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VARIATIONAL THEORY OF DEFORMATIONS OF CURVED, TWISTED AND
EXTENSIBLE ELASTIC RODS

by

Iradj G. TadJbakbsh and Dimitis C. Lagound

ABSTRACT

The variational theory of three dimensional deformatious of curved twisted and extensible

elastic rods is obtained based entirely on the kinematical variables of position and

rotations. The coustitutive relations that define the resistive couples and the awdal force as

gradients of the strain energy function are established. A candidate for the strain energy

function on the buis of classical wumptions Is presented.

INTRODUCTION

In the Historical Introduction of the "A Treatise on the Mathematical Theory of
Elasticity," Love (1892) narrates that in 1742 Daniel Bernoulli wrote to Euler suggesting

that the differential equation of the elutica could be found by making the integral of the

work done or the square of the curvature a minimum. Acting on this suggestion Euler wu

able to obtain the differential equation of the elastic& and the various forms of it. Thus the

concept of the strain enery was born and the foundations of the variational theory of

elastic rods were laid out. The equilibrium equations that were much later developed by
Love ue applicable to an Initially bent and twisted rod. Aooession For
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Our aim in this paper is to establish a variational formulation for the title problem and in

the process infer the existence of the strain energy function and determine the constitutive
relations that relate this function to the bending and twisting couples and the axial force

within the rod. This development together with equations of equilibrium and the geometry

of deformation define a direct approach and an exact nonlinear theory for the three
dimensional deformation of a one dimensional elastic medium capable of resisting bending
twisting and extension. Going a step further, in order to actually construct an explicit
form for the strain energy function, we enter the realm of hypothesis and use Kirchhoff's

description of deformations in a thin rod. This view enables us to determine a strain

energy function that can be used in engineering applications.

The recent history of investigations of the rod theories consists of developments along two

separate streams, the direct approach and approximations from three-dimensional
continuum. In the direct approach a one-dimensional continuum view is pursued and the

medium is supposed endowed, in addition to its position, with vector fields, the directors,
that are to be interpreted appropriately to define bending, twist and extension properties of
a rod. This approach has its origins in the work of E. and F. Coeserat (1909) and
numerous investigators have contributed to it among them Naghdi (1982), Naghdi and
Rubin (1984), Whitman and DeSilva (1970), Green and Laws (1966), and Eriksen (1970).

Extensive investigation into the qualitative aspects of the nonlinear theory such as
questions of existence of solutions and global behavior have been carried out by Antman

(1976). His basic work entitled "The Theory of Rods" (1972) describes these theories both

as approximations to the three-dimensionWl continuum theory and as a one-dimensional
continuum with directors. The work presented hee, although pertain to a
one-dimensional continuum, does not use directors, but is formulated entirely on the basis

of kinematical quantities consisting of the position vector of points along the curve of

centroids and the orientation angles of the cross sections of the rod relative to a fixed

coordinate system. It is a generalisation of the work of Tadj'bkhsh (1966) in which the

theory of planar motion of the extensible elastic& was described.

The history of construction of approximate theories In the context of three-dimensional
nonlinear continuum theory is also varied and to it many invatiSators including some of
the above authors have contributed, see for example Green, Naghdi and Weaner (1974).
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KINEMATICS

An elastica is a nearly uniform, slender rod of finite length. In the unstressed state the
centroids of the cross section form a space curve C that is called the reference curve with
an arc length s. The orientation of the principal axes of the cross sections vary
continuously along the rod. This means that in the unstresed state the rod has arbitrary

twist and curvatures. With respect to a fixed Cartesian frame the coordinates of points on
the reference curve are denoted by Xj(s), i = 1, 2, 3. The cross sectional area can be a
slowly varying function of 8 and will be denoted by A(i).

Attached to any point s of C & Cartesian coordinate system with axes yi, im1,2,3 will be
assumed and will be referred to u the body axes. As shown in Fig. 1 the y: axis will be
pointing in the direction of the increasing i and Yi and y: axes will point along the
principal axes of the cross section such that yj - frame is a right handed system.

As the rod deorma the curve C acquires new configuration c. The arc length along c is
denoted by c(s) to account for extensibility of the rod. The position of a point s of C that
in the unstressed state is X(s) at the stressed state will be z(s), both referred to the same
fixed Cartesian frame. Noting that

3 ( . C(

the strain e is defined by

e=C -1(2)

where e>O denotes eztension and e<O contraction. The strict positivity of • implies
-1 <.e<,..

Two sets of orthogonal unit vecton et and at will be aumed for the body frame y and the
fized frame x respectiveLy. Denoting by lti(s) the elements of the matrix of direction
coaines between these two sets of unit vectors one has

at " lte4 (3)
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e= Iji nj (4)

Let us consider an element of the rod Ads, Fig. 1, and use the dynamical analogy of E.I

Routh. Love has noted that if the frame were to move with unit speed along the curve c

such that at any point f of c it has the orientation of the y frame at that point then the
angular velocities wi and w2, about the yj and ys axIes respectively, will be the principal

curvatures x, and P.2 of the rod. Also the angular velocity Ws will be the twist curvature P•s
of the rod. Thus the formulas that define angular velocities from direction cosines can be

used to determine curvatures, provided time differentiation is replaced by differentiation

with respect to f, The curvature vector is defined by

with
Xci d-1 ih Ih

where ,Uk = etjk (fifk + 1)/2, (no sum on i, J, k), and eSjk is the alternator tensor with its
non-sero components being 123 e3321 m 22l n +1 and s2 - •£11 " c:21 = -1. Noting

that d/d4 - (1 + e)-t d/do, we define the three reference curvature parameters ki by

k- (i+e)gi(7

For future use we record the formula for derivatives of the unit vectors et

el kn ke (8)

Associated with the ustrained state of the rod there will be the unit vectors Bt that bear

the same relatiounhip to the principal directions of the cxou sections of the rod as. do ej in

the strained state. In particular, if L uare the direction ccsines of Zi with respect to at and

Ki are the curvatures and twist of the rod in the unstrarned state, then formulas (3) - (7)

apply with l1j, et and ki replaced by Lil, EN and X1, respectively, and eWO.

Since es and &1/•( are both unit tangents to the central line one ha
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xi (1+e)la (9)

where xi represent the components of x in the fixed frame i.e.

X = xi ni (10)

Thus (9) is a differential constraint that relates the coordinates of the centra line to
direction cosines of the principal axes of the cross section of the rod.

The strain e and the three curvature parameters kt form a set of four field variables that
completely characterizes the deformation of the rod. In subsequent sections conjugate
forces will be defined through the standard procedure of differentiating the strain energy
function with respect to these kinematical varlablu.

EQUATIONS OF EQUILIBRIUM

Referring to the body set of axes ea one can define the vector F of the resultant shear
stresses F1 and F2 of the cross section and the axial stress resultant Fs. Similarly one may
define the resultant couple stres vector M consisting of the bending moments M, and M2

about the axe y, and y3 and the torque Ms. Eplicitly we have

P=FtPie 1  (11)

and

M =mist (12)

The well known force and moment equilibrium equations are

P' +f=O (13)

and

W' +z' a P+ =U0 (14)
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where f and m represent the distributed force and couple acting on the rod, per unit

undeformed length s.

The scalar components of equations of equilibrium can be expressed in the body set of axes.
For this purpose one needs to express all vector quantities in terms of unit vectors el and
use (8). Then (13) becomes

F' +k IF5-kF,+ 0= (15a)

F; +ksF 1- F+ F =+ 0 (15b)

F3 + kIF2 - k2F3 + f =0 (15c)

while (14) assumes the form

M1 + k2Ms- ksM 2 - (1 + e)Fs + my, =0 (16a)

M; + ksj-k1 Mu + (1 + e)F 1 + mi - 0 (16b)

M1 + k1MI - kMm - 0 (16c)

Here the supencript y on the components of f and m denote these components in the body

reference frame.

To express the equations of equilibrium in the Aixed frame we introduce the components of
the streu resultants in that frame. Thus

F -liFj , M Xi- Mj (17)
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Then (13) becomes

F! +e,=o (18)

and (14) assumes the form

M - (1+e)(li2 Fj) + m, = 0 (19a)

M3 + (1+e)(1i1 F2) + m= 0 (19b)

M;' +m- O (19c)

CONSTITUTVWE RELATIONS

Either one of the set of equations (15)--(16) or (18)-(19) can be considered as the governing
differential equations of equilibrium of the rod. These equations have to be supplemented

with constitutive relations that define resultant axial stress F. and the resultant bending

and twisting couples MI, M&, Ms in terms of the axial strain e and curvatures k2, k2, ks.
For this purpom we assume the editence of a strain energy function W(e, kt) per unit

undeformed length which is Invariant under rigid body transations and rotations in the

deformed configuration. We consider the val-at/onal problem of minimum of the total
potential negy as the equivalent of equilibrium stats of the rod. This potential can be
expressed as

Up e - f l (w(e, ko, + A [z -lj,(1+,)]
0

- j-, myjds - i, + F1 ] (20)

where F, ad FML ae the applied form and moments at the end s = 0 and I = L
r"pectively.
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The functions Ai are Lagrange multipliers that allow the constraint (9) to be incorporated

within the functional U, As a result xi and li can be regarded as independent variables.

Additionally, the constraint (9) implies the definition (1)-(2) for the strain e and hence in

(20) e can also be viewed as an independent variable. To see this we need to note that if

each side of (9) is multiplied by itself we obtain xlx' = (1+e)21ili3 = (-+e) 2 which is a

restatement of (l)-(2). The terms i'cxi and myot in the integrand of (20) represent the

density of the potential of the applied forces and moments on the rod. The angles pi

represent the rotations from E1 to el when these directions are assumed to issue from a

common origin. These angles are determined through

COSt M 61O -E = lIt Lji, i=1,2,3 (sum only on J) (21)

The direction cosins lji are characterized by three orientation angles 08, 02, 93 that can be

selected in a variety of ways and remresent thme finite rotations about the unit vectors et

or ni. If these rotations are properly selected any initial orientation of a cross section may

be brought to any arbitrary final orientation. Kane et &l. (1983) Hist at least 24

possibilities for order of rotations of the angles 0t, 04, 03 about the body set of unit vectors

et or the fixed set of unit vectors aj. Thus in carrying out variation with respect to a

particular oi (say ý*t) we need to select a particular sequence of rotation anow. 0j, the last

of which coincides with ept. Same procedure mut be used when carrying out variation with

respect to 02 or 0$.

With these preliminaries we note that the Euler equation conesponding to variations &i is

simply A1 + 0 - 0, which when compared with (18) identilef At with F". Next

considering the variation with respect to e we obtain

8W xlI t
'Ve =Pj isM Ps(22)

which is the constitutive relationship determining the axial force Ps u the derivative of

strain energy with respect to axial strain e.
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We now turn to the Euler equation corresponding to the variation ., For orientation

angles of the cross section we select the sequence of body rotations first 82e2, second 63e3

and third Oee = W 1e1. Then the matrix I of direction cosines is liven by

C2CI -CIC2S 3+$S1 2  S1C2S3+C 1 S2'

I=B(0 2)C(63)A()= - Sa CAC -SIC (23)

{-s 2 CS C1S2S5+SiCI -SS 2 s,+ClCj

where

Ct S colot , StI stuel (24)

.1 0 0 1 cos$ 0 uil

A(M)= 10 colo -uin$ B(9)a. 0 1 0

LO sin$ cosel ..si. 0 co•sfj

[coso -4in 0' (25)

C(8)- l oint Co o

Subsequently we find from (7)

ki 0,P S. + 0, (28a)

k,. 0; CIC, + 0$, (26b)
I I

k, - is SLCS + OsCt (26c)

From (20) we have

OW A tM dI lk..(27)
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Noting that 8/O/o = 8/891, we have from (28) Akl/001 = 0, A31/80=1 k3, 8k3/001 =-k2
and from (23) Ats/8o1 = -4-. Using also the inverse of (17a), (27) becomes

aw Y W - w -(28)

In exactly the same manner one can proceed to determine the Eule equation for a
variation 6w:. Now the couecutive sequence of body rotations 83%5, $let, 0212 is selected

with 02 w2•op. Without going into details we obtain

) + k4 -kty- + (l'e)F + m- (29)

For variation of w3 we adopt the sequence of body rotations $Is,, 90, 9$e1 with Os 0 3s.

The matrix of direction cosine. is

c 2 cs -CAcS1  So

l-A(93)B(92)C(9,)[ SIS C,+C1 SS -S1 SISs+C1 Cs -S IC 2  (30)

--CjS3CS+SjSj Cisss+S CI CIC:

with curvatures given by

k, - O1CICS + OatS (31&)

km U; Ca-9;CsS 
(31b)

I I

k is + #iS$ (31c)

For this cs lit don not dpend on 0, and hence the Euler variational equation assumes

the form

(n '+k 1n-kt+m Two (32)
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Comparison of equations (28), (29) and (32) with equations (168a) - (16c) respec:ivety
est&blijhes the constitutive relations

M iul,2,3 (33)

The specified boundary conditions must be consistent with

((j- ±z~x (fal Mi)4VpjjL a 0 (34)
which imply that at a bounduy point either

Pt or X1 il 
(35)

and

M tor 'P t(36)

where it and jt me spodied positiou and orientatlon.

A STRAIN ENERGY FUNCTION

In order to gain In l•uight into the nature of the strain eergy fuction we consider thestrain of the line and anuges in the cross section of the rod. For this purpose we invoke theKirchhoff hypotheis which amsum that the plane cros sections of rod that are normal tothe axial direction in the uutralned state remain niormnal to the strained axial directiondwiing defor-on. Theefote the position vector to a material point in the cross-section
before and after deformation can be 61ve by

a = X(,) + y7l3(s) + YIN,) 
(37)

and

r a (s) + gu)[Me1(s) + yaeh(s)J 
(38)
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respectively. The parameter a(s) is to be fixed by enforcing traction-free boundary
conditions on the. lateral surface of the rod.

Using the concept of extensional strains for stretching of Dne elements and distortion of
angles between perpendicular lines as shear strains (Wempner, 1991), we define
components of strain by

euj = f(gi -S1 g G . Gj) (39)

where

81m r cal 6 r-.C1

gs - e='yIe1 + a'y÷2e +42  + Oy*ý + (I + e)e4 (40)
R 8R O y IGI = •-I = at, G3 M3 - 2, Gs I + Y322S + E3 (41)

Using (8) we can establish

I

ej • ej w fijk (42)

a 191 ij. apS (43)

where K1 Is the curvatur ad twist in the untrained state. Therefore (9) yields u strain
componats

-t g " *.= (a-1), *• - 0

Its 4[ WY.', - a Yk,) + AJ,,•

ell -( ~(a0'Y, + a y~k) - Y1K2

el m *+ J4e3 - y[(1+*)* k3 - 3K + yjs((1+e)a ki- Xj - yjyj (ahok3 - XKK1K)
+ JyJ101" + cO (k| + kD) - E• - K|O) + jy' [a,'I + A,•k3 + kj) - K' - KM] (44)
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For a Unear isotropic elastic material the non-sero stress components per unit strained
are& ire

all = (A+G) (a3-1) + Ae", C12 . 0

.22 = (A+G)(aL4) + At's, 0s s 2Mess

a33 -= A(aL-l) + (A+2G) C33, 0all Met (45)

where A and G are Lame's constant and the shear modulus, respectively. The trWction per

unit undeformed area is then given by

t3 0=•.i (46)

One can define the dal stress resultant F3 by

FI = f t3.es dA -

= A(1+e) [(A+2G)(e+J*3) + A(a2-1)]

+ (A+20) [I[(1.+e)ai-K1 akt + I,[(1 + e)dk,-Kj]ak,

+ •I,(1 a )(*',2 + a%3- K21 + =.k'-D

+ ½12 (1 + )(' + As - K22 + a•s- (47)

whee It, a ,y,, dA and Is J,' dA. Similarly we have

- fr,,- ts.e dA a aA42G) I,{(1 + a.,- K,1 (1 +.)

+ 11ak,[A(2-.) + (A,2)(,,Ne')] (+)

+- -f a,,,' .,,d-. w + (M)1,)(1 +,)ak,- , ,)

+ I,ok,[)i(e=.-1) + (A+.20)(e+..)] (€8b)
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M3 - fa (yYt'.ej-yst'.e) dA , JGa 2 (A3k- KS)
I

+ J02k4[A(a2-i) + (A+2G)(e+ie2)] (48c)

where J=11+12, One may note that the integrability conditions

are satisfied. Hence existence of a strain energy function is usured and by integration we

have

V1 A +-• ,021+e+02 - AA (1-a,)(e + ,e2)

+

a32ýJ rl+2e2+4*a

+ A 12a(Z-)1 + (A+20) It a k, L-- -at- (1+e)K 1]

+ 1 2 a, (a,-1) (L + A (,I-,,) (a +A - KI) + G J (o,,- K,)2

(50)

For an Initially straight rod Kt should be set equd to mo in (47), (48) and (50). The
above form of W reflects material isotropy, i.e., W(e,k1kjs,k3)mW(e,k,,kbkj), provided that

We note that positive cumture imply positive bending moment and conversevely
neptive curtures imply negative beading moments provided that e>(-I+1/yv) for
a- I. This shows that equations (48) have a limited range of validity if the sense
correspondence between moments and curvtures is be to retained. We dlo note the
second order coupling between the square of the curvatures and the axial strain e in (47),
which implies that axial force can be generated by bending or twist only.
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The parameter a(s) depends on the boundary conditions applied at the lateral surface of
the rod. If the lateral surface is fixed, then a(s) = I. For zero tractions on the lateral
surface, a condition appropriate for thin fleodble rods is adopted according to which the
average of aLl and 022 over the cross-section should vanish, i.e.

fJ-1dA = J"'~dA = 0 (51)

The above condition reduces to

H(a, ki, e) s a'J + o'(Ijkl + Ik' + Jk' +

-(ILK2 + IK2 + JK) + 2Ae(1 + Ae) 0 (52)

This equation should be interpreted as a differential equation for o(s) when k1 Lad e are
known. To achieve this (52) is solved in an iterative procedure in which at every step ki

and eare known. We begin by wrtint (52) as ij(p ., k , en) x 0 with n M 0, 1, 2,

3,.... For the first iteration (a = 0), a= 0, kin R11, I= 1, and the six equations (15) -

(16) after using (22), (33) and (30) contain only six unknown quantities F1, F2, el and k'
when the externally applied forces and moment an prescribed. Solution of this set of

equations enables one to ute kj in the cuvature-orientation angle relations such as (31) to
determine the latter I.e. 01. Now lij (A,) ire known and one proceeds to determine is, from
(21) and xj fom (9) usin the appropriate boundary conditions. The solution for the first

iteration is complete. One enter (52) with et and k' and computes a and the iteration

proceeds.

This work wu supported by ARO.
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