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VARIATIONAL THEORY OF DEFORMATIONS OF CURVED, TWISTED AND
EXTENSIBLE ELASTIC RODS

by

Iradj G. Tadjbakhsh and Dimitris C. Lagoudas

ABSTRACT

The variational theory of three dimensional deformations of curved twisted and extensible
elastic rods is obtained based entirely on the kinematical variables of position and
rotations. The constitutive relations that define the resistive couples and the axial force as
gradients of the strain emergy function are established. A candidate for the strain energy
function on the basis of classical assumptions is presented.

INTRODUCTION

In the Historical Introduction of the "A Treatise on the Mathematical Theory of
Elasticity," Love (1892) narrates that in 1742 Daniel Bernoulli wrote to Euler suggesting
that the differential equation of the elastica could be found by making the integral of the
work done or the square of the curvature s minimum. Acting on this suggestion Euler was
able to obtain the differential equation of the elastica and the various forms of it. Thus the
concept of the strain energy was bora and the foundations of the variational theory of
elastic rods were laid out. The equilibrium equations that were much later developed by

Love are applicable to an initially bent and twisted rod. | Aocession For .
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Our aim in this paper is to establish a variational formulation for the title problem and in
the process infer the existence of the strain energy function and determine the constitutive
relations that relate this function to the bending and twisting couples and the axial force
within the rod. This development together with equations of equilibrium and the geometry
of deformation define a direct approach and an exact nonlinear theory for the three
dimensional deformation of a one dimensional elastic medium capable of resisting bending
twisting and extemsion. Going a step further, in order to actually construct an explicit
form for the strain energy function, we enter the realm of hypothesis and use Kirchhoff's
description of deformations in a thin rod. This view enables us to determine a strain
energy function that can be used in engineering applications.

The recent history of investigations of the rod theories consists of developments along two
separate streams, the direct approach and approximations from three—dimensional
continuum. [n the direct approach a one—dimensional continuum view is pursued and the
medium is supposed endowed, in addition to its position, with vector flelds, the directors,
that are to be interpreted appropriately to define bending, twist and extension properties of
a rod. This approach has its origins in the work of E. and F. Cosserat (1909) aad
numerous investigators have contributed to it among them Naghdi (1983), Naghdi aad
Rubin (1884), Whitman and DeSilva (1970), Green and Laws (1966), and Eriksen (1970).
Extensive investigation into the qualitative aspects of the nonlinear theory such as
questions of existence of solutions and global behavior have been carried out by Antman
(1976). His basic work entitled "The Theory of Rods" (1973) describes these theories both
as approximations to the three—dimensional continuum theory and as & one-dimensional
continuwmn with directors. =~ The work presented here, although pertains to a
one~-dimensional continuum, does not use directors, but is formulated entirely on the basis
of kinematical quantities consisting of the position vector of points along the curve of
centroids and the orientation angles of the cross sections of the rod relative to & fixed
coordinate system. It is a generalisation of the work of Tadjbakhsh (1066) in which the
theory of planar motion of the extensible elastica was described.

The history of construction of approximate theories in the context of three—dimensional
nonlinear continuum theory is also varied and to it many investigators including some of
the above authors have contributed, see for example Green, Naghdi and Weaner (1974).
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KINEMATICS

An elastica is a nearly uniform, slender rod of finite length. In the unstressed state the
centroids of the cross section form a space curve C that is called the reference curve with
an arc length 8. The orientation of the principal axes of the cross sections vary
coatinuously along the rod. This means that in the unstressed state the rod has arbitrary
twist and curvatures. With respect to a fixed Cartesian frame the coordinates of points on
the reference curve are denoted by Xi(s), i = 1, 2, 3. The cross sectional area can be a
slowly varying function of s and will be denoted by A(s).

Attached to any point s of C a Cartesian coordinate system with axes y, i=1,2,3 will be
assumed and will be referred to as the body axes. As shown in Fig. 1 the y; axis will be
pointing in the direction of the increasing 8 and y; and y; axes will point along the
principal axes of the cross section such that y; — frame is a right handed system.

As the rod deforms the curve C acquires new configuration c. The arc length along c is
denoted by £(s) to account for extensibility of the rod. The position of & point s of C that
in the unstressed state is X(s) at the stressed state will be x(s), both referred to the same
fixed Cartesian frame. Noting that

gsi {I = (x/ . !')*. (’ !%i) (1)
the strain e is defined by
es¢ ~1 (2)

where e>0 denotes extension and e<0 contzaction. The strict positivity of f' implies
-1 <e<a.

Two sets of orthogonal unit vectors e; and a; will be assumed for the body frame y and the

fixed frame x respectively. Denoting by ly(s) the elements of the matrix of direction
cosines between these two sets of unit vectors one has

8y = lyje (3)
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e = lj1 gy (4)

Let us consider an element of the rod Ads, Fig. 1, and use the dynamical analogy of E.L.
Routh. Love has noted that if the frame were to move with unit speed along the cutve ¢
such that at any point £ of ¢ it has the orientation of the y frame at that point then the
angular velocities w; and wj about the y, and ysz axes respectively, will be the principal
curvatures x; and x; of the rod. Also the angular velocity ws will be the twist curvature x4
of the rod. Thus the formulas that define angular velocities from direction cosines can be
used to determine curvatures, provided time diff¢rentiation is replaced by differentiation
with respect to £, The curvature vector is defined by

K= i ¢ ()
with _

A= Migh %-}'l}h (6)
where fyx = ey (€5jx + 1)/2, (no sum on i, j, k), and ey i the alternator temsor with its
DON=-2ero components being €igs = €33y = €33y = +1 and ¢33 = ¢33y = ¢33 = —~1. Noting
that d/d¢ = (1 + ¢)-1 d/ds, we define the three reference curvature parameters k; by

ki = (1+e)x; (M
For future use we record the formulas for derivatives of the uait vectors e

ef = ajikj & (8)

Associated with the unstrained state of the rod there will be the unit vectors Ey that bear
the same relationship to the principal directions of the cross sections of the rod as do e in
the strained state. In particular, if Ly are the direction ccsines of By with respect to a; and
K, are the curvatures and twist of the rod in the unstrained state, then formulas (3) ~ (7)
apply with 1;, e; and ky replaced by Ly, Ey and K, respectively, and e=0.

Since ey and Ax/3¢ are both unit tangents to the central line one has
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X’i = (14e)lyy
where x; represent the components of x in the fixed frame i.e.

X = Xih

(10)

@od6,918

Thus (9) is a differential constraint that relates the coordinates of the central line to

direction cosines of the principal axes of the cross section of the rod.

The strain e and the three curvature parameters kq form s set of four Seld variables that
completely characterizes the deformation of the rod. In subsequent sections conjugate
forces will be defined through the standard procedure of differentiating the strain energy

function with respect to these kinematical variables.

EQUATIONS OF EQUILIBRIUM

Referring to the body set of axes e; one can deflne the vector P of the resultant shear
stresses F; and F; of the cross section and the axial stress resultant Fy. Similarly one may
define the resultant couple stress vector M consisting of the bending moments M, and M;

about the axes y, and y; and the torque My. Explicitly we have
FuFie

and
M=Me

The well known force and moment equilibrium equations aze

F+tm0

M+zF+m=0

(11)

(12)

(13)

(14)
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where f and m represent the distributed force and couple acting on the rod, per unit
undeformed length s.

The scalar components of equations of equilibrium can be expressed in the body set of axes.
For this purpose one needs to express all vector quantities in terms of unit vectors e; and
use (8). Then (13) becomes

F; + kst—k;F3+f{=0 (18a)
F,+ksFi-kFy+6=0 (16b)
F; + kFy-kF; + fi =( (18¢)

while (14) sssumes the form

M| + k:My—kMs~ (1 + &)Fs + m] = 0 (16a)
M, + ksM; = kMy + (1 + ¢)F; + m§ = 0 (16b)
M, + kMy—k:M; + m{ =0 (16c)

Here the superscript y on the components of f and m denote these components in the body
reference frame.

To express the equations of equilibrium in the fixed frame we introduce the components of
the stress resultants in that frame. Thus

F; = yF; , M} = 1yM (17)
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Then (13) becomes

Fi +f1=0 (18)

and (14) assumes the form

M} =(1+&)(1ia F}) + m, = 0 (19a)

M; + (1+¢)(liy F}) + my = 0 (18b)

M; +m; =0 (15¢)
CONSTITUTIVE RELATIONS

Either one of the set of equations (15)—(16) or (18)=(19) can be considered as the governing
differential equations of equilibrium of the rod. These equations have to be supplemented
with constitutive relations that define resultant axial stress Fs and the resultant bending
and twisting couples M;, M3, Mj in terms of the axial strain e and curvatures ki, ks, k;.
For this purpose we assume the existence of & strain energy function W(e, ki) per unit
undeformed length which is invariant under rigid body translations and rotations in the
deformed configuration. We consider the variational problem of minimum of the total
potential energy as the equivalent of equilibrium states of the rod. This potential can be
expressed as

Uly(ey)s x;, €] = j; I'{W(c, k) + A [x; = ljy(1+6¢)]

- f; X = m{ vi}ds ~ [ﬁ, &1 + i‘t ;,]: (20)

where i': , ﬁ: aad f“; ' L-!'; are the applied forces and moments at theends = Osad s = L
respectively.
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The functions A; are Lagrange multipliers that allow the constraint (9) to be incorporated
within the functional U. As s result x; and 14 can be regarded as independent variables.
Additionally, the constraint (9) implies the definition (1)~(2) for the strain e and hence in
(20) e can also be viewed as an independent variable. To see this we need to note that if
each side of (9) is multiplied by itself we obtain xix} = (1+e)%sslyy = (1+e)? which is a

restatement of (1)~(2). The terms fix; and miy in the integrand of (20) represent the
density of the potential of the applied forces and moments oz the rod. The angles y;
represent the rotations from E; to ¢; when these directions are assumed to issue from a
common origin. These angles are determined through

cosy = ¢y + By = 1j Ly, i=1,2,3 (sum only on j) (21)

The direction cosins l;; are characterized by three orientation angles 6, 03, 6; that can be
selected in a variety of ways and represent three finite rotations about the unit vectors e;
or n;. If these rotations are properly selected aay initial orientation of & cross section may
be brought to any arbitrary final orientation. Kane et al. (1983) list at least 24
possibilities for order of rotations of the angles 8y, 65, 0y about the body set of unit vectors
¢; or the fixed set of unit vectors a; Thus in carrying out variation with respect to a
particulaz ¢; (say ;) we need to select a particular sequence of rotation angles 0y, the last
of which coincides with ¢,. Same procedure must be used when cacrying out variation with
respect t0 3 Or ¢y

With these preliminaries we note that the Euler equation corresponding to variations &; is

simply A; + f, = 0, which when compared with (18) identiSes A¢ with Fj. Next
considering the variation with respect to ¢ we obtain

gvei =F{ly=F (22)

which is the constitutive relationship determining the axial force F; as the derivative of
strain energy with respect to axial strain e.
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We now tura to the Euler equation corresponding to the variation &y For orientation
angles of the cross section we select the sequence of body rotations first fre;, second 4ey
and third d,¢, = pe;. Thea the matrix | of direction cosines is given by

CaCy ~C,C;8:+8:82 $,C.8;+C;:S;
1=B(4,)C(8s)A(B)m| S5 C.Cs -$.Cs (23)
-§3C; C;5:5;4+5,C ~51545:+C,C,

wheze
Cizcondy , Simsinb (24)
1 0 0 cosd 0 sin
A(f)= {0 cosd —sind| , B(f)=| 0 ! O
0 sind@ cosd -4ind 0 cosd
cosd ~4ind 0 (25)
C(8) = [sind cosd O
0 o0 1
Subsequently we find from (7)
k =0y 8y + 0, (26a)
k, = 8, C,C, + 4,8, (26b)
k, = - 0, 8,C, + 0,C, (26¢)
From (20) we have

-4 G E-earii - & @) - mY =0 (an)
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Noting that 0/dy, = 8/d6,, we have from (28) Jk,/ 80, = 0, dks/88, = ks, Jk3/ 36, = ~k;
and from (23) A1/ 0o, = ~li3. Using also the inverse of (17a), (27) becomes

G + ks - ki ~ (1+)F s + m] = 0 (28)

In exactly the same manner one can proceed to determine the Euler equation for 2
variation fy;. Now the consecutive sequence of body rotations ey, i€y, 9;€; is selected
with 6; = ;. Without going into details we obtain

oW ./ av ow
(FE; * kegE —kigp; + (14e)F1+ mi =0 (29)

For varistion of w3 we adopt the sequeace of body rotations e, G:e3, pes with 8; = s
The matrix of direction cosines is

C?Cl -C,S, . Sg
l=A(8;)B(6:)C(bs)=| $:52C1+CiSs ~8:8284+C,Cy =5,C; (30)
~€9,C;+8:8; Ci818:+8,Cy C,C; !

with curvatures given by

k, = 6,C:Cs + 035 (31a)
ky = #3 Cs - ,CsS, (31b)
ky = 0y + 0,8 (31¢)

For this case 1j; does not depend on #; and hence the Euler variational equation assumes
the form

G + ke~ k- +m =0 (32)

M
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Comparison of equations (28), (29) and (32) with equations (16a) — (18c) respectively
establishes the constitutive relations

M = g%’_‘ im1,2,3 (33)

The specified boundary conditions must be consisteat with

((Fy = Fi)éx; + (M, - My)dpi)- = 0 (34)

whick imply that at a boundary point either

F:-p{ or  xj=xy (35)

and
Mi=M; or TR ) (36)

where x; and g; are specified position and orientation.
A STRAIN ENERGY FUNCTION
the axial direction in the unstrained state remaia normal to the strained axial direction

during deformstion. Therefore the position vector to a materia) point ia the cross—section
before and after deformation can be given by

R = X(s) + 7iB((s) + y:Bas) (37)

t = x(6) + a(s)(yei(s) + ysex(s)] (38)
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respectively. The parameter aofs) is to be fixed by enforcing traction—free boundary
conditions on the lateral surface of the rod.

Using the concept of extensional strains for stretching of line elements and distortion of
angles between perpendicular lines as shear strains (Wempner, 1991), we define
components of strain by

¢ =4(g1- & -Gi- G)) (39)
where
‘l-g;_l-- o, s:=-g;—"08:,
& = 5';; = a'ye, + a'ye, + aye)+aye) + (1+e)e (40)
R

G‘-E=B" G,--g%-E:, Gatg%-ylex'f'nz;"‘m (41)

Using (8) we can establish
Q; . e’ - Gu.k. (‘2)

E, - By = (K, (49)

where K; is the curvatures and twist in the unstrained state. Therefore (9) yields as strain
components

€y = &y = ’(0"1), g = 0
= f{a(a’y, - ayk,) + 7K,
s = tla(a’yy + ayk,) —y,K,

a3 = ¢ + §0? ~ y|[(1+e)a ks = Ky + ys{(1+e)ak; - K| - y7s (a¥k ks = K. K3)
+iyflar+ ad (kR + k) ~KI-KD) + 4yi[a'2 + a¥xd+ k) ~KI-K]  (44)
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For a linear isotropic elastic material the non—gero stress components per unit strained
atea are

ot = (A+G) (a2=1) + Ae3, 12 m 0
o9 = (A+G)(a2=1) + Aell, 03 = 2Ge,,
0¥ = A(a2-1) + (A+2G) €3, o3 = 2G¢y, (45)

where A and G are Lame’s constant and the shear modulus, respectively. The traction per
unit undeformed area is then given by

1} = gligy (46)

One can define the axial stress resultant F3 by

Fym fn-., dA =
A

= A(l+e) [(A+zc)(e+w) + A(a’-l)]

+ (1+20) [1{(1+e)ak K Jak, + L{(1 + e)aky-Kjok,
+§1,(1+e)(a’? + o%] - K + o'k} - K})

+31(1+ )(a’? + o}~ K} + o'k} - X)) (47)

where I; = I‘y: dAandly= ]‘y: dA. Similarly we have

M, = j:ay,t‘-o, dA = a{2+3G) It[(l + ook, - K] (1 +¢)
+La%[\a-1) + (A+2G)(e+4e")] (48a)

M, = - j:a yithedA = af) +20) x,[(x + o)aky = K,| (1 +¢)

+ 1,0, [ N(@™-1) + (A+20)(e+4e7)] (48b)
’
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M3 = fa (Y{t3~03-y3t’-e‘) dA = JGaz(ans - K3)
'}

+ Ja’k,[A(a’—l) + (,\+2G)(e+§e')] (48¢)

where J=[,+I3. One may note that the integrability conditions

m-ge mefh -5 f-00 S -0 @

are satisfied. Hence existence of a strain energy function is assured and by integration we
have

W = A 2426 (1 1e487) - AA (1-i)(e + o)
|
+ A1,0% (a*-1) Bl 4+ (A+26) I a ky [lﬁ}“‘—“; ok, - (1+e)l(l]
+ALa? (az-1)§3+ (A+2G) 1, ak [1 Jeltde .y -(1+e)x]
] ] 2 ? 3

+ "1‘}"'-9(1 + e)’[I, (a'?+ a%ki-KH +1,(a’? + o’kg-xg)]
|
+ 27 a3 (at1) 1 + 222G 5 (e44e1) (a%] - K)) + § G Ja (ak, ~ K,)?
(50)

For aa initially straight rod K should be set equal to sero in (47), (48) and (50). The
above form of W reflects material isotropy, i.e., W(e k1, ka,ks)mW(e, ke kyks), provided that
11812.

We note that positive curvatures imply positive bending moments and conversevely
negative curvatures imply negative bending moments provided that e>(-1+1/y3) for
a=1. This shows that equations (48) have a limited range of validity if the sense
correspondence between moments and curvatures is be to retained. We also note the
second order coupling between the squares of the curvatures and the axial strain e in (47),
which implies that axial force can be generated by beading or twist oaly.
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The parameter ofs) depends on the boundary conditions applied at the lateral suzface of
the rod. If the lateral surface is fixed, then afs) = 1. For zerc tractions on the lateral
surface, a condition appropriate for thin flexible rods is adopted according to which the
average of ot and 022 over the cross—section should vanish, i.e.

j;crﬂdA = ./;a“dA =0 (51)

The above coadition reduces to
H(a, k;, e) 2 a’'J + o?(I1k} + Lk} + Tk} + .':‘.)

~ (LK + LK} + JK)) + 2A¢(1 + j&) =2 = 0 | (52)

This equation should be interpreted as s differential equation for ofs) when kj and e are
known. To achieve this (52) is solved in an iterative procedure in which at every step k;

and e are known. We begin by writing (52) as ‘l‘gg H(age, k7, ¢y) = O withn = 0, 1, 2,
3, .... For the first iteration (8 = 0), ¢, = 0 , ki = K;, a, = 1, and the six equations (15) -

(16) after using (22), (33) and (50) contain only ¢ix unknown quantities Fy, F3, e, and k!
when the externally applied forces and moments are prescribed. Solution of this set of

equations enables one to use ki in the curvature=orientation angle relations such as (31) to
determine the latter i.e. §;. Now l;; () are known and one proceeds to determine ¢, from
(21) and x, from (9) using the appropriate boundary conditioas. The solution for the first

iteration is complete. One enters (52) with ¢, and k: and computes a, and the iteration
proceeds.
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