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1 INTRODUCTION

Mechanical engineers are faced wilL the task to design tools which will operate safely
under certain mechanical conditions, in certain environments and for certain periods
of time. The cost of fabrication and design has to be low and the construction has
to meet specific demands on weight and space requirements etc.

Before manufacturing the tool, the designer must be able to predict its behaviour.
This pirediction is based on a formulation of a mathematical model, its computational
analysis, experiments, and experience with existing constructions and their failures.
Because of various uncertainties which necessarily occur, the goals of the advanced
design analysis (in nuclear industry, aircraft industry etc.) are often stipulated in
the design codes (which are changing over time) and are, at least by parts, company
oriented. The question of the principles of the safety is directly related to these
codes.

For example, in the design code (1] used in military aircraft design, it is required
that components based on the principles of "non-inspectable slow crack growth”
must be designed under the assumptions that,

a) the as-fabricated structure contains flaws of a size just smaller than the non-
destructive maximum undetectable flaw size

b) the flaws are assumed to exist in form of crack-like defects with most un-
favourable location and orientation

The design code requires that the mathematical formulation and its computa-
tional analysis must reliably and conservatively predict both the sizes of the growing
cracks and the residual strength of the component.

Of course an essential part of these principles is nonmathematical as for example
the mechanical principles of fatigue crack growth (today mostly based on the plie-

nomenological Paris law or similar laws). For various aspects we refer the reader to
[21.

There obviously must be a balance between what can be accurately analvzed
ard what the design code stipulates. This is influenced by the steady progress
of computer hardware as well as progress in the numerical methods. Today and
still in the future more and more complex mathematical problems can and will be
understood and reliably solved. The role of the effectiveness of the computations.
although very important, has to be assessed from this viewpoint, especially when
the effectiveness could drastically depend on the computer architecture.

The role of numerical analysis has to be seen also in the light of testing the
mathematical models (the formulation) by comparing the computed results with
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experiments. Here it Is essential that the numerical results are so close to the
eract solution of the mathematical problem that any observed discrepancy with
experimental results is only due to the mathematical formulation and not the errors
of the numerical analysis. This means that a practical accurate and reliable a-
posteriori error estimate for any data of interest (i.e. not only the usual energy
norm estimate) is imperative.

The FE-code has to be adaptive in the sense that given a tolerance for the error in
stress, stress intensity factor etc. the FE-code automatically increases the accuracy
until the error becomes lower than requested by the user. The increase in accuracy
of a FE-solution may be obtained in basically three different ways.

a) The h-version. Here the degrees of the elements are fixed and the program
adaptively refines the mesh (uniformly or non-uniformly) until the desired
accuracy is achieved. There are several h-adaptive codes. We refer to [3],[(4]
as examples

b) The p-version. Here the mesh is fixed and the element degrees p are adaptively
increased (possibly non-uniformly) until the desired accuracy is achieved. The
programs MSC/PROBE (McNeal Schwendler Corp.). STRIPE (The Aeronau-
tical Research Institute of Sweden), Applied Structure (Rasna Corp.) belong
to this category. Although in principle, the method gives the result needed for
anyv mesh, practically the mesh is of utmost importance.

¢) The h — p version. Here the code adaptively refines the mesh and selects
the degrees p. The code PHLEX (Computational Mechanics Corp., Austin)
utilizes the h — p veision of FEM

If the p-version is used on a properly designed mesh it essentially produces the
accuracy of the h — p version. By following simple rules for mesh design one almost
achieves the exponential convergence rate for accuracies of interest. In what will
follow. we coucentrate on the p-version of FEM which combined with properly graded
meshes gives a convergence rate similar to that of the h — p version.

One of the major advantages of the p-version is that in sequential computations
for increasing p a sequence of solutions for the parameter of interest is obtained
from which one can make very reliable assessments of the accuracy of the solution.
In principle this can be done for the h-version too, although for practical three-

dimensional problems the number of degrees of freedom quickly become prohibitively
high.

In this and forthcoming papers we will especially concentrate on problems which
are relevant to the criteria of fatigue crack initiation and stable crack growth of flaws
in metallic structures.
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The mathematical model considered is the Navier-Lamé equations of three-
dimensional linear elasticity. We will address the mathematical models and the
numerical procedures and give practical examples of the achievements. We will con-
centrate here on the cases where the mathematical model is given in a deterministic
way. To make our ideas as clear as possible we will analyze an academic example
and a complex fuselage part.

In section 2 we will discuss a three-dimensional elasticity model problem. We
concentrate on its solution in a neighbourhood of the edges and vertices. The singu-
lar behaviour of the solution in these neighbourhoods is characterized by edge stress
intensity functions and verter stress intensity factors. We show that the p-version
on a proper mesh together with use of extraction procedures leads to accurate com-
putations of these functions and factors as well as stresses with virtually guaranteed
a-posteriori error estimation. We also show that the stress intensity functions and
factors converge with the same rate as the energy error of the finite element solution
(i.e. as the square of the energy norm) and that the convergence is exponential in
the accuracy range of practical interest.

In the section 3 we adress the problem of reliable stress calculation in complex
three-dimensional components. A complex fuselage frame is analyzed with the fa-
tigue design problem in mind. An effective method for the design of the radices at
fillets is described. We concentrate on the reliability of the computed data and the
a-posteriori error estimation in the context of the analysis of the fuselage frame prob-
lem. Section 4 discusses the damage tolerance analysis of complex three-dimensional
components. The fuselage component frame with cracks of different sizes is analyzed.
Section 9 adresses the computational aspects of the h — p version. It describes the
essential parts of the computations and presents basic information about Cpu-times
and memory needed. The sizes of the problems are 60000 to 1260000 degrees of
freedom.

Section 6 summarices the basic properties of the h — p version. its relibably error
estimation and practical experience. All data and experience is based on the use of
the program STRIPE developed at the Aeronautical Research Institute of Sweden.

The computational methods presented here are very well covered by a math-
ematical theory. In the following papers {5]. [6].[7),[8].[9],[10] we will elaborate in
detail on these methods and their computational aspects.
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2 A MODEL PROBLEM AND ITS ANALYSIS

In order to exemplify the character of the solutions to problems in three-dimensional
elastomechanics, we consider the folded plate Q shown in figure 1. The plate is loaded
with parabolic st r in the symmetry section.

Parabolic shear S
load T,

Figure 1: Folded plate loaded with parabolic shear in symmetry section. Plate is
clamped to a rigid foundation (the plane z = { — &)

Because of symmetry only 1/4°th of the domain is analyzed. Material properties
are assumed isotropic and linearly elastic. The modulus of elasticity is denoted E
and Poisson’s ratio v. Cartesian displacements and stresses are denoted u, v, w and
0;.0,.0;. Tz, Tr, and 7,, respectively.
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The face ABC D is loaded by the parabolic tangential shear,

Trz = g(z/t)(l—z/t) (1)

Try
where t is the thickness.

The z-displacements are u=0 on the face ABCD. The face IJK L is clamped
i.e.
u=v=uw=_ (2)

On the face BFA'JGC the symmetry conditions are,

All other faces are traction {ree.

This problem was analyzed as a benchmark problem in [11] and [12]. It is
an excellent academic benchmark problem illuminating the difficulties of reliable
computations. We will address here the dependence of o.(z,0,0) on Poisson’s ratio
v and the behaviour of the solution close to the vertex E and the edge EF.

Let us list the major theoretical properties of the solution to this mathematice!
problem.

o There exists exactly one solution which has finite energy

e The solution is analytic evervwhere on € and its faces except for the edges.
Because of symmetry the solution is also analytic on the edge JGCBFK

e The solution is singular along edges and the vertices

In a neighbourhood of the edges and the vertices the solution can be written as a
sum of singular terms and a smoother function. The singular behaviour is different.

e along the open edges

¢ in a neighbourhood of the vertices

2.1 Solution behaviour close to edges

We will discuss the properties of the exact solution close to the edge EF.
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Denoting by r tb- distance of the point (z,y,2) from edge EF znd by 8 (0 <
§ < 37/2) the pola' . .gle, the displacements have, for any s > 1 and s # Re[A})],
the form [13]

u(r.6.y) (3.%) Ak g, (k)
v(r,8,y) | = Yo KPPt tRet(e)
w(r.6,y) Re[2')+k<s
+ X KN e) (4)
Re[\[1+k<s
J)
n 3 A(J k)( )r '\(uﬁkqj(ljl'f)(a)-{—smoother term
Re[\}) ) +k<s

where for k zero or even W% (a = [, I or 111 in the following) are of the form

| o) o5 (0) 0
vitei =0 b et =) 0 L R = | el
@) 2715(6) 0

and for k odd

N 0 0 , 4’(1'?1.5.)1(9) ]
Wit = e ey | . v e = | oY Niey | L WE0) = 0
0 0 ®571h(6) J

The edge intensity functions ]\'f;’"")(y) for & > 0 can be expressed as a linear
combination of derivatives of N9 {y). In the sequel we will use the notation K'{V!(y)
= N7%{y). In technical apphcatlom 1\, "(v). K}})(‘ ) and 1\”,( ) are the important
edge mtermt} functions.

Here functions 4} depend only on local geometry, material and local boundary

conditions. In fact the functions

N (b( U(()) N q)(l]l (9)
r\l 0 . r'\ll 0
73 (6) 75(6)

are identical with the singular functions for two-dimensional elasticity and the

functionus

0
P | 476)
0
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are the singular functions for the torsion problem, i.e. the Laplace operator.

Edge stress intensity functions I\'}”(y), Kﬁ’,’(y) and Kf’)),(y) are analytic on the
semi-open interval 0 < y < w/2, singular at y=0 and depend on the global data of
the problem.

The values AY) can also be complex. In this case the functions Q(I{z, 4)(,]; are
complex too and the real part of (4) is taken instead. In this case the solution has
an oscillatory character. In general, for exceptional <ases (geometrical angles or
material data). besides the term r* there can also be terms of the form r*(logr)?
(we will not address this case here).

In (4) we assume that the singularity exponents are numbered such that Re[Al)] <
Re[A*V] | The stresses are infinite if any Re[AY)] < 1 and the corresponding edg.
intensity function is nonzero.

0] R LA | a@ag |
[ 0.544 [ 1.629 £ 0.2317 [ 0.909 | 2.2391 % 0.316¢ |

Table 1: First edge eigenvalues AY! and AY) for edge EF

l A(11!)1 ‘ ’\(l:})l I/\<131)I‘
| 0667 11333 ] 2 |

Table 2: First edge eigenvalues AY), for edge EF

For the model example the first edge eigenvalues A\ are given in tables 1 and
2. These values. which are independent of Poisson’s ratio v, are obtained by solving

a nonlinear equation [14]./115]. We see that the first term for the mode [ . mode 1/
and mode T11 components of (4) vieid infinite stresses at the edge EF.

['he edge stress intensity function A ,“‘(y) has in a neighbourhood of y=0 the
following form

L
1 ? ()I ;-
Ry = S0y + smoother term (5
i=1
The intensity factor Y/ is the mode I vertez-edge intensity factor of order ; for

edge LF at vertex E. The exponent 41} is related to the values of A’ ard Al

characterizing the edge and the vertex singularities as discussed below. Aralogous
expressions apply for the mode 11 and mode 111 edge stress intensity functions.
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2.2 Solution behaviour close to vertices

In a neighbourhood of the vertices £, L and 7 the solution has a singular behaviour
which in spherical coordinates can be expressed as

u(r,w. 0) J 0 (w, @)
v(row, o) | =) SUIAY 1 @) (w ¢) | + smoother terms (6)
w(r.w. o) =1 0y (v, )

In (6) the coefficients SU) are the ver.er intensity factors. The functions ©,
can be understood to be defined on the intersection of the domain and a spherical
surface. This intersection has a boundary with the corners (wy, ¢5) associated to
the edge & of the domain.

For angle (wi. o) associated with edge £F and for v > 0 the functions e, o 0.
{with 7 = 1.2.3) are found (in the numerical analysis) to correspond to a pure mode
I deformation at the edge EF. The functions 0" and ©! correspond to a combined
mode 1 and mode 117 deformation of £F with a zero mode I component.

| v | AD | A | AR | Ales

0.0 {0.544 | 0.909 | 1.054 1.629
0.30 10623 | 0.785 [ 1.237 1 1.521 £ 0.1722
0.45 1 0.711 | 0.751 | 1.316 1.331

‘table 3: The vertex coeflicients AU for vertex E

For vertex E the first vertex singularity exponents A are given in table 3. By
cotnparing (41 and (61 we get the coeflicients '7(,’:,) in (5) as

) ! 3 (=
7’5{/:-\”")‘(1'- i)

In (7} we consider onlyv [-values which are associated with a mode I deformation
of edge FF (e.g. l=1,4.5....).

| |i=1] 1=2 |I=3|l=4andl=35|

RIS EEE 09T 1017
Al o] —0123 | 0.329 .
ST o] 019 | 057l .

Table 4: The coefficients 1), 147, and 1§}, for edge EF at vertex E for the case

=03

In table 4 the first coefficients are given for the case v = 0.3.
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We see that edge stress intensity functions can be bounded, go to zero or can be
unbounded for y small. We mention that in our example some s‘,’l) in (5) could be
zero. In fact this occurs in the case ¥ = 0 because the solution is y-independent.

On the edge AE in a neighbourhood of the vertex E we get, using (6), the stress

J
oy = qu(—-:r/t)'\“)‘l + smoother term. (2)
=1

The stress o, is singular at vertex E for all values v provided that the coefficients
q1 # 0 or g2 # 0. As we will see later for particular values of v, some coefficients g
could be zero (especially ¢;) and hence it is essential that two terms in (6) and (§)
are determined.

We have briefly described the properties of the exact problem to our benchmark
problem. For a theoretical discussion of the convergence properties of the p-version
in three dimensions, see ([16].[17]).

The characterization of the three-dimensional solution is of great importance
since the properties of the exact solution influence drastically the performance of
the finite element method and have direct impact on the proper design of the mesh.
Let us note that for the design of a mesh we do not have to know the exact character
of the singularities. In fact we normally do not know them. We nevertheless know
the qualitative character of these singularities and we can design a good mesh fol-
lowing simple a-priori known rules. The mesh which, if optimal, should be refined
(cylindrically) in a neighbourhood of edges and in a neighbourhood of the vertices
(spherically).

Let us now discuss some numerical results for the following model dimensions.

b/t = 300
h/t = 50 (9)
w/t = 100

t = 100

We will present results computed by the finite element program STRIPE based
on a p-version of the finite element method. Results obtained with the h-version of
FEM are given in [11).

In figure 2 we show the mesh used for the computation. In a neighbourhood of
the edge EF and the vertex E we used a strongly refined mesh as shown. The mesh
used has three spherical layers of elements around vertex £ and six cylindrical lavers
of elements around edge EF. Using this mesh in combination with the p-version of
FEM. reliable results will be obtained. The mesh used has 262 elements.

In table 5 we report the energy ”{‘”%(0) of the finite element solution as a function
of p and v and the relative error |le||fq) = [Ju - ‘7”25(0) in the energy (the exact
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Cylindrical

at vertex E

AVANS

<
X
N\
N

N

BN

AN

L ]

AN

Principles for mech design

Figure 2: Mesh used for analysis of benchmark problem
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v=20 v =—0.30 v =045
P ”f‘HQE(n) Hf”f::@ “‘7“3;@) ”eﬁm) ”ﬂ”%m) ”6”2(0)
2 5.600003 3.500017 | 4.959967 3.680763 | 3.480780 4.584843
3 9.054089 0.045936 | 8.414659 0.226071 | 7.563369 0.502254
4 9.098895 0.001130 | 8.600359 0.040371 | 7.961862 0.103761
5 9.099561 0.000164 | 8.638234 0.002496 | 8.058791 0.006832
6 9.099963 0.000062 | 8.639845 0.000885 | 8.063074 0.002549
T 9.099999 0.000026 | 8.640380 0.000350 | 8.064567 0.001036
Estim. [ 9.100025 8.640730 8.065623

Table 5: The energy ”ﬁHi‘(ﬂ) and the energy error of the FE-solution HeHQEm) ob-
tained with the 262 element mesh. Data given are scaled with a factor 10~*

energy was estimated by extrapolation). We see that the p-version provides a very
good assessment of the accuracy achieved and that the accuracy is influenced by the
Poisson ratio v.

Let us note that the convergence with respect to p has two phases. The first one
(preasymptotic) has exponential convergence rate while the second has algebraic
convergence rate. The reason is that for high p the mesh is "underrefined” and that
the rate is algebraic (see [18] and [19]) because the governing error resides in the
elements which contains the edges and vertices. The transition between the two
phases occurs roughly when errors in these elements becomes the dominating part.
The design of the mesh is near optimal when the required accuracy is achieved at
the end of the transition part.

In general some overrefinement is recommended because we would like to avoid
having an algebraic rate of convergence. The mesh in a neighbourhood of the sin-
gularity is recommended to be geometric with the ratio 0.15. This ratio is in some
sence optimal. For a theoretical analvsis of the one-dimensional model which is
roughly applicable here, see {20].[21].

Figure 3 shows in a lin-log scale the stress ¢,(z,0,0) and o,(z.w/2.0) for various
values of the Poisson ratio v. Stresses have been obtained by direct calculation from
the displacements. For z very small there is a considerable jump in computed
stresses at element boundaries. We see that at the edge AE the stress distribution
1s very different from the stress at the line (r,u'/2,0). For v = 0 there is no difference
between these behaviours. Close to vertex E, we see the strong influence of Poisson’s
ratio on the stress o, .

Table 6 to Table 8 shows the coefficients ¢; and ¢, and vertex exponents A!!) and
A™® computed ([8].[22]) using the mesh shown in figur - ° The coefficients g, have
been obtained from computed A-values and eigenfunctious @f’) (see (6)).

Values labelled "exact™ in table 6 have been obtained with a very detailed two-
dimensional mode] and p=10 uniformly. All digits of the "exact” values are believed
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-300

[_Sfress Oy

VU=0.45,y= w/Q%

V=0.30,y= W/Z'//

-200 V= 0,0cy<sw 7

V=0.30,y=0

(@8]

132

Figure 3: Calculated stress distributions o,(z,0,0) and oz(z,w/2,0) for benchmark
problem (p = 7 solution)
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A A(2) @ )
0.5442 | 0.9079 | -73.06 | 14.67
0.5444 | 0.9080 | -75.24 | 6.11
0.5445 | 0.9085 | -75.81 | -1.39
0.5445 | 0.9085 { -75.87 | -1.55
0.5445 | 0.9085 | -75.87 | -1.61

-1 O v e s

Exact | 6.5445 | 0.9085 | -75.89 | -1.61

Table 6: Calculated A-values and ¢-values as function of p for v = 0

P A1) A2) QO 9
306256 | 0.7871 | -10.74 | -1.10 |
4106254 | 0.7853 | 0.06 |-9.77
5106253 10.7851 | -1.13 | -9.01
6 10.6253 | 0.7852 | -0.45 | -8.70
7106253 {0.7852 | -0.22 | -8.68

Table 7: Calculated A-values and g-values as function of p for v = 0.30

A A b q2
0.7115 | 0.7548 | 26.51 | -2.70
0.7118 | 0.7514 | 44.43 | -11.90
0.7116 | 0.7510 | 42.45 | -10.35
0.7116 | 0.7511 | 43.54 | -9.84
0.7116 | 0.7511 | 43.80 | -9.84

-1 U Wt

Table 8: Calculated A-values and ¢-values as function of p for v = 0.45
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tc be significant.

We see that

a) the accuracy of computed data can be judged from the sequence of solutions
generated

b) the coeflicients A and ¢ can be accurately computed (except for ¢, when v =
0.3)

c) for v = 0.3 the first verter intensity factor S occasionally is very small
leading to a very small region with high stresses (compare figure 3)

di for v > 0.3 we have the paradorical result that for r small the stress o, is
infinite with sign opposite to what one would expect

Figure 4 show the energy error ||e]|% ., the error in values A1Y), A®_ and ¢; for
£ g) E(Q)

the case r=0. We see that the error in A and in ¢; has same character as the
accuracy of the energy.

In figure 5 we show in lin-log scale the graph of the function o,(z.0,0) as function
of r for various Poisson’s ratios when computed from the asymptotic expansion (3)
using the first 7 terms. The asymptotic expansions are in good agreement with
stresses calculated directly from the FE-solution with p = 7.

Let us now address the stresses at the edge E'F. Here stresses are infinite and we
have to compute the edge stress intensity functions l\'}])(y), A (y) and K3y). In
a forthcoming paper {10] we will describe the procedure used. Briefly, the intensity
functions are approximated by piecewise polynomials (or trigonometric functions)

as
P

K y) =Y eQu(v) (10)

1=0

where (,1y) is the Legendre polvnomial of order ¢ and ¢, are coefficients to be
calculated. We compute the coefficients ¢, when E'F is divided into the threc sub-
imtervals 0 <y < tt <y < 7t, Tt < y < 50t (compare figure 2).

In table 9 we show the calculated values of K}l)(y) (from (10)) in the three
mentioned intervals for v = 0.3 as function of p. Further, K}”(O) is found to be
close to zero as predicted from (5) and table 4. For higher values of p the calculated
intensity function A'}"'(y) is continuous over the interval 0 < y < w/2.

In figure 6 we show in log-log scale the function K;”(y) (the p = 8-solution) for

v=0.3 and r small. Since ¢, is almost zero (table 7) we expect that the second term
in (5) mfluencing I\';”(y) might be the dominating one (except for y very small).
Figure 6 reveals that this is the case. Note that because 75?4) and 7}?5) are complex

KV(y) is oscillatory but only in a close neighbourhood of y = 0.
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Figure 4: Error in calculated data obtained for benchmark problem with v=0
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Figure 5: Stress distribution o,(r,0.0) calculated from the asymptotic expansion
(5)
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p=6lp=5|p=4|p=3|p=2

3
i
o0

=3
i
~3

Domain Yy

1 0 -1 -1 -6 -24 -9 =225 | -421

1 t/5 -158 | -159 | -161 | -173 | -151 | -407 | -628

1 2t/5 -328 | -329 | -331 | -344 | -320 | -574 | -797
1 3t/5 -482 1 <482 | -482 | -493 | -463 | -720 | -930
] 4t/5 -615 | -615 | -614 | -622 | -585 | -840 |-1026
1 t -730 | -728 | -T24 | T30 | -698 | -931 | -1036
2 0 2730 | -T29 | -T23 | -T32 | -691 | -936 | -1114
2 66/5 | -1146 | -1145 ] -1143 | -1147 | -1148 | -1402 | -1432
2 12¢/5 | -1331 § -1328 | -1322 | -1320 | -1323 | -1598 | -1648
2 186/5 | -1428 | -1424 | -1415 | -1403 | -1370 | -1622 | -1761
2 24075 | <1485 ) -1481 | -1469 | -1444 1 -1384 | -1570 | -1772
2 61 -1522 1 -1516 ) -1499 | -1463 | -1405 | -1541 | -16381]

3 0 -1522 1 -1516 | -1499 | -1461 | -1405 | -1533 | -1675
3 43¢6/5 | -158% | -1591 | -1599 | -1620 | -1627 | -1571 | -1603
3 86¢/5 -l%il -1578 1 -1576 | -1558 | -1593 | -1554 | -1554
3 26¢/5 | -1569 | -1571 | -1576 | -1566 | -1535 | -1508 | -1527
3 172¢/5 1 -155 S -1561 1 -1554 | -1582 | -15€3 | -1458 | -1523
3 43¢ 1561 | -1547 [ -1566 | -1531 | -1664 | -1429 | -1541

Table 9: Calculated values of the mode | edge intensity function K|'(y) at six
equidistant points inside domains 1 - 3 for v = 0.3. Plate thickness is t and local
y-coordinate inside subdomains is y’




FFA TN 1992-17

-1000

-500

Figure 6: The behaviour of K;l)(y) in a neighbourhood of y=0
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In figure 7 we depict the pointwise accuracy of A’}l)(y) for 0 < y <t and the
accuracy of the energy. As exact values, the solution for p=8 is used. Once more w¢
find that the accuracy of the computed pointwise values of K}J)(y) are essentially
the same as the accuracy of the global energy.

2.3 The stress concentration problem

In practice the designer tries to avoid sharp (internal) edges and vertices as to
prevent fatigue crack initiation. Relevant design parameters for nucleation of such
cracks are the magnitude of the local stress components and their time history [2’.
The designer has to have an effective tool to get the relationship between stress and
radius at a fillet. By using asymptotic analysis (as in the case of the analvsis of
stresses in a neighbourhood of sharp edges and corners) a rational design formula
can be developed.

Consider the solution in a neighbourhood of the radius R; (figure 8) and assume
for a moment (for reasons of clearity) that the solution is two-dimensional. For a
sharp edge. i.e. Ry = 0. the solution may, for any s > 1 and s # Re[AY']. be written

u(r.8) o
v(r.8) = Z ]\'L’)r’\“J lI/fj)(B) + smoother term {11}
w(r. g Re[vs )<

where r*¢ $(2(8) are the singular functions of two-dimensional elasticity and the
Laplace equation. K'\’) are constants.

We are interested in solutions for B > 0 in a small region (of size 2R,. say)
around the (rounded) edge EF. We first give the asvmptotic behaviour of the
displacements for R, tending to 0.

These displacements are characterized by the functions uff;(.r. =) defined on an

infinite two-dimensional domain with a rounded vertex with radius R =1 (figure 9

with r — oc and « = x/2 ). Denote by T,Sf)o(r z) the stresses corresponding to the

iﬁ(r.:). The functions uf";(:r,z) are solutions to the equations of

two-dimensional elasticity with boundary conditions that displacements are of the
tvpe r*"“\I“Q”(O) for r large.

displacements u

The stresses at a point {z.z) in a neighbourhood of the radius R, may then be
written

oulz,z)= S KW (2,5)R T+ O(R™Y) (12)

Re[A\']<3u
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KP(y) for v = 0.3
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Figure %: Benchmark problem having radius Ry at edge E'F

Figure 9: Master domain for calculation of Tif‘)a(I, )
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where § = /K, and 2 = z/R,.

Here 4 = min, , Re[A)] is the singularity exponent with the smallest real part,
and (12) gives the asymptotic behaviour for (Z,2) fixed and R; going to 0 [23].
Therefore we can expect that the sum in (12) gives a good approrimation for the
stress near the rounded edge if R, is sufficiently small (i.e. relative to the plate
thickness).

For the three-dimensional case, the full mathematical theory is not available.
Nevertheless, for R; going to 0, we have the following expression for the stresses at
a point (r.y,z) close to edge EF

olr.y.2)= 1\’él)(y)r,-f,l'l’(i.E)Rl‘\("“—] + higher order terms (13)

a=111.111

In practice, the functions T,E{‘)a(:r, z) are determined. once for all, by solving two

elasticity problems and the Laplace equation on a two-dimensional domain (figure 9).
For three-dimensional problems. we onlyv have to compute the solution on the domain
with sharp edges and extract the vertex intensity functions A'{')(y). Then we can
immediately predict the stresses for small R, > 0 using (13).

We here give numerical results from an analyvsis of the folded plate. The case
- = 0 1s considered. For « = =/2 we are interested in K;l)(y). K,(”(y). 1\'}3)(31) and
R'}} (1) while the corresponding edge eigenvalues satisfy A0 < 3p with = A,

P 1\';1) 1\';2) and A}V | K1Y
2 1-1305.9 | —0.525 £ 1.278: | -7.85
3 1-14543 | —0.36% £ 2.041: | -7.19
4014829 | —2.445 £ 5.406¢ | -7.90
5 | -14490.2 | --2.495 £ 54562 | -7.93
6| -1490.8 | =2.511 £ 5.514: | -7.91
T1-1491.0 1 —2.513 £ 5.5200 | -7T.9
8 | -1491.1 | -2.514 £ 5.524: | -7.91
9 1-1491.1 | —=2.514 £ 5.525: | -7.91
10| -1491.1 | —2.514 £ 5.525: | -7.9]

Tabie 10: Calculated edge functions K1) for v = 0

Table 10 shows calculated edge intensity functions obtained with a mesh having
six cylindrical Jayers of elements (grading factor 0.15) around edge E'F (radius R, =
(). Table 11 shows the relative error in estimated maximum von Mises effective
stress for three different R;-values. The error is defined as the estimated value (from
equation (12)) minus the exact value. As exact solutions we have used FE-solutions
obtained with p = 12 uniformly on very detailed two-dimensional meshes.
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p | R/t =001 | R/t =01]|Ry/t =025
2 0.015 0.06 0.11
3 0.020 0.03 0.10
4 0.002 0.05 0.17
5 0.003 0.06 0.17
6 0.004 0.06 0.18
7 0.004 0.06 0.18
8 0.004 0.06 0.18
9 0.004 0.06 0.18
10| 0.004 0.06 0.18

Table 11: Maximum relative error in von Mises effective stress at fillet. Maximum
effective stresses are 2224, 753, and 480 units for R;/t= 0.01, 0.1 and 0.25 units
respectivelv

The results in table 11 shows that the estimate (12) is very accurate for R,
small. The main error of the method in this case is (already for p > 4) caused by
the term O(R* =1} and not the discretization error. From equation (12) we see that
the relative error in stress behaves like R;%* for R, tending to 0. With g = 0.544
(table 1) we expect that the relative error should behave like R;*%%%. Data in table 11
show that this is the case.

For the benchmark problem considered, we may simplify (12) somewhat since
1\'}” by far is the largest intensity factor (table 10). By truncating the series (12}
to one term the following expression for the maximum von Mises stress at the fillet
1s obtained,

Omar = C (R/1)¥ =1 (14)
where ("=275.

This expression is asymptotically exact for R — 0 (with tree digits accuracy)
while for R/t = 0.01. R/t = 0.10 and R/t = 0.25 the relative errors in maximum
stress are 0.7%. 4.2 and 7.7% respectively.

A similar approach as shown here for edges can be used for analysis of rounded
vertices.

The procedure developed makes it possible to efficiently and reliably compute
pointuise stresses while the error in edge intensity functions K'{?) converge as the
error in energy. Since (13) is an analytical expression for the stresses at the fillet, it
15 suitable for use in complex dimensioning formulas (fatigue crack initiation etc.).
We note that only one finite element analysis is needed (with R = 0) in order to
derive the unknown functions K{) in (13).




28 FFA TN 1992-17

3 THE FATIGUE DESIGN OF COMPLEX
THREE-DIMENSIONAL COMPONENTS

In this section we demonstrate the reliable analysis of stresses at fillets in a complex
aircraft fuselage frame (figure 10) using the techniques reviewed in section 2.

We analyze models having 0.1 - 1.2 million degrees of freedom. Our global finite
element model (designed for the h-version of the finite element method) has 5510
elements. The sub-section to be used to demonstrate the reliable analysis of stresses
and stress intensity factors using h — p type meshes has 600-800 elements (depending
on the goals of the analyses).

We assume that the material is linear isotropic and homogenuous with Poisson’s
ratio v=0.3. Traction boundary conditions applied on the sub-section considered
are obtained from an analysis of the global model (figure 10a).

3.1 Stresses at hole boundaries

The domain. as in the section 2, has several smooth closed edges (labelled A,5B....).
They are similar to the edge AE in figure 1. The main difference is that edges are
curved. The curvature of the edges complicates the form (4) for ; > 1. Additional
terms of the type r/\i’])+klllgj‘k)(0)(\&'ith k integer and k > 1) have to be added to
(4). For edges A.... we have A{') = 2.740 + 1.119:;, A} = 4.808 + 1.464; and
\‘,],’, = 2. Because Re(A,) > 1, the stresses are essentially smooth and hence the
stress intensity functions K?)(y) are not of interest.

Because of assumed boundary conditions (free of tractions in a neighbourhood
of the holes). the only nonzero stress at the edge is the normal stress along the edge.
If the shape of the edges is analvtic then the stresses are analytic functions in the
edge length parameter. This function is of special interest since often the stresses
have local maxima at the hole boundaries.

We essentially proceed as in section 2 when we computed, in a postprocessing
mode. the coeflicients of the expansions in the Legendre polynomials (10). In a
similar way we can compute stress components a,, on  smooth surfaces by using
the double sum

ol] Y. y2 ZEQ}Q yl QJ y2) (15)
1=0 =0

where y; and y; are surface coordinates. The advantage of computing the coef-
ficients ¢,; and using (15) for stress calculation is that the errors in coefficients c,,
decrease as the energy error. The problem of computation of stresses along smooth
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Figure 10: Fuselage frame (a) and sub-section for detailed analysis (b
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edges and on smooth surfaces we address in [23].

3.2 Stresses at fillets

Below we elaborate on some practical aspects of computations of the problem of the
fuselage shown in figure 10.

The mesh has to be designed so that the error of the FE-solution decrease ex-
ponentially with increasing number of degrees of freedom N in the p—range used.
We have at our disposition (section 2) postprocessing techniques which allows us to
compute engineering parameters of interest, that is stresses, stress intensity factors
etc. with the rate of convergence as the energy (not energy norm).

When employing the A — p version of the finite element method, the optimal
mesh should be very strongly graded in a proper sense towards the edges and ver-
tices (compare figure 2). With known characteristics of the solution (eg location of
boundary layers, strengths of singularities etc.), it is possible using few simple rules
for mesh design to obtain high accuracies and an effective control of the error. A
mesh generator was implemented in the FE-code STRIPE which uses a coarse mesh
(prepared by the user) to create a mesh strongly refined in a neighbourhood of edges
and vertices.

Figure 11a shows the coarse user defined FE-mesh (R, =0,: =1,2,...4) mod-
elling the sub-section of the fuselage (figure 10b). The generated mesh for the h — p
version is shown in figure 11b. We have generated additional element layers at
internal edges only (where Re(A,) < 1).

Blended function mapping is used [24] to exactly model the shape of the domain
(only the polyhedral shape is depicted in figure 11). Note that the details of the
generated mesh are invisible at this scale. The input data for the mesh generator is.
except the coarse mesh. a list of the edges and vertices where the mesh should be
refined and the number of layers of elements to be generated around the vertices and
edges. The h — p approach taken has the advantage that the global mesh generation
problem splits into a number of local mesh refinement problems. A mesh generator
based on these principles is relatively simple to implement.

Figure 12 shows the calculated von Mises effective stress distribution in the frame
for p=6. The stress distribution shown is very close (with actual resolution) to the
exact solution. The figure shows that for actual radices R; = 1/3mm analyzed high
local stresses at the edges are obtained. The edge labelled R; which seems to be
most critical will be studied in detail below.

Let us address the problem of determining the smallest radices R; (i = 1,2,...4)
such that the maximum stress at the stress concentration R, , for example, will be
the same as the one at the edge B (figure 10b). This is done by the technique
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Figure 11: The user-defined coarse mesh (a) and the generated mesh (b)




Figure 12: Calculated von Mises effective stress distribution for p=6
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e
(.

described in section 2.3. First we compute the stress intensity functions A';l’(y).
h’}})(y) and A};}(u) along the unrounded edge and from (13) we compute the
stresses.

Calculated edge stress intensity functions K{!) for different degrees p of the el-
ements along the edge are shown in figure 13. Three layers of elemants have becn
generated around each edge and vertex (figure 11). Three subdomains along the
edge are used for extraction of the polynomial coefficients ¢, (10). The results in
figure 13 show for p=5 a smooth and continuous variation along the edge. With
increasing p the edge intensity functions quickly converge.

Our experience is that by using four layers of elements with the grading factor
0.15. an exponential rate of the convergence is obtained in the range 3 < p < 7
with approximat :lv the error = C - 1077 (for energy, stress intensity factors etc.)
provided that the mesh in the entire domain is reasonable. In 3D situations the
global mesh often becomes partly distorted or element aspect ratios become very
large (for simplicity of input data generation) which may slow down the convergence
rate for lower p-levels.

Figure 14 shows the maximum von Mises stress at any point ({z. z)-section) in the
fillet as function of the position y along the edge. Stresses have been calculated using
(13} and stress intensity data shown in figure 13. For comparison, stresses obtained
from a detailed FE-analyvsis with p = 6 (figure 12) with radius R, = 1/3mm are
shown. Excellent agreement between estimated (13) and calculated local stresses
is obtained. Stresses estimated from (13) for different R;-values are also shown 1
figure 14. With radius R, = 3.0mm the maximum stress in the fillet becomes the
same as the maximum stress at the hole boundary (450 Mpa. see figure 12).

To conclude, the use of mesh generation in a-priori known areas where solution
exhibit strong boundary lavers. use of postprocessing techniques to calculate K (v}
in (13) gives a rational design tool for sizing of fillets in complex three-dimensioze!

components,
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4 THE DAMAGE TOLERANCE ANALYSIS OF COM-
PLEX THREE-DIMENSIONAL COMPONENTS

Fuselages of the type shown in figure 10 often are designed according to the design
code [1]. This code stipulates that pre-ezisting flaws in form of close-fitting cracks
of prescribed shape and size and with most unfavorable location and orientation
should be considered in the design process. We consider as an example the damage
tolerance analysis in case of a flaw located at edge B.

By the principles of section 3 the maximum stresses are determined. The most
unfavorable initial crack orientation for edge B is such that the plane of the crack
is perpendicular to the edge. Based on our knowledge of stresses when no flaws are
present (figure 12) we select as the most critical flaw location the point of maximum
stress at edge B.

The calculated maximum stress o; (MPa) at edge B can be approximated with.

o1 = 450 — 50d (16)

where d < 3mm is the distance (mm) perpendicular to the hole boundary (hole
radius is 20mm). The stress gradient over the web thickness is small at the point of
Imaximui stress.

The crack propagation rate (m/load cycle) of a point at the crack front is gener-
ally assumed to be a function of the local value of the mode I stress intensity func-
tion A}"). The growth of the flaw is obtained from integration of crack-propagation
“laws™ to give the life of the component [2]. In critical cases the designer obviously
has to have an effective tool for accurate, efficient and reliable determination of the
mode [ edge intensity function for different crack dimensions.

4.1 Mesh design

Figure 15 shows a detail of the input data mesh used to calculate the stress intensity
functions. The crack front is divided in three sub-intervals. The mesh generator is
used to generate four lavers of elements close to the crack front. Several different
planar cracks with elliptical crack fronts (semi-axes a and b) have been analyzed.
The smallest crack size is @ = b = 1.27mm [1} and the largest is a = 3.81mm, b =
6.35mm. Different FE-models corresponding to different crack-sizes are obtained by
simply "stretching”™ the local mesh having a fixed number of elements.

4.2 Calculated edge intensity functions
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Figure 15: The scheme of the crack and the local mesh used
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Domain | 1’ vy |p=6|p=5|p=4 =3 |p=2
i 1.270 | 0.000 | 592 596 594 570 527
1 1.268 ] 0.064 | 597 594 589 567 524
1 1.264 1 0.128 | 592 | 589 | 582 | 539 520
1 1.255 1 0.192 { 534 582 574 549 514
1 1.244 1 0.235 | 579 587 567 542 507
1 1.230 { 0.318 | 570 577 559 541 493
2 1.230 1 0.318 | 574 572 562 | 530 509
2 1.135 } 0.570 |} 564 562 558 540 500
2 0.938 | 0.797 | 565 564 560 538 494
2 0.797 { 0.98% | 572 569 561 533 480
2 0.370 | 1135} 585 580 566 537 439
2 0.318 | 1.230 | 612 607 594 559 490
3 0.318 | 1.230 | 603 612 589 556 494
3 0.255 1 1.244 | 620 614 601 563 506
3 0.192 1 1.255 | 630 626 | 612 574 518
3 0.128 1 1.264 | 641 636 623 586 529
3 0.064 | 1.2658 | 650 646 634 593 541
3 0.000 [ 1.270 | 6531 654 645 610 552

Table 12: Calculated K" at different locations (z',y') on semi-circular crack front
a=b=127mm




FEA TN 166217 3l

Table 12 shows the calculated (10) edge stress intensity function h")” for a semi-
circular crack of size a = 1.2Vmm and b = 1.27Tmm. We see that for increasing p. the
maximum value of 1\'}” converges quickly, smoothly and from below. Our prac &
experience 1s that this is the case for reasonable meshes.

We see that the maximum K}l) can be computed virtually by guaranteed accu-
racy on models of this (or lLigher) geometrical complexity.

For very small crack sizes the stress intensity function ]\';1) can be roughly esti.
mated from (16) and weight function data given in handbooks [25]. Such an estimate
is based on the assumptions that crack dimensions are negligible as compared to thie
hole radius and the web thickness. For a = b = 1.27mr.: the handbook solution is
found to overestimate the calculated maximum value (p = 6) of 1\',(” with about
1007,

At the two points where the crack front intersects with the traction free surface.
K" should be zero. This follows from (5) and (7) while A1) = 0.5478 and A} =
172 The calculated values of A’;l) (table 12) though are not zero on the surface!
Reason is that the boundary lavers are very local. For y small y being the distance

to the vertex. we have

Polvniomials of low order {e.g. p = 6 and the three sub-intervals used} simypixy
cannot approximate the steep gradient (corresponding to the function y%%) of the
edze intensity function close to the two vertices. I1. case of the felded plate analysed
i section 2 the (dominating) gradient was much larger (compare figure ) and hence
easier to recover. If data for the edge stress intensity functions close to the vertex
are of interest the vertex-edge intensity factors s‘,"',) can be extracted directiv. A
procedsre s deseribed 1220

Froare 16 shows the caleulated values of 1\'5” as function of p for three elliptival
cract = with (very roughlyv) uniform stress intensities along the crack frouts. The
maxiinuin values of the calculated edge intensity functions ]\'w and ]\'}11} for v =
b= 1.2Tnan are relatively small (about 25 and 10 units respectively).
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5 COMPUTATIONAL ASPECTS OF THE h — p VER-
SION OF FEM

The goal of the h — p version computations presented is to develop a tool for reliablc
and efficient determination of any engineering data of interest in complex real-life
components.

In the present work this is obtained by using computational procedures which:

e give exponential rates of convergence in the energy norm for accuracies of
interest

e use proper postprocessing techniques, which converge as the energy. 1o calcu-

late design parameters of interest

In previous sections we have addressed these questions on special examples. In
this section we will discuss computational aspects of the h — p version of FEM.
Instead of analyzing theoretically these questions we will report the basic timing
data for the computations of the fuselage parts.

The h — p version when the mesh is properly designed can be understood as
the p-version and implemented with uniform increase of the degree p or adaptive
increase of p. The proper mesh design for the present approach is obtained using
a coarse user-prepared mesh combined with mesh generation at edges and vertices
where solution exhibit boundary lavers.

The main parts of the analysis are

a) construction of the mesh
b) computation of local and global stiffness matrices
¢) solving linear equations

d} postprocessing techniques

If the polynomial orders p of the basis functions are assigned in an adaptive mode
there also 1s.

e) computation of error indicators

Construction of the mesh. This part of the analysis is, in practical cases.
the most expensive one. The steady progress of CAD-techniques, improved mesh
generators [26] and interfacing programs tend to reduce the cost, though 3D analysis
of a complex component is still a major task today.
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5.1 Computation of element stiffness matrices

Three-dimensional p-version elements have O(p?) degrees of freedom [27) and con-
sequently the element stiffness matrices have O(p®) entries. If a standard Gaussian
integration scheme with O(p®) points is used, the computation of element stiffness
matrices require O(p®) operations. With such an integration scheme the relative
cost of computation of element stiffness matrices will be very significant.

A fast method requiring only O(p®) operations is used in STRIPE. The method
applies for 3D finite elements of arbitrary shape, arbitrary (practically) Gaussian
integration order used, and for linear and nonlinear analysis. The reduction in the
number of operations is due to a decomposition of the integration scheme. First
O(p?) basic 3D integrals are determined using standard Gaussian integration. The
O(p®) entries in the stiffness matrix are obtained as a linear combination of the basic
integrals.

For 3D brick elements, the speedup in Cpu-time obtained as compared tc the
standard scheme [27] requiring O(p®) operations, is a factor 6 to 100 for p=4 to 10
(if (p + 2)* Gaussian integration points are used). With this integration scheme the
CPU-times for computation of element stiffness matrices were found to be negligible
(1-2 % of total CPU-time) in all cases with uniform p studied here.

5.2 Solving linear equations

Direct methods (as opposed to iterative methods) for solution of the resulting set
of linear equations are computationally most efficient (in terms of Cpu-time ) for
small and medium large problems (< 10° degrees of freedom, say). Reasons are that
in most cases several loading cases (right hand sides) are of importance. For thin
shell structures the performance of iterative solvers available are unsatisfactory. The
direct solver used in STRIPE is an out-of-core envelope. with domain decomposition
ordering.

For practical problems having of the order 10° degrees of freedom about 90% of
the total CPU-time is spent in the (direct) equation solution phase. This is a similar
ratio as for the h-version of FEM.

Table 13 summarizes data for the computational resources needed to analyze
the fuselage. CPU-times given include, in cases when a direct solver were used, the
analyses for p = 2,3,4 ... Pmar-

Data given in table 13 apply for one loading case. Increase in CPU-time is a few
percent per loading case for the direct solver and about 50% per loading case for the
iterative solver. For damage tolerance assessment, several (about 6-10) crack sizes
need be analyzed. For the case with the crack at edge B solutions for ten different
crack sizes can be obtained with less than a three-fold increase in CPU-time. The
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R Stresses | Crack at | Entire Half
at edges | at fillets | edge B | fuselage | Fuselage
figure 13 | figure 14 | figure 15 | figure 10a | figure 10a
Pmar 5 6 6 7 8
No of Elements 778 778 610 5510 2755
N (kdofs) 66 103 86 1268 853
CPU-times (hrs)
.CRAY-XMP/18 2 5 2 - -
IBM 6000/550 - - 5 36 20
Disc (Gbyte) 2 4 2 4 2

Table 13: Model dimensions and computational resources needed to analyze fuselage
frame. Direct equation solver was used for models consisting of less than 1000 finite
elements

saving in Cpu-time is obtained by using a substructuring technique.

CPU-times reported in table 13 are of the order a few hours for problems having
< 10° degrees of freedom. The error in pointwise stresses, stress intensity factors
etc. though are exceptionally small for the p,...-levels reported. From a practical
point of view a lower py,, could have been used. The computational cost is small
compared to the cost of preparing the models.

5.3 Super computer performance and large scale problems

The performance of the h —p version will strongly depend on the computer archi-
tecture used. Data reported in table 13 apply to a single-processor supercomputer
and a powerful work station. The h — p version leads to dense systems of lincar
equations and a very efficient utilization of the processors. For the work station
IBM 6000/RS-550 we obtain speeds of 50-60 MFLOPS independent of problem size.
For vectorprocessors (as the CRAY-XMP) the speed increases with the problem
size. For the problem having 103000 degrees of freedom the average (for p=2.3.1
and 5) speed is 135 MFLOPS during equation solution on a single processor CRAY'-
XMP/13. On a 4-processor CRAY-XMP a speedup factor of 3.3 has been measured.
Note that these performance figures apply to cases with unstructured meshes leading
to exponential convergence rates.

For large problems having of the order 10° degrees of freedom the disc storage
needed becomes prohibitive if direct solvers are used. The preconditioned con-
jugate gradient (PCG) method is perhaps the most efficient iterative method for
solving structural mechanics problems. The p-version provides in a natural way,
a preconditioner (in principle the p = 1 approximation) for the conjugate gradi-
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ent method. Combined with domain decomposition techniques, powerful iterative
solvers for large scale analysis may be developed. The iterative solver [28], [29] was
used in the present analyses.

Table 13 briefly summarizes computational resources needed to analyse the com-
plete fuselage. Obviously very complex problems may be reliably solved on powerful
work stations,

State of the art parallel computers of today may have hundreds of processors
where each individual processor has similar performance as the single processor
work station used here. On such computers reliable analyses of entire aircrafts
might become feasible. Models of this size and complexity are not needed for reliable
computation of local stresses etc. though the concept of using one large model might
offer many advantages in an industnal environment.

Postprocessing techniques. The additional cost for computation of stress
intensity factors etc. are well below 1% (per loading case) of the time needed to
analvze the fuselage parts.

5.4 Computation of error indicators

Results above are all for the case when the polynomial order p is uniformly increased
in a!l elements. The used elemental shape functions are of hierarchical type (i.e. of
nodal. edge. face and internal shape functions [27]) which allow the flexible change
of the degrees of elements and keep the conformity. Thus, the adaptive selection of
element shape functions is possible. Here we report some results when the adap-
tive scheme is based on the energy norm and the local elemental error indicators
characterize the contribution of various shape functions to the energy error. The
notation of the degree p..: now means the maximal degree of any of the used shape
functions.

The cost for calculating the error indicators is significant. If the element stiffness
matrices are available, the error indicators can be calculated with a low cost. By
using the fast method for computation of stiffness matrices the error indicators can
be calculated with a low cost.

As an example we consider the analysis of the stresses at the fillets with the 773
element mesh. Solutions for uniform p=6 and self-adaptive solutions to pn.:=9 are
derived. The adaptive scheme used is described in [30].

The time needed for computation of error indicators and (all) element stiffness
data for the self-adaptive p,...=9 solution is 10% of the total CPU-time needed.
Table 14 gives the energies of the solutions.

We note that the energy convergence with the self-adaptive solution scheme is
fast in this case. The adaptive scheme gives, for example, with 25000 degrees of
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M

p N Nk | N | llalke
2 12480 1.7828 | 8247 1.7798
31 22068 | 1.8112 | 9745 | 1.8023
4| 39675 | 1.8281 | 12886 { 1.8204
5| 65676 | 1.8356 | 16107 ; 1.8287
6 1102894 | 1.8394 | 20133 | 1.8348
7 25166 | 1.8404
8 31457 | 1.8461
9 39321 § 1.8519

Table 14: Energies in solutions for 778-element model analyzed using uniform
p-extensions and p-adaptive extensions. Data given are scaled with a factor 107°

freedom an energy error which is smaller than that obtained for the uniform p = €
solution which has 103000 degrees of freedom. Further, the self-adaptive scheme
requires approximately less than half the disk space needed for a uniform scheme.

In general the error in energy norm is in itself of less interest but is a good tool
for degree selection p if combined with the accuracy checks for data of interest. The
CPU-time needed is a more relevant measure of the eflectiveness than the number
of degrees of freedom used.

In figure 17 we show the calculated von Mises stress at the fwe most critical
points as function of the p-level for the cases with uniform and self-adaptive solution
schemes. The figure shows that considerable savings in CPU-time might be obtained
bv using th- self-adaptive solution scheme.
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Figure 17: Convergence in pointwise stress at the two most critical points in frame
fuselage
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6 CONCLUDING REMARKS

We have shown effective approaches for reliable analysis of complex three-dimensionai
aircraft components with virtually guaranteed accuracy. The main tool was the h—p
version of the finite element method combined with new theoretical approaches.

We see that

a)

b)

e}

£

Reliable and accurate accuracy assessment for any computational data of in-
terest, for example the stress intensity factors and functions, stresses etc. is
available.

The design of the mesh is very different than that for the h-version. The
mesh has to be strongly refined. Refinement of a geometrical mesh is rec-
ommended. The construction of the mesh relatively simple when some basic
rules are obeved. These rules can relatively easy be implemented in a 3D mesh
generator.

The used degrees p of the elements are in the range 4-8 and the rate of conver-
gence in any data of interest is exponential in the range of practical accuracy.

Computation of local element stifiness matrices could be costly if not properiy
implemented. If this computation is properly implemented experience show
that this part of the analysis requires a small percentage of the entire Cpu-
time.

Although the global stiffness matrix is much less sparse than the matrix in
the classical h-version. experience shows that the computational cost for an
achieved accuracy is still very favourable compared with the classical h-version.
When a reliable and accurate accuracy assessment of any data of interest is
required or when high accuracy is needed the h — p version is the only practical
alternative.

A direct equation solution technique is preferable for problems having up to
50000 to 100000 degrees of freedom especially when several right hand sides
(loads) are present. Powerful iterative solvers which are based on the p-version
techniques and the PCG-method may be used to efficiently solve complex
problems having several million degrees of freedom on todays supercomputers.

New methods for the computation of the stress intensity functions and fac-
tors and stress concentration factors were proposed, thoroughly analysed and
implemented. The rate of convergence is as the rate of the energy. i.e. as
the square of the convergence rate of the error measured in energy norm. In
the following papers [5],[6),[7], [8].[9).[10] we elaborate in detail on these ap-
proaches.
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