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RESEARCH IN STOCHASTIC PROCESSES AND THEIR
APPLICATIONS

SUMMARY OF RESEARCH ACTIVITY

Research was conducted and directed in the area of stochastic processes and their
applications in engineering, neurophysiology and oceanography by the principal in-
vestigators, S. Cambanis, G. Kallianpur and M.R. Leadbetter and their associates.
A list of the main areas of research activity follows. More detailed descriptions of the

work of all participants is given in the main body of the report.

Stochastic differential equations in infinite dimensional spaces
Stochastic differential equation models for spatially distributed neurons
Propagation of chaos for interacting systems

Nonlinear white noise analysis

Sampling designs for time series

Wavelets, multiresolution decomposition, and random processes
Non-Gaussian stable models: Structure and inference

Inference for linear and harmonizable time series

Periodically correlated and other nonstationary processes
Sample function properties

Random fields and their prediction

Markov random field models for vision

Point processes, random sets, and random measures

Random measures associated with high levels

Tail inference for stationary sequences




RESEARCH IN STOCHASTIC PROCESSES AND THEIR
APPLICATIONS




STAMATIS CAMBANIS

The work briefly described here was developed in connection with problems arising
from and related to the statistical communication theory and the analysis of stochastic
signals and systems.

Part I considers questions raised by the observation of continuous time random
signals at discrete sampling times, and the transmission or storage of analog random
signals in digital form.

Part II considers non-Gaussian models frequently encountered in practical appli-
cations. The goal is to learn how Gaussian and linear signal processing methodologies
should be adapted to deal with non-Gaussian regimes.

Part III continues the study of wavelets and multiresolution analysis for random
processes, and Part IV deals with random filtering and the harmonic analysis of
nonstationary processes.

[tem 5 is continuing joint work with E. Masry of the University of California,
San Diego. Items 3, 4, 6, and 8 are in collaboration with visitors to the Center
for Stochastic Processes: Houdré, Hurd, Fakhre-Zakeri, Leskow, Mandrekar, Rosinski

and Surgailis. [tems 1 and 2 are continuing work with former Ph.D. students Benhenni
end Su.

I. DIGITAL PROCESSING OF ANALOG SIGNALS

Continuous time signals are typically sampled at discrete times and inferences are
made on the basis of these samples, which may be further quantized (or rounded-off)
for digital processing. Items 1 and 2 describe work in progress on sampling designs
for the estimation of regression coefficients and on the degradation of the performance
of sampling designs due to quantization.

1. Sampling designs for regression coefficient estimation with correlated
errors. [1]

The problem of estimating regression coefficients from observations at a finite
number of properly designed sampling points is considered when the error process has
correlated values. Sacks and Ylvisaker (1966) found an asymptotically optimal design
for the best linear unbiased estimator, which generally may lack numerical stability
and requires the precise knowledge of the covariance function of the error process. Su
and Cambanis (1991) found an asymptotically optimal design for a simpler estimator
which is relatively nonparametric (with respect to the error covariance function) when
the error has no quadratic mean derivative. This was achieved by properly adjusting
the median sampling design and the simpler estimator introduced by Schoenfelder
(1978). Here simpler vet sampling designs and estimators are introduced which have
asymptotically optimal performance even for smoother error processes (with quadratic
mean derivatives).

2. The effect of quantization on the performance of sampling designs. [2]

The most common form of quantization is rounding-off, which occurs in all digital
systems. A general quantizer approximates an observed value by the nearest among a
finite number of representative values. In estimating weighted integrals of time series
with no quadratic mean derivatives. by means of samples at discrete times it is known
that the rate of convergence of the mean square error is reduced from n=? to n~!?®
when the samples are quantlzed (Bucklew and Cambanis (1988)). For smoother time
series, with & = 1,2,... quadratic mean derivatives. it is now shown that the rate of
convergence is reduced from n~%*~? to n=2 when the samples are quantized. which




is a very significant reduction. The interplay between sampling and quantization is
also studied, leading to (asymptotically) optimal allocation between the number of
samples and the number of levels of quantization.

II. NON-GAUSSIAN MODELS

In continuing the exploration of non-Gaussian models we have studied a couple
of stable models. A new rich class of stationary stable processes generalizing moving
averages is introduced and studied in [tem 3, and the linearity property of the pre-
iliction of heavy-tailed autoregressive processes in reversed time is characterized in
tem 4.

3. Generalized stable moving averages. [3]

No explicit representation is known for all stationary non-Gaussian stable pro-
cesses. The main two subclasses studied, which have explicit representations moti-
vated by the Gaussian case, are the harmonizable processes, which are superpositions
of harmonics with stable amplitudes, and the moving average processes, which are
filtered white stable noise. While in the Gaussian case. the latter is a subclass of
the former, in the non-Gaussian stable case the two classes are disjoint. The study
of stable moving average processes is facilitated by the fact that their distribution
is essentially (except for a translation and sign) determined by the filter function of
the moving average. This has made it possible to study distributional properties of
the process (mixing, ergodicity, self-similarity, Markov property, etc.) through the
properties of the filter functions.

In this work the class of non-Gaussian stable moving average processes is expanded
substantially by the introduction of an appropriate joint randomization of the filter
function and of the stable noise. leading to stable generalized moving averages (GMA).
The characterization of their distribution through  their filter function and their mixing
measure leads to a far reaching generalization of a theorem of Kanter (1972).

It is shown that stable GMA’s contain sums of independent stable moving averages
and that they are still disjoint from the harmonizable processes, but are closed under
time invariant filters, and that they are mixing, so they have strong ergodic properties.
They lead to a wealth of new examples of self-similar processes, bevond the linear
fractional stable motions, and also of processes which are reflection positive. which is
a useful weakening of the Markov property.

4. The prediction of heavy-tailed autoregressive sequences: Regression
versus best linear prediction. {{]

The prediction of heavy-tailed first order autoregressive sequences is considered.
In forward time the regression on all past values is the same as the one-step regression
on the previous value, which is in fact linear. In reversed time the regression on all
future values is the same as the one-step regression on the immediate future value
(i.e. the Markovian property is retained) and we show that it is linear if and only
if the innovations have a semistable distribution. This answers a question posed by
Rosenblatt (1992) who considered sequences with finite second moment and showed
that regression with time reversed is linear if and only if the innovations are Gaussian.

When the distribution of the innovations is non-Gaussian stable. then both re-
gressions in forward and reversed time are linear, but while the forward regression is
the best linear predictor. the regression with time reversed is not! The performance
of linear regression predictor is compared in this case with that of the best lincar
predictor.
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. III. MULTIRESOLUTION DECOMPOSITION AND WAVELET
TRANSFORMS OF RANDOM SIGNALS

The wavelet approximation of deterministic and random signals at given resolution
is considered in Item 5, which is a substantial generalization of earlier work and
encompasses a much larger class of wavelets. The properties of the wavelet transform
of random signals are considered in the nearly completed work in Item 6. Further
studies are currently under way.

5. Wavelet approximation of deterministic and random signals: Conver-
gence properties and rates. (5]

An n'* order asymptotic expansion is developed for the error in the wavelet approx-
imation at resolution 27* of deterministic and of random signals. The deterministic
signals are assumed to have n continuous derivatives, while the random signals are
only assumed to have a correlation function with continuous n* order derivatives
off the diagonal - a very mild assumption. For deterministic signals over the entire
real line, for stationary random signals over finite intervals, and for nonstationary
random signals with finite mean energy over the entire real line, the moments of the
scale function can be matched with the signal smoothness to improve substantially
the quality of the approximation. In sharp contrast this does not appear to be gen-
erally feasible for nonstationary random signals over finite intervals, as well as for
deterministic signals which are only locally square integrable.

6. Wavelet transforms of random processes. [6]

A study has been initiated of the properties of wavelet transforms of random
processes whose sampled values appear as coefficients in the wavelet approximation
of the process at a given resolution. A natural question is which properties of the
process are inherited to its wavelet transform, and, conversely, which properties of the
process can be read-off properties of its wavelet transform. For random processes with
finite second moment, properties such as periodicity, stationarity, harmonizability,
and self-similarity, are characterized by means of analogous properties of their wavelet
transforms at some scale: The properties of the wavelet transform characterize the
corresponding properties of the increments of the process of order equal to the order
of regularity of the analyzing wavelet.

IV. NON-STATIONARY PROCESSES

In pursuing the study of non-stationary processes, the random filters which pre-
serve the normality of certain non-stationary random inputs are characterized in [tem
7. and further classes of non-stationary inputs are currently under study; earlier work
on weak laws of large numbers for periodically and for almost periodically correlated
processes which are not stationary or harmonizable was substantially revised: and
work is in progress jointly with A. G. Miamee of Hampton University on continuous-
time correlation-autoregressive sequences.

7. Random filters which preserve the normality of non-stationary random
inputs. 7]

When a Gaussian signal goes through a non-random linear filter. its output is
also Gaussian. We are interested in characterising and identifving those random
linear filters which are independently distributed of their random inputs and preserve
their normality. [f the input is a stationary Gaussian process. then the output is
Gaussian only when the linear filter has non-random gain. Here we consider non-
stationary random inputs. for which the situation is more delicate. When the input




has stationary independent Gaussian increments, then the output is Gaussian only
for linear filters with either non-random gain or random sign! On the other hand
when the Gaussian input has non-stationary independent bounded increments, or is a
non-stationary bounded noise (possibly dependent), or is harmonizable with diffused
spectral measure, then the output is Gaussian only for linear filters with random sign.
The non-random characteristics of these filters can be identified from the Gaussian
distributions of the input and output processes, and their random characteristics from
the joint distribution of input the output, which cannot be Gaussian unless the filter
is non-random.

8. Laws of large numbers for periodically and almost periodically corre-
lated processes. {§]

This paper gives results related to and including laws of large numbers for (possibly
non-harmonizable) periodically and almost periodically correlated processes. These
results admit periodically correlated processes that are not continuous in quadratic
mean. The idea of a stationarizing random shift is used to show that strong law
results for weakly stationary processes may be used to obtain strong law results for
such processes.

A substantial revision of this work from last vear is being completed. Important
examples have been added and the development for almost periodically processes has
been made simpler and more transparent.
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GOPINATH KALLIANPUR

As In recent years, the major areas of my research have been the following:

I. Stochastic differential equations in infinite dimensional spaces
II. Nonlinear white noise analysis
[II. Feynman integrals and integration in Hilbert space

IV. Prediction theory of second order stationary random fields

A description of the research done under each heading is given below:

I. STOCHASTIC DIFFERENTIAL EQUATIONS (SDE’s) IN INFINITE
DIMENSIONAL SPACES

The continuing research in this area is an attempt to develop a theory of infi-
nite dimensional dynamical systems. A major emphasis of the present work is on
investigating SDE’s in duals of nuclear spaces driven by discontinuous noise sources.
in particular, Poisson random measures. Most of the existing theory is devoted to
SDE’s or stochastic partial differential equations (SPDE) driven by cylindrical Brow-
nian motions or space-time Wiener processes primarily because of its mathematical
elegance and the link with diffusion processes.

However, in problems of neuronal behavior, environmental pollution and fluid
mechanics (to name only a few fields of application) it seems more natural to consider
dynamic models, i.e. SDE’s or SPDE’s driven by Poisson random measures. The
diffusion approximations that can be derived from them throw additional light on the
continuous models. The new work (jointly with J. Xiong) described below pertains
to recent work on the application to environmental pollution [3], uses the techniques
and results of the following papers partially described in the Annual Scientific Report
for 1990-1991 and is now completed:

1. The existence and uniqueness of the solution of nuclear space-valued
stochastic differential equations driven by Poisson random measures (with
G. Hardy, S. Ramasubramanian and J. Xiong) (1]

In this paper, we study SDE’s on duals of nuclear spaces driven by Poisson random
measures. The existence of a weak solution is obtained by the Galerkin method.
For uniqueness, a class of ¢%-valued processes which are called Good processes is
introduced. An equivalence relation is established between SDE’s driven by Poisson
random measures and those by Good processes. The uniqueness is established by
extending the Yamada-Watanabe argument to the SDE’s driven by Good processes.
This is an extension to discontinucus infinite dimensional SDE’s of work done by G.
Kallianpur, I. Mitoma and R. Wolpert for nuclear space valued diffusions [Stochastics.
29, 1-45, (1990)].

2. Asymptotic behavior of a system of interacting stochastic differential
equations driven by Poisson random measures (with J. Xiong) [2]

In this paper. we study a system of interacting stochastic differential equations
taking values in nuclear spaces and driven by Poisson random measures. We also con-
sider the McKean-Vlasov equatior associated with the system. We show that under
suitable conditions the system has a unique solution and the sequence of its empirical
distributions converges to the solution of the McKean-Vlasov equation when the size
of the system tends to infinity. The results are applied to the voltage potentials of




a large system of neurons and a law of large numbers for the empirical measure is
obtained.

3. Stochastic models of environmental pollution (with J. Xiong) [3]

In this paper. we consider several stochastic models arising from environmental
problems. First, we study the pollution in a domain where undesired chemicals are
deposited at random times and locations according to Poisson streams. Incorpo-
rated with drift and dispersion. the chemical concentration can be modeled by linear
stochastic partial differential equations (SPDE) which are solved by applying the
general results of Kallianpur and Kxong (SDE’s in infinite dimensions: A brief survey

and some new directions, Center for Stochastic Processes Technical Report No. 372
Sept. 92).

We examine in a somewhat more general context, the stochastic dynamic model
considered by Kwakernaak and by Curtain, and look at the problem in the framework

of general SPDE’s: Let
r€X =00 r=(r.....1q).

The underlying deterministic PDE is

0
‘;:——DAU—V v u+au, t>0,
where u = uy(x), D >0, V = (Vi....V;) and a are constants,
. : ( d d
A = d — dimensional Laplacian and ¢ = ((')il NEIRREEE 01“) .
Let v
¢, = 7[5— p(r) = e damidtearal and My = LY. po)de).
The cases d = 1,2 or 3 are of physical interest.
d =1 (River Pollution). =2 (or3) (Atmospheric Pollution).

We impose the (Neumann) boundary conditions (for d = 2),

d J

'—Itt(D Iz) = J—‘Ut(‘.'.lﬁ)) = .)—'lttl.l'l.()) = 0

u(r .Yy =0 (£ > 0).

4

()T] Ty ar, )

The problem defines a positive. self-adjoint operator denoted by —L on Hy and (7;)
is the semigroup generated by L.

Let Ay = 0. /\3 = D{c? + *L';-) v=1...., d.
1/2 N .
ob(y) = (7)) = (5) e sin(Lry + a)).

where o) = tan™'(-ZZ). j > 1. Then A

roy

N and 0y () where

N, = ,\]l| + .+ .\j". Oy =0, (r)... 0 (ry).

are the eigenvalues and eigenfunctions of =L, {o,,  }i1s a CONSin H,,. With the
help of these we define a linear space ® C [, of mmoth functions in f{, and we have
a chain

bc..cH,c..clhycH_,Cc...CH_,C...Cd"
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¢ = N,H,: H_, = H;, H, (Hilbert space). ® is a Fréchet space which is also
nuclear.

The natural assumption is that the influx of pollution follows a Poisson process.
More precisely. let .V be a Poisson random measure on R, x X x R, (R; = (0.))
with EN(dt dr da) = dtu(dz da) where p is the intensity measure on X x R,. (At
a random time 7, there is a random accretion A, of pollution).

Then the stochastic version of the above equation is given by

-+-/ Als.ug) ]ds+///R id.sdrda)

(.V = compensated random measure),

A(s.0)p] = —v[Lo] + avfp +/ /R u(dzda).

We have the following result which shows that, in general, the SDE has a solution in
L?[0.¢]? so that we do not have to seek a distributional solution.

Theorem 2 Suppose E || ug ||}, < o and 4 is a finite measure. Let

I/ /R u(dzr da)|? +// ‘(dr da) < Const. |2 llz.

ue € Ho = L*([0, €)%, pdz) a.s. Vi

Ford=1.E | u ||3< 20. Ford > 1, E || u, ||3= o0 V¢ in the most interesting cases.

Then

Two more realistic models of pollution are studied (d=1):

(1) Pollution emission at specific sites (Factories);

(1) Pollution model with an upper tolerance level for chemical concentration.

(i} Suppose there are r sites I\y..... K, at which chemicals are deposited in terms
of independent Poisson streams .Vi(¢) with parameter f, > 0. with random magnitudes

{ A}J =1,2....) where A] have common d.f. F,(da) arriving in the vicinity (A, —
K+ €) of [\,. For a set A C [0,¢] and B C Ry let

N ()

V(0.0 x Ax B) = Y 1u(K) S 1a(47)
=1

with

u(Ax B) =) 14(K,)f.Fi(B)

The new SDE takes the form

t ¢ .
(2] = uglplds + / Als.u,)|plds + / / Gs.ug_,r.oa).N{ds dr da)
0 v JYJR,

1l




where

a [RKite : .o
G(t,v,(z,a))[¢] = 5 S dlydy if z=K;, i1=1,...,r,
= ( otherwise,
At v)[pl = —v[L»9]+av[99]+m[ ],
fzaz '+€' X
mlp] =
= l 2e / 6
and
a; = aFg(da).
R4

(i1) We consider a simple model where the upper level for pollution is a fixed
tolerance function {(z). Assume that the change of chemical concentration does not
depend on the locations where the polluted material is deposited. We then have a
quasilinear SDE

uelp] = uolig] + /{us [~ L] + au,[p]}ds + / / €lo] = us_[p]) N(ds da).

N being a Poisson random measure with intensity measure g on R,.

If the initial value ug is smooth and a < 0, it is shown that the above quasi-linear
SDE has a solution in D([0,T],®) and furthermore, under suitable conditions that
the total amount of pollution cannot exceed a prescribed bound.

Finally, the asymptotic behavior as ¢ — oc of the solution of the SDE in (i) is
investigated and the following diffusion approximation is obtained:

o .
_gf = DAﬁt -V. vftt + Qﬂz‘i" Wir

where W, is space-time Gaussian white noise

Wi = 3 6)%6k, (2)e™ By (1),

where B;(t) are independent real Brownian motions, b, = [;° a®Fj(da) and éy is
Dirac measure at K.

Research on interacting Hilbert space valued diffusions carried out in collaboration
with A. Bhatt and R.L. Karandikar (Annual Scientific Report 1990-1991) has provided
results that have been applied to the asymptotic behavior of interacting neurons in
the following paper:

4. Stochastic differential equation models for spatially distributed neurons
and propagation of chaos for interacting systems (4]

Distribution or nuclear space valued SDE’s (diffusions as well as discontinuous
equations) are discussed as stochastic models for the behavior of voltage potentials
of spatially distributed neurons. A propagation of chaos result is obtained for an
interacting system of Hilbert space valued SDE’s.

12




II. APPLICATIONS OF NONLINEAR WHITE NOJSE STOCHASTIC
ANALYSIS

The question of when a nonlinear transformation of the Wiener measure p is ab-
solutely continuous with respect to p is a difficult problem that has been outstanding
since the time of Cameron and Martin who were the first to investigate it. The most
important work since then has been done by R. Ramer and generalized by S. Kusuoka.

A nonlinear theory of white noise on Hilbert space developed by R.L. Karandikar
and myself has provided a new way to approach this problem. This research is
presented in the following paper:

5. Nonlinear transformations of the canonical Gauss measure on Hilbert
space and absolute continuity (with R.L. Karandikar) [5]

The papers of R. Ramer (1974) and S. Kusuoka 3198‘2) investigate conditions under
which the probability measure induced by a nonlinear transformation on abstract
Wiener space (v, H, B) is absolutely continuous with respect to the abstract Wiener
measure g. These conditions reveal the importance of the underlying Hilbert space H
but involve the space B in an essential way. The present paper gives conditions solely
based on H and takes as its starting point a nonlinear transformation T = [ + F
on H. New sufficient conditions for absolute continuity are given which do not seem
easily comparable with those of Kusuoka or Ramer but are more general than those
of Buckdahn (1991) and Enchev (1991). The Ramer-Ité integral occurring in the
expression for the Radon-Nikodym derivative is studied in some detail and, in the
general context of white noise theory. it is shown to be an anticipative stochastic
integral which, under a stronger condition on the weak Gateaux derivative of F, is
directly related to the Ogawa integral.

III. FEYNMAN INTEGRALS: FUNCTIONAL INTEGRALS OVER
HILBERT SPACES RELATED TO THE FEYNMAN INTEGRAL.

6. Integration over Hilbert spaces: Examples inspired by the harmonic
oscillator (with V. Papanicolaou) [6]

The work is joint with V. Papanicolaou and is briefly described under his heading.

IV. PREDICTION THEORY OF SECOND ORDER STATIONARY
RANDOM FIELDS

7. Spectral characterization and autoregressive expansion of linear pre-
dictors for second order stationary random fields (SOSRF), Part I (with J.
Farshidi and V. Mandrekar) (7]

The problem of finding spectral criteria for autoregressive (AR) expansions is of
great practical importance for single parameter stationary time series. While this
problem has been solved satisfactorily in recent years, the corresponding problem for
SOSRF has only now come to the forefront.

The major difficulty with SOSRF is that there is no unique definition of “past™
and “future”. The definitions of a deterministic and purely nondeterministic random
field can therefore be given separately for the horizontal. vertical and “south west”
or quarter plane past.

An AR expansion is an expansion for the linear least squares predictor given in
terms of past observations rather than in terms of an innovation sequence based
on the past. The original solution of the Kolmogorov-Wiener theory is based on the
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latter and is less easily used in practiced than an AR expansion. A paper is being
prepared on the work done to date.
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M. ROSS LEADBETTER

Together with S. Cambanis and G. Kallianpur, M.R. Leadbetter provided contin-
uing direction and participation in the research activities of the Center for Stochastic
Processes. Since this was at no contract cost during the current year, a brief activity
summary is given here rather than a detailed contract reporting. The activities are
described by area as follows

1. Tail inference for stochastic sequences.

Work previously reported (cf. Center for Stochastic Processes Technical Report
No. 292) was further developed jointly with H. Rootzén. This concerns problems such
as estimation of parameters of exponentially or regularly varying tail distributions.
extremal index, tail probabilities and quantiles. This work, originally planned for a
single publication, is now being expanded into two parts.

2. Convergence of vector random measures.

Research with S. Nandagopalan on convergence of vector random measures was de-
veloped in the current report period and will be completed in the subsequent months.
General theorems are given for convergence, with particular reference to the random
measure formed from multilevel exceedances by a (nonstationary) stochastic process.

3. Processes with deterministic peaks.

Stationary Gaussian processes have the property that high peaks have an in-
creasingly parabolic asymptotic form. This notion can be generalized leading to the
concept of “deterministic peaks” — where the time above a high level (asymptotically)
determines that above any higher level. This ongoing work will be described shortly
in a paper (joint with T. Hsing).

4. Excursion random measures.

Extreme value behavior of stochastic sequences can be summarized by limiting
behavior of the two dimensional point process formed by plotting (a suitably normal-
ized version of) the sequence in the plane. Substantial effort - jointly with T. Hsing -
has been put into the development of a corresponding continuous time theory in this
and previous reporting periods (cf. Center for Stochastic Processes Technical Report
No. 350). This work is now undergoing revision for publication.

5. Applications.

Work (jointly with a student, L.S. Huang) was initiated on the application of
“exceedance methods” to environmental data. Some preliminary time series modeling
of ozone data has been undertaken and will be continued in the coming vear.




RAY CHENG

Professor Ray Cheng of the Department of Mathematics of the University of
Louisville visited the Center for two months and worked on the structure of two-
parameter random fields which is relevant to the problem of prediction. He completed
the following technical reports.

1. Outer factorization of operator valued weight functions on the torus {1}

An exact criterion is derived for an operator-valued weight function W(e'.e") on
the torus to have a factorization W(e'*, e'*) = ®(e'*, ') "d(e**, e'!), where the operator
valued Fourier coefficients of ¢ vanish outside of the Helson-Lowdenslager halfplane
A={(mmn)€Z2:m>1}U{(0,n):n >0}, and ® is "outer” in a related sense.
The criterion is expressed 1n terms of a regularity condition on the weighted space
L*(W) of vector valued functions on the torus. A logarithmic integrability test is also
provided. The factor ® is explicitly constructed in terms of Toeplitz operators and
other structures associated with W. The corresponding version of Szegé's infimum is
given.

2. Operator valued functions of several variables: Factorization and in-
variant subspaces (2]

This work is an attempt to extend the classical function theory on the Hardy space
H? to certain classes of operator valued functions of several variables. Of course. it is
impossible to carry over all of the interesting details. Our focus is to adapt the notions
of inner and outer functions, so as to preserve two basic factorization theorems. We
also establish a sort of Beurling-Lax theorem to describe a class of associated invariant
subspaces. The overall approach concerns functions on the torus, which generally
cannot be realized as the boundary limits of analytic functions in the complex sense.
Accordingly, our techniques are chiefly borrowed from multiple Fourier series and
shift analysis.

References

(1] R. Cheng, Outer factorization of operator valued weight functions on the torus.
UNC Center for Stochastic Processes Technical Report No. 371. July 92

(2] R. Cheng, Operator valued functions of several variables: Factorization and in-

variant subspaces, UNC Center for Stochastic Processes Technical Report No.
379, Nov. 92

16




ISSA FAKHRE-ZAKERI

Professor Issa Fakhre-Zakeri of the Department of Mathematics of the University
of Maryland visited the cetner during the 1992 vear. He worked on inference problems
for stationary linear time series with finite variance jointly with J. Farshidi [1.2] and
with heavy tails jointly with S. Cambanis {3].

1. A central limit theorem with random indices for stationary linear pro-
cesses [1]

A central limit theorem with random indices is obtained for stationary linear
process X, —u = 32, a,n:—;, where {1} are independent and identically distributed

random variables with mean zero and finite variance and }"72, |a,| < 2.

2. Limit theorems for sample covariances of stationary linear processes
with applications to sequential estimation [2]

For a stationary linear process the strong consistency and rate of convergence
are established under optimal conditions for the asymptotic variance of their sample
mean. Applications are made to the problem of sequential point and fixed width
confidence interval estimation of the mean of a stationary linear process.

3. On prediction of heavy-tailed autoregressive sequences: Regression
versus best linear prediction [3

The prediction of heavy-tailed first order autoregressive sequences is considered.
In forward time the regression on all past values is the same as the one-step regression
on the previous value, which is in fact linear. In reversed time the regression on all
future values is the same as the one-step regression on the immediate future value
(i.e. the Markovian property is retained) and we show that it is hnear if and only
if the innovations have a semistable distribution. This answers a question posed by
Rosenblatt (1992) who considered sequences with finite second moment and showed
that regression with time reversed is linear if and only if the innovations are Gaussian.

When the distribution of the innovations is non-Gaussian stable. then both re-
gressions in forward and reversed time are linear, but while the forward regression is
the best linear predictor, the regression with time reversed is not! The performance
of linear regression predictor is compared in this case with that of the best linear
predictor.
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JAMSHID FARSHIDI

Dr. Jamshid Farshidi from the Department of Probability and Statistics of Michi-
gan State Unviersity spent the academic year as a postdoctoral visitor to the center.
He worked on the problem of prediction of stationary time series {1] and of random
fields [2] and on inference for stationary linear time series (jointly with I. Fakhre-
Zakeri) {3,4]. He has also begun working on heavy tailed stationary time series and
more spec1ﬁcally on the prediction of harmonizable stationary stable processes.

1. Autoregressive expansion of the linear predictor for stationary stochas-
tic processes [1]

The principal problems considered are the existence and uniqueness of an au-
toregressive expansion of the linear predictor for a discrete stationary process with
spectral density f and optimal factor o, and the invertibility of the process X. The
main results are:

(1) the equivalence of the strong convergence of an autoregresive series to the
linear predictor, with its boundedness, and with its weak convergence;

(2) the uniqueness of an autoregressive expansion;

(3) the equivalence of an autoregressive expansion with the invertibility of the
process;

(4) the sufficiency of the condition (1/f) € L! for the existence, convergence.
uniqueness of the autoregressive expansion and the invertibility of the process:

(5) a necessary condition based on p and f for the existence. uniqueness. and
convergence of an autoregressive expansion, and invertibility of the process.

2. Spectral characterization and autoregressive expansion of linear pre-
dictors for second order stationary random fields (SOSRF), Part I (with G.
Kallianpur and V. Mandrekar) [2]

The problem of finding spectral criteria for autoregressive (AR) expansions is of
great practical importance for single parameter stationary time series. While this
problem has been solved satisfactorily in recent years, the corresponding problem for
SOSRF has only now come to the forefront.

The major difficulty with SOSRF is that there is no unique definition of “past”™
and “future”. The definitions of a deterministic and purely nondeterministic random
field can therefore be given separately for the horizontal, vertical and “south west”
or quarter plane past.

An AR expansion is an expansion for the linear least squares predictor given in
terms of past observations rather than in terms of an innovation sequence based
on the past. The original solution of the Kolmogorov-Wiener theory is based on the
latter and is less easily used in practiced than an AR expansion. A paper is being
prepared on the work done to date.

3. A central limit theorem with random indices for stationary linear pro-
cesses [3]

A central limit theorem with random indices is obtained for stationary linear
process X, —u = 372, a,n.-,. where {n.} are independent and identically distributed

random variables with mean zero and finite variance and 372, |a,| < x.

4. Limit theorems for sample covariances of stationary linear processes
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with applications to sequential estimation [4]

The strong consistency and rate of convergence are established under optimal

conditions for the asymptotic variance of the sample mean of a stationary linear
process . Applications are made to the problem of sequential point and fixed width
confidence interval estimation of the mean of a stationary linear process.
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LARS HOLST

Professor Lars Holst of the Royal Institute of Technology, in Stockholm. visited
the Center in January 1992. Professor Holst is an authority on Poisson approxi-
mations and interacted with faculty and visitors, also presenting a colloquium on
approximation of Stein’s Method.




CHRISTIAN HOUDRE

Dr. Christian Houdré of the Department of Mathematics of the University of
Maryland, now at the Department of Statistics of Stanford University, visited the
Center for two months. He worked primarily on the ramification of wavelets in
stochastic processes {1,2.3], the latter being ongoing collaboration with S. Camba-
nis. He also worked on stable stochastic processes jointly with M. Hernandez (4] and
on variance inequalities for functions of Gaussian random variables jointly with A.

Kagan [5].

1. Wavelets, probability and statistics: Some bridges [1]

The role of some wavelet methods in probability and statistics is illustrated via
a sample of three problems: We show how properties of processes can be read off
properties of their wavelet transform. We discuss how the missing data problem can
be approached via frames of complex exponentials. We explain how wavelets can be
used to span classes of admissible estimators in non-parametric function estimation.
[t is also the purpose of this paper to show that bridges can be crossed in the other
direction. Random products of matrices determine the smoothness of compactly
supported wavelets. Non stationary prediction theory gives new results on frames in
Hilbert space.

2. Path reconstruction of processes from missing and irregular samples 2]

A criterion is provided for the reconstruction of the paths of non-stationary band-
limited processes using irregularly spaced samples by means of an interpolation for-
mula. Its rate of convergence is studied along with its truncation error. These results
provide irregular sampling theorems for, say. deterministic signals corrupted by addi-
tive noise, and a potential solution to the missing data problem: interpolation from
sparse or missing data can be achieved under a density condition. The analysis in-
volves classical results on non-harmonic Fourier series as well as more recent results
on frames and wavelets.

3. Wavelet transforms of random processes [J]

A study has been initiated of the properties of wavelet transforms of random
processes whose sampled values appear as coefficients in the wavelet approximation
of the process at a given resolution. A natural question is which properties of the
process are inherited to its wavelet transform, and, conversely. which properties of the
process can be read-off properties of its wavelet transform. For random processes with
finite second moment. properties such as periodicity. stationarity. harmonizability.
and self-similarity, are characterized by means of analogous properties of their wavelet
transforms at some scale: The properties of the wavelet transform characterize the
corresponding properties of the increments of the process of order equal to the order
of regularity of the analyzing wavelet.

4. Disjointness results for some classes of stable processes [4]

The disjointness of two classes of stable stochastic processes: moving averages and
Fourier transforms is discussed. Results on the incompatibility of these two repre-
sentations date back to Urbanik (1964). Here we extend varous earlier dlSJOlIltnebS
results to encompass larger classes of processes. allowing e.g. the noise of a moving
average process to be nonstationary and showing that all moving average processes
are Fourier transforms in the summability sense.




5. Variance inequalities for functions of Gaussian variables [5]

When X is a standard Gaussian random variable and G an absolutely continuous

function, the inequality Var[G(X)] < E[G'(X)]? was proved in Nash (1958) and later
rediscovered in Brascamp and Lieb (1976) as a special case of a general inequality
in Chernoff (1981). All the proofs are based on properties of the Gaussian density.
By using the characteristic function rather than the density, generalizations with
higher orcier derivatives are obtained. The method also establishes potentially useful
connections with Karlin's total positivity.
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TAILEN HSING

Professor Tailen Hsing of the Statistics Department of Texas A & M University
visited the Center for the 1990-91 academic year. In addition to his work reported
in last year’s annual report, in the following paper he extended and completed the
work on the estimation of the spectral density of harmonizable stable processes of

Cambanis and Masry (1984).

1. Limit theorems for stable processes with application to spectral density
estimation (1]

It is shown that for a nearly stationary moving average a-stable process Y and for
each fixed 0 < p < oo, a weighted average of |Y(¢)[? over [~T, T'] has an asymptotically
(2A$)-stable distribution as T — oc. This is a partial extension of the limit theorems

consndered in Davis (1983) and LePage, Woodroofe and Zinn (1981). Applications of
the results are made in the context of spectral density estimation of a harmonizable
a-stable process. The spectral density estimator is the smoothed version of the pth
absolute power of the tapered Fourier transform proposed in Cambanis and Masry
(1984) and proven consistent when 0 < p < a/2. Here its asymptotic distribution
is derived and is shown to be normal when 0 < p < a/2 and {a/p)-stable when
a2 < p < a. Also the best possible rates of convergence are determmed and show
that the rate of convergence is faster for p in (0,a/2)
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HARRY HURD - ANDRZEJ RUSSEK

Dr. Harry Hurd continued the systematic study of nou-stationary processes which
are periodically correlated jointly with Dr. Andrzej Russek of the Polish Academy of
Science, Sopot, who has been a visitor to the Center since January 1992.

1. Stepanov almost periodically correlated and almost periodically unitary
processes (1]

We extend the structure and properties of almost periodically correlated (APC)
and almost periodically unitary (APU) processes, which were defined in the sense of
Bohr, to a larger class of processes for which the sense of almost periodicity is that
of Stepanov. These processes are not necessarily continuous in quadratic mean. as
are the Bohr APC and APU processes, but yet exhibit a sense of almost periodic-
ity. For example, processes formed by amplitude modulation f(¢)X(t) or time-scale
modulation X(t + f(t)) of a wide sense stationary process X(t) by a Stevanov APU
and APC. The principal results on APC and APU processes are extended to the
new class. We extend Gladyshev’s characterization of APC correlation functions to
Stepanov APC processes and show that their correlation functions are completely rep-
resented by a Fourier series having a countable number of coefficient functions that
are Fourier transforms of complex measures. We show that Stepanov APU processes
are also Stepanov APC and are given by X(t) = U(t)[P(t)] where {U(t). t€ R} isa
strongly continuous group of unitary operators and P(t) is a vector-valued Stepanov
almost periodic function. As in the case of Bohr APU processes. the preceeding fact
leads to representations of .X(t) based on the spectral theory for unitary operators
and for Stepanov almost periodic functions.

2. Almost periodically correlated processes on LCA groups [2]

For an almost periodic covariance R(t + r.t) = E{X(t + 7)X(t)} of a second
order stochastic process X(¢) indexed by an LCA group G. we show that the means

a(A,7) = M{R(t + r.t)A(t)} are Fourier transforms of signed measures with finite
total variation. We examine conditions under which X(¢) or, more precisely, its
correlation R(t+ 7.t), has a countable set of spectral characteristic exponents (or fre-
quencies). We also consider the problem of finding a stationarizing shift and exhibit
a class of G-valued random variables 8 such that Y(t) = X(t + ) is stationary. Fi-
nally we characterize the almost periodically correlated processes among the strongly
harmonizable ones.
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RAJEEVA L. KARANDIKAR

Professor Karandikar of the Indian Statistical Institute, Delhi. visited the Center
for four months in 1992. In addition to the completion of work done jointly with A.
Bhatt and G. Kallianpur [1] and partially described in the last report, he collaborated
with V.G. Kulkarni of the Operations Research department on the study of a second-
order fluid flow model [2] and with G. Kallianpur on nonlinear transformations of
abstract Wiener measure (3].

1. On interacting systems of Hilbert space valued diffusions [1]

A nonlinear Hilbert space valued stochastic differential equation where L=! (L
being the generator of the evolution semigroup) is not nuclear is investigated in the
paper. Under the assumption of nuclearity of L™, the existence of a unique solution
lving in the Hilbert space H has been shown by Dawson in an early paper. When L~!
is not nuclear, a solution in most cases lies not in A but in a larger Hilbert, Banach or
nuclear space. Part of the motivation of the present paper is to prove under suitable
conditions that a unique strong solution can still be found to lie in the space H itself.
Uniqueness of the weak solution is proved without moment assumptions on the initial
random variable.

A second problem considered is the asymptotic behavior of the sequence of em-
pirical measures determined by the solutions of an interacting system of H-valued
diffusions. It is shown that the sequence converges in probability to the unique
so'ution .\p of the martingale problem posed by the corresponding McKean-Vlasov
equation.

2. Second-order fluid flow model of a data-buffer ir. random environment
2l

This paper considers a stochastic model ot a data-buffer in a telecommunication
network. Let X(¢) be the buffer-content at time ¢. The {X(t). ¢ > 0} process
depends on a finite state continuous time Markov process {7(t). t > 0} as follows:
during the time-intervals when Z(¢) is in state i, X(¢) is a Brownian motion with
drift g,, variance parameter o and a reflecting boundary at zero. This paper studies
the steady state analysis of the bivariate process {(.X(¢), Z(¢)), ¢ > 0} in terms of the
eigenvalues and eigenvectors of a non-linear matrix system. Algorithms are developed
to compute the steady state distributions as well as moments.

Numerical work is reported to show that the variance parameter has a dramatic
effect on the buffer content process. Thus buffer sizing done with first order fluid flow
models (with zero variance parameters) should be used with care.

3. Nonlinear transformations of the canonical Gauss measure on Hilbert
space and absolute continuity (3]

The papers of R. Ramer (1974) and S. Kusuoka (1982) investigate conditions under
which the probability measure induced by a nonlinear transformation on abstract
Wiener space (v, H. B) 1s absolutely continuous with respect to the abstract Wiener
measure p. These conditions reveal the importance of the underlying Hilbert space H
but involve the space B in an essential way. The present paper gives conditions solely
based on H and takes as its starting point a nonlinear transformation T = [ + F
on H. New sufficient conditions for absolute continuity are given which do not seem
easily comparable with those of Kusuoka or Ramer hut are more general than those
of Buckdahn (1991) and Enchev (1991). The Ramer-Ité integral occurring in the
expression for the Radon-Nikodym derivative is studied in some detail and. in the
general context of white noise theory. it is shown to be an anticipative stochastic




integral which, under a stronger condition on the weak Gateaux derivative of F, is
directly related to the Ogawa integral.
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JEAN-CLAUDE MASSE

Professor Jean-Claude Massé of the Department of Mathematics and Statistics of
the Unviersity of Laval visited the Center for six weeks and studied, jointly with C.A.
Ledn, the properties of the simplicial median of Oja with a view towards the study
of medians of random processes.

1. La médiane simpliciale d’Oja: existence, unicité et stabilité (1]

Oja (1983) examined various ways of measuring location, scatter, skewness and
kurtosis for multivariate distributions. Among other measures of location, he intro-
duced a generalised median, the Oja median. We study three fundamental theoretical
properties of that median: existence. uniqueness and consistency.
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DITLEV MONRAD

Professor Ditlev Monrad of the Department of Statistics of the University of Illi-
nois visited the Center for four months and worked on sample function properties
of Lévy processes with local time, and of fractional Brownian motion and other lo-
cally nondeterministic Gaussian processes. The latter work was done jointly with H.
Rootzén.

1. Some uniform dimension theorems for the sample functions of Lévy
processes with local times [1]

When X is a real-valued, strictly stable Lévy process of index a, 1 < a < 2, we
show that with probability one,

dim X'(F) =1 -+ + X dim (),
(8] o

simultaneously for all real Borel sets F'. The result is also extended to general real-
valued Lévy processes with local time.

2. Small values of fractional Brownian motion and locally nondeterministic
Gaussian processes [2]

A centered Gaussian process { B,(t) : t > 0} with covariance function proportional
to 3{|s|* + [t|* — |s — t|*} for & € (0,2) is called a fractional Brownian motion (fBm).
Chung type laws of the iterated logarithm are proved for fBm’s: for any sample path,
there are arbitrarily large values of ¢ for which {B,(s): 0 < s < ¢t} is confined to the
interval + const. t*/?(loglogt)~*/?, but this is not true for any narrower intervals.
A corresponding result holds for small values oft Let M(t) = maxo<,<i|Ba(s)|. For
the proof the following bounds, valid for small ¢’s, and constants 0 < ¢ < C are found

2/a
)

e—th"/" < P(J‘/[(t) < 6) < e cte

for the probability that the process is flat. They hold for strongly locally nondeter-
ministic Gaussian processes whose incremental variances over intervals of length A
are roughly proportional to h°.
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JOHN P. NOLAN

Professor John Nolan of the Department of Mathematics and Statistics of the
American University in Washington, DC, completed some work on multidimensional
stable distributons which was substantially performed during a 1990 visit to the
Center but was not included in the 1989-90 annual report.

1. Approximation of multidimensional stable densities [1]

Stable densities in two or more variables do not generally have explicit formula.
One way of characterizing these distributions is by a spectral measure. Our main
result shows that densities and probabilities can be uniformly approximated by ap-
proximating the spectral measure with a discrete spectral measure having a finite
number of atoms. A concrete formula is given for the number of atoms needed and
their weights, this can be used to numerically calculate multidimensional stable den-
sities. Sample graphs of two dimensional stable densities with dependence are given.
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TOMMY NORBERG

Dr. Tommy Norberg of the University of Goteborg visited for a one month period
in November 1991, primarily to collaborate with M.R. Leadbetter on problems in
point process theory. Dr. Norberg is a foremost authority on the theory of random
sets, which provide a useful alternative framework complementing those of point
processes and random measures.

During the visit Dr. Norberg and M.R. Leadbetter worked together in three areas:

(a) Foundations for a non topological (or minimally topological) theory of point pro-
cesses

(b) The potential use of random sets in applied areas - such as minefield modeling
in defense applications

(c) Planning for a volume on point processes, random sets and random measures. This
will describe the different structural frameworks, their relationships, the usefulness of
each view and some of their applications.

Work has continued in these areas since the visit and a start has been made on
the writing under (c).
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JONNY OLSSON

Dr. Jonny Olsson (University of Lund, Sweden) was a junior visitor, supported
from Swedish sources for November 1991. He collaborated with H. Rootzén on Markov
random fields for vision.

1. Image Modeling (1]

Markov random field models for vision were developed jointly with J. Olsson,
a junior short term visitor (noted above), describing the theory and application to
peripheral vision assessment, and is summarized as follows.

Measurement of the patient’s “seeing threshold” at different points in the visual
field is an important diagnostic tool for glaucoma and other diseases. A Markov
random field model is developed and used for efficient estimation of the thresholds
and simultaneously for classification of the measured points as “normal” or “defec-
tive”. The model allows for nonhomogeneous spatial dependence and nonsymmetric
marginal distributions and has physically interpretable parameters. Maximum a pos-
teriori threshold estimation of visual fields results in 13% - 31% reduction of mean
square error (depending on the patient population) as compared to currently used
procedures and in a fair agreement between true and estimated defect status.

Nonstandard features of the problem are: (i) the picture is small, (ii) there is
a nonhomogeneous directional dependence, and (iii) thresholds are only measured
indirectly, by binary responses to questions, where the probability of response depends
on the threshold and the stimulus level.
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VASSILIS PAPANICOLAOU

Professor Papanicolaou of the Department of Mathematics of Duke University
[and now at the Department of Mathematics of Wichita State University] was at the
Center for two months in the summer of 1992. His interest in Fevnman integrals
led to the study of some problems of integration over Hilbert space and extensions
involving multiparameter Gaussian processes of previous work by G. Kallianpur. D.
Kannan and R.L. Karandikar (Analytic and sequential Feynman integrals on abstract
Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. H. Poincare,
21, 1985, 323-361).

1. Integration over Hilbert spaces: Examples inspired by the harmonic
oscillator [1]

The research produced some examples of functional integrals over Hilbert spaces
where the integrand is analogous to the one for the quantum mechanical harmonic os-
cillator. In one case the continuum limit of a sequence of coupled harmonic oscillators
is considered.
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ROLAND PERFEKT

Dr. Roland Perfekt (University of Lund, Sweden) was a junior visitor, supported
from Swedish sources for the period September-October 1991. He collaborated with
H. Rootzén on extremal properties of stationary Markov chains.

1. Extremal behaviour of stationary Markov chains with applications [1]

Extremal behaviour of real-valued, stationary Markov chains is studied under
rather general assumptions. Conditions are obtained for convergence in distribution of
multi-level exceedance point processes associated with suitable families of ‘increasing
levels’. Although applicable to general stationary sequences, these conditions are
tailored for Markov chains and are seen to hold for a large class of chains. The
extra assumptions needed are that the marginal distributions belong to the domain
of attraction of some extreme value law together with rather weak conditions on the
transition probabilities. Also, a complete convergence result is given. The results
are applied to a discrete-time Lindley process, to an AR(1) process with uniform
margins and to solutions of a first order stochastic difference equation with random
coefhicients.
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HOLGER ROOTZEN

Professor Holger Rootzén (University of Lund, Sweden) spent 12 months as a
senior visitor to the Center. In this period he also arranged shorter visits by two junior
Swedish statisticians J. Olsson and R. Perfekt (supported from Swedish sources).

Professor Rootzén's activities were divided into five areas as follows.

1. Tail estimation for stationary sequences [1]

Holger Rootzén and M.R. Leadbetter collaborated in extending work reported
previously (as CSP Report 292 with L. de Haan) on the estimation of parameters
associated with high values of stochastic sequences. These include the “extremal
index”, the parameter of a regularly varying tail distribution, tail probabilities and
quantiles, under dependence conditions such as strong mixing.

It is planned that this work will be reported in two papers (currently under prepa-
ration), dividing and extending that in the CSP Report 292.

2. Extremal properties of Markov chains [2]

Professor Rootzén worked with R. Perfekt on extremal properties of Markov
chains. This is described in the research activity summary for R. Perfekt.

3. Fractional Brownian motion [3] (with D. Monrad)

Joint work was conducted on sample function properties of fractional Brownian
motion and locally nondeterministic Gaussian processes. This work is described in
CSP Tech Report No. 361, whose contents are summarized as follows:

A centered Gaussian process {B,(t) : ¢ > 0} with covariance function proportional
to %{Isl" +|t|* —|s —t|*} for a € (0,2) is called a fractional Brownian motion (fBm).
Chung type laws of the iterated logarithm are proved for fBm'’s: for any sample path.
there are arbitrarily large values of t for which {B,(s): 0 < s < ¢} is confined to the

interval + const. t*/?(loglogt)~2/2, but this is not true for any narrower intervals.
A corresponding result holds for small values of ¢. Let M(t) = maxoc,<¢|Ba(s)|. For
the proof the following bounds. valid for small ¢'s, and constants 0 < ¢ < C are found

2/a

e—th"/c' < P(A‘I(t) < 6) < e~ cte )

for the probability that the process is flat. They hold for strongly locally nondeter-
ministic Gaussian processes whose incremental variances over intervals of length A
are roughly proportional to h*.

4. Image Modeling [4]

Markov random field models for vision were developed jointly with J. Olsson.
a junior short term visitor (noted above), describing the theory and application to
peripheral vision assessment, and is summarized as follows.

Measurement of the patient’s “seeing threshold” at different points in the visual
field i1s an important diagnostic tool for glaucoma and other diseases. A Markov
random field model is developed and used for efficient estimation of the thresholds
and simultaneously for classification of the measured points as “normal” or “defec-
tive". The model allows for nonhomogeneous spatial dependence and nonsvmmetric
marginal distributions and has physically interpretable parameters. Maximum a pos-
teriori threshold estimation of visual fields results in 13% - 31% reduction of mean
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square error (depending on the patient population) as compared to currently used
procedures and in a fair agreement between true and estimated defect status.

Nonstandard features of the problem are: (i) the picture is small, (ii) there is
a nonhomogeneous directional dependence, and (iii) thresholds are only measured
indirectly, by binary responses to questions, where the probability of response depends
on the threshold and the stimulus level.

5. Related statistical questions
Professor Rootzén conducted related statistical research in

(1) Quantile estimation in a nonparametric component of variance frame-
work with applications to vision problems [3].

(i1) Proportional hazard testing related to strength of materials [6].
His results under (i) are summarized as follows:

Quantile estimators for a non-parametric components of variance situation are
proposed and consistency and asymptotic normality is proved. Situations with differ-
ent numbers of measurements for different subjects are considered. Measurements on
separate subjects are assumed independent while measurements on the same subject
have a fixed dependence. The estimators are obtained by inverting weighted empiri-
cal distribution functions. An “optimal” estimator is derived by choosing weights to
minimize the variance of the weighted empirical distribution function. The resulting
weights depend on unknown parameters. However, these weights may be estimated
from data without affecting asymptotic performance. A simple estimator based on
within subject averages | 1.0 investigated. Small sample properties are studied by
simulation, and as an illustration the estimators are applied to normal limits for
differential light sensit:vity of the eve.

The work on proportional hazards (joint with A. Deis) provided a k-sample test
for proportional hazards and is described in detail as follows:

A test for proportionality of the cumulative hazard functions in & > 2, possibly
censored, samples is proposed. The test does not use dummy time-dependent co-
variates or partitions of the time axis. [t extends a test of Wei (1984) from 2 to &
samples, and for & = 2 gives an alternative approximation to the test probabilities.
It is asymptotically correct and performed well in a small sample simulation study.
The test is based on the maximum norm of the score process obtained from Cox’
partial likelihood. The test probabilities are obtained by a "parametric bootstrap™.
i.e. by simulation from the asymptotic distribution, with an unknown variance func-
tion replaced by an estimate. The method is computationally demanding, but still
within the capabilities of a standard personal computer. An important advantage is
flexibility; by obvious simple changes the program can be used with any test statistic
based on the score process. Some problems related to the size effect in the strength
of materials are discussed. and the method is applied to a data set on the strengths
of carbon fibers. It is also illustrated on two cancer studies considered by Wei.
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DONATAS SURGAILIS

Dr. Donatas Surgailis of the Institute of Mathematics and Informatics of the
Lithuanian Academy of Sciences in Vilnius visited the Center for three months. He
introduced a new rich class of stationary stable processes generalizing moving averages
jointly with S. Cambanis, V. Mandrekar and J. Rosinski.

1. Generalized stable moving averages (1]

No explicit representation is known for all stationary non-Gaussian stable pro-
cesses. The main two subclasses studied, which have explicit representations moti-
vated by the Gaussian case, are the harmonizable processes, which are superpositions
of harmonics with stable amplitudes, and the moving average processes, which are
filtered white stable noise. While in the Gaussian case, the latter is a subclass of
the former, in the non-Gaussian stable case the two classes are disjoint. The study
of stable moving average processes is facilitated by the fact that their distribution
is essentially (except for a translation and sign) determined by the filter function of
the moving average. This has made it possible to study distributional properties of
the process (mixing, ergodicity, self-similarity, Markov property, etc.) through the
properties of the filter functions.

In this work the class of non-Gaussian stable moving average processes is expanded
substantially by the introduction of an appropriate joint randomization of the filter
function and of the stable noise, leading to stable generalized moving averages (GMA).
The characterization of their distribution through their filter function and their mixing
measure leads to a far reaching generalization of a theorem of Kanter (1972).

It is shown that stable GMA’s contain sums of independent stable moving averages
and that they are still disjoint from the harmonizable processes, but are closed under
time invariant filters, and that they are mixing, so they have strong ergodic properties.
They lead to a wealth of new examples of self-similar processes, beyond the linear
fractional stable motions. and also of processes which are reflection positive, which is
a useful weakening of the Markov property.
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WEI WU

Professor Wei Wu of the Statistics Department of the University of [llinois visited
the Center for one month and worked jointly with S. Cambanis and E. Carlstein on
an extensive revision and generalization of a part of her Ph.D. dissertation research
contained in the following paper.

1. Bootstrapping the sample mean for data with infinite variance [1]

When data comes from a distribution belonging to the domain of attraction of a
stable law, Athreva (1987) showed that the bootstrapped sample mean has a random
limiting distribution, implying that the naive bootstrap could fail in the heavy-tailed
case. The goal here is to classify all possible limiting distributions of the bootstrapped
sample mean when the sample comes from a distribution with infinite variance, allow-
ing the broadest possible setting for the (nonrandom) scaling, the resample size, and
the mode of convergence (in law). The limiting distributions turn out to be infinitely
divisible with possibly random Lévy measure, depending on the resample size. An
averaged-bootstrap algorithm is then introduced which eliminates any randomness
in the limiting distribution. Finally, it is shown that {on the average) the limiting
distribution of the bootstrapped sample mean is stable if and only if the sample is
taken from a distribution in the domain of (partial) attraction of a stable law.
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PH.D. STUDENTS

PH.D. DEGREES AWARDED

DAVID G. BALDWIN

Dr. Baldwin completed his Ph.D. degree working under the direction of G.
Kallianpur. His thesis is described in item 1 below.

1. Topics in the theory of stochastic processes taking values in the dual
of a countably Hilbertian nuclear space [1}

A theorem is given on the weak approximation of solutions to infinite dimensional
stochastic differential equations. An example is given of the weak approximation of
a spatial neuronal model with reversal potentials by a continuous diffusion taking
values in the dual of a countaly Hilbertian nuclear space.

Lastly we give conditons for existence and uniqueness of global McKean-Vlasov
equations. Results are extended to local McKean-Vlasov equations.
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J. XIONG

Dr. Xiong completed his Ph.D. degree working under the direction of G. Kallian-
pur. His thesis is described in item 1 below. He has worked jointly with G. Kallianpur
in developing various aspects of the theory of infinite dimensional stochastic differen-
tial equations listed in items 2 to 5 below.

1. Nuclear space valued stochastic differential equations driven by Poisson
random measures [1]

This thesis is devoted primarily to the study of stochastic differential equations
on duals of nuclear spaces driven by Poisson random measures. The existence of a
weak solution is obtained by the Galerkin method and the uniqueness is established
by implementing the Yamada- Watanabe argument in the present setup.

When the magnitudes of the driving terms are small enough and the Poisson
streams occur frequently enough, it is proved that the stochastic differential equations
mentioned above can be approximated by diffusion equations.

Finally, we consider a system of interacting stochastic differential equations driven
by Poisson random measures. Let (X}(),...,X7(t)) be the solution of this system
and consider the empirical measures

S E5EI(B) (n21).

=1

Ca{w.B) =

S|—

[t is proved that (, converges in distribution to a non-random measure which is the
unique solution of a McKean-Vlasov equation.

The above problems are motivated by applications ir. neurophysiology, in partic-
ular to the fluctuation of voltage potentials of spatially distributed neurons and to
the study of asymptotic behavior of large systems of interacting neurons.

2. The existence and uniqueness of the solution of nuclear space-valued
stochastic differential equations driven by Poisson random measures (with
G. Hardy, S. Ramasubramanian and J. Xiong) [2]

In this paper. we study SDE’s on duals of nuclear spaces driven by Poisson random
measures. The existence of a weak solution is obtained by the Galerkin method.
For uniqueness, a class of ¢2-valued processes which are called Good processes is
introduced. An equivalence relation is established between SDE’s driven by Poisson
random measures and those by Good processes. The uniqueness is established by
extending the Yamada-Watanabe argument to the SDE’s driven by Good processes.
This is an extension to discontinuous infinite dimensional SDE’s of work done by G.
Kallianpur, I. Mitoma and R. Wolpert for nuclear space valued diffusions [Stochastics.

29, 1-45, (1990)].

3. Stochastic differential equations in infinite dimensions: A brief survey
and some new directions of research (3]

This is a brief survey of some recent work on nuclear space valued stochastic
differential equations. The emphasis is on stochastic differential equations driven
by Poisson random measures. An application of the evolution equation is made to
stochastic models of environmental pollution. The asvmptotic behavior of interacting
systems of nuclear space valued, Poisson-driven SDE’s is examined and a propagation
of chaos result is presented. Some new directions of work are suggested.
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4. Asymptotic behavior of a system of interacting stochastic differential
equations driven by Poisson random measures (4]

In this paper, we study a system of interacting stochastic differential equations
taking values 1n nuclear spaces and driven by Poisson random measures. We also con-
sider the McKean-Vlasov equation associated with the system. We show that under
suitable conditions the system has a unique solution and the sequence of its empirical
distributions converges to the solution of the McKean-Vlasov equation when the size
of the system tends to infinity. The results are applied to the voltage potentials of
ablarge system of neurons and a law of large numbers for the empirical measure is
obtained.

5. Stochastic models of environmental pollution (5]

In this paper, we consider several stochastic models arising from environmental
problems. First, we study the pollution in a domain where undesired chemicals are
deposited at random times and locations according to Poisson streams. Incorporated
with drift and dispersion, the chemical concentration can be modeled by a linear
stochastic partial differential equation (SPDE) which is solved by applying a general
result. Various properties, especially the limit behavior of the pollution process, are
discussed. Secondly, we consider the pollution problem when a tolerance level is
imposed. The chemical concentration can still be modeled by a SPDE but is no
longer linear. Its properties are investigated in this paper. Finally, the linear filtering
is considered based on the data of several observation stations.
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DISSERTATION IN PROGRESS

A. BUDHIRAJA

A contribution to the theory of McShane stochastic integrals

Under the direction of G. Kallianpur, Amarjit Budhiraja is developing the theory
of McShane stochastic integrals. The topic contains results that are extensions of
some of the results obtained by G.W. Johnson and G. Kallianpur and reported in an
earlier annual scientific report.
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Sept. 11

Sept. 19

Sept. 25

Oct.

Oct.

Oct.

Oct.

Oct.

Oct.

Oct. :

Nov.

Nov.

Nov.

Nov.

Nov.

2

9

11

16

18

26

Seminars

J. Stasheff, UNC - Chapel Hill: Taking the measure of string field
theory

Vasilis G. Papanicolaou, Duke University: Multidimensional
Schrédinger operators with almost periodic potentials

D. Kolzow, University of Erlangen-Nurnberg: Integral transform as-
sociated with fractional Brownian motion

C. Houdré, University of Maryland: Path reconstruction of processes
from irregular samples

K. Petersen, UNC - Chapel Hill: Random sampling of stationary
processes. Including a disucssuion of the divergent views of Birkhoff,
von Neumann, and Wiener on convergence

R.E. Kalman, ETH, Zurich and University of Florida: Identification

of linear relations in noise

V. Wihstutz, UNC - Charlotte: Stochastic averaging and stabilization
by random vibration

Y. Kifer, Hebrew University, Jerusalem: Averaging in dvnamical
systems and large deviations

B. Rozovskii, University of Southern California: Stochastic partial
differential equations and intermittency

D. Monrad. University of Illinois and Center for Stochastic Processes:
Some uniform dimension theorems for the sample functions of stable
Lévy processes with local times

G. Lawler, Duke University: Nearest neighbor cluster models

R. Andersen, UNC - Charlotte: Long run average cost for an optimal

replacement model and an optimal maintenance-replacement model
in reliability

J.-C. Massé, Laval University and Center for Stochastic Processes:
On Gaussian reciprocal processes

T. Norberg, University of Goteborg and Center for Stochastic
Processes: On weak lumpability for discrete time finite state space
Markov chains

H. Hurd: Periodically and almost periodically correlated random
processes
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Dec. 4

Jan. 22
Feb. 5

Feb. 12

Feb. 19

Feb. 26

Mar. 11

Mar. 16

Mar. 25

Apr. 2

Apr. 9

Apr. 15

Apr. 29

Apr.-May

May 13

May 15

May 20

J. Rissanen, IBM Research Center, San Jose. CA: “Universal” mod-
eling and prediction of time series

J.A. Cima, UNC - Chapel Hill: Wavelets: A theorem of Mallat

J.A. Cima, UNC - Chapel Hill: Wavelets: A theorem of Daubechies

S.I. Resnick, Cornell University: Convergence of scaled random sam-
ples in R?

H. Rootzén, University of Lund and Center for Stochastic Processes:
What is the probability that a Gaussian path is flat?

D. Surgailis, Lithuanian Academy of Sciences, Vilnius, and Center
for Stochastic Processes: Asymptotics of random solutions of the
Burgers equation

I. Fakhre-Zakeri, University of Maryland and Center for Stochastic
Processes: Models of Empirical-Bayes type for software reliability:
Identifiability and applications to optimal stopping of software testing

B.V. Rao. Indian Statistical Institute and Indiana University: The
dynamics of quadratic maps under random iteration

A. Russek, Polish Academy of Science, Sopot: Regularity properties
of the conditional expectation in nonlinear white noise filtering

[.M. Sonin, UNC-Charlotte: The asymptotic behavior of finite non-
homogeneous Markov chains

J.-A. Yan. Institute of Applied Mathematics. Beijing: White noise
calculus in terms of formal series expansions

M. Scarsini, Universita D’Annunzio. Pescara, Italy and Duke Univer-
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P. Hitczenko. North Carolina State University: On domination in-
equality for certain martingale transforms
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M.G. Nadkarni. University of Bombay and McGill University: Some
spectral questions in ergodic theory

R.M. Gray. Stanford University: Image compression and vector quan-
tization: Clustering and classification trees

R.L. karandikar. Indian Statistical Institute and Center tor Stochas-
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June 3
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July 1

July 8

July 15
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Aug. 6

tic Processes: Invariant measures and evolution equations for Markov
processes characterized via martingale problems

T. Zak, Technical University, Wroclaw, Poland: Some new results on
Gaussian measures: Strictness of Anderson’s inequality and isoperi-
metric properties of strips

M. Burnashev, Russian Academy of Sciences, Moscow: On a search
and related large deviations problems

A.H. Korezlioglu, Institute of Telecommunications, Paris: Product
form approximations of finite capacity networks

R. Chaganty, Old Dominion University, Norfolk: Large deviations
for the bootstrap distrubutions

I. Fakhre-Zakeri. University of Maryland and Center for Stochastic
Processes: A central limit theorem with random indices for stationary
linear processes with applications

C. Houdré, University of Maryland and Center for Stochastic Pro-
cesses: Variance inequalities for functions of Gaussian variables

R.L. Karandikar, Indian Statistical Institute, Delhi, and Center for
Stochastic Processes: Stochastic differential equations with values in
a Hilbert space and propogation of chaos

J. Leskow, University of California, Santa Barbara: Inference for
repeatable events

J. Farshidi, Center for Stochastic Processes: Spectral characteriza-
tion and autoregressive expansion of horizontal and vertical linear
predictions for stationarv second order random fields

R. Cheng, University of Louisville and Center for Stochastic Pro-
cesses: A Wold-type decomposition for second-order stationarv ran-

dom fields

. Weissman, Technion. Israel: The indices of the largest observations
among n independent ones
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