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ABSTRACT

Techniques for digital in-phase and quadrature demodulation are investigated for appli-

cation in Radar Electronic Support Measures (RESM) systems.

RtSUME

Des techniques de d6modulation num6rique en phase et en quadrature sont examinees

pour l'application ý des syst~mes de mesures de soutien 6lectroniques radar.
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EXECUTIVE SUMMARY

The feasibility of using digital techniques for the coherent demodulation of wideband

signals was investigated. Several different design approaches and analysis methods were

considered. It was found that the processing requirements to achieve good accuracy for

pulse and other wide-band signals can be minimized through appropriate choice of inter-

mediate frequency, the use of half-band finite impulse response filters, and the application

of decimation. This suggests that an application specific integrated circuit implementation

of a digital coherent demodulator should have potential cost and performance advantages

over existing analog approaches.
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1.0 INTRODUCTION

Radar Electronic Support Measures (RESM) systems perform the functions of detecting,

classifying and identifying radars in the signal environment. Existing systems have relied
on relatively simple signal processing techniques to achieve real-time performance with

available technology. Typically the received radar pulses are characterized by measure-
ments of frequency, angle-of-arrival, pulse width, amplitude and time-of-arrival obtained
using analog signal processing techniques. Additional processing, largely using rule-based

algorithms, sorts trains of pulses from individual radars, extracts additional information

such as scan-pattern and pulse repetition interval, and attempts to classify and identify
the radars. With modern radars showing a definite trend towards more complex behaviour

such as frequency or pulse repetition interval agility and frequency or phase modulation,

the limitations of this approach are becoming apparent. Consequently future RESM re-

ceivers must become much more sophisticated in extracting additional information from
the signals to minimize the likelihood of ambiguous or erroneous results.

Technology advances including the availability of high-performance flash analog-

to-digital (A/D) converters, digital signal processors and application specific integrated
circuits, permit the replacement of many analog signal processing components and sub-

systems with digital signal processing techniques. Aside from achieving better stability

and repeatability, more sophisticated algorithms can be implemented to improve the mea-

surement of current signal parameters and to provide additional signal parameters.

Coherent quadrature demodulation is of particular interest. The removal of
the carrier facilitates signal processing operations such as correlation. Phase can be

directly extracted and optimal algorithms for frequency and amplitude demodulation can

be implemented[1].

Coherent quadrature demodulation has been proven in radar systems which use
within-pulse information for subsequent processing. Examples are MTI and look-down

radars which use Doppler processing to reject clutter, synthetic aperture radars which

do coherent processing to improve azimuth resolution, and coded pulse radars which use

modulation internal to the pulse to achieve improved range resolution[2].
Phase information is of potential value in RESM systems. It has been proposed

that a good way of characterizing signals having linear or non-linear frequency modula-

tion is to fit a low-order polynomial to the unwrapped phase using the method of least

squares[3]. A recently proposed approach for comparing pairs of time-aligned signals is
based on the computation of the mean square error of their differential phase relative to

an appropriate mathematical model[4].



For the advanced Radar ESM application one would like to realize the very fine

frequency/phase discrimination of coherent techniques while maintaining accuracy over a
wide bandwidth of interest.

This report describes the results of an investigation of a digital approach to
quadrature demodulation to achieve superior stability and accuracy over a wide bandwidth
and for short pulses. Error boundaries, performance evaluation, and means of reducing
complexity for possible application specific integrated circuit implementation were also
studied.
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2.0 DIGITAL QUADRATURE DEMODULATION FOR RESM

2.1 DIGITAL VERSUS ANALOG QUADRATURE DEMODULATION

Coherent quadrature demodulation' has application for within-pulse feature extraction

because of its potential to facilitate the measurement and exploitation of very small phase

or frequency changes over short time periods.

The standard analog implementation is shown in Fig. 1. Two mixers are used

to mix the incoming IF signal with the reference signal and a 900 phase-shifted version

of the reference signals. Low pass filters are then used to eliminate the unwanted side-
bands. The resulting signals are called the in-phase and quadrature channels -espectively.

Usually the mixers mix the incoming IF signal spectrum to a posi' on nominally centred

around DC. In this case the resulting pair of signals are collectively called the baseband

quadrature signal.

In the figure we have assumed that subsequent processing will be digital, and

therefore two analog-to-digital converters follow the low-pass filters. Mixing down to
baseband minimizes the sampling rate required by the analog-to-digital converters. This

directly yields the most economical representation of a given signal, reducing subsequent

processing demands.

Note that two mixers are used to mix the same incoming signal with trivially
different reference signals. The fact that there are two mixers leads to Fractical problems

in matching the in-phase and quadrature channels in terms of their gain and phase. If the

reference is not exactly 90' out of phase, the I/Q representation is not truly orthogonal.
A gain imbalance will also distort the signal by scaling the complex axes, leading again

to phase and amplitude errors which will compromise subsequent processing.

The typical overall phase accuracy for a good analog system has been reported

at 10 - 20. Phase and amplitude correction can improve this performance, but incurs a

significant increase in system cost and complexity[5, 6].

A digital implementation is shown in Fig. 2. Note that there is no mixing to

baseband and that there is only one analog-to-digital converter rather than two. The

converter must work at a taster sampling rate than is the case in Fig. 1. This implies that

the A/D converter must have good performance over the signal bandwidth centred about

a suitable intermediate frequency. Consequently, parameters affecting high frequency per-

formance such as aperture uncertainty time are important. Modern flash A/D converters

show significant progress in this respect. For example an 8-bit A/D converter having a

'in this report the terms coherent quadrature demodulation, I/Q demodulation, in-phase and quadra-
ture demodulation, and coherent detection are used interchangeably.
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Figure 1: Standard analog implementation of an I/Q demodulator.

sampling rate of 650 MHz at which 7.8 bit effective resolution is achieved for a 150 MHz
sinewave has been reported[7].

The digital processor accepts the digital input data stream and produces a pair
of digital output data streams which constitute the quadrature pair. Note that there is

no reason that the digital demodulator cannot translate the signal down to baseband and

output the baseband quadrature signal representation at the same low rate achievable in
the analog system. However, the demodulator itself must be able to process the high-speed

stream of digital data from the analog-to-digital converter.

IN-PHASE DCMATE -

DISCRETE
BANOPASS DBASEBANDINPUT QUADRATURE

OUTPUTS

-.. DRFTURE] DECIMATE

SAMPLE AT
4 TIMES IF

Figure 2: Digital implementation of an I/Q demodulator.

The digital implementation offers the ability to make tradeoffs between perfor-
mance and computational cost. Additional benefits are that the system requires little in
the way of tuning and maintenance and can be easily reproduced without careful attention

to gain and phase matching of analog components. Furthermore, the analog signals need

not be mixed down to baseband, with the result that some 1/f noise and possible DC
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offset problems in the mixer are avoided. It does require a high-speed digital processor,

but through the use of architectural techniques such as pipelining and parallelism, a com-

pact and potentially cost-effective digital processor may be realizable as an application

specific integrated circuit (ASIC). This is particularly true if care is taken to simplify the

design of the digital filters by the appropriate choice of sampling and IF frequencies, and

appropriate specification of the filter characteristics.
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2.2 THE DIGITAL DEMODULATION TASK

The real bandlimited IF signal from an RESM receiver can be written as follows

r(t) = A(t) cos[wot + 0(t)], (1)

= A(t) cos 0(t)coswot - A(t)sin0(t)sinwt, (2)

= I(t)coswot - Q(t)sinwot. (3)

The baseband in-phase and quadrature signals are I(t) = A(t)coso(t) and

Q(t) = A(t) sin 0(t), and w0 is the carrier in radians per second. As long as the band-

pass signal r(t) is sampled at the Nyquist rate (greater than twice the highest frequency

component), the information in the signal is preserved and, in principle, digital I/Q de-

modulation can be performed. In practice it is useful to observe what happens when the

sampling frequency f. is chosen such that f, = 4fo, where f0 is the IF centre2 frequency,

i.e., fo = l. As reported by Waters and Jarret[8], the discrete sequence r(t,) will be:2w"

r(t,,) = (-1)n/21(t, n even (4)

- (-1)("-')/2Q(t,) n odd. (5)

This was obtained by simply substituting t = t, = n~f = nj into 3. In [8] it

is observed that the true I and Q signals can be obtained by splitting the even and odd

samples into separate sequences and then multiplying these sequences by an alternating

sequence of plus and minus ones. The only remaining difficulty is that interpolation is

required to obtain I/Q pairs at the same instant in time. A particular type of interpolator

is suggested in [8] and good results claimed in limited tests. A problem with this approach

is that an interpolator is most easily understood in the time domain, and in the analysis

given no attention is paid to the frequency domain behaviour. This means there is no

rational basis by which one can predict and design for good wideband performance, which

is to say that it is difficult to say how the demodulator will perform on any but the

particular test signals used. This issue is of concern given the wide bandwidths needed

in the radar ESM application.

Thiel and Saulnier[9] used a similar analysis and a simple two-point average

2Note that the term centre frequency refers to the centre of the available receive bandwidth. The
incoming baseband signal will generally be centred at some other frequency within the wide bandwidth
of the ESM receiver.
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interpolator, but have also introduced a simple filter to remove DC offsets. This addresses

an important practical issue, and is potentially useful for narrow band radio signals.

Again, however, the interpolation analysis does not allow us to evaluate the design's

performance over a wide bandwidth. As will be shown in section 2.4.1, the Thiel and

Saulnier design is of little use in the RESM context.

We can gain insight into the sampled signal through a graphical interpretation.

Figs. 3A and 3B show an IF signal bandlimited to fo before and after sampling at 4 times

fo.3 What we would like to obtain is one of the sidebands of Fig. 3B translated to zero
frequency as shown in Fig. 3C. Note that since the single sideband is generally asymmetric,

the signal must be complex. Since one sideband is simply the antisymmetric image of the

other sideband, we can get rid of one redundant sideband and sample at fo without losing

information, thereby reducing downstream processing and storage demands.

One way to translate one of the sampled sidebands to baseband is to multiply

the sampled IF signal by a complex exponential at frequency f". This is shown in Fig. 3D.

The complex exponential samples will take the values [1,J, -1, -j, 1,, -1,J1 .... . Thus
it can be seen that splitting the sequence into even and odd samples and multiplying by

plus and minus ones is equivalent to a frequency translation. Therefore the interpolation
step is equivalent to a complex filter which removes the extraneous sideband at 2f0 . Un-

fortunately, the early treatments do not use this physical interpretation, and therefore do

not benefit from a filter-design approach. More recent papers by Rempel and Haslam[10],

and April[Ill do take a filter design approach however.

A natural step should be to decimate the complex signal shown in Fig. 3C by a

factor of four, since all the information will be preserved if the bandwidth of the signal is

less than or equal to fo. This bandwidth constraint is unlikely to be critical in practice
since it is difficult to design analog IF filters having larger relative bandwidths. The signal

after decimation is illustrated in Fig. 3E. Given that this is done, we can note that only

every fourth sample of the in-phase channel is needed, and we can avoid multiplying the

in-phase channel by plus and minus ones.

Another approach to demodulation is to eliminate one sideband, and then achieve

the frequency translation by simply decimating by four. The decimation by four aliases

the complex modulation signal down to baseband. This approach is taken by Mitchell[12I.

'It is also interesting to note what happens when a narrow baseband signal is sampled at ifo, or43

2M--1fo where M is an integer. These rates were suggested in [8]. It turns out that that the signal band
gets aliased down such that the actual sampling rate remains four times higher than the 'new' aliased IF.
Therefore the discussion in this report can be generalized to these other sampling rates as long as the
signal bandwidth is narrow enough to fit within the available bandwidth after decimation to baseband.

7
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Figure 3: Signal spectra at various demodulation stages.
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Inspection of the filter coefficients which arise from these approaches reveals that the mul-
tiplication by plus and minus ones as in [8] appears as alternating coefficient signs in the
sideband removal filters. These two approaches are conceptually different, but are compu-
tationally similar. Like Waters and Jarret, Mitchell filters only the Q channel. Mitchell's
approach has the virtue of being designed to known frequency response specifications.

The papers by Roy and Inkol[13] and Lodge[14], like Thiel and Saulnier, also
make an attempt to remove the DC offsets introduced by the A/D converter by the use
of filters in both the I and Q channels. In [13] it is suggested that bandpass filters with
identical amplitude reponses but a 900 phase offset be used.

The following section presents three separate design approaches for the digital
demodulator filter bank, each with varying degrees of complexity and performance. An
extremely simple design can be used if moderate4 bandwidths on the order of 60% of
f, are sufficient and if the DC offsets (in one channel only) at the output of the digital
demodulator can be controlled or compensated for outside of the demodulator. A more
complex design eliminates DC offsets at moderate bandwidths. A third design approach
can provide, at about the same level of complexity, excellent phase fidelity over a wide
bandwidth (approaching 100% of fo) with no DC offset problems, but with relatively
more shaping of the amplitude response. One very effective example of this last approach
requires only nine unique coefficients for the pair of filter banks and 17 real multiplies per
complex baseband output sample.

4Moderate is a relative term. A bandwidth of 60% would likely be considered wideband by communi-
cations standards. For the RESM application, however, very wide bandwidth is required, especially for
digital demodulation where increases in the IF frequency may be constrained by practical sampling rates.

9



2.3 THREE DEMODULATOR DESIGN APPROACHES

2.3.1 Medium BW Design With Simple Hilbert Transformer

In this design, the quadrature channel only is filtered as shown in Fig. 4. The goal of the

filtering is to provide a very flat frequency response centred around /" = f, and 900 phase4

for a bandwidth on the order of 40-60% of fo. A filter which meets this requirement is

the Hilbert transformer.

-{Z DEA DECIýMATýE

DISCRETEI•NDPASSBASEBAND
13ANDPASS AID QUADRATURE

OUTPUTSHILERT . DECIMATE .IPTTRAN 
FORMER BY 4

SAMPLE AT
4 TIMES IF

Figure 4: The Medium Bandwidth Simple Hilbert Transformer Design.

The ideal Hilbert transformer is a 900 phase shifter at all frequencies, and has

an infinite impulse response. A finite impulse response approximation to the Hilbert

transformer can be designed to any desired order.

For obtaining the flat equiripple response that is desirable for our application, the

Parks-McClellan algorithm may be used[15]. Fig. 5 shows the magnitude of the frequency

response for sixth order (7 tap) FIR Hilbert transformers for transition bandwidths of

0.2fo, 0.15f3 and 0.1f.. These correspond to passbands of 40%, 80% and 120% of fJ,

the IF frequency. Although ripple is very noticeable for the wider passbands, the ripple

amplitude is on the order of -50 dB for the transition bandwidth of 0.2f,.

The coefficients of the filters of Fig. 5 are given in Table 1. Note that the

coefficients are anti-symmetric, and that every other coefficient is zero. The anti-symmetry

is a consequence of the 900 phase condition, and the zero coefficients appear because of

the symmetry of the frequency response about f.'4"

With this design and using the sixth order filter, only two unique coefficients are

required. The Q component can be implemented in this case using only 3 real adds and

two real multiplications:

'This symmetry would disappear if unequal ripple in the pass and stop bands were specified. Therefore
it is undesirable to use the ripple weighting parameter of the Parks-McClellan algorithm to try to optimize
flatness in the passband.

10



Amplitude Responses of Three Hilbert Transformers
1.2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency Normalized by Fs

Figure 5: Amplitude Responses of 6th order Hilbert transformers with transition band-
widths of 20% f, (dotted line), 15% f. (dashed line) and 10% f, (solid line),
corresponding to passbands of 40%, 80% and 120% of f,.

Table 1: Sixth order Hilbert transformer coefficients..

Bandwidth
40% fo -0.0674 0.0000 -0.5672 0.0000 0.5672 0.0000 0.0674
80% fo -0.0848 0.0000 -0.5805 0.0000 0.5805 0.0000 0.0848
120% fo -0.1272 0.0000 -0.6013 0.0000 0.6013 0.0000 0.1272

11



y(n) = k1[r(n - 1) - r(n + 1)] + k2[r(n - 3) - r(n + 3)] (6)

Since the final result is decimated by 4 to baseband, the computation above need
only be evaluated at the rate of L. As mentioned above, the I component is obtained

4.

merely by delaying the signal (to match the 3 sample delay of the Hilbert transformer)

and decimating by a factor of four. The odd number of taps ensures that the Q component

is available co-incident in time with the I component.

2.3.2 Medium BW Design With Zero DC Offset

In this design approach we modify the simple design of the previous section by introducing

a filter into the in-phase channel for the purposes of removing DC offsets which may be

introduced by the analog-to-digital converter.6 This is shown schematically in Fig. 6.

13ADPAS DECIMATE -

DISCRETE
BASEBANDBANDPASS QUADRATURE
OUTPUTS

INP T 1 _ ---- HILBER DECIM ATE _
TRANSORMER BY4

SAMPLE AT
4 TIMES IF

Figure 6: The Medium Bandwidth Design with DC Offset Removal.

The DC offset is introduced by the analog-to-digital converter and lies at true DC

as observed at the intermediate frequency, not the DC after the modulator has translated

the complex modulation signal to baseband.

In order to keep the filters as simple as possible, only halfband filters were con-

sidered. To achieve further simplification, the filters proposed by Goodman and Carey [16]

were used. Since these use binary coefficients having few non-zero digits, multiplications

can be economically implemented in binary arithmetic by shift and add operations.

The design procedure is to take the halfband low pass filters of [16], which already

had nearly every other coefficient zero, and intersperse zeros between each coefficient. This

is equivalent to a compression of the frequency scale (expansion of the time scale). Next,

the filter is translated to f,/4 by multiplying by a cosine at that frequency. This procedure

6 It should be noted that the Hilbert transformer filters in the quadrature channel always have a null
at DC, and therefore have no DC offset problem.

12



also has the advantage that no new non-zero coefficients beyond those used for the original

filters were required.

Fig. 7 and Fig. 8 show the before and after results of this operation on the
frequency response of the filter for the so-called F5, F6 and F7 filters.7 In Fig. 7 the solid

line is for the F5 filter, the dotted line is for the F6 filter and the dashed line is for the F7
filter. All of the original filters are eleven-tap filters with 7 non-zero coefficients. Due to
the symmetry of the impulse reponse, only 4 of the non-zero coefficients are unique. After

conversion to a band-pass filter by interspersing zeros, the filters are 21-taps in length,

but still have only 4 unique non-zero coefficients. Table 2 gives the coefficients for the F5.

F6, and F7 filters as presented by Goodman et al.

Amplitude Response of the F5, F6 and F7 Filters

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency Normalized by Fs

Figure 7: Amplitude responses of the Goodman-Carey F5, F6 and F7 filters, plotted as
the solid, dotted and dashed curves respectively.

One small detail that should not be overlooked is that these filters have non-
unity gain. Since the I and Q channels must be gain-matched, a final normalization is

required after the filter to restore unity gain. The normalization factors are 512, 792 and

1024 respectively.

'The frequency responses have been normalized to I to facilitate comparisons.
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Amplitude Response of Bandpass Filters Based on F5, F6 and F7

0.9,
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Figure 8: Amplitude responses of three bandpass filters based on the Goodman-Carey F5,
F6 and F7 filters, plotted as the solid, dotted and dashed curves respectively.

Table 2: Coefficients for three of the Goodman-Carey filters..

Filter Name
F5 3 0 -25 0 150 256 150 0 -25 0 3
F6 9 0 -44 0 208 346 208 0 -44 0 9
F7 7 0 -53 0 302 512 302 0 -53 0 7
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2.3.3 Wide BW Matched Response Design With Zero DC Offset

A different design approach i' taken in this design. With FIR filters, the sole source
of phase error is amplitude imbalance between the FIR frequency responses of the two

channels. Therefore we attempt to optimize the similarity of the frequency responses of

the two channels rather than their flatness, while maintaining 90' relative phase. This

approach is shown schematically in Fig. 9.

aJBANDPASS ]-__[ DECMATE _SIFILTER 1BY 4

DISCRETE
BANDPASS A/D 90 DEGREE PHASE BASEBAND

DOFFSET QUADRATURE
INPUT OUTPUTSINPUT 

PA1r A[--.J DECIMATE ---.,,L, " I FILTER 2 I tBY4 I

SAMPLE AT
4 TIMES IF

Figure 9: The Wide Bandwidth Design with Matched Response and DC Offset Removal.

The design procedure for the matched response filter is as follows:

1. Design an FIR low-pass filter with an odd number of taps.

2. Produce the in-phase channel bandpass filter by multiplying by cos(nj).

3. Produce the quadrature channel bandpass filter by multiplying by sin(nl).

4. Test the design as described in section 2.5, and iterate.

Steps two and three amount to a translation of the filter frequency response
upwards by f = fo, where f. is the sampling frequency and fo is the IF frequency of

the demodulator.
In this study the filter in step 1 was designed for a passband from DC to 1 of

the sampling frequency, using a Hamming window design procedure for various orders.'
After steps 2 and 3 above, the frequency responses are half-band in form. The resulting

filter coefficients have the following properties:

* The in-phase coefficients were symmetric and, except for an additional non-zero

coefficient at the centre tap, only every fourth coefficient was non-zero.

8There is no reason other filter design procedures could not be used. Satisfactory results were obtained,
so no attempt was made to try using other filter design procedures.
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"* The quadrature coefficients were anti-symmetric, with every other sample a zero.

"* A given tap is never simultaneously non-zero for both the in-phase and quadrature

channels.

The first two properties reduce the number of multiplications required for a given

filter order. The third property indicates that the sample data can be demultiplexed into

two separate and parallel processing chains. Typical filter coefficients, derived from the

21 tap FIR lowpass filter tested in section 2.5.4 are shown below. The coefficients bi and

bq correspond to the in-phase and quadrature filters respectively.

-0.0048 0.0

0.0 0.0049

0.0 0.0

0.0 0.0168

0.0413 0.0

0.0 -0.0479

0.0 0.0

0.0 -0.1209

-0.2896 0.0

0.0 0.4397

b= 0.5 bq = 0.0 (7)
0.0 -0.4397

-0.2896 0.0

0.0 0.1209

0.0 0.0

0.0 0.0479

0.0413 0.0

0.0 -0.0168

0.0 0.0

0.0 -0.0049

-0.0048 0.0
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2.4 CHARACTERIZATION OF QUADRATURE DEMODULATORS

In the literature, quadrature demodulators are often designed for narrow band signals.

As such, it is often difficult to predict the usefulness of a given design for applications

requiring wide bandwidths.

A frequency domain characterization is useful in order to gain an understanding
of performance over a wide bandwidth. This is important because the radar signals

received by an RESM receiver may be translated by many Megahertz in frequency due to

frequency agility of the radar, or due to initial uncertainty of the carrier frequency. Good

performance over a wide bandwidth is also corsistent with the requirement to process
short pulse signals.

Time domain characterization is also important. While frequency domain char-

acterizations can indicate performance over a bandwidth, it is also useful to have time

domain results. These allow one to determine where errors occur during a pulse, and to

characterize them in terms of error magnitudes. For instance in the RESM application

the leading edge of the pulse is potentially very important because it is relatively free of

multipath influences. Knowledge of the size and distribution of phase errors over time
can be useful in judging the likely usefulness of the demodulator output for given appli-

cations. Also some nonlinear effects such as quantization effects are best evaluated in the

time domain.

2.4.1 Slow Chirp Simulation

The slow chirp test consists of injecting a simulated unit-amplitude sinusoidal IF with a

frequency that slowly varies at a constant rate into the demodulator model. The input

signal thus exercises the demodulator over a wide range of frequencies, but changes slowly

enough that transient effects are not observed.

The complex output of the demodulator is then compared with the analytically
derived result, which is simply a unit amplitude complex exponential with the same linear

frequency ramp, but translated in frequency so that the IF is mapped to DC. This method

of analysis allows phase and amplitude errors to be measured directly.

For the chirp test we generated a standard real input signal of the following

form:

r(t) = cos[22r(f, + L t)t)] (8)
2

We used the values fi = 10 MHz, fm = 0.6 MHz/usec. The signal was evaluated
over the interval 0 < t < 50 usecs. In the tests shown, a sampling rate of 100 MHz

17



was used, though the results are normalized to the sampling frequency and are generally
applicable.

The ideal output of the demodulator will be

Z(t) = (9)

where f, is the IF frequency and * is the conjugate operator, necessary because
of the definition of the quadrature component as derived in section 2.2.

Fig. 10 and Fig. 11 show the results of the slow chirp test when applied to
Thiel and Saulnier's simple demodulator with DC offset removal described in [9]. This

demodulator corresponds to trivial FIR filters described by the coefficients bi and bq for
the in-phase and quadrature channels respectively9 :

-0.25 0

0 0.5
bi 0.5 b7= 0 (10)

0 -0.5

-0.25 0

Fig. 10 shows the amplitude of the complex demodulator output relative to the
ideal analytic result over the chirp. The instantaneous frequency of the chirp is shown
along the horizontal axis. The amplitude performance shows that the demodulator of

Thiel and Saulnier is not particularly flat, varying by almost 10% over a bandwidth of
approximately 10% of f,, i.e. 40% of fo. The slow chirp amplitude result also shows an

oscillation within an envelope defined by the amplitude responses of the two filters. The
oscillations occur as the baseband signal phase changes and the relative contributions of
the in-phase and quadrature channels varies.

Fig. 11 shows that the phase errors are small only for very small bandwidths.

Over only 10% of f, phase errors reach 20.

2.4.2 Filter Frequency Response and Phase Error Bounds

The magnitudes of the filter frequency responses for the demodulator's quadrature filter
pair can be used to derive the maximum phase (and amplitude) errors that could appear

at the various frequencies. This is useful because, as we have observed in the previous

'We actually had to exchange the I and Q filters and negate the coefficients of the Q channel in order
to maintain consistency with the definition in section 2.2. This was not necessary for the experimental
analysis given in [9].
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Amplitude over Frequency Chirp

1.04
Peak Enor over Fs/10 : 0.0940116

1.02 Peak Error over Fs/4: 0.468603
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Figure 10: Amplitude performance of Thiel and Saulnier demodulator over a slow chirp.

Phase Error over Frequency Chirp and Sliding RMS error over .03 Fs (5 usecs)

4 RMS Error over Fs/10: 0.453305 Deg

RMS Error over Fs/4: 3.01788 Deg
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Figure 11: Phase performance of Thiel and Saulnier demodulator over a slow chirp.
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section, the errors that can be measured in the time domain are dependent upon the

baseband signal phase. A very small offset in frequency, time or initial phase can affect

the results of the time domain test.

The FIR filters considered in this report have ideal phase characteristics. The

only phase errors introduced by the filter pair are therefore those introduced by gain

imbalances between the filters' amplitude response at any given frequency.

The maximum amplitude error comes from deviation of the filter amplitude

responses from unity. The maximum amplitude error is due to the filter with the poorest

amplitude performance at a given frequency, and is observed when the input signal has

a phase of 00 or 1800 when the in-phase channel is the limiting factor, and 900 or 2700

when the quadrature channel is important. Amplitude errors are not dealt with in detail

here, because the chirp test of Section 2.4.1 provides sufficient information for our needs.

A more serious problem is the phase error due to filter amplitude imbalance.

Differences in the amplitude responses of the pair of filters cause a gain imbalance between

the two channels. A sinusoidal input to the modulator should produce an output which

traces out a circle in the complex plane at a frequency equal to the offset of the sinusoid

frequency from f0. When there is a gain imbalance, the complex signal traces out an

ellipsoid instead of a circle, biasing the phase towards the axis (real or imaginary) with

the greater gain.

The maximum phase error, E,,a, can be closely approximated given R, the ratio

of the two channel gains:

Emax -_ tan-'R - - (11)4 (1

The derivation of this equation may be found in appendix A.
To evaluate the phase error bound performance of demodulators we use the

following procedure:

1. Compute the frequency responses of the in-phase and quadrature filters from their

respective FIR coefficients.

2. Compute the ratio R(w) by dividing the in-phase amplitude response by the quadra-

ture amplitude response.

3. Compute and plot Emax(W) using equation 11.

To show the usefulness of this approach, consider Fig. 12. This shows the phase
error curve of Fig. 11 plotted along with the error bound curve. Note that the phase
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error observed in the chirp test is bounded by the phase error maximum. In the chirp test
the errors observed depend upon the particular phase at each sample. A decision made
purely on the basis of a chirp test may underestimate the phase errors which might be

experienced with other signals.

Phase Error over Frequency Chirp and Phase Error Bound

4

2

&N 0

0.S

-2

-4

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Baseband Frequency Normalized to Fs

Figure 12: Phase performace of Thiel and Saulnier demodulator over a slow chirp, and
the corresponding phase bound.

2.4.3 Pulse Signal Simulation

In the RESM application, a very fast transient response is required of the demodulator.

Modulation information superimposed on potentially very short pulses must be reliably
extracted. The leading edge of the pulse is of particular importance because it is relatively

free of multipath effects.

For pulse signal simulations, we used the following procedure:

1. Generate real-valued pulses at IF of various widths and shapes (trapezoidal, raised
cosine edges and Gaussian), modulated in a number of different ways.

2. Generate ideal complex baseband pulses which correspond to the real-valued pulses

generated in step 1.
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3. Demodulate the real pulses using the demodulator under study.

4. Compare the ideal baseband signals of step 2 with the outputs of step 3.

The results of the comparison are presented as plots of the ideal and experimen-

tally derived signals over time, and in the form of plots of amplitude and phase errors

over time.
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2.5 EVALUATION OF DESIGNS FOR RADAR ESM

2.5.1 Phase Error Design Goals

In theory it is possible to design demodulation filters to meet any desired phase error per-

formance at the expense of computational effort. In practice the phase error performance
will be limited by factors other than the filters, such as A/D converter quantization error,

jitter and non-linearity, and receiver noise figure.

A rational design for the demodulator filters then should provide sufficient preci-

sion so that the end-to-end phase error performance is not significantly influenced by the

imperfections of the demodulation filters. Additional precision provides little benefit, and

may in fact force sacrifices in other areas such as cost, power consumption and bandwidth.

Here we decided to base the phase error budget on the limits imposed on phase

measurement accuracy by the number of bits resolved by the analog to digital converter.

Table 3 shows the peak and RMS phase errors obtained when a full-scale amplitude vector
with random phase is rounded to M-bit precision in I and in Q.' 0 The results in this table

are represented graphically in Fig. 13. For the limited purpose of estimating phase error

design goals, these results were obtained by Monte Carlo experiment with 10,000 random

phase vectors uniformly distributed over 27r.

Table 3: Peak and RMS phase errors due to quantization..

Bits Peak Phase Error RMS Phase Error
M = 6 1.26 deg 0.54 deg
M = 8 0.31 deg 0.13 deg
M = 10 0.078 deg 0.032 deg
M = 12 0.019 deg 0.008 deg

For the flash A/D converters required for a digital demodulator at RESM band-

widths, 8 effective bits of precision is likely to be the practical limit for the near future.

Peak errors of approximately 0.30 are consistent with this precision.

"°This does not correspond exactly to the situation for the digital demodulators considered. Some
reduction in quantization noise might be expected because the demodulation filters will remove noise
which falls in the stop bands of the filters. This is not expected to be a major effect since we are not
oversampling by a large factor.
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Ptak mid RMS Phas Erro Due to I/Q QuwAnaion
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Figure 13: Peak and RMS phase errors due to quantization.

2.5.2 Medium BW Design with Simple Hilbert Transformer

In this section we present general findings and some key results for demodulator designs

using simply a Hilbert transformer in the quadrature channel and a delay only in the

in-phase channel.

In general we found that very low amplitude and phase errors could be achieved

over a medium bandwidth with very modest filters. A seven-tap FIR Hilbert transformer

with only two unique non-zero coefficients is sufficient to give nearly ideal results over a

bandwidth equal to 40% of the IF. We used the Parks-McClellan filter design program

to design Hilbert transformers with an odd number of taps. These always have zero

coefficients for every other tap. Further, simplified coefficients having relatively few non-

zero binary digits could be used at the cost of some loss in accuracy.

Fig. 14 shows the amplitude and frequency response for the Hilbert transformer

defined by the coefficients
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0.0674

0

0.5672
bq 0 (12)

-0.5672
0

-0.0674

This optimum 6th order Hilbert transformer is produced by the McClellan-Parks

procedure for a transition bandwidth of 20% of f, the sampling frequency.

1.5 . .Frequency Response (Magnitude).

~0.5-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Normalized by Fs

4- Freguency Response (Phase)

2-2

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Normalized by Fs

Figure 14: Amplitude and phase response of optimum 6th order Hilbert transformer, 20%
transition band.

Fig. 15 and Fig. 16 show the results of the slow chirp test for this demodulator.
Fig. 15 shows the amplitude of the complex demodulator output relative to the ideal

analytic result over the chirp. The instantaneous frequency of the chirp is shown along
the horizontal axis. The amplitude performance is extremely flat over about 10% of the

sampling frequency, which corresponds to 40% of fo, the IF. The phase performance is

also a small fraction of a degree over this same range.
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Figure 15: Amplitude performance of Optimum Hilbert demodulator over a slow chirp.

Phase Error over Frequency Chirp

4 RMS Error over Fs/i0: 0.00680035 Deg

RMS Error over Fs/4: 0.723336 Deg
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Figure 16: Phase performace of Optimum Hilbert demodulator over a slow chirp.
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Performance degrades rapidly ouside of this range as the Hilbert transformer

response rolls off.

The phase error bound is shown in Fig. 17.

Maximum Phase Error Calculated from I/Q Amplitude Response
0.5

0.4

0.3

10.2

0.1
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-03-
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Baseband Frequency Normalized to Fs

Figure 17: Phase error bound for the Optimum Hilbert demodulator, 40% f0 bandwidth.
The horizontal lines indicate the 0.3' phase error design goal.

Other Hilbert transformer results were obtained, offering larger bandwidths at
the expense of more serious phase errors. Up to 84% bandwidth can be obtained if phase

errors of up to 0.30 can be tolerated (as per our phase error design goal), using only a
sixth order filter. The phase error bound for this design is shown in Fig. 18. Further it
was found that good Hilbert transformers could be obtained using simplified coefficients

having few non-zero binary digits."1

A major flaw in this type of design is that it does not address the problem of
DC offset in the in-phase channel. For this reason new approaches were investigated.

"One of these Hilbert transformers is given by equation 13 in the next section.
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Maximum Phase Erro Calculated from I/Q Amplitude Response
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Figure 18: Phase error bound for the Optimum Hilbert demodulator, 84% fo bandwidth.
The horizontal lines indicate the 0.30 phase error design goal.
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2.5.3 Medium BW Design with Zero DC Offset

For the medium bandwidth design with zero DC offset it was found that performances

approaching those of the previous design could be achieved, but only with a significant

increase in complexity. The elimination of DC offset involves introducing a bandpass filter

into the in-phase channel. The problem is in designing a computationally economical

bandpass filter to achieve the flat frequency response over a large relative bandwidth

required to match the frequency response of the Hilbert transformer. As described in

section 2.3.2, care was taken to ensure symmetry and a large number of zero taps. While

the bandpass filter implementations are quite efficient, the bandpass filter required for the

in-phase channel is of higher order than the Hilbert transformer.
The Hilbert transformer used in the quadrature channel is a variant of that in

equation 11 of the previous section. In particular we used the filter defined by

1

0

9
bq= 0 (13)

-9

0

-1

The frequency response of this filter12 is shown in Fig. 19. This simplified trans-

former was also used during tests for the Medium Bandwidth Simple Hilbert transformer

design and was found to be almost identical to the transformer of equation 11 except for

a negligible decrease in the width of the flat portion of the frequency response.

The three Goodman and Carey filters mentioned in section 2.3.2 were tested as
well as several others. The F7 filter gives the widest bandwidth with reasonable phase

response. This can be predicted by examining Fig. 8, which shows the F7 filter to have a
wide and flat response which matches well with the extremely flat response of Fig. 19.

The amplitude and phase slow chirp results are shown in Fig. 20 and Fig. 21

respectively. These results are comparable to those of the Medium Bandwidth design
without the DC offset removal, though slightly degraded. This is to be expected given

that the bandpass filter will not be perfectly flat. The phase error bound result is shown

in Fig. 22.

Although there are only 4 unique coefficients required to implement the in-phase

12For convenience we have normalized the amplitude response to I in the passband.
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Figure 19: Frequency response for simplified Hilbert transformer.

filter, this is significantly more complex than the quadrature filter which has only two

coefficients. The increase in complexity buys only a removal of the in-phase DC offset -

the bandwidth is no better than the simple Hilbert design.

2.5.4 Wide BW Matched Response Design with Zero DC Offset

The wide bandwidth design based upon matched response filters was able to provide
superior use of available bandwidth as well as zero DC offset. Three different demodulators

of this type were tested using the chirp and phase error bound analyses described in

sections 2.4.1 and 2.4.2. The most promising design was tested using a large set of pulse

simulation runs, as described in section 2.4.3.
Hamming window designed filters with 13, 21 and 29 filter taps were studied."3

The respective I and Q amplitude responses for each of these filter sizes are shown in

Fig. 23, Fig. 24 and Fig. 25 respectively. The in-phase channel amplitude response is

shown as the solid curve and the quadrature channel amplitude response is shown as the

dotted curve.

"3 Filters with intermediate numbers of taps are no different from the filters studied, because the addi-
tional taps at the ends are all zeros.
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Amplitude over Frequency Chirp
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Figure 20: Amplitude performance of Medium-BW-Zero-DC demodulator over a slow
chirp.
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Phase Error over Frequency Chirp
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RMS Error over Fs/4: 0.0805875 Deg
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Figure 21: Phase performance of Medium-BW-Zero-DC demodulator over a slow chirp.

The longer filters provide better performance, both in terms of phase errors and

amplitude flatness. The 21 tap filter pair was selected for further study because it provides

a phase performance which exceeds the 0.3' design goal, and is less costly than the 29 tap

filters which achieved about 0.10 peak error.

Fig. 26 and Fig. 27 show the chirp test results, and Fig. 28 shows the phase error

bound result.

The 21 tap design was also tested with pulse signals. Additional results are

presented to indicate the effects of the following modifications:

"* The filter coefficients were rounded to nine bit precision.14

"* The IF data was rounded to eight bit precision.

Performance was somewhat compromised by quantization, but was not seriously

degraded. For this reason we show a series of results for the 21 tap matched response filter

' 4 C'ir-. ,nust be taken tl,,, the co,....cients from both filters are scaled the same way to maintain channel

gain balance. The quantization was set so that the largest magnitude coefficient in the filter pair was

scaled to be simply as a nine bit shift operation and all other coefficients were scaled appropriately.
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Maximum Phase Error Calculated from I/Q Amplitude Response
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Figure 22: Phase error bound for the F7 Medium-BW-Zero-DC demodulator. The hori-
zontal lines indicate the 0.30 phase error design goal.
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Figure 23: Matched amplitude responses for 13 tap filters.
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Figure 24: Matched amplitude responses for 21 tap filters.
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In-phase and Quadrature Amplitude Responses
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Figure 25: Matched amplitude responses for 29 tap fi.'ters.
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Figure 26: Amplitude results for chirp test of 21 tap Matched Response demodulator.
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Phase Error over Frequency Chirp
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Figure 27: Phase results for chirp test of 21 tap Matched Response demodulator.

with the effects of quantization of both coefficients and sampling rolled into the results.

Although results were compiled for all three of the trapezoidal, Gaussian and raised cosine

pulses, only results from one trapezoidal pulse and one raised cosine pulse are shown for

the sake of brevity.

Fig. 29 shows the ideal and obtained demodulator output amplitude for a trape-

zoidal one microsecond width pulse with 100 nanosecond rise and fall times. The ideal

sample values are marked by '+' characters and the obtained values are marked by 'o'

characters. The sampling rate for this and other experiments was set at 400 MHz, thereby

making the IF 100 MHz. The initial frequency is 95 MHz (5 Mhz below the IF), and a

linear frequency modulation of 10 MHz per microsecond is used.
Fig. 30 shows the complex valued error at the demodulator output. The error is

at all times less than 1% of the pulse amplitude, a very impressive performance.

Fig. 31 shows the magnitude of the error at the demodulator output over time.

The largest errors occur at the leading and trailing edges of the pulse, where the demod-

ulator filter transients appear.

Fig. 32 shows the phase error (the difference in demodulator output phase from

the ideal output phase) over time. Only the output samples where the output magnitude
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Figure 28: Phase error bounds for 21 tap Matched Response demodulator. The horizontal
lines indicate the 0.30 phase error design goal.
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Ideal and Output Ampliude : P3
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Figure 29: Amplitude for ideal and obtained demodulator output, I microsecond trape-
zoidal pulse.

38



xlO-3  Demodulator Complex Error : P3

6÷

4 -,

4 + I+
+ + + +

02 + +
+. + +4.

.0 04, 0 04"

.÷ ÷

"-2 4". ÷ ÷ ÷

-4 4.4".+

-6

4-
-.01 -0.008 -0.006 -0.00 -0.002 0 0.002 0.00 0.00 0.008 0.01

Real Part in Volts

Figure 30: Complex error, 1 microsecond trapezoidal pulse.
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Figure 31: Amplitude of errors over time, 1 microsecond trapezoidal pulse.
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of the complex pair is greater than 5% of the maximum pulse amplitude are considered in
the figure. This thresholding allows us to screen out the phase values corresponding to low

amplitude output values and is desirable because the tails of the filtered pulse waveform
have little information content due to quantization errors and the aliasing resulting from
the infinitely wide spectrum of a time-limited pulse waveform. The phase errors are

typically below 0.3O, but approach 1P at the pulse edges, where the filter transients occur.
The phase error comes within the 0.3° design goal about halfway through the rise time

interval.
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Figure 32: Significant phase errors over time, 1 microsecond trapezoidal pulse.

Fig. 33 shows the ideal and obtained demodulator output amplitude for a 500

nanosecond width pulse with raised cosine edges and 50 nanosecond rise and fall times.
The initial frequency is 110 MHz (10 Mhz above the IF), and no frequency modulation is
used.

Fig. 34 shows the complex valued error at the demodulator output. The error is
at all times less than 1% of the pulse amplitude, again a very impressive performance.

Fig. 35 shows the magnitude of the error at the demodulator output over time.
The largest errors occur at the leading and trailing edges of the pulse, where the demod-

ulator filter transients appear.
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Figure 33: Ideal and obtained demodulator output, 500 nanosecond cosine-edged pulse.
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Figure 34: Complex error, 500 nanosecond cosine-edged pulse.
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Figure 35: Amplitude of errors over time, 500 nanosecond cosine-edged pulse.

Fig. 36 shows the phase error (the difference in demodulator output phase from

the ideal output phase) over time. Only the output samples where the output magnitude
of the complex pair is greater than 5% of the maximum pulse amplitude are considered.

The phase errors are typically below 0.30, but approach 0.6' at the pulse edges. The phase
error comes within the 0.30 design goal about halfway through the rise time interval.

These results are respresentative of the overall body of tests which showed that

the Wide Bandwidth Matched Response design performed very well with pulse signals.

Given a requirement for a zero DC offset design, the Matched Response design is a good
candidate for use in a practical RESM system.

If it can be shown that DC offsets introduced by the A/D converter may be con-
trolled outside of the demodulator, the Medium Bandwidth Simple Hilbert Transformer

design might be favoured because of its extreme simplicity.

The Medium Bandwidth, zero offset design could be considered if DC offset

removal is a requirement, if moderate bandwidth is acceptable, and if the additional

complexity of the Matched Response design can be achieved only at significant cost.
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Figure 36: Significant phase errors over time, 500 nanosecond cosine-edged pulse.

3.0 CONCLUSION

Technology advances in microelectronics and analog-to-digital converters facilitate the

implementation of wideband, real-time, coherent quadrature demodulators using digital

techniques. This report shows that with careful design relatively simple filters can be used

to achieve a very good performance suitable for advanced radar and RESM applications.

Given the further advantages of application specific circuits in terms of manu-
facturing cost, reliability, power consumption, size and weight, it is anticipated that the

implementation of digital quadrature demodulation and other signal processing functions

by application specific integrated circuits will be an important aspect of future RESM

and radar systems.
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APPENDIX

A.0 THE EFFECTS OF I/Q AMPLITUDE MISMATCH

Any bandpass signal r(t) may be represented as:

r(t) = A(t) cos[wot 4 'k(t)] (A.1)

= A(t)cosO(t)'oswot - A(t)sinO(t)sinwot (A.2)

= I(t)coswot - Q(t)sinwot. (A.3)

where I(t) = A(t)cos 0(t), Q(t) = A(t)sin 0(t), and w0 is the carrier frequency in radians

per second.

In our case we use finite impulse response filters to obtain estimates of the in-
phase and quadrature components. For both digital and analog implementations the
in-phase and quadrature component estimates are affected by frequency dependent mis-

matches in the gain of the two channels which can be represented by the gain factors
Ki(w) and 14(w) respectively:

i(t) = K,(w)A(t)cos0(t) (A.4)

Q(t) = Kq(w)A(t) sin 0(t) (A.5)

The measured phase (which is an estimate of 0(t)) is given by:

0(t) = tan-' [(wAt ]s- (A.6)

= tan' [R tan0(t)] (A.7)

where R = KI,(w)/Kq(w), and tan is the four-quadrant tangent. The phase
error, E, is therefore:

f(t) = O(t)- k(t) = tan- 1 [Rtan t(t)] - ,) (A.8)

We can see that the phase error is a function of 4b(t), the time-varying phase
of the modulating signal being measured. The parameter R determines the severity of
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the phase distortions around the unit circle, with a value of 1 (no amplitude imbalance)

leading to zero phase distortion. To simplify notation, we can drop the time argument

and simply write:

f(O) = tan-' [R tan d] - 0 (A.9)

for all time. The error f depends upon the actual phase 0. By taking the derivative and

setting it to zero we find that the maximum error occurs at max where:

6ma, = COS 1 ( ]*R (A.l10)

Replacing P by ,ma in equation A.9 gives

,ma, = tan- [Rtan~max] - Oa (A.11)

If we make the approximation that ýR/(1 + R) ,Z ' for R z 1, then we have:

,max - tan- R - (A.12)

4

This last approximate expression was used in sections 2.4.2 and 2.5 to compute

the maximum phase error bounds given the amplitude responses of the in-phase and

quadrature filters. The ratio of the amplitude responses at. each frequency maps to a

valid value of Ema at that frequency.

Fig. 37 shows plots of the actual and approximate functions for rax, demon-

strating the accuracy of the approximation over a very wide range of imbalances. Over the

very small imbalances we are designing for (less than 1%), the approximation is virtually

perfect.

Since R is frequency dependent and may be obtained from the amplitude re-

iponse of the FIR filters in our case, the appropriate values of R and I may be found

for all frequencies. The amplitude responses are, in turn, easily obtained from the FIR

filter coefficients alone.
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Exact and Approximate Phase Error Bounds
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Figure 37: Actual vs. approximate values for Emax,.
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