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The Interaction Between
Knowledge and Practice in the Acquisition of Cognitive Skills*

Stellan Ohlsson
Learning Research and Development Center
University of Pittsburgh

Abstract

The role of prior knowledge in skill acquisition is to enable the learner to detect and to
correct errors. Computational mechanisms that carry out these two functions are
implemented in a simulation model which represents prior knowledge in constraints. The
model learns symbolic skills in mathematics and science by noticing and correcting
constraint violations. Results from simulation runs include quantitative predictions about
the learning curve and about transfer of training. Because constraints can represent
instructions as well as prior knowledge, the model also simulates one-on-one tutoring. The
implications for the design of instruction include a detailed specification of the content of
effective feedback messages for intelligent tutoring systems.
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THE ROLE OF KNOWLEDGE IN LEARNING

Learning and knowledge are doubly related. On the one hand,
knowledge is the outcome of learning. On the other hand, knowledge is
one of the inputs into the learning process. New skills are constructed
within the context provided by prior knowledge. This is no less true of
technical domains such as mathematics, science, and engineering than of
common sense domains such as cooking and travel planning.

Cognitive scientists from Ebbinghaus (1964/1885) to VanLehn
(1982) have sought to escape the complexities of prior knowledge by
studying situations in which such knowledge plays a minimal role. This
simplification has payed off theoretically. Following the pioneering pa-
pers by Anzai and Simon (1979) and by Anderson, Kline, and Beasley
(1979) several computational models of the acquisition of cognitive
skills in the absence of prior knowledge have been proposed (e. g.,
Anderson, 1983; Holland et al., 1986; Langley, 1987; Ohlsson, 1987a;
Rosenbloom, 1986; VanLehn, 1990). These models assume that proce-
dural knowledge forms a closed loop: Problem solving methods gener-
ate problem solving steps which, in turn, generate the experiences from
which new problem solving methods are induced. Simulation models of
this kind constitute an important advance over the mathematical and ver-
bal learning theories of the past, but the learning mechanisms proposed
within this paradigm (chunking, composition, discrimination, general-
ization, grammar induction, subgoaling, etc.) do not explain the role of
prior knowledge in learning. There is no point along the method-step-
method loop at which domain knowledge can impact the learning pro-
cess.

Empirical research of knowledge-based skill acquisition began with
Judd's (1908) study of the skill of throwing darts at underwater targets
with and without knowledge of the principle of refraction. Both he and
later Katona (1940) reported dramatic effects of knowledge about under-
lying principles on skill acquisition. Kieras and Bovair (1984) also
found such an effect, but other recent studies have found wesker effects
or no effect (e. g., Gick & Holyoak, 1983; Smith & Goodman, 1984).
Educational researchers frequently report that instruction in the relevant




domain knowledge does not guarantee correct action (e. g., Resnick &
Omanson, 1987; Reif, 1987). On the other hand, inappropriate prior
knowledge--so-called misconceptions--is quite likely to interfere with
successful problem solving (Confrey, 1990). The empirical results indi-
cate that we do not yet understand how prior knowledge interacts with
skill acquisition well enough to ask the right experimental questions.

Theoretical analysis of the function of prior knowledge in skill ac-
quisition has hardly began. Ohlsson (1987b) proposed a computer
model which explained how inferential knowledge about the domain en-
ables a learner to find a more efficient strategy for a task which he or she
already knows how to solve. The hypothesis behind this model was that
domain knowledge allows the learner to reason about possible simplifi-
cations of his or her current strategy. The model simulated speed-up of a
simple reasoning strategy, but it threw no light on the role of domain
knowledge in the initial acquisition of that strategy.

The purpose of the work reported here is to explore the hypothesis
that the function of knowledge in initial skill acquisition is to enable the
learner to detect and correct errors. This hypothesis is embodied in a
running simulation model which uses prior knowledge to learn cognitive
skills from unguided practice. The theory predicts the negatively accel-
erated practice curve observed in human learning, throws some new
light on the problem of transfer of training, and suggests an analysis of
tutoring with some very specific implications for the design of intelligent
tutoring systems.

Throughout this chapter, the terms "domain knowledge" and "prior
knowledge" refer to declarative knowledge, while the terms "cognitive
skill", "problem solving method", "decision rule”, and "mental proce-
dures" refer to procedural knowledge. Both common sense and philos-
ophy have long distinguished between theory and practice, between
knowing that and knowing how, but the particular formulation of this
distinction used here is imported from Artificial Intelligence (Winograd,
1975).

Procedural knowledge is prescriptive and use-specific. To a first
approximation, it consists of associations between goals, situations, and
actions. Examples of procedural knowledge are place-value algorithms
for arithmetic, methods for electronic trouble shooting, explanatory




strategies in biology, and the procedure for constructing structural for-
mulas for organic molecules. Declarative knowledge, on the other hand,
is descriptive (as oppcsed to prescriptive) and use-independent. To a
first approximation, it consists of facts and principles. Examples of
declarative knowledge are the laws of the number system, the general
gas law, Darwin's theory of evolution, and the theory of the co-valent
bond. The function of procedural knowledge is to control action; the
function of declarative knowledge is to provide generality. Intelligent
behavior requires both types of knowledge (Anderson, 1976;
Winograd, 1975).
) If the two types of knowledge are distinct, how do they interact? In
particular, if declarative knowledge is use-independent and distinct from
procedures, then how does it influence action? The problem investigated
in the research program summarized in this chapter is how (previously
learned) declarative knowledge affects the construction of (new) proce-
dural knowledge.

A FUNCTIONAL THEORY OF SKILL ACQUISITION

Learning happens during problem solving; to learn is to adapt to the
structure of the task environment; learning is triggered by contradictions
between the outcomes of problem solving steps and prior knowledge.
These three principles imply a particular functional breakdown of skill
acquisition.

Principle 1: Learning as Problem Solving

During practice, the learner is faced with problems which he or she
does not yet know how to solve--that is why he or she is practicing.
Practice is problem solving and skill acquisition is the encoding of the
results of problem solving for future use. People solve unfamiliar prob-
lems with so-called weak methods, i. e., problem solving methods
which are so general that they can be applied even with a minimum of
information about the task environment. The weak methods people have




been observed to use include analogical inference, hill climbing, for-
werd search, means-ends analysis, and planning.

Weak methods are general but inefficient. The function of weak
methods during practice is not to produce complete or correct problem
solutions, but to generate task relevant behavior. Activity vis-a-vis the
task provides the learner with the opportunity to discover the structure
of the task environment. Cognitive skills are constructed by interpreting,
storing, and indexing such discoveries so that they can be retrieved and
applied later. The function of weak methods is to provide learning op-
portunities, not to solve problems.

Individual weak methods were formalized in the late fifties and
early sixties (Feigenbaum & Feldman, 1963), but the general category
of weak methods was first identified by Newell (1969, 1980). Laird
(1986) has suggested that there exists a universal weak method from
which all other weak methods can be derived.

The idea that learning is problem solving and that the function of
weak methods is to provide learning opportunities is implicit in the con-
cept of trial and error and thus traces its roots back to behaviorism.
Although first formalized in a computational model by Anzai and Simon
(1979), this idea is central to several recent models of learning (e. g.,
Anderson, 1986; Holland et al., 1986; Rosenbloom, 1986). In the field
of machine learning, the notion that learning occurs en route to an an-
swer rather than after completion of a practice problem has been em-
phasized by Mostow and Bhatnager (1987, 1990) in their work on
adaptive search.

Principle 2: Learning as Adaptation

Weak methods are inefficient because they are general. A domain-
specific cognitive skill is efficient because it reflects the structure of the
relevant task environment. Skill acquisition begins with maximally gen-
eral procedures (weak methods) and ends with domain-specific skills.
Learning is gradual adaptation.

The process of adaptation cannot continue indefinitely. The task
environment only contains so much structure and when all the structure
has been absorped, the skill cannot get any more specific or better




adapted. In complex and irregular domains, expert strategies are be-
tween weak methods and algorithms in specificity. They guide behavior
without fully determining it and considerable uncertainty can remain
even at the highest level of expertise.

The idea that learning proceeds from the general to the specific is
counterintuitive, because it is common sense that learning begins with
the concrete and the specific and moves towards the general. The com-
mon sense theory has little support in systematic research. Formal anal-
yses of induction (e. g., Angluin & Smith, 1983) have revealed that
many induction problems are NP-complete and that noisy input cripples
most induction algorithms. David Hume was right; induction does not
work. Knowledge must be constructed in some other way.
Specialization of pre-existing, general structures is one alternative. The
particular version of this idea in which learning proceeds from general
methods to task-specific methods was implicit in early computational
models (e. g., Anzai & Simon, 1979), but was to the best of my knowl-
edge first stated in two papers by Langley (1985) and by Anderson
(1987).

The idea that learning is adaptation to the environment can be for-
mulated in many different ways, as a comparison between Hull (1943),
Piaget (1971), and Anderson (1990) demonstrates. Until recently, psy-
chologists lacked a formal method for describing the learner's environ-
ment independently of the learner. This threatened to make the principle
of adaptation circular, or at least difficult to apply. The information pro-
cessing approach is a major breakthrough because it provides a formal
description of task environments. Specifically, an environment is de-
scribed as a search space (or problem space; Newell & Simon, 1972).
The organism is then naturally described as a strategy for traversing that
space. Adaptation has a very definite meaning within this formalization:
A given strategy is adapted to a particular task environment in inverse
proportion to the amount of search required by that strategy to find a
path from the initial state to the goal state. A maximally adapted strategy
is one which leads to the goal without extra or unnecessary steps.!

lin an alternative approach, Anderson (1990) describes the environment in terms of
its statistical regularities. Many memory phenomena follow from the assumption




Prin:iple 3: Learning as Conflict Resolution

Novices make many errors; that is why we call them novices.
Experts do not; that is why we call them experts. The weak methods
employed by novices produce errors because they are overly general,
causing problem solving steps to be performed in situations in which
they are not appropriate. The task-specific skills of experts do not gen-
erate errors because they constrain actions to situations in which they are
appropriate. The process of adapting a general method to a particular
task environment is a process of gradually eliminating errors. Error
elimination consists of two subprocesses: error detection and error cor-
rection.

Error Detection. Learners can detect their errors in three ways:
by observing environmental effects, by self-monitoring, and by being
told by others (Reason, 1990, Chap. 6). Some task environments pro-
vide direct feedback about errors. If the unknown device exploded when
the red button was pushed, pushing the red button was an error. Other
task environments do not provide feedback of this sort. In such envi-
ronments, learners can detect their errors by checking new conclusions
against their prior knowledge. Incomplete or incorrect procedural
knowledge is highly likely to generate conclusions or problem states that
contradict what the learner knows is true of the domain.

As an illustration, consider the following everyday situation: You
are driving to an unfamiliar location with the instruction to follow route
X north and make a right-hand turn onto Y-street. You are looking for
the turn and not finding it. Did you overshoot the turn or did you not go
far enough? The only way to decide whether you missed your turn is to
know some landmark (e. g., a bridge) which is further out on route X
than the turn onto Y-street. (A thoughtful friend inciudes such a land-
mark in his or her instructions.) When you see the landmark, you know
that you missed your turn. The contradiction between the prior knowl-

that memory is adapted to those regularities (Anderson & Schooler, 1991). Anderson
(1993) applies this approach to skill acquisition as well.




edge that "Y-street is before the bridge" and the observation "here is the
bridge now" allows you to recognize that you have made a mistake.

Technical skills often apply in symbolic task environments in which
contradictions between outcomes of problem solving steps and prior
knowledge constitute the only indicators of errors. Mathematical sym-
bols do not complain about being inserted into false equalities, unsolv-
able equations, or incorrect calculations, so a good learner checks his or
her calculations. Checking, say, a subtraction by adding the difference
and the subtrahend requires the knowledge that the sum of the difference
and the subtrahend ought to equal the minuend. Structural formulas for
organic molecules do not beep when the laws of the co-valent bond are
violated. Noticing an error in a structural formula requires the knowl-
edge that each bond ought to be associated with exactly two electrons,
that the total number of electrons cannot exceed the number of valence
electrons for the molecule, and so on. The more knowledge, the higher
the probability that the learner can detect his or her errors.

Error Correction. The detection of a contradiction between a
new conclusion and prior knowledge leads to processes that aim to re-

store consistency by revising the relevant procedural knowledge. If the
execution of action A in situation Sl leads to a new situation 82 which

violates some principle of the domain, then the mental decisinn proce-
dure that chose A in S is faulty. The obvious correction is to constrain

the procedure so as to avoid executing A in situations like S;. This re-

quires that the learner identifies the conditions that caused the error, i.
e., those properties of S, that guaranteed that the error would occur if A
were executed. Given knowledge of those conditions, the mental proce-
dure can be revised so as to avoid similar errors in the future.

The principle that learning is error correction superficially resem-
bles Thorndyke's Law of Effect which says that actions with negative
consequences are gradually removed from the learner's behavioral
repertoire (while actions with positive consequences are strengthened).
However, the two principles are distinct, because a cognitive conflict is
not necessarily associated with a painful or unpleasant outcome, as the
examples given previously illustrate. The error correction principle is
also superficially related to the hypothesis that learning is driven by im-




passes, i. €., situations in which existing procedural knowledge is in-
sufficient to decide what to do next (Newell, 1990; VanLehn, 1988).
However, impasses are not errors. An impasse is a situation in which
there is insufficient information to make a choice, while an error is a bad
choice.

The idea that cognitive change is triggered by contradictions and in-
consistencies has been suggested repeatedly in the cognitive sciences. It
is central to several recent cognitive models of learning. Holland et al.
(1986) put prediction-based evaluation of knowledge at the center of
learning: Knowledge is continuously applied in predicting events and
rules that lead to wrong predictions are modified. Schank (1982, 1986)
has proposed the similar idea that learning is triggered by expectation
failures. In developmental psychology, Piaget (1985) designated cogni-
tive conflict, which he called disequilibrium, as the driving force of
cognitive development. Empirical investigations support this hypothesis
(Murray, Ames, & Botvin, 1977). Social psychologists like Festinger
(1957) have proposed that cognitive dissonance causes individuals to
revise their beliefs in order to restore consistency (see Abelson et al.,
1968, for an overview of cognitive consistency theory). The hypothesis
that belief revision serves to maintain consistency has also been pro-
posed by philosophers (Quine & Ullian, 1978) and by science educators
(Hewson & Hewson, 1984; Posner et al., 1982).

Machine learning researchers have build systems that learn by re-
solving conflicts (Hall, 1988; Kocabas, 1991; Rose & Langley, 1986)
and by explaining errors (Minton, 1988). The problem of what consti-
tutes a rational response to a contradiction has been studied in logic and
Artificial Intelligence under the rubric non-monotonic logic (Gardenfors,
1988; McDermott & Doyle, 1980). Finally, the idea that theory devel-
opment in science is driven by contradictions between theory and data
have been formulated in different ways by Duhem (1991/1914), Kuhn
(1970), and Popper (1972/1935). The relevance of these philosophers
for psychology is highlighted by Berkson and Wettersten's (1984) at-
tempt to recast Popper's philosophy as a learning theory. In short, the
idea of cognitive change as a response to conflict, contradiction, or in-
consistency has been proposed by so many researchers independently of




each other and in so many different fields that it deserves to be recog-
nized as one of the great unifying principles of the cognitive sciences.

Summary

During practice the learner continuously monitors his or her
progress by comparing the current state of the practice problem to his or
her prior knowledge about the domain. A problem state that contradicts
something that is known to be true of the domain indicates that an error
has been made. When such a contradiction is noticed, the current prob-
lem solving method is constrained so as to avoid making similar errors
in the future. As practice progresses, the general method becomes more
and more constrained and better and better adapted to the task environ-
ment. Eventually it has become transformed into the correct domain-
specific skill and ceases to generate errors.

According to this theory, prior knowledge impacts skill acquisition
in two ways. First, knowledge allows the learner to detect his or her er-
rors. Facts and principles of the domain generate implications that an in-
complete or incorrect skill is likely to violate or contradict. The more
knowledge the learner has, the higher the probability that he or she will
be aware of the contradictions and conflicts generated by a faulty solu-
tion or a mistaken problem solving step.

Second, prior knowledge allows the learner to identify the condi-
tions that caused the error. Finding the cause of an error might require
complicated reasoning about the domain. The more knowledge the
learner has, the higher the probability that he or she accurately identifies
the cause, which in turn is a prerequisite for successful error correction.

In short, the theory put forth here claims that the function of acquir-
ing new skills through practice consists of three main subfunctions--to
generate task-relevant behavior, to identify errors, and to correct errors--
each of which, in turn, can be analyzed into subfunctions. The func-
tional analysis *~ summarized in Figure 1. Although the theory supports
qualitative arguments and explanations, the derivation of quantitative
behavioral predictions requires a working information processing sys-
tem.
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I. Learn to do unfamiliar task

A. Generate task-relevant actions

1. Apply forward search
a. Retrieve possible actions
b. Select action
c. Execute action

B. Learn from erroneous actions

1. Detect errors
a. Check consistency between current problem
state and prior knowledge after each action

2. Correct error

a. Extract information from error
i. Identify the conditions under which a
particular action is incorrect

b. Revise current task procedure
i. Constrain procedure so as to avoid that
action under those conditions

Figure 1. The functional analysis of learning from error.




A COMPUTATIONAL MODEL

To move from a functional theory to a working model one must
specify particular representations and processes that can compute the
functions described in the theory. In particular, an implementation of the
present theory requires (a) a performance mechanism, including a repre-
sentation for procedural knowledge, (b) a representation for declarative
knowledge, (¢) a mechanism for detecting errors, and (d) a mechanism
for correcting errors. The particular model described here is called the
Heuristic Searcher (HS).

A Standard Performance Mechanism

Memory Architecture. HS has three memory stores. The
working memory holds the model's knowledge state, corresponding to
the learner's perception of the current state of the practice problem. The
procedural memory holds the model's procedural knowledge, corre-
sponding to the learner's previously acquired skills. The long-term

 memory holds the model's declarative knowledge, corresponding to the
learner’s prior knowledge about the domain. There is no separate goal
stack. Goals are represented in working memory.

Procedural Knowledge. Procedural knowledge is represented
in so-called production rules (Newell & Simon, 1972), i. e., rules of the
general form

Goal, Situation --> Action,

where Goal is a description of what the learner believes he or she is
supposed to achieve in the practice problem, e. g., "construct the struc-
tural formula for C2H50H,” and Situation is a description of a class of
situations, €. g., "situations in which the carbon skeleton of the
molecule has been completed but no other atoms have been connected
yet." Formally speaking, both Goal and Situation are patterns, i. e.,
conjunctions of elementary propositions which may or may not contain
(universally quantified) variables.

12




The action on the right-hand side of a production rule is a problem
solving step that the model knows how to perform, e. g., "connect the
oxygen atom to one of the carbon atoms”. Actions have applicability
conditions that have to be satisfied before they can be applied. For ex-
ample, an oxygen atom cannot be attached to a carbon atom unless there
is a carbon atom for it to be attached to. Each action is implemented as a
piece of Lisp code that revises the current problem state by deleting
some propositions and adding others. Syntactically, the actions are so-
called Strips operators (Fikes & Nilsson, 1971). Psychologically, the
actions correspond to components of the practice problem which are un-
problematic for the learner.

Each production rule is a single unit of procedural knowledge, cor-
responding to a single problem solving heuristic. The skill required to
solve problems of a particular type, e. g., to construct structural formu-
las in chemistry, consists of a collection of interrelated rules. All pro-
duction rules are stored in the single production memory, without
structural divisions between different skills.

Operating Cycle. The model solves problems by searching a
problem space. The content of the working memory at the time the sys-
tem is initialized is the initial state of the search space. The top goal im-
plicitly specifies the goal state. The ensemble of operators consists of
the set of actions the model has been given as input. In each cycle of op-
eration, the Goals and Situations of the rules are matched against the
working memory with a version of the RETE pattern matching algo-
rithm developed by Forgy (1982). If a rule matches, its action is exe-
cuted.

If more than one rule matches the current state, each matching rule
is evoked and one new descendant of the current state is generated for
each evoked rule. The entire search tree is saved in memory. Each cycle
begins with the selection of which search state to install as the current
state for that cycle. In some applications of HS, the selection of the cur-
rent state is based on a task specific evaluation function, in which case
the model performs best-first search. If the evaluation function has the
right properties and, in addition, the system checks for repeated occur-

13




rences of the same state2, then the model executes the A* algorithm
(Pearl, 1984, p. 64). In the absence of any evaluation function, the state
to expand next is selected randomly among the immediate descendants
of the current state, in which case the model performs depth-first search.
In psychological terms, the performance mechanism correspond to the
hypothesis that people respond to uncertainty by thinking through alter-
native actions before deciding what to do next.

A Representation for Declarative Knowledge

The function of procedural knowledge is to control action. The
function of declarative knowledge is not equally obvious. Philosophical
discussions often assume that the function of declarative knowledge is
to provide descriptions of the world ("the cat is on the mat"), predictions
about future events ("the sun will rise tomorrow"), or explanations ("it
is snowing, because the temperature fell”). The epistemological, logical,
and semantic riddles associated with these functions have exercised
thinkers in a variety of disciplines for centuries. _ '

The HS model is based on a different view of the nature and func-
tion of declarative knowledge. Declarative knowledge is not used either
to describe, predict, or explain but to circumscribe a set of states of the
world. The unit of declarative knowledge is a constraint. Constraints
can be interpreted descriptively, i. e., as circumscribing the set of pos-
sible states of the world. For example, the law of conservation of mass
claims that the mass of the reactants in a chemical experiment is equal to
the mass of the reaction products. Mass is neither created nor destroyed
in a chemical reaction, so the mass of the inputs is always equal to the
mass of the outputs. The point of the mass conservation law is that it
circumscribes situations in which mass is conserved, which are possi-
ble, and separates them from situations in which mass is not conserved
and that it rules out the latter as impossible. Figure 2 shows the con-
straint interpretation of the mass conservation law.

Constraints are not limited to representing abstract principles like
the law of conservation. Particular facts are also constraints. For exam-

2This facility is computationally expensive and is usually switched off.
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E le 1; A scientific principl

Idiomatic English: Energy cannot be created or des-
troyed.

Constraint formulation: If the mass of the reactants for a
chemical experiment is M, and
the mass of the products is M,
then M| must be equal to M,.

Formal representation: (Reactants R) (Mass R M)

(Products P) (Mass P M2)
** (Equal Ml M2)

Figure 2. Encoding a scientific principle as a constraint.

ple, the fact that alcohol molecules have an OH-group corresponds to
the constraint that a structural formula for an alcohol had better have an
OH-group somewhere. Figure 3 shows the constraint interpretation of
this fact.

Constraints can also be interpreted prescriptively, i. e., as circum-
scribing the set of desired states of the world. The ordinance that one
should not drive along a one-way street in the wrong direction is a con-
straint. Specifically, the fact that Fifth Avenue is one-way in the west-
erly direction corresponds to the constraint that if you are driving on
Fifth Avenue, you had better be heading west. It is not impossible to
head east, it is merely undesirable. Figure 4 shows the constraint inter-
pretation of this ordinance.

It is a mistake to try to classify individual constraints as either de-
scriptive or prescriptive. All constraints can be interpreted in both ways,
because the two interpretations determine each other. It is desirable that
a chemistry experiment satisfies the constraint that the mass of the reac-
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Idiomatic English: Every alcohol molecule has an
OH-group.
Constraint formulation: If X is an alcohol molecule, then
it must have an OH-group.
Formal representation: (Isa X molecule)
(Substance X ALCOHOL)
** (IsaY OH-GROUP)
(Part-of Y X)

Figure 3. Encoding a scientific fact as a constraint.

tants is equal to the mass of the reaction products. If this is not the case,
then some error was committed in the execution of the laboratory proce-
dure, i. e., some mass was accidentally lost or the experiment was con-
taminated in some way (Gensler, 1987). The constraint expressed in the
mass conservation law acquires a prescriptive function because it can be
interpreted descriptively; a laboratory procedure ought to conform to it
precisely because it is true. The descriptive and prescriptive aspects of
constraints are inseparable.

The main contribution of the HS model is a formal representation
for constraints and a set of processes for using them. A constraint C is
represented as an ordered pair

<Cr’ CS>

where C, is a relevance criterion, i. ¢., a specification of the circum-
stances under which the constraint applies, and Cj is a satisfaction cri-

terion, i. ., a condition that has to be met for the constraint to be satis-
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Example 3: An evervday fact

Idiomatic English: Fifth Avenue is a one-way street
heading west.

Constraint formulation: If someone is driving on Fifth
Avenue, then he or she ought to
travel westwards.

Formal representation: (State X DRIVING)

(Location X FIFTH-AVENUE)

** (Direction X WEST)

Figure 4. Encoding an everday fact as a constraint.

fied. To continue the traffic example, if Fifth Avenue is one-way in the
westerly direction, then "driving on Fifth Avenue" is the relevance cri-
terion and "is heading west" is the satisfaction criterion. If I am not on
Fifth Avenue, the direction of my travel is not constrained by this ordi-
nance, but when I am on Fifth, then I had better be driving west rather
than east. In the mass conservation example, "Ml is the mass before the
reaction and M, is the mass after the reaction"” is the relevance criterion,
while the equality "M = M," is the satisfaction criterion.

The double star connective (**) that appears in Figures 2-4 is not a
symbol for logical implication. Constraints are not inference rules; they
do not generate conclusions. Nor are they production rules; they do not
fire operators. The semantics of the double star connective is similar to
the meaning of "ought to", "had better”, and related phrases. The inter-
pretation of a constraint <C, Cg, is that whenever C, is the case, C

ought to be the case as well (or else something has gone awry).
Syntactically, both C_ and Cg are patterns, i. e., conjunctions of

propositions similar to the condition side of a pfoduction rule.
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The HS model does not have any mechanism for acquiring or revis-
ing its declarative knowledge. The constraints are input by the user and
they stay unchanged throughout a simulation run. The purpose of the
constraints is to facilitate the detection and correction of errors.

A Mechanism for Error Detection

At the beginning of each operating cycle, all production rules are
matched against working memory, the rules with matching condition
sides are evoked, the actions of those rules are executed, and new
problem states thus generated. Each new state is matched against all the
available constraints. (The match is computed with the same pattern
matcher which matches the production rules.) Constraints with non-
matching relevance patterns do not warrant any action on the part of the
system, because they are irrelevant. Constraints which have matching
relevance patterns and also matching satisfaction patterns are ignored as
well. The new state is consistent with the those constraints so no action
_ is required. On the other hand, if a constraint with a matching relevance
pattern has a non-matching satisfaction pattern, then the new state vio-
lates that constraint and some response or action is called for. Such a
constraint violation signals that something is wrong with the procedure
that generated the current state; an error has been committed.

Specifically, consider a rule R with goal G and a conjunction S of
situation features in its left-hand side and a single action A in its right-
hand side,

R: G, S-->A,
and a constraint C with relevance pattern C_ and satisfaction pattern C,
C = <Cr’ CS>,

where both C_ and C; are conjunctions of situation features. In particu-
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lar, let us assume that Cr and Cs each consists of two features:

C, = C &C,"

C, = Cg &C".

Finally, let us assume that the effect of action A is to add the conjunction
of C," and C' to the current problem state, i. e.,

A = Add[C," & C].

If a learner with rule R and constraint C encounters a problem state
S described by

s&c,,

then the left-hand side of R is satisfied because S is present, so the rule
will be evoked and action A executed. The effect is that C." and C’ are

added to Sy, yielding a new problem state S, described by
S&C ' &C"&C.

In this problem state, both Cr’ and Cr" are present, sO Cr matches, i.
e., the constraint is relevant. Although CS' is present, Cs" is not, so Cs
is violated; hence, doing A in situation S, was an error.

In principle, there are two possible interpretations of the constraint
violation: The fault might lie either with the procedural knowledge--the
rule--or with the declarative knowledge--the constraint. Because HS
was designed to model skill acquisition, as opposed to the acquisition of
declarative knowledge, it assumes that the rule rather than the constraint
is at fault.
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A Mechanism for Error Correction

A constraint violation is a signal that the procedural knowledge that
generated the current problem state is faulty and needs to be revised. HS
assumes that the fault lies with the last rule to fire. The problem of how
to learn from the constraint violation can be stated as follows: Given
that rule R,

R: G, S-->A,

was applied to state S, and that it generated state S, and that S, violates

constraint C, how should the rule be revised? The purpose of the revi-
sion is to avoid similar constraint violations in the future. The learning

mechanism in the HS model accomplishes this by finding the cause of
the constraint violation, i. e., the properties of state S, that were re-

sponsible for the error, and revising rule R so that it does not apply un-

der those conditions. The learning mechanism finds the relevant proper-
ties of S; by regressing the violated constraint through the rule with a

variant of the standard regression algorithm used in many A. I. systems
(Nilsson, 1980, p. 288).

More specifically, rule R is replaced with two new rules R' and
R", representing two different revisions of R. The purpose of the first
revision is to constrain R so that the new rule will apply only in situa-
tions in which constraint C is guaranteed to remain irrelevant. This is
accomplished by regressing the relevance pattern through the rule.
Continuing the example from the previous subsection, regressing the
relevance pattern C, = (C,' & C,") through the operator A = Add[C."
& Cs'] yields Cr' as the only output (see Nilsson, 1980, p. 288, for an

explanation of the regression algorithm). The first new rule is con-
structed by adding the negation of the output from the regression to the
original rule:

R: S &notC > A
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This rule applies only in those situations in which the constraint is guar-
anteed to remain irrelevant if action A is executed. Psychologically, the

rule corresponds to the knowledge that one should only do A when S is
true but C.' is false (e. g., "if the device needs repair and the power is

not on, then open the front panel®).

The purpose of the second revision is to constrain rule R so that it
applies only in situations in which the constraint C is guaranteed to be-
come both relevant and satisfied if A is executed. This is accomplished
by regressing the entire constraint through the rule, instead of the rele-
vance pattern. Regressing (C,' & C." & CJ' & C,") through the opera-
tor A = Add[C," & C,] yields (C,' & C.") as the output (see Nilsson,

1980, p. 288). The second new rule is constructed by adding this result
to the original rule (without negating it):

R" S&C, &C,"-> A

This rule applies only in those situations in which the constraint is guar-
anteed to become satisfied if A is executed. Psychologically, the rule
corresponds to the knowledge that one should only do A when S, C_,

and Cs" are all true (e. g., "if the device needs repair, the power is on,

and the red light is blinking, then switch off the power").

Figure 5 provides a graphical interpretation of the learning mecha-
nism. The set S of situations in which the original rule R applies is split
into three subsets when the rule is revised. The first subset contains
those situations in which the constraint is guaranteed to remain irrelevant
if action A is executed. They are covered by the first new rule. The sec-
ond subset contains those situations in which the constraint is guaran-
teed to become satisfied if A is executed. They are covered by the sec-
ond new rule. The third subset contains those situations in which doing
A leads to a constraint violation. They are thrown away, as it were.
Neither of the two new rules apply in those situations, so the error type
represented by the third subset has been eliminated. .

The fact that one type of error has been eliminated does not imply
that the two new rules R' and R" are correct. Although the new rules
have been revised so as to be consistent with one constraint, they might
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still violate other constraints and so have to be revised further. Repeated
revisions of rules is the standard case in HS learning. Also, the fact that
one rule has been revised does not imply that other rules are correct.
Learning proceeds by gradual correction of the relevant rule set as a
function of the errors that the model encounters during practice. A de-
tailed analysis of the correction of an entire rule set is available in
Ohlsson and Rees (1991a, Table 5).

Discussion

The HS model is based on two representational assumptions: that
procedural knowledge is represented in production rules and that
declarative knowledge is represented in constraints. The production
system format was proposed by Newell and Simon (1972) but has been
taken up by other researchers (Klahr, Langley, & Neches, 1987). The
main claim of the production system hypothesis is that human action is

determined by an external context, represented by the situation the .

learner is faced with, and an internal context, represented by the
learner's goal. Procedural knowledge consists of associations between
goals, situations, and actions. The individual production rule is the
smallest unit of procedural knowledge; it maps a single goal/situation
pair onto a particular action.

A second claim of the production system hypothesis is that the units
of procedural knowledge are modular. Production rules do not access or
operate upon each other. They only interact through their effects on
working memory. There is strong empirical evidence for the modularity
of procedural knowledge (Anderson, 1993).

The constraint format originated with the current theoretical effort
(Ohlsson & Rees, 1991a) and it does not have any empirical or theoreti-
cal support other than the success of the model it is embedded in. There
has been so little progress on the epistemological, logical, and semantic
problems associated with the standard, propositional interpretation of
declarative knowledge that any alternative conception is worth explor-

ing.
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Given the two representational assumptions, information process-
ing mechanisms that compute the functions specified in the abstract the-
ory (see Figure 1) can be specified. In HS, the function of generating
task relevant activity is carried out by forward search, the function of
detecting errors is carried out by a pattern matcher, and the function of
correcting errors is carried out by a rule revision algorithm based on re-
gression. There are alternative ways to compute each of these functions.
HS could have been implemented with, for example, analogical transfer
instead of heuristic search as the weak method responsible for generat-
ing task relevant behavior. Similar substitutions of alternative mecha-
nisms are possible for each of the other functions specified in the the-
ory. The predictions generated by running the model are consequences
of both the theoretical principles that guided its design and the particular
representations and processes that are implemented in it.

Compared to many other machine learning systems, HS is very
simple. It combines a standard production system architecture, a well-
known weak method, and an off-the-shelf regression algorithm,; little
else is needed. HS is implemented in Lucid Common Lisp and runs on a
Sun Sparcstation 1+ with 16 megabytes of main memory. The core
mechanisms have been debugged in hundreds of simulation runs in dif-
ferent domains over a period of four years and are very robust.

APPLICATIONS TO CLASSICAL RESEARCH PROBLEMS

A good theory should throw new light on the perennial problems of
the discipline. The learning curve and transfer of training have been
central problems in the theory of learning for a long time.

The Learning Curve

Background. If performance level, measured in terms of time to
complete a practice problem, is plotted as a function of amount of prac-
tice, measured in terms of the number of practice problems solved, i. e.,
the number of trials, the result is a negatively accelerated curve. The rate
of improvement is fastest at the beginning of practice and quickly slows
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down as mastery is approached. This type of learning curve has been
observed in a large numbe of studies, across many different tasks, and
in widely varying subject populations (Lane, 1987; Mazur & Hastie,
1978; Newell & Rosenbloom, 1981; Ohlsson, 1992¢).

Armchair reasoning would lead one to expect learning to be slow in
the beginning, when the learner is still groping to understand the prac-
tice task and there is little relevant knowledge or skill to build on. Later
in the practice sequence, the partial knowledge built up during previous
trials serves as a lever for acquiring more knowledge, with increased
speed of learning as a result. However, research leaves no doubt that the
opposite is the case: The rate of skill acquisition is faster the less the
learner knows about the task. No theory of practice is vi~“!e unless it
can explain this unexpected finding.

The hypothesis that skill acquisiticn is the elimination of errors
provides such an explanation. According to this hypothesis, knowledge
is revised when the learner becomcs aware of an error. Learning is thus
a sequence of learning events, with one error (type) being eliminated per
event. The prediction of a negatively accelerated learning curve follows
from this hypothesis in three easy steps:

1. The consequence of an error is floundering, i. €., unnecessary
search. Performance improves when the error is corrected be-
cause the unnecessary search is eliminated. Let us assume that
the amount of unnecessary search caused by an error is approx-
imately constant across errors. Performance then improves with
a constant amount per learning event.

2. At the outset the learner makes many errors on each practice
problem precisely because he or she knows so little about the
task. As mastery is approached, the number of mistakes per
problem decreases because many errors have already been elimi-
nated. There are fewer and fewer learning events per trial as
practice progresses.

3. Constant improvement per learning event and decreasing number
of learning events per trial imply a decreasing rate of improve-
ment per trial.

This explanation does not depend on the details of particular infor-

mation mechanisms. Any theory or model which claims that learning
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events are triggered by trouble situations—defined as cognitive conflicts,
contradictions, errors, expectation failures, impasses, wrong answers or
in any other way--implies this explanation, because trouble situations
disappear as mastery is approached, by definition of "mastery."

The qualitative argument explains why we should expect the rate of
improvement to slow down across trials, but it does not make a specific
prediction about the shape of the learning curve. Newell and
Rosenbloom (1981) have reviewed the evidence that the human learning
cur.. is a member of the class of curves described by so-called power
laws, i. e., by equations of the general form

T=A+kPT (1)

where T is the time to complete the current practice problem, A is the
asymptotic performance, P is the amount of practice in trials, and k and
r are constants.

Simulating the Learning Curve. To derive the learning curve
predicted by the present theory, a simulation experiment was run with
the HS model. A problem solving skill from the domain of chemistry
was chosen as the target for the simulation. Chemists frequently need to
know the interconnections between the atoms in a molecule. The inter-
connections are specified in structural formulas, so-called Lewis struc-
tures. A Lewis structure shows which atoms in a molecule are bound to
which other atoms and by which kind of bond. The task of constructing
the Lewis structure for a particular molecule, specified through its
molecular (sum) formula, will here be called a Lewis problem. Figure 6
shows the initial state and the goal state of a Lewis problem. There is
usually more than one path to the goal state. Figure 7 shows one such
path. The cognitive skill of solving Lewis problems is taught in the be-
ginning of college level courses in organic chemistry (e. g., Solomons,
1988).

The HS model was given a representation for atoms, molecules,
valencies, bonds between atoms, and the other entities, properties and
relations that are important in the chemistry environment. The actions
involved in Lewis problems areto select atoms, to connect atoms, to
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Initial state:
A sum formula
CH3CH20H
Goal state:
A Lewis structure
H H
|
H-C-C-0-H
-
H H

Figure 6. Initial state and goal state for a Lewis problem.

make double bonds, and so on. Figure 8 summarizes the problem space
for Lewis problems.

In order to attempt to solve practice problems, HS must be given an
initial procedure. In this application, the model was given a set of very
general initial rules that encode a procedure for how to construct Lewis
structures that approximates the verbal recipes given in chemistry text-
books (e. g., Solomons, 1988, pp. 10-11; Sorum & Boikess, 1981,
pp. 104-107). Finally, in order to detect and correct its errors, the model
must have some prior knowledge about the domain. It was given a set
of constraints that encode some relevant facts about the chemistry of al-
cohols, ethers, and pure hydrocarbons.

Nine molecules--three alcohols, three ethers, and three hydrocar-
bons--were selected as practice problems. The model solved each of the
nine problems, presented in random order. This corresponds to the
simulation of a single subject going through a sequence of nine different
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1. Connect the carbons:

2. Attach the oxygen:

3. Complete the OH-group:

4. Distribute the Hydrogens:

5. Add electron pairs:

C-C-0-H

Figure 7. A solution path for the Lewis problem in Figure 6.




Representation

Symbols that represent atoms, electron pairs, molecules, noble gas
configurations, numbers, single, double and tripple bonds, sub-
stances, types of carbon arrangements (branched structures, chains,
and rings), two-dimensional spatial relations, and valencies.

Initial state
A molecular (sum) formula.

Operators
Select an atom, place the first atom, attach an atom to the molecule,
identify open bonds, create multiple bonds, and add electron pairs.

Goal state

A correct Lewis structure for the given molecule. A Lewis structure
. must (a) connect all the atoms in the sum formula, (b) not include

any other atoms than those in the sum formula, (c) have a number of

valence electrons equal to the sum of the valence electrons of the

atoms, and (d) give each atom a noble gas configuration.

Figure 8. A problem space for Lewis problems.

practice problems. The model was then re-initialized and run through the
nine problems once again, simulating a second subject. All in all, the
model worked through the nine practice problems 357 times, each time
in a different random order, thus simulating a learning experiment with
that number of subjects. Figure 9 summarizes the initial knowledge, the
training procedure, and the outcome of the chemistry simulation.

The data from the simulation runs were aggregated by averaging the
performance of all 357 simulated subjects for each trial. The average
performance on each trial was plotted as a function of trial number.
(This corresponds to how learning curves are constructed from psycho-
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Prior procedural knowledge

The model began with a procedure that connects the heavy atoms,
adding multiple bonds if needed, connects the hydrogens, and then
adds the final electron pairs. This procedure generates correct Lewis
structures, but requires large amounts of search.

Prior declarative knowledge

There were 16 constraints which encode knowledge about (a) prop-
erties of particular classes of molecules, e. g., that alcohols have a
C-0O-H group and that ethers have a C-O-C group, (b) spatial prop-
erties of the possible carbon skeletons (branched structures, chains,
and rings), and (c) the distribution of hydrogens across the
molecule.

Training
The model was given unsupervised practice on a mixed set of Lewis
problems that included alcohols, ethers, and pure hydrocarbons.

Learning outcome
The model learned a set of rules for constructing Lewis structures
for the relevant molecules with a minimal amount of search.

Figure 9. Summary of the chemistry simulation.

logical data.) Figure 10 shows the resuits. Performance as a function of
practice approximates a straight line when plotted with logarithmic co-
ordinates on both axes, the hallmark of a curve described by a power
law. The HS model thus predicts that improvement over time follows
the particular shape that has been observed in data from human learning.

The qualitative argument for why learning from error predicts a
negatively accelerated learning curve is based on the simplifying as-
sumption that there is a constant improvement per learning event. How
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y = 1.5779 - 0.83616x R"2 = 0.990

Log of Errors

Log of Trials

Figure 10. Performance as a function of trials.

realistic is this assumption? The assumption is true in approximately
uniform task environments. By approximately uniform I mean that the
average branching factor in a small neighborhood around a search state
is equal for all states in the search space. If this is true and if perfor-
mance is plotted as a function of learning events instead of as a function
of trials, then the results should be a linear relationship with negative
slope. Figure 11 shows the results from a simulation run in which HS
was given repeated practiced on a particular Lewis problem. When per-
formance is plotted as a function of learning events, the result approxi-
mates a negative linear relationship, indicating that the chemistry envi-
ronment is, in fact, approximately uniform. An empirical test of the
prediction that human leaming is linear in the number of learning events
(in this task environment) is possible in principle but requires a method
for identifying learning events in human data.
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Figure 11. Performance as a function of learning events.

Transfer of Training

Background. Knowledge must be applicable in other situations
than the one in which it was learned in order to be useful, but many lab-
oratory studies have recorded little or no transfer of procedural knowl-
edge even between isomorphic problems (Cormier & Hagman, 1987,
Singley & Anderson, 1989, Chap. 1). Although many models of learn-
ing try to elucidate the mechanism of transfer (Ohlsson, 1987a; Singley
& Anderson, 1989), the empirical data imply that the main task for a
transfer model is to elucidate why transfer of training does not occur. In
spite of the negative findings, psychologists keep trying to identify
conditions that produce transfer, presumably because the findings
strongly contradict our experience of oursclves as creatures with general
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and flexible competence. A second task for a theory of skill acquisition
is to resolve this appearent contradiction between the laboratory findings
and our intuitive self-understanding.

The production system hypothesis solves the first of these explana-
tory tasks. If procedural knowledge is encoded in production rules and
if the rules required to solve a training task A are different from the rules
required to solve a target task B, then practice on A will not affect the
amount of learning required to master B, which is the typical laboratory
result. Production rules are task specific, so they do not transfer.

From the point of view of common sense, the lack of transfer of
training between isomorphic problems is particularly puzzling. A series
of experiments with different versions of Duncker's ray problem has
shown that unless subjects are explicitly reminded of the training task,
transfer to an isomorphic target task is limited (Gick & Holyoak, 1987,
pp. 34-37). Other experiments have verified that people behave differ-
ently on isomorphs of the Tower of Hanoi problem (Hayes & Simon,
1977) as well as on different isomorphs of the so-called selection task
(see Evans, 1982, Chap. 9, for a review).

According to the production system hypothesis, these results are to

be expected. Production rules for moving disks between pegs cannot
also transfer globes among monsters; production rules that split up and
recombine X-rays cannot also split up and recombine army platoons;
production rules that decide whether envelopes have the proper postage
cannot also test abstract rules; and so on. Production rules contain vari-
ables, but they quantify over arguments to predicates, not over predi-
cates. There is no reason to expect a production rule to facilitate the
construction of other rules isomorphic to itself, particularly not if the
intended isomorphism is unknown to the learner.

The non-transferability of procedural knowledge leaves us with a
picture of human beings as brittle systems which can only solve the very
tasks that they have practiced. If this is true, then how do we survive
even a single day of normal life?

The first answer is that the zero transfer prediction must be moder-
ated by the distinction between far transfer, in which the target task dif-
fers completely from the training task, and near transfer, in which the
two tasks partially overlap. In far transfer situations (which include al-
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most all instructionally relevant situations) there is no overlap in the
production rules for the two tasks and the production system hypothesis
predicts zero transfer. In the near transfer case, on the other hand, there
are rules in the procedure for the training task which are identical to
rules in the procedure for the target task. In this case, there will be a
transfer effect. Singely and Anderson (1989) claim that the number of
production rules shared between two tasks is a good predictor of the
amount of transfer in near transfer situations.

The second and more important answer suggested by the present
theory is that generality resides in a person's declarative knowledge
rather than in his or her procedural knowledge. It is our concepts and
beliefs about the world that transfer from one situation to another, rather
than our skills. We understand how the world works well enough so
that we are able to construct the procedural knowledge required by novel
circumstances and conditions. We cope by generating new procedures,
not by transferring old procedures to new situations.

This explanation suggests that psychologists have been studying
the wrong paradigm. Transfer studies have focussed on pairs of tasks
which have similar solutions. In the typical transfer experiment, the ex-
perimenter varies the degree of similarity between the solution to a train-
ing task and the solution to a target task and expects the amount of trans-
fer to vary accordingly. The negative findings from studies of isomor-
phic problems command attention because the solutions to those prob-
lems are structurally identical and so ought to yield perfect transfer.

However, the hypothesis that generality resides in declarative
knowledge implies that structural similarity between solution paths is ir-
relevant. The important factor is whether two skills share a common
conceptual rationale. If the skills required to solve two tasks A and B
can both be derived from a set of beliefs or abstract principles T, then
knowing T should give the ability to solve both A and B. The fact that
two different procedures have the same theoretical rationale does not
imply that there is any formal or structural similarity between the prob-
lem solutions generated by those procedures. For example, a chemical
analysis of an unknown compound and a synthesis of a particular sub-
stance are procedurally different, but both are based on the same theory
of the composition of matter.
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Simulating Transfer of Training. The skill acquisition litera-
ture contains few studies of procedurally different skills which have the
same declarative rationale, but developmental psychologists have found
a naturally-occurring instance of this type of situation. Gelman and
Gallistel (1978) have argued that children learn to count sets of objects
by deriving the correct counting procedure from their intuitive under-
standing of its rationale. They formulated the declarative knowledge re-
quired for correct counting into a set of well-defined counting principles
and presented empirical evidence that children know these principles at
the time they learn how to count. Knowledge of the counting principles
should give the abil’ , *, construct not only the procedure for the stan-
dard counting task. but to solve two non-standard counting tasks as
well: to count objects in a particular order, so-called ordered counting,
and to count objects in such a way that a designated object is assigned a
designated number (e., g., "count the objects so that the red object be-
comes the fifth one™), so-called constrained counting. The empirical
evidence confirms that children can quickly generate the correct proce-
dures for these non-standard counting tasks (Gelman & Meck, 1983,
1986; Gelman, Meck, & Merkin, 1986). '

To simulate this situation, the HS model was given a problem space
for the task of counting a given set of objects. The representation in-
cluded symbols for objects, numbers, for relations between objects and
numbers, and so on. The actions included to select an object, to select a
number, and to assign a number to an object. Figure 12 summarizes the
problem space for counting.

The model was given rules which knew how to apply the opera-
tors, but which did not know how to apply them correctly. Finally, the
model was given the counting principles in the form of constraints.
Figure 13 summarizes the counting simulation. More detailed reports are
available in Ohlsson and Rees (1991a, 1991b).

The model was trained on each of the three procedures for standard
counting, ordered counting, and constrained counting. The diagonal of
Table 1 shows the results as reported in Ohlsson and Rees (1991b). The
effort required was measured in two ways, by the number of production
system cycles and by the number of learning events, i. e., rule revi-
sions. The model leamed each procedure in approximately the same
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Representation

Symbols for objects, numbers, sets of objects, and associations
between numbers and either objects or sets. Both objects and
numbers can have the properties of being first, current, and point of
origin, and numbers can have the property of being the answer. The
relations represented are correspondancy, set membership,
successor, and temporal contiguity.

Initial state
A set of objects to be counted.

Operators

Associate a number with an object, associate a number with a set,
select a first object, select the next object, select the first number,
select the next number, and shift focus.

Goal state
A number designated as the cardinality of the given set.

Figure 12. A problem space for counting.

number of learning events. This result illustrates the generality of
declarative knowledge. A single set of abstract principles gave the model
the ability to construct three different procedures, each procedure being,
in a sense, derived from those principles during practice. The declarative
knowledge transferred from one counting task to another, even though
the tasks are procedurally different.

Switching between counting tasks is an instance of near transfer.
Not all rules need to be revised. Hence, the theory predicts that there
will be procedural transfer as well. To illustrate this, six transfer exper-
iments were run with the model. In each experiment, the model first
practiced one of the three counting tasks until it reached mastery and
then it was switched to either of the other two tasks. The results are
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Prior procedural knowledge

The system began with one rule for each operator. That rule applied
the operator whenever possible, i. €., in every situation in which its
applicability conditions were satisfied. The result was counting-like
but chaotic behavior.

Prior declarative knowledge

The were 18 constraints that encode the counting principles as
identified by Gelman and Gallistel (1978): The one-to-one mapping
principle, the cardinal principle, and the stable order principle.

Training
The model was given unsupervised practice on sets of 3-5 objects.

Learning outcomes

The model learned a correct, general procedure for counting any set
of objects, regardless of the size of the set and the type of objects
involved. It also learned correct procedures for two non-standard
counting tasks, ordered counting and constrained counting. Finally,
the model transfered each of the three learned counting procedures to
each of the other two counting tasks.

Figure 13. Summary of the counting simulation.

shown in the off-diagonal cells of Table 1. The model solved each trans-
fer task successfully. The amount of transfer varied depending on the
exact relations between the rules for the practice task and the rules for
the target task. The model also predicts asymmetric transfer between
some tasks. For example, the transfer from ordered to constrained
counting was 0%, while the transfer from constrained to ordered
counting was 75%. These predictions are, in principle, empirically
testable, although the necessary data are not available at this time.




Table 1. The computational effort required by the HS model to learn
each of three counting tasks (diagonal cells) and to solve each of six

different transfer tasks (off-diagonal cells).

Transfer task

Standard Ordered Constrained

Training task counting counting counting
Standard counting
Rule revisions 12 2 2
Prod. sys. cycles 854 110 127
Ordered counting
Rule revisons 1 11 11
Prod. sys. cycles 184 262 297
in nti
Rule revisions 0 3 12
Prod. sys. cycles 162 154 451

9Data taken from Ohlsson and Rees (1991b, Tables 1 and 2).

Contrary to Singley and Anderson (1989), the present theory does
not imply that the amount of transfer is predictable from the number of
overlapping production rules. Instead, the variable of interest is the
amount of cognitive work that has to be performed in order to adapt the
rules to the target task. A single rule from the training task might cause
more than one type of error in the target task and need to be revised
more than once, so the number of rules that need to be revised is prob-
ably too course a predictor variable. The present analysis suggests that
the number of rule revisions is a better predictor.

Unlike the number of overlapping production rules, the number of
rule revisions required to master the target task cannot be calculated
from a static comparison of the two procedures. It is a function of the
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particular learning mechanism which carries out the revisions. To verify
this, the knowledge compilation mechanism-- a cornerstone of the ACT
model described by Anderson (1983)--was implemented within the HS
architecture. According to the knowledge compilation hypothesis,
declarative knowledge resides in long-term memory in a format similar
to inference rules. Familiar problems are solved with production rules,
but unfamiliar problems are solved by interpreting (in the computer sci-
ence sense) the declarative knowledge. During interpretation, new pro-
duction rules are constructed which eliminates the need to re-interpret
the declarative knowledge on subsequent trials. Once the rules are con-
structed, they are composed into larger rules which solve the relevant
task more efficiently. Unlike HS, the ACT model learns from suc-
cesses, not from errors.

We did not implement the ACT architecture as described in
Anderson (1983). Instead, we implemented the knowledge compilation
mechanism within the HS architecture. The result was a version of HS
which learns through knowledge compilation instead of through con-
straint violations. All other aspects of the HS architecture were kept the
same. I shall refer to the HS architecture as the KC model when it learns
through knowledge compilation. The upshot is that we have two simu-
lation models, HS and KC, which learn in different ways but which are
otherwise identical. This provides an opportunity to compare the behav-
ioral predictions of the two learning mechanisms.

KC was given the counting principles in the form of declarative
knowledge and was then run through the same set of learning experi-
ments and transfer experiments as HS. Because the effort measures dif-
fered by an order of magnitude (KC was on the average ten times
slower than HS), they have been converted into transfer scores. There
are many different ways to measure transfer (Singely & Anderson,
1989, pp. 37-41). The index used here was

T= ccomcmomee * 100 (2
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where Ep is the cognitive effort required to master the target task B from
scratch and E , is the effort required to master B given previous mas-

tery of training task A. The T index can be interpreted as the proportion
of the effort required to learn task B that is saved by first learning task
A. It is equal to zero when practice on the training task A is of no help
and it is equal to 100 when practice on the training task provides mas-
tery of B with no further training. The index is negative if practice on
task A increases the amount of effort required to master B.

The effort measures for the transfer experiments with the HS and
KC models were converted to transfer scores. The results are shown in
Table 2. The amount of transfer predicted by the HS model varied be-
tween 8 and 100 across tasks, while the transfer predicted by the KC

Table 2. Transfer scores for the HS and KC? models for each of six
transfer tasks in the counting domain, based on both the number of rule
revisions and the number of production system cycles.

Effort measure
Rule revisions Prod. sys. cycles

Transfer

from-to HS KC HS KC
Standard-Ordered 82 100 58 100
Standard-Constrained 83 72 72 63
Ordered-Standard 92 34 78 19
Ordered-Constrained 8 34 34 29
Constrained-Standard 100 97 81 81
Constrained-Ordered 67 97 41 73

4KC is an acronym for knowledge compilation.
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model varied between 19 and 100. More importantly for present pur-
poses, the two models made different transfer predictions for one and
the same task. HS predicts a score of 92 for the transfer from ordered to
standard counting, while the corresponding KC prediction is 34. More
important still, the differences between tasks do not always go in the
same direction for the two models. HS predicts that transfer from stan-
dard to ordered counting is easier than vice versa, while KC predicts the
opposite. The results in Table 2 verify the fact that the amount of near
transfer between two tasks cannot be predicted from a static analysis of
the procedures for those tasks, but depends upon assumptions about
learning.

APPLICATION TO INSTRUCTION

A good theory should have implications for practice. The natural
application domain for a learning theory is the design of instruction. The
instructional implications of the present theory include an explanation of
why it is possible to learn from instruction, a rationale for the most
common tutoring scenario, a prescription for effective tutoring mes-
sages, and a technology for evaluating instructional designs through
simulated one-on-one tutoring.

Why Instruction is Possible

Why are people able to learn from instruction? Although the origin
of cognitive capacities such as language and learning is almost com-
pletely unknown, it is likely that learning evolved before language.
There are no mammalian species, and probably no lower organisms,
which cannot learn, so the capacity to learn was almost certainly present
in the hominids when they separated from the rest of the primates 4-10
millions of years ago.

Language, on the other hand, evolved later, perhaps very much
later. McCrone (1992) summarizes the fossil evidence in the following
way: "The high arch in the roof of the mouth that helps with voice pro-
duction is about the only telltale sign of speech that shows up on a fossil
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skeleton. This arch did not start to appear until Homo erectus arrived
about 1.5 million years ago, and even then the arch was slight. Judging
from fossils, modern speech came along about 100,000 years ago when
the earliest examples of Homo sapiens were starting to walk the earth.”
(p. 160-161)3 One hundred thousand years is a short time in evolution-
ary terms. If this estimate is correct, then special-purpose brain mecha-
nisms for learning from verbal instruction have had little time to evolve.
These two speculative but plausible hypotheses--that learning pre-
ceeded language and that language is too recent for special-purpose
brain mechanisms for instruction to have evolved--imply that our ability
to learn without instruction is primary and our ability to learn from in-

struction secondary and parasitic upon the former. A theory of learning.

from instruction should therefore explain how instruction feeds into
learning mechanisms that evolved for the purpose of uninstructed
learning.

The theory proposed in this chapter suggests such an explanation.
The two functions of detecting and correcting errors can be computed by

noticing contradictions and by inferring the conditions that produced .

them as described previously, but they can also be computed in other

ways. Instruction works, the theory suggests, because being told that

one has committed an error is functionally equivalent to detecting the er-
ror oneself and because being told the cause of an error is functionally
equivalent to figuring out the cause oneself. Learning from instruction is
possible because instructional messages enter into the learning process
in the same way, functionally speaking, as declarative knowledge re-
trieved from long-term memory.

A Rationale for One-on-One Tutoring

The theory proposed in this chapter implies that there are three ma-
jor felicity conditions (VanLehn, 1990, p. 23) for effective instruction in
cognitive skills: (a) instruction should be offered during ongoing prac-
tice, (b) instruction should alert the learner to errors, and (c) instruction
should identify the conditions which caused the error. The type of in-

3See Lyons (1988, p. 153) for a different interpretation of the evidence.
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struction that satisfies these three conditions is entirely familiar. In one-
on-one tutoring, the teacher watches as the learner practices, points out
errors, and helps the learner correct them. The present theory selects as
most felicitous precisely that type of instruction which the empirical data
show is most effective (Bloom, 1984).

Intelligent tutoring systems are typically designed to teach cognitive
skills (Psotka, Massay, & Mutter, 1988; Sleeman & Brown, 1982).
Perhaps the most successful line of intelligent tutoring systems are the
so-called model tracing tutors developed by John Anderson and co-
workers (Anderson et al., 1987, 1990). Skill training tutors in general
and model tracing tutors in particular conform closely to the three felicity
conditions: They give feedback in the context of practice, they alert the
learner to errors, and they help the learner to correct the error.

The design of the model tracing tutors is said to be derived from the
ACT theory of learning (Anderson et al., 1987). However, none of the
six learning mechanisms described in various versions of the ACT the-
ory--analogical transfer, discrimination, generalization, proceduraliza-
tion, rule composition, and strengthening--can take a tutoring message
as input and revise a faulty production rule accordingly. Analogical
transfer generates task relevant activity by relating the current problem to
an already solved problem; rule composition creates more efficient rules
by combining existing (hopefully correct) rules; strengthening increases
the probability that a (hopefully correct) rule will be retrieved. These
three learning mechanisms can neither take a tutoring message as input
nor revise an existing rule. Generalization and discrimination (which do
not loom large in expositions of the ACT theory) revise existing rules,
but cannot take a tutoring message as input. Proceduralization generates
new rules on the basis of verbal input, but cannot correct existing rules.
Taken literally, the ACT theory predicts that it is impossible to learn
Jfrom the teaching scenario embodied in the model tracing tutors. Unless
people can learn in other ways than those described in the ACT theory,
they have no cognitive mechanisms for learning from feedback mes-
sages about errors.

To highlight the contrast between the implications of the ACT the-
ory and the design of the model tracing tutors, consider what an intelli-
gent tutoring system derived from the ACT theory might be like. In or-
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der to facilitate analogical transfer, such a system might keep a record of
the problems the student has solved in the past and suggest possible
analogies when the student hesitates. Such a system might repeat the
task instructions from time to time to give the student a chance to re-pro-
ceduralize them. It might sequence practice problems in such a way that
rule composition, generalization, and discrimination are facilitated.
Finally, it might provide opportunities to exercise already acquired com-
ponents of the target skill in order to increase their strengths. However,
a tutoring system derived from the ACT theory would have no reason to
alert the learner to errors and give help in correcting them.

The model tracing tutors and most other skill training systems con-
form to the design that follows from the theory presented in this chapter:
They help the learner detect and correct errors. The instructional success
of such tutors provide support for the hypothesis that error correction is
the natural modus operandi of skill acquisition. If it were not, those tu-
tors would not be effective but empirical evaluations show that they are
(Anderson et at., 1990, pp. 30-33). In short, the present theory pro-
vides a rationale for the teaching scenario adopted by designers of intel-
ligent tutoring systems and in turn receives empirical support from the
instructional success of such systems.

Deriving the Content of Instruction from Theory

The content of feedback messages is the Achilleus heel of skill-
monitoring tutoring systems. Delivering feedback messages is the major
instructional action of such a system, so its instructional effectiveness
depends crucially on the content of those messages. Until now there has
been no theory for how to formulate feedback messages. Such mes-
sages are typically pre-formulated texts and they are written in the same
way as other instructional materials: The instructional designer makes a
guess about what might work based on his or her understanding of the
subject matter.4 In spite of the strong claims about the tight relation be-
tween the ACT theory and the model-tracing tutors (Anderson et al.,
1987), this is true of those tutors as well. No existing tutoring system

4See Moore and Ohlsson (1992) and Reiser et al. (1991) for exceptions.
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derives the content of its tutoring messages from assumptions about
learning.

The learning theory proposed here implies that tutoring messages
should help the student identify those properties of the current problem
state which indicate that an error has been committed, so that he or she
can detect his or her errors without help in the future. The general form
for this type of tutoring message is "you can tell that you just made an
error, because of P", where P is some conjunction of easily accessed
properties of the problem state produced by the erroneous action.
Unless the learner can detect his or her errors, he or she cannot learn
from them.

More importantly, tutoring messages should help the learner correct
his or her errors. To do so, a message must identify those properties of
the immediately preceeding problem state that constitute counterindica-
tions to the problem solving step that the student took. A problem solv-
ing step A is typically correct in some situations but wrong in others.
The task of the student is to figure out when, i. e., in which situations,
doing A is right and when it is wrong. If doing A in situation S is incor-
rect, then the corresponding tutoring message should have the general
form "when such-and-such conditions are the case, A is not the right
thing to do". The conditions mentioned in the message should refer to
the immediately preceeding problem situation, not to the situation in
which the error was discovered. The student needs to learn to avoid the
error, i. €., to act differently in the situation in which he or she decided
to do A. The tutoring system should therefore back up and explain what
makes A the wrong choice in that situation.

These prescriptions rule out some types of feedback messages
which are commonly used in tutoring systems. For example, it is intu-
itively plausible that if a student takes step A when he or she should
have taken step B, then it helps to print a message of the form "you did
A but you should have done B." According to the present theory, how-
ever, this type of feedback message is likely to be ineffective, because it
does not specify the conditions under which either A or B should or
should not be done. Instruction should focus on the conditions of ac-
tions, not on the actions themselves. A second common type of feed-
back message explains what is wrong with the situation in which the er-

45




ror was discovered, i. e., why the error is an error. This might increase
the student's understanding of the domain but it is unlikely to help him
or her acquire the target skill, because it does not tell him or her how to
avoid the error. A feedback message should focus on the situation in
which the student decided to do A, not on the situation produced by
doing A.

Simulating One-on-One Tutoring

The HS model can be interpreted as a model of learning from tutor-
ing, with the constraints playing the role of tutoring messages. It is a
matter of interpretation whether the constraints correspond to knowledge
items retrieved from memory, conclusions from inference chains, or
tutoring messages received through the language comprehension chan-
nel. According to the theory proposed here, these three types of knowl-
edge elements enter into the learning process in the same way.

A runnable simulation of learning from tutoring opens up novel
possibilities. We can evaluate alternative instructional designs by teach-
ing them to the model and measuring the amount of computational work
it has to expand to learn the target skill under different circumstances. If
the model can reach mastery with less work under one instructional de-
sign or tutoring regime than another, then that is evidence that the for-
mer is the better design.

To explore this possibility the HS model was tutored in subtraction.
The simulation experiment followed the common classroom tactic of
teaching the procedure for canonical subtraction problems, i. e., prob-
lems in which each subtrahend digit is smaller than the minuend digit in
the same column, and to introduce the procedure for how to handle non-
canonical columns, i. e., columns in which the subtrahend digit is larger
than the minuend digit, once the procedure for canonical subtraction has
been mastered (Leinhardt, 1987; Leinhardt & Ohlsson, 1990). The
simulation experiment followed this pedagogical tactic in that the model
was first given a procedure for non-canonical subtraction and was then
tutored in canonicalization.

Two different HS models of canonical subtraction were imple-
mented. One model, called the high-knowledge model, was built around
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a representation of the place value meaning of digits. In this representa-
tion the digit 3 was represented as (3 * 10) if it appeared in the second
column to the right, as (3 * 100) if it appeared in the third column, and
so on. The operations by which this representation was manipulated
correspond to mathematically motivated operations on numbers. The
high-knowledge model was intended to simulate skill acquisition in the
context of conceptual understanding of place value.

The second model, called the low knowledge model, was built
around a representation in which a subtraction problem is a two-dimen-
sional array of digits. In this representation, the digit 3 was represented
as the digit 3 regardless of its position in the problem display. The op-
erations by which this representation was manipulated correspond to
physical operations on digits rather than conceptual or mathematical op-
erations on numbers. The low knowledge model was intended to simu-
late rote learning of subtraction. Figure 14 summarizes the problem
space for subtraction. The reader is referred to Ohlsson, Ernst, and Rees
(1992) for a full account.

. Both the high and the low knowledge models were tutored in the
regrouping algorithm taught in American schools. In this method non-
canonical columns are handled by incrementing the minuend of the non-
canonical column and performing a corresponding decrement on the
minuend in the next column to the left. Both models were also tutored in
the equal addition algorithm taught in some European schools. In this
method non-canonical columns are handled by incrementing the minu-
end in the non-canonical column and decrementing the subtrahend in the
next column to the left. The simulation experiment thus followed a 2-by-
2 design, with two levels of knowledge paired with two different target
skills.

The procedure for tutoring the model were similar to those involved
in tutoring a human student. The programmer in charge of the system
watched while the model tried to solve a non-canonical probiem, spotted
errors, halted the model, and typed in a constraint (tutoring message)
intended to correct the observed error. When the model had attained
mastery, it was reinitialized and run again with all the constraints in
place simultaneously, to verify that they were indeed sufficient to pro-
duce correct performance. This tutoring scenario was carried out four
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Representations

Two different representations for subtraction were created. (a) The
procedural or low knowledge representation contained symbols for
written digits, perceived digits, spatial locations, scratch marks,
decrements, and increments. (b) The conceptual or high knowledge
representation contained, in addition, symbols for subtraction
problems, numbers, place values, links between numbers and digits,
relations between numbers, and answers.

Initial state
A subtraction problem.

Operators

Look at a digit, move the eye to another digit, write a digit, cross out
a digit, assert the answer, recall number fact, create a working
memory schema, and revise a working memory schema.

Goal state
A number designated as the answer to the subtraction problem.

Figure 14. A problem space for subtraction.

times, once for each combination of knowledge level and target skill.
The amount of computational work required to attain mastery in each
condition was recorded. Figure 15 summarizes the subtraction simula-
tion.

Table 3 shows the number of production system cycles and the
number of rule revisions required for HS to attain mastery in each of the
four conditions. There are two main results. The high knowledge model
required more work to attain mastery than the low knowledge model.
This is true for both canonicalization procedures and for both effort
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Prior procedural knowledge

The system knew at the outset how to solve a canonical subtraction
problem, i. e., a problem in which the subtrahend digit is smaller
than the minuend digit in every column.

Training

The model was wtored in how to handle non-canonical problems. It
executed its procedure for canonical problem until it made an error. It
was then halted and given a constraint that was intended to allow it to
correct the error.

Learning outcome

The model learned two different procedures for non-canonical
columns, namely regrouping and equal addition, with both the low
knowledge and the high knowledge representations.

Figure 15. Summary of the subtraction simulation.

measures. The reason for this result is that the high knowledge model
had a more elaborate representation. It requires more cognitive opera-
tions to create and update a more elaborate representation and each op-
eration must be guided by some production rule. Hence, the high
knowledge model had more to learn.

The second result is that learning the regrouping procedure required
more work than learning the equal addition procedure in both the high
knowledge and the low knowledge conditions. The reason for this result
is that the control of the regrouping procedure becomes complicated
when it is necessary to regroup the minuend recursively to handle
blocking zeroes, i. ., minuend zeroes immediately to the left of a non-
canonical column. The augmenting procedure is not affected by the
number of blocking zeroes. The regrouping procedure also requires
more complicated visual attention allocation.




Table 3. The computational effort required for the HS model to master
regrouping and augmenting with either a high knowledge or a low

knowledge representation.?

Type of representation

High knowledge Low knowledge

Method
learned Cycles Revisions Cycles Revisions
Regrouping
W/o blocking zeroes? 940 23 449 16
With blocking zeroes 1815 32 794 24
Augmenting
W/o blocking zeroes 862 20 687 18
With blocking zeroes 862 20 687 18

9Data taken from Ohlsson, Ernst, and Rees (1992, Table 2).
by, e., minuend zeroes to the left of a non-canonical column.

Both of these results were unexpected because they contradict the
common belief among mathematics educators that regrouping is easier to
learn, particularly in the high knowledge condition. This belief is based
on empirical investigations carried out in the pre-Word War 1l era
(Brownell, 1947; Brownell & Moser, 1949). A detailed discussion of
these simulation results and their relation to the empirical research has
been presented elsewhere (Ohlsson, 1992a).

This simulation exercise demonstrates that runnable models of
learning from instruction creates new relations between learning theory
and instructional design (Ohlsson, 1992a). Instead of deriving general
design principles from the learning theory, as suggested by Bruner
(1966) and later by Glaser (1976, 1982), we can evaluate an instruc-
tional design directly by teaching it to a simulation model. This technol-
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ogy has the potential to allow instructional designers to do formative
evaluation without leaving their desks (Ohlsson, 1992b).

Thi3 simulation exercise also demonstrates that the application of
learning theory to education requires a formal analysis of instruction. A
model of learning cannot have implications for instruction unless it
contains learning mechanisms which take instruction, suitably formal-
ized, as one of their inputs. Computational analysis of instruction has
barely begun. Some early Artificial Intelligence systems explored how a
system can learn from advice and instructions (Hayes-Roth, Klahr, &
Mostow, 1981; Mostow, 1983; Rychener, 1983), but the problem ap-
pears to have disappeared from the research agenda of the machine
learning community. The proceduralization mechanism in the ACT
model (Anderson, 1983) was a first attempt to formalize this problem in
a psychological context. Although the proceduralization mechanism ex-
plains how the learner constructs new rules on the basis of task instruc-
tions, it does not explain how the learner revises existing rules on the
basis of feedback messages. The Sierra and Cascade models described
by VanLehn (1990) and VanLehn and Jones (this volume) learn from
solved examples--a common form of instruction--but they cannot take
tutoring messages as inputs. The HS model constitutes a modest first
step towards a formal theory of how tutoring messages received during
skill practice are translated into mental code for the target skill.

SUMMARY AND CONCLUSIONS

The theory proposed in this chapter is formulated in terms of cog-
nitive functions instead of information processing mechanisms. The
function of learning to solve an unfamiliar task is analyzed into two sub-
functions: To generate learning opportunities and to construct new pro-
cedural knowledge. The latter function is in turn broken down into two
subfunctions: To detect incorrect problem solving steps and to correct
the procedural knowledge that generated them. To detect errors requires
a comparison between the current problem state with prior knowledge.
To correct an error, finally, involves identifying the conditions under
which the error appears and constraining the faulty decision rule accord-
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ingly. The main claim of the theory is that this is the right functional
breakdown of skill acquisition.

How does this theory explain the role of prior knowledge in skill
acquisition? Domain knowledge is not needed to generate task relevant
actions. Weak methods can generate behavior even in the absence of any
knowledge about the task. The functions for which knowledge is
needed are to detect and correct errors. Incorrect or incomplete task pro-
cedures are likely to produce situations which contradict what ought to
be true in the particular domain. Domain knowledge increases the prob-
ability that the learner recognizes that he or or she has made an error. To
correct the error presupposes the ability to identify the conditicns under
which that error will appear. This might require complicated reasoning
about the domain. Prior knowledge increases the probability that the
learner identifies the causes of errors correctly.

Each of the functions postulated in the theory can be computed by
many different information processing mechanisms. In the particular
implementation of the theory described in this chapter, task relevant be-
havior is generated by forward search through the problem space.
Errors are detected by matching constraints against problem states with a
pattern matcher. The conditions that produced a particular error are
identified by regressing the match between a constraint and a state
through a production rule. Errors are corrected by adding the conditions
that produce them to the left-hand sides of decision rules. Other imple-
mentations of the functional theory are possible.

The simulation model generates several quantitative predictions
about two classical problems in learning theory. First, it predicts that
skill acquisition is negatively accelerated. More precisely, it predicts that
the learning curve follows a so-called power law. Second, the theory
predicts zero transfer in far transfer situations. It also predicts that the
amount of transfer in near transfer situations depends upon the particular
tasks involved and that transfer might be asymmetrical, i. e., that there
might be either more transfer from task B to task A than from task A to
task B. Finally, the model predicts that the richer the representation of
the task to be learned, the more cognitive effort is needed to attain mas-

tery.
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With respect to the practical problem of designing computer-based
instruction in cognitive skills, the present theory provides a rationale and
an explanation for the effectiveness of one-on-one tutoring, the main
teaching scenario embodied in current intelligent tutoring systems.
Tutoring (by computer or by human) works, the theory of claims, be-
cause tutoring messages provide an alternative way to become aware of
errors and an alternative source of information about the conditions un-
der which the errors occur.

According to the present theory, tutoring messages can help the
learner in two ways. First, to help the learner detect his or her own er-
rors, tutoring messages should point out those properties of a problem
state which indicate that an error has occurred. Second, to help the
learner correct his or her errors, tutoring messages should identify those
properties of a problem state which indicate that an error will occur if
such and such an action is executed.

The theory proposed here is obviously incomplete. People un-
doubtedly learn from their errors, but they also learn from their suc-
cesses. The theory needs to be extended with assumptions about how
people learn from correct problem solving steps. It is not clear which of
those predictions will remain constant if the model is augmented with
additional learning mechanisms. The interaction between multiple
learning mechanisms is a high-priority issue for computational learning
theories. In past work, I combined a method for learning from error
(discrimination) with two methods for learning from success
(generalization and subgoaling). The resulting model learned to solve
simple puzzle tasks (Ohisson, 1987a), but it threw no light on the
problem of prior knowledge.

The problem of how prior knowledge impacts learning is central for
the study of skill acquisition. The outcome of practice is always a func-
tion of both the learner’s prior knowledge about the domain and the new
information that becomes available during practice. Any viable learning
theory must describe the cognitive mechanism that interfaces those two
knowledge sources. The fate of the theory proposed here will uitimately
be determined by comparative evaluations with alternative computational
theories of the function of prior knowledge in learning, once such alter-
native theories become available.
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