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Abstract

This report summarizes research conducted luring tile past year whose aim is to
develop and test all accurate and efficient method for describing boundary-layer
development in the transition region. A low-Reynolds-number version of the
Wilcox k - ,. tiodel has been postulated and tested against experimental data
for 10 fully turhulent boundary layers and for more than 20 transitional cases.
Overall discrepancies between theory and experiment are smaller than those for
simpler correlations designed for use with algebraic turbulence models. Singular
perturbation analysis of the compressible viscous sublayer and defect layer has
been initiated with some interesting preliminary results. Some progress has
been made toward eliminating the k - m nodel's sensitivity to the freestream
boundary condition on ,.
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Chapter 1

Introduction

The purpose of this research project for the past three years has been to develop
analytical and computational tool- suitable for predicting properties of hyper-
sonic turbulent flows. Significant progress has been made on several aspects
of the turbulent-flow problem, especially in representing low-Reynolds-number
effects and boundary-layer transition. Because of the importance of transition
in hypersonic boundary layers, most of our research during the past year has
focused exclusively the transition problem.

The overall objective of our approach to the transition problem is to use the
Wilcox' -k ; turbulence model as the foundation for studying and modeling
the transitional flow region. Consistent with the needs of NASA, the transition
point is assumed to be known a priori. Computations can thus be initiated at the
known transition location and continued downstream through the transitional
flow region and well into the fully turbulent region. To develop the model, we
have followed a sequence of interrelated steps.

1. We have drawn from the extensive work done by Wilcox2-- 7 to help for-
mulate a low-Reynolds-number version of the A - . model. While much
of this early research focused on locating the transition point, some of
the analysis (most notably Wilcox') revealed the way in which the model

equations describe the growth of the instability from the transition point
to the fully turbulent regime.

2. We have simulated several of the flows that have been done with Direct.
Numerical Simulation (DNS) methods. The results of Mansour, Kim and
Moinr have received immediate attention for two different Reynolds num-
bers. Comparing model predictions with the DNS results helped greatly
in developing the model.

3. We have tested the miodel against 10 two-dimensional, fully turbulent
boundary layers, including bot h incompress.ible and compressible cases.
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I. We have tested the model against all of the two-dimensional cases pre-
sented by Singier. I)inavahi. and lver.ý'

5. WAe have done some analysis specifically aimed at eliminating the A'-
model's sensitivity to the freestream boundary condition on ,..

6. We have initiated a singular perturbation analysis of the compressible
turbulent boundary layer to help quantify effects of compressibility on
model predict ions.

A:ddressing Items I and 2 has produced a low-Reynolds-number version of
the k - ; model. Wilcox' 0 describes the model and presents applications to
fully turbulent channel and pipe flow. and for a transitional. incompressible
flat-plate boundary layer. He also clarifies the manner in which the model
predicts transition.

This report applies the model to 10 turbulent boundary-layer test cases and
to more than 20 transitional flows for which experimental data are available.
The applications show that additional model development is needed to prop-
erly account for effects of compressibility. We have initiated the new model
development efforts by addressing Itemis -t and 5.

Chapter 2 sununarizes the low-Reynolds-number version of the A- ,; model.
Chapters 3 and 4 present results of our applications. Boundary condition and
closure coefficient sensitivity is discussed in (hapter 5. We analyze the com-
pressible turbulent boundary layer in Chapter 6. ('hapter 7 summarizes results
of the research.



Chapter 2 

Low-Reynolds-Number k-w 
Model 

The equations of motion for the Wilcox10 low-Reynolds-number k - w model 
were initially postulated for incompressible flows. To generalize for compressible 
flows , we introd uce Favre11 mass averaged variables and rewrite the equations 
of motion as follows. 

ap a - + - (pu·) = 0 at ax· 1 
] 

a a a [ * ak ] !'I (pE) + ~ (pu;H) = ~ U j Tij - qj + (f.t + rr f.tT)~ 
ut UXj UXj UXj 

a ( a ) r au; • a [ • ) ak ] !:> pk)+~(p·ujk =r;j ~- {J pwk+~ (f.t+IT ILT ~ 
ut UXj UXj UXj UXj 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In Equations (2. 1)-(2.5) , t and x ; denote time and position vector; p and p 
are density and pressure; n ; is mass-averaged velocity vector; E and H are total 
energy and total enthalpy; Tij and rli are the total stress tensor and the total 
heat flux vector ; T;~ is the Reynolds s tress tensor ; k and w are turbulence kinetic 
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energy and specific dissipation rate; and , a , {3, {3*, u, u* are closu re coefficients. 
The following constitutive relations are needed to close the system. 

T ( l au~c ) 2 T· . = 2 'lT S· . - --5·. - - pk8·. 
1J ' 1J 3 o:v/c 1J 3 1) 

( 
11 liT ) ah 

IJj = - -- + -- --
PI'[. P rT OXj 

1 
E = e + - 'lt ; lt; + k , 

2 
1 

H = h + - ·u;u; + k 
2 

S _ _ = ~ ( au; + 8 tti ) 
'J 2 OXj a x ; 

(2 .6) 

(2 .7) 

(2 .8) 

(2.9) 

(2.10) 

(2. 11) 

In the constit utive relations, we have introduced t he molecular stress tensor , 
rb, mean strain-rate tensor , S';j, molecular viscosity, tt , eddy viscosity, liT, 
ent halpy, h, laminar Prandt l number, Pr·L, turbulent Prandtl number , P rT, 
inte rnal energy, e, and an additional closure coeffi cient, a•. Finally, to complete 
closure of the system , we specify the values of t he closure coefficients as follows. 

{3* = ~ . 5/18 + (ReT/R.t3)4 

100 1 + ( ReT/ R13 )4 

3 1 1 
f3 = 40 ' u* - 2 ' u = 2 

Cl'~ = [3/3, 0' 0 = 1/ 10 

Rw = 27/ 10 

The quantity ReT is the turbulence Reynolds number defined by 

pk 
ReT= ­

Wll 

5 

(2. 12) 

(2. 13) 

(2.14) 

(2. 15) 

(2. 16) 

(2. 17) 



Chapter 3 

Turbulent Boundary-Layer 
Applications 

The primary objective of this research project is to describe boundary-layer de­
velopment through t ransit ion from laminar to turbulent flow . As part of this 
objective, it is important that we provide an accurate description in the tur­
bulent region immediately following t ransition, i.e. , we insist that our model 
approach the proper limiting state of the boundary layer. Consequently, sirice 
the k-w model without viscous corrections generally is very accurate for turbu­
lent boundary layers , a round of tests is in order to make sure model predictions 
are not adversely affected by the viscous corrections. We have performed ten 
boundary layer computations including effects of adverse and favorable pressure 
gradient , and for Mach numbers as high as 10. Table 3.1 lists the ten cases. 

Table 3.1: Turbulent Boundary Layer Test Cases 

Descrip tion \lp Data Source 

Incompressible Flat Plate None Wieghardt-Tillman 12 

Flow 1100 Adverse Ludweig-Tillman13 

Flow 1200 Adverse Ludweig-Tillman 13 

Flow 1300 Favorable Ludweig-Tillman 13 

Bradshaw Flow C Adverse Bradshaw 14 

Samuel-J ou bert Adverse Samuel-J oubert 15 

Mach 2.244 Flat Plate None Shutts16 

Mach 4.544 Flat Plate None Coles 16 

Mach 10.31 Flat Plate None Watson 16 

Mach 2.653 Boundary Layer Adverse Fernando-Smits17 
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Incompressible Flat Plate. Figure :l.l compares computed and measured 
skin friction, c 1, and sublayer-scaled velocity, u+. As shown , the only significant 
difference between predictions·with and without viscous corrections is in the 
transition point. The unmodified model undergoes transition much earlier than 
the model with viscous corrections. Skin friction at the final station is 2.50 · 10-3 

with viscous modifications compared to 2.49. w-:3 without. 
Flows 1100 and 1200. Figures :3.2 and 3.3 compare computed and mea­

sured13 c 1 and u+ for two incompressible boundary layers with adverse pressure 
gradient. Flow 1100 has a mild adverse gradient while Flow 1200 has a fairly 
strong adverse gradient . Note that computations have been terminated at the 
last data station upstream of x = 3 m. for both flows. As noted by Coles and 
Hirst, 19 the data fail to satisfy the momentum integral equation downstream of 
x = 3 m. and are thus unreliable. As with the fiat plate case, differences between 
results obtained with and without viscous correct ions are barely noticeable. For 
Flow 1100, skin friction at the final station is 1.90 · w-a with viscous corrections 
and 1.93 . 10-3 without. A slightly larger difference is found for Fiow 1200, 
namely, c1 = 1.58 · 10-3 with viscous corrections and 1.61 · 10-3 ·without . 

Flow 1300. figure 3.4 compares computed and measured properties for 
Flow 1300, another one of the incompressible Ludweig-Tillman13 flows, this 
time with favorable pressure gradient. Velocity profile differences are noticeable 
only below y+ = 200, and skin friction is nearly identical. Skin friction at the 
final station is 3.34 .lQ-3 with viscous corrections included and 3.35 · 10-3 when 
they are excluded. 

Bradshaw Flow C. This incompressible adverse pressure gradient case was 
one of the most difficult-to-predict case in Stanford Olympics 1.19 As shown 
in Figure 3.5 , with or without viscous corrections, the k - w model virtually 
duplicates measured c1 and u+ for this flow . At t he final station , c 1 = 1.60 ·10-3 

with viscous corrections and 1.61 · 10-a without. 
Samuel-Joubert. This incompressible adverse pressure gradient boundary 

layer was supposed to be a simple application in Stanford Olympics II. 19 On 
the contrary, it proved to be very difficult for all models and has become a key 
test case for how well a turbulence model predicts effects of adverse pressure 
gradient. Figure 3.6 shows that both high- and low- Reynolds-number versions 
of the model nearly duplicate measured skin friction and velocity profile at the 
lai~t station. At the final station, CJ = 1.21 · 10-a with viscous corrections and 
1.25 · 10-3 without. 

Compressible Flat Plates. As shown in Figures 3.7, 3.8 and 3.9 , the 
viscous corrections have virtually no effect on skin friction and velocity profiles 
in the fully turbulent region for these three applications. For all three cases, 
skin friction differs by less than one percent at the final station. This contradicts 
the claims of Zhang, et af2° that achieving correct asymptotic near-wall behavior 
is req·uired to accurately predict compressible flows. If their claims were correct, 
the k- w model: (a) would not predict flow properties so close to measurements 
for the Mach 2.244 and 4.544 cases; and , (b) would be closer to measurements 
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for the Mach 10.31 case with viscous corrections included. What t heir analysis 
actually shows that they have simply canceled the k- t model's inherent flaw 
in defect-layer structure1

•
21 by p rojecting their viscous modificat ions far above 

the viscous sublayer. 
Mach 2.563 Boundary Layer. The final turbulent flow application is for 

a compressible boundary layer with a freestream Mach number of 2.563. The 
boundary layer is subjected to an adverse pressure gradient. Figure ;).10 shows 
that , as in virtually all of our applications, only slight differences are present 
between model predictions with and without viscous corrections. At t he final 
station, skin friction with viscous corrections is 1.11·10-3 and 1.10·10-3 without. 

In summary, for all ten cases considered, differences between computed 
flow properties with and without viscous corrections are less than 3%, and are 
generally less than 1%. Hence , the viscous corrections leave the best features of 
the k - w model intact, i.e. , the model still accurately predicts effects of pressure 
gradient and compressibility up to l\llach 5. 
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Chapter 4 

Transitional 
Boundary-Layer 
Applications 

In order to test the suitability of the low-Reynolds-number k-w model fortran­
sitional boundary-layers, we have computed all of the two-dimensional transi­
tional boundary layer cases considered by Singer, et al. 9 Table 4.1 summarizes 
the cases we have done. 

Table 4.1: Transitional Boundary Layer Test Cases 

Flow Description Vp Data Source 

1 Incompressible Flat Plate None Schubauer-Klebanoff'" 
2 Favorable V p Favorable Blair-Werle23 

3 Supersonic Cone Flow None Fisher-Dougherty25 

3 Supersonic Cone Flow None Chen, et al 24 

4 Freestream Turbulence None Schubauer-Skramstad26 

4 Freestrearrj' Turbulence None Blair27 

' 5 Prolate Spheroid Favorable Meier-Kreplin-Ming29 

6 Concave Surface None Swearingen-Blackwelder28 

As discussed by Wilcox10 , transition predictions with the k - w model are 
sensitive to the freestream values of k and w, most notably to the former. All 
of the computations have been done using the following boundary condition at 

"·/ 
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the start of the computation: 

w;;' {k; 
- 6-v o.3 = o.o1 ( 4.1) 

where 8 denotes boundary layer thickness, and subscript e denotes boundary­
layer edge. Because our goal is to examine model predictions in the transition 
region as opposed to_ predicting the actual transition point, the freestream tur­
bulence level has been selected to match the measured transition location for 
most of the cornputations. We quote the initial value of the freestream intensity, 
T', for all cases, where 

T' = 100 fik: v 3U'f (4.2) 

The quantity U, is boundary-layer edge velocity. The freestream values of k 
and w vary throughout the computation, and follow from solution of the model 
equations in the freestream. See Wilcox1 for additional details. 

In all cases, computation begins at the plate leading edge, and the turbulence 
kinetic energy is initially set to the freestream value throughout the boundary 
layer. The initial w profile is given by the exact laminar-flow solution to the 
model equations.10 

Incompressible Flat Plate. The first case is Flow 1 from Singer, et al9 

This is an incompressible flat-plate boundary layer that undergoes transition 
at a plate length between 1.6 m. and 1.8 m. The initial freestream intensity is 
assumed to be 0.043%, and decreases with distance along the plate since the 
solution to the model equations in the freestream tells us the turbulence decays. 
At the end of the computation .the freestream intensity has dropped to 0.025%. 
The nominal value quoted for the experiment is 0.030%. 

Figure 4.1 compares computed and measured skin friction throughout the 
transition region. Computed and measured CJ differ by less than 14% of the peak 
skin friction. According to Singer, et al, the Dey-Narasimha29 correlation yields 
values about 6% lower than measured for this flow while the ONERA/CERT30 

model predicts peak skin friction about 25% higher than measured. 
Favorable Pressure Gradient Boundary Layers. The next applications 

are for incompressible boundary layers in a favorable pressure gradient. The 
bCIUndary layers considered correspond to Flow 2/Cases 1 and 2 of Singer, et aL 
In .addition to having adverse pressure gradient, the surface is cooled. Figure 4.2 
compares computed and measured Stanton number for the two cases. Cru:;e 2 
has a stronger favorable pressure gradient than Case 1. The initial freestream 
turbulence intensities required to match the 1neasured transition point are 0.61% 
and 0.91 %, respectively, for Cases l and 2. 

Singer, et al show that the Dey-Narasimha and the ONERA/CERT models 
are almost as close \o t.he data as the k -'- w prediction, although both predict 
a more rapid approach to the turbulent state. By ·-<;<>lltrast, for Case 2 the Dey-

20 
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Figure 4.1: Transitional incompressible flat-piate boundary layer. 

Narasimha model predicts a peak Stanton number nearly double the measured 
value. Also, the ONERA/CERT model fails to predict transition for Case 2. 

Hut,h of these flows have a very high measured freestream turbulence level 
(2.0%), which probably accou"nts for the departure of the skin friction from the 
laminar value ahead of transition. This is probably buffeting and it tends to 
smear the Stanton number distribution. While the k- w model prediction fails. 
to duplicate this feature, the computation predicts an asymptote to the fully 
turbulent value in a sensible distance. By contrast, the Dey-Narasimha model 
does not approach the data until about 1.5 m. 

Supersonic Cone Flow. For this application we consider Flow 3 of the 
Singer, eta] study. Cases 1-4 focus on flow past a 5° half angle cone with Mach 
numbers ranging from 1.16 to 1.86, corresponding to measurements of Fisher 
and Dougherty. 25 M~asurements are available only for the beginning and end 
of transition. Table '14.2 summarizes the freestream turbulence intensity used, 
tr~nsition Reynolds number, Rexp and Reynolds number based on transition 
width, Retl.x,. 

Cases 5-7 are for Mach 3.36 flow past a 5° half-angle cone, with an adia­
batic surface. The thr-ee cases considered have different unit Reynolds numbers. 
Figure 4.3 compares computed and measured recovery factor, r, for the three 
rases; freest ream turbulence intensity in the computations is 0.1% for all three 
rases. Not.e that unit Reynolds number is smallest for Case 5 a;nd largest for 
Case 7. Interestingly, consistent with measurements, the asymptotic value of 

··/ 
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Table 4.2: Results for Fisher-Dougherty Test Cases 

Case Mach Number T' x, (Reax ) t e:I:l!_ 

I 1.16 .0020% 7.02 . 10" 0.89. 10" 0.69. 10" 
2 1.30 .0075% 5.61 . 106 0.84. 106 0.97. 106 

3 1.55 .0027% 7.89. 106 1.08 . 106 1.24 . 1o• 
4 1.86 .0073% 7.29. 106 1.01 . w• 1..')6. 106 

the recovery factor is about 0.875 for all three cases compared to the generally 
accepted value of 0.89. By contrast, the Dey-Narasimha and ONERA/CERT 
models predict an a..<;ymptotic value in excess of 0.88. As a simple numerical 
experiment, we have run these computations without transverse curvature, i.e., 
as two-dimensional flows. The asymptotic value of the recovery factor is 0.89. 

Freestream. Turbulence Effects. We turn now to effects of freestream 
turbulence, i.e., Flow 4 of the Singer, et al study. All of the cases considered 
are for incompressible boundary layers. Table 4.3 shows that computed. tran­
sition width for Cases 1-5 is consistently smaller than measured, especially at 
the smallest transition Reynolds numbers. Note that the measured freestream 
turbulence intensity has been used in the computations. 

Table 4.3: Results for Schubauer-Skramstad Test Cases 

I Case T' 
" (Rea ) ;ct ex~ 

1 .042% 2.85. 106 0.88 . 106 1.00 . 106 

2 .100% 2.75 . 106 0.86 . 106 1.20 . 106 

3 .200% 2.20 . 106 0.78. 106 1.50 . 106 

4 .260% 1.80 . 106 o.69. w• 1.40. to• 
5 .340% 1.40. 106 o.58. w• 1.25 . 106 

For Cases 6, 7 aqd 8, Figure 4.4 shows that predicted peak skin friction 
IS ~bout 10%-15% 16wer than measured. The ONERA/CERT model's peak 
skin friction is about 5o/o-10% higher than measured, while the Dey-Narasimha 
model yields peak skin friction that is 20%-25% higher than measured. As 
with Cases 1-5, the computations match the measured freestream turbulence 
intensity, which is 0.25%, 1.00% and 2.00% for Cases 6, 7 and 8, respectively. 

Incompressible Flow Past a Spheroid. This case is Flow 5 from Singer, 
et al. The flow examines the effect of a roughn€ss strip on the transition of a 
boundary layer over a prolate spheroid at zero angle of attack. Experimental 
data have been provided by Meier, KrepJin and M~,. 29 Table 4.4 summarizes 
the four cases, including the value ofT' used in the computations. 
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Figures 4.5 through 4.8 compare computed and measured skin friction (based 
on local boundary-layer edge velocity) as a function of arc length along the 
spheroid. As shown, computed and measured skin Jriction are closest when 
transition is induced by the roughness strip. Without the roughness strip, the 
predicted transition occurs more abruptly than measured. 

Table 4.4: Meier-Kreplin-Ming Test Cases 

Case Description 

1 u= =20m/sec, no roughness strip 
2 Uoo = 20m/sec, with roughness strip 
3 U00 = 30 m/sec, no roughness strip 
4 u= = 30m/sec, with roughness strip 

T' 

.017% 

.153% 

.010% 

.115% 

Concave Surface Boundary Layer The final application is for incom­
pressible flow over a concave surface. Because the physical flow has longitu­
dinal vortices, this application would be more appropriately done in a three­
dimensional computation. Nevertheless, following Singer, et al, we present re­
sults of a two-dimensional computation in Figure 4.9. Freestream turbulence 
intensity in the computation is 1.21 %. The strongest statement we· can make 
is that the peak value of CJ matches the measured value. The Dey-Narasimha 
and ONERA/CERT models yield peak values about 6% and 16% higher than 
measured, respectively. 

In summary, while the differences between computed and measured skin 
friction and Stanton number are less than those with the Dey-Narasimha and_ 
ONERA/CERT models, the formulation is imperfect. This is most evident for 
the cases with large transition Reynolds numbers. In these cases, the model­
predicted transition occurs more abruptly than measured, especially for the 
compressible cases. Chapter 5 explains why this is true and shows that a better 
choice of the low-Reynolds-number closure coefficients R1c and Rw may reconcile 
the differences. 
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Chapter 5 

Boundary Condition and 
Closure Coefficient 
Sensitivity 

In this chapter, we investigate the sensitivity of k - w model solutions to the 
freestream value of w. The sensitivity is related to the physical time scales rel­
evant in shear flows. A solution similar to Menter's postulate has been tested. 
Additionally, we have determined the sensitivity of model-predicted transition 
width to the low-Reynolds-number closure coefficients. We have found that 
transition width is insensitive to three of the postulated low-Reynolds-number 
closure coefficients (a, a; and. Rp) and is strongly affected by two others ( Rk 
and Rw ). As a result of the understanding gained, we have found an ad hoc mod­
ification that yields more realistic transition width for high transition Reynolds 
nmnbers. 

5.1 Boundary Condition Sensitivity 

Unlike other two-e'lpation models, the k - w model reflects a sensitivity to 
freestream turbulence. This sensitivity is physically realistic for boundary layers 
as turbulent boundary-layer skin friction is known to increase with increasing 
fre~stream turbulence level. The model does indeed predict an increase in skin 
friction. However, the model also predicts a strong effect of the freest ream value 
of w on the spreading rate of mixing layers, jets and wakes. Measurements do 
not suggest such sensitivity. Finally, the sensitivity mitigates one of the k - w 
model's strongest assets in transition prediction 1 viz, the ease with which initial 
profiles can be established. While the w e'(uation has a well-defined laminar 
:flow solution, the solution is somewhat sensitive ·.t;t ... the freestream value of w. 
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Hence, transition predictions are affected by the model's sensitivity to freest ream 
boundary conditions. 

Recall that for fully turbulent flows, the high-Reynolds-number k -w model 
postulates that the Reynolds shear stress is given by 

-
1

-1 kiJu 
-uv = --

w iJy 
(5 1) 

As we approach the freestream, we expect on physical grounds that k and u'v1 

approach negligibly small values for a fully turbulent boundary layer. It is 
possible to achieve this according to Equation (5.1) even with a small freestream 
value of w, provided the ratio of k to w remains small. 

Having the ratio of k tow small is not the only physical consideration regard­
ing a possible lower bound on the freestream value of w. To understand why, 
note that the quantity w is the reciprocal of the time it takes the turbulence to 
adjust to changes in its environment. By contrast, the mean velocity gradient, 
iJujiJy, is the reciprocal of the time scale on which the mean flow is changing. 
The Reynolds averaging procedure used to arrive at our model equations im­
plicitly assumes that mean-flow properties are not changing more rapidly than 
the turbulent fluctuations. Hence, we have made an implicit assumption that 
in a shear flow, 

Wrnin >I~: I (5.2) 

Menter31 has shown that by computing the Reynolds shear stress according 
to _-,-, _ . [':. ~]au 

u v - mm w , iJujiJy iJy (5.3} 

k -w model predictions can be brought into closer agreement with measurements 
for some flows. This is tantamount to saying that 

Wrnin = 
1~ I~: I (5.4) 

when computing the~'~ eddy viscosity. 
' Of course, Menter's correction was designed to improve the model's predic­

tions for separated flows, rather than to address boundary condition sensitivity. 
Nevertheless, we have considered the possibility that Menter's correction may 
also remove some of the sensitivity. To do so, we have tested Menter's proposal 
for flat-plate boundary layer flow and the turbulent far wake. We have found 
that the Menter correction does very little to remove the model's sensitivity to 
the freestream value of w for either flow. 

While it is easy to implement, this approach is not entirely self consistent. 
We are still permitting w to assume values less thiu(wmin and simply adjusting 
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the eddy viscosity according to Equation (5.3). To eliminate the inconsistency, 
we can define a modified specific dissipation rate, W-, according to: 

(5.5) 

where A is a coefficient to be determined. The eddy viscosity, k equation and w 
equation then become 

• pk 
flT = " -::­

W 
(5.6) 

(5.7) 

(5.8) 

Using A ~ 2, this modification has virtually no effect on solutions. "However, 
when A ~ 3, boundary-layer solutions exhibit no sensitivity to the freestream 
value of w. However, this prescription is completely ineffective for the far 
wake. Consequently, we are still seeking a satisfactory resolution of the model's 
freestream boundary condition sensitivity. 

5.2 Closure Coefficient Sensitivity 

Turning now to closure-coefficient sensitivity, we have found that when transi­
tion occurs at relatively low Reynolds numbers (i.e., typically for Rex, < 106 ) 

the predicted extent of the transition region is consistent with measurements. 
By contrast, at higher transition Reynolds numbers, predicted transition width 
generally is smaller than measured. This problem is especially noticeable for 
compressible boundary layers. For example, Figure 5.1 compares computed and 
measured Stanton number, St, for Mach 20 l!ow32 past a 5° half-angle cone. 
As shown, the computed Stanton number increases much more abruptly than 
measured. 

To understand why the low-Reynolds-number version of the k-w model un­
derpredicts transitiorl width at high Reynolds number, recall that the boundary­
layer form of the equations for k and w are: 

( ) 
2 [ ] 

ak ak au • a • ak 
pu-+"pv-=pr- -j3pwk+- (p+upr)-ax ay ay ay ay (5.9) 

aw aw w (a")' 2 a [ aw] pu- + pv- =a-pr - - f3pw + - (p + O"IJT )-ax ay k ay ay ay (5.10) 

,pk 
flr=<>-

w 
(5.11) 
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Figure 5.1: Mach 20 flow past a 5° half-angle cone. 

Additionally, the closure coefficients a_.., a, /3*, {3, u* and cr are given by Equa­
tions (2.12-2.17). Inspection of Equations (5.9)-(5.11) shows that the five low 
Reynolds number specific closure coefficients, a 0 , a~, Rp, Ilk and Rw accomplish 
two t~nds. First, a~ and 0' 0 control the points at. whic.h k and w are amplified. 
The codficients R13, Rk and Rw control the rate at which a, a* and {3* approach 
their Fully turbulent values. 

Closer examination of solutions to Equations (5.9)-(5.11) reveals that the 
primary role of Rp is to establish the peak value of k in the fully turbulent 
region. However, it plays a more or less passive role in the transition region. 
Decreasing the value of R~ tends to increase the predicted width of the transition 
zone slightly. 

The value of a: has been chosen to guarantee that small disturbances begin 
to be amplified at the minimum critical Reynolds number for the Blasius bound­
ary layer. At low Reynolds numbers, the value of a, determines the width of the 
transition zone. To understand this, recall from Wilcox10 that for the Blasius 
boundary layer, the production terms in the k and w equations first exceed their 
corresponding dissipation terms at the following "critical" Reynolds numbers. 

(R ) - 8100 
e:e k-

<>' 
' 

(R ) - 12150 
C:c w -

a, 
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If we approximate that the dominant mechanism in the early stages of tran­
sition is the balance amongst the streamwise convection, production and dissi­
pation terms, the k and w equations simplify to 

u dk = !!_ [3a~ (&uj&y)' _1] kw 
dx 3 f3 w 

(5.14) 

u dw = f3 [~a, (&uj&y) 2- 1] w' 
dx 9 f3 w 

(5.15) 

Since the ratio of &uj&y to w increases as Re1
;/

2 for the Blasius boundary 
layer, the following observations can be made. First, piovided a~ and a 0 are 
chosen such that k is amplified before w is amplified, k will grow with increasing 
values of x beyond (Rex)k- Second, the value of a, controls the location at 
which w begins to grow, which ultimately terminates the growth of k, i.e., 
determines the end of transition. Third, when the transition Reynolds number 
is of the order of 1 · 106 , the difference between (Rex)> and (Rex)w is roughly 
7% of the measured width of the transition region. Fourth, as the transition 
Reynolds number increases, the difference between (Rex)k and (Re:c)w becomes 
a much smalier fraction of the transition width. 

Hence, we should expect the relative values of a~ and a 0 to have little 
effect on the width of the transition zone at high Reynolds numbers. Numerical 
experimentation confirms. that at high Reynolds numbers, transition width is 
essentially independent of the values of a~ and a 0 • 

We have also examined the sensitivity of transition width to the two re­
maining low Reynolds number closure coefficients, Rk and Rw. In contras-t to 
the relative insensitivity to values of the other three low Reynolds number pa­
rameters, transition width is very strongly affected by Rk and Rw. Figure 5.2 
illustrates the effect of tripling the values of Rk and Rw for the Mach 20 flow 
discussed above. Interestingly, not only is the transition width more accurately 
represented, so is the heat transfer in the fully turbulent region . 

. This exercise, although ad hoc in nature, points to a possible resolution of the 
model's inaccuracy for transition width at high Reynolds numbers. There are 
indeed pairs of value~ of R, and Rw, other than those quoted in Equation (2.16), 
tltat yield satisfactory results for general boundary-layer applications. Alterna­
tive values follow from a perturbation analysis of the viscous sublayer. Such 
analysis is the topic of the next chapter. 
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Chapter 6 

Singular Perturbation 
Analysis of the 
Compressible Turbulent 
Boundary Layer 

As shown in Chapter 4, the low-Reynolds-number k- w model yields transi­
tion predictions consistent with incompressible fiat-plate boundary layer mea­
surements, including sensitivity to freestrearn turbulence intensity. While the 
model provides a realistic simulation of the transitional region at high freestream 
turbulence levels (e.g., > 0.5% freestream intensity), the model predicts more 
abrupt than measured transition for smaller turbulence levels. As shown in 
Chapter 5, the model displays a strong (possibly nonphysical) sensitivity to 
freestream turbulence properties for free shear flows. The sensitivity is present 
for boundary layers as well, although the effect is not as pronounced (no more 
than 10% changes in skin friction, for example) as it is for free shear ftows. 

For all three cases, viz, transitional boundary layers, free shear flows and 
turbulent boundary hyers, sensitivity to freestream turbulence is felt through 
th'e entrainment process at the turbulent/nonturbulent interface. Specific to the 
transitional case, we usually speak of the boundary layer's receptivity. Clearly, 
developing a satisfactory engineering model for describing the transition pro­
cess requires a satisfactory description of the boundary layer's receptivity to 

freestream disturbances. 
In order to analyze this phenomenon, the ideal tool is 8. perturbation so­

lution for the turbulent boundary layer. Wilcox1 has done such a solution for 
incompressible flow, including effects of pressure gradient. Since our goal in this 
Contract is to develop a model for compressible flow}'"; a compressible defect-layer 
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solution is needed. Hence, we have initiated development of such a solution. 
As shown by Wilcox,33 the perturbation analysis develops an inner expansion 

corresponding to the viscous sublayer and an outer expansion corresponding to 
the defect layer. In this chapter, we examine the viscous sublayer solution first. 

6.1 The Viscous Sublayer 

Our primary motivation for analyzing the compressible sublayei is to help quan­
tify solution sensitivity to Rk and Rw when compressibility effects are signifi­
cant. The most important issue is to determine the effect of compressibility on 
the model predicted form of the compressible law of the wall, i.e., the Karman 
constant, ~, and the additive constant, B. 

In addition to affecting the width of the transition region, the closure coef­
ficients R, and Rw determine the value of the constant in the law of the wall, 
B, for a turbulent boundary layer. In fact, there exist unique pairs of values 
(R., Rw) that yield B = 5.0 for the incompressible sublayer. The appropriate 
values have been established by using perturbation methods to solve the sub­
layer equations and to determine B from the limiting form of the solution as 
y+ ---+ 00. 

Results of the Mach 20 transition application above suggest that larger values 
of Rk and ~ may be more appropriate. However, there is a possibility that 
larger values may be appropriate only for high Mach number flows. To determine 
effects of compressibility, we have redone our perturbation analysis of the viscous 
sublayer with effects of compressibility included. 

For coinpressible flow, the sublayer equations assume the following fQrm. 

d [ dul 
dy (Jl + J1T) dy = 0 (6.1) 

d [ du ( Jl JlT ) dh • dkl - (Jl+Jlr)u-+ -+- -+(Jl+<T Jlr)- =0 
dy dy PrL Prr dy dy 

(6.2) 

d , dk du , [ l ( ) 2 

dy ,(Jl + <T JlT) dy + JlT dy - (3 pwk = 0 (6.3) 

(6.4) 

where 
JlT = o:' pkjw and ph= Pwhw (6.5) 

We can integrate Equations (6.1 and (6.2) once, wherefore 

du 2 
(Jl + JlT) -d = PwUr / y '_J~ 

(6.6) 
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(6.7) 

where u 7 is friction velocity, Pw is density at the surface, and qw is surface 
heat flux. We make these equations dimensionless by introducing the following 
variables. 

u 
u+ =­

u, 

p+=L, 
Pw 

The resulting equations are: 

+ _ UrY 
y - ) 

Vw 
(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

This is a sixth order system of coupled nonlinear equations, and we thus 
need six boundary conditions. Four conditions can be applied at the surface 
and two for y+ ---+ oo. Specifically, from no slip, the velocity and turbulence 
kinetic energy vanish at the surface so that 

(6.16) 

We can specify either surface temperature or surface heat flux, i.e., 

(6.17) 

The final surface boundary condition pertains to the surface value of the specific 
dissipation rate. We can either use the "rough-wall" boundary condition for 
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which the surface value of w is finite or t.he "sinooth-wall" condition in which 
the asymptotic limiting form for w is imposed. That is we have: 

or (6.18) 

Boundary conditions far from the surface follow from matching to the defect­
. layer solution or, as demonstrated by Wilcox,33 by matching to the wall layer 
solution, which can be obtained in closed form. From the compressible wall 
layer solution,34 we thus conclude that 

1 du+ 
w+ ~ ---- as y+ ___,.oo . Viif;, dy+ (6.19) 

and 

(6.20) 

where 

M, = [('y- 1Jhtr'12 (6.21) 

Finally, the velocity in the wall layer is given by 

u' 1 
- = -Cny++B 
UT K 

(6.22) 

where u* is the scaled velocity that, in terms of the dimensionless variables is 
given by 

u' lffih;t {. _ 1 [ u+ +q;t ] 1 [ - = -- sm 1=.=;==~= -sin-
u, PrT ;,~; + (q;J;)2 

(6.23) 

We have solved Equations (6.11) through (6.15) subject to Equations (6.16) 
through (6.21) by modifying our incompressible sublayer program. Computa­
tions have been done with the primary focus on the effect of surface temperature 
on B, which is obtaiped from the solution as follows. 

B = lim [u+ - ~Cny+] 
y+-+CXJ K 

(6.24) 

As shown in Figure 6.1, for an adiabatic wall and with Rp, Rk and Rw given 
by Equation (2.16), there is less than a 10% change in B for h;t varying between 
500 and 10,000. Although more computations will be needed to consider all 
possibilities, it appears that compressibility has a relatively small effect on le-w 
model predicted sublayer structure. 

Thrning to the ad hoc modification discussed ,in ~Chapter 5, the constant in 
the law of the wall, B, correspondin'g to using Rk """18 and Fl., = 8.1 is in excess 
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Figure 6.1: Variation of the constant in the law of the wall with surface tern-
perature. 

of 10. According to the perturbation solution, the value of B can be reduced 
to approximately 5.0 by selecting (R.,Rw) = (18,28) or (R.,Rw) = (9.5,8.1). 
Unfortunately, both choices fail to yield a satisfactory solution for the Mach 20 
case discussed in Chapter 5. While this cursory examination of the problem does 
not exhaust all possible choices for Rk and Rw, it appears that some modification 
of the damping functions for a"' and a may be needed. 

6.2 The Defect Layer 

For compressible boundary layers, the k - w model equations are as follows. 

' ' {} {} 
ox (pu) + {}y (pv) = 0 

&u &u dp & [ ou] pu-+pv- = --+- (p+J.<r)-
ox &y dx oy &y 

pu &h + pv &h = u dp +I' (&") 2 + (3' pwk + _!}_ [(L + J.IT ) &h] 
ox &y dx oy &y PrL Prr &y 

2 

pu
0

k +pv
0

k =f'r (
8
") -f3'pwk+.!l_ .. \01'+<r'pr)

0
k] 

&x oy oy oy t oy 
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(6.26) 

(6.27) 

(6.28) 



(6.29) 

(6.30) 

Viscous effects are unimportant in the defect layer so that the closure coefficients 
are given by 

a* = 1, a= 5/9, (3* = 9/100, (3 = 3/40, u' = 1/2, u = 1/2 (6.31) 

To analyze the compressible defect layer, we introduce the transformed co­
ordinates ~ and '1 defined by 

1 1" p ~=x/L, 1)=C.(x) 
0 

p,dy, (6.32) 

where Ue and Pe are velocity and density at the boundary-layer edge, U 7 is 
friction velocity, L is a characteristic length scale in the streamwise direction, 
and 6~ is the compressible velocity thickness defined by 

. 1= p ( u) 6, = - 1-- dy 
0 Pe Ue 

(6.33) 

We introduce the streamfunction, 'lj;(x, y), and its transformed counterpart, 
F(C '1), defined by: 

(6.34) 

Similarly, we transform the various flow properties according to: 

u(x,y) U,U(~, '1); U = 8Ff8'1 

J'T(x, y) = PwU,6;N(~, '1) 

p(x, y) p,R(f,, '1) 

h(x,y) = CpT,H(f,, '1) (6.35) 

2 

k.(x, y) Pw ....::.r_K(C '1) 
p,fF 

w(x,y) Jt: C. W(f,, '1) 

The transformed equations of motion possess a similarity solution in which 
all flow properties are independent of x. The similarity variable is '7 and the 
following set of ordinary differential equations define the similarity solution. 

- RN- + "T- (2-M, )f3T- 2wT Fv = f3TH 1- U d [ dU] [ 2 1 dU [ 21 
d17 d17 a17 

(6.36) 
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(6.37) 

u'.!!__ [RNdd (HK)l + [<>r- (2-M;)!3r-2wr] F.!!__(HK) 
~ ry ~ 

= [.Pr- M;f3r- 4wr] UHK- ;~ # [ (~;) 
2 

RN ( ~~) 
2

- WHK]r6.38) 

u.!!__ [RNdW] + [<>r- (2- M 2)f3r- 2wr] FdW 
dry dry ' dry 

= [f3r- <>r + 4wr]UW- f!!:..V7F [a (U') 2 

R2 (dU) 2

- ~ W 2
] (6.39) 

Pw Ur dry j3 

and 
N = <>' K 

w (6.40) 

where Me is Mach number at the boundary-layer edge and the four parameters 
'JIT, f3r, wr and <Pr are defined by the following equations. 

2 db' 
O'T = --"' 

CJ dx 
(6.41) 

A similarity solution exists provided these four parameters are independent 
of x. Although we have not yet completed our analysis, the remaining steps 
are straightforward and will be completed during the next year. First, we must 
introduce asymptotic expansions for the various flow properties. Then, exam­
ination of the momentum integral equations should tell us that, similar to the 
incompressible case, Ur varies so slowly that the coefficient WT is negligible to 
leading order. For silnilar reasons, <Pr is probably negligible. Further manipula­
ti6n of the momentum integral equations should yield a relationship between O:T 

and f3r. The resulting equations should represent the similarity solution with 
the equilibrium parameter, f3T, as a parameter. The equations can be solved nu­
merically with straightforward modifications to our incompressible defect-layer 
program. 

'·/ 
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Chapter 7 

Summary and Conclusions 

We have made important progress in developing a transition model during the 
past year. Wilcox10 presents details of research conducted during the first three 
months of the project. Briefly, Wilcox10 describes a low-R.eynolds-number ver­
sion of the k - w model and tests it for fully-developed turbulent channel and 
pipe flow, and for incompressible, transitional Hat-plate boundary-layer flow. 

In the context of turbulent boundary layers, this report shows that the low­
Reynolds-number version of the model retains all of the best features of the 
baseline, high-Reynolds-number version of the model. Most notably, the model 
is just as accurate as the baseline model for flows with adverse pressure gra­
dient. This guarantees that the model approaches the correct post-transition, 
asymptotic state. 

In the context of transitional boundary layers, this report shows that, while 
offering predictions superior to those of simpler correlations designed for use 
with algebraic turbulence models, more development is needed. Most impor­
tantly, transition width is close to measured width only for low transition 
Reynolds numbers. At higher transition Reynolds numbers, model-predicted 
transition is much more abrupt than measured. 

While an ad hoc change in closure coefficient values clearly improves matters 
for a Mach 20 case, the change is inconsistent with values required for turbulent 
boundary layers. Tlie best hope ior resolution of the problem lies in the per­
turbation analysis of Chapter 6. Utilizing the sublayer analysis, we should be 
able to refine the viscous damping functions to arrive at suitable low-Reynolds­
number limiting forms for n", n, {3*, and any of the other closure coefficients. 

The model's sensitivity to the freestrearn value of w, to some extent, miti­
gates the model's insensitivity to initial prOfiles. The defect-layer analysis offers 
promise for quantifying and eliminating this an~oying rrrisfeature of the modeL 
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