A SIMPLE MODEL FOR THE DIELECTRIC BEHAVIOUR OF POLAR
SOLVENTS IN THE MEAN SPHERICAL APPROXIMATION

by

L. Blum* and W.R. Fawcett**

Prepared for Publication in the
J. Phys. Chem.

**Department of Physics, University of Puerto Rico
P.O. Box 23343
Rio Piedras, P.R. 00931-3343, USA

and

*Department of Chemistry, University of California
Davis, CA 95616

Reproduction in whole or in part is permitted for
any purpose of the United States Government

*This document has been approved for public release
and sale; its distribution is unlimited

*This statement should also appear in Item 10 of Document Control
Data - DD Form 1473. Copies of form available from cognizant
contract administrator.
A simple model based on the mean spherical approximation is described for the dielectric properties of polar solvents. The molecular properties required are the dipole moment, the molecular polarizability, and the molecular diameter. It is shown that inclusion of a stickiness parameter accounting for other electrostatic features and non-sphericity in the real system leads to a simple analytical result from which the dielectric constant may be calculated. The stickiness parameter is shown to be correlated to the magnitude of dipole-dipole interactions in the system.
A Simple Model for the Dielectric Behaviour of Polar Solvents in the Mean Spherical Approximation

Lesser Blum
Department of Physics
P.O. Box 23343
University of Puerto Rico
Rio Piedras, PR 00931-3343

and

W. Ronald Fawcett
Department of Chemistry
University of California
Davis, CA 95616

Abstract

A simple model based on the mean spherical approximation is described for the dielectric properties of polar solvents. The molecular properties required are the dipole moment, the molecular polarizability, and the molecular diameter. It is shown that inclusion of a stickiness parameter accounting for other electrostatic features and non-sphericity in the real system leads to a simple analytical result from which the dielectric constant may be calculated. The stickiness parameter is shown to be correlated to the magnitude of dipole-dipole interactions in the system.
Introduction

Application of the mean spherical approximation (MSA) to the description of the dielectric properties of polar solvents dates from the work of Wertheim.1 In this model, solvent molecules are represented as hard spheres with centrally located point dipoles. When applied to water, the estimated dielectric constant is considerably less than the experimental value.2 Thus, one must replace the experimental dipole moment by a higher effective value in order to obtain the experimental dielectric constant from the MSA model.2,3 It is generally recognized that the failure of models for water based on a hard sphere - point dipole description is due to the fact that this simple molecule has a more complex multipole character.4 The complex electrostatic description leads to its well known hydrogen-bonded character.

Application of the MSA model to larger polar solvents is certainly expected to result in other problems. Thus, if one considers the series of normal alcohols, the representation of the molecule as a sphere with a central point dipole becomes worse as the length of the alkyl chain increases. Problems of a similar nature are encountered when one considers a series of aprotic solvents such as acetonitrile, and alkyl cyanides with larger alkyl groups. Thus, in general, one recognizes two problems with any model for a polar liquid based on hard spheres with centrally located point dipoles. The first is that the electrostatic description of the molecule may require that the quadrupole moment or higher order multipoles be considered. The second problem is that the molecule may not be well represented as a sphere.

One way of dealing with the above inadequacies is to introduce stickiness in the model. In this way, one can correct for the multipole nature of the polar molecule and its soft intermolecular interactions. The sticky interaction either aligns or misaligns the electrical dipoles of the solvent molecules, and therefore can be called a structure forming or structure breaking parameter. In the present paper, the original work of Wertheim1 is extended by including a sticky interaction parameter in the description of the polar molecule. Otherwise, the solvent molecule is considered to be a hard sphere possessing a permanent point dipole and a polarizability. The model is applied
to representative polar solvents, including both aprotic and protic systems, in order to assess the role of the stickiness parameter in determining bulk dielectric properties.

The Model

On the basis of Wertheim's original work\(^1\), one defines a polarization parameter, \(\lambda \), by the relationship

\[
\lambda^2 (\lambda + 1)^4 = 16 \varepsilon_s \tag{1}
\]

where \(\varepsilon_s \) is the static dielectric constant of the polar liquid. The parameter, \(\lambda \), also arises when the MSA is applied to the estimation of ion-dipole interactions in an infinitely dilute electrolyte solution\(^5\), and is designed to take into account softness and nonsphericity of the solvent core. \(\lambda \) is obtained from the energy parameter, \(b_2 \), which comes from the solution of the MSA for dipole-dipole interactions for a system composed of hard spheres with centrally located point dipoles. The relationship between \(\lambda \) and \(b_2 \) is

\[
\lambda = \frac{1+b_2/3}{1-b_2/6} \tag{2}
\]

where

\[
b_2 = 3\pi \rho_s \sqrt{\frac{2}{15}} \int_0^\infty dr \frac{\hat{h}^{112}(r)}{r} \sigma_s^3 \tag{3}
\]

\(\hat{h}^{112}(r) \) is the relevant coefficient from the invariant expansion of the total pair correlation function \(h(r) \) which depends on the distance, \(r \), between two dipolar spheres.\(^5\) \(\rho_s \) is the number density of molecules in the liquid and \(\sigma_s \), their diameter. The excess internal energy per unit volume for the liquid is given by

\[
\frac{E}{V k_B T} = \frac{d_2^2 b_2}{2 \pi \sigma_s^3} \tag{4}
\]

where

\[
d_2^2 = \frac{4\pi \rho_s p^2}{3k_B T} \tag{5}
\]
Here, \(p \) is the permanent dipole moment of the solvent molecule, and \(k_B \), the Boltzmann constant. In the MSA, when the molecules are non-polarizable, one obtains the result

\[
d^2 = \frac{\lambda^2 (\lambda+2)^2}{9} \left(1 - \frac{1}{\varepsilon_s} \right)
\]

(Wertheim also studied the MSA and other approximations for the case of dipole hard spheres which are polarizable.\(^6\) This work was reformulated to show that it is equivalent to a mixture of hard spheres of equal diameter but varying dipole moment.\(^7\) As a result, when the molecules have a polarizability \(\alpha \), eq. (6) becomes

\[
d_p^2 = \frac{\lambda^2 (\lambda+2)^2}{9} \left(1 - \frac{1}{\varepsilon_s} \right)
\]

where

\[
d_p^2 = a^2 d_2^2 + 4 \pi a \rho_s \alpha
\]

with

\[
a^{-1} = 1 - \frac{4 b_2 \alpha}{3 \sigma_s^3}
\]

Solving eq. (7) for the parameter \(\lambda \), one obtains

\[
\lambda = (1 + 3d_0)^{1/2} - 1
\]

where

\[
d_a = d_p / (1-1/\varepsilon_s)^{1/2}
\]

When one applies the above system of equations to water for which \(p \) is equal to 1.83 Debyes and \(\alpha_1 \), to 1.47x10\(^{-3}\) nm\(^3\), one obtains the result that \(d_p = 4.33 \) and \(\lambda = 2.75 \). As a result, on the basis of eq. (1), the MSA estimate of \(\varepsilon_s \) for water at 25 °C is 93.7, which can be compared with the experimental result of 78.3. This suggests that a small correction to the contact correlation functions would yield good agreement with experiment. This is achieved here using the directional
sticky model described by Blum, Cummings and Bratko. In its simplest dipolar version, introducing a longitudinal stickiness parameter t_0, eq. (7) becomes

$$d_p^2 = \frac{\lambda^2 (\lambda+2)^2}{9} \left[\left(1 - \frac{t_0}{\lambda_0} \right)^2 - \frac{1}{\varepsilon_s} \right]$$ \hspace{1cm} (12)$$

Having estimated d_p^2 on the basis of eq. (8), one can then determine the stickiness parameter t_0 by solving eq. (12) using the value of λ obtained from the experimental value of ε_s (eq. (1)). One then has a self-consistent model in which the experimental value of ε_s is estimated from the molecular dipole moment and polarizability using the experimentally defined polarization parameter λ with an additional stickiness parameter t_0.

This model is now examined for selected polar solvents. However, before examining the static solvent permittivity, the high frequency permittivity, and the ability of the MSA to estimate the refractive index from the molecular polarizability are considered.

Solvent Permittivity at Optical Frequencies

At optical frequencies, the system only responds to an electrical field via its molecular polarizability. Thus, in this case the parameter d_p is given by the equation

$$d_p^2 = 4\pi a \rho_s \alpha$$ \hspace{1cm} (13)$$

Furthermore, the polarization parameter, λ, is now calculated from the optical permittivity, ε_{op}, that is, from the equation

$$\varepsilon_{op} = \frac{\lambda^2 (\lambda+1)^4}{16}$$ \hspace{1cm} (14)$$

where ε_{op} is the square of the refractive index. Thus, an alternate way to estimating d_p is via the equation

$$d_p^2 = \frac{\lambda^2(\lambda+2)^2}{9} \left(1 - \frac{1}{\varepsilon_{op}}\right)$$ \hspace{1cm} (15)$$

The parameters b_2 and a defined above by equations (2) and (9), respectively, are now estimated using the value of λ obtained from eq. (14).
In the case of water at 25 °C, the value of ε_{op} is 1.7756. The corresponding high frequency value of the polarization parameter λ is 1.151 on the basis of eq. (14). One may now estimate the parameter d_p by using eq. (15) and then calculate the molecular polarizability on the basis of eq. (13). For water, the MSA estimate of α is $1.483 \times 10^{-3} \text{ nm}^3$, a result which compares very well with the value, $1.471 \times 10^{-3} \text{ nm}^3$, estimated on the basis of the Lorentz-Lorenz relationship. In the latter case, the polarizability is calculated from the molar refraction R defined by the equation

$$R = \frac{\varepsilon_{\text{op}} - 1}{\varepsilon_{\text{op}} + 2} \quad \bar{V} = \frac{4}{3} \pi N_o \alpha$$

(16)

where \bar{V} is the molar volume and N_o, the Avogadro constant. Keeping in mind the fact that the value of the polarizability depends very much on whether it is obtained from gas or liquid phase measurements, it seems appropriate that it be obtained from the refractive index of the liquid.

Values of α were calculated for all other solvents considered using both the MSA and the Lorentz-Lorenz relationship. In all cases, the MSA estimate is slightly higher, typically, by approximately 1%. Because the difference is so small, the MSA result was used in all further calculations and is tabulated in Table 1 together with other pertinent solvent data.

The Static Solvent Permittivity

The present model was applied to 20 different polar solvents, both protic and aprotic, chosen so that the role of the stickiness parameter could be assessed. Three solvent groups considered were water and the lower alcohols in which the polar group is $-\text{OH}$, the alkyl cyanides with $-\text{C} \equiv \text{N}$ as the polar group, and the amides whose dielectric parameters depend markedly on whether the solvent is protic or aprotic. The dielectric and other relevant parameters for these systems are summarized in Table 1. Some comment should be made about the values of the dipole moment chosen from the compilations of McClellan. The value of this parameter depends somewhat on whether it was measured in the gas phase or in a dilute solution in a non-polar solvent. The chosen values for a group of solvents were obtained by one method, preferably using measurements from
The stickiness parameter, t_0, also recorded in Table 1 was estimated from the dielectric data in the following way. Initially, the polarization parameter, λ, and the related energy parameter, b_2, were calculated from the bulk dielectric constant, ε, (eqs. (1) and (2)). Then the molecular parameter, d_2, was estimated on the basis of eqs. (5), (8) and (9) using the molecular polarizability found earlier, and the dipole moment, density, and molecular diameter tabulated in Table 1. Finally, the value of t_0 was obtained by solving eq. (12) using the above values of λ and d_p.

From the results, it is apparent that t_0 varies over a wide range from a low of -1.498 for formamide to a high of 0.495 for 1-propanol. Negative values of t_0 indicate that d_p is underestimated when it is calculated on the basis of eq. (8). It also follows that the MSA then underestimates the ordering effect of a given dipole on its neighbours. In the case of protic solvents such as water and formamide, this is attributed to the presence of hydrogen bonding, and important multipole contributions to the electrostatic description of the molecule. Negative values of t_0 are also found for all aprotic solvents considered. This also reflects the fact that the dipole moment cannot be considered to be centrally located in any of the polar solvent molecules considered.

It is interesting to follow the change in t_0 with the strength of the dipole-dipole interactions in the system. This can be seen for the water-alcohol series and also the alkyl nitrile series. Plots of t_0 against p^2/d^2 are linear for both series over a range of 4 kT (Fig. 1). What is interesting about these results is that t_0 becomes more positive as dipole-dipole interactions decrease in magnitude. This, in turn, can be related to the dipolar group in the solvent molecule moving further and further away from the molecular center. No such trend can be seen for the amides. Undoubtedly, this is due to the fact that the group of solvents considered includes both protic and aprotic systems so that the complete electrostatic description varies considerably among the members of this group. N-methylformamide is the only other solvent listed which has a positive value of t_0. Both formamide and N-methylformamide are systems which are extensively hydrogen bonded but with...
quite different structures as a result of change in number of acidic hydrogens.14 This change undoubtedly leads to the large difference in t_0 for these solvents.

The remaining solvents listed in Table 1 are all aprotic and possess negative values of t_0. This parameter is plotted against the dipole-dipole interaction energy unit, p^2/d^3 in Fig. 2. There is clearly a correlation between these two quantities, the value of t_0 becoming more negative as p^2/d^3 increases. This suggests that the smallest molecules with largest dipole moments depart most severely from the simple MSA result. This result reflects the fact that the tendency for local order is underestimated by the MSA. The scatter is much larger than that seen in Fig. 1 where molecules with the same polar group were considered. Not only are the polar groups different but the size and shape of the non-polar part of the molecule varies considerably among the solvents considered. In addition, systems like nitrobenzene and benzonitrile have very polarizable phenyl rings whereas the other molecules do not. In conclusion, the observed correlation is chiefly a result of the change in molecular size, and corrects the MSA model for the fact that the dipolar group is not centrally located in the solvent molecule.

Discussion

The MSA model for the dielectric properties of polar solvents described here is remarkably simple. Using the molecular dipole moment, polarizability, and diameter estimated from gas solubilities, one is able to calculate the relative permittivity with two additional parameters, namely, the polarization parameter, λ, and the stickiness parameter, t_0. The first of these, λ, is calculated directly from the static dielectric constant. Furthermore, the stickiness parameter, t_0, is clearly correlated to the ratio p^2/d^3 which is proportional to the dipole-dipole interaction energy. As the size of the non-polar group increases in a series of molecules with the same polar group, the ratio p^2/d^3 decreases, and t_0 increases. The correlation between these quantities is perfectly linear for a given series of compounds.

The limitations of the simple MSA in describing the properties of polar liquids are well known15, the present extension adding very little to the complexity of the model. If one compares the results of the present model to those from molecular dynamics calculations, it is clear that the
latter approach only would yield reasonable results if a detailed electrostatic description of the solvent molecule is provided. The fact that the MSA provides an analytical model with empirical parameters which can be qualitatively related to known properties of the system suggests that it is a very good basis for describing the dielectric properties of polar liquids.

Acknowledgements

This work was supported by the Office of Naval Research with grants to L.B. and W.R.F.
References

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Relative Permittivity</th>
<th>Molar Volume (V/\text{cm}^3 \text{ mol}^{-1})</th>
<th>Dipole Moment (\text{p/Debye})</th>
<th>Polarizability (10^3\alpha/\text{nm}^3)</th>
<th>Molecular Diameter (d/\text{nm})</th>
<th>Stickiness Parameter (t_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (w)</td>
<td>(\varepsilon_s) 78.3</td>
<td>(\varepsilon_{op}) 1.7756</td>
<td>18.07</td>
<td>1.83</td>
<td>1.48</td>
<td>0.274</td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol (MeOH)</td>
<td>32.7</td>
<td>1.7596</td>
<td>40.73</td>
<td>1.66</td>
<td>3.29</td>
<td>0.371</td>
</tr>
<tr>
<td>Ethanol (EtOH)</td>
<td>24.6</td>
<td>1.8480</td>
<td>58.69</td>
<td>1.66</td>
<td>5.21</td>
<td>0.436</td>
</tr>
<tr>
<td>1-propanol (PrOH)</td>
<td>20.3</td>
<td>1.9146</td>
<td>75.14</td>
<td>1.66</td>
<td>7.10</td>
<td>0.498</td>
</tr>
<tr>
<td>Amides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formamide (F)</td>
<td>111.0</td>
<td>2.0932</td>
<td>39.89</td>
<td>3.82</td>
<td>4.26</td>
<td>0.345</td>
</tr>
<tr>
<td>N-methylformamide (NMF)</td>
<td>182.4</td>
<td>2.0449</td>
<td>59.14</td>
<td>3.82</td>
<td>6.20</td>
<td>0.452</td>
</tr>
<tr>
<td>N,N-dimethylformamide (DMF)</td>
<td>36.7</td>
<td>2.0398</td>
<td>77.44</td>
<td>3.80</td>
<td>8.12</td>
<td>0.517</td>
</tr>
<tr>
<td>N,N-dimethylacetamide (DMA)</td>
<td>37.8</td>
<td>2.0609</td>
<td>93.02</td>
<td>3.80</td>
<td>9.91</td>
<td>0.548</td>
</tr>
<tr>
<td>Nitriles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (AN)</td>
<td>37.5</td>
<td>1.7999</td>
<td>52.86</td>
<td>3.47</td>
<td>4.48</td>
<td>0.427</td>
</tr>
<tr>
<td>Propionitrile (PN)</td>
<td>29.6</td>
<td>1.8594</td>
<td>70.91</td>
<td>3.50</td>
<td>6.37</td>
<td>0.477</td>
</tr>
<tr>
<td>Butyronitrile (BuN)</td>
<td>22.7</td>
<td>1.9099</td>
<td>87.87</td>
<td>3.50</td>
<td>8.29</td>
<td>0.532</td>
</tr>
<tr>
<td>Benzonitrile (BzN)</td>
<td>25.2</td>
<td>2.3284</td>
<td>103.07</td>
<td>4.54</td>
<td>13.05</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Table 1. Summary of Relevant Solvent Parameters
Table 1 cont.....

Other Aprotic Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Refractive Index</th>
<th>Dielectric</th>
<th>Dispersion</th>
<th>Molar Volume</th>
<th>Hamaker Constant</th>
<th>Total Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (AC)</td>
<td>20.7</td>
<td>1.8387</td>
<td>74.04</td>
<td>2.87</td>
<td>6.51</td>
<td>0.476</td>
</tr>
<tr>
<td>Dimethylsulfoxide (DMSO)</td>
<td>46.7</td>
<td>2.1824</td>
<td>71.30</td>
<td>3.96</td>
<td>8.24</td>
<td>0.491</td>
</tr>
<tr>
<td>Hexamethylphosphoramide (HMPA) 30.0</td>
<td>2.1228</td>
<td>175.65</td>
<td>4.47</td>
<td>19.6</td>
<td>0.698</td>
<td>-0.153</td>
</tr>
<tr>
<td>Nitrobenzene (NB)</td>
<td>34.8</td>
<td>2.4025</td>
<td>102.73</td>
<td>4.28</td>
<td>13.5</td>
<td>0.574</td>
</tr>
<tr>
<td>Nitromethane (NM)</td>
<td>35.8</td>
<td>1.9033</td>
<td>53.96</td>
<td>3.46</td>
<td>5.04</td>
<td>0.431</td>
</tr>
<tr>
<td>N-methylpyrrolidinone (NMP)</td>
<td>32.2</td>
<td>2.1550</td>
<td>96.44</td>
<td>4.09</td>
<td>11.0</td>
<td>0.569</td>
</tr>
<tr>
<td>Propylene carbonate (PC)</td>
<td>66.1</td>
<td>2.0190</td>
<td>85.21</td>
<td>4.98</td>
<td>8.80</td>
<td>0.536</td>
</tr>
<tr>
<td>Tetramethylurea (TMU)</td>
<td>23.1</td>
<td>2.1005</td>
<td>102.76</td>
<td>3.40</td>
<td>13.1</td>
<td>0.544</td>
</tr>
</tbody>
</table>

\(^a \) The square of the refractive index measured at the sodium D line.

\(^b \) From the compilations of McClellan\(^{12} \); 1 Debye = 3.335 \times 10^{-30} \) C m.

\(^c \) Calculated by the MSA using eqs. (13)-(15); see text for details.

\(^d \) From gas phase solubilities\(^{13} \); when these data were not available, the solvent's diameter was estimated on the basis of a linear correlation between existing experimental data and the cube root of the molar volume.
Legends for Figures

Figure 1. Plot of the stickiness parameter, t_0, against the dipole-dipole interaction energy factor p^2/d^3 for the lower alcohols and water, and for the alkyl cyanides. The abbreviations for the solvent given next to each point are defined in Table 1.

Figure 2. As in Figure 1, but for all aprotic solvents listed in Table 1.