerable number of points.

The general form of the transfinite interpolation, which gives algebraically

the best approximation, is:

N M
r(6,77) I ý n (i-L-) r(6,07) + I, Om (-n-){r(6,'m)

n=l I m=l

N M

- I • On( )• m-) r(6n, nm) (4.3)
n=l m=1

or

M Nr (6,r} 0 ý Om (---r (6, m) + ý •bn (i--[r(6 n~r)

m=l n=l
M

- • m( 77-) r(6n,77m) (4.4)

m=1 i I

The first term is the result at each point in the field of the unidirectional
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interpolation in the 7t-direction and the bracket is the difference between the

specified values on the ý=ý n lines and the result of the unidirectional

interpolation on these lines. The spline-blended norm gives the smoothest

grid with continuous second derivatives according to Thompson (1984).

CONFORMAL MAPPING TECHNIQUE

Conformal mapping is a classic technique based on the principle of
transformation between two regions that are conformally (one-to--one)

equivalent. This class of methods includes the solution of integral equations,
the expansion of power series or Fourier series, and the construction of

Schwarz-Christoffel transformation (see, e.g., Sokolinkoff and Redheffer,
1966). Conformal systems have the advantage of introducing the fewest

additional terms in the transformed partial differential equations. Even

though systems generated by conformal mapping are inherently

two-dimensional, more complicated shapes have recently been constructed

(Thompson and Ferziger, 1989). Conformal mappings do not exist in three

dimensions except in trivial cases. A curvilinear coordinate system generated

by a conformal mapping is usually quite rigid in a way that little control can

be exerted over the distribution of grid network.

Aerodynamic shapes can sometimes be transformed into analytical forms

such as a circle. For example, an airfoil shape can be approximated as the

image of a circle through the transformation:

Z +1 (4.5)

Under the inverse transformation, a given airfoil will map to a curve that
is nearly circular. Analytical functions are also useful to generate grid near

the boundaries with slope discontinuities. If algebraic methods are used, the

discontinuities will propagate into the physical region, thus inducing

nonsmooth grid spacings.

Complex aerodynamic shapes can be treated by a sequence of
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transformations each to an analytical function in succession or in isolation

through an iterative procedure (Thompson et al., 1985).

ELLIPTIC, PARABOLIC, AND HYPERBOLIC SYSTEMS

These systems are classified according to the characteristics of the

generating equation. For example, Laplace and Poisson partial differential

equations are of the elliptic type. This type of system is the most frquently

applied among the three. It has many convenient features. One of the most

important characteristics of the Laplace systems is that it guarantees a

one-to-one mapping for boundary-conforming curvilinear coordinate systems

on generally closed boundaries. It usually generates a very smooth grid

network. The difference between a Laplace and a Poisson system is the

generating equation:

Laplace equation V2i - 0 (i=1,2,3) (4.6)

Poisson equation V2e - pi (i=1,2,3) (4.7)

pi in Eq. 4.7 are called the control functions, which are used to control

the spacing and the direction of the coordinate lines. Since the Laplacian

operator lacks control functions, the coordinate lines will tend to be generally

equally spaced away from the solid model boundaries near the far field.

Sometime this is a desirable property. The selection of control functions for

the Poisson system is described in Thompson et al. (1985).

Grid-generating systems can also be based on the numerical solutions of

parabolic and hyperbolic partial differential equations. In the solution

sequence, one proceeds in the direction of one curvilinear coordinate between

two boundaries for the two-dimensional case and between the two boundary

surfaces for a three-dimensional case.

In elliptic grid generating systems as shown above, second derivatives

exist in both directions (as indicated by the V2 operator). Therefore, only in

an elliptic system can the entire boundaries of a general region be specified.
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The hyperbolic system, on the other hand, allows only one boundary to be

specified. And because of this, the hyperbolic system is faster than the

elliptic system by one or two orders of magnitude. The same is true for a

parabolic system in which a second derivative in one of the directions does not

appear (like the heat equation). Parabolic and hyperbolic systems are similar.

One major difference is that in a parabolic system, influence from the other

boundary still exists in the governing equation. The speed advantage of the

parabolic system over the elliptic system is roughly the same as that of the

hyperbolic system. Marching grid generation using hyperbolic partial

differential equations was described in some detail by Steger et al. (1977).

The Poisson generating system is perhaps the most applied elliptic system.

We will discuss it here in some detail. In a Poisson (inhomogeneous elliptic)

system (Eq. 4.7)

V2•i_ P1 (i=1,2,3)

The control functions Pi are used to control the spacing and direction of

the coordinate lines. The selection of a control function for the Poisson

system where Pi is

3 3
pi =1 • gjk pi (4.8)

j=1 k=1 jk

where gJk are the components of the contravariant metric tensor which are

the dot products of the contravariant base vectors (ai) of the curvilinear

coordinate system,

gjk = aj" ak (4.9)

Based on this relationship, the Poisson generation system can be defined

as:
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3 3
v2 =j~k(V V Ck) =o (4.10)

When the computation is carried out in a rectangular transform space, the

curvilinear coordinates e are the independent variables with the cartesian

coordinates xi as dependent variables. The more common form used as the

generating system in the transformed region (Thompson et al., 1985) with

three control functions is

3 3 3"" gkkk
g Jr g .+ k rk =0 (4.11)i-1i 1~ kij =1C

The two-dimensional form of the generation system with two control

functions is

922(r, + P rC) + gll(r177?+ Q r77 -2g 12 r 7 = 0 (4.12)

In the physical space, the system is

V2_ g22 p (4.13)
g

V277-=gLl Q (4.14)g

For the orthogonal system (g 12=g13 =g2 3 =0, g 11 =g2 2 =g3 3 =const.),

two-dimensional (g3 3=1), in physical space:(g 12=0)

a h a)h I a- )=0 (4.15)
az -2-4 )+a- c-Y-- 4-)0(.52 U)Y
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Sh 2  a a h12 al? (4.16)

where

hI= v (4.17)

h2 -- 2 (4.18)

gli are elements of the metric tensor. The ratio hl/h 2 and h2 /hI are the

attraction functions that need to be prescribed. These ratios become

hI

-E2 v g11/g22 =V"7/A - a (4.19)

h2 
(4.20)-F1- r 9 22/g11 a T/•=•(.0

A curvilinear grid network can be generated by first establishing a coarse

grid using a graphic input device such as a CAD system. The ratio of AV/A1
over the computational field can be interpolated into a finer ratio where C and

17 have to be computed. The attraction function a is calculated using Eq.

4.19.

Substituting a and 1/a for hl/h 2 and h2 /h 2 in Eqs. (4.15) and (4.16), an

orthogonal curvilinear computational grid is then generated.

Since the Jacobian of the transformation for a two-dimensional
orthogonal system is

J -= g i -4 112 2 = -g-,-F.T (area of a cell)

& 2-O0.5 (4.21)

The continuity equation for a two-dimensional system with free surface is
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-f+ 1 8[(d+()u+ 1 [ [(d+ ()v f--g,7]7 =0 (4.22)

where the transformation coefficients 1 and jg7- are usually located at the

v and u vectors, respectively, to maintain the conservation of mass during the

integration process. Within a control volume, they are located at

ýg7777

4- + -4-= P(ý,77,,xYy)(4 .23)
01y

+9 9 = Q(~,7,x,y) (.4

•+

Bay

NUMERICAL SOLUTION SCHEME - POISSON SYSTEM

The solution of an elliptic Poisson equation is a boundary value problem.

If ý is a prescribed function 4o on the boundary, such a problem is called a

"Dirichlet problem." If, instead of the value ý, the value of aC/av, the normal

derivative of C, is prescribed on the boundary, the problem is called a
"Neumann problem." Several numerical iteration methods such as the

Richardson and Liebmann line iteration scheme can be used. The method
developed by Peaceman and Rachford (1955) seems to be the quickest

iterative method in which line iteration schemes are used in the columns and

rows alternatively. The explicit description of the method is contained in the

following recursion formula:
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I* (2n+1) (2n+1) (2n+1)
i-l~ - (+pn)•i2n+) i+l~

S (2n) +2){(2n)-1 + (2-P)i,j(2n)_ ij+ I(2n) 1 fij (4.25)

~. (2n+2)_(n2

Ci,j-1 (2+pn)i,j (2n+2) + ni,j+1 2)

= - (2n+2) + (2 -pn) +1_i+1, (2n+1)+ (4.26)
+i-ljj f.ijp (4.2i 6

where n=0,1,2,..., and hopefully the sequence converges. The value pn is an

extrapolation parameter that is to be determined so that the method will

converge as quickly as possible. Peaceman and Rachford suggest putting pn

=pk if n = k (mod p) where

pk = 4 sin2 (2k + 1)( (4.27)4p

ORTHOGONAL SYSTEMS

Orthogonal systems are important to grid generation for two major

reasons. First, the truncation error associated with an orthogonal system in

the difference expression is minimal. Therefore, the method is more accurate

than others. Second, the orthogonal system induces fewer additional terms in

the transformed partial equations to account for the effects of curvature and

centrifugal forces. Therefore, the method is computationally very efficient.

As a consequence, perhaps more aerodynamic applications are based on

orthogonality than on any other method.

A true orthogonal system in a three-dimensional case is also very difficult

to implement. For aerospace applications, orthogonality will likely be over a

surface coordinate network.
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MOVING ADAPTIVE GRID SYSTEMS

One of the newest developments in the field of hypersonic aerodynamic

modeling is in the technique of moving adaptive grid generation. During

simulation, the grid network moves as the physical solution develops. By

sensing the gradient of the solution, the grid concentrates in regions of large

variations.

The grid adaptation can generally be achieved by arranging the

neighboring points in an identifiable order so that a continuous function can

be represented, and errors evaluated and redistributed while the grid network

is shifting. In doing this, however, sufficient resolution in time and space is

required to minimize and to evaluate truncation error so that numerical

oscillation can be avoided.

In an economical sense, the method offers better resolution at fewer points

than the other nonadaptive schemes, even though somewhat more

computations are involved. With the potential saving in the total number of

points for a given level of accuracy, the adaptive method is still competitive

with the other schemes in terms of computer time. The method is most

suitable for problems for which we have no prior knowledge of their solution.

However, an initial fixed grid has to be generated with the other methods.

In solving multi-dimensional aerodynamic problems such as those

associated with NASP, if the variability of the solution sought is mainly in

one direction, then the grid adaption can be applied with the grid location

constrained to move along one direction only. The grid spacing along the

region of large gradients is placed according to the principle of

equi-distribution of certain weighting functions. The criterion is to select

these weighting functions to be inversely proportional to the grid spacing.

Therefore, larger gradients are resolved by smaller spacing. We will use this

rather simple case for illustration purpose.

Let x(i) represent grid spacing and wi denote a weighting function. The

idea is that the product of the weighting function and the grid spacing would
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be a constant (Thompson et al., 1985). In the transformed domain,

x, Aý.w = x,.w = const. (4.28)

where xý is grid spacing

If a velocity gradient is selected as the weighting function, it can be

selected as

W I + 211/2w-- [1(•, j(4.29)

The above formulation has the advantage that the resulting spacing near

the far-field boundary will not be very large. Ideally, it would be more

desirable to have equal spacing if the gradient is zero such as near the far

field. To achieve this, one has to select a set of parameters according to the

curvature of the solution gradient (Eiseman, 1985) such as:

w = [1 + # 2jkj [1+ a2(o-u/ax) 2i/2 (4.30)

where a and # are parameters to be selected and k is the curvature of the

solution curve.

Three-dimensional adaptation is much more complicated than the above

example. However, the general idea is still the same. Recently, tension

spring analog has been used for the three-dimensional adaptation (Nakahashi

and Deiwert, 1986) in which the weighting function is treated as the tension

spring constant of the three-dimensional spring system. In the system, each

grid node is suspended by six tension and twelve torsion springs. Rather than

solving it simultaneously, the system splits into a sequence of

one-dimensional adaptations in which three-dimensional grid movements are

achieved by successive applications of the one-dimensional method. The

weighting function w (i.e., the tension spring constant) is derived according to

the solution gradient over an arc length multiplied by a group of tension and
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torsion spring coefficients. The tension spring coefficient affects the mesh

spacing along each line. It is selected by considering the range of spacing

change (max-min) along a line. Torsion spring constants control the damping

between tension and torsion forces. As a result, larger values give a more

gradual change in the mesh spacing.

ADAPTIVE MOVING FINITE ELEMENTS

This dynamically adaptive method, in essence, adds dependent variables

at the location where the Galerkin weighted residual process is used. In the

aerodynamic flow formulation, the entire domain is reduced into finite

elements whose contributing residuals are evaluated by trial solution. At

each grid point and on each element, the residual is required to be orthogonal

to all the basic functions. As a result, the location of grid points becomes

part of the solution. At the present time, solution methods are developed

only for two-dimensional systems. For more complex systems, it seems

apparent that roundoff error can play a major part in the accuracy of the

result, inasmuch as the complexity of a large problem necessitates a larger

number of iterations both within and per time step.

For NASP application with shocks, solution derivatives of the density field

seem to be a good choice for the weighting function. Gnoffo (1983) used

Mach numbers for this purpose to compute the flow field over the Galileo

probe where values were computed for M=50, Re=10 5 -5x10 5 (=1.4,

Pr=0.72, Sotherland's law for viscosity). Experiment verification for M=6

(Libby and Cresci, 1961) was made. For the hypersonic flow simulation, the

adaptation technique is based also on an equivalent spring analogy where

springs connect adjacent mesh points and spring constants are a function of

the user-specified gradient between the point. The scheme is coupled to the

finite volume method. In the formulation, the integral form of the governing

conservative laws is approximated on cells whose corners are defined by the

position of grid points in physical space. On a rectangular grid, the algorithm

reduced exactly to the MacCormack's explicit method (Sec. 3) which is

second-order accurate both in time and space. During adaptation, certain

filtering of the spring constants was involved.
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Recently, Peraire et al. (1987) introduced an adaptive remeshing
procedure for improving the quality of steady-state solutions to the

two-dimensional Euler equation with a finite-element algorithm. The

method involves an iterative step using the computed solution to determine

the optimal value according to an indicator of the error magnitude and
direction. The scheme has the advantage of gradually improving the quality

of the solution without significantly increasing the total number of unknowns

at each stage of iteration. No results are available from the three-dimensional

analysis yet.
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5. MODELING TURBULENCE

INTRODUCTION

One major effort in hypersonic aircraft design is to predict the location of
laminar-turbulent transition. The range and the magnitude of uncertainty in

the prediction increase as the Mach number increases. The uncertainty
translates directly into uncertainties in the prediction of vehicle performance,

weight, and other control parameters. To narrow the range of uncertainty in

transition prediction, the numerical modeling of turbulent transitional

processes is extremely important.

The National Research Council made an objective assessment of the
capabilities and future directions in CFD (NRC, 1986). In the area of

modeling turbulence, they have reached the following conclusion:

Turbulence modeling, including modeling of the laminar-turbulent

transition, is becoming a pacing technology. Present turbulent

models are adquate only for use in relatively simple flows, and do

poorly in flows with strong three-dimensionality, massive separation,

large-scale unsteadiness, strong density gradients, strong rotation,

and chemical reaction. Large eddy simulations have not yet been

developed for boundary conditions, geometrics, and Mach numbers of

practical interest. (NRC, 1986)

We concur with the NRC and observe that additional research in the
modeling of turbulence is needed to reduce the uncertainties in predicting the

performance parameters of a vehicle if CFD simulation is used as a design

tool. In this section, we will examine various turbulence models used in

hypersonic research and try to make some quantitative assessment of

uncertainties associated with each approach.
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A HISTORICAL BACKGROUND OF MODEL TURBULENCE

The original Navier Stokes equation (Navier, 1822; Poisson, 1829;

Saint-Venant, 1843; and Stokes, 1845) was formulated only for describing the

laminar flow field in which the momentum transfer due to viscous effects is

included in the viscous terms. The amount of momentum loss or gain due to

the viscous effect is proportional to the coefficient of viscosity (p) of the fluid

[gr cm- 1 sec-1 ] which is assumed constant. The equations are (see Sec. 2 for

a generalization):

ou + u ou au 14 _UV2 51u at- UV-+ v-C--, +u w-T" = - -P-u 1• + Ox+pm U (5.1)

-U ++ w= 1 V2 1 (5.2)

Ow (9W OW Ow 1 p (5.3)+ U-~ + v + w~ V2 W (53

The last term in each equation contains the kinematic (molecular)

viscosity. The Navier Stokes equations, including mass, energy, and species

conservation, can also be derived from the kinetic theory of gases using the

Chapman and Enskog procedure (Chapman and Cowling, 1939; Tsien, 1958).

Presumably, they apply to reacting gas flows, both turbulent and laminar,

under compressible flow conditions. For most aerodynamic modeling

applications, the molecular viscosity of single component gas is often

calculated using Southerland's law with appropriate constants for the species

under consideration. For the case of multiple component gases such as the

mixture of hydrogen and air, its binary molecular viscosity can be calculated

by the Wilke's formula.

Turbulent flows, on the other hand, cannot be computed with these

time-dependent Navier Stokes equations unless the flow field is resolved by a

numerical model whose computational network approaches Re91 4 grid points

(Case et al., 1973). With that many points, the effects of even the smallest
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turbulent eddies can then be represented entirely by these viscosity terms.

For turbulent flow, it was Boussinesq (1877) who used the "eddy-viscosity"

concept which assumes that the gross effects of both the turbulent and the

laminar portions of the viscous effects are proportional to the mean velocity

gradient. Eddy viscosity (At) is analogous to the viscous stress coefficient (A)

in the laminar flow. Although 1 is a fluid property, eddy viscosity depends on

the velocity gradients within the flow. However, Boussinesq's eddy viscosity

concept forms the foundation of turbulence theory. Together with Prandtl's

contribution, the eddy viscosity type of closure methods such as the

zero-equation, one-equation and two-equation turbulence models are the

primary method used in the aerodynamic flow modeling. In these models, the

shear stresses in the Navier Stokes equations are computed as a function of

mean velocity gradient and the eddy viscosity, of the general form:

t- -11 (5.4)

Since the eddy viscosity varies within the flow field under different

situations, these zero-, one-, and two-equation models are designed to

account for the variability of these coefficients, using hypotheses,

assumptions, and experimental results in the process of seeking certain

universal relationships. However, the ultimate solution to account for the

various flow situations, would be to calculate individual stress components

explicitly according to the turbulent Navier Stokes equation first established

by Osborne Reynolds in 1894. The solution of these types of equations

containing turbulent stress terms constitutes the multi-equation,

stress-component models. This type of turbulence model will be more

universal than the eddy-viscosity type of models but requires extensive

computation. This will be the model of the next decade.

Formulated using mean-flow velocity components u, v, w, and the mean

pressure p, the Navier Stokes equation modified by Reynolds for turbulent

flow resembles the original equation. The right hand side of the equation

(when A, p are constants) becomes:
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+ A• ____+ ÷ __ + ]"UP P &2 Oy 2 ý;2
[__ a•;2 u'v' __u_ ._

+aTu + y + au 1 (5.5)
Oy Oz

92vu + ay- ' + ay __ ; _5.

p P x2 Oy 2 &2

v aw'u' + w'v' + (5. )
aw, (5.7)

ax + y + z ]
In the formula, the instantaneous velocity component (e.g., u) is the sum

of the mean velocity and the turbulent velocity, namely, u = -u + u' in the

x-direction. These turbulent velocity components (u', v', w') have the

property that their long-term (ensemble) mean value approaches zero. But

the correlation terms such as u7TW, etc., do not disappcar even when time

averages are taken. Reynolds defined these terms as the turbulent stress

terms. They are as follows:

u'u'= UV;5 7-yy = Pu'v' • = pu'w' ;etc (5.8)

The Navier Stokes equation modified for turbulent flow containing the

"Reynold stress" terms looks quite similar to its original form:

0a u0 + •u + a0-= -a- v-0-7- + -U- =
1 •k_+ [ r &r r ]. 7 -- + @ + - -J(5.9)
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- -a + v + w =

1p + + (5.10)

ow u•w Ow w
8-t U-- + --- + w =

1 -b [ r r 51p -"' + -__ + -.- + (5.11)

The theory of turbulence, as well as the turbulent Navier Stokes equation

in its original form proposed by Reynolds in 1894, has several difficulties in

application because of the following (Hinze, 1959):

When the partial differential equation for the velocity corrections of a
given order are derived from the equations of turbulent fluctuation,

the presence of the inertia terr-m causes the appearance of the

velocity correlations of the n..ý ,;, %t-, order, which are also

unknown
Equations of correlation on the second and higher orders constructed

out of the equations of turbulent fluctuation contain the unknown

terms of correlation between the pressure and velocity fluctuation

The value of the decay term in these equations has to be determined.

ALGEBRAIC (ZERO-EQUATION) MODEL FOR THIN-LAYER

APPROXIMATIONS

In this type of turbulence closure scheme, the eddy-viscosity coefficients

are computed based on the Prandtl formulation in which the mixing length is

specified algebraically. Since these types of models use only the partial

differential equations for the mean field and no differential equation for the

turbulent quantities, it is, therefore, also called the "zero equation model."
These models relate the turbulent shear stress only to the mean flow

conditions at each point through an algebraic relationship. The scheme
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proposed by Baldwin and Lomax (1978) belongs to this type and has received

the most attention in the hypersonic aerodynamic flow computation. CFD

models for simulating the SCRAMJET flow field are based nearly entirely

(twelve out of sixteen) on the Baldwin-Lomax scheme (see Table 4). This

scheme has several major advantages in computing hypersonic air flow. We

will discuss this closure scheme in some detail.

The basic approach of the Baldwin-Lomax scheme is patterned after the

Cebeci method (1974). However, the Baldwin-Lomax scheme has the

advantage of avoiding the necessity for finding the edge of the boundary layer.

The two-layer model divides the eddy viscosity lt into two parts, as follows:

[~t (A t) inner Y -< Ycrossover (.2
t= (t)outer Ycrossover (5.12)

where y is the local normal distance from the wall and ycrossover is the

smallest value of y at which values from the inner and outer formulas are

equal. In other words, the crossover point in y is the point at which (Ot)outer

becomes less than (/'t)inner. Unlike the Prandtl formulation in which the

eddy viscosity is a function of the velocity gradient, the Prandtl-Van Driest

formula is used for defining the eddy viscosity. In that formulation, the

vorticity of the local flow field is used in the inner region:

(dt)inner= p/ 2 1 wj (5.13)

The mixing length l = ky[1--exp (-y+/A+)] (5.14)

where y is the normal distance from the wall, y+ is the law-of-the-wall

distance (i.e., Vp /l/), k is the von Karman constant, and A + is aw w w
closure contant (A+= 26). The magnitude of vorticity I wl is defined as (for

three-dimensional flowl"
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Table 4

Use of Turbulence Models in Recent Aerospace

Plane-Related Hypersonic Simulations

Model Numerical Method Turbulence Closure References

1) Supersonic flow 2-D explicit scheme 2-layer algebraic eddy Berman and

in SCRAIJET with (MacCormack, 1969) viscosity (Baldwin and Anderson

step, H injection Lomax, 1978) (1983)

2) 2-D analysis 2-D explicit scheme 2-layer algebraic eddy Kumar

of SCRAMJET in- (MacCormack, 1969) viscosity (Baldwin and (1982)

let flow field Lomax, 1978)

3) Staged H in- Time-split algorit. 2-layer algebraic eddy Veidner
2

jection for (MacCormack and viscosity (Baldwin and Drummond

SCRAIJET Baldwin, 1975) Lomax, 1978) (1982)

4) Hypersonic lamin. Predictor-corrector 2-layer algebraic eddy Lawrence

flow, 150corner implicit (lacCormack, viscosity (Baldwin and et al.

at M = 14.1 1982) Lomax, 1978) (1987)

5) NASA modular Time unsplit/split Baldwin and Lomax White

SCRAMJET com- MacCormack and Baldwin (1978) et al. (1987)

bustor flow (1969, 1976)

2-D, PNS

6) 3-D hypersonic Beam and Varming Baldwin and Lomax Thomas

equilibrium flow ADI (1976) (1978) (1988)

with ablation
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Table 4 (Cont.)

Use of Turbulence Models in Recent Aerospace

Plane-Related Hypersonic Simulations

Model Numerical Method Turbulence Closure Reference

7) Low-density MacCormack Baldwin and Lomax Roffman et al.

hypersonic implicit (1978) (1988)

real gas (1982)

8) Separated flow, Implicit upwind- Modified Baldwin Goldberg and
backflow biased, TVD, appr. and Lomax (1978) Chakravarthy

turbulence factorization (1988)

9) Separated flow, Implicit upwind- hybrid k-L one- Go!4berg and
backflow biased, TVD, appr. equation model Chakravarthy

turbulence factorization (1989)

10) SCRAMJET com- Implicit finite- Baldwin and Lomax Nelson

bustor k nozzle volume, time- (1978) et al. (1989)

real gas marching

11) SCRAMJET flow Implicit upwind low Re k-c Dash et

PNS, combustor/ two-equation al. (1989)

nozzle

12) NASA Ames all- Implicit upwind Baldwin and Lockman et

body hypersonic PNS solver Lomax (1978) al. (1989)
aircraft model
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For two-dimensional flow,

W [tU av]21 2 (5.16)

Eddy viscosity of the outer region is a function of the Clauser constant

(Ccp), the Klebanoff intermittency factor, and other closure constants:

('t)outer = K Ccp p F wake FKleb (5.17)

The closure constants Baldwin and Lomax used have been determined by

requiring agreement with the original Cebeci formulation for constant

pressure boundary layers at transonic speeds. They used C cp=1.6,

CKleb=0.3, and K=0.0168. F wake is defined by additional parameters

involving the difference between maximum and minimum total velocity in the

velocity profile. Fwake is usually taken to be the minimum of Ymax Fmax or

CwakeYmax U dif/Fmax where Ymax is the y distance at which Fmax occurs

with Fmax being the maximum value of F(y) in a given transverse profile.

The function of F(y) is given by

F(y) = yI wI(1-exp(-y+/A+)) (5.18)

Udiff is determined by taking the difference between the maximum and

minimum velocities in a given velocity profile with min(Udiff) equal to zero

everywhere else. Therefore,
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1

Udiff = [u + 2] (5.19)

The value of FKleb represents the Klebanoff intermittency factor, given

by

byy)= 1+5.5 CKIebY 16]1 (5.20)Kieb Ymax

The constants for the Baldwin and Lomax model are: A+= 26.0, C cp=

1.6, Ckleb= 0.3, Cwake= 0.25, k= 0.4, and K= 0.0168. Prandtl (Pr) and

turbulent Prandtl number (Prt) used in the original Baldwin-Lomax model
(1978) are 0.72 and 0.9, respectively.

Since the model uses the normal distance from the wall as its primary
parameter in determining the turbulent viscosity. If certain discontinuity
(e.g., a step) exists, there will be a jump in the value of viscosity. This
ambiguity sometimes requires smoothing. This can be done by a relaxation
equation (Waskiewicz et al., 1980, Berman and Anderson, 1983) of the form

I't - Ite 1-exp - x x > xte (5.21)

where subscript t represents turbulent, te represents trailing edge, le denotes
leading edge, 6 is the boundary-layer thickness, and Ax is grid spacing of the

model.

One major advantage of the zero-equation algebraic turbulence model is
the simplicity of its application. It can be modified for different flow
situations. An example is Goldberg's treatment for the separated flow region
(Goldberg, 1986, Goldberg and Chakravarthy, 1988). The algebraic backflow
model has been incorporated into a Reynolds-averaged Navier Stokes solver
that uses the Baldwin-Lomax turbulence model outside of separation bubbles.
The scheme has been applied to calculate the reattaching flow over a
backward-facing bump. Data comparison indicates that this combination
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outperforms the more complicated e-- (or some times called k-E)

two-equation model, which is discussed below.

ONE-EQUATION TURBULENCE CLOSURE MODELS

In zero-equation models, the closure is made through the mean-velocity

field. The specification of turbulence field by means of an algebraic

relationship implies that generation and dissipation of turbulent energy are in

balance everywhere. Therefore, the dynamic process of convection and

diffusion of turbulent energy is ignored. These are, of course, important

features of real turbulent flows. To include these processes, the transport of

turbulent energy has to be computed explicitly via another set of partial

differential equations. In fact, at the very beginning, the founders of modern

tubulence theory (namely, Prandtl and Kolmogorov) suggested that turbulent

viscosity be determined by way of differential rather than algebraic equations.

In the set of differential equations the dependent variable often being

computed for the closure is the sub-grid-scale (SGS) turbulent energy density
"e" (or sometimes called "k") within a computational cell. In most models,

the following transport equation for e is used:

&e ae a A/t --i alUi
7e + U i--i 0 "e - Z t- - (5.22)

(1) (2) (3) (4) (5)

where

(1) = local acceleration;

(2) = convection of sub-grid--scale turbulent energy;

(3) = diffusive transport of SGS energy;

(4) = energy production by shear stress;

(5) = viscous dissipation;

At = turbulent viscosity, which is assumed to be

a property of the local state of the turbulence;
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ae = effective Prandtl number for the diffusion of

turbulent energy.

In most one-equation models, the turbulent viscosity is determined as a

function of the local energy intensity and the local mixing length (0 from the

boundary via the following relationship

At = C, pvr- I Re (5.23)

The rate of viscous dissipation is determined by the local energy density

according to the following relationship,

3

S= Cd _ Re (5.24)
1

where Cd is one of the closure constants (approximately 0.9), and I is the local

mixing length, which is usually proportional to the distance from the solid
wall.

The sequence of closure computation also involves the relationship

between pressure, density, and compressibility, which is approximated by the
equation of state of air. To explain the cyclic process of numerical integration
in which "one" additional partial differential equation is used for SGS energy,

the sequence starting from an arbitrary point in time during the process goes

as follows.
The velocity fields are computed in the entire domain by the balance of

pressure gradient, shear stress, and other forces including the specified

far-field boundary conditions. From these velocity fields just determined,

heat, SGS energy, and other essential constituents are transported and

diffused. From the transport of SGS energy, the new turbulent viscosity
coefficients throughout the entire flow field are determined. From these stress

coefficients and other diffusion coefficients computed in a similar manner,
together with the updated pressure field, a new velocity field is computed.
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From the computed velocity and temperature field, the drag, lift, detailed

skin friction, and heat coefficients about the entire vehicle can be computed.

TWO-EQUATION TURBULENCE CLOSURE MODELS

In essence, the one-equation turbulence model is based on the proposal

made earlier that the sub-grid-scale, time-averaged, turbulent kinetic energy

e (or sometimes called k)

t

e=+-[uy 2 + v2 +w,2j (5.25)

is determined from the solution of a convective transport partial differential

equation similar to the transport of heat. In the above equation, u', v, and w'

are turbulent "random fluctuations" around the time-averaged mean

velocities. The major shortcomings of the one-equation model are: 1) the

influence of convection and diffusion on the small-scale turbulent random

velocities is not accounted for; and 2) the viscosity pt vanishes whenever

o&u/oey is zero. To avoid these problems we need one more equation to

describe the transport of the length scale 1. The turbulent viscosity jt is

determined in the same way as in the one-equation model, namely,

1

At = cp e (5.26)

In other words, the length scale I is calculated by a differential equation

rather than prescribing it algebraically. In most two-equation models, the

length scale is determined indirectly via a variable z

z = em n (5.27)
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where m and n are constants that vary according to the model proposed by a

different modeler, as shown in Table 5.

Table 5

Closure Constants Proposed by Different Modelers
in Two-Equation Turbulence Modeling

Proposer z m, n

1 - 1

Kolmogorov (1942) z = e I M = n =

3
F -1 3 -

Chou (1945) z = e I M -F , n =

Rotta (1951) z = 1 m = 0, n = 1

Spalding (1967a)

Rodi and Spalding (1970) z = e l m=1, n=1

Spalding (1969) z = e/-2 m = 1 , n = -2

The transport equation of e and z can be rearranged to have the similar

form

De a r At Oe r e-t 2 i22  2

1i 1 e I e I A At
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= at ~ + z [ -c A2 (5.29)

In these equations, cl, Oe' oc, c'f, cE2, etc., are turbulent closure

constants. They have to be determined by fitting them against experimental

data. A set of optimally fitted turbulent closure constants are listed in Table

6.

Conventional two-equation models formulated using e-z (or or sometimes
called k-E ) generally are inaccurate for boundary layers in an adverse
pressure gradient. Wilcox has recently (1988) proved that the use of "wall

functions" (Rodi, 1981) tends to mask the shortcomings of such models and is
inadequate for flows with mass injection. Under the latter case, skin friction
predicted by the k-E model is as much as 50 percent higher than measured
(Wilcox, 1988). Using a singular perturbation method, Wilcox proposed a
multiscale model with no viscous damping of the model's closure coefficients

which gives improved accuracy for flow with surface mass addition.
Strictly speaking, the one-equation modeling approach is not as general as

the two-equation model. In practice, however, this method allows a modeler

to select an algebraic function for the length scale according to the specific
physical process guided by experimental data and field observations. The

one-equation approach thus avoids the problematic z-equation (see Goldberg
and Chakravarthy, 1989), which is needed to prescribe the length scale in the
two-equation model. This advantage was reported by Liu and Leendertse

(1978, 1987, 1990) in three-dimensional CFD Navier Stokes models of
geophysical fluid dynamic systems.
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Table 6

Optimally Fitted Turbulence Closure

Constants in CFD Modeling

c Tk O'f CEl cE2 Reference

0.09 1.00 1.30 1.44 1.92 Launder & Spalding (1974)
0.09 1.00 1.30 1.44 1.92 Launder & Sharma (1974)
0.09 1.00 1.30 1.45 2.00 Hassid and Poreh (1978)
0.09 2.00 3.00 1.81 2.00 Roffman (19 7 5 )a

0.09 0.90 0.95 1.35 2.00 Dutoya & lichard (1981)
0.09 1.00 1.30 1.35 1.80 Chien (1982)
0.084 1.69 1.30 1.00 1.83 Reynolds (19 7 6 )a

0.09 1.00 1.30 1.43 1.94 Launder et al. (1973)
0.09 2.00 (Not directly compatible) Vilcox and Rubesin (1980)
0.09 1.00 1.30 1.44 1.92 Varfield and Lakshminarayana

(1987)

a Model constants have to satisfy the relationship

cal = cf2 - (k2 /0 c 1/2) so that the c equation reduces to zero.
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STRESS-COMPONENT CLOSURE MODELS

At the present time, the most complete set of turbulent closure equations

is the "mean Reynolds stress" approach, which was proposed by Chou (1945)
and Davidov (1959, 1961). The formulation includes the transport and

2
diffusion of length scale 1 iiW, u Tv2, iiW, terms, and results in 3 equations for
mean flow components, 1 equation for continuity, 3 equations for shear

stresses, 3 equations for normal stresses, 10 equations for triple correlations,

for a total of 20 equations for a homogeneous aerodynamic systems. The
turbulent stress component formulated originally by Chou, in compact tensor
notation, for double velocity correlation, takes the following form:

1 Or ik 1 U + u 7]U---T- +
PI i Ujk,j I P kj P ,

1 PiUk + P,iu1- -_ 2 ugmn k (5.30)- [P uk + ~uj' 2 U i,mUk,n,

Ten equations for triple correlations are:

iklt + U ij u iuI + Uklj ujuu + U1j u uiuk + UI)uuuk +

"" - = 1- [•,iuk1 +Plik"

J F l ,j+ [uJuiukuli J P [iukul + P,kUlUi

+ -L H 7' ++ I i r h+ I vgmnu

- 2lr I [Ui,muk,nul + uk,mul,nui + UlmUi,nuk] (5.31)

The coatinuity equation is:
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uj. = 0 (5.32),J

Since, in tensor notation, a subscript preceded by a comma denotes the
covariant derivative, the continuity equation in scaler notation is then,

1 , '2 + 0 = 0 (5.33)

defining q2 = ujuJ = the variance or the RMS of the velocity fluctuation, rj =

"7J(Xlx2X3), (j=1,2,3).

The triple and quadruple correlation technique is essentially a method of
successive approximation to the solution of the turbulence problem by solving
(PDEs) for each component of Reynolds stress. The approximation takes the

following order:

Initial approximation: Reynolds equations of mean motion, which contain

the unknown apparent stresses
Second approximation: Solve the equations of mean motion and of the

double correlation by making certain approxima-
tions to the triple-velocity correlations in the

equations
Third approximation: Solve the equations of mean motion and both the

double and triple correlations simultaneously by
assuming approximations for the quadruple correla-

tions.

The above implies that there will always be more unknowns than the
available equations. Or one can obtain an approximation at a certain level
with some remaining lower-order unknown terms, thus the term "turbulence
closure."

For three-dimensional turbulence closure computations, in addition to the
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dynamic and chemical balance equations, there are six components of the

Reynolds stresses uiuj and three flux (scalar) components plus one transport

equation for the scalar concentration fluctuations, for a total of 10 additional

partial differential equations to solve. The application of the

stress-component turbulence modeling is, therefore, still very limited due to

its computational demand. Some simplification can be made to the PDE such

that they reduce to algebraic expressions but still retain the fundamental

characteristics of the basic approach. In the transport equations, if the

gradients of the dependent variables (e.g., rate of change, convection, and

diffusion) are eliminated by model approximations, the differential equations

can then be converted into algebraic expressions (Launder et al., 1975;

Launder and Spaulding, 1974). Warfield and Lakshminarayana (1987) made

some tests with this approach.

Difficulties associated with the length-scale equation often cause the poor

performance of the two-equation turbulence models. Since the stress

component model uses a similar length-scale equation, this type of model may

not necessarily give better predictions over the one- or two-equation model.

However, this remains to be seen.

TWO-FLUID MODEL OF TURBULENCE AND COMBUSTION

In many turbulent combustion processes (e.g., within a SCRAMJET

engine), two interacting fluids of different states (e.g., velocities) are assumed

to exist within a finite-control volume. The dynamic and chemical processes

of the interspersed gas fragment within the flame can sometime be

represented more faithfully by using a two-fluid model of the flame than a

single fluid formulation.

Introduced originally by Shchelkin (1943) and Wohlenberg (1953), the

theory of two-fluid model of turbulence has recently been advanced to use the

analytical tools for two-phase flows (Spalding, 1986; Fan, 1988). If R

represents the volume fraction, the mean density of the fluid is
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S= R1 P1 + R2P2  (5.34)

When analyzing the two-fluid flow, the averaged fluid property 0 can be

defined in two ways:

1. the time (or volume) average: 0 = RI11 + R202 (5.35)

2. the mass-weighted average: * = (Rlpl41 + R2 P2A 2 ) (5.36)

P

The momentum transfer or interfluid friction in the turbulent closure can

be expressed as f12 "

f 12 = cf a -lp V1-V 2  (5.37)

where f12 represents the interfacial friction between the two fluids, cf is a

dimensionless proportionality constant, a-1 is the amount of fluid/fragment*

interface area per unit volume of space, p is the density of the lighter of the

two fluids, and IV 1-V 2 1 is the local time-averaged relative speed of the two

fluids. The area/volume quantity (i.e., a-1) is taken as being proportional to

the volume fraction product R 1R2, so that it vanishes when either fluid

disappears. During the dissipation of turbulence, the turbulent fluid can

transfer to the nonturbulent fluid. On the other hand, the nonturbulent fluid

can become turbulent as a result of the volumetric entrainment process.
The basic governing equation for the mean flow contains two fluids

co-existing in one space:

a(RkPk k)+ "(RkPkIk~k) a a [RkI rk#

OtOj xj
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+ •x + S# + 1 k (5.38)

where

k = subscript denoting fluid 1 or fluid 2

j = subscript representing coordinate

r - turbulent or laminar diffusion coefficient within one fluid

D = coefficient of diffusion transport of dependent variable

due to the fluctuations of velocity and volume fraction

S = within-fluid source term
I = inter-fluid source term

At present, the fluid model has been formulated for analyzing a tubulent

premixed combustion process. Documented computer programs for one- and

two-phase flows such as the PHOENICS code are available from the London

Imperial College.

MODELING COMPRESSIBLE TURBULENCE

In modeling turbulence, the compressibility effect can generally be

neglected if the ratio between time-averaged air density (p-) and the variation

of density associated with the turbulent fluctuation (p) is small, i.e.,

p /p << (5.39)

This is approximately the same order of u'2 / c2 (Hinze, 1959), which is

the square of the Mach number of the turbulence. In compressible turbulent

flow, the mean motion is affected not only by turbulence shear stresses but

also by stresses generated from double and triple correlations involving the

density fluctuation p. In hypersonic compressible-flow jets, variation in

density occurs from pressure differences. Only limited information is

available on the effect of comprcssibility of air on the mechanism of turbulent
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air flow in a boundary layer. Near boundaries, the reduction in high velocity

causes a conversion into heat through compression. Heat generated by the
compressional process does not distribute uniformly within the boundary

layer. The temperature variation due to this process changes fluid's
properties. A transport of heat occurs by the molecular and turbulent

diffusion processes. The turbulence eddy entrainment rate of the compressible
turbulent flow is less than that of the corresponding incompressible flow. The

effect of the shock wave on the rate of energy transport into or out of

turbulence eddies is not well understood at this time. For compressible

turbulence, the fundamental spectral laws that govern the partition and the

cascade of turbulent energy as proposed by Kolmogorov may need revision
(Dimotakis, 1989). Recent research on compressible turbulence includes
mainly theoretical studies such as the three-dimensional structures of

compressible shear layer (Papamoschou, 1989), and the theory of sonic eddy

(Breidenthal, 1990). In the latter theory, the effect of Mach number on
turbulent shear flow is expressed via the concept of sonic eddy. Thus,

obviously, it may be some time before our understanding of compressible

turbulence models can be refined and verified, and proper models used to
calculate hypersonic flows. This will require a combination of measurements,

analyses, and theory.

AREAS OF LOW PREDICTIVE RELIABILITY IN MODELING

TURBULENCE

In this section, we have reviewed the necessity for modeling turbulence in

the CFD simulation of hypersonic aerodynamic flows. In some cases, the
basic theory of turbulent flow per se cannot truthfully describe the

complicated physical phenomena of fluid turbulence. In some cases, we are
limited by the capacity of the present day computer. so that CFD models do

not have high enough resolution to simulate turbulent flow at high Reynolds

number. Other difficulties involve the lack of sufficient data to verify many

turbulent models such as those proposed just for the simpler two-equation

model (as tabulated in Table 5). As we have quoted at the beginning of this
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section, the NRC conclusions on the present status of turbulence modeling
suggest that extensive research is still needed before we have sufficient
confidence in CFD predictions particularly in areas without verification data.

From our study, we have summarized a list of difficult subjects and areas
with low predictive reliability in turbulence flow. Table 7 lists these. Several

of these areas are associated with anisotropic, nonhomogeneous turbulence,
which induces hydrodynamic instability. The combustion process in a
SCRAMJET engine may involve nonhomogeneous tubulence if steps or blocks

are used for inducing more complete mixing at such high speed. The problem
of hydrodynamic stability has been studied for decadee by many well-known
scientists in the fluid dynamic field. We do not yet have a final conclusion on
the basic stability criterion for the nonhomogeneous turbulence problem (see
Table 8). It has long been recognized that energy dissipation in turbulence

must be intermittent in space. Recently, the spectral method has been used
in conjunction with supercomputers to study the intermittency in turbulence
with 2 million (1283) grid resolution (Hosokawa and Yamamoto, 1990).

Direct simulation methods have also been used to study the effect of Mach
number on the stability of plane supersonic wake (Chen et al., 1990), so that
the physics of linear, nonlinear, and three-dimensional stages of
laminar-turbulent free-shear flow transition is better understood. In the area

of mixing and combustion, in incompressible flows, the mixing layer is
generally convectively unstable. Similar information is not available for the
compressible mixing layer for which temperature effects are important.
Recent experimental results (Jackson and Grosch, 1990) suggest a way to
derive from linear stability theory a "convective Mach number" (proposed
originaly by Bogdanoff, 1983) for a compressible mixing layer for multispecies
gas. This provides a convenient way for studying the stability of compressible
free shear layer. In supersonic combustion jet engine design, it is important
to understand the behavior of compressible turbulent shear layers. With
progress in numerical modeling, computing capability, and more experimental

data, our understanding of fluid turbulence will certainly improve, which
would also lead to higher predictive reliability for supporting aircraft design.

A key unresolved issue is the analysis of the laminar-turbulent transition
process, first for the low-speed case and ultimately for the high-speed case of
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Table 7

Nodeling Turbulence:

Difficult Subjects and Areas Vith Low Predictive Reliability

Strong aerodynamic curvature

Intermittency and large-scale flow structure

Rapid compression-expansion (k-E model needs modifications)

Kinematically influenced chemical reaction

Low Reynolds number effects

Strong swirl

Aerodynamic turbulence is strongly influenced by body force acting

in a preferred direction (k-E model no longer valid)

Uncertainties in setting the boundary condition

Large-density fluctuations -> high lach number

ii • Ii I a i III am I=M. sa
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Table 8

lodeling Nonhomogeneous Turbulence:

Stability Criterion for Stratified Shear Flow

Rcr Proposed by Year Conditions and Assumptions

1.0 Richardson 1920 ] Boussinesq approximation (deviation
(Roy. Soc. 20,354) of p is neglected except in buoyancyJ Eddy diffusion for heat=momentumforce)

1.0 Taylor 1931 (1915) ] Same

(Sci. Paper 2,240)

2.0 Prandtl 1930 1Taylor in 1931 suggested multiplying
(Springer) Jby 0.5 to obtain 1.0

1/4 Niles 1961 Dynamically attainable
(JFI 10,496) motions using energy consideration

1/4 Chandrasekhar 1961 Same
(Clarendon, Oxford)

1/4 Howard 1961
(JFI 10, 509)

1.0 Abarbanel, Holm, 1986 Proved R > 1 is sufficient
and Ratiu (Roy. Soc. 318,349) for Liapunov stability of

3-D stratified shear flow
Boussinesq approximation

1.0 Niles 1986 ] Amended Chandrosekhar's flaw
(Phy. Fld. 29,3470)] in energy derivations of 1961

*Richardson number R - >-Rct

p __ 12 critical
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interest to NASP designers. At present, there is little analysis or data to
guide o. prediction of transition, except for the use of linear stability and the
classic eN method that has been useful in lower-speed flows. Unfortunately
the eN method gives little useful detail beyond the location of transition, and
presumably only for flows that have disturbance similar to those that were in
the original database for determining "N". Many analysts have suggested
that uncertainties in the location of transition on the forebody of a NASP
vehicle could entail uncertainties of as much as 200 percent in vehicle weight.
What is also suspected is that the spatial and temporal characteristics of the
transition process, in terms of intermittency, unsteadiness, and
three-dimensionality, and even the presence of a large unsteady flow

structure, can markedly affect inlet behavior and the ability of the
forebody-inlet combination to perform properly. Tr;- "ition is still an
experimental art form and there are limited dat ;uode analysts. It may be
years before we obtain the needed statistical daca to properly determine the
characteristics of hypersonic flow fields. Other issues involve the possibility
of relaminization in high-speed flow and the behavior of the hypersonic

turbulent shear layers.

Density fluctuation should play an important role in very-high-speed
turbulent boundary layers, but there are almost no useful data to guide the

formulation of CFD models reflecting such phenomena. In addition, little is
known about the statistics of turbulent fluctuations and the occurrence of
large-scale fluid structures in hypersonic flow. Such large eddy structures
exist in other types of turbulent boundary flow. Even more troublesome than
our present lack of understanding of the hypersonic turbulent boundary layer

is the lack of data and understanding concerning the hypersonic turbulent

mixing process that occurs in the engine. Current data are limited but

suggest that the efficiency of mixing of two streams decreases rapidly as the
Mach number of the high-speed stream increases, that large-scale fluctuations
are likely to occur, and that compressible shear layers may be far more stable

than previously thought. Thus, shear layers may, if left to their devices, be
more laminar than is desirable. This suggests that means may be needed to
augment compressible mixing, perhaps using small eddy-generating devices.
These devices might produce small shock waves (shocklets) that could assist
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eddy formation and promote mixing. The resulting temporal fluctuations in

the engine flow path could influence inlet performance by feeding disturbances

upstream through the thick boundary layers, leading to inlet buzz or unstart.
As far as inlet performance is concerned, there is also little evidence that

inlet dynamics, which can be affected by the forebody flow upstream and the

combustor flow downstream, can yet be modeled by CFD in a realistic way.
Furthermore, the need to operate SCRAMJET at full-length scale to allow

for complete mixing, and the effects of combustion instabilities and other

fluctuations on inlet unstart, suggest that without a full--scale test that

includes combustion, we will not have confidence in our ability to diagnose

the cause of inlet malfunction. All of these performance-related questions

need to be addressed by CFD modeling in the near future.
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6. SUPEIRCOMPUTERS, PARALLEL PROCESSING, AND VECTOR

PROGRAMMING

INTRODUCTION

Most NASP-related CFD simulations use supercomputers. This section

attempts to evaluate the following aspects of NASP-related subjects in super

computing:

(1) NASP-related CFD modeling in the past two decades.
(2) Present hardware/software capability and costs.

(3) Technical limitations in hardware, software, and the future trend of

hardware/software development available for NASP research/design

support.

Looking back in the history of computers, numerical weather prediction

and nuclear reactor simulation are two of the driving forces for the

development of, and also major users of, the early computers. Both involve

numerical solutions of the Navier Stokes equations. At each stage of the

development, these simulations were performed on the largest computers
available at the time. However, most of those large computers were "scalar"
machines designed for general purposes, particularly for business data

processing. One of the earliest group of numerical simulations involving the

solution of the "parabolized" Navier Stokes equations (PNS) for hypersonic
aerodynamic flows were conducted at RAND using general purpose IBM

business computers (Cheng et al., 1970). Using scalar machines for solutions

of vector quantities, the integration process is carried out sequentially, which
is not as efficient as if it were conducted in parallel.

Special machines were designed based on this parallel principle.
ELLIAC-4, which consists of 64 parallel processors, is one of the earliest

examples. But these special-purpose machines were expensive and

time-consuming to build since they were not mass-produced.
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SUPERCOMPUTERS AND PARALLEL PROCESSING

Since the mid-70s, manufacturers such as Control Data and Texas

Instruments began to build machines for scientific computations. Control

Data started with the STAR series, which was the predecessor of its Cyber

series vector machines. Since the introduction of CRAY-1 in 1976, the total

number of "supercomputers" has grown to a total of 180 machinc from

several computer makers. Most hydrodynamic codes run on these machines,

including NASP-related hypersonic simulations.

Hypersonic simulations run faster on vector machines. Technically, the

major reason is that in traditional sequential machines, the systam contains

a memory, an instruction processor, an arithmetic processors and an

input/output system. In the memory, data and instructions occupy unique

addresses. Operations instructions have to carry addressing information to

access the required operands in the memory. The final computational speed

is determined by the slowest component that controls the machine's cycle

time. Vector processors, on the other hand, operate by a pipeline procedure

that performs many arithmetic operations concurrently with a single vector

instruction, thus achieving much higher system throughput.

Data-swapping between CPU and the external memory units is also a

routine operation in CFD modeling. During numerical integration of the

Navier Stokes equations, the portion not being actively handled is usually

stored temporarily in the external memory unit. Traditionally, external

magnetic disk units are used. Some supercomputers, such as the X-MP,

offer solid-state storage devices as an alternative, which are about 30 times

faster than the magnetic units. External memory units are usually

configured in blocks of 8-mega bits. The efficiency and overall throughtput

of a CFD simulation depends on a combination of hardware and the

simulation program in which the block size of the data transfer usually also

matters.

In February 1988, Cray introduced the model Y-MP/832, which offers

two to three times the performance of X-MP. The Y-MP has 8 CPUs and a

central memory capacity of 32 million words. With eight CPUs, the

Y-MP/832 has twice the number of processors and memory as the X-MP.
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Each CPU operates on a 6-nansecond clock cycle. At clock speeds of six

billionths of a second, the machine can thus handle 32 million 64-bit words

in central memory. Abour ten Y-MP were delivered in 1989. The other

supercomputer, Control Data's CYBER-205, has a cycle time of 20 ns which

is about half the speed of Cray's X-MP.

A new machine (i.e., ETA-10) introduced in Control Data is comparable

to the Cray's Y-MP. The ETA-10 was introduced in June 1987. The
system is a highly vectoring, parallel-processor, with virtual memory. A

major difference between ETA-10 and other supercomputers is the

instruction set of its central processing unit. Unlike most supercomputers

which increased speed by reducing the instruction set (RISC), the ETA 10

can be qualified as a VCISC-a very complex instruction set computer.
Designed mainly for large-scale computational fluid dynamic and structure

applications, consequently, the use of vectors is inherent both in the

hardware and the instruction set. Each CPU contains in addition to the

scalar processor a dual-pipe line vector processor, both of which operate

com'letely in parallel. Each CPU is a 44-layer printed single circuit board.

The ETA 10 system can contain one to eight processors each with a 32

megabytes of local memory. The performance benchmark for the

single-processor model-P (air-cooled, 24-ns dock) is equivalent to 44 times

the speed of the popular Micro VAX II. The faster model ETA 10-G is

liquid nitrogen cooled with a 7-nanosecond clock and has a rated speed of 94

MFLOPS when equipped with a single CPU. The delivery date for ETA

10-G was in December 1988. The price basic configuration is $1 M for the
24-ns ETA10-P and $13.5 M for the 7-ns ETA10-G. Because of financial

difficulties, the production of ETA-10 machines stopped in the spring of

1990.

The next model being developed at Cray Research is said to be five times

faster. However, some R&D and cost overrun problems may delay its

introduction. Recently, Cray's older systems have begun to be challenged by

comparatively low-cost mini-supercomputers such as Convex (of Texas),

Elxsi (of California), Multiflow Computer Corp. (of Connecticut), and

Floating Point Systems (of Oregon). These machines cost approximately

half a million dollars while the Cray's new Y-MP is in the $20 million range.
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Many predict that the number of mini-supercomputers will grow to five

times between 1987 to 1992. But others feel that the market is already

saturated as of 1988. Figure 3 illustrates the computational speed of major

main frame computers over the last three decades while Fig. 4 gives a

general idea of the correlation between the computer's speed and the

hardware cost.

According to the designer of Cray-2, Steve Chen (personal

communication, 1988), the next generation of vector machines which is being

developed by his IBM-supported Super Computer Corporation will have a

processing speed of nearly one hundred times the Y-MP. The targeted date

for introduction will be approximately five years from now.

VECTOR PROGRAMMING AND THE VECTORIZATION OF CFD

CODES

Even though some compilers can perform automatic vectorization, the

final processing speed of most CFD codes depends on a programmer's

knowledge of the machine's architecture, so that optimum concurrency can

be obtained. Numerical schemes used in CFD modeling also influence its

processing speed. In many cases, explicit time integration schemes vectorize

naturally because they are an algebraic operation. Implicit numerical

integration schemes require additional preparation since matrix calculations

are involved.

Most vector processors contain vector pipelines. Cyber-205 contains

either one, two, or four vector pipelines, each of which is fed from a vector

stream unit. The top speed of the four-pipe unit is 400 mega-FLOPS after

the initial start-up period.

In CFD modeling, the objective is to write and compile the numerical

code to suit the machine's architecture. Therefore, the modeler should have

detailed knowledge about the hardware system as well as aerodynamics and

aircraft design criteria. Most CFD simulations are carried out by

supercomputers equipped with either an array or vector processor.

Unlike a vector processor, which is either an integral part of the CPU or
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resides on the same data bus, array processors connect to the I/O bus of a

computer. The speed of an I/O bus can be an order of magnitude slower

than the CPU bus. So the simulation speed is much slower on an array

processor unless the array is extremely large, which is usually the case for

PNS or FNS codes. Array processors must also pay an additional speed

penalty for the initialization step as well as having to interact with the host

CPU.

There are basically two ways to design a vector processor:

memory-to-memory architecture or the load/store architecture. The

Control Data family of supercomputers uses the memory-to-memory method

which loads data directly into arithmetic units on the vector board from

main memory without the need for vector registers or the so-called cache.

The advantage of this architecture lies in its suitability for very large

datasets.

One way of implementing the load/store architecture is called the
"synchronous method," which is adapted by Cray and IBM 3090. In this

method, a cache is used. During CFD simulation, calculations are carried

out following the main, scalar CPU until a vector call is encountered. While

the vector is being processed, the CPU is in a wait state. The CPU's wasted

idle time is directly proportional to the size of the vector. The newest

machines from Convex and DEC (C240 and VAX 9000, around the spring of

1990) have adapted the asychronous load/Store method. This type of

architecture allows the main CPU to perform in parallel with the vector

processor if the operations in the CPU do not depend on the results from the

vector processor.

In terms of programming software, FORTRAN is still the most popular

scientific programming language. There are special utility programs used by

many super- and mini-supercomputer manufacturers, such as ETA, and

CYBER (CDC), to vectorize FORTRAN programs to take advantage of the

vector processing hardware. One vectorization utility is called VAST

(vector and array syntax translator) and is produced by Pacific Sierra

Research. To give a simple example, if a constant is to be added to every

element of an array using scalar FORTRAN, th. 'llowing DO loop is

needed.



-90-

DO 10 1=1,2000

10 A(I) = A(I) + X

When this operation is performed on an ETA10 which contains hardware

specially designed for vector operation, the ETA VAST-2 can transform the

above scalar operation into:

A(1,2000) = A(1,2000) + X

The FORTRAN compiler of ETA10 would recognize this vector

operation and will generate the appropriate machine instructions to load the

vector processor and add the constant to all elements of the array

simultaneously. The vectorized code would take about only 1/2000th the

time to complete the operation.

Since vectorization can be accomplished in several ways for a complex

program, the preprocessor must determine the most efficient one. Even

though the vectorization preprocessor can be a powerful tool, it sometimes

can give unwanted vectorizations resulting in harmful side effects.

Programmers sometimes have to give directives in the source file that help

syntex translators such as VAST make the vectorization.

CFD MODELING ON ARRAY COMPUTERS AND CONNECTION

MACHINES

An array computer consists of many microprocessors that perform

identical computations. The concept is originated from von Neumann.

ILLIAC IV, which consists of 64 (8x8) processing elements, is the earliest

example of a general-purpose array computer. Even though each processor

in the ILLIAC IV is quite powerful, the size of the array is too small to

perform practical calculations in CFD modeling. In 1976, RAND proposed

to build a Navier Stokes array computer consisting of 10,000 identical

microprocessors arranged in an 100xi00 array (Gritton et al., 1977). The

concept was to perform CFD simulations on an array computer that is
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designed only to solve the Navier Stokes equation with great efficiency.

They proposed to solve the three-dimensional Navier Stokes equations in

primitive variables and the Poisson equation for pressure via Fourier

transformation in the span-wise direction. With 100x100 array of

microprocessors and 128 Fourier components, the processing speed was
expected to be several orders faster than a sequential machine. The main

reason for this difference is that during a simulation, most of the hardware in

the sequential processor sits idle. In a parallel machine, calculations are

carried out at every processor simutaneously.

Several general-purpose, massively parallel processors such as the one

built at the Thinking Machine Corp. (Hillis, 1985) are presently being

developed and used for CFD modeling. For example, the Naval Research
Laboratory has two machines presently dedicated to CFD simulations. The

smaller one (nicknamed Bambi) consists of 8000 floating-point processing
chips in a 4K+4K congifuration. The larger one (nicknamed Godzilla) has

16,000 floating-point processing chips in a 8K+8K configuration. Each

processor has 2K words of memory. Navier Stokes solutions coded on these

massively parallel connection machines are usuall I written in C language,
which is quite similar to FORTRAN. Usually, C language is used together

with PARIS or CMIS commands to increase the processing speed. Large

connection machines can sometime outperform supercomputers. For

example, a 256x128x128-grid, three-dimensional fluid simulation of complex

shock interaction, when carried out using the 16K Connection Machine at

the Naval Research Laboratory, takes 20 seconds per time step. The

identical problem would take 80 seconds per time step on a Cray X-MP

(Boris et al., 1989). This implies that the speed of the 16K connection

machine is equivalent to the speed of Cray's Y-MP.

Recent computations of fully compressible two-dimensional Navier

Stokes equations (1024 x 2048 grid) on the large parallel connection machine

CM2 at the University of Colorado achieved a speed of 1,500 Mega-FLOPS

(1.5 G-FLOPS, Biringen et al., 1989). The benchmark test was carried out

using the MacCormack second-order explicit scheme for the simulation of a

square wave propagating outward through a square domain with radiation
,boundary conditions for 24,000 integration time steps. Coded in C and
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PARIS, the execution speed in the parallel connection machines slows down

substantially when implicit schemes are used because of the involvement of

matrix operations.

Presently, on connection machines, the finite-difference scheme is more
efficient than the spectral method (Sec. 3) for lower accuracy modeling such

as second- or fourth-order accuracy. When the required accuracy increases,
the pseudospectral method is better, particularly for simpler geometric

shapes. Recently many CFD simulations of the hydrodynamics of

symmetrical and spherical systems have been studied using parallel spectral
methods on connection machines (Pelz, 1989).
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7. ASPECTS OF MODELING NEEDS AND UNCERTAINTIES IN

HYPERSONIC SIMULATION

REQUIREMENTS ON THE COMPUTATIONAL SPEED AND MEMORY

CFD models are based on the approximated (numerical) solutions of the

governing equations over the finite-grid network. Consequently, the finer

the grid, the more accurate the numerical solutions are. There are tradeoffs

between speed and computer memory requirements. To obtain the best

estimate of the flow field around an aircraft, we often trade computational
speed for higher spatial resolution with the largest machine available. To do

this, we sometimes have to use a less efficient but more straightforward

numerical method such as the explicit scheme. This type of scheme requires

fewer variables residing within the machine's main memory at the same

time. Variables that are not involved reside in the machine's external

memory units waiting to be called upon. More "time-efficient" and

sophisticated integration methods such as the implicit method would require

more variables in the main memory simultaneously. At the present time,

the largest computer's main memory and speed can allow simulations with a

half-million to a million grid points if the simplest explicit scheme is used.

In this type of scheme, only five neighboring grid points are contained in the

CPU at a given time during the time and spatial marching (integration)

process. A paging process is involved in which cyclic data blocks move in

and out of the CPU and the external high speed storage device.
With the maximum allowable resolution using the method described

above, the accuracy of the CFD approach at lower Mach range is around 5 to

7 percent. For example, in a simulation involving an X24C-10D

experimental plane, the estimated values of the lift and drag coefficients,

using the CFD method as compared with experiments at M=5.95, are 4.71

percent and 6.71 percent, respectively (Shang and Scherr, 1985). This

simulation was made with the parabolized Navier Stokes equation coded

with an explicit scheme (MacCormack, 1969) coupled with a zeroth-order

algebraic turbulence closure technique (Baldwin and Lomax, 1978).
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When the computed values are compared with the measurements, the

larger deviations are located near the sharper geometric transitions. This

indicates that higher spatial resolution will improve the accuracy. A

higher-order turbulence model will also improve results around curved

surfaces. All of this indicates a need for bigger and faster computers.

Within the foreseeable future, the computational speed of the computer

is likely to follow the previous trend, namely, to increase 3 to 5 times in 3 to

4 years. The present computational speed limit is around 1 billion floating

point operations per second (FLOPS). In projecting future speeds of

supercomputers, the improvements can be made in several ways. In terms of

hardware development, the speed improvement due to the increase in chip

density is expected to increase by tenfold every seven years (Fig. 3).

Supercomputers can also increase their processing speed through parallelism

in architectural design, and the I/O speed can be increased by the use of

super-conductive material, just to name a few possibilities.

For the NASP and the NASP-derived system applications around the

year 2000, the expected computational speed is in the neighborhood of 10-20

billion FLOPS. A system with this capability could carry out CFD

simulations for an external aircraft configuration consisting of 10 million grid

points assuming the use of numerical techniques similar to those described

above.

REQUIREMENTS ON THE SPECIFICATION OF BOUNDARY

CONDITIONS

The use of CFD is based on the solution of boundary valut problems. To

obtain a solution, boundary conditions have to be specified. Any inaccuracy

in specifying the proper boundary condition propagates into the

computational field. But if one knows the exact conditions at the boundary,

he would already have the solution to the problem. This is a well-known

difficulty in the field of numerical modeling. One solution would be to set

the boundaries of the model as far as possible from the aircraft so that its

influence will be very small near the far-field boundaries. This approach
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would need a large computational capacity. The next solution is to design a
sophisticated numerical scheme at the model's boundaries in such a way that
the dynamic effects (e.g., shock) originated at the aircraft would leave the
boundaries without reflecting back into the model domain. This type of
boundary treatment is called the "radiation boundary condition." It means
that the energy within the model can radiate out of the model through its

boundaries.

To make the boundary condition completely radiative is easier said than
done. One major difficulty is to design a numerical scheme at the boundary
which can "sense" all outgoing (pressure) waves of various frequencies and
let them pass through. Furthermore, it is even more difficult to design such
a scheme if "zonal modeling" techniques are used. In such a method, several
models are patched together to form an entire aircraft. Mutual boundaries
are located throughout the system and all of them need to be treated. Since
the boundaries interconnect, special numerical schemes are therefore needed

to overcome the redundancy in their specification. This is also true in the
specification of the radiation boundary conditions for an adaptive (moving)
grid network. To avoid this type of problem, it is much easier to simulate
the entire aircraft in a single model, if the computational resources are

available.

REQUIREMENTS ON THE VERIFICATION DATA AT THE UPPER

HYPERSONIC RANGE

During different stages of model development, experimental data are
needed to verify the theoretical basis and the computational code of the
numerical model. As the Reynolds number and air speeds increase, the
accuracy of the experimental measurement decreases. The degree of
difficulty of acquiring the experimental data also increases as the speed
increases. Shock tubes and gun-launched models can reach high Mach
range, but they all have limitations for NASP applications. Because of the
lack of emphasis on the hypersonic experiments during the 1970s, hypersonic

wind tunnels and other ground test facilities designed to perform continuous
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free flight tests are either no longer in existence or out of commission. At
present, very few ground testing facilities or wind tunnels can simulate
continuous free flight conditions at Mach number higher than 8. At speeds

above Mach 10, it becomes increasingly more difficult to obtain high enough
temperature to avoid gas condensation with corresponding high pressure to
simulate flight Reynolds number range. Recently, tetrafluoromethane (CF 4 )

and nitrogen (N2 ) have been used (Midden and Miller, 1978) for simulating

the thin shock layer, chemically reactive, and high Reynolds number effects

associated with the hypersonic flows.

REQUIREMENTS ON THE UNIVERSALITY OF A MODEL'S
PREDICTION CONSTANTS

Without suitable verification data at high speed, the predictability or

accuracy of the CFD codes will depend upon the universality of their
turbulence model. In other words, the values of the closure constants have
to stay the same for these models to predict beyond the verified range of

applicability. This seems to be one of the crucial issues at the present time.
New CFD codes are undoubtedly versatile and powerful. At low Mach

range, experimental results have been used extensively to verify and adjust
turbulence closure computations. Since turbulence modeling is not
system-specific in terms of geometric shape, it has been a favored method for
model verification. During the adjustment process, the so-called turbulence

closure "constants" have been optimally fitted for various proposed models.
Some of the results, presented in Table 5, show some degree of uncertainty.
At this moment, we cannot predict whether the degree of uncertainty will
increase in the higher Mach range. To obtain verification data at high speed
(M 8-25), measurements from shuttle reentry flight or drones launched from
high-speed planes may provide some technical data for benchmarkilg

computational codes. In turbulence modeling, areas of low predictive
reliability are listed in Tables 6 and 7.

In the field of fluid mechnics, however, there are very few truly
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"universal" constants. Constants often considered as universal, such as the
Kolmogorov constant are later found to vary under different flow conditions.
The Kolmogorov constants for the distribution of turbulent spectral energy
within turbulent flow was recently found to vary in two-dimensional
turbulence (Kraichnan, 1987; Qian, 1986). This finding is quite important
since flows under the thin-layer approximation or flows describable by

parabolized CFDs are two-dimensional turbulences. To simulate the proper
laminar/turbulent transition process at high hypersonic flight speeds, models

of compressible turbulence should be used. For example, the entrainment
rate of compressible turbulence is lower than the corresponding
incompressible turbulence. The effects of shock structure on the transport of

kinetic energy in and out of a turbulent eddy is still not completely
understood (Breidenthal, 1990). Furthermore, the compressibility of air at
hypersonic speed may change the universally accepted concept of

Kolmogorov's law of the cascade of spectral energy in the frequency domain

(Dimotakis, 1989). It is still too early to know the impact of these new
findings on CFD modeling.

REQUIREMENTS ON THE COOPERATION BETWEEN

MODELERS AND DESIGNERS

To develop and work with CFD methods and codes, one needs an
extensive background in both mathematics and computer sciences as well as

fluid dynamics. Sensitivity to experimental findings is also essential. CFD
modeling gradually evolves into a highly specialized field. To maintain a

CFD simulation system often becomes a full-time task for a small research
team. After completion of the Apollo moon-landing program and design of
the shuttle reentry vehicle in the early 1970s, there has been no major design

activity in hypersonics during the last one and half decades. As a

consequence, most CFD modelers have limited design experience. Since

computers are not yet fast and big enough to perform a complete automated
design under given constraints, CFD simulations still play the role of the
designer's aids, which are extremely complicated to use. To close this gap,
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experienced designers have to work with the CFD simulation team. This is

necessary becausc an experienced designer not only can give valuable

guidance in the design phase but can also check to see if the computer

output makes sense. As mentioned earlier, although they are powerful tools,

CFD results are still only simulations.

COMPATIBILITY REQUIREMENTS BETWEEN

HARDWARE AND SOFTWARE

The computational efficiency of a numerical scheme is a relative matter.
It often depends on the type of hardware the code is running on. An

understanding of the machine architecture is very important for code

development. For example, during the numerical integration process, the

control of data flow between the parallel functional unit and the

hierarchically organized memory is essential. Because the computer's basic
clock speed, which determines the rate of calculation, varies from machine to

machine, the cycle time required for various computer functions will also
vary thereby resulting in major differences in overall computational speed.

Machine-specific characteristics such as the "memory cycle time," the
"access time," and the "transfer rate" all require a different number of clock

periods to complete. A CFD code should be designed to allow maximum
concurrent operations to achieve the overall efficiency.

According to Cray Research (Shang et al., 1980), the efficiency of a

FORTRAN code can be improved by:

Avoiding a long and complicated "do loop"

Replacing the most frequently addressed temporary scalar variable
with a vector temporary variable

Developing the code to allow maximum use of concurrent

(chaining) operations. The chaining of two or more vector

operations allows a vector machine to yield more than one result

per clock period.
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Along the same line as discussed above but more fundamental in nature,
it is important to use better programming languages and operating systems.
At present, the majority of aerospace engineers write CFD models in
FORTRAN, which is considered to be primitive as compared to the more

advanced languages such as Pascal or ADA. More efficient transfer between
the database and the arithmetic unit can also be achieved by improving the

operating system.
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8. CONCLUSIONS

During this review the following conclusions were reached:

1. Computational fluid dynamic (CFD) models, if they are properly

designed, verified, and applied, are versatile and powerful tools. With the
level of resolution that can be handled by the present state-of-the-art
computers, the level of verifiable simulation accuracy (in terms only of
pressure distribution) is approximately within 5 to 6 percent at the
intermediate speed range (Mach 0 - 8). But, it is difficult to even estimate
the inaccuracies in such crucial parameters as skin frictions, heating values,
and turbulent mixing. When the computed values are compared with the

available data, the larger deviations are located near the sharper geometric
transitions. This indicates that higher spatial resolution will improve the
accuracy. A higher-order turbulence model should also improve results
around curved surfaces. These improvements need bigger and faster
computers. However, it may be years before we can narrow uncertainties in

both the laminar-turbulent transition location and the characteristics of
flows as they enter the inlet region. We may also require time to better
understand the character of the mixing region with the SCRAMJET as the
Mach numbers approach those of interest to NASP.

2. For better predictive accuracy and for the generality in the CFD
models' predictive applicability, turbulence closure techniques need to be

further improved. Experimental data at the full range of NASP speeds are
needed to evaluate the closure constants. A wider range of applicability can
be achieved if the constants are more universal. Universality implies higher
predictive reliability into higher speed range. Closure models will nearly
always be needed in CFD within the foreseeable future (e.g., until 2000)

unless a major breakthrough in computing power takes place. The speed and
memory of computers would have to inprove several orders of magnitude

over present state-of-the-art machines considering realistic flight Reynolds
number range. With improvement of this magnitude, the troublesome
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"turbulence closure" step can then be completely eliminated. Given that the

past rate of progress in computing power continues (i.e., 10 times in 7 years)

and the NASP schedule remains unchanged, it will be necessary to continue

using turbulence modeling for the entire NASP development program, as

well as possibly for the NDV development program as well. To approach

universality for constants, many more data must be collected at all NASP

speed ranges. If this is not done, a similar level of predictive uncertainty as

the present will continue to exist.

3. Because of the relatively inactive period in hypersonic research for the

past 15 years, the design-supporting ground-testing facilities that were in

existence have not been properly maintained or are out of commission. At
present, there is an urgent need for ground-testing facilities with improved

measurement techniques to provide verification data for CFD models.

Complementary techniques to ground tests are needed to verify CFD
simulations at the high Mach ranges where experimental data are difficult to

obtain. Recent advances in flow measurements by means of laser-Doppler

technology will undoubtedly improve the quality of verification data in the
future. The shock tube "RHYFL" (Rockdyne Hypersonic Facility), which
will be completed in the near future, has a velocity limit of Mach 16. The

piston is driven by nitrogen with the testing duration of 1/1000 second. As a

consequence, dynamic processes induced by transient dynamics may pose

some problem. But extensive use of RHYFL will be an important part of

reducing the uncertainty in the CFD simulation.

4. The numerical solution schemes used in the CFD models have

improved in accuracy and efficiency during the last two decades. However,

no clear distinction has developed among all the available methods as to

which is the best overall method. Tradeoffs often have to be made. There are

times, when less efficient but more straightforward integration schemes have
been selected so that fewer spatial points reside in the CPU simultaneously.

By doing this, a great number of grid points can be simulated with a single

model, thus simplifying the boundary condition handling problem, even

though this approach increases the simulation time (I/O process).

5. One major advancement in the field of CFD is the application of

coordinate transformation schemes often employed in conjunction with the
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finite-difference methods. When an implicit scheme is used together with

transformed coordinates, the drop in accuracy of numerical approximation

should be evaluated especially near the crucial area such as the leading edge

where the Courant number is very high as a result of small grid size.

6. During the coming years, for NASP applications, emphasis on CFD

research should be on the following crucial areas:

Validation of higher order turbulence models to reduce the

level of uncertainty in the areas of low predictive reliability such as

rapid compression/expansion, strong swirl, kinematically influenced

chemical reaction, dynamic instability.

Improvement in modeling compressible turbulence.
Improvement in predicting the location and the length of the

boundary layer transition zone on the aerospace plane and the details

of the transition process.
Improvement in conserving mass, momentum, and energy in the

numerical scheme solving the Navier Stokes equations involving grid

transformation particularly curvilinear transformation.

Treatment of boundary conditions particularly in a "nested"

modeling system where different grids are used.

More efficient cooperation between government and industry in CFD

code development and validation.

Explicitly evaluating and publishing the uncertainty in CFD

simulation results as a function of the vehicle speed and position

along the vehicle.
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