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Statement of Work

The main objective of this work is the development of a unified mathematical technique

allowing one to handle optimal design problems directly, i.e. without reference to G-closures.

The direct approach has originally been put forth in [1], its detailed description given in [2].

This approach has been applied here to problems of the second order arising in the optimal

design of heat conducting bodies [3,4], and to the 4th order problems arising in the optimal

design of plates [5]. The ultimate aim of this work is to create an exact analytic procedure able

to provide special microstructures that eventually participate in the optimal layout for

non-self-adjoint problems. Currently, these microstructures are worked out numerically [6],

this step forming an inner loop in the major computational procedure aimed to determine the

desired optimal layout. This latter approach (i) provides with only suboptimal sets of

composites, and (ii) it has not yet been adjusted to non-self-adjoint problems of design.

TI ttpproach reported here does not include such an inner loop; it addresses the

computational work at the very final stage, namely, at that of assembling the overall layout

from the special composites introduced analytically at the earlier stages of analysis. This

analysis is rigorous and provides with genuinely optimal composites.



1 Analytical Aspects

1.1 The Second Order Problems

Direct Solution of an Optimal Layout Problem for Isotropic Heat Conductors in Three

Dimensions

Consider the system of equations:

q=-..0 VT, V- q= (1)

describing the distribution of temperature T = T(x,y,z) within the domain V in R3 filled by

the heat conductor characterized by the heat conductance tensor .0= .(x,y,z). This one is

allowed to be equal either to .0+ = u+E or to ._ = u_E where u+ and u_ are positive

constants (u+ > u_>0), and E is a unit tensor E=ii+jj+kk:

0.= .4x,y,z) = Xl(x,y,z).O+ + X2 (xy,z).!_; (2)

Here X1,2 (x,yz) (X1 + X2 = 1) denote the characteristic functions of regions occupied

respectively by .+- and .0_-materials.

Assume that the temperature T is prescribed along the boundary OV of the body:

T] =f (3)
oV

and consider the (cost) functional

(T)= - [T(x,y,z) - T0 (x,y,z)]2 dxdydz (4)

V
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where T0 (x,y,z) c L2 (V) is a known function. We desire to find the characteristic function

Xl(x,y,z) maximizing the functional (4).

A similar problem in two dimensions has been discussed in [1,2].

To apply a direct method [1,2], we first establish the equivalence of

sup I (5)

X1

subjected to constraints (1) and (3), and

sup infJ (6)
X1 ,T A

where

J = I(T) + J VA -.. VT dxdydz (7)

V

and the "conjugate variable" A is subjected to

Al =0 (8)

whereas T is subjected to (3).

This latter problem is handled with the aid of two-sided estimates that constitute the

core of the direct approach [3].

We start with the following upper bound:

2



sup inf J = sup sup inf J < sup inf sup J=
X1 T A T A T AX

(9)

= sup in4I(T) + [ G(VT,VA)dxdydz]
T A

V

where (we accept the notation • = VT, 7 = VA)

: 77 i : 77=0, 
(10)

Lu_• n if 77 <0.

We thus calculated sup J explicitly. The upper bound (9) is not final. The function G(ý,n)
X1

is not a saddle: it is in fact convex with respect to each argument (but not with respect to

their union). For this reason we cannot guarantee the existence of solution of the problem

sup in[I(T) + [ G(VT,VA)dxdydz] (11)
T A

V

on the basis of a saddle-point theorem. But because the arguments 6,7 of G(6,77) are

gradients, we need not demand that the integrand should be a saddle to ensure existence: it is

sufficient for this one to be a quasisaddle function [1,2]. We introduce the polysaddle envelope

G (6,77) of G(6,77) defined as [1,2]

G (6,77) = sup sup inf{a. 6 + b.77 + w. 6x77 - inf sup[a- 6 + b. n +
w b a 6 77

(12)

+ w. x 71 G(6, n)]};

3



G (ý,77) thus appears to be an envelope of G(6,77) built with the aid of linear

0 functions as well as null-Lagrangians (6-77) 1 = 62773 - 63?72,(6x77)2 = 63771 - lr773,(6x77)3 =

6172 - 62771. If G(6,i7 ) is convex in 77 and arbitrary in 6 (which is the case here (see [1,2])),

then

G*(6,77) _ G(6,77). (13)

This property makes it possible to use G (6,n) instead of G(6,77) in (11) and thus arrive at

the new upper bound of the functional (6).

To compute (12), we first apply the operation sup. With the notation
77

H(6,7) = - w. - -7 + G(6,77)

O we obtain

[0 if b + w•-u•=0, u_ <_u<U+

h(6,b) = sup[b.77- H(6,77)] = -0 (14)
77 1+a otherwise.

The next step is given by the operation

inf{a - 6-inf[a -- (-h(6,b))]}. (15)
a

which yields the concave envelope of -h(6,b) with respect to the 6-variable for fixed b.

This envelope is found to be

inffa - -ina - -(-h(6,b))]} (16)

a L- 6

0



where E is the convex hull of the arc u E [u ,u+] of the curve y in the 6-space

r. b = -wx- + uý = S(u).6, u E [u ,u+I, (17)

or, explicitly in terms of 6,

S= s-l(u) • b, u E [u , u+ ],

S-1(u) u WW W E

u+ + u(u+W u+W

where E = - ExE denotes the Levi-Civita tensor of the third rank.

Note that the above mentioned arc rests on the points 6+ = S-1 (u+) • b and

6_ = S-'(u_) • b; this arc is defined by (14) as the set of points in --space for which

h(6,b) < c.

We should now describe the convex hull of this set. An extensive analysis of related

computational aspects is given in Section 2; here we give but a general sketch of this geometric

object. This one turns out to be the convex body in R 3 i-space bounded by a surface 8"E

comprised of two sheets. One of these sheets is a developable surface produced by straight lines

connecting the point (+ with other points of the arc (17); another sheet emerges from the

same construction, this time associated with the point 6_ . The two sheets intersect along the

arc (17) and along the chord connecting the vertices 6+ and 6_. This chord is given by

S= ts-l(u+) • b + (1-t)S- (u_) • b, t E [0,1]. (18)

5



In view of the operation sup to be computed next in accordance with the construction

(12), we must interpret (15) as the function of argument b for some fixed value of ý. It is

remarkable that this interpretation is quite similar to (16), i.e.

[0, b E
inffa. -- inf a. -(-h(ý,b))]} = (19)
a L- O 2%

where 2 is a convex body in the R' b-space bounded by a surface 02 of the same type as

the boundary 83 of E. This surface is also combined of two developable sheets, this time

produced by straight lines connecting the vertices b+ = S(u+) • ý and b_ = S(u_) • ý with

points of the curvilinear arc (18) (this one becomes a curvilinear arc in b-space!) On the other

hand, the curvilinear arc (17) in i-space is interpreted in the b-space as a chord connecting

the points b+ and b-.

The operation sup participating in (12) is now reduced toI O b

sup b - . (20)
bE 2

Because the chord (17) and the arc (18) belong to the boundary a2 of A they should be

tested for optimality in terms of the operating (20). Since the body 2 is convex and its

boundary ag is assembled from two developable sheets, its tangent planes participating in the

computation of supremum will touch a2 either at its vertices b + and b_ or along the arc

(18). All these possibilities are embodied in the operation

sup b" -7 (21)
bE[b+,bj

where [b+,b.] means the closed arc (18).

0
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The analysis of this operation together with the subsequent operation sup shows that

the supremum

sup sup (b. n +w.x 7)
w bE[b+,b]

is defined by the formula

u+ cos 2X, 0 < tanX < -

sup sup (b. 77+w-xn/) = (u++u_)cos 2x-u+u sin2X, 2 -tanX u (22)
w bE[b+,b] 2 ta+- -

u_c cos2X, ujii < tanx < c

Here, 2 X denotes the angle between vectors ý and 77. The expression (22) realizes the

upper bound G (ý,77) for the function G(ý,r7 ) defined by (10). The first and third lines in

(22) can be achieved as we apply the pure -0 - and .0--materials respectively. The second

line can be achieved by a rank 1 laminate. To show this, we introduce at each point the plane

spanned by vectors ,. Their we introduce a layered composite assembled from . and -_

-materials with layers directed perpendicularly to the ý,r•-plane and bisecting the angle 2 X

between ý and 77. For this microstructure, with its effective tensor -0 and the

concentration t chosen in accordance with the rule

[tu_ + (1-t)u+] 2 = u+u- tan2 x, (23)

the expression for ý • • - coincides with that in the second line of (22). Observe that the

S requirement 0 < t < 1 combined with (23) gives birth to inequalities

7



OU

-<tanX• 
u_

involved in (22).

The attainability of the upper bound

sup inf J < sup inf [I(T) + G (ý,17)dxdydz]
T A T A j

V

if thereby proved. In this argument, we may consider special microstructures applied above as

admissible layouts generating the lower bound for the same functional sup inf J. Both bounds
X,T A

are shown to be the same, and the existence of optimal layout is thus demonstrated. Observe

that this layout is locally two-dimensional since at each point (x,y,z) we have two vectors ý,77

* that define a plane; in this plane we obtain the layout essentially the same as that described in

[1,2].

This overall layout is thus to be constructed from pure .- and ._ - materials and

also from rank one laminate assembled from them; the rule (22) shows how this construction

should be arranged.

Direct Solution of an Optimal Layout Problem for Isotropic and Anisotropfc Heat Conductors

on a Plane

This problem differs from the previous one only in the definition of a set U of

admissible controls (materials'. Now, instead of two isotropic materials .0 = u E and ._

= u_E, we assume that U involves the isotropic material "01 = uE and the anisotropic

material -12 = R R R, R = e~e1 + ee 2 , R = e + e2e', _ = dle,, 1 ± d 0 <

0S



u < d1 < d2. This anisotropic material is allowed to take various orientations at each point;

particularly, the polycrystals are allowed to emerge.

The overall analysis of this problem is given in [4] (see attachment) The optimal layout

is assembled from the pure .l 1-material, the (properly oriented) .920 -material, and the rank

one laminate assembled from them. A rule is indicated showing the ranges through which

either of these three materials should be applied.

These examples illustrate the direct technique of [1,21 applied to the second order

problem of heat theory.

The following example is referred to the fourth order problem arising in the theory of

plates.

1.2 The Fourth Order Problems

Direct Approach in the Optimal Design of Plates.

The state of equilibrium of a thin plate is described by the equation

VV .... VVw = q, V = i +j (24)

(x, y) E

where w denotes the normal displacement, .0 the tepsor of stiffness, and q the transverse

load density. The boundary ff of the plate will be assumed clamped, this property requiring

the boundary conditions

w =W0. (25)

The tensor .0= .4x,y) will be allowed to take at each point (x,y) one of the two admissible

values "01, and -2 associated with two available constructive materials:

9



."j = kialal ± •i(a 2a2 + a3 a3 ), i = 1,2. (26)

Here and below, al,a2,a 3 represent an orthonormal basis in the space of 2nd rank symmetric

2x2-tensors, i.e.

a, l jj), a (ii-jj), a 3  +ij A-i). (27)a1~ 3= ii+j), a

Introducing the characteristic functions xl(x,y), X2 (xy)(X1l+X2 = 1) of domains occupied by

materials -01 and .'2 respectively, we by analogy with (2) may write

X(x,y) = Xl(xy) "01 + X2 (xly) -42" (28)

The function Xl(x,y) will be sought to maximize some weakly continuous functional I(w) of

solution to the problem (24), (25). As typical example, we may take the functional

I(w) = - J[w(xy) - w0(x,y)] 2 dxdy, w0 (x,y) E L2 (M) (29)

To apply the direct approach to this problem, we go through the same steps as before. The

problem

sup I

X1

subjected to (24), (25) is equivalent to

sup inf J (30)
X1 ,w A

10



. where

J = i(w) + J(VVA ...-.. VVw - Aq)dxdy (31)

and A is subjected to

-~ =0.(32)
"AI 0£

To construct an upper estimate for (30), we proceed as in (9) and obtain

sup inf J = sup sup inf J < sup inf'I(w)- [Aq dxdy +
w A w X1 A w A -0

+ G(VVw, VVA)dxdy] (33)

where (we accept the notation • = VVw, 77 = VVA)

-.0.1-.. 7, if 6--.0.1-.. 7>ý -- 2.71,

G(6,71) = 4'-n f6---1--7 7 (34)

The bound (33) is still to be improved with the aid of the polysaddle transform similar to (12).

We go from G(6,7) to a new integrand G (6,77) computed by the formula

11



G (,77) = sup sup inf{a.-6+b..77+w.-(6x77)+d6..T..77-

w,d b a

-inf sup[a. .6+b .- 77+w-- (6- 77)+d6.. - .T --7-G (6,•?)]}. (35)

6 77

Apart from null-Lagrangians (6?7)1 = 27213 - 63772' similar to those involved in the 2nd

order case, this formula includes the null-Lagrangian 6. • T. • r7 with the 4th rank tensor T

defined as

T = aa 1 -a 2 a2 -a aa3 (36)

This null-Lagrangian is specific for the 4th order operator appearing in (24) namely, the

following identity holds

VV. T .- VVw = O.

The transform (35) possesses properties similar to those of (12); particularly, if G(6,7l)

is convex in 77 and arbitrary in 6 (which is the case here), then (eq. (12))

G (6 7)> G 6 77

and G (6,77) can be used to improve the bound (33).
**

We now should compute G (6,7). This time we cannot characterize the boundary 0,2

that now appears in a manner similar to that in Section 1.1 simply in terms of two developable

sheets; the geometry of this surface is more complicated. Nevertheless, the general scheme of

Section 1.1 works well, and we are able to carry out the analysis of corresponding necessary

conditions. Detailed calculations are exposed in [5] (see attachment); the complete

classification of ranges has been provided for the case when tensors 6 and 77 are coaxial. The

12



ultimate layout involves in this case laminates of rank one and matrix laminates of rank two,

their layers being oriented along the (common) main axes of tensors ý and r7.

The method works well also in the general situation when tensors ý and 77 are

arbitrary. The corresponding calculations have been initiated, and they show that laminates of

rank one appear as microstructures that are optimal within certain ranges of ý and 77. For

other ranges, general (non-matrix) laminates of rank two apply; the final classification of

ranges is still to be completed.

0

13



0

2 Computational Aspects

2.1 Introduction

In solving the materials layout problem, we wish to evaluate the function
Go*(ý,io). This function is constructed from the function G(ý,77) as follows.

",77) = sup sup inf{a + b. ,7 + DýTq + w . x7
D,w b*

-inf. up[.C +b.6 + DCTO + .w x 9 - G(C,9)I}
C e

where the terms in this function are defined as follows. The arguments ý and

1 are symmetric tensors of size two. If, however, we choose a basis for such

tensors we can think of C and ,7 as being three-tuples (elements of R") so that

operations such as ý x 17 make sense.1 In particular, we choose the basis

a (ii+jj) a2 = -(ii - jj) a3 = -(i +ji)

We express C and ,q in this basis as i= * .a and ri. = q .- ai for i = 1,2,3.20 The dummy variables a, 6, w, C and 0 are also thought of as being in R'.
D is a scalar. T is defined to be the matrix representation of the operation

" = La - a2C1 - Qt3 Q in the basis {aZa 2,a3}. In other words,

1 0 0]
T=[ 2 1

0 0 -1

In order to define G(ý, i/) recall that k-, k+, I.L_ and ji+ are all scalar quan-
tities. Define

K+ = k4+4,q + /4(67r2 + ý 31 3 ) and

Sa1 a 2 a 3

'That is, C x ,7 = 6 6 6 where the set {a,, a 2 , a 3} is the basis of the space
Y1l 172 173

of tensors.
21n other words, think of the tensor ý as being a two-by-two matrix with elements 41.,L).

Then the scalar 4i = 4- .aj = Zjj ý(t,,(ai)(Aj) and ý = E' &cti.
*Note the analogous roles played by ý and C, and by q and 9. We will subsequently be

considering the space R--- R3 x R3 with t and C belonging to the same 3R
3 subspace and

17 and 9 belonging to the same R3 subspace. Later, b will also be thought of as belonging
to the same space as q1 and 0.

* 14



K_.. =k_•t - A_(6q2 - 63773)

Then finally, G(ý, 17) = max{K+, K- 1.
With G"(ý,77) now defined, we cotisider how to evaluate it. We first turn

our attention to the terms underlined below.

G"*(ý, r) = sup sup inf{a• + b. + DýTq + w.< q
D,Aw b

-infsup[a. C + b. - + DCTO + w . x 9 - G(C, 9)1}
C 0

We will call this !(C, b); that is,

"i(Cb) = sup[b.9+ D(TO +.w C x 0 - G((, 0)]

We determine analytically that

0 at all C such that
J(C, b) = b + DTC - [kala, + /z(a2a 2 + aza 3 )]c + W "< = 0

oo at any other C

where k = k+ - 6(k+ - k-) and Ai = ji+ - 6(ji+ - A-) and where the parameter
6 is allowed to range through the interval (0,1). ( So, in other words, k ranges
through all of the values between k- and k+, and ti ranges through all of the
values between A- and A+.) Note that the equation

b + DTC - [kaja1 + ,a(a2a2 + a3a3)]( + W. XC = 0

can be thought of as the parametric representation of a surface in R-, with
6 acting as the parameter, and {C1, C2, 3, bl, b2, b3 } being the basis vectors of
r. We call this surface M(C, b), so that

M(C, b) = b + DTC - [kala, + /A(a2a2 + a3a3)I + U ; = 0

It will be using it extensively in subsequent computations.
The second step in evaluating G"( ,t7) is to consider also the terms

double-underlined below.

G 7(7,i7 ) = sup sup inf{a + b. 1 + DTri + w. xq
D,w b -.

- infsup(a -C + b. - + D(TO + w. 4T x 0 - G((, 0)]}
C =

15



We call this c(4, b); that is,

b)= inf{a.- inf[a.C + ((, b)]}
a C

Now, for each fixed b, we can think of the set of all 4 for which this infimum
is attained as being the convex hull of I(Cb). [n other words, the set of all
4 for which this infimum is attained is the convex hull of the set of all ( for
which ('(C, b) is equal to zero, where b is held fixed and where ( and 4 are
thought of as being in the same space, •R3 .

To place this procedure in perspective, consider the surface M(C,b) as
existing in W. By fixing b, we take a slice through M in the C-direction. The
result is some surface in three-dimensional C-space. We then convexify this
surface; the result is the set {4 E R' I c(4, b) attains its infimum}.

If we were to consider the above procedure taking place for all b, we would
describe a six-dimensional body B which contains M(C, b) as a subset. We
imagine slicing through B in the b-direction by fixing some particular value
of C, this particular value being 4. For the sake of brevity, we will refer to
this slice through 8 in the b-direction as BC (since 4 is fixed), and we will
refer to a slice through B in the 4-direction (that is, with b fixed) as Bb. Note
that with this notation, Bb = {4 E R3 I (ý, b) attains its infimum}. Figures
1 through 7 provide a schematic representation of these bodies. Note that
in these schematics, we have labeled the horizontal a-xis with a 4 rather than
with a C; since they are both in the same R3 space we could have labeled
the axis with either symbol, but we chose 4 since that is the particular value
along that axis which we will ultimately be interested in. Note also that b
and 4 are drawn as if they were scalar quantities, when in fact they represent
three-tuples.

As a third step in the evaluation of G"(4,77), we consider the triple-
underlined terms below.

G"(ý, q) = sup supinf{a . + b. 77 + D4Ti + w x 77
D,w. b a±.

- infsup[L:+b+ + DCTO +w C x 9- G((,9)I}

Computing this latest supremum amounts to evaluating supb b. r1 where b is
allowed to range throughout BC for any fixed 4. So in other words, given
4 and 17, we first find the surface M(C,b). Then, for each fixed b we slice

* 16



through that surface in the C-direction, and compute the convex hull of the
resulting surface. Doing this for each b value obtains for us the body S.
Now with the ý we have been given acting as a particular value of (, we slice
through B in the b-direction to obtain B5. We then compute

sup b- 17
bE 84

We call this quantity ;D,,,(ý, 7). This process is demonstrated schematically
in Figures 8 and 9.

The fourth and final step in evaluating G"(ý, 1t) is straightforward. We
compute

sup{bD,,(ý, 17) + DnTi7 + w. x 7}

By far the most difficult step is computing bD,,(ý,77). This, in turn, is only
made difficult by the cumbersome definition of 8C as the c-slice of the union
of all convex hulls of b-slices of M(C, b). The difficulty arises not in computing
the c-slice itself, but in computing all possible b-slices of M((, b). Clearly,
we cannot expect to compute an infinitude of complex hulls numerically! We
will discuss possible solutions to this problem in Section 4.

2.2 Representations of M(4,b)

Recall that

M(ý, b) = b + DTý - Ekala, + I(a 2a2 + a3)1Iý)w x

We call this the tensor formulation of M(ý, b). We could instead write this
as a linear system of three equations in three unknowns. To do this, we must
first express w in the basis {aZaCas}, so that wi = w .. ai for i = 1,2,3.
For the sake of brevity, we write A = w1 , B = w2 and C = W3 . The system
then becomes

{D - (kA: - 6(k+ - k_)J}j - C6, + B6 = -bi

C•1 + {-D - [.u+ - 6 (;L+ - ;-)}2 - A 3 = -b2
-B•j + A. 2 + {-D - + - 6(P- = -b

* 17
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We call this the linear system formulation 4 of M(ý, b). We can now write this
system in a "matrix x vector = vector" fashion as (A+ SD)ý = " where A is a
full matrix and V is diagonal.' We call this the matrix formulation of M(ý, b).
This notation essentially divorces the computation from its physical context,
but is a more standard formulation from the point of view of numerical
analysis.

So as a first step in numerically evaluating the function G"(ý, 77) we sup-
pose that b is fixed and compute a discretized version of the surface M(ý, b).
Let N be the number of points in the discretization; we will write the dis-
cretized version of the M(4, b) function as MIVN(, b), or more simply as MN,
and we will refer to this as the discrete formulation of M(ý, b). Mv is com-
puted by choosing N values of the parameter 8 in the interval [0,11 and solving
the above linear system for ý at each of these N values of 6. We will refer to
these discrete values of 6 as {5(0)}ý'. Likewise, the N discrete values of val-
ues of 'will be denoted {•'•)}V 1. Figures 10-14 provide a computer-graphics
representation of MN and its hull for the following test problemn.

{2 - [1.5 - 6(1.5 - 0.1)1}]j - 06, + 04 = -I

0, + {-2 - [30 - 8(30 - 2)]}12 - 3042 = -85

0ý + 304 2+ {-2 - [30 - 8(30 - 2)J14= -50

The points on the discretized surface were computed in FORTRAN and
stored in a data file for eventual use in computing the convex hull of MV.
The FORTRAN code used is provided as an appendix. Note that values were
assigned to the scalars b, A, B, C and D arbitrarily for the purposes of these
computations.

2.3 Computing the convex hull

At this point, we have a numerical approximation to a slice in the b-direction,
for some fixed b, through the six-dimensional body B. We now need to

4The scalar B = w2, above, should not be confused with the set 5 from the previous
section.

If is now written as ( to emphasize the fact that the current formulation is divorced
from the physical (tensor) meaning of f. That is, •-will henceforth always be thought of
as a three-tuple rather than as a symmetric tensor.

lmustrations are also provided for the hull test surface z = (1 - t) sin(16t), y = (1 -
t)cos(16t), z = ½ + 8(t - J)1, where t ranges between 0 and 1. See Figures 15-18.
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compute a numerical approximation to its convex hull.' Just as the discrete
analog of the surface M(ý,b) is a set of N points, the discrete analog to
the surface of the convex hull will be a sec of il triangular facets, {LK}J'I.

The algorithm we used for computing the discretized convex hull is called
the "Giftwrapping Algorithm" and is a standard algorithm in computational
geometry. We describe it, and provide our C language implementation of the
algorithm, in an appendix. Algorithms which are theoretically more efficient
are known, but are difficult to implement. At this stage of the project, we
chose the sufficiently efficient Giftwrapping Algorithm for its (relative) ease
of implementation. Also, at this stage of the project, it is just as important
to be able to view a computer graphics representation of the hull as it is to
actually compute the hull. For this reason, our C program also displays the
convex hull by making use of the X Windows graphics and interface library,
xlib. Figure 13 provide a computer-graphics representation of the convex
hull. (Note that while the program makes use of shading to provide a "three
dimensional look" to the hull on the computer screen, printouts of the screen
are necessarily black-and-white and so lack the look of depth.)

Being able to view the convex hull is important for three reasons. First of
all, its the only practical method for determining that there is no error in the
convex hull computation. More importantly, if we consider the image of the
convex hull in the context of its original physical derivation, certain facets of
the hull represent various classes of laminar composites. For example, points
on the body which lie on a line segment connecting two points on the surface
represent rank-one laminates. Finally, observing the convex hull for some
problems provides insight for methods of attacking the problem analytically
rather than numerically. For example, developable surfaces" on the convex
hull might indicate linearity in the original problem which could be exploited.

2.4 Computing SUPbes, b -T

2.4.1 Pattern Search Approach

As we previously described the procedure for evaluating G"(ý, 77), we would
have to compute the above convex hull for every possible value of b in order

'That is, we need to approximate the set {ý E R3 [g(C, b) attains its infimum}.
'That is, surfaces which can be traced out by the motion of a line segment through

space. The length of the line segment is allowed to vary as the segment moves.
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then to compute the body B. Clearly, this is impractical! And yet, without
B, we cannot then slice through B in the b-direction so as to compute 54
at the given 4. One way around this dilemma is to realize that we are not,
in fact, interested in computing either B or BI at all; we are interested only
in computing supb.E5 b . . This is an optimization problem with a linear
objective function and a nonlinear constraint set. In fact, the constraint set
is not only nonlinear, its also non-smooth, and even non-convex. Worst of all,
we do not even have an analytic description of its boundary. Rather, for any
given b value we can answer the question "is b in BS?"' but we have no other
information about the constraint set for nearby values of b or ý. In particular,
we cannot even determine if we are on the boundary of the set except by
sampling nearby points and repeating the convex hull computations at each
of these points. Thus, even obtaining approximate derivative information
about the boundary is impossible. Therefore, we need to use a no-derivative
method of optimization, such as a pattern search method, in order to solve the
problem. We are currently at this stage of computer program development
in the project.

2.4.2 Higher Dimensional Approach

Another approach to alleviating this lack of an easily-defined constraint set
would be to consider the full problem in its six dimensional setting rather
than approaching it as a sequence of three dimensional problems, as we pro-
pose above. In this approach, we would compute a quasi-convex hull of
M(1, b) as in Figure 6. While algorithms for computing convex hulls abound
in the Computational Geometry literature, we know of no algorithms for
computing quasi-convex hulls. It appears, however, that an easy generaliza-
tion of the Giftwrapping Algorithm, which we used to compute our three
dimensional convex hulls, might enable us to compute directly the quasi-
convex hull of the six dimensional body. We are currently developing such
an algorithm, but have not yet implemented it.

rWe would answer this question by fixing b, computing the convex hull of M(ý, b), then
fixing 4, and seeing if that 4 values lie inside the convex hull we computed. Note that
numerical error can be a very sensitive issue here; ý's just barely inside the boundary of the
convex hull might be computed to be outside the boundary either because of roundoff error
in the coordinates, or due to discretisation error caused by numerically approximating the
convex hull.

* 20



2.5 Appendices to Computational Aspects

The following appendices are intended primarily for those involved in using
or maintaining the hull software.

2.5.1 Appendix A - Algorithm Used to Compute Mlv

For our materials layout problem, both ý and b are three dimensional. So
the overall space is six dimensional. The i-surface is not a discrete set of
points, but rather a trajectory in three dimensions. Its convex hull is a body
in three space. By varying b, we can build up a six dimensional figure: the
B envelope.

In a c-space setting for our full problem, the surface whose convex hull
needs to be computed is given parametrically in the form

{D - [k+ - 6(k+ - A_)]}G - Cý 2 + B•i = -bi

C•i + {-D - [A+- S(/+ - •-)16- A 2 = -b2

-B~l + A42 + {-D - [+- 6t - p14.= -b 3

which we write as (A+ 67)" = b where A is a full matrix and V is diagonal.
Here, the entries of the matrices A and V are known constants. In the overall
problem, both f and 9 are unknown, but as a sub-problem we consider 5 to
be fixed. So the algorithm for computing a single convex hull proceeds as
follows.

1. Fix an arbitrary three-tuple b.

2. Let {6 (i)-N= be n evenly spaced values of 6 in the interval [0, 1].

3. For each 5i, solve the equation (A + D6)-= b for ý, where A is a full
matrix and V is diagonal.

4. This gives us a set of vectors {)• which form the discretized surface
in 4-space.

5. From this, we compute a set of triang'.es {Lj~j'f which is the discrete
analog of the convex hull. We used the Giftwrapping Algorithm to
perform this computation.
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2.5.2 Appendix B - Notes on a Proposed Pattern Search

At this point we have a method for building up the set S. (The method is
theoretical, not practical.) We now turn our attention to computing sup b.-/
efficiently. Notice from Figure 19 that for a given ý and a given 77 we do not
need to know all of set B. In Figure 19, for instance, all we need to know is
the top boundary of B for some fixed ý. In order to determine how this fact
might be used, we consider Figur-, 20. Here we imagine a two dimensional
b-space and we draw the b-image of B for some fixed ý. (That is, we draw B1.
In Figure 20, B5 is shaped like a lemon slice.) For this particular example, we
have the unit direction vector 17 cutting through B, but this is not necessarily
the case in general; r7 might not cut through B5.

First, it is illustrative to consider the possible correspondences between
features of Figure 19 and features of Figure 20.

"The b-axis in Figure 20 corresponds to the the entire bl, b2-plane in
Figure 20. Note that for this reason, a single point in Figure 20 might
simultaneously correspond to any number of points in Figure 20.

* The line segment W- in Figure 20 corresponds to the "lemon slice" be-
tween the points u and v in Figure 20. In both cases, tbis set is a b
image of B corresponding to some fixed ý. That is, it is the the set Bi.

" The point s in Figure 20 corresponds to the point w in Figure 20. This
point is the point at which supbseg b • 77 is attained.

" The point t in Figure 20 corresponds to the line segment UV" in Figure 20.
In each case, this is the set formed by intersecting the b-space with the
original surface M. Note that in Figure 20 we draw this as a line
segment, rather than as an arbitrary surface, because in the sample
problem discussed above, b depends linearly on the parameter 6 for
fixed ý.

" The point t in Figure 20 corresponds to the point u in Figure 20. This
is the point at which supbaMl, b - 77 is attained. That is, it maximizes
b. i over the original surface, with ý fixed, rather than over the entire
set Bf.

It is very important to keep in mind that we do not actually know the location
of the horizontal line which passes through the point s in Figure 20. We could
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only find this line by computing an infinite number of convex hulls. Even
approximating its location would require an impractically large number of
convex hull computations, since b is really a three-tuple and not a scalar. If
we did know the location of the horizontal line, and therefore the location of
j, our problem would be easily solved.

We now consider how these observations can be used to write a con-
structive algorithm for determining the point w (or s). Again, it is useful
to consider Figure 20 in this discussion. The first algorithm we consider is
clearly impractical, however it illustrates some ideas we can use in a more
realistic algorithm. Recall that ý and 77 are given as input, since ultimately
we are trying to evaluate G"(ý, 17). Also, note that M(ý, b) is known; in this

case, it is the surface given parametrically by (A + V6) = b.

1. Optimize b . 71 over M(t , b) with the ý given. That is let
C = supsE[0,1l (7(A + SV)ý. In Figure 20, this value of C would be
attained at the point t. We now wish to somehow move "upwards"
from point t towards the better solution at point s.

2. Randomly choose a value for b. There are three possibilities.

(a) This new value of b might not be relevant to computing a new value
of C. For example, consider the points b' and b" in Figure 20. In
the case of the point b', the corresponding c-space (horizontal line)
would not intersect the surface M at all, and so has no bearing on

finding the point a. In the case of the point b", the corresponding
ý space does intersect M, but not in the vicinity of the b-space
setting corresponding to our fixed ý. Since these b values are not
of interest to us, we return to step 2 and randomly guess a new
value of b.

(b) This new value of b might be relevant, but might not increase the
value of C. For example, consider the point bt in Figure 20. For
this b value, b . il is not increased. So, we return to step 2 and
randomly guess a new value of b.

(c) The new value of b might increase the value of C. For example,
choose a point in Figure 20 which is slightly above the point bt.

For this new b value, b. i7 is increased. Let C be equal to this new
value of the dot product, and return to step 2, to look for a still

better b.
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Clearly, this strategy of randomly guessing b values is not practical, especially
since b is actually a three-tuple and not a scalar. The above algorithm does
show how the merit of a b value can be judged. It is left, then, to replace the
random guessing with a better search scheme, such as a pattern search. For
example, given a value of b, we would consider 6 points within e of b, in the
positive and negative directions of each of the three coordinate axes. The
value of the objective function would be computed at any of these six points
which turn out to be in the set B4. The point with the lowest value is taken
as the starting point in the next step of the iteration.

2.5.3 Appendix C - Introduction to the the hull program

This appendix explains how the 3D convex hulls are rendered by the program
hull, how to use the program, and provides file listing for the code.

Running the program Hull runs in a Unix and X Windows environment,
such as is commonly found on computer workstations. At the shell prompt,
type "hull" to invoke the program. Hull will read in a number of (x, y, z)
coordinate triples from a file called surface.data, so it is assumed that this
file resides in the same subdirectory as the hull program. The data is stored
as floating point numbers, three per line, separated by blank spaces.

The main screen Most of the screen should now be taken up by the image
of a surface, super-imposed on the coordinate axes. (See Figures 3 and 4.)
In the upper left will be a dark rectangle labeled "Quit". Clicking inside
this rectangle with any mouse button will exit from the program. Techni-
cally, these dark rectangles are not "widgets" in the sense of X-Windows
terminology, so we will refer to them as gadgets.

To the right of the "Quit" gadget is the "Save hull" gadget. Clicking in
this gadget will save the hull data into the file hull.data. Each line of the file
contains nine numbers representing one triangle: the first three numbers are
the (z, y, z) coordinates of the first vertex, the second set of three numbers is
the coordinates of the second vertex, and so on. The numbers are separated
by blank spaces.

On a color monitor, there will be a color bar to the right of the "Save
hull" button. The color bar displays 66 colors and 66 shades of grey. The
colors used are the 66 standard "named" colors in X-Windows. The shades
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of grey are the ones used to paint the convex hull. On a black-and-white
monitor, the color bars will not be drawn.

The overhead-view gadgets To the right, and slightly below the color
bar, will be a large rectangle surrounded by gadgets. The large rectangle is
an overhead map of the display area. In the center of the map is the origin.
Emanating downward from the origin is the x-axis. The y-axis extends to
the right. The small square which surrounds the origin represents the extent
of the z and y axes as they are displayed on the screen. The letter "e"
represents the location of the observer's eye. The letter "s" represents the
target of the observers eye (the "see point"). The letter "I" represents the
location of the lamp, or light source.

Between the eye point and the see point is an imaginary plane called the
"view plane". This is the rectangle onto which the 3D image is projected, for
purposes of viewing. The letter "v" in the overhead map is always between
the "e" and the "s" - it represents the location of the view plane.

To the right of the overhead map is an "altimeter" which shows the z-
coordinate of the eye point, the see point, and the light source. The dot in the
middle of the altimeter represents the height of the origin. The vertical bar
just inside the altimeter represents the extent of the z-axis as it is displayed
on the main screen.

The gadgets marked "Expand" and "Ex" double the size of the map area,
so everything inside the map becomes smaller. The gadgets marked "Shrink"
and "Sh" cut the size of the map area in half.

Clicking on the "Clockwise" gadget with the first (left-most) mouse but-
ton will rotate the eye point five degrees, with the see point being the center
of rotation. The rotation will occur in the sense of latitude lines. Notice
that the image in the main screen changes, as does the location of the eye
point as displayed in the overhead map. Clicking on the same gadget with
the second (middle) mouse button will rotate the see point five degrees about
the origin. Clicking with the third (right-most) mouse button will rotate the
light source about the see point.

The "Counter C" gadget performs counter-clockwise rotations in the same
fashion. The "Go over" gadget rotates these points up towards the positive
z-axis (in the sense of longitude lines). The "Go under" gadget rotates them
downwards.
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The "See point" and "Eye point" gadgets move the view plane between
these two points. Repeated clicking on the "See point" gadget, for example,
will move the view plane closer to the see point. This is indicated by the
location of the "v-slider" which connects the two gadgets. Moving the view
plane in and out is the best way to control the size of the image.

The "Zoom in" and "Zoom out" gadgets can be used to move the eye
point and light poiAt closer or farther from the see point. It can also be
used to move the see point closer or farther from the origin. These gadgets
are less useful than the "See point" and "Eye point" gadgets, because (for
example) zooming the eye point towards the see point also moves the view
plane, automatically. The net effect does not actually increase the size of the
image by much.

The eye point can also be rotated around the latitude lines by using the
left and right arrow keys on the keyboard. The up and down arrow keys
rotate along the longitude lines. Again, the center of rotation is the see
point.

Finally, notice that clicking into the overhead map or the altimeter can
be used to change the locations of these points much more abruptly. Clicking
with the first mouse button in the overhead map will, for example, jump the
eye point to that location.

Hull gadgets The gadgets below these "overhead map" gadgets control
the shape of what is actually seen. Clicking on the "COMPUTE CONVEX
HULL" gadget causes the convex hull to actually be computed. If more than
4096 triangles are needed to compute the hull, the program will beep at you
and write an error message to the DECterm window which evoked it. Click-
ing on the "surface" gadget shows only the surface generated by connecting
the (z,y,z) coordinate triples from the data file. The "Wireframe" gadget
calls up a wireframe representation of the convex hull of this surface. The
"White" gadget draws the conves hull in all white, with hidden surfaces elim-
inated from the image and individual facets of the hull outlined in black. The
"Shaded" gadget draws the hull most realistically: hidden surfaces are elim-
inated and the remaining surfaces are painted shades of grey depending on
the angle of incident light emanating from the lamp. The "Highlight" gadget
attempts to show off important aspects of the image. The visible portion of
the surface is painted yellow (white, on a black and white monitor). If part
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of the surface is on the exterior of the hull, but is on the far side of the hull
and so not visible, it is painted red. If a part of the surface is interior to
the hull,it is painted brown. If the line segement connecting the beginning of
the surface to the ending point is also on the convex hull, it is painted green
(white, on a black and white monitor). This green line usually represents a
sharp corner on the hull.

The "Less fine" and "More fine" gadgets control how many of the data
points in the data file are actually used. When the program starts, it attempts
to find 16 data points to use. If the data file contains 128 data points, then
only every eighth of these is used. Clicking on the "Less fine" gadget cuts the
number of points used in half. Clicking on the "More fine" gadget doubles
them, up until all of the data points in the file are being used. The purpose
of this is to allow the user to manipulate "crude" images in order to get the
proper view, before performing the time-consuming calculations associated
with more refined images. So for example, if one wanted to rotate the image
quickly, it might make sense to click on the "surface" gadget and the "Less
fine" gadget first, so that the rotations would appear more quickly on the
screen. Note: the program only allows 4096 triangles to be displayed on the
screen. Trying to refine the image too much could exceed that limit. If so,
the computer will "beep" at you, and only render the first 4096 triangles it
has calculated (with three of these being the coordinate axes.)

On some occasions the user might want to see only the trailing portion
of the surface, or the beginning portion. The next four gadgets control this.
Clicking on the "+ t min" gadget chops off segments of the surface associated
with small parameter values. The "- t max" gadget chops off segments of
the surface associated with large parameter values.

Scaling gadgets Below the hull gadgets are six gadgets which double of
halve the scaling of the z, y and z axes.

Files The various parts of the program as a whole can be divided into three
categories. (1) Sections which compute the convex hull. (2) Sections which
transform that data into a 3D image. (3) Sections which make use of the
X-Windows library to render that image on the workstation screen. These
routines are stored in a number of separate files, listed below.
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main.c This file contains the main() program. All global varibles are ini-
tially declared here. Also, the main drawing routine, refresh WindowQ,
is found in this file.

2d.c This file contains the functions which transform device-independent
coordinates into actual screen coordinates. (In the device-independent
coordinate system, the computer display is thought of as a unit square,
with the point (0,0) in the lower left, and (1,1) in the upper right.) The
device-independent coordinates themselves are generate by functions in
the file 3d.c.

3d.c This file contains functions for transforming 3D coordinates to 2D co-
ordinates. The 3D coordinates are called "object space" coordinates,
and the 2D coordinates are device-independent. This file also con-
tains the functions which initialize the matrices needed to perform this
transformation.

colorx.c The suffix "x" on a file name denotes that it pertains to the X-
Windows system. In this case, the functions in this file are used to
initialize the colors and the grey-scale used by the program.

draw.c This file contains all of the 2D drawing functions, such as functions
used to draw lines and rectangles on the screen.

eventx.c The suffix "x" on a file name denotes that it pertains to the X-
Windows system. This file contains the function which waits for various
"events" (mouse button clicks, keyboard key presses, etc.) and acts
upon them.

gadgetdata.c This file contains the location and string associated with each
gadget.

getdata.c This file contains the function which reads the data file. The data
file consists of (x,y) coordinate pairs, one pair per line, which define
the surface to be convexified. The first line of this data file is an integer
which tells the program how many coordinate pairs to expect.

hull.c This file contains the functions which compute the convex hull of the
surface.
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initx.c The suffix "x" on a file name denotes that it pertains to the X-

Windows system. This file contains the functions which first initialize
and establish the connection to the X-server.

minmax.c This file contains various functions for computing minimums and
maximums of floating point values.

overhead.c This file contains the functions which convert overhead map

coordinates into screen coordintes.

quitx.c This file contains the function which cleanly severs the connection
to the X-server.

sort.c This file contains the functions needed to perform a quick-sort. This
is used to sort the facets of the convex hull and the coordinate axes, so
that they are rendered on the screen in the correct order.

textx.c This file contains the function which sets up the X-Windows font
to be used.

windowx.c This file contains the function which opens a window on the
X-server screen.

thelcon An icon for the application when it is closed. Note that the DecWin-
dows window manager does not use this icon.

global.h A global include file for all of the ".c" files.

prototypes.h A file of the C function prototypes, also included in each of
the ".c" files.

makefile The make file for the program.

surface.data This file contains the data for the surface whose hull is to be
computed. The first line of this file consists of an integer, the number
of points on the surface. Each remaining line of the file contains three
floating point numbers, the (z, y, z) coordinates of each point. The
floating point numbers are separated by spaces.
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hull.data This file is generated by the hull program. The first Line of this
file consists of an integer, the number of triangles on the hull. Each
remaining line of the file contains nine floating point numbers, the
(Zr,y,z) coordinates of each of the three vertices of a triangle. The
floating point numbers are separated by spaces.

surface.f This file contains a typical FORTRAN program for creating the
file curve.data

Generating convex hulls with the gift-wrapping algorithm

The general algorithm Suppose we have a set of five points in 3D and
we want to find their convex hull.

For the moment, take it as given that we have somehow found three points
which we know form one face of the hull. For the sake of visualization, let
us set up our coordinate system so that these three points are sitting on the
floor.

* a

/\

C ---------- 0

The other two points are hovering somewhere above these three.

a
D

/ \

/ B \
C ---------- e

Choose any of the three edges of the face as an edge to "wrap" your gift
paper around. For example, choose the edge TZ. Also choose one of the
points on this edge for computing a vector which is normal to the face: let
us choose a.
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Now compute the unit vector i, normal to this face.

n=(c - a) x (e - a), normalized. (1)

We loop through all of the vertices which are not on this face:

case vertex = B:
consider the triangle Ca,c,B]
construct a unit vector, -m-, normal to this triangle
let rhoe(B) = -n- <dot product> _m-

case vertex =D:

consider the triangle Ca,c,D]
construct a unit vector, _m-, normal to this triangle
let rho(D) = -n. <dot product> _m_

As we loop through all of these vertices, we look for the smallest p value.
In other words, we look for the face whose normal is "most obtuse" to the
face we already have. So we choose D.

Sa
D
I / \

I/ B \
c ---------- e

Now we have two faces. How do we procede from here? We keep a list of
all of the edges we have created, and we make sure that we consider each edge
exactly one time, in terms of "wrapping" the gift paper around it. So for
example, we have now considered the edge Ed exactly one time. We should
never consider it again. Still on our list of edges are the following:

(c,e] created with our initial face
Ee,a] created with our initial face
[c,D] created by our second face
(a,D] created by our second face
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We loop through all of these edges until we have considered exactly once
every edge ever construced. Note that when we get around to creating the
face [a,D,B] we have to be careful not to put the edge a"D in our list of edges
a second time. (It was already added to our list when we created the face
[a,c,D].)

For a more in-depth discussion of this algorithm, see Computational Ge-
ometry, an Introduction by Franco Preparata and Michael Shamos.

Degenerate cases For our computations, we are required to also consider
two dimensional degenerate cases, where all of the points lie on a linear
manifold. Then, the convex hull is also a two dimensional object. Applying
the Gift Wrapping algorithm now, there is no clear choice of "most obtuse"
faces, since they are all in fact parallel to one another. Assuming that the
points are considered for candidacy in the same order at every iteration of
the algorith, we would find that the same four points are being chosen over
and over again, regardless of how many points are in the set.

That is, imagine five coplanar points, a,b,c,de. In extending face [a,b,c]
we could choose either point dor point e; they are both equally good choices.
Our program considers these points in order, so it would choose point d.
Likewise in extending face [a,b,d] we would choose point c, and so on. Point
e would never be used, and yet point e might well lie on the two dimensional
hull.

In our implementation of the Gift Wrapping algorithm, we overcome this
problem by adding the extra criterion that for two equally good choices of
new faces, we choose the one which uses the point least-frequently utilized
at that phase of the computation. Thus, in the above example, (a,b,c1 would
be extended to d, but (a,b,d] would be extended to e, since c has been used
more often so far than e.

The first face as a special case The way in which we obtain the first
face of the hull is a special case.

To find the first vertex in the face choose, say, the lowest point in
the set of vertices as our starting vertex. We are guaranteed that this vertex
will be on the convex hull.

To find the second vertex in the face run line segments through the
first point and each of the other N - 1 points. Choose, say, the one whose
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angle with the x-axis is largest.
To find the final vertex in the face run a plane through the plane

through the edge joining those two points and rotate that plane around this
new line segment. Compute the normal vector of these planes as they hit
each of the other N - 2 points. Choose, say, the one whose angle with the
z-axis is largest.

These three point form the first face of the convex hull.

Rendering 3D objects

3D to 2D transformations Given a set of triangles in three dimensions
(the hull), we now consider how these triangles would be projected onto a
"view plane" so that their image can be displayed on the computer screen.
More precisely, we need to find a transformation which maps points in three
dimensions to pixels on the computer screen.

There are four coordinates systems which must be used for this transfor-
mation. (See Figure 5.)

1. The coordinate system of the 3D object space. (z = right, y = up, z
= inward, away from observer)

2. The coordinate system of the 2D view plane; the origin in this coordi-
nate space is the point c.

3. The device-independent screen coordinate space [0, 1] X [0, 1].

4. The device-dependent screen coordinate space (pixels).

There are several important points in these spaces. Note that since there
is more than one space, each of these points might be represented using
different coordinates. (See Figure 21.)

"" the point eye, where the observer's eye is

* the point see, where the observer is looking (i.e. the target of his view)

"* the point c, which is midway between eye and see; note that the scalar
variable p controls exactly where between see and eye the point c lies

"* the point o, which is the point in the object space that is to be plotted
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9 the point v, on the view plane, to which o is mapped; v lies somewhere
along the line segment connecting eye to o

There are also several mappings being used.

"* the mapping PP maps from o to v, but both o and v are represented
using their 3D object space coordinates

"* the mapping T converts v from its 3D coordinates to its 2D natural
view plane coordinates (with origin = c)

"* the mapping DVI converts v from its 2D view plane coordinates to its
2D screen device-independent coordinates [0, 1] x [0, 1]

"• the mapping DVD converts v from its 2D screen device-indpendent
coordinates to device-dependent coordinates (pixels)

How the mappings are derived

PP: represent v as , = ,ro+ (1- ,)eye, and note that (c - v) -(c - eye) = 0.
Then solve for a. One you have a, you can compute v as a linear
combination of o and eye.

T: note that d2 = P(see + (0, 1, 0)) lies in the y-axis (up ax.is) of the view
plane. Therefore the y-axis is given as t 2 = d22-c. Note that t, = see-c
is perpendicular to the view plane. Therefore di = ti x t, must be the
z-axis of the view plane. Then normalize di to vi and t2 to V2 . Let vi
be the first row of a matrix A and v2 be the second row of A. Then
A(v - c) converts a point v in the view plane from its 3D coordinates
to its 2D coordinates.

DVI: DVI is device independent. Still, we have to decide how much of the
view plane we want the device to capture. That is, the view plane is (of
course) infinitely big, and we just want to show some rectangle on that
plane. Let maxlV, and ma:xV. be the maximimum (and minimum) z
and y coordinates that we want to capture. (Without loss of generality
we can just let them be 1.) Then we should multiply all view-plane
z coordinates by 1/(2mazV,.) and y coordinates by 1/(2 * maxV.) so
that the rectangle we want to capture is now in the domain [-.5, +.51 x
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[-.5, +.5]. Then we should add .5 to each coordinate Now all the points
that are in the rectangle we want to see have coordinates in [0, 11 x [0, 11.

DVD: DVD is device dependent. Assume for example that the screen co-
ordinate system has origin in the upper left-hand corner of the screen,
and that the screen is W pixels wide and H pixels high. Then in device-
independent coordinates we have (0,0) - (0,H) and (1,1) -. (W, 0).
So the point (v9,v2) in [0,11 x [0,11 gets mapped to (v2 W, 1 - viiH).

Hidden surface elimination At this point, we assume that we have a
collection of triangles (the hull), and a transformation which projects these
triangles onto the computer screen. The resulting image would be a "wire-
frame" representation of the convex hull. In order to present a more realistic
computer image of the hull, we should make invisible those triangles which
are on the far side of the hull from the observer. That is, we should eliminate
from view the hidden surfaces of the hull.

Triangle sorting One easy approach to this problem is to calculate the
coordinates of the center of each triangle, and then calculate the distance
from the center of each triangle to the eye point. One then sorts the list
of triangles and draws the triangles from-back-to-front, so that the triangle
nearest the eye point is drawn last. As each triangle is drawn, it is interior
is shaded white with a "flood fill" so that it over-draws the triangles behind
it. In this way, hidden surfaces are eliminated.

Back-plane culling Unfortunately, there are some degenerate cases for
which this algorithm does not work well. For example, consider the triangles
[a,b,c] and [a,b,d] below.

a
//I

//I

/ / I
d ...- /- .. b

/ /
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Here, triangle [a,b,c] is in front of triangle [a.b,d], and the algorithm described
above would draw these two triangles in the correct order. Now, however,
imagine moving the point c downwards towards negative infinity. Then the
center of triangle [a,b,c] would also move downwards towards negative infin-
ity, and io the center of triangle [a,b,d] would eventually be closer to our eye.
Thus, triangle [a,b,d] would incorrectly be drawn in front of triangle [a,b,c].

Since the object we are drawing is known to be convex, we can make use
of a technique called "back plane culling". Again, consider the two triangles
above, but also consider the triangles [a,cd] and [b,c,d] so that we now have
a convex figure (a tetrahedron). Note that triangles [a,b,dJ and [b,c,d] should
not be visible to the eye point, since they are obscured by triangles [a,b,c]
and [a,c,d].

Compute a point e which is in the center of these four triangles; for
instance, let the coordinates of e be the average of the coordinates of a,b,c,d.
Let ii be a vector normal to, say, triangle (a,b,c]. Project the eye point onto ii
and project e onto ii. Note that they fall on opposite sides of the the vector;
that is, the magnitudes of the projections have opposite signs. Then triangle
[a,b,c] must be in front of the center point e, and therefore it is a triangle
which should be drawn. Repeating these computations with, say, triangle,
[a,b,d], we see that the center point e and the eye point lie on the same side
of the triangle, and therefore triangle [a,b,dJ should not be drawn.

Combining the two This technique of back plane culling only works for
single convex figures. In the case of the images rendered by the hull program,
there is one convex figure as well as three coordinate axes. The coordinate
axes themselves are treated as degenerate triangles. After performing back
plane culling on the convex figure, the hull program also sorts the triangles
so that the coordinate axes will be drawn at the right time. That is, they
will be partially obscured when they are behind the convex object, and they
will be drawn last when they are in front of the convex object. So, hull uses
a combination of these two hidden surface techniques.

More sophisticated techniques, such as z-buffering, are available, but the
above two approaches were chosen for their simplicity and to reduce rendering
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time. It should be noted that degenerate cases can still occur. For instance,
a coordinate axis might incorrectly appear in front of one facet of the convex
hull if the "center" of the axis is closer to the eye than the center of the facet.

Shading At this point we have a fairly realistic image of the convex hull, ex-
cept that each facet of the hull is shaded the same color (presumably white).
Better three dimensional depth clues can be obtained for the user's eye by
shading the various facets of the hull. In keeping with the goal of computa-
tional simplicity and fast rendering, we adopt the following algorithm. Let
point I be the location of an imaginary light source (or lamp) in the object
space. For each facet of the convex hull, compute a normal vector ii as well
as a vector ir whose tail coincides with that of ii but whose head is at L

I /1
fi/

a /
ci /

el / alpha
t n------------------

Let a be the angle between these two vectors. If a is near 1, then the lamp is
nearly orthogonal to the facet, so the facet is shaded a very light color. If a
is near 0, then the lamp is nearly parallel to the facet, so it is painted dark.
(Note that if a is near -1, we again paint the facet a light color, so in fact we
have two lamps in the object space, diametrically opposite each other.)

Programming with X-Windows Many of the the X-Windows routines
used in hull are derived from examples found in the book X Window Appli-
cations Programming by Johnson and Reichard. A more complete treatment
can be found in Introduction to the X Window System by Oliver Jones. In
brief, there are three large sections and one small section of hull devoted to
dealing with the X-Windows system.

1. The first section deals with actually opening up an X-Window on the
DECStation screen. This includes opening the window as well as setting
up the colors and the fonts to be used. The files involved here are
windowz.c, colorz.c and teztz.c.

* 
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2. The second section deals with drawing the convex hull and gadgets into
this window. The main file of interest here is demoz.c which contains
the function refreshWindow(). The files 2d.c, 3d.c, h7LI.c, draw.c, and
gadgetdata.c are also involved with drawing the screen, but they do not
contain any X-Windows code.

3. The third section deals with waiting for mouse or keyboard events from
the user, and taking the appropriate action for each. The main file of
interest here is eventz.c which contains the function eventLoop(.

4. The final, small, section deals with closing the X-Window cleauly. This
section is contained in the file quitz.c.

Possible improvements to the code Several compromises have been
made in the implementation of the hull code, either to protect the relative
simplicity of the program or to increase the rendering time.

"* The hidden surface elimination algorithms could be made more sophis-
ticated, although this would probably increase rendering time.

" The sorting of the triangles includes sorting all of the triangles, in-
cluding those which were culled. Rendering time could be reduced by
sorting only the non-culled triangles; this would make the program
slightly more complex.

" If the set of point whose hull is to be computed are all co-planar, then
the gift-wrapping algorithm tends to create far more triangles than are
really necessary to compute the hull. This is considered a degenerate
case.

"* At the moment, the routine which computes the default location of the
eye,see,light-points, called setEyeQ, needs the information about the
convex hull from getData() in order to set the points. But getData()
also needs some information from setEye() in order to place the co-
ordinate axes. At the moment, the main) program gets around this
by initially calling getData(, then setEye(, and then getData() again.
This needs to be fixed, probably by creating a new setAxes() routine.
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Facets of the hull which are nearly edge-on to the observer are not
usually rendered in the "hidden surface elimination" mode of the hull
program. Normally, this does not present a problem. If, however,
one uses the axes re-scaling feature, then the absence of nearly edge-on
facets could be noticeable, since under the new scaling of the axes these
facets are no longer edge-on. Currently, the hidden surface elimination
is done before the re-scaling; that is the source of this bug. To fix it,
the re-scaling should be done before the hidden surface elimination.
Performing the calculations in that order, however, would be more
time-consuming for the computer. Since the bug rarely appears, it is
not clear that fixing it would be worth the increased computational
cost.
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c Program to compute data for the convex hull generation.

integer i, nfata
real minT,maxT, deltaT

* real ttxfyfz

nData 1024
minT =0.0

maxT =1.0

deltaT = (maxT-minT) /float (nData-1)

.open (unit-1, file=' curve .data')
Swrite (1, 100) nData

100 format(1x,i4)
do 10 i = 0,nData-1

t = float(i)*deltaT + minT
call eval (t, x,y, z)
write(1,200) x,y,z

200 format(lx,3(f12.6,lx))
10 continue

end
c -----

subroutine eval (t, x, y, z)
real t,x,y,z
real AA (3, 3) ,xx(3) ,bb (3)
real A,B,C,D,bl,b2,b3,kplus,kminus,muplus,muminus

A =30.0

B = 0.0
C = 0.0
D = 2.0. bl=- 1.0
b2 = 85.0
b3 = 50.0
kminus = 0.1
kplus = 1.5
muminus = 2.0
muplus =30.0

AA(l,l) =D - (kplus -t *(kplus -kminus))

AA(1,2) =-C

AA(1,3) =B

AA(2,1) =C

AA(2,2) =-D - (muplus -t *(muplus - muminus))
AA(2,3) =-A

AA(3,1) =-B

AA(3,2) =A

AA(3,3) =-D - (muplus -t *(muplus - muminus))

bb(l) = -bi
bb(2) - -b2
bb(3) = -b3

call lsarg(3,AA,3,bb,1,xx)

x = xx(1)
y = xx(2)

* z = xx(3)

c test data
c x =sin (t) +2.0
c y =sqrt(t)

c z =t*t/25.0



c x = (1.O-t)*sin(16.O*t)
c y - (1.O-t)*cos(16.O*t)
c Z = (2.O*(t-O.5))**3 + 0.5. return

end



# X-Windows make file##
## gcc
## cc

ILER= cc

W -hull##
## -0 turn on optimizer
## -g turn on debugger
## -Wall nag nag nag
CFLAGS= -g

## R4 of the X library:
##LIBS= -IXll -im
## R3 of the X library:
LIBS= -L/XllR3 -IXll -im#t
OBJECTS=

main.o
2d.o
3d.o
colorx.o
draw.o
eventx.o
gadgetdata.o
getdata.o
hull.o
initx.o
minmax.o
overhead.o
quitx.o. sort.o
textx.o
windowx. o##

INCLUDES= global.h prototypes.h##
$ (EXEC): $ (OBJECTS) $ (INCLUDES)

$ (COMPILER) -o $ (EXEC) $ (OBJECTS) $ (LIBS)##
.c.o: $(INCLUDES)

$(COMPILER) $(CFLAGS) -c $<
######################
######################
makedata: makedata. f

f77 -o makedata -u makedata.f -limsl
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/* FILE: prototypes.h
** prototypes */

/* X-specific functions *
# oid main (void);

mid refreshwindow (Window theWindow);

void- getXlnfo (void);
void- setColorWithName (GC theGC, char theName[])
void initDefaultColors (void);
void setColor(GC theGC,int colorNumrber);
Window openWindow (mt x,imt y,imt width,imt height,imt flag, GC *theNewGC);
mnt *createGC (Window theNewWindow, GC *theNewGC);
XFoniStruct *initFont (GC theGC, char fontName [3);
int eventLoop (void);
void initEvents (Window theWindow);
void quitX (void) ;

/* application functions *
void getData (void);
void chull (void);
void writeData (void);
void setEyc (void);
float max4(float w,float x,float y,float z);
float min4(float w,float x,float y,float z);
float max3(float w,float x,float y);
float min3(float w,float x,float y);
float max2(float w,float x);
float min2(float w,float x);
int altTop (float x) ;
int viewLeft(float x);
int viewTop(float x);
~at fromAltTop(int i);
~at f romViewLef t(int i);
coat fromViewTop(int i);
void gadgetData (void);
void sortTriangles (mt doDraw[J ,int sorted []);
mnt whichDraw(int doDraw[J);
int getShade (int i) ;
int isAnEdge(int pl,int p2,.intTriangle T);

1* sorting functions */
mnt partition(float values(J,int index(],int i,int j,int pindex);
void quickSort(float values[],int index[],int first,int last);
void bubbleSort(float values[),int indexl),int first,int last);
int findPivot(float values[J,int index(],int i,int j);
void swap(float values(],int index[J,int l,int r);

/* 2D graphics functions */
dvdCoord dvi2dvd(dviCoord theDviCoord);
dviCoord vr2dvi (vrCoord theVrCoord);
void dvdDrawLine (Window theWindow, GC theGC, dvdCoord dvdp, dvdCoord dvdq);
void dvdflrawRectangle (Window theWindow, GC theGC, dvdCoord dvdp, dvdCoord dvdq);
void dvdFillRectangle(Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq);
void dvdDrawGadget (Window theWindow, GC theGC,imt whichGadget);
void dviDrawLine(Window theWindow,GC theGC,dviCoord dvip,dviCoord dviq);
void vrDrawLine(Window theWindow,GC theGC,vrCoord vrp,vrCoord vrq);
void dvdflrawPoint (Window theWindow, GC theGC, dvdCoord dvdp);
void vrDrawPoint(Window theWindow,GC theGC,vrCoord vrp);
void dvdPrint(Window theWindow,GC theGC,dvdCoord dvdp,char theString[]);
id vrPrint(Window theWindow,GC theGC,vrCoord vrp,char theString[]);

A 3D graphics functions */
vrCoord os2vr (osCoord theOsCoord);
void osDrawLine(Window theWindow,GC theGC,osCoord osp,osCoord osq);
void initShading (void);



void 'osDrawTriangle (Window theWindow,GC theGC,tria~ngle theTriangle,
int theColor);

void oaDrawPoint (Window theWindow, GC theGC, osCoord osp);
void osPrint(Window theWindow,GC theGC,osCoord osp,char theString[];
,d PSInit (void);

d initPP (void);
vod initT (void) ;

void initR(void);
void cross(float u[J,float v[J,float w[]);
void normalize(float u[],float v(]);
float norm(float v[]);
float dotprd(float ut) ,float v[));
void. PSPlot(float o[J,fJloat vrf));
void permute (f loat o [I) ;
void unpermute(float o(J);
void doPP(float o[]float ov[]);
void doT(float ov[],float v[]);
void doR(float v[],float vrfj);

void rect2sphere (float rect H ,float sphere[H);
void sphere2rect (float sphereC] ,float rect[H);

1* convex hull functions */
int paramCurve(osCoord theData[J,float minT,float maxT,int n);
int hull3d(osCoord theData[],triangle theHull[],intTriangle intHull[],int n
mnt GiftWrapping (osCoord theData [1,triangle theHull ~l, intTriangle intHull[H
Triangle findFirstFacet (osCoord theData (3,tinl theHullC] ,int freq[],

mnt nuniD);
int addToFile(Triangle F,Edge T[],int numT);
mnt push(Triangle F,Triangle Q[],int numQ);
Triangle pop(Triangle Q[],int numQ);
void getEdges(Triangle F,Edge t[];

* ~ isCoznmon(Edge at,Edge T[],int numT);
Wangle giftWrap(Edge e,Triangle F,osCoord theData[],int freq(],int numD);
int insertDelete(Triangle F,Edge T[],int numT);
int storeh(Triangle F,triangle theHull[],intTriangle intHull[],osCoord theC



/* FILE: global.h
** Structures pertaining to this specific application *1

typedef struct { /* device dependent coordinate system */
nt horizontal;
nt vertical;

0 dvdCoord;

typedef struct { /* device independent coordinate system *1
float x;
float y;

dviCoord;

typedef struct { /* view-rectangle coordinate system */
float x;
float y;
I vrCoord;

typedef struct { /* object space coordinates */
float x;
float y;
float z;
) osCoord;

typedef struct { /* a triangle in object space */
float vlx; float vly; float viz;
float v2x; float v2y; float v2z;
float v3x; float v3y; float v3z;
float centerx; float centery; float centerz;
float normalx; float normaly; float normalz;
} triangle;

*edef struct { /* the data numbers of a triangle on the curve */
nt pl;

int p2;
int p3;
) intTriangle;

typedef struct { int vertex[4]; 1 Triangle;
typedef struct { int vertex[3]; } Edge;

typedef struct
int windowWidth; /* window parameters */
int windowHeight;
int rightBarWidth; /* menu bar parameters */
int topBarHeight;
int dvdWidth; /* device dependent coordinate parameters */
int dvdHeight;
float vrLeft; /* view-rectangle coordinate parameters *1
float vrRight;
float vrTop;
float vrBottom;
float osLeft; /* object-space coordinate parameters *1
float osRight;
float osTop;
float osBottom;
float osFront;
float osBack;
float vcLeft; /* object-space-view-cube coordinate parameters *1
float vcRight;
loat vcTop;Sloat vcBottom;
bloat vcFront;

float vcBack;
float rho; /* various transformation parameters *1
float tilt;



float c[4];
float A[3][4];
float beta;
float eye[4];
float see[4];loat light[4];

Ofloat Rotate[3] [3];
int" plotType;
int' solidType;
int shadingColor[66];
float x scale;
float y-scale;
float z scale;
} coord~arams;

typedef struct {
int top;
int bottom;
int left;
int right;
char string[80];
) gadget;

/* gadget numbers */
#define QUIT 0
#define CCWISE 1
#define CLWISE 2
#define OVMAG 3
#define OVMIN 4
#define OVHEAD 5
#define ALT 6
#define ALTMAG 7

fine ALTMIN 8
fine INWARD 9

define OUTWARD 10
#define VIEWIN 11
#define VIEWOUT 12
#define OVER 13
#define UNDER 14
#define AXESG 15
#define WIREG 16
#define HIDEG 17
#define SHADG 18
#define COARSE 19
#define FINE 20
#define MINDM 21
#define MINDP 22
#define MAXDM 23
#define MAXDP 24
#define HIGHLT 25
#define WRITEDT 26
#define X2 27
#define X5 28
#define Y2 29
#define Y5 30
#define Z2 31
#define Z5 32
#define DOHULL 33
#define NUMGADGETS 33

1efine STRLEN 80
V fine MAXDATA 1024

e fine MAXTRIANGLES 4096
#define MAXEDGES 2048

/* plotting axes types */



#define MATHPLOT 1
#define CSPLOT 2

/* how to draw the surface */
fine AXES 0
fine WIREFRAME 1
#fine HIDDEN 2

#define SHADED 3

#define NUMSHADES 66

/* gadget size parameters */
#define gadgetTall 16
#define gadgetBorder 8
#define gadgetWide 57



/* FILE: textx.c
** Text rendering routines. *

/* X-windows include files: *

Oclude "global.h"
#include "prototypes .h"

/* Global variables: */
extern Display *theDisplay;

/* Initialize a font. *
XFontStruct *initFont (GC theGC, char fontName[])

XFontStruct *fontStruct;
fontStruct =XLoadQueryFont (theDisplay, fontName);
if (fontStruct !- 0) f XSetFont(theDisplay,theGC,fontStruct->fid);
return (fontStruct);
/*end function initFont()*



1* FILE: windowx.c
** Put up a window. *

/* X-windows include files: *

W clude <Xll/Xutil.h>

/* Standard I/O include file: *
#include <stdio .h>

# include "global .h"
# include "prototypes .h"

1* The bitmap file for the application's icon: *
#include "thelcon"

/* Global variables: *
extern Display *theDisplay;
extern mnt theScreen;
extern int theDepth;
extern unsigned long theBlackPixel;
extern unsigned long theWhitePixel;
extern coordParams theCoordParams;

#define BORDER WIDTH 2
#define WINDOW-TITLE "Convex Hull"

/* Function to open a window. */
Window openWindow(int x,int y,int width,imt height,int flag,GC *theNewGC).0 XSetWindowAttributes theWindowAttributes;
XSizeHints theSizeHints;
XClassHint theClassHint;
unsigned long theWindowMask;
Window theNewWindow;
Pixmap thelconPixmap;
XWMHints theWMHints;

1* Figure out how big the window should be. If the user asked for width
** or depth =-2., they want the window to be as big as possible. *
if (width =-1.) f width = DisplayWidth(theDisplay,theScreen);}
if (height ==-1) ( height = DisplayHeight(theDisplay,theScreen);}

/* for our application, this information needs to be made global too: *
theCoordParams.windowWidth - width;
theCoordParams .windowHeight - height;

1* Define the window's attributes. *1
theWindowAttributes.border~pixel = BlackPi.xel(theDisplay,theScreen);
theWindowAttributes .background~pixel - WhitePixel (theDisplay, theScreen);
theWindowAttributes.override redirect - False;
theWindowMask = CWBackPixel T CWBorderPixel I CWOverrideRedirect;

1* Create a window definition on the display. */
theNewWindow - XCreateWindow (theDisplay, RootWindow (theDisplay, theScreen),

x, y,width, height, BORDER WIDTH, theDepth, InputOutput, CopyFromParent,
theWindowMask, &theWindo',Attributes);

S * Convert the icon file into Pixmap format. *
thelconPixmap = XCreateBitmapFrornData (theDisplay, theNewWindow, thelcon-bits,

thelcon-width,thelcon-height);

I* Define the icon to be associated with this application (window). *



theWMHints-icon-pixmap = thelconPixmap;
theWM~ints.initial state = NormalState;
theWMHints .flags - = IconPixmapHint I State~int;
XSetWMHints (theDisplay, theNewWindow, &theWM{ints);

* * Define the application icon name. *1
XSetlconName (theDisplay, theNewWindow, WINDOWTITLE);

1* Define the class and name of the application (window). *
theClassHint.res name = WINDOW TITLE;
theClassHint.res class = WINDOW-TITLE;
XSetClassHint (the-Display, theNewWindow, &theClassHint);

1* Define the window's desired size and position. *
theSizeHints.flags = PPosition I PSize;
theSizeHints.x = X
theSizeHints.y = Y
theSizeHints.width = width;
theSize~ints.height = height;
XSetNormalHints (theDisplay, theNewWindow, &theSizeHints);

1* Create a graphics context (GC) for the window. See below. *
if (createGC(theNewWindow,theNewGC) == 0)
XDestroyWindow (theDisplay, theNewWindow);
return( (Window) 0);

11* end if */

1* Now that the window is defined, map it to the screen.
XMapWindow (theDisplay, theNewWindow);

/* Flush out all of the queued up X-requests to the X-server. *
XFlush (theDisplay) ;.return (theNewWindow);

)/* end function openWindow()*

/* Create a graphics context (GC) for the window. *
mnt createGC (Window theNewWindow, GC *theNewGC)

XGCValues theGCValues;

*theNewGC = XCreateGC (theDisplay, theNewWindow, (unsigned long) 0,
&theGCValues);

if (*theNewGC == 0) { return(0); 1 * error: unable to create a GC *
else {

XSetForeground(theDisplay, *theNewGC,theBlackPixel);
XSetBackground (theDisplay, *theNewGC, theWhitePixel);
return(1) ;

}/* end if *1

/*end function createGC()O



1* FILE: sort-c
** Routines for sorting. *

#include <Xl1/Xlib .h>Sclude <Xll/Xutil .h>
clude "global.h

#include "prototypes .h"

1* function bubbleSort *
void bubbleSort(float values[],int indextLint first,int last)

nt, i,j;
for (i = first; i <= last-i; ++i){

for (j = last; j >= i+1; --j){
if (values~j-13 > values[j])

swap (values, index, j-l, j);
}/* end if *

}/* end for *
}/* end for *1

11* end function bubbleSort()*

/* function quickSort */
void quickSort(float valuesthint index[],int i,int j)

mnt pindex,k;
if (j <= i) { return;
if ((j-i) < 9){

* bubbleSort (values, index, i, j);
Ielse {
pindex = findPivot (values, index, i, j);
if (pindex != 0)

k = partition(values,index,i, j,pindex);
quickSort (values, index, i,k-i);
quickSort (values, index,k, j);

}/* end if *
}/* end if *1
}*end function quickSort()*

mnt partition(float values[],int index[],int i,int j,int pindex)

float pivot;
mnt l'r;
pivot = vaJluesrpindex);
1 = ;r = j
do

swap (values, index,1, r);
while (values[l] < pivot) { 1++;
while (values[r] >= pivot) f r--;
Iwhile (1 <= r);

return (l);
11* end function partition()*

mnt findPivot(float values[],int index(],int i,int j)
float firstkey;
int k;



firstkey - values (i];
for (k - i+l; k <- j; +4k){

if (valuest[k] > f irstkey) {return (k);
else ( if (valueslk) < firstkey) { return(i); I

)/* end for *9return (0);
1*. end function *

void swap(float values t),int indexthint l,int r)

int t;
float v;
t = index~l); indextl) index~r); index~r) t;
v - values~l); values~l) =values~r); values~r) v;
1*end function swap()*



/* FILE: 2d.c

** Routines to perform 2D (and some 3D) coordinate conversions. */

#include <Xll/Xlib.h>
#iAude <Xll/Xutil.h>

qi.ude <math.h>
#include "global.h"
#include "prototypes.h"

extern coordParams theCoordParams;

/* This function converts a device independent (DVI) coordinate into
** a device dependent (DVD) one. Note that the DVD display area is the
** lower left-hand corner of our window, as the top and right side of the
** window are reserved for drawing gadgets into */
dvdCoord dvi2dvd(dviCoord theDviCoord){

dvdCoord theDvdCoord;
theDvdCoord.horizontal =

(int)( theDviCoord.x *(float)theCoordParams.dvdWidth );
theDvdCoord.vertical = theCoordParams.topBarHeight +

(int)((1.0 - theDviCoord.y)*(float)theCoordParams.dvdHeight);
return(theDvdCoord);

)/* end function dvi2dvd() */

/* This function converts a view-rectangle (VR) coordinate into a DVI
coordinate. */
Coord vr2dvi(vrCoord theVrCoord){

dviCoord theDviCoord;
theDviCoord.x = (theVrCoord.x-theCoordParams.vrLeft) I

(theCoordParams.vrRight-theCoordParams .vrLeft);
theDviCoord.y = (theVrCoord.y-theCoordParams.vrBottom) I

(theCoordParams. vrTop-theCoordParams .vrBottom);
return(theDviCoord);

1/* end function vr2dvi */

/* This function converts an object-space (OS) coordinate into a view-
** rectangle coordinate. Note that either MathInit or CSInit must be
** called first to initialize the various transformations. */
vrCoord os2vr(osCoord theOsCoord)
(

vrCoord theVrCoord;
float o[4],vr[3];
o[1] = theOsCoord.x;
o[2] = theOsCoord.y;
o[3] = theOsCoord.z;
PSPlot (o,vr);
theVrCoord.x = vr[l];
theVrCoord.y = vr[2];
return(theVrCoord);

* end function vr2dvi */

/* Convert rectangular coordinates to spherical. */



void rect2sphere (float rect [ ,float sphere [])
{

float theta; /* around latitude lines */
float phi; /* down longitude lines */

*float rhn; /* radius */
float x,y,z;

x = rect[l]; y = rect[2]; z = rect[3];
theta = acos(x/sqrt(x*x+y*y));
if (y < 0.0) { theta = -theta; }
rho = sqrt(x*x+y*y+z*z);
phi = acos(z/rho);
sphere[l] = theta; sphere[2] = phi; sphere[3] = rho;

}/* end function */

/* Convert rectangular coordinates to spherical. */
void sphere2rect (float sphere [],float rect [])
{

float theta; /* around latitude lines */
float phi; /* down longitude lines */
float rho; /* radius */
float x,y,z;
static float pi = 3.1415926;

theta = sphere[l]; phi = sphere[2]; rho = sphere[3];
if (phi < 0.0) { phi - 0.01; 1
if (phi > pi ) { phi = pi-0.01; }
x = rho*cos(theta)*sin(phi);
y = rho*sin(theta)*sin(phi);
z = rho*cos(phi);
rect[l] = x; rect[2) = y; rect[3] =z;

}/* end function *1

0



/* FILE: 3d.c
** Routines to perform basic 3d -> 2d coordinate conversion. */

#include <Xll/Xlib. h>
#,.ude <Xll/Xutil.h>
#i~lude <math.h>
#include "global.h"
#include "prototypes.h"

extern coordParams theCoordParams;

/* initialize everything for graphics-standard (z=inward) plotting */
void PSInit()
(

float templ[4],temp2 [4];
int i;
permute(theCoordParams.eye); /* permute the data if necessary, i.e. if */
permute(theCoordParams.see); /* we're in MATHPLOT mode, where z-upward *1
permute (theCoordParams. light);
initPPO; /* initialize the data for projecting onto view-plane */
initTO; /* initialize data for converting to view-plane coords *1
initR(); /* initialize data for rotation due to head tilt */
unpermute(theCoordParams.eye); /* un-do the permutations from above *1
unpermute (theCoordParams. see);
unpermute (theCoordParams. light);
unpermute (theCoordParams. c);
/* also un-permute the conversion matrix A, used by the T transformation */
for (i=l; i<= 3; ++i) (

templ[i] = theCoordParams.A[1][i];
temp2[i] = theCoordParams.A[2][i];

*/* end for */
unpermute (templ); unpermute (temp2);
for (i=l; i<=3; ++i) {

theCoordParams.A(1] (i]=templ (i];
theCoordParams.A[2] [i]=temp2 [i];

}/* end for */
}/* end function *1

/* initialize the perspective projection */
void initPP()
{

float t[4];
int i;

/* c = rho * see + (1 - rho) * eye */
for (i = l; i <= 3; ++i) (

theCoordParams.c[i] = theCoordParams.rho * theCoordParams.see(i] +
(1.0 - theCoordParams.rho) * theCoordParams.eye[i];

1/* end for */

/* beta = dot(c-eye,c-eye)
** By storing the value beta, we save some computations later. *1
for (i = 1; i <= 3; ++i) {

t[i] = theCoordParams.c(i]-theCoordParams.eye(i];
}/* end for */
theCoordParams.beta = dotprd(t,t);

}/* end function */



/* initialize the array A that is used by doT; A converts
** from 3D object space to 2D view plane coordinates *1

d initT()

float upward[4],dl[4],d2[4],vl[4l,v2[4],tl[4],t2[4];
int i;

/* find the up-direction emanating from see
for (i = 1; i <= 3; ++i) {

upward[i] = theCoordParams.see[i];
}/* end for */
upward[2]+=I.0;

/* let tl = c-see, normalized; tl is perpendicular to the view plane */
for (i = 1; i <= 3; ++i) {

tl[i] = theCoordParams.c[i]-theCoordParams.see[i];
}/* end for */
normalize (tl,tl);

/* project the see-plus-unit-y-vector onto the view plane in order
** to start finding the view plane y-axis */
doPP (upward, d2);

/* let v2 = d2-c,normalized; t2 is parallel to the view plane y-axis *1
for (i - 1; i <= 3; ++i) (

t2[i] - d2[i]-theCoordParams.c[i];
}/* end for */
normalize (t2, v2);

/* find a vector that is perpendicular to both tl and t2; this must
* be the view plane x-axis */
ross (tl,t2,dl) ;

normalize(dl,vl);

/* Form A; the first row of A is v1 and the second row is v2.
** note then that A*vl=<l,0> and A*v2=<0,1>. Then to convert from
** 3D to 2D coordinates will only require A*(v-c). */
for (i - 1; i <- 3; ++i) {

theCoordParams.A[l] [i] = vl[i];
theCoordParams.A[2][i] = v2[i];

}/* end for */

)/* end function */

/* initialize the rotation matrix Rotate */
void initR()

=
theCoordParams.Rotate[1] [1] = cos(theCoordParams.tilt);
theCoordParams .Rotate (i] [2] = sin (theCoordParams .tilt);
theCoordParams.Rotate [2] [I] = -sin(theCoordParams.tilt);theCoordParams .Rotate [2] [2] = cos (theCoordParams .tilt) ;

}/* end function */

Ocompute the (left handed) cross product of vectors u and v*
old cross(float u[],float v[],float w[])(

w[l] - -U[2]*v[3]+v[2]*u[3];
w[2] - u[l]*v[3]-v[l]*u[3];



w[3] - -utl]*v[2]+v[1]*u[2];
}/* end function */

0
/* normalize a vector u to get v *1
void normalize(float u[],float v[]){

float normu;
int i;
normu = norm(u);
if' (normu != 0.0) {

for (i = 1; i <= 3; ++i)
v~ii = u[iI/normu;

}/* end for */
)/* end if */

)/* end function */

/* compute the Euclidean norm of v
float norm(float v[])
{

float s;
s - sqrt (dotprd (v,v));
return (s);

)/* end function */

O compute the dot product of u and v */
float dotprd(float u[],float v[])
{

float d;
int i;
d - 0.0;
for (i = 1; i <= 3; ++i) {

d+- u[i] * v[i];
}/* end for *1
return (d);

}/* end function */

/* The routines above are all system initializations.

•* The routines below actually perform the transformations. */

/* convert from 3d object-space coordinate system to view-plane coords */
void PSPlot(float o[l,float vr[])(

float ov[4],v[3];

a * re-scale the points */
(1] *-theCoordParams. x scale;

o[2] *-theCoordParams.y--scale;
o [3] *=theCoordParams. z scale;
/* project onto the view plane in 3D coordinates */
doPP (o, ov);



/* convert to view plane natural coordinates centered on point c *1
doT (ov, v);
/* perform the rotation due to theCoordParams.tilt */
doR(v,vr);

& end function*/

/* permute a vector from (x,y,z) to (z,x,y) */
void permute(float o[])
{

float t[4];
if (theCoordParams.plotType == MATHPLOT)

til] - 0[2];
t[2] - o[3= ;
t[3] - o[1];
011] - t[l1;
0[2] - t[2];
o[3] - t[3];

}/* end if */
}/* end function */

/* unpermute a vector from (x,y,z) to (z,x,y) */
void unpermute (float o[])
{

float t[4];
if (theCoordParams.plotType == MATHPLOT)
* t[2J - o~l];

t[3] - o[21;
t[l] - o[3);
0[1] - t[l];
o[2] - t[2];
o[3] - t[3];

}/* end if */
}/* end function */

/* project from 3d object-space onto the view plane in object-space
** coordinate system */
void doPP(float o[],float ov[])
{

float alpha,tl[4],t2[4];
int i;

/* alpha - dot (c-eye,c-eye)/dot (o-eye,c-eye)
** v - alpha * o + (1 - alpha) *eye */

for (i - 1; i <- 3; ++i) f
tl~i] - theCoordParams.c~i]-theCoordParams.eyeti];
t2[i] = o[i]-theCoordParams.eye[i];

}/* end for */
alpha - theCoordParams.beta/dotprd(t2,tl);
or (i 1; i <= 3; ++i) (

ov i] - alpha*o i]+(l.0-alpha)*theCoordParams.eye~i];
-/* end for */

}/* end function */



/* convert a point on the view plane from its object-space
* coordinate system into the view plane's coordinate system */

id doT(float ov[],float v[])'{
int i,j;

/* T(ov) = A * (ov - c) */
for (i - 1; i <= 2; ++i)

v[i] = 0.0;
}/* end for */
for (j = 1 ; j <= 3; ++j)

for (i = 1; i <= 2; ++i)
vii]+= theCoordParams.A[i][j] * (ov[j]-theCoordParams.c[j]);

)/* end for */
1/* end for */

}/* end function */

/* perform the rotation due to head tilt */
void doR(float v[],float vr[])

-vr~l] - theCoordParams.Rotate(l] [l] *v(l]+theCoord~params.Rotatetl] [2]*v[2] ;
vr[2] - theCoordParams.Rotate[2] [l]*v[l]+theCoordParams.Rotate[2] [2]*v[2];

}/* end function */

0

0



/* FILE: colorx.c
**Set up the application colors; be able to specify colors by number or by
**name, for the first 66 X-Windows named colors *

~X-windows include files: *
clude <Xll/Xlib .h>

#include <stdio .h>

$ nclude "global .h"
*include "prototypes .h"
extern coordParams theCoordParams;

/* Global variables: *
extern Display *theDisplay;
extern mnt theDepth;
extern unsigned long theBlackPixel;
extern unsigned long theWhitePixel;
extern Colormap theColormap;

1* Set up Envlish text for colors. *
#define maxPixels 132
#define stdColors 66
unsigned long thePixels[maxPixelsJ;

char *theColorNames[stdColors]
("Aquamarine", /* 00 *
"Black", /* 01 *
"Blue", /* 02 *
"BlueViolet", /* 03 *
"Brown", 1* 04 *
"CadetBlue", /* 05 *

"* "Coral", /* 06 *
"CornflowerBlue", 1* 07 *
"Cyan", /* 08 *
"DarkGreen", 1* 09 *
"Dark~liveGreen", 1* 10 *
"DarkOrchid", 1* 11 *
"DarkSlateBlue", /* 12 *
"DarkSlateGrey", 1* 13 *
"DarkTurquoise", /* 14 *
"DimGrey", /* 15 *
"Firebrick", /* 16 *
"ForestGreen", /* 17 *
"Gold", /* 18 *
"Goldenrod", /* 19 *
"Grey", 1* 20 *
"Green", 1* 21 *
"GreenYello", 1* 22 *
"IndianRed", 1* 23 *
"Khaki", /* 24 *
"LightBlue", 1* 25 *
"LightGrey", /* 26 *
"LightSteelBlue", /* 27 *
"LimeGreen", 1* 28 *
"Magenta", 1* 29 *
"Maroon", /* 30 *
"MediumAquamarine", /* 31 *
"MediumBlue", /* 32 *
"MediumForestGreen", 1* 33 *

"* "MediumGoldenrod", 1* 34 *
"MediumOrchid"', /* 35 *
"MediumSeaGreen", 1* 36 *
"MediumSlateBlue", /* 37 *
"MediumSpringGreen", 1* 38 *
"MediumTurquoise", 1* 39



"MediumVioletRed", 1* 40 *
"MidnightBlue", 1* 41 *
"Navy", /* 42 *
"Orange", 1* 43 *

* OrangeRed", 1* 44 *
"Orchid", /* 45 *
"PaleGreen", 1* 46 *
"Pink-, 1* 47 *
"Plum", /* 48 *
"Red", /* 49 *
"Salmon", /* 50 *
"SeaGreen", 1* 51 *
"Sienna", /* 52 *
"SkyBlue", /* 53 *
"SlateBLue", /* 54 *
"SpringGreen", 1* 55 *
"SteelBlue", 1* 56 *
"Tan", /* 57 *
"Thistle", /* 58 *
"Turquoise", 1* 59 *
"Violet", 1* 60 *
"VioletRed", 1* 61 *
"Wheat", /* 62 *
"White", /* 63 *
"Yellow", 1* 64 *
"YellowGreen"}; 1* 65 *

1* This function sets the GC with the foreground color named. *
void setColorwithName(GC theGC,char theNameEl)

*int i;
i = 0;
while ((strcmp (theName,theColorNames ti])!=0) &&(i<stdColors)) {i++;
if (i < stdColors) ( XSetForeground(theDisplay,theGC,thePixels~iJ);

}/* end function setColorWithName() */

1* Attempt to set up a local color table with the default X11 colors. *
void initDefaultColorso(

XColor theRGBColor, theHardwareColor;
mnt theStatus;
char theString[80];
unsigned mnt i,h,r,g,b,top,bottom;
if (theDepth > 1)(

/* use the 66 standard colors *
for (i-0; i<stdColors; i++){
theStatus - XLookupColor(theDisplay,theColormap,theColorNames~i],

&theRGBColor, &theHardwareColor);
if (theStatus != 0){
theStatus = XAllocColor(theDisplay,theColormap,&theHardwareColor);
if (theStatus 0) 0)
thePixels fi] =theHardwareColor.pixel;

I else (
thePixels[i] theBlackPixel;

0 1/* end if *
)/* end if *

)/* end for *
I* and also create a 66 color grey scale *
for (i-stdColors; i<=-maxPixels-1; i++)



h - i-stdColors;
bottom = 16; top = 255-16; 1* range of rgb color values *
h =bottom + ((top)-bottom)*h/66; /* h ranges from top to bottom *
r =h;. g =h;
b h;
sprintf(theString,"#%2x%2x%2x" ,r,,g,b);
theStatus = XParseColor (theDisplay, theColormap, theString,

&theRGBColor);
if (theStatus != 0){
theStatus = XAllocColor(theDisplay,theColormap,&theRGBColor);
if (theStatus !0){

thePixeisfi] theRGBColor.pixel;
Ielse {
thePixeis [i] theBlackPixel;

}/* end if *
1*end if *

}*end for *
Ielse {
for (i=0; i<stdColors; i++){

if (strcmp("White",theColorNamesfi]))= 0)
thePixels~i] = theWhitePixel;

I else {
thePixels~i] - theBlackPixel;

11* end if *
1/* end for *

)/*end if *1
/*end function initDefaultColors()*

' Set the graphic context (GC) to have a foreground color of colorNumber *
id setColor(GC theGC,int colorNuznber)

if ((colorNumber < maxPixels) && (colorNumber >= 0 )
( XSetForeground(theoisplay,theGC,thePixels EcolorNuxnber]); I

1*end function setColor()*



/* FILE: quitx.c
** Close down X-Windows. *

/* X-windows include files: *
#include <Xll/Xlib~h
# lude, <Xll/Xutil .h>

#include "global .h"
#include "prototypes .h"

extern Display *theDisplay;

void quitX()

XCloseDisplay (theDisplay);
)/* end of function q~uitX()O



/* FILE: minmax.c
** Routines for computing mins and maxs. *1

#include <Xll/Xlib.h>
fl lude <Xll/Xutil.h>
# Ilude <math.h>
#include "global.h"
#include "prototypes.h"

/* function max of four elements */
float max4(float w,float x,float y,float z)
{

float m;
m= w;
if (x > m) { m = x; }
if (y > m) { m = y; }
if (z > m) { m = z; }
return (m);

}/* end function max() *1

/* function min of four elements*/
float min4(float w,float x,float y,float z){

float m;

S(x < m) { m = x; I

(z < M) m i=z;
return (m) ;

}/* end function minn() */

/* function max of three elements */
float max3(float w,float x,float y)(

float m;

if (x > M) { m = x; }
if (y > m) { i Y;
return (m);

)/* end function max() *1

/* function min of three elements*/
float min3(float w,float x,float y){

float m;
M = W;
if (x < M) { m = x;
if (y < m) { m = Y;

iturn (m) ;
} end function mini() *



/* function max of two elements *1
float max2 (float w,float x)
(

float m;

(x > m) ( m = x; I
return (m) ;

}/* end function max() */

/* function min of two elements*/
float min2 (float w,float x)
{

float m;
m = W;
if (x < M) { m = x; }
return (m);

}/* end function min() */



/* FILE: overhead-c

** Routines to perform computations for the overhead-view gadgets. *

#include <Xll/Xlib.h5

~lude <math.h>
*AWclude "global.h"
#include "prototypes .h"

extern coordParams theCoordParams;
extern gadget theGadgets [80);
extern nt, drawGadgets;

1* function to compute altimeter coordinates from object space coordinate *
mnt altTop(float x)

int i;
i = theGadgets [ALT] .top +

(int) ( (theCoordParams.osTop-x)
* (float) (theGadgets [ALT) .bottom - theGadgets (ALT] .top)
I (theCoordParams .osTop-theCoordParams .osBottom) )

return (i);
}/* end function altTop()*

1* function to compute view-screen left coordinates *
mnt viewLeft (float x)

inmt i;
Wi = theGadgets [OvHEAD].left +

(int) ( (x-theCoordParams.osLeft)
* (float) (theGadgets[OVHEAD] .right - theGadgets[OVHEAD] .left)
/ (theCoordParams.osRight-theCoordParams.osLeft) )

return(i);
}/* end function viewLeft()*

/* function to compute view-screen top coordinates *
mnt viewTop (float x)

int i;
i = theGadgets[OVHEAD].bottom -

(int) ( (theCoordParams.osTop-x)
*(float) (theGadgets[OVHEAD] .bottom - theGadgets[OVHE.AD] .top)
/ (theCoordParams .osTop-theCoordParams .osBottom) )

return(i);
}/* end function viewTop() *

/* function to compute from altimeter coordinates *
float frornAltTop(int i)
I
float x;

* h~od~rm~so (float) (i-theGadgets [ALT] .top)
* (theCoordParams .osTop-theCoordParams .osBottom)
/ (float) (theGadgets [ALT] .bottý-om-theGadgets [ALT] .top);

return (x);
}/* end function fromAltTopo)*



function to compute from view-screen left coordinates *
SOat fromViewLeft(int i)

float x;
x = theCoordParams.osLeft -

(float) (i-theGadgets[OVHEAD] .left)
* (theCoordParams osRight-theCoordParams osLeft)

I (float) (theGadgets [OVHFIAD] .left-theGadgets [OVHE~AD) .right);return (x);
}/* end function fromViewLeft()*

1* function to compute from view-screen top coordinates *
float fromViewTop(int i)

float x;
x = theCoordParams.osBack +

(float) (i-theGadgets(OVHEAD3 .top)
* (theCoordParams osFront-theCoordParams osBack)
I (float) (theGadgets [OVHEAD] .bottom-theGadgets (OVHEAD) .top);

return (x);
}*end function fromViewTop()*



/* FILE: draw.c
** Routines to perform drawing functions. *

# include <Xll/Xlib.h>
#.Wude<Xll/Xutil .h>ue<stdio.h>

# include <string. h>
#include <math.h>
# include "global .h
#include "prototypes .h"

extern Display *theDisplay;
extern coordParams theCoordParams;
extern gadget theGadgetsr8O];

/* Draw a line from p to q which has been presented in dvd coordinates. *
void dvdDrawLine(Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq)

XDrawLine (theDisplay, theWindow, theGC, dvdp.horizontal, dvdp.vertical,
dvdq.horizontal, dvdq.vertical);

)/* end function dvdDrawLine() */

1* Draw a rectangle, p to q ,which has been presented in dvd coordinates. *
void dvdDrawRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq)

mnt height,width;
ateight -abs(dvdq.vertical -dvdp.vertical);
ridth = abs (dvdq.horizontal-dvdp.horizontal);
XDrawRectangle (theDisplay, theWindow, theGC, dvdp .horizontal, dvdp vertical,

width, height);
/*end function dvdDrawRectangle()*

1* Draw a fill rect, p to q ,which has been presented in dvd coordinates. *
void dvdFillRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq)

mnt height,width;
height - dvdq.vertical -dvdp.vertical;
width -dvdq. horizontal-dvdp .horizontal;
XFillRectangle (theDisplay, theWindow, theGC, dvdp .horizontal, dvdp .vertical,

width, height);
1*end function dvdFillRectangJle()*

/* Draw a gadget, p to q ,which has been presented in dvd coordinates. *
void dvdflrawGadget (Window theWindow,GC theGC,int whichGadget)

int height,width;
dvdCoord dvdp, dvdq;
char theString[STRLEN);

I~dp =tia theGadgets EwhichGadgetl .top;
dvdp .horizontal =theGadgets [whichGadget . left;
dvdq.vertical =theGadgets (whichGadget] .bottom;
dvdq.horizontal =theGadgets[whichGadget] .right;



strcpy (theString, theGadgets [whichGadget J string);

height = dvdq.vertical - dvdp.vertical;
width - dvdq.horizontal - dvdp.horizontal;

*setColor(theGC,13); 1* dark slate blue */
i.f ((whichGadget -- OVHEAD) 11I (wkuichGadget -- ALT)){
XDrawRectangle (theDisplay, theWindow, theGC, dvdp horizontal, dvdp vertical,

width, height);
Ielse {
XFillRectangle (theDisplay, theWindow, theGC, dvdp .horizontal, dvdp .vertical,

width,height);
%dvdp horizontal+=l;
dvdp .vertical+=height;
dvdp .vertical-=4;
setColor(theGC,63); /- white *
XI~rawString (theDisplay, theWindow, theGC, dvdp .horizontal,

dvdp.vertical,theString, strlen (theString));
/*end if */

} end function dvdflrawLine()*

/* Draw a line from p to q which has been presented in dvi coordinates. *
void dviDrawLine (Window theWindow,GC theGC,dviCoord dvip,dviCoord dviq)

dvdCoord dvdp, dvdq;

dvdp = dvi2dvd(dvip);
dvdq = dvi2dvd(dviq);

"~vdDrawLine (theWindow, theGC, dvdp, dvdq);
IPend function dvdflrawLine() */

/* Draw a line from p to q which has been presented in view-rectangle
** coordinates . *1
void vrDrawLine (Window theWindow,GC theGC,vrCoord vrp,vrCoord vrq)

dviCoord dvip, dviq;

dvip = vr2dvi (vrp) ;
dviq = vr2dvi (vrq);
dviDrawLine (theWindow, theGC, dvip, dviq);

11* end function vrDrawLine() */

1* Draw a line from p to q which has been presented in object-space
** coordinates . *1
void osDrawLine (Window theWindow,GC theGC,osCoord osp,osCoord osq)

vrCoord vrp,vrq;

vrp - os2vr (osp) ;
vrq = os2vr (osq) ;
vrDrawLine (theWindow,theGC,vrp,vrq);

*v end function osDrawLine() */



/* Set up the shadings needed for drawing shaded triangles, below. *
void initShadingo(

int i;
for (i - 0; i<= NUMSH.ADES-l; ++i){
* theCoordParams .shadingColor £i] i+NUMSHADES;

11* end for */
)/*'.end function initShading()*

1* Draw a triangle presented in object-space coordinates. *
void osDrawTriangle (Window theWindow,GC theGC,triangle theTriangle,
mnt theColor)

osCoord osp, osq, osr;
dvdCoord dvdp, dvdq, dvdr;
XPoint thePoints [4];

osp.x = theTriangle.vlx; osp.y = theTriangle.vly; osp.z = theTriangle.vlz;
osq.x = theTriangle.v2x; osq.y = theTriangle.v2y; osq.z = theTriangle.v2z;
osr.x = theTriangle.v3x; osr.y = theTriangle.v3y; osr.z = theTriangle.v3z;

dvdp = dvi2dvd (vr2dvi (os2vr (osp)));
dvdq = dvi2dvd (vr2dvi (os2vr (osq)));
dvdr = dvi2dvd (vr2dvi (os2vr (osr)));

thePoints[0] .x = dvdp.horizontal; thePoints(0] .y = dvdp.vertical;
thePoints[lJ .x = dvdq.horizontal; thePoints[l] .y = dvdq.vertical;
thePoints (2] .x = dvdr.horizontal; thePoints[2] .y = dvdr.vertical;
thePoints [3] .x = dvdp.horizontal; thePoints[3J .y = dvdp.vertical;

*switch (theCoordParams .solidType){
case WIREFRAME:
setColor (theGC, theCoJlor);
XDrawLines (theDisplay, theWindow, theGC, thePoints, 4, CoordModeOrigin);
break;

case HIDDEN:
setColor (theGC, 63);
XFillPolygon (theDisplay, theWindow, theGC, thePoints, 4, Convex,
CoordModeOrigin);

setColor (theGC, theColor);
XDrawLines (theDisplay, theWindow, theGC, thePoints, 4, CoordModeOrigin);
break;

case SHADED:
setColor (theGC, theCoordParams .shadingColor [theColor]);
XFillPolygon (theDisplay, thewindow, theGC, thePoints, 4, Convex,
CoordModeOrigin);

/* setColor(theGC,l); black *
XDrawLines (theDisplay,theWindow,theGC, thePoints, 4,CoordModeOrigin);
break;

11* end switch *

/ end function osDrawTriangle()*

*Draw a point p which has been presented in device-dependent
coordinates. */

oid dvdDrawPoint (Window theWindow,GC theGC,dvdCoord dvdp)

XDrawPoint (theDisplay,theWindow,theGC, dvdp.horizontal, dvdp.vertical);
1/* end function dvdDrawPoint() *1



*Draw a point p which has been presented in view-rectangle
**coordinates. */

void vrDrawPoint (Window theWindow,GC theGC,vrCoord vrp)

{v~od vp
dvdCoord dvdp;

dvip - vr2dvi(vrp);
dvdp = dvi2dvd (dvip);
XDrawPoint (theDisplay,theWindow,theGC,dvdp.horizontaJ.,dvdp.vertical);

)/* end function vrDrawPoint() */

/* Draw a point p which has been presented in object-space coordinates. *
void osDrawPoint (Window theWindow,GC theGC,osCoord osp)

vrCoord vrp;

vrp - os2vr (osp);
vrDrawPoint (theWindow, theGC, vrp);

)/* end function osDrawPoint() */

* Render text with position presented in dvd coordinates. *lid dvdPrint (Window theWindow,GC theGC,dvdCoord dvdp, char theString(J)

XDrawString (theDisplay, theWindow, theGC, dvdp .horizontal,
dvdp .vertical, theString, strien (theString));

1*end function dvdPrint() */

/* Render text with position presented in yr coordinates. *
void vrPrint (Window theWindow,GC theGC,vrCoord vrp, char theString]))

{v~od vp
dvdCoord dvdp;

dvip - vr2dvi (vrp);
dvdp = dvi2dvd(dvip);
dvdPrint (theWindow, theGC, dvdp, theString);
/*end function vrPrint() */

j~Render text with position presented in os coordinates. *
void osPrint (Window theWindow, GC theGC, osCoord osp, char theString El)

vrCoord vrp;
vrp -os2vr (osp);
SvrPrint (theWindow, theGC, vrp, theString);
*' end function osPrint() */



/* The event handler. */

/* X-windows include files: */
#include <Xll/Xlib.h>
.iclude <Xll/Xutil.h>
knclude <Xll/keysym.h>#include <Xll/keysymdef.h>
#include <X11/cursorfont.h>
#include <math.h>

#include "global.h"
#include "prototypes.h"

/* Global X-Windows variables: *1
extern Display *theDisplay;

/* global variables pertaining to this application: */
extern coordParams theCoordParams;
extern gadget theGadgets[80];
extern int drawGadgets;
extern int nData;
extern int highlight;
extern int minDelta,maxDelta,numDelta;

extern int nHull;
extern osCoord theData[MAXDATA];
extern triangle theHull[MAXTRIANGLES];
extern intTriangle intHull[MAXTRIANGLES];

/* Define the set of X-Windows events we wish to detect */
#define EV MASK (KeyPressMask I ButtonPressMask I ExposureMask \

I StructureNotifyMask)

/* This is the main X-Windows event loop. Based on the events detected
** below (such as mouse clicks and key presses) various computations are
** performed, and then refreshWindow() is called. If the event detected
** is a "quit" event, then control returns to the main program, where
the X-Window is shut down and the program terminates. */
int eventLoop()
{

XEvent theEvent;
XComposeStatus theComposeStatus;
KeySym theKeySym;
XWindowAttributes theAttribs;
Cursor theCursor;

/* storage for incoming keystrokes */
int theKeyBufferMaxLen = 64; /* arbitrary big number */
char theKeyBuffer[65];
int length;

/* storage for mouse button events *1
int mouseX;
int mouseY;
int whichButton;

O /* other stuff */
float sphereCoords[4];
float tempCoords [4];
int i, whichGadget;
float x,y,z;



/* wait for an event */
XNextEvent(theDisplay,&theEvent);

/* turn the cursor into a clock */
theCursor = XCreateFontCursor(theDisplay,XC watch);
XDefineCursor(theDisplay, theEvent.xany.windcw, theCursor);
XFlush(theDisplay);

/* decode the event */
switch (theEvent. type) {

/* the window has been exposed */
case Expose:

refreshWindow(theEvent.xany.window);
break;

/* the window is mapped */
case MapNotify:

refreshWindow(theEvent.xany.window);
break;

/* detect if a mouse button is pressed down */
case ButtonPress:

/* if drawGadgets equals false, then no button gadget could have
** been clicked into, so don't bother decoding this event *1
if (drawGadgets == False) { break; }

/* figure out which button was pressed, and where on the screen it
** was pressed */
mouseX = theEvent.xkey.x;
mouseY = theEvent.xkey.y;. whichButton = theEvent.xbutton.button;

/* figure out which gadget was clicked into, if any */
whichGadget - -1;
for (i = QUIT; i <= NUMGADGETS; ++i) (

if ((mouseX > theGadgets(i].left) && (mouseX < theGadgets(i].right)
&& (mouseY > theGadgets[i].top) && (mouseY < theGadgets(i].bottom))

whichGadget - i;
}/* end if */

}/* end for */

/* The ALT and OVHEAD gadgets are special; if the user did not click
** into one of them, then he might have clicked into one of the other
** movement gadgets. If so, then we need to convert the coordinates
** he wants to change into spherical form so that we can move them as
** he requested, and then convert them back to rectangular coordinates.
** If the user did click into the ALT or OVHEAD gadget, then he is
** moving one o? the points directly, so we can keep them in
** rectangular coordinates. */
if ((whichGadget !- ALT) && (whichGadget != OVHEAD))

switch (whichButton) {
case 1:

tempCoords [I] = theCoordParams.eye[l] - theCoordParams.see ([];
tempCoords [2] - theCoordParams.eye[2] - theCoordParams.see[23;
tempCoords (3] - theCoordParams .eye[3] - theCoordParams.see [3];
rect2sphere(tempCoords,sphereCoords); break;

case 2: rect2sphere(theCoordParams.see,sphereCoords); break;
case 3:

tempCoords (I] - theCoordParams .light [I] - theCoordParams .see(I];
tempCoords [2] - theCoordParams.light [2] - theCoordParams.see[2];
tempCoords [3] - theCoordParams.light [3] - theCoordParams.see[3];
rect2sphere(tempCoords,sphereCoords); break;

}/* end switch */
} else {



switch (whichButton)
case 1: x = theCoordParams-eye(l]; y = theCoordParams.eye[2);

z = theCoordParams.eye[3]; break;
case 2: x = theCoordParams.see(lJ; y = theCoordParams.see[2);

z = theCoordPararns-see(3]; break;
case 3: x = theCoordParams.light[l]; y = theCoordParams.light[2];

z = theCoordParams.light[3]; break;
}*end switch *

}*end if */

1* now perform the various computations which depend on exactly which
** gadget was pressed *
switch (whichGadget)(
case -1: /* do nothing *1break;
case QUIT: return(0); break;
case WRITEDT: writeData(); break;
case CCWISE: sphereCoords[1]+=(l.0/36.0); break;
case CLWISE: sphereCoords(1]-=(1.0/36.0); break;
case OVMAG: theCoordParams .osLeft*=2.0;

theCoordParams .osBack*=2 .0;
theCoordParams .osRight*=2 .0;
theCoordParams .osFront *2.0;
theCoordParams .osTop*=2 .0;
theCoordParams .osBottom*-2 .0; break;

case OVMIN: theCoordParams .osLeft*=0 .5;
if (theCoordParams.osLeft > theCoordParams.vcLeft){
theCoordParams .osLeft*=2 .0; break; I

theCoordParams .osBack*=0 .5;
theCoordParams .osRight*=0 .5;
theCoordParams .osFront*=0 .5;
theCoordPazams .osTop*=0 .5;
theCoordParams .osBottom*=0 .5; break;

case OVHEAD: y - fromViewLeft(mouseX);
x = fromViewTop(mouseY); break;

case ALT: z = fromAltTop(mouseY); break;
case ALTMAG: theCoordParams .osLeft*-2 .0;

theCoordParams .osBack*=2 .0;
theCoordParams .osRight*=2 .0;
theCoordParams .osFront*=2 .0;
theCoordParams .osTop*-2 .0;
theCoordParams .osBottom*=2 .0; break;

case ALTMIN: theCoordParams .osLeft*=0 .5;
if (theCoordParams.osLeft > theCoordParams.vcLeft)
theCoordParams .osLeft*-2 .0; break;

theCoordParams .osBack*=0 .5;
theCoordParams .osRight*=0 .5;
theCoordParams .osFront*=0 .5;
theCoordParams .osTop*-0 .5;
theCoordParams osBottom*=0 .5; break;

case INWARD: sphereCoords [31 *Q.9; break;
case OUTWARD: sphereCoords (3] *1 .1; break;
case VIEWIN: theCoordParams .rho+=0 .05;

if (theCoordParams.rho > 0.95)
(theCoordParams.rho - 0.95;j break;

case VIEWOUT: theCoordParams .rho-=0 .05;
if (theCoordParams.rho < 0.05)

{theCoordParams.rho - 0.05;) break;
case OVER: sphereCoords[2]-=(1.0/36.0); break;
case UNDER: sphereCoords(2]+=(3..0/36.0); break;
case AXESG: theCoordParams.solidType - AXES; break;
case WIREG: theCoordParams.solidType - WIREFRAME; break;
case HIDEG: theCoordParams.solidType - HIDDEN; break;
case SHADG: theCoordParams.solidType - SHADED; break;
case HIGHLT: highlight - 1-highlight; break;
case DOHTYLL: chull(); break;
case COARSE: if (numDelta > 4){



numDelta/=2; nData = numDelta;
minDelta = 1; maxDelta =nData;

getDatao; ) break;
case FINE: if (numDelta < MAXDATA){

numDelta*=2; nData = numDelta;
minDelta = 1; maxDelta = nData;

}e~to break;
case MINDM: minDelta--; nDat-a =numDelta;

if(minDelta < 1) {minDelta = 1;}
getData(); break;

case MINDP: minDelta++; nData =nuznDelta;
if (minDelta > maxDelta-3) ( minDelta = maxDelta-3;
getData 0; break;

case MAXDM: maxDelta--; nData = numDelta;
if (minDelta > maxDelta-3) ( maxDelta = minDelta+3;
getData(); break;

case MAXDP: maxDelta++; nData = numDelta;
if (maxDejlta > numDelta) { maxDelta = numDelta;I
getDatao; break;

case X2: theCoordParams.x scale*=2;
theCoordParams .e~ye(1] *=2;
theCoordParams see (1] *2;
theCoordParams light (1] *2; break;

case X5: theCoordParams.x scale*=O.5;
theCoordParams .e~ye (1] *Q.5;
theCoordParams.see(1] *=0.5;
theCoordParams .light (1]*-0.5; break;

case Y2: theCoordParams.y__scale*=2;
theCoordParams .eye (2] *2;
theCoordParams .see (2] *2;
theCoordParams. light (2] *2; break;

case Y5: theCoordParams.y-scale*=O.5;
theCoordParams .eye (21 *=0.5;
theCoordParams .see (2] *Q 5;
theCoordParams .light(2]*-0.5; break;

case Z2: theCoordParams.z scale*=2;
theCoordParams .e~ye(31 *=2;
theCoordParams .see (3] *=2;
theCoordParams .light (3] *2; break;

case Z5: theCoordParams.z scale*=O.5;
theCoordParams .e~ye (3] *Q .5;
theCoordParams .see (3] *0.5;

edsic /theCoordParams .light (3] *Q .5; break;

1* Now convert back to rectangular coordintes, if necessary. *
if ((whichGadget !- ALT) && (whichGadget !- OVHEAD)){

switch (whichButton)(
case 1:

sphere2rect (sphereCoords,tempCoords);
theCoordParams.eye (1] - tempCoords (1] + theCoordParams .see (1];
theCoordParams .eye[2] = tempCoords (2] + theCoordParams .see(2];
theCoordParams .eye (3] - tempCoords (3] + theCoordParams.see (3];
break;k

case 2: sphere2rect (sphereCoords,theCoordPara~ms .see); break;
case 3:

sphere2rect (aphereCoords, tempCoords);
theCoord~arams .light (1] = tempCoords (1] + theCoordParanis.see (1];
theCoordParams.light (2] -tempCoords (2] + theCoordParams.see (2];
theCoordParams.light (3] - tempCoords (3] + theCoordParams.see(3];
break;

1/* end switch *
)else (
switch (which~utton)(
case 1: theCoordParams.eye~l] - x; theCoordParams.eye(2] - y;

theCoordParams.eye[3] - z; break;



case 2: theCoordParams.see(1] = x; theCoordParams-see(2] = y
theCoord.Params.seef3] = z; break;

case 3: theCoordParams.light(l] = x; theCoordParams.light[2] = y
theCoordParams.light(3] = z; break;

/*end switch *
}/* end if */

1* Re-initialize the 3d->2D transformation and re-draw the window. *
PSInit 0;
refreshWindow (theEvent xany window);
break;

1* a key on the keyboard has been pressed down *
case KeyPress:

/* This line causes a compiler warning, but is legal, since theEvent *
1* is of Union type. */
length = XLookupString (&theEvent, theKeyBuffer, theKeyBufferMaxLen,

&theKeySym, &theComposeStatus);

/* check to see if the user pressed one of the ASCII keys *
if ((theKeySym >= 1 ') && (theKeySym <= -'&&(length =- 1))(

1* quit if the key was a "q" */
if (theKeyBuffer(O] == 'q') { return(O);

/* toggle the gadget drawing if the key was a "g" *
if (theKeyBuffer(O] == 'g') drawGadgets =1-drawGadgets;

/* rotate the image quickly, if the key was a "a' ~
if (theKeyBuffer(O] -= 'a') { /* animate! *

for (i1l; i<=72; ++i){
tempCoords (1] = theCoordParams .eye (1] - theCoordParams .see [1);
tempCoords (2] = theCoordParams .eye (2] - theCoordParams .see 121;
tempCoords (3] = theCoordParams .eye [3] - theCoordParams .see (3];
rect2sphere (tempCoords, sphereCoords);
sphereCoords ( .]+= (3. 141592 6/36. 0) ;
sphere2rect (sphereCoords,tempCoords);
theCoordParams .eye(l] = tempCoords (1] + theCoordParams .see (1];
theCoordParams eye (2] = tempCoords (2] + theCoordParams .see (2];
theCoordParams .eye (3] = tempCoords (3] + theCoordParams.see (3];
PSInit 0;
refresb.Window (theEvent .xany. window);

}/* end for *
11* end if */

1* the user must hay pressed a non-ASCII key *
)else {

1* as above, convert to spherical coordinates *
tempCoords(l] = theCoordParams.eye(l] - theCoordParams.see(l];
tempCoords (2] = theCoordParams .eye (2] - theCoordParams .see [2];
tempCoords (3] = theCoordParams .eye (3] - theCoordParams. see[3];
rect2sphere (tempCoords, sphereCoords);
switch (theKeySym) {

case XKUp :sphereCoords[2]-=(1.0/36.0); break;
case XK Down : sphereCoords[21+=(1.0136.0); break;
case Xk-Right: sphereCoords~l]+m(l.0/36.0); break;
case IC-Left :sphereCoords(1]-=(l.0/36.0); break;
case XkKP 1 :sphereCoords(3]*=1.1; break;
case (XKKP 4 : sphereCoords[3]*=0.9; break;

11* end s'git-ch */
/* and then re-convert back to rectangular coordinates *
sphere2rect (aphereCoords, tempCoords);
theCoordParams.eye(1] - tempCoords (1] + theCoordParams .see(1];
theCoordParams .eye(2] tempCoords (2] + theCoordParams .see (2];
theCoordParams .eye(3] - tempCoords (3] + theCoordParams.see[3];
PSInito;



} end if *
refresh~Jindow (theEvent xany window);
break;

* * the window has been sized or changed *
case ConfigureNotify:
XGetWindowAttributes (theDisplay, theEvent xany window, itheAttribs);
theCoordParams windowWidth = theAttribs width;
theCoordParams .windowHeight = theAttribs .height;
refreshWindow (theEvent xany window);
break;

/*end switch *

1* make the pointer be an arrow again, instead of a clock *
XUndefineCursor (theDisplay, theEvent xany .window);

return(1) ;
}/* end function eventLoop() *

1* function initEvents, set the event mask *
void initEvents(Window theWindow)

XSelectlnput(theDisplay,theWindow,EVMASK);
}/* end function initEvents *

0



1* PRINT SOME STATISTICS *

dvdp.horizontal = theGadgets(X5] .right + gadgetBorder;
dvdp.vertical = tbheGadgetsCX5].bottom - 4;
sprintf(theString,"scaling factor = %5.2f",theCoord.Params.x scale);

* dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp .horizontal = theGadgets fY51 right + gadgetBorder;
dvdp.vertical = theGadgets[Y5].bottom - 4;
sprintf(theString, "scaling factor = %5.2f",theCoordParams.y_scale);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp.horizontal = theGadgets[Z5] .right + gadgetBorder;
dv'dp.vertical = theGadgets(Z51.bottom - 4;
sprintf(theString, "scaling factor = %5.2f",theCoordParams.z scale);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp.horizontal = theGadgets[Z2] .left;
dvdp.vertical = theGadgetsEZ2].bottom + 3*gadgetBorder;
sprintf(theString,"light point = (%7.2f,%7..2f,%7.2f) ",
theCoordParams.light(l] ,theCoordParams.light(2] ,theCoordParams.light[3]);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

dv'dp.vertical+=lO;
sprintf(theString," eye point = (%7.2f,%7.2f,%47.2f) ",
theCoordParams .eye El],theCoordParams .eye [2] ,theCoordParams .eye [3]);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp vertical+=lO;
sprintf(theString," see point = (%7.2f,%7.2f,%7.2f) ",
theCoordParams.see~l] ,theCoordParams.seef2] ,theCoordParams.see[31);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

O if ((highlight) && (theDepth > 1)){
dvdp .vertical+=30;
setColor(theGC,49); /* red *
sprintf (theString, "fled - curve is exterior on far side of hull");
dvdPrint (theExposedWindow, theGC, dvdp, theString);
dvdp vertical4-=1O;
setColor(theGC,l); 1* black *
sprintf(theString,"Yellow - curve is exterior on near side of hull");
dvdPrint 2'.ieExposedWindow, theGC,.dvdp, theString);
dvdp vertical+=1O;
setColor(theGC,4); 1* brown *
sprintf(theString,"Brown - curve is in interior of hull");
dvdPrint (theExposedWindow,theGC,dvdp,theString);
dvdp vertical.+=1O;
setColor(theGC,1); /* black *
sprintf(theString,."Green - connecting line, if visible");
dvdPrint (theExposedWindow, theGC, dvdp, theString);

}/* end if *1

/*end if(drawGadgets) *

XFlush (theDisplay);

/*end function refreshWindow()*

0 function to determine the shade of a facet of the hull 
*

Wnt getShade (int i)

float u(4]; 1* a unit vector normal to the face of the hull *
float v(41; /* a unit vector pointing towards light source (lamp) *
float w[4]; /* scratch storage *



float angle; /* angle between u and v
int s; /* shade number, based on angle *
static float pi = 3.1415926;

*u(l] = theHull(i].normalx;
u(2] = theHull~i] .normaly;
u(3] = theHull~i].normalz;
w(l] = theCoordParams.light(l] - theHull~i] .v3x;
w(2] = theCoordParams.lightf2] - theHull[i].v3y;
w(31 = theCoordParams.light[3] - theHull~il.v3z;
normalize (w, v) ;
angle = acos(fabs(dotprd(u,v)));
s = (NUMSHADES-1) - (int) (angle*2.O* (float) (NtTMSHADES-1)/pi);
return(s);

}/* end function getShade()*

/* function to sort the faces of the object *
void sortTriangles (it doDraw[1 ,int sorted[])

int i,temp(MAXTRIANGLES];
float diffx,diffy,diffz;
float dist [MAXTRIANGLES];

1* measure distances from eye points to triangles for all triangles *
for (i =1; i <= nHull+3; +4-i)
diffx =theHull [i] .centerx-theCoordParams .eye [1];
diffy =theHull [ii .centery-theCoordParams .eye [21;
diffz =theHull~il .centerz-theCoordParams.eye[3];
dist~i] = diffx*diffx + diffy*diffy + diffz*diffz;

}/* end for */

1* store the sorted list in a temporary variable *
for (i = 1; i <= nHull+3; +4-i) { tempti] = i;}
quickSort (dist,temp, l,nHull+3);

1* reverse the order of the sort and return *
for (i = 1; i <= nHull+3; +4-i) (sortedfil = temp[nHull'f4-i];}

}/* end function sortTriangles()*

int wh~ichDraw(int doDraw(])

int i,counter;
float numer, signi, sign2;
float normal[41,diff[4];

counter = 0;
for (i-1; i<=nHull; +4-i){

1* project the center of the hull onto the normal of this triangl~e
normal[1] = the~ull~i].normalx;
normal[2] = theHull~il.normaly;
normal[3] = theHull~i].normalz;
diff~l] = centerHull.x - theHull~i].v3x;
diff[2) - centerHull.y - theHull[i].v3y;

* diff(3] = centerHull.z - theHull~i].v3z;
numer - dotprd(diff,normal);
signi - numer;

/*now project the eye point onto the normal of this triangle *
diff [1] - theCoordParams.eye[l] - theHull(i] .v3x;



diff[2] = theCoordParams.eye[2] - theHull9i].v3y;
diff[3] = theCoordParams.eye[3] - theHull~i] .v3z;

numer = dotprd(diff,normal);
sign2 = numer;

* /* if sign2 and signl have the same sign, then our eye point is on the
** same side of the triangle as the the hull, and therefore we do
** NOT see this triangle. */
if ((signl*sign2) > 0.0) {

doDraw[i] = 0;
} else (

doDraw[i] = 1;
counter++;

}/* end if */

}/* end for i */

/* CONSIDER THE AXES AS A SPECIAL CASE */
/* the axes should always be drawn; rely on the sorting to put them in
** the right place in the rendering list so that they'll be obscured if
** they are behind the hull. Note that there are some degenerate cases
** where this reliance is a mistake. */

for (i=nHull+l; i<=nHull+3; ++i)
doDraw[i] - 1;
counter++;

1/* end for i */

return (counter);
1/* end function whichDraw() */

0
/* figure out if edge connecting (pl,p2) is on triangle T or not */
int isAnEdge(int pl,int p2,intTriangle T){

if (pl == p2) { return(0); }
if ((pl == T.pl) 11 (pl == T.p2) 11 (pl == T.p3)) {

if ((p2 == T.pl) I1 (p2 == T.p2) I1 (p2 == T.p3)) {
return (1) ;

}/* end if */
}/* end if */
return(0) ;

1/* end function isAnEdge() */



/* FILE: main.c
•* This file contains the main program for the convex hull generator. It also
7, contains the refreshWindow() functions which draws the hull and gadgets. */

*nX-windows include files: */
clude <Xll/Xlib.h>

h*nclude <Xll/Xutil.h>

!* include files for your application: */
"*include <stdio.h>
tinclude <string.h>
.include <math.h>
:include "global.h" /* contains structure definitions and #define's */
:include "prototypes.h" /* contains C prototypes */

* X-windows global variables */
Display *theDisplay; /* a pointer to the display structure */.nt theScreen; /* which screen within the display */

.nt theDepth; /* depth of screen in bitplanes */
:nsigned long theBlackPixel; /* system black color, xet in colorx.c *1
:nsigned long theWhitePixel; /* system white color, set in colorx.c */
'olormap theColormap; /* color map, set in colorx.c */
;C theGC; /* graphics context, set in windowx.c */
'ZFontStruct *fontStruct; /* font structure, set in textx.c *1

"* global variables pertaining to this application: */
osCoord theData[MAXDATA+l]; /* the (x,y,z) triples of points *1
int nData; /* the number of such triples to be used */
:riangle theHull[MAXTRIANGLES+I];/* the triangles making up the hull */
intTriangle intHull[MAXTRIANGLES+1];/* data points on the curve mut the hull */
int nHull; /* the number of triangles computed */
zoordParams theCoordParams; /* parameters related to image rendering */

get theGadgets[80]; /* gadget data */
drawGadgets; /* whether or not gadgets should be drawn */

int highlight; /* whether or not curve should be highlit */
osCoord centeLHull; /* a point in the center of convex hull */
int minDelta,maxDelta,numDelta; /* see file getdata.c for explanation*/

void main()(
/* declarations pertaining to X-Windows: */
Window theWindow;
int windowX, windowY, popUp;
int windowWidth, windowHeight;

/* declarations pertaining to this application: */
/* (none) */

/* initializations pertaining to X-Windows: */
windowX - 0; /* place the window in the upper left hand corner */
windowY - 0;
windowWidth = -1; /* -1 would mean make the window as big as possible */
windowHeight = -1;
popup - 0; /* an X parameter, see usage below */

/* initializations pertaining to your application: */
nData - 8; /* use 8 data points for curve initially */6 nDelta - 1; /* of those 8, use numbers 1 to 8 completely */
axDelta - nData;

numDelta - maxDelta-minDelta+l;
getData(); /* read in the input data file (this should be fixed) */
setEye(); /* getData and setEye are, unfortunately, interdependent, so */
getDatao; /* read in the input data file a second time */



theCoordParams.windowWidth = windowWidth;
theCoordParams.windowHeight = windowHeight;
theCoordParams.topBarHeight = gadgetBorder*2+gadgetTall;
theCoordParams.rightBarWidth = gadgetBorder*7+gadgetWide*4+gadgetTall;

WheCoordParams.x scale = 1.0;
heCoordParams.y-scale = 1.0;

theCoordParams.z scale = 1.0;
theCoordParams.r~o = 0.5;
theCoordParams.tilt = 0.0;
theCoordParams.plotType = MATHPLOT; /* z=up, y=right, x=towards viewer */
theCoordParams.solidType = AXES; /* just draw curve & axes */
drawGadgets = 1; /* do draw the gadgets */
highlight = 0; /* don't highlight (color) curve */
PSInit(); /* intialize 3D->2D projection *1

/* open up an X-Window: */
initX(); /* set up the connection to the X-Server */
initDefaultColors(); /* set up X-windows colors */
initShading(; /* initialize hull shading array */
theWindow = openWindow(windowX, windowY,windowWidth,windowHeight,popUp,&theGC);
fontStruct = initFont(theGC,'"6xl0"); /* load in a font */
initEvents(theWindow); /* set up window to receive events *1

refreshWindow(theWindow); /* "refresh" window for the first time */
XFlush(theDisplay); /* flush this refresh to the display */

/* check for events; this is the heart of the program; most of the code
** would go here, or in the eventLoop() itself, or in the refreshWindow()
** function below: */
while(eventLoop()); /* handle events */

1* close everything down: */
estroyWindow(theDisplay,theWindow); /* free the window resources */
reeFont(theDisplay,fontStruct); /* free the font resources */

XFlush(theDisplay); /* final flush to display */
quitX); /* exit from X-Windows */

}/* end main program */

/* Function refreshWindow is probably the work-horse of the application.
** Based on events obtained from eventLoop(), you would perform various
** computations and then update the screen. Most of that could probably
** happen in this routine. */
void refreshWindow(Window theExposedWindow)

int ij;
int nDraw; /* how many triangle survive the culling */
int doDraw(MAXTRIANGLES]; /* which triangles survived the culling */
int sorted[MAXTRIANGLES]; /* sort based on distance to eye point */
int localShade[MAXTRIANGLES]; /* what color to shade each triangle */
int colorBarWidth; /* how wide the color bar should be */
char theString(STRLEN]; /* generic string */
dvdCoord dvdp,dvdq; /* generic DVD coordinates */
osCoord osp,osq; /* generic OS coordinates */

/* some computations that depend on how our window opened;
** how wide and high the convex hull display area is: */

* theCoordParams.dvdWidth -
theCoordParams .windowWidth - theCoordParams .rightBarWidth*drawGadgets;

theCoordParams .dvdHeight -
theCoordParams .windowHeight - theCoordParams topBarHeight*drawGadgets;

colorBarWidth - (theCoordParams.dvdWidth-2*gadgetWide-3*gadgetBorder)/66;



/* clear the entire window *

XClearWindow (theDisplay, theExposedWindow);

/* DRAW THE OBJECT *1

*switch (theCoordParams.solidType)(
case AXES: /* draw just the curve and the axes *
/* -- draw the axes -- */
setColor (theGC, 5); 1* grey is the color of the axes ~
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow,theGC, osp, "O") ;
osq.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osq.z = 0.0;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint (theExposedWindow, theGC, osq, "xo) ;
osq.x = 0.0 ; osq.y = 0.5*theCoordParams.vcaight; osq.z =0.0;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint (theExposedWindow, theGC, osq,1 "y1) ;
osq.x = 0.0 ; osq.y = 0.0 ; osq.z = 0.5*theCoordParams.vcTop;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint(theExposedWindow,theGC,osq, "zf);
1* -- draw the curve -- */
setColor(theGC,1); 1* black is the color of the curve ~
for (i=l; i <= nData-1; ++i)(

osDrawLine (theExposedWindow, theGC, theData (i] ,theData [i+l]);
}/* end for *
break;

case WIREFRAME: 1* draw the wireframe of the hull *
/* -- draw the axes--
setColor(theGC,5); 1* grey *
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow,theGC, osp, "0") ;
osq.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osq.z = 0.0;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint (theExposedWindow, theGC, osq, "x') ;
osq.x = 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osq.z = 0.0;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint (theExposedWindow,theGC,osq,1 "y1) ;
osq.x = 0.0 ; osq.y = 0.0 ; osq.z = 0.5*theCoordParams.vcTop;
osDrawLine (theExposedWindow, theGC, osp, osq);
osPrint (theExposedWindow, theGC, osq,Rzfv);
/* -- draw the hull ---.. *1
for (i = 1; i <= nHull; ++i)
osDrawTriangle (theExposedWindow, theGC, the~ull [i],1);

}/* end for *
break;

case HIDDEN: /* draw the hull with hidden surface elimination *
1* -- draw the axes labels ---
setColor(theGC,5); 1* grey */
osp.X = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow,theGC,osp, "o") ;
osq.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osq.z = 0.0;
osPrint (theExposedWindow,theGC,osq, "x") ;
osq.x - 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osq.z = 0.0;
osPrint (theExposedWindow,theGC,osq, "y");
osq.x - 0.0 ; osq.y - 0.0 ; osq.z = 0.5*theCoordParams.vcTop;
osPrint (theExposedWindow,theGC,osq, "z");

/* -- draw the hull, and axes as triangles--
/* figure out which of these triangles to draw, and set their color to
** black, so that they will have black outlines with white interior *

* nDraw -whichDraw(doDraw);
f or (i -1; i <- nHull; ++i)

localShade~i] - 1; /* black *
1/* end for */
for (i - nHull+l; i <- nHull+3; +4-i) ( /* these triangles are the axes *

localShade~i] - 5; /* grey *1



/*end for *

/* sort the triangles based on distance to the eye point *
sortTriangles (doDraw, sorted);

@ * now draw the triangles *1
for (i = 1; i <= nHull+3; ++i)

if (doDraw(sorted~i]])
osDrawTriangle (theExposedWindow,theGC,theHull fsorted[i] I,

localShade [sorted [ii );
/*end if *

/*end for *
break;

case SHADED: /* draw the hull with shaded facets *
/* -- draw the axes labels--
setColor(theGC,5); 1* grey */
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow,theGC, osp, "0"));
osq.x = 0.5*theCoordParams.vcFront; oscq.y = 0.0 ; osq.z = 0.0;
osPrint (theExposedWindow,theGC,osq, "x") ;
osq.x = 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osq.z = 0.0;
osPrint (theExposedWindow,theGC,osq,t "y");
osq.x = 0.0 ; osq.y = 0.0 ; osq.z = 0.5*theCoordParams.vcTop;
osPrint(theExposedWindow,theGC,osq,"z"v) ;

1* -- draw the hull, and axes as triangles *
1* figure out which of these triangles to draw, and set their color *
nDraw =whichDraw(doDraw);
for (i =1; i <= nHull; ++i)(

if (doDraw(i]) { localShade~i] = getShade(i);
11* end for */@for (i = nJHull+l; i <= nHull+3; ++i) { 1* these triangles are the axes ~
locaiShade [ii = 1; 1* 1 means black in my private shading system *

)/* end for */

/* sort the triangles based on distance to the eye point *
sortTriangles (doDraw, sorted);

1* now draw the triangles */
for (i - 1; i <= nHull+3; ++i)

if (doDraw[sorted~i]]){
osDrawTriangle (theExposedWindow,theGC,theHull (sorted~i]],

localShade (sorted [il I);
1*end if *

/*end for *
break;

11* end switch *

if (highlight){

1* -- draw the curve in brown ---
if (theDepth -- 1) { setColor(theGC,63); ) 1* white *
else ( setColor(theGC,4); I 1* brown *
for (i-1; i <- nData-1; ++i)(
03DrawLine (theExposedWindow,theGC,theData(i] ,theData~i+l]);

}/* end for */
/* -- draw the invisible but exterior edges in red ---@ if (theoepth - 1) { setColor(theGC,63); ) /* white *
else { setColor(theGC,49); 1/* red *
for (i-1; i <-nData-1; ++i)

for (j-1; j <- nHull; ++j)
if (isAn~dge(i,i+1,intHull~j])){

osDrawLine (theExposedWindow, theGC,theData (ii,theData [i+lj);



break;
}/* end if *

}/* end for j*/
11* end for i*/

* * -- draw the exposed curve in yellow (white on a b&w monitor) ---
if (theDepth == 1) { setColor(theGC,63); ) 1* white *
else (setColor(theGC,64); } * yellow *
nDraw =whichDraw(doDraw);

for (i=l; i <=nData-1; ++i)
for (j=l; j <= nHull; ++j)

if (doDraw~ji) ( /* this facet is being drawn *
if (isAnEdge(i,i+l,intHull~j]))

os~rawLine (theExposedWindow,theGC,theData Eu ,theData~i+lI);
break;

11* end if *
}/* end if */

}/* end for*)*/
}/* end for i/

/* draw the line connecting the two endpoints of the curve in green,
** assuming that it can be seen and is not obscured by the hull *
if (theDepth == 1) ( setColor(theGC,63); I /* white *
else { setColor(theGC,21); } /* green *
for (j1l; j <= nHull; ++j)

if (doDraw(j])
if (isAnEdge(l,nData,intHull~j]))
osDrawLine (theExposedWindow,theGC,theData~l] ,theData(nData]);
break;

}/* end if *
I*end if */

/*end for j*/

* )/*end if *1

if (drawGadgets){

/* clear the top and side bars *
XClearArea (theDisplay, theExposedWindow, 0,0, 0, theCoordParams topBarHeight,

False);
XClearA~rea (theDisplay, theExposedWindow, theCoord.Params dvdWidth,
theCoordParams topBarHeight,0, O,False);

/* draw the borders of the top and right-bar gadget areas: ~
setColor (theGC, 1);
dvdp.horizontal -0;
dvdp vertical -theCoordParams topBarHeight;
dvdq.horizontal -theCoordParams .dvdWidth;
dvdq.vertical = theCoordParams .topBarHeight;
dvdflrawLine (theExposedWindow, theGC, dvdp, dvdq);
dvdp horizontal -theCoordParams dvdWidth;
dvdp vertical - theCoordParams topBarHeight;
dvdq.horizontal - theCoordParams .dvdWidth;
dvdq.vertical - theCoordParams .windowHeight;
dvdDrawLine (theExposedWindow, theGC, dvdp, dvdq);

/* draw the gadgets themselves: *
gadgetDatao;
for (i - QUIT; i <- NUMGADGETS; ++i)(

* ~dvdDrawGadget (theExposedWindow, theGC,i.);;
11* end for */

/* draw the color bars: *
if (theDepth > 1)(
/* --- 66 named colors --- *



2.orizontal - theCoordParams .dvdWidth-colorBarWidth;
iorizontal = dvdp horizontal+colorBarWidth;
rertical = gadgetBorder;
rertical = gadgetBorder+gadgetTall/2;

= i <=65; ++i)

:ctangle (theExposedWindow, theGC, dvdp, dvdq);
:olor (theGC, 1);
1,vdDrawRectangle (theExposedWindow, theGC, dvdp, dvdq); *
.horizontal-=colorBarWidth;
r. horizontal-=colorBarWidth;
,d for */
i.-rizontal = theCoordParams dvdWidth-colorBarWidth;
.:cizontal = dvdp horizontal+colorBarWidth;
riztical = gadgetBorder+l+gadgetTall/2;
,,.:-:ical = gadgetBorder+gadgetTall;

45 shades of grey ---
L 66; i <= 131; ++i){
.,3r(theGC, i) ;
*.'.Rectangle (theExposedWindow, theGC, dvdp, dvdq);
:.:r (theGC,1) ;

I- IrawRectangle (theExposedWindow, theGC, dvdp, dvdq); *
).orizon~tal-=colorBarWidth;
:.rnrzontal-=colorBarWidth;
Lo:!or

_..-ecial gadget items: *10);
0);

7'HE VIEW-PLANE LOCATION DESCRIPTION: *
*:heGC,13); 1* dark slate grey */
.::±Sga1 - theGadgets[VIEWIN].right; +7

izontal -theGadgets[VIEWOUT].left;
.-;cal - dvdp.vertical;
4.i;e(theExposedWindow, theGC, dvdp, dvdq);
i4zorxtal+-
1 .0-theCoordParams.rho) *(float) (dvdq.horizontal-dvdp.horizontal));
-;ical--5;
-izontal -dvdp.horizontal;
-tical+-5;
line (theExposedWindow, theGC, dvdp, dvdq);
-izontal--3;
-tical+-8;
* (theExposedWindow,theGC,dvdq, "v");

THE OVERHEAD VIEW DESCRIPTION *

,rigin: */
.(theGC,l); /* black *
-izontal = (theGadgets (OVHEAD] .left + theGadgets (OVHEAD] .right) /2;
tical M (theGadgets[OVHEAD].top + theGadgets[OVHEAD].bottom)/2;
o2.nt (theExposedW2.ndow, theGC, dvdp),

:ye point: */
-(theGC,4), 1* brown *
izontal. - viewLeft (theCoordParam8 .eye (2]);
tical - viewTop (theCoordParams eye (1]);
(t~axposedWindow,theGC,dvdp, "e");
oiJth.ExposedWindow, theGC, dvdp);

@0 point: */
(th*GC,3); /* BlueViolet *
izontal - viewLeft (theCoordParams .3ee(21);



dvdp vertical+=4;
dvdPrint (theExposedWindow, theGC, dvdp,' "S");

/* the light-point bar: *1
setColor(theGC,18); /* Gold *

* dvdp.horizontal = theGadgets [ALT].right-6;
dvdp.vertical = aitTop (theCoordParams light [31);
dvdq.horizontal = theGadgets [ALT] right;
dvdq.vertical = dvdp.vertical;
dvdDrawLine (theExposedWindow, theGC, dvdp, dvdq);
dvdp horizontal+=8;
dvdp vertical+=4;
dvdPrint (theExposedWindow, theGC, dvdp, "1");

/* the top view-cube bar: */
setColor(theGC,5); /* cadet blue *
dvdp.horizontal = theGadgets [ALT] .left;
dvdp.vertical =altTop(theCoordParams.vcTop);
dvdq.horizontal = dvdp.horizontal+l;
dvdq.vertical = dvdp.vertical;
dvdDrawLine (theExposedWindow, theGC, dvdp, dvdq);

/* the bottom view-cube bar: */
dvdp.horizontal = theGadgets [ALT] .left;
dvdp .vertical = altTop (theCoordParams .vcBottom);
dvdq.horizontal = dvdp.horizontal+l;
dvdq.vertical = dvdp.vertical;
dvdflrawLine (theExposedWindow, theGC, dvdp, dvdq);

/* the view-cube tob/bottom connection bar: *
dvdp.horizontal = theGadgets [ALT] .left+2;

* dvdp .verticaJ. = aitTop (theCoordParams .vcTop);
dvdq.horizontal = theGadgets [ALT] .left+2;
dvdq.vertical = altTop (theCoordParams .vcBottom);
dvdDrawLine (theExposedWindow, theGC, dvdp, dvdq);

/* the center bar: */
setColor(theGC,l); /* Black *
dvdp.horizontal = theGadgets [ALT] .left+8;
dvdp.vertical = (theGadgets [ALT] .top + theGadgets [ALT] .bottom) /2;
dvdq.horizontal = theGadgets [ALT] .right-8;
dvdq.vertical = dvdp.vertical;
dvdflrawLine (theExposedWindow, theGC, dvdp, dvdq);

1* DRAW THE NUMB~ER OF DATA AND HULL POINTS */

dvdp.horizontal, = theGadgets (COARSE] .right + gadgetBorder;
dvdp.vertical = theGadgets[COARSE].top + 6;
sprintf(theString,"%3d points on curve",nData);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp.vertical - theGadgets[COARSEI.bottom + 1;
sprintf(theString,"%3d facets on hull ",n~ull);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

1* DRAW THE LOWEST AND HIGHEST VALUES BEING USED *

dvdp.horizontaJ. - theGadgets(MINDM] .right + gadgetBorder;
dvdp. vertical - theGadgets [MINnDM] .bottom - 4;
sprintf(theString," Using %d >- 12',minDelta);

* dvdPrint (theExposedWindow, theGC, dvdp, theString);

dvdp.vertical - theGadgets[MAXDM].bottom - 4;
sprintf(theString," Using %d <- %d.",maxDelta,numDelta);
dvdPrint (theExposedWindow, theGC, dvdp, theString);



/* FILE: gadgetdata.c

** Routines to initialize gadget data. *

#include <Xll/Xlib.h>

Wclude "global.h"
#include "prototypes .h"

extern coordParams theCoordParams;
extern gadget theGadgets[80];
extern mnt drawGadgets;

1* initialize gadget data: where the gadget should be drawn and what
** string it should be labeled with ~
void gadgetData()

theGadgets (QUIT] .top =gadgetBorder;

theGadgets (QUIT] .bottom = theGadgets (QUIT] .top + gadgetTall;
theGadgets (QUIT] .left = gadgetBorder;
theGadgets (QUIT].right = theGadgets (QUIT] .left +gadgetWide;
strcpy (theGadgets (QUIT . string, "Quit");

theGadgets[WRITEDT] .top = theGadgets [QUIT] .top;
theGadgets (WP.ITEDT] .bottom = theGadgets (QUIT] .bottom;
theGadgets(WRITEDT] .left = theGadgets (QUIT] .right + gadgetBorder;
theGadgets (WRITEDT] right = theGadgets [WRITEDT] .left +gadgetWide;
strcpy (theGadgets (WRITEDT] .string, "Save Hull");

* * observation-parameters control panel */

theGadgets (CCWISE] .top - gadgetBorder;
theGadgets (CCWISE] .bottom - theGadgets (CCWISE] .top + gadgetTall;
theGadgets (CCWISE] .left = theCoordParams dvdWidth + gadgetBorder;
theGadgets (CCWISE].right = theGadgets (CCWISE] .left + gadgetwide;
strcpy (theGadgets (CCWISE . string, "Counter C");

theGadgets (OVMAG] .top - theGadgets (CCWISE] .top;
theGadgets (OVMAG] .bottom - theGadgets (CCWISE] .bottom;
theGadgets[OVMAG] .left - theGadgets(CCWISE] .right + gadgetBorder;
theGadgets(OVMAG] .right - theGadgets[OVMAG] .left + gadgetWide;
strcpy (theGadgets (OVMAG] .string, "Expand");

theGadgets (OVHIN] .top - theGadgets (CCWISE] .top;
theGadgets (OVMIN] .bottom = theGadgets (CCWISE .bottom;
theGadgets (OVMIN] .left - theGadgets (OVMAG] .right + gadgetBorder;
theGadgets (OVMIN . right = theGadgets (OVMIN] .left + gadgetWide;
strcpy (theGadgets (OVMIN] .string, "Shrink");

theGadgets (CLN'ISEJ .top - theGadgets (CCWISE] .top;
theGadgets (CLWISE] .bottom - theGadgets (CCWISE] .bottom;
theGadgets (CLWISE] .left - theGadgets (OVMIN] .right + gadgetBorder;
theGadgets (CLWISE] .right - theGadgets (CLWISE] .left + gadgetwide;
.strcpy (theGadgets (CLWISE] .string, "Clockwise");

theGadgets (OVHEAD] .top - theGadgets (CCWISE] .bottom + gadgetBorder;
theGadgets (OVHEAD] .bottom - theGadgets (OVHEAD . top

+ (gadgetWide+gadgetBorder) *3;
* theGadgets (OVHEAD . left - theGadgets (CCWISE] .left;

th*Gadgets (OVHF.AD] right - theGadgets (CLWISE] .right;
strcpy (theGadgets (OVHEAD]I. string,"");

theGadgets (ALT] .top -theGadgets (OVHEAD] .top;
theGadgets (ALT] .bottom - theGadgets (OVHEAD . bottom;



theGadgets[ALTI.left = theGadgets[OVHEAD].right + gadgetBorder;
theGadgets[ALT].right = theGadgets[A.LT].left + gadgetTall;
strcpy (theGadgets (ALT].string, It );

*theGadgets (ALTMAG] .top = theGadgets (CCWISE] .top;
theGadgets (ALTMAG] .bottom = theGadgets [CCWISE] .bottom;
theGadgets (ALTMAG] .left = theGadgets (ALT) .left;
theGadgets (ALTMAG].right = theGadgets (ALT].right;
strcpy (theGadgets [ALTMAG] string, "Ex");

theGadgets (INWARD] .top = theGadgets [OVHEAD] .bottom + gadgetBorder;
theGadgets (INWAR.D] .bottom = theGadgets (INWARD] .top + gadgetTall;
theGadgets (INWARD].left = theGadgets [CCWISEI left;
theGadgets (INWARD].right = theGadgets (CCWISE].right;
strcpy (theGadgets [INWARD].string, "Zoom in");

theGadgets (OVER] .top = theGadgets (INWARD] .top;
theGadgets (OVER] .bottom = theGadgets[INWARD] .bottom;
theGadgets (OVER] .left = theGadgets (OVMAG] .left;
theGadgets (OVER].right = theGadgets (OVMAG].right;
strcpy (theGadgets (OVER].string, "Go over");

theGadgets[tJNDER] .top = theGadgets[INWARD] .top;
theGadgets (UNDER] .bottom = theGadgets (INWARD] .bottom;
theGadgets (UNDER].left = theGadgets (OVMIN].left;
theGadgetsttJNDER] .right = theGadgets[OVMIN] .right;
strcpy (theGadgets (UNDER].string, "Go under");

theGadgets (OUTWARD].top = theGadgets (INWARD] top;
theGadgets (OUTWARD] .bottom = theGadgets[INWARD] .bottom;
theGadgets (OUTWARD].left = theGadgets (CLWISE].left;
theGadgets (OUTWARD] .right = theGadgets(CLWISE] .right;
strcpy (theGadgets (OUTWARD].string, "Zoom out");

theGadgets(ALTMIN] .top - theGadgeta (INWARD] .top;
theGadgets (ALTMIN].bottom - theGadgets (INWARD].bottom;
theGadgets (ALTMIN].left - theGadgets (ALT] left;
theGadgets[ALTMIN] .right = theGadgets (ALT] .right;
strcpy (theGadgets [ALTMIN].string, "Sh");

theGadgets(VIEWIN] .top = theGadgets[INWAPD] .bottom + gadgetBorder;
theGadgets[VIEWIN] .bottom = theGadgets(VIEWIN] .top + gadgetTall;
theGadgets (VIEWIN] left = theGadgets (INWARD].left;
theGadgets (VIEWIN] right = theGadgets (INWARD].right;
strcpy (theGadgets (VIEWIN].string, "See point");

theGadgets [VIEWOUT].top = theGadgets [VIEWIN].top;
theGadgets (VIEWOUT].bottom = theGadgets (VIEWIN] bottom;
theGadgetsj.VIEWOUT] .left = theGadgets [OUTWARD] .left;
theGadgets (VIEWOUT].right = theGadgets (OUTWARD].right;
strcpy(theGadgets[VIEWOUT] .string,"Eye point");

1* solid-type control panel *

theGadgets (AXESG].top - theGadgets (VIEWIN] bottom + 5*gadgetBorder;,
theGadgets (AXESG].bottom -theGadgets (AXESGI top + gadgetTall;
theGadgetsCAXESGi .left - theGadgets[INWARD] .left;
theGadgets (AXESG].right - theGadgets (INWARD] right;
strcpy (theGadgets (AXESG].string, "Curve"l);

* theGadgets (WIREG].top - theGadgets (AXESGI top;
theGadgets[WI1REG] .bottom - theGadgets[AXESG] .bottom;
theGadgets (WIREG].left - theGadgets [OVER].left;
theGadgets (WIREG].right - theGadgets (OVER] right;
strcpy (theGadgets (WIREG] string, "Wireframe)



theGadgets[HIDEG] .top = theGadgets[AXESG] .top;
theGadgets [HIDEG] .bottom = theGadgets [AXESGI .bottom;
theGadgets[HIDEG] .left = theGadgets (UNDER] .left;
theGadgets[HIDEG] .right = theGadgets (UNDER] .right;

*strcpy (theGadgets [HIDEG] string, "White") ;

theGadgets(SHADG] .top = theGadgets(AXESG] .top;
theGadgets [SHADG] .bottom = theGadgets (AXESG] .bottom;
theGadgets (SHADG].left = theGadgets (OUTWARD].left;
theGadgets (SHADG].right = theGadgets (OUTW4ARD] right;
strcpy (theGadgets [SHADG] string, "Shaded");

theGadgets(HIGHLT] .top = theGadgets(AXESG] .bottom + gadgetBorder;
theGadgets(HiGHLT] .bottorn = theGadgets(HIGHLT] .top + gadgetTall;
theGadgets(HIGHLT] .left = theGadgets(SHADG] .left;
theGadgets (HIGHLT].right = theGadgets [SHADG].right;
strcpy (theGadgets [HIGHLT].string, "Iighlight"l);

theGadgets [DOHULL] .top = theGadgets [HIGHLT].top;
theGadgets [DOHTJLL] .bottom = theGadgets [HIGHLT] .bottom;
theGadgets [DOHULL].left = theGadgets [AXESG].left;
theGadgets (DOHULL] right = theGadgets (WIR.EG].right;
strcpy (theGadgets [DOHULL].string, "COMPUTE CONVEX HULL");

/* grid refinement control panel */

theGadgets (COARSE] .top = theGadgets [HIGHLT] .bottom + 5*gadgetBorder;
theGadgets (COARSE] .bottom = theGadgets (COARSE] .top + gadgetTall;
theGadgets (COARSE].left = theGadgets [AXESG].left;
theGadgets [COARSE] .right = theGadgets[AXESG] .right;
strcpy (theGadgets (COARSE].string, "Less fine");

*theGadgets[FINE] .top = theGadgets [COARSE] .top;
theGadgets [FINE] .bottom =theGadgets [COARSE] .bottom;
theGadgets [FINE].left = theGadgets (SHADG].left;
theGadgets (FINE] .right =theGadgets (SHADGI .right;
strcpy(theGadgets[FINE] .string,"More fine");

1* parameter range control panel */

theGadgets (MINDM] .top = theGadgets (COARSE] .bottom + 5*gadgetBorder;
theGadgets[MINDM] .bottom = theGadgets[MINDM] .top + gadgetTall;
theGadgets [MINDM].left = theGadgets [COARSE] .left;
theGadgets [MINDM].right = theGadgets [COARSE].right;
strcpy(theGadgets[MINDM] .string,"- t min");

theGadgets [MINDP] .top = theGadgets [MINDM] .top;
theGadgets[MINDP] .bottom - theGadgets(MINflM] .bottom;
theGadgets [MINDP].left = theGadgets [FINE].left;
theGadgets [MINDP].right = theGadgets [FINE] .right;
strcpy(theGadgets[MINDP] .string,"+ t min");

theGadgets[MA.XDM].top - theGadgets[MINDM].bottom + gadgetBorder;
theGadgets[MAXDM] .bottom - theGadgets[MAXDM] .top + gadgetTall;
theGadgets[MAXDM] .left = theGadgets[MINDM] .left;
theGadgets [MAXDM].right - theGadgets [MINDM].right;
strcpy (theGadgets [MA.XDM].string, "- t max");

theGadgets[MAXDP] .top - theGadgets[MAXDM] .top;
theGadgets[MAXDP] .bottom - theGadgets[MAXDM] .bottom;

*theGadgets[MAXDP] .left - theGadgets[MINDP] .left;
theGadgets [MAXDP].right - theGadgets [MINDP].right;
strcpy (theGadgets [MAXDP] string, "+ t max");

1* independent scaling of axes */



ttieGadgets[x2] .top = theGadgets(M~AXDMI .bottom + 3 * gadgetBorder;
theGadgets EX2] .bottom = th~eGadgets CX21 .top + gadgetTall;
theGadgets[X2] .left = theGadgets(MAXDM] .left;
theGadgetsCX2J .rig'ht = theGadgets(MAXM] .right;

*strcpy(theGadgetsCX2].string," X * 2");

theGadgetsCX5] .top = theGadgetsCX2] .top;
theGadgets EX5] .bottom = theGadgets EX2] .top + gadgetTall;
theGadgets(X51 .left = theGadgets[X2] .right + gadgetBorder;
theGadgets fX5) .right = theGadgets £X5].left + gadgetWide;
strcpy(theGadgetsLX5].string," x / 21F);

theGadgets (Y2].top = theGadgets CX21 .bottom + gadgetBorder;
th~eGadgets (Y2] .bottom = theGadgets [Y2] .top + gadgetTall;
theGadgets(Y21 .left = theGadgets[X2] .left;
theGadgets 1Y2] .right = theGadgets EX2].right;
strcpy(theGadgets[Y2] .string," y * 2"1);

theGadgetsCY5] .top = theGadgetsCY2l .top;
theGadgets(Y5].bottom = theGadgets[Y2].top + gadgetTall;
theGadgetsCY5] .left = theGadgets[X5] .left;
theGadgets[Y5jJ.right = theGadgetsEX5] .right;
strcpy(theGadgets[Y5] .string," y / 2"1);

theGadgets (Z2] .top = theGadgets (Y2J .bottom + gadgetBorder;
theGadgets (Z2] .bottom = theGadgets (Z2] .top + gadgetTall;
theGadgets (Z2] .left = theGadgets CY2].left;
theGadgets EZ2] .right = theGadgets EY2) .right;
strcpy(theGadgets[Z2] .string," z * 2"1);

the~adgets[Z5] .top = theGadgets(Z2] .top;
t'-he~adgets(Z5] .bottom = theGadgetsCZ2) .top + gadgetTall;

*theGadgets[Z5] .left = theGadgetsCY5] .left;
theGadgets (Z51.right - theGadgets [Y5].right;
strcpy(theGadgets[Z5] .string," z / 2"9);

}I* end function gadgetData()*



/* FILE: getdata.c
/* Routines to get the curve and hull data. */

#include <Xll/Xlib.h>
#,Wude <Xll/Xutil.h>
#iIlude <stdio.h>
#include <strings.h>
#include <math.h>
#include "global.h"
#include "prototypes.h"

extern osCoord theData[MAXDATA];
extern int nData;
extern triangle theHull[MAXTRIANGLES];
extern intTriangle intHull[MAXTRIANGLES];
extern int nHull;
extern coordParams theCoordParams;
extern osCoord centerHull;
axtern int minDelta,maxDelta,numDelta;

/* The variables minDelta and maxDelta need some explanation. Here goes:
S* The data file which contains the (x,y,z) coordinate triples may have

an arbitrary number of triples in it. Typically, it's expected that there
•* would be MAXDATA triples there, since that's the largest number of data point
** that this program is designed to use. The variable nData would tell how
** many of those triples would be used. For instance, if nData were set to
"* 32, then every (MAXDATA/32)th triple would be used, and the others would be
** ignored. Now, the user may also specify that he wants to chop off part
•* of the curve: for instance the user might want to chop off the tail of
** the curve and view the convex hull of just the head. In that case, we
•* set minDelta to something larger than 1; for example, say minDelta = 3.
• *•hen of our 32 triples, the first and second would not be used. Now,
•**ata would have to be set to 30, since there are only 30 data points
S**eing used. The variables numDelta would be set to 32, signifying that

•* these 30 data points are a subset of the original 32. If numDelta =
•* nData, that means that the user wants to see all of the curve. If the
•* user wanted to also chop off the head of the curve, then maxDelta would
** be set to something less than 32. Note that we always shift the data
•* in the theData[] array so that the data we actually intend to use is
•* stored in indices 1 through nData. In this manner, all of this numDelta
•* confusion is avoided in all of the other subroutines of this program. */

void getData()
{

int i,j,counter,k,ratio,nFile,nToUse,extra;
float t,u[4],v(4],w[4];
float centerx,centery, centerz;
osCoord tempData;

/* open the data file */
FILE *fl, *fopen);
if ((fl = fopen("curve.data","r")) == NULL) {

printf("Unable to open file %s for reading.\n","curve.data");
exit (1);}

/* check to make sure the data file has enough data in it */
fscanf(fl,1"%d",&nFile);
if (nFile < 4) f

0rrintf("Insufficient data for generation of convex hull.\n");
Pxit (1);

/* if the user asks for more points than there are in the data file
•* then use all of the data in the data file; he'll have to be



** disappointed */
if (nFile < nData) {

nData = nFile;
printf

"Id"%c You have requested more data than is available in the data file.\n",7);
Kend if*/

/* Only read every ratio-th entry from the data file; note that we
** always_ use the first and last data point in the file, so that the
** entire curve will be seen *1
counter = 0;
ratio = nFile/nData;
extra = nFile - nData*ratio + ratio - 1;

/* read in the first nData-i data points */
for (i = 1; i <= nData-1; ++i) {

/* read this record and store it */
fscanf(fl,"%f %f %f",&theData[i] .x,&theData[i] .y,&theDatafi] .z);
counter++;
for (j = 1; j <= ratio-l; ++j)

/* read this record and ignore it */
fscanf(fl,"%f %f %f",&tempData.x,&tempData.y,&tempData.z);
counter++;

}/* end for j */
if (i <= extra ) {

/* read this extra record and ignore it */
fscanf(fl,"%f %f %f",&tempData.x,&tempData.y,&tempData.z);
counter++;

W/* end if */
}/* end for i */

/* read in the nData'th data point as the last record in the file */
counter+l;
(i = k; i <= nFile-1; ++i)

/* read this record and ignore it */
fscanf(fl,"%f %f %f",&tempData.x,&tempData.y,&tempData.z);
counter++;

}/* end for i */
i = nData;
/* read this record and store it */
fscanf(fl,"%f %f %f",&theData[il .x,&theData[i] .y,&theData[i] .z);
counter++;
fclose (fl);

/* if counter != nFile, then we screwed up somehow */
if (counter != nFile) {

printf("Error reading data file: quantity of data is in error.\n");
}/* end if */

/* chop off the bottom or the top of the curve at the user's request */
nToUse = maxDelta-minDelta+l;
for (i=l; i <= nToUse; ++i) {

theDatafi] = theData~minDelta-l+i];
}/* end for */
numDelta = nData;
nData = nToUse;

/* compute the center of the curve
centerx = 0.0; centery = 0.0; centerz = 0.0;
for (i = 1; i <= nData; ++i) {

centerx = centerx + theData~i] .x;
centery = centery + theData[i] .y;
centerz = centerz + theDatati] .z;

}/* end for */
centerx = centerx/(float)nData;
centery = centery/(float)nData;



centerz - center:! (float)nData;
centerHull.x - centerx;
centerHull.y = centery;
centerHull.z - centerz;

Oull - 0;
/* Just as you would in the routine chul].l... *
1* ADD THREE MORE TRIANGLES: THE COORDINATE AXES *

1* I have a problem here: the values of vcFront, et al, are computed
**in the function setEye() below, and I don't want to call that function
**every time I call this function. So really, the following code should
**be moved into its own function and called from main(). This is why
**getData() is currently called twice during the main initialization.
**Stupid mistake. *

1* the x-axis: */
theHull fnHull+l) .vlx = 0 .5*theCoordParams .vcFront;
theHull[nHull+l].vly = 0.0;
theHull[nHull+l].vlz = 0.0;
theHull(n.Hull+l].v2x = 0.0; theHull~nHull+l].v3x = 0.0;
theHull~nHull+1].v2y = 0.0; theHull[nHull+lJ.v3y = 0.0;
theHull[nHull+l].v2z = 0.0; theHull~nHull+l].v3z = 0.0;

1* the y-axis: *1
theHullfnHull+2].vlx = 0.0;
theHull [nHull+2] .vly = 0 .5*theCoord.Params.vcaight;
theHull~nHull+2].vlz = 0.0;
theHull~nHull+2).v2x = 0.0; theHull[nHull+2].v3x = 0.0;
the.Hull[nHull+2].v2y = 0.0; theHull~nHull+2].v3y = 0.0;
theHull~nHull+2].v2z = 0.0; theHull~nHull+2].v3z = 0.0;

' the z-axis: */
eHull[nHull+3].vlx = 0.0;

theHull[nHull+3].vly = 0.0;
theHull EnHull+3] .vlz = 0 .5*theCoordParams .vcTop;
theHull[nHull+3].v2x = 0.0; theHull[nHull+3).v3x = 0.0;
theHull[nHull+3].v2y = 0.0; theHull~nHull+3].v3y = 0.0;
theHullfnHull+3].v2z = 0.0; theHull[riHull+3].v3z = 0.0;

1* compute other aspects of the triangle data *
t = 0.333;
for (i = 1; i <= nHull+3; ++i)

1* compute the center of each triangle *
theHull(i].centerx = (theHull~i].vlx + theHull~i].v2x + theHull~i].v3x)*t;
theHull~i].centery = (theHull~iJ.vly + theHull(i].v2y + theHull[i].v3y)*t;
theHull[i].centerz = (theHullfi].vlz + theHull[i].v2z + theHulltil.v3z)*t;

/* compute the normal of each triangle *
u(1] = theHullfi].vlx - theHull(i].v3x;
u(2] = theHull~i].vly - theHull(i],.v3y;
u[3) - theHullfij.vlz - theHull[i].v3z;
v~l] = theHull(i].v2x - theHullti].v3x;
v(2] = theHull(i).v2y - theHull[i].v3y;
v(3] - theHullfi].v2z - theHull~i].v3z;
cross(u,v,w).; normalize(w,u);
theHull[iJ.normalx = u(l];
theHull~i].normaly =u[;
theHull~i].normalz =u3]

** end for */

/* the axes don't really have a unique normal, since they are lines *
for (i - nHull+1; i <= nHull+3; ++i)
theHull(i].normalx = centerx - theHull~i],.v3x;
theliull(i].normaly = centery - theHull(i].v3y;



theHull (i] .normalz - centerz - theHull. i] .v3z;
11* end for */

/*end function getData()*

1*COMPUTE THE CONVEX HULL *
void chull()

int~ i;
float t,u[4],v[4],w(4];
float centerx, centery, centerz;

nHull = hull3d(theData,theHull,intHujll,nData);
/* ADD THREE MORE TRIANGLES: THE COORDINATE AXES *

/* the x-axis: */
theHull (nHull+l] .vlx = 0.5*theCoordParms .vcFront;
theHulltnHull+lJ .vly = 0.0;
theHulltnHull+1].vlz = 0.0;
theHull~nHull+lJ.v2x = 0.0; theHull[nHull+l].v3x = 0.0;
theHullfnHull+lJ.v2y = 0.0; theHull[nHull+l].v3y = 0.0;
theHull[nHull+l].v2z = 0.0; theHull[nHull+l].v3z = 0.0;

/* the y-axis: */
the~ull[nHull+2].vlx = 0.0;
theHull (nHull+23 .vly = 0 .5*theCoordParams .vcRight;
theHull~nHull+2].vlz = 0.0;
the~ull~nHull+2].v2x = 0.0; theHull~nHull+2].v3x = 0.0;

*:HullrnHull+2].v2y = 0.0; theHull~nHull+2].v3y = 0.0;
* Hull~nHull+2].v2z = 0.0; theHull[nHull+2J.v3z = 0.0;

/* the z-axis: */
theHulltnHull+3].vlx = 0.0;
theHull~nHull+3].vly = 0.0;
theHull [nHull+3J .vlz = 0 .5*theCoordParams .vcTop;
theHull[nHull+3].v2x = 0.0; theHull~nHull+3].v3x = 0.0;
theHull~nHull+3J.v2y = 0.0; theHull[nHull+31.v3y = 0.0;
theHull~nHull+3].v2z = 0.0; theHull[nHull+3J.v3z = 0.0;

1* compute other aspects of the triangle data *
t -0.333;
for (i -1; i <= nHull+3; ++i){

/* compute the center of each triangle *
theHull~i] .centerx = (theHullifi).vlx + theHull[iJ .v2x + theHull[i) .v3x) *t;
theHull [ii .centery = (theHull(i] .vly + theHull~i] .v2y + theHull~iJ .v3y) *t;
theHull[i].centerz = (theHull~i].vlz + theHull[i].v2z + theHullti].v3z)*t;

1* compute the normal of each triangle *
u~l] - the~ullfi].vlx - theHull[i].v3x;
u[2)] theHull~i].vly - theHull~i].v3y;
u[31 - theHull[i].vlz - theHull~i].v3z;
v~l] = the~ull~i].v2x - theHull~i].v3x;
v[2] = theHull(i].v2y - theHull[i].v3y;
v[3) - the~ullti].v2z - the~ull~i].v3z;
cross (u,v,w); normalize(w,u);

0 theHull~i].normalx = u(l];
Wthe~ull~i].normaly =u2]
theHuJll~il.normalz-u(;

}I* end for */

1* the axes don't really have a unique normal, since they are lines *



for (i -nliull+1; i <= n~ull+3; ++i) f
theHull[i].normalx - centerx - theHull[i].v3x;
theHull [i] .normaly - centery - the~ull fi].v3y;
theHull[i].normalz = centerz - theflull~i].v3z;
~*end for *
)Wnd chull *

1* set the eye/see/light points *
void setEye()

float l,r,T,b,F,B; 1* left, right, Top, bottom, Front, Back *
float maxall;
int i;

1* compute maximum size needed for view cube *
F = -1.0e32; r = F; T = F;
B = 1.0e32; 1 = B; b = B;
for (i = 1; i <= nData; ++i)
F = max2 (F, theDat a i]x);
B = min2 (B, theData i].x);
r = max2 (r, theData i].y);
1 = min2 (1,theData i].y);
T = max2 (T, theData i].z);
b = min2 (b, theData iJ z);

)/* end for */

1* set the minimum/maximum initial values: *
maxall = max4 (fabs (F) ,fa~bs (B) ,fabs (r) ,fabs (1));
maxall = max4 (maxall,maxall,fabs (T) ,fabs (b));

*define the size of the view area, based on the size of the object
we just read in */

theCclw-,dParams.vcRight = maxall;
theCoordParams.vcLeft = -maxall;
theCoordParams.vcTop = maxall;
theCoordParams.vcBottom = -maxall;
theCoordParams.vcFront = maxall;
theCoordParams.vcBack = -maxall;

theCoordPara~ms.vrRight =0.4*maxall;

theCoordParams .vrLeft =-0. 4*maxall;
theCoordParams.vrTop =0.4*maxall;

theCoordParams .vrBottom =- . 4*maxall;

theCoordParams .osRight =20. 0*maxall;
theCoordParams .osLeft =-20. 0*maxall;
theCoord.Params .osTop =20. 0*maxall;
theCoord.Params .osBottom =-20. 0*maxall;
theCoordParams .osFront =20. 0*maxall;
theCoordParams .osBack =-20. 0*maxall;

theCoordParams.eye(1] =10.0*maxall;

theCoordParams.eye(2] 5.0*maxall;
theCoordParams.eye[3] 2.0*maxall;

theCoordParams.light[1] = 10.0*maxall;
theCoordParams.light(2] = 10.0*maxall;

0 ~odaaslgt3 = 10.0*maxall;
eCoordParams.see[1] = (F+B)*0.5;

theCoordParams.see[2] = (r+l)*0.5;
theCoordParams.see[3] (T+b)*0.5;



)*end function setEye()*

/krite out the convex hull data to a file, at the user's request *
v~ writeDatao(

int i;

FILE *fl, *fopeno;

if ((fl = fopen("hull.data","1w")) == NULL){
printf ("Unable to open file %s for writing.\n","hull.data"l);
exit (1);

1/* end if *

fpr4 ntf (fi1, "%d\n", nHull);
for (i1l; i <= nHull; ++i)
fprintf(fl,"%f %f %f %f %f %f %f %f %f\n",,
theHull~i] .vlx,theHull[iJ .vly,theHull(iJ .vlz,
theHull~i] .v2x,theHull~iJ .v2y,theHull[i] .v2z,
the~ull[iJ .v3x,theHull~i] .v3y,theHull[i] .v3z);

)/* end for *

fclose (fl);

}/* end function write()*



/* FILE: intix.c

** Initialize the connection to the X-server. */

/* X-windows include files: */
;Ulude <Xll/Xlib. h>
Wlude <Xll/Xutil.h>

/* Standard I/O include file: */
#include <stdio. h>

#include "global.h"
#include "prototypes. h"

/* Global variables: */
extern Display *theDisplay;
extern int theScreen;
extern int theDepth;
extern unsigned long theBlackPixel;
extern unsigned long theWhitePixel;
extern Colormap theColormap;

/* Function initX sets up the connection to the X-server and stores
** information about the environent. */void initX0(

/* Establish a connection to the X-server: */
theDisplay = XOpenDisplay(NULL);

/* Check to make sure the display opened okay: */
if (theDisplay == NULL) {

fprintf (stderr,
"ERROR: Cannot establish a connection to the X-Server %s\n",
XDisplayName (NULL));

exit (1);
}/* end if */

/* Find out what the default screen and it's (color) depth is.
** If theDepth == 1 then we have a monochrome system. */
theScreen - DefaultScreen(theDisplay);
theDepth = DefaultDepth(theDisplay,theScreen);
theBlackPixel = BlackPixel (theDisplay, theScreen);
theWhitePixel = WhitePixel (theDisplay, theScreen);
theColormap = DefaultColormap(theDisplay,theScreen);

}/* end function initX() */

/* Function getXinfo prints out information about the current X-Window
** display and screen. Entirely optional to include this, of course. */
void getXInfo()
{

printf("%s version %d of the X Window System, X%d R%d\n",
ServerVendor (theDisplay),
VendorRelease (theDisplay),
ProtocolVersion (theDisplay),

* ProtocolRevision (theDisplay));
if (theDepth == 1)

printf ("Color plane depth ..... %d (monochrome)\n",theDepth);
) else (

printf ("Color plane depth ..... %d\n",theDepth);



/*end if *

printf ("Display width ......... %d\n",DisplayWidth(theDisplaY,theScreefl));
printf ("Display height ...... %d\n",DisplayHeight (theDisplay,theScreen));

printf ("The display %s\n",XDisplayNamfe(theDisplaY));*

/*end function getXlnfo()*



/* FILE: hull.c
** Function to compute the convex hull of a set of 3D points.
** (Programming note: in this file the left-handed cross product function
** from the 3d.c file is used. Accordingly, the sign is changed here to
*•gake it a right-handed cross product.) */
#Mnlude <Xll/Xlib. h>
#include <Xl1/Xutil.h>
#include <stdio.h>
#include <math.h>
#include "global.h"
#include "prototypes.h"

/* Returns the number of points in the hull. *1
mnt hull3d(osCoord theData([],triangle theHull [], intTriangle intHull [],int n)(

int i,nHull;
nHull = GiftWrapping (theData, theHull, intHull, n);
return (nHull);

}/* end function hull2d() *1

/* -------------------------------------------------------------------------*
/* The giftwrapping algorithm, taken from page 128 of Preparata and Shamos. */
/* Note that I have modified the algorithm somewhat. Their version had */
/* some bugs.

/gypedef struct { int vertex[4]; } Triangle; */
/4ypedef struct { int vertex[3]; } Edge;

/* This function returns the (integer) number of triangles in the hull. */
int GiftWrapping (osCoord theData[ ],triangle theHull [], intTriangle intHull [ ],int

int i,numH,numQ,numT;
int freq[MAXDATA]; /* counts how often each point is used */
Triangle F,Fprime; /* F is a single facet */
Triangle Q[MAXTRIANGLES]; /* Q is a queue of facets */
Edge T CMAXEDGES]; /* T is a file of edges */
Edge t[4]; /* t is a list of the edges in F */
Edge e; /* e is a single edge */

/* set frequency count to zero; used for 2D degeneracies where the same
** point might get chosen over and over again, if we didn't try to choose
** the least-frequently-used points */
for (i=l; i<=MAXDATA-1; ++i) { freq[i] = 0; }

/* Q := empty set */
numQ = 0;

/* T : empty set */
numT - 0;

* find an initial starting facet */
-= 0;

findFirstFacet (theData,theHull, freq,n);
numH - storeh(F,theHull,intHull,theData,numH);

/* T <-- subfacets of F */



numT - addToFile(F,T,numT);

1* Q <MM F *1
numQ - push(F,Q,numQ);

*ile (numQ > 0) { /* while Q != empty set *1
F - pop(Q,numQ); numQ--;
getEdges (F, t) ;
/* for each e in t intersect T */
for (i-1; i<=3; ++i ) (

if (isCommon(t[i],T,numT))
e.vertex[l] = t[i].vertex[l];
e.vertex[2] = ti] .vertex[2];
Fprime = giftWrap(e,F,theData,freq,n);
numT = insertDelete(Fprime,T,numT);
if (numT > MAXEDGES-1) (

printf("%c ERROR: Insufficient workspace for computing edges.\n",7);
return (numH);

}/* end if */
numQ = push(Fprime,Q,numQ);
if (numQ > MAXTRIANGLES-1)

printf("%c ERROR: Insufficient workspace for computing hull.\n",7);
return (numH);

}/* end if */
}/* end if */

}/* end for each */
numH = storeh(F,theHull, intHull,theData,numH);
if (numH > MAXTRIANGLES-4) (

printf("%c ERROR: Hull consists of too many triangles for the storage allo
return (numH);

}/* end if */
}/* end while */

return (numH);
)/* end function GiftWrapping() */

/* Very loosely based on page 129 of Preparata and Shamos. */
Triangle findFirstFacet (osCoord theData[],triangle theHull [] , int freq[g ,
int numD)(

int i,pl,p2,p3;
float a[4] ,n[4] ,x[4] ,y[4] ,z[4] ,u[4] ,v[4] ,w[4];
float minz, extRho, rho;
Triangle theTriangle;

/* find the lowest point among all the data */
minz = theData[1].z; pl = 1;
for (i=2; i<=numD; ++i)

if (theData[i].z < minz) { minz = theData[i].z; pl =i;
}/* end for */

/* iteration #2:*/
/* x is in the direction of the x-axis */
x[l] - 1.0; x[2] = 0.0; x[3] = 0.0;

/* y is in the direction of the y-axis *1
y[l] - 0.0; y[2] - 1.0; y[3] = 0.0;

/* z is in the direction of the z-axis */
z[1] - 0.0; z[21 - 0.0; z[3] = 1.0;



extRho = 1.0e32; p2 = 0;
for (i=1; i<=numD; ++i) {

if (i == pl) { continue; }

/* v is the direction of the proposed first edge */
w[l] - theData[i] .x - theData[pl] .x;
w[2] = theData[i] .y - theData[pl] .y;
w[3] = theData[i].z - theData[pl].z;
normalize (w, v) ;

/* we want the edge which is 'most obtuse' to the x-axis */
rho = dotprd(v, x);
if (rho < extRho) {

extRho = rho;
P2 = i;

}/* end if *I

}/* end for */
if (p2 == 0)

printf("%c ERROR: Unable to find second starting point.\n",7);
exit (1);

}I* end if */

/* iteration #3:*1
/* u is the direction of the edge we found above */
w[l] = theData[p2] .x - theData[pl] .x;
w(2] = theData[p2].y - theData[pl].y;
w[3] = theData[p2].z - theDatatpl].z;
normalize (w, u) ;

extRho = 1.0e32; p3 = 0;
f or (i=l; i<=nu;D; ++i)

if ((i == pl) (1 (i == p2)) { continue; }

/* v is the direction of the proposed second edge */
w[l] = theData[i].x - theData[pl].x;
w[2] = theData[i].y - theData[pl].y;
w[3] = theData[i].z - theData(pl].z;
normalize (w, v) ;

/* n is the normal of the proposed first face */
cross (u, v, a); normalize (a, n);

/* we want the normal to be 'most obtuse' to the x-axis */
rho = dotprd(n,x);
if (rho < extRho) {

extRho = rho;
p3 = i;

}/* end if */

}/* end for */
if (p3 == 0)

printf("%c ERROR: Unable to find third starting point.\n",7);
exit (1);

}/* end if */

theTriangle.vertex[1] = pl;
theTriangle.vertex[2] = p2;
theTriangle.vertex[3] = p3;

eq[pl]++; freq[p2]++; freq[p3]++;
turn (theTriangle);

I



/* only add F to the T file if it's not already there *
int addToFile(Triangle F,Edge T[J,int numT)

int numVl, numV2, a;
Vti,j;
*r(i-1; i<-3; ++i)
if U-==) { numVl = F.vertex[l]; numV2 = F.vertex(2];
if (i==2) f numVl = F.vertex(2); numV2 = F.vertex(3];
if (i-=3) f numVl = F.vertex[3]; numV2 = F.vertex[1J;
a = False;
for (j=2.; j<=numT; ++j)
.if (((numVl ==TfjJ.vertex[l]) && (numV2 ==T~j].vertex[2])))

II1 ((numVl = T~j].vertex[2]) && (numV2 ==T[j].vertex[1J))))

{a=True;
/*end for j*

if (a == False){

T[numT].vertex[1] = numVl;
TfnumT].vertex(2] = numV2;

)/* end if *
}/* end for i *
return (numT);

/* push a face onto the stack ONLY if it's not already there *
mnt push(Triangle F,Triangle Q[],int nuinQ)
f mnt i,facelsNew;

mnt s[4],t[4];

facelsNew = True;S11 = F.vertex[l); s(2] F.vertex[2]; s[3] = Fvre[)
Or (i1l; i<= numQ; ++i)
t~ll = Q[i].vertextl]; t[2] = Qfi).vertex[2]; t[3] =Q~i].vertex[3];

if
(((s~l]==t~l]) && (s[2]==t[2]) && (s[3]==t[3])))
II((s[l]==t[l]) && (s[3]=t[2]) && (s[2]==t[31))

11 ((s[2]==t[l]) && (s(l]==t(2]) && (s[3]=t[3]))
11 ((s(2]==t[l]) && (st31==t[271) && (stl]==t(3D))
11 ((SE3]==t~lJ) && (s[l)==t[27j) && (s[2]==t[3]))
11 ((s[3)==t[l]) &&, (s(2]==t[2]) && (s(l3==t[3l))

(facelsNew = False;
/*end for */

if (facelsNew){
numQ++;
Q~numQ].vertex[l] = F.vertex(l];
Q(numQ].vertex(2] = F.vertex[21;
Q~numQ].vertex(31 = F.vertex[3];

}/* end if */
return (numQ);

/* pop a face off the stack *
Triangle pop(Triangle QH],int nuxnQ)

Triangle F;
~vertex(l] = Q[numQ].vertex(l];
Wvertex[2] = Q[numQ].vertex[2);
#'vertex[3] = Q~numQJ.vertex[3);
return (F);



1* find out which edges belong to face F *
void getEdges (Triangle F,Edge t[1)

@11] .vertex[lJ = F.vertex[l];
t(1J,.vertex[2J = F.vertex[2);

t[2].vertex~l] = F.vertex[2];
t[2).vertex[2] = F. vertex [3 );

t[3]..vertexfl] = F.vertex(l];
t[3]-.vertex[2] = F.vertex[3];

/*see if edge at is in the list of edges T *
int isCommon(Edge at,Edge T[),int numT)

mnt j,a;
a = False;
for (j=l; j <= numT; ++j)

if (((at.vertex(lJ = T(j].vertex(l]) && (at.vertex[2] ==T[j].vertext2]))

II((at.vertex~l] ==T[j].vertex[2]) && (at.vertex[2] ==T~j].vertex~l])))

{a=True;
1*end for j*

return (a) ;

/Mery loosely based on page 127 of Preparata and Shamos. *
T ngle giftWrap(Edge e,Triangle F,osCoord theData[],int freq[]int numD)

int i,k;
osCoord pl,p2 ,p3;
float u[4] ,vE4J ,w[4J ,n(4],E(4),af4] ,rho,extRho;
Triangle newF;

/* find out which point of face F is not in edge e
for (i1l; i <=3 ; ++i) (

if ((F.vertex[iJ != e.vertex~l]) && (F.vertex[iJ ! e.vertex[2])))
k = i

/*end for *

pl.x = theData~e.vertextl]].x;
pl.y = theData(e.vertexrl]].y;
pl.z = theDatale.vertex~l]].z;

p2.x = theData~e.vertex(2]].x;
p2.y = theData~e.vertex[2]).y;
p2.z = theData(e.vertex[2]].z;

p3.x = theData[F.vertex~k]].x;
p3.y - theData[F.vertex[k)].y;
p3.z = theDataLF.vertex~k]].z;

1* E is one edge of the face we are wrapping around *
Etl] = p2.x-pl.x; E(21 = p2..y-pl.y; E[3] = p2.z-pl.z;

* n is normal to the face we are wrapr~ing around */
v(1] - p3.x-pl.x; v[21 p3.y-pl.y; vL..] - p3.z-pl.z;
cross (E, v, w); normalize (w, n) ;



extRho = 1.0e32; i=0;
for (k=l; k<=numD; ++k)

if ((k==F.vertex[l]) II (k==F.vertex[2]) I (k==F.vertex[3])) { continue; }
wil] = theData[k].x-pl.x;

Sw[2] - theData[k].y-pl.y;
Ww[3] = theData(k].z-pl.z;

normalize (w, v);

/* a is normal to both E and v, which are on the proposed new face */
cross (E, v, w); normalize (w, a);a[l]*=(-l.0); a[2]*=(-l.0); a[3]*=(-l.0);

/* we want the proposed new face to be 'most obtuse' with the old face */
rho = dotprd(n,a);
if (rho < excRho) {

extRho = rho;
i = k;

} else {
/* in case of a tie, choose the point least frequently used; this
** ensures that as many points 'on the curve' as possible will be
** used in the convex hull --- this is important for 2D degeneracies */
if (rho == extRho) {

if (freq[k] < freq[i]) {
i = k;

}/* end if */
}/* end if */

}/* end if-else */

}/* end for *1
if (i == 0) {

printf("%c ERROR: Unable to giftwrap. Degenerate problem?\n",7);
exit (1);
/* end if */

newF.vertex[1] = e.vertex[t];
newF.vertex[2] = e.vertex[2];
newF.vertex[3] = i;
freq[i]++;
return (newF) ;

'* if an edge of face F is in the list T, then delete it; else add it */
.nt insertDelete(Triangle F,Edge T[],int rumT)

int numVl,numV2,a;
int counter, filled[MAXEDGES];
Edge tempT[MAXEDGES];
int i,j;

for (i=1; i<=numT; ++i) { filled~i] = True; }
for (i=l; i<=3; ++i) (

if (i==1) { numVl = F.vertex[l]; numV2 = F.vertex[2]; }
if (i==2) { numVl = F.vertex[2]; numV2 = F.vertex[3];
if (i==3) { numVl = F.vertex[3]; numV2 = F.vertex[l];
a = False;
for (j=l; j<=numT; ++j)

if (filled[j] == False) { continue; }
if (((numVl == T[j].vertex[l]) && (numV2 == T[j].vertex[2]))

* I I ((numVl == T(j].vertex[2]) && (numV2 == T[j].vertex[l])))
{ a-True; filled[j] = False; /* delete this element from the list */}

}/* end for j */
if (a =- False) { /* add this element to the list */

numT++;
filled[numT] = True;



T(numT].vertex(l] = numVl;
T~numT].vertex[2] = numv2;

)/* end if *
/*end for i *

*re-compress the list *
counter - 0;
for (i1l; i<=numT; ++i)

if (filled~i]) f counter++; tempT~counter] =T[i];}

}/* end for */
for (i1l; i<=counter; ++i)

T[i] = tempT~i);
)/*-lend for *

return (counter);

/* store the triangle F as a set of 9 floating points numbers (three
** vertices) as well as 3 integers (the points on the curve) */
int storeh (Triangle F,triangle theHull H, intTriangle intHull (3,osCoord theData (3

theHullfn] .vlx = theData(F-vertex~l)]].x;
theHull~n] .vly = theData[F.vertex~l1 Iy
theHull~n] .vlz = theData[F.vertexfl]] .z;

theHull(n] .v2x = theData(F.vertex[21]].x;
theHull~n] .v2y = theData[F-vertex[21].Y
theHull~n] .v2z = theData(F.vertex[2)] .z;

SeHull~n].v3x = theData[F.vertex[3JJ.x;
eHull (nJ.v3y = theData[F.vertex[311 .y;

theHull~nJ .v3z = theData[F.vertex[31]].z;

intHull[n].pl - F.vertex(1);
intHull~n].p2 = F.vertex[2];
intHull~n].p3 = F.vertex(3];

return (n);
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Points eye and see are given as input.
Tne view plane is defined to toe orthogonal to eyesee.
The point c is defined :o :e tne center of the view plane.. Tne view planes y-axis is round oy projecting tne ooject space z axis Dac< towaras zne eye Doint.
The view planes x-axis is tnen perpendicular to bCM ye~see and its y-axis.

eye

DVI (1,01)

y ."

see

y

X

SDVI1. (0,0)

The point v can oe represented In four different coordinate systems:
I) The three dimensional object space coordinates.
2) The two dimensional view plane coordinates.
3) The two dimensional device independent coordinates, with (0,0) at the lower left corner or the view

rectangle and (1,I) at the upper rignt corner of the view rectangle.
4) The two dimensional device dependent coordinates, representing locations of pixels on t.Ie computer

screen.

Figure 21. 3D to 2D Transformation



3 Some General Results Related to Equivalence Classes of Composites in 2D-elasticity

and in the Theory of Plates

In the context of the reported effort, a further development was made of an observation

[7] dated back to 1984 regarding the equivalence between strains arising in plates with tensors

.0+ dT, d = const (see (36)) of stiffness.

A similar equivalence also holds for composite plates. Assume, for instance, that

isotropic composite with moduli k,ji is generated by isotropic constituents with moduli kjAl

and k2,jh2, respectively. If we now apply the constituents with moduli k, - d,, 1 + d and

k2-d, m2 + d, d = const, then the same composite (i.e. composite of the same microgeometry)

will possess moduli k' = k - d, 1' = ,& + d. In other words, the Young's modulus k' + 14" of

such composite will remain the same as before whereas the Poisson's ratio A =
g, +k"

+d+(k--d)= k + will differ from the original value . Particularly, this means

that the effective Young's modulus for an isotropic elastic material containing voids is

0 independent of the Poisson's ration of the matrix material [8]. This effect have been recently

observed by Day, Snyder, Garboczi and Thorpe [9] as well as by Thorpe and Jasiuk [10],

through numerical simulation. Various extensions of this result are about to come, specifically

in the context of a shape optimization.
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4 Status of the Research Effort

At this point the mathematical technique has been developed making it possible to

analytically specify microstructures appearing in the optimal layout of materials for systems

described by elliptic equations of the 2nd and 4th order with material constants treated as

controls. The results obtained provide a theoretical basis for a subsequent implementation of a

direct approach which promises drastic simplification in the numerical computation of optimal

layouts. This computation will then be direct, i.e. based on the list of special laminar

microstructures from which the global layout will be assembled with the aid of standard

numerical procedures.

The effort in its present state has been shown to provide bounds and microstructures for

several new situations never treated before. At the same time, the concept introduced here is

expected to apply to a wide range of physical problems, including problems of optimal design.

For this reason, a major theoretical development of this approach is anticipated. Specifically,

* stemming from the prior work, we expect to develop a general theory of quasisaddlification for

integrands depending on two gradients. More precisely, the necessary and sufficient conditions

for the integrand guaranteeing attainability of sup inf for functionals of the type (11) should

be found. Secondly, the extension of the method to more than one physical field, i.e. fields of

temperature and stress, etc., should be pursued. Also, the linkage between quasisaddlification

and quasiconvexification should be investigated. All these issues will be treated in the sequel

and will form the content of the renewal of this grant.
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On a General Concept in Optimal Material Layout

K. A. LURIE

Abstract. The proposed paper is intended to develop a methodology
for the determination of optimal structural characteristics of elastic
bodies designed for work in a variety of external conditions (load,
static and dynamic regimes, loss of stability), or under the action of
c-moined physical fields (stresses and temperature, electric and mag-
.. etic fields, etc.). By the term structural characteristics we mean the
elastic constants, heat and electrical conductances and other similar
parameters varying with position; also, the problems of optimal dis-
tribution of thickness of elastic constructions, i.e., plates and shells,
and of holes and cavities in elastic bodies could as well be formulated
along similar lines. The structural characteristics (controls) are in all
cases assumed to admit values belonging to some admissible set U.

The cost (objective) functional is assumed to be any weakly semi-
continuous functional of the solutions to the corresponding boundary
value problem; also, it may depend explicitly on the design parame-
ters. (The assumption of weak semicontinuity is rather nonrestrictive:
it is satisfied for many typical cost functionals used in practice.) The
constraints are imposed on the design parameters as well as on the
variables characterizing the system's behavior relative to each physi-
cal field considered.

The method of solution is construciive; it provides an effective
procedure of immediate transformation of optimization problems to
their relaxed form, which ensures that they are well-posed, e.g., the
existence of the optimal structural characteristics (controls). This
fundamental step has hitherto been committed with the aid of the
so-called G-closures of the original sets U of admissible controls.
Since the G-closures are known for a very restricted set of examples
and the construction of the new ones provides substantial difficulties,
it is impractical to rely on them for problem relaxation. The tech-
nique developed in this study is intended to avoid any reference to
G-closures at all.
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In essence, what is really needed is the specific relaxation adapted
for the particular optimization problem considered. We propose be-
low a constructive method of such a relaxation; based on that we also
propose a numerical procedure, along with a computer implementa-
tion of the procedure, which will permit a designer to find the optimal
materials layout and to present a required design in a form convenient
for practical use. This new approach is more feasible because it re-
quires significantly less information than the G-closure approach.

Introduction. The development of the general theory of structural op-
timization has by now passed through two stages. The first period may
be called naive: it has been characterized by a firm belief in the power
of the necessary conditions of optimality per se with almost no regard to
the existence considerations. The necessary conditions were intended
to describe potentially optimal regimes, and it only remained to as-
semble them to form an optimal pattern of materials. This reasoning
has also motivated the wide-spread conviction that the preliminary dis-
cretization of the problem combined with subsequent use of nonlinear
programming would generally make it possible to determine the optimal
control.

This entire concept has turned out to be unjustifiable: first, it has been
disproved by a thorough analysis of the necessary conditions (1] and*
later by a careful inspection of numerical procedures associated with
the initial discretization [2], [3].

Physically speaking, failure of a naive approach is closely connected
with the remarkable phenomenon of the appearance of microstructures
in the process of formation of the optimal materials layout. This phe-
nomenon may be illustrated by the following example related to the
distribution of temperature in a heat-conducting medium.

Assume that we are given two isotropic materials with differing heat
conductances; the materials should be placed in a given domain 0 so
as to maximize a certain functional associated with the distribution
of temperature caused by some fixed system of sources under some
set of boundary conditions. For such a functional, one may choose
the mean square difference between the actual and desired temperature
distributions, or the heat flux across some particular part of the domain's
boundary.

To obtain the required temperature distribution, it is necessary to
facilitate the conditions for the heat to flow in some selected favorable
direction, and to inhibit this flow along the perpendicular direction; all
this must be done at every point in the region. This implies that the

0
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heat conductance of the required medium must at every point be depen-
dent on direction; i.e., it must be a tensor function of the coordinates,
and the material itself must be anisotropic. The difficulty which now
arises is that we have no appropriate anisotropic materials among the
originally given compounds, which are themselves isotropic. The only
alternative is to build the required medium artificially by assembling
some microstructure from the given compounds. The simplest example
is provided by a laminate composite; its effective conductances along
and across the layers differ from one another. It must be added that
the problem in question does not contain any parameter which might
restrict thickness of initial materials from below, e.g., the width of lay-
ers in a laminate. We must therefore expect that the optimal value of
a functional will be attained for an infinite partitioning of the domain
(or some part of it) into parts occupied by various original compounds.
(See Figure 1.)

I I ----

U 1 j* ___ -1,

Alternating
layers of it I and u,

composite

FIGURE 1. Optimal materials layout for torsion problem

Mathematically, the inconsistency of a naive statement could be made
evident by a careful inspection of the set of necessary conditions of op-
timality. Consider for example the problem of torsional rigidity of an
elastic prismatic rod of cross-section S; its torsion rigidity I is equal
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to

(1) I=2fwdx, x=(xx2),

where w denotes Prandd's function, i.e., the solution of the boundary
value problem

(2) V. D(x)Vw = -2, W1as=O,

(3) D(x) = u(x)E.

Here, u(x) denotes the elastic compliance of the rod's material at the
point x E S, and E denotes a unit tensor.

It is necessary to choose the function u(x) so as to maximize the
rigidity I of a rod if the mean value u0 of its elastic compliance and
the interval (u, ,U 2z of the admissible values of u(x) are fixed:

(4) u, !S U(X) <_ u2,

(5) j u(x) dx = u, meas(S),

(6) 0<u1 U <u<U0 <u 2 <o0.

This problem has been examined in [4] where it has been shown
that the necessary condition of Weierstrass requires that the optimal ,
layout can only include the limiting values uI and u2 of compliance V
in accordance with the rule

(7) u=u1 , if (Vw) 2 > u2/u 1,

(8) U=U 2 , if (Vw)2 < KU 1/U2 .

Here, the constant K > 0 denotes the Lagrange multiplier associated
with the integral constraint (5).

Because u1/u 2 < I , from (7), (8) we deduce that none of the sta-

tionary regimes can be optimal provided that the values (Vw)2 belong
to the banned interval (Ku1/u 2 , KU2/U2/). On the other hand, those
parts of S whiczh are occupied by u, and u2 materials are separated
by some line r with normal n and tangent t; across this line, the
value of (Vw)2 suffers a jump. The latter can be determined from thecontinuity conditions

(9) [Vw t], = 0,

(10) [uVw. n1 = 0,

where [-] I = [']2 - [']1 denotes the jump of a quantity within the square
brackets.
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From inequality (7) taken at some point close to F on that side of
F where u = uI we deduce (bearing (9), (10) in mind) that

(11) K < 2 [(Vw) = [(Vw)2]2 + [Vw .t] 2 L u -U2)
U, U1  (U 2  U

The latter condition can be made compatible with inequality (8) only
provided that

(12) Vw. t = 0.

Both inequalities (7), (8) are then fulfilled as strict equalities on each
side of F.

The latter curve should thus satisfy both conditions (7) and (8) si-
multaneously; this makes the problem of finding it overdetermined and
therefore contradictory. Formally, the situation is as if the position of
this curve and its slope were to be determined each from a separate in-
dependent equality. Such a problem is known to be unsolvable in a class
of smooth curves. One may expect that the solution might exist among
the generalized curves whose windings would be dense within a set of
nonzero measure. The correct layout is in fact illustrated in Figure 1.

The latter observation has found support in the analysis of numerical
data associated with the attempts to apply nonlinear programming to the
originally discretized version of the optimization problem. The numer-
ical procedure has failed to display any evidence of convergence; rather,
it has demonstrated fast oscillating behavior of the materials' layout. In-
creasing the accuracy of the calculations and refining the discretization
may lead to a substantial instability resulting in a completely different
pattern. These observations, [2], [3], have shown that the computational
procedure should be chosen in accordance with existence considerations
which could be the only ones to guarantee necessary convergence of a
numerical scheme.

In the course of successive approximations to the optimal pattern, the
so-called chattering regimes of control have been discovered to appear.
Applied to problems like those described above (and many related ones
containing controls in coefficients, see equation (2)) this implies the ap-
pearance of infinitely many small zones occupied by different regimes of
control (i.e., by different materials). The interfaces of such subregions
form a set which is dense within some well-expanded part of the orig-
inal domain. In this specific sense, we could speak about generalized
curves separating the two types of material. This is nothing but a real-
ization of an old idea by L. C. Young, [5], applied to the specific type of

0
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problems considered here. Such a layout is nothing but what has been
identified above as a microstructure; we have thus justified numerically
the physically expected distribution of controls.

The chattering regimes appear almost inevitably whenever we attempt
to build up the optimal layout of two or more materials. This is be-
cause the multidimensional problems, e.g., problems related to rods,
plates, shells, and three-dimensional bodies, are associated with vector
and tensor fields (currents, strain, stress, etc.), and the corresponding
optimization problems are concerned with the optimal formation of
such fields. The latter are associated with one or more advantageous
directions at each point; for this reason, to provide an effective control,
we need a certain type of anisotropic medium, and this is generally not
at the designer's disposal. To form it up, one has to introduce chat-
tering regimes, and this is what really happens when we construct a
minimizing sequence of controls.

In other words, the chattering regimes appear whenever the origi-
nal set of admissible controls does not contain the required anisotropic
medium; mathematically, we say that this set does not possess some
specific type of closure property. Applied to the optimization problems
considered here, it means that the set of admissible controls should in-
clude, along with the original constituents, all the composites assembled
from them. This new set of controls, emerging from the original set U,
is called the G-closure of U and designated GU (see [7] where this
notion was first introduced). The set U is called G-closed if U = GU;
generally, U is contained in GU. In many applications, the origi-
nal sets U of controls are not G-closed, and the problem arises of
constructing their G-closures. For a number of important examples,
mostly associated with the second-order operator V- uV, G-closures
have been built explicitly, [8]-[19]. Associated with this problem is the
second stage of the theory's development. The reason is that the optimal
control generally belongs to GU rather than to U. In other words, the
necessary conditions of optimality, among them the Weierstrass condi-
tion, would now be noncontradictory provided that the admissible set
U of controls coincides with its G-closure.

This approach will be illustrated by an example from the theory of
heat. Consider the following problem of optimal control [6].

We consider a plane rectangular domain (-a < x <_ a, 0 -< y S 1)
(see Figure 2; note that line segments dividing the regions in this figure
might in fact be curved arcs). Across its upper boundary rI (y = 1)
there flows a uniform flux of unit intensity, and other parts of the bound-

0
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heat flux entering r,

F2 •laminate laminate 2

r3 ]window F0

FIGURE 2. Heat flux being focused towards a window

ary are either thermoisolated, i.e., free of heat flux (these parts will be
designated by r 2), or the temperature along them will be kept equal to
zero (such parts will be denoted by r 3). The temperature distribution
is assumed to depend only on the coordinates x, y. The domain is
occupied by two isotropic materials whose specific thermal conductiv-
ities are given by u_ and u+ respectively, with 0 < u_ < u+ < 3.
The temperature distribution can be found from the boundary value
problem

(13) q = -D(x, y). VT,

(14) V.q=0,
(15) D(x, y) = [ux-(x, y) + u+X+(x, y)lE,
(16) q-n=-- on r,

(17) q.n=O on" 2 ,

(18) T=0 onF 3 ,

where n denotes a unit vector along the outer normal to the boundary,
E a unit tensor and X_, X, characteristic functions of the subdomains
S_ and S, of S occupied by the u_ and u+ materials, respectively,

1 if(x,y) E S+,
(19) -(x, y) = 0 if (x, y) 0 S+-.

We desire to distribute the materials in such a way that the functional

(20) 1= f p()q, n(F) dr
al 3

attains its maximum value. Here, p(r) denotes a weight function, and
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might be chosen, for instance, so as to "focus" the heat flux onto some
portion of F3 .

Particularly, if this function is given by

(21) p (r)= if(x,y)EFoc3

then the problem reduces to that of maximization of a heat flux through
the "window" F0 on the boundary of a plane domain. (See Figure 2.)

To determine the optimal distribution of materials, we will introduce
the G-closure of a set U of controls; the latter is defined here as

(22) U = {u_, u÷}.

The GU-set is the set of tensors Do = dielel + d2e2e2 of effective heat
conductances of all composites assembled from the elements of U. The
invariant description of GU is given below by the following inequalities
[12], [14] (see hatched region in Figure 3):
(23) u_ d,< <d2<u+.

_ U_ _+u+ -d 2 -

Particularly, for d = u-u÷/(u_ + u+ - d2) we have laminates as ele-
ments of GU.

d ,di

..........-

GUI _ It

I I

I _

-_It

FIGURE 3. Invariant description of GU

In order to maximize the value of I we should choose among the el-
ements of GU the corresponding composites to be placed at each point
of the domain. In other words, we have to find the proper point (AI-, ,-2)

0
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within the figure in the (dI , d2)-plane restricted by a set of inequalities
(23), as well as the angle (p which characterizes the orientation of the
unit vectors e, and e,:

(24) e, = icos 9 + j sin P,

(25) e2 = -isin( + jcos 9.

The original problem (1 3)-(2 1) should now be reformulated; instead
of equations (13), (14) we must use the relationships

(26) q = -Do(x, y). VT, V q = 0,

with Do(x, y) subject to the inequalities (23).
Making use of the conventional procedure of the calculus of varia-

tions we now introduce the augmented functional

(27) J fp(r)q. n(r) dr+f •V -DoVTdx dy

where 2 = 2(x, y) is the Lagrange multiplier, taking into account the
heat equation

(28) V. Do -VT = 0.

The conjugate system for 2 is written down in the form

(29) V.Do V= 0,

(30) n.Do-VA=0 alongfI andF 2 ,

(31) A = p(F) along r"3 .

The necessary conditions show that the second inequality (23) must
in fact be an equality; in other words, stationary composites may only be
laminates. If we denote by 2X the angle between the vectors VT and
V2 then the necessary conditions dictate the following classification of
regimes:

(32) At=2 2 =u+ iftan X<5+ u ,

(33) Al=2 2 =u_ if tanŽ X u.2,/Zl

(34) U+u~ld, tan F if u+u~<ax Vut/u.

The optimal distribution of materials is thus characterized by a zone
of highly conducting u+ material provided that the directions of the
gradients VA and VT are close to each other, by a zone of low con-
ducting u. material if these directions are almost antiparallel, and by
a zone of anisotropic laminate if the vectors are almost perpendicular
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to each other (see Figure 2). Within this latter zone, the layers bisect
the angle between the two gradient vectors; the optimal laminate tends
to rotate the vector of heat flux to maximum possible extent.

One can observe that for a relaxed statement we obtain three regimes
of control instead of two, as in a naive formulation of the problem. The
new regime (34) is associated with a composite buihi from the original
components. The domain filled in by a composite corresponds to the
interval ( uju, V-/u_) of tanX which was prohibited in the
nonrelaxed formulation.

This example illustrates how the optimal control could be evaluated
provided that the GU-set has already been constructed starting from a
given U-set.

Such a construction of GU is itself a difficult problem: it has been
solved only for a few examples (almost all of which are listed in [6]).
Describing G-closure is the same as describing a body in the space of
invariants of the tensor of effective constants characterizing all possi-
ble composites assembled from the original elements in the U-set. The
space of invariants can itself be high-dimensional; its dimensionality
equals 18 for a general tensor of elastic constraints in three-dimensional
problems. The body in question should have as its boundary a manifold
in 17 dimensions. Above that, this manifold will be piecewise continu-
ous, since various parts of it are described in different analytical terms. *
In summary, one will arrive at the conclusion that the use of G-closures ,
for obtaining analytical information about optimal regimes is far from
being practical.

At the same time, for many applications there is no need to know the
G-closure in full. If an elastic body is subjected to some fixed system
of loads, then with a corresponding optimal design we shall associate
some well-defined field e of strain. The tensor D of elastic constants
enters the problem only through Hooke's law a = D-e, e.g., through its
projection along the strain e. We therefore need not know the entire
tensor D; rather we require some linear combination of its components.
For this reason one could look for a method of relaxation which would
provide us with exactly the required combination, without any reference
to G-closure since this set is not necessary for our specific purposes. We
will see that this will be associated with a substantial reduction in di-
mensionality and therefore will leave more computational resources for
considering more sophisticated problems, e.g., those involving a variety
of external conditions.
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New approach [201. This approach will be illustrated by the same ex-
ample as used to explain the G-closure approach. This time, however,
we will not refer to the G-closure given in this specific case by inequal-
ities (23).

We start with a reformulation of the constrained optimization prob-
lem (13)-(21) in terms of a max-min control problem. Introducing the
Lagrange multiplier .(x, y) corresponding to the equation V. D. VT
0 it is easy to show that the problem

(35) supI
U

under the additional constraints (1 3)-(18) is equivalent to

(36) sup infJ
u,T A

under the side conditions (18) and

(37) Ay.o = p(x).

Here, the functional J is defined as

(38) J=- f (x, 1)dx+ uV2.VTdxdy.

For the functional (38) we will construct two types of estimates.
The upper estimate will be built with the aid of a special mathemat-
ical technique, i.e., the combination of a preliminary estimate of the
type sup infJ < inf sup J, followed by an additional estimate based
on a new transform of the integrand. This transform provides a new
function which is pointwise greater than or equal to the original, We
have specifically

sup inf J = sup sup infJ <5 sup inf sup J
u.TA T u - TA U

(39) =-supinf[-f A(x, l)dx+ifG(VT,V•/)ddx1dy

(40) G(C, 7)A{ý/) if- 1 2O

u_ • /if .<0;

here we introduced the notation

(41) =VT, tj=.
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Inequality (39) will be strengthened if we apply the transform
G"*(ý, 1) -__ supsupinfia. + b. - + A(•t r72 -•r

(42) A b a
- inf sup~a. + b -7 + .4(ýt 12 - ý271)- ( , )]

and use the property
(43) G(,•)>G• /

which is valid provided that G(ý, 1) is convex in the q-variable (which
is the case for the specific function (40)).

The calculation shows that

u, cos 2X, 0<tanx < u/U,

(44) G'(*, ,~ ~ (u+ + u_) cos2 X - V i sin 2X,

Vu_.u+ < tanX u.

u_ cos2x, -+/u tan X < c.

Here, 2X denotes the angle formed by the vectors V = VT and q =V
at the corresponding point (x, y).

It can be checked directly that the inequality (43) holds. We arrive
at the inequality

(45) supinfJlsupinf l)dx+ G--(VT, VA) dxu, T A T A [ -fL - IfI

which is the required upper bound.
On the other hand, the functional sup., T infl J may be estimated

from below if we evaluate it for some specific microstructure; let D. =
dte tet + d2e2e, be the tensor of its effective heat conductances. Assume
that Do is chosen according to the following rule: (a) for 0 < tan X <

\u/u+ we set Do = u+E (pure u+ material), (b) for u'++u_

tanX <x:x we set Do = u E (pure u material), and (c) for U/u 4

< tanx Y "5/u we apply a layered composite whose tensor Do has
eigenvalues

(46) d, = [mu-t + (I - m)u-']-,

(47) d2 = Mu+ + (l - m)u_,

and where the eigenvector e2 bisects the angle 2X between VT and
V2. The concentration m in the latter case will be chosen in accordance
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with the rule

(48) u~u_/d, = tan X.

Now we have to use the integrand VT. Do•V instead of uVT. VA7
in the original setting; we have finally
(49)

SU+cos2x 
, 0 _< tanX _ u/- k ,

(u~+ +_)cos 2x - x/w.u sin2x,

VTD 0 .VA = IVTI JVAJ u/u- - sinX 2 ,

Fu___/u + <_ tan X :_ Vi•/u_

u_cos2X, u+/u_ _ tanX < .

Comparing this with (44) we see that the two bounds, upper and lower,
of the functional sup,, r infA- J are coincident, which means that the
desired supremum is attained and is equal to

(50) maxmin [j A(x, l)dx+ G--(VT, VA.)dxdy]

One can see that the variety of optimal regimes offered by (44) does
not differ from that provided by (32)-(34), the latter deduced from the
explicit formulas (23) for a G-closure. In other words, both procedures
lead to the same results when applied to a specific problem of optimiza-
tion.

Other applications. The direct approach developed here can be ap-
plied to a wide class of optimal design problems. In this respect, special
mention should be made of elastic rods, plates, and shells as the most
widely used constructive elements. For all these, the spatial distribution
of materials possessing different values of elastic moduli presents a very
effective controller. For plates and shells, a similar role is played by the
distribution of thickness along their midsurfaces. The latter problems
could equally well be associated with the desire to save as much material
as possible. The total cost of material used is also of great importance;
a strong material is often more expensive than a weak one, and one
may wish to make the combined construction be the strongest of all
affordable. There is little physical intuition concerning optimal distri-
butions of materials or thickness along the midsurfaces of plates and
shells. The experience already gained (much of it having come directly
from engineering practice) shows that such designs are characterized by
the formation of microstructures, e.g., grillage-like systems of ribs for

0
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a plate of variable thickness. Structural parameters of these systems,
their topology and orientation, should be determined in the course of
optimization.

The new approach described above can specifically be applied to these
types of problems, and essentially speaking, this is the only approach
which may then be suggested, because for most of these problems, G-
closures of the typical U-sets are unknown. We could also work with
a fairly broad range of cost functionals, among them all functionals
which are weakly continuous in the corresponding Sobolev spaces. It
is also very important that the dimensionality of spaces to be used in
the process of obtaining a solution (be it analytical or numerical) be
the same as the dimensionality of the space of dependent variables,
not of the invariant space of the elements of G-closures. In the heat
problem described above, this distinction was unimportant (we had the
two-dimensional space of invariants of a planar D0-tensor and the two-
dimensional space of VT-vectors). For the plate problem, however, the
difference will be great: the invariant space of D0 -tensors will be five-
dimensional, and the space of strain terms e only three-dimensional;
for general elasticity the difference will already be striking: eighteen for
the Do-tensor and six for strain.

This reduction in dimensionality makes it possible to take into ac-W
count a variety of external conditions under which the same construc-
tive elements may be designed to work. Applied to aircraft elements,
for example, this idea may permit us to handle, along with the regime
of static equilibrium, also the failure of stability (static and dynamic),
additional restrictions upon the spectrum of eigenfrequencies, etc. Also,
one could allow for the analysis of optimal design of constructive ele-
ments with regard to a combination of physical fields, e.g., the fields
of stress and temperature, which is particularly important for work in
extremal conditions.

Extensions of the theory. There are fundamental mathematical is-
sues which are still unsolved and which are closely related to the new
approach. The fact of coincidence of two types of estimates reflects the
property of the transformed integrand to be attained with the aid of
some specific material microstructure. Mathematically speaking, this is
the case when the solution of the sup-inf form exists and coincides with
the value of the max-min form. The fundamental problem of general
kind which arises is that of necessary and sufficient conditions of exis-

0
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tence of solution to the sup-inf type of variational problem in the case
of many independent variables. It is well known that the saddle point
type of behavior of the integrand is sufficient for existence [21]. At the
same time, the above-mentioned example shows that this property is
not necessary and could allow weaker restrictions on the behavior of
the integrand. In other words, that means that the class of functions
which are good from the point of view of existence is wider than that
of saddle functions. The situation which arises here is very similar to
that encountered in the analysis of nonconvex minimization problems
in many independent variables [22]. Applied to these problems, the
method of two-sided estimates has also demonstrated its effectiveness.
In the latter context, ordinary convexity of the integrand was sufficient
for existence of the minimum but by no means necessary, and the class
of functions providing the minimum was wider than that of the convex
functions alone. In the absence of convexity the method of estimates
worked well: the upper estimate being provided by some microstruc-
ture, and the lower estimate being provided by the polyconvexification
transformation [22] which played the role of transformation (42). The
following observation seems to be remarkable: convex functions stay un-
changed when subjected to the polyconvexification transformation. The
same phenomenon is observed with regard to saddle functions if we
subject them to transformation (42). For these reasons, the fact of co-
incidence of two types of estimates in the sup-inf context seems to be
not accidental, but rather it expresses the property of the transformed
integrand to satisfy necessary and sufficient conditions of sup-inf type
to be attained. Continuing this analogy between this approach and that
of quasiconvexification, we could argue that the transformed integrand
plays the same role as the quasiconvex envelope of the integrand in the
problem of nonconvex minimization.

The problem consists of developing strict mathematical theory of ex-
istence of solution of min-max variational problems with nonsaddle in-
tegrands in the case of many independent variables. A notion similar to
quasiconvexity should be outlined and examined. Connections must be
described between this notion and the behavior of the original function
with regard to the passage to weak limits of the arguments (a prop-
erty similar to that of weak lower semicontinuity). This investigation
could be carried out in a broader context than merely optimization; the
original function is not necessarily produced by some optimal control
problem.
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Development of computer software. We now consider the computa-
tional aspects of the new approach. Formally speaking, the basic oper-
ations associated with the transformation (42) include construction of
a convex hull of some original set in the space of dependent variables.
This set can be fairly arbitrary; for the plate problem, for example,
it could be a segment of some smooth curve in three dimensions, the
curve being described in analytical terms. The convex hull of this orig-
inal curve is some body in three-space. The surface of this body is
piecewise smooth, but might also possess vertices, edges, etc. All of
these types of features allow an immediate interpretation in terms of
microstructures associated with the corresponding layout of materials,
and for this reason it is important to build up the convex hull in full
detail. This construction of the convex hull is the main difficulty to be
overcome by the development of software. More specially, the various
types of points on the surface of the convex hull are each to be set in
correspondence with composites of various specific microstructures. The
purpose of the overall analysis is to provide an exhaustive classification
of all possible cases which might arise in this connection. Formally
speaking, this classification will come as a result of solving a purely
geometrical problem

(51) supb. I
bEB

where q is some unit vector (which plays the role of a parameter) in
the space of dependent variables, and B denotes the above-mentioned
convex hull. The unit sphere swept out by the q-vectors is to be parti-
tioned into sections associated with various types of points b extremal
in the sense of (51). (These points might be smooth, edge points, vertex
points, etc.) The classification mentioned above is not immediate, since
each of these types of points is connected with some well-specified mi-
crostructure. At this point, then, the software to be developed will have
computed the supremum over b in Equation (42). The next compu-
tational step would be to compute the outer supremum, the supremum
over A in (42). Typically, this will be a low-dimensional optimization
problem. Note, however, that the computation (5 1) needs to be carried
out for each evaluation of the objective function in this new (outer)
optimization problem, making the combined problem computationally
intensive. Finally, given the classification of a regime, the computa-
tion of the materials layout is a standard problem for which algorithms
already exist [23].
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The software to be developed will perform the following tasks. Given
a curve in three dimensions (either in parametrized or numerical form)
the software will render this curve graphically. It will then compute and
display the convex hull of this curve. The user will be able to rotate this
image in three dimensions in real time, so as to understand the qual-
itative nature of the hull (and thus the classification of the composite
regimes). Also, given a unit direction vector q, the software will dis-
play cross sections of the convex hull which are perpendicular to i1;

the software will also find the extreme values of b for which the cross
sections are tangential to the convex hull. Given these values of b, and
so likewise knowing the points of intersection p of the cross sections
with the convex hull, the software will categorize the points p as being
on the smooth surface of the hull, or on an edge, or on a vertex, etc.
Next, the software will perform a low-dimension optimization problem,
essentially reshaping the convex hull, so as to maximize the values of

sup b. -? + A(ýj 12 - ý2?7l)

bEB

as A varies. The software will then carry out this computation as q
sweeps out the unit sphere, and so we will have a complete classification
of the regimes.

While convex hulls have been studied and used extensively in math-
ematics, algorithms for actually computing hulls efficiently have not re-
ceived as much attention, due possibly to a previous lack of practical
applications. Computation of convex hulls in two dimensions have been
studied, [24], [25], [26], but the problem in three dimensions has only
recently gained attention. From a computational standpoint, then, this
is the least understood aspect of the total new approach to materials
layout. Note that the issue here is not the difficulty of computing the
hulls, since there are many intuitive approaches which can be used, but
computing the hulls efficiently. That is, if we discretize the parametriza-
tion of the original curve with N grid points, then naive approaches to
computing the convex hull, such as using the geometric definition, have
a computational complexity of O(N 2). Typically, N would be quite
large, making computation of the hull time consuming when using naive
algorithms, and so defeating attempts to generate real-time images, or
to perform the optimization (42) in reasonable time.

The other computational aspects of the new approach are better un-
derstood. Determining the extremal values for b is a fairly standard
problem in nonlinear programming, albeit one still requiring some care
in solving. Likewise, the computation of the supremum over A can

0
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be cast in a standard way as a problem in nonlinear programming; this
would not take into account, however, any special structure in the outer
optimization problem due to the speciul nature of the objective func-
tion (51). Rendering the image of the hull, of course, would involve
standard techniques from computer graphics.

Significance of research. In Figures 4, 5, and 6 we illustrate the spe-
cific optimization procedures associated with the naive, G-closure, and
new approaches, respectively. For practical considerations it is impor-
tant to obtain some suboptimal layouts; that is, those characterized by
some simple types of internal geometry which could be realized in prac-
tice. (In this context simple means depending on some finite number of
structural parameters.) Once the ideal (optimal) solution is known, we
can introduce some kind of cost functional to estimate the difference
between the optimal and suboptimal solution. This provides the basis
for evaluating the best approximation to the optimal layout which could
be achieved with the aid of available simplified microstructures.

In summary, we can say that the proposed (new) approach provides
a practical (as compared to G-closure) yet systematic (as compared to
naive) methodology to handle layout problems arising in applications.

Problem formulation

Analysis. necessary conditions

Software for material layout:

lack of convergence, chattering

Not accounting for microstructures

can result in suboptimal layout

FIGURE 4



ON A GENERAL CONCEPT IN OPTIMAL MATERL.L LAYOUT 319

Problem rorinUlation Decription of G-closure
known for a few examples

Anail, si,. necesarx conditions

Software for material layout

Classification of microstructures

Firtua 5

Problem formulation

.Min mc1.v reformulation

Transformation provides

functional upper estimate

Software produces evaluation Analysis of microstructure

of transformation provides lower estimate

Optimal solution computed Specification of

numericalls affordable microstructure

Characterization of cost

effective suboptimal solution

FIGURE 6
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Abstract. The paper suggests a procedure of direct construction of minimal
extension of constrained optimization problem for a three dimensional heat equation
containing controls in coefficients. For a two dimensional case, this approach has
been initiated in Ref. 1.

1. Introduction. We consider nonselfadjoint optimization problems for a
system of equation in a three dimensional region V

q ='PVT, V.q=0 (1)
where T = T(x,y,z) denotes the temperature and the tensor T = T(x,y,z) of heat
conductance plays the role of control. The set U of admissible values of 2)
includes two elements smaterials):

U = {2:21+ = u+E, D_= u_E, E = ii + jj + kk}. (2)

It is required to find the distribution
7)(x,y,Z) = Xi(x,y,z)l+ + X2 (x,yz)2_

of a heat conductance tensor throughout V which maximizes some weakly
continuous functional I(T). Here T denotes a solution to the boundary-value
problem obtained when Eqs. (1) are complemented by the linear boundary condition
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L(T) = f (3)
along yV. To specify the problem, we will consider the Dirichlet condition

*JO T = f (4)

and the functional

I(T) = -JI[T(x,y)- T0 (x,y)]2 dxdydz, (5)

where T0 (x,y) f L2 (V).

This problem is known to be ill-posed and therefore requiring relaxation,
i.e., the construction of an appropriate minimal extension of the initial set U of
admissible controls. Such an extension can be constructed on the basis of a precise
knowledge of the G-closure of U, i.e., the set GU of invariants of the effective
heat conductance tensors 7) of all composites assembled from the elements of U

(Ref. 2). However, the G-c'osures are known only for a few particular examples,
the case of U defined by k2) among them (Ref. 3). Yet for these selected examples,
the construction of GU represents a difficult problem. For more complex
situations, e.g., that of an elliptic equation of the 4th order, the problem of
constructing the G-closure still remains open.

At the same time, for many applications we do not need to know the
GU-set in full detail. Instead, it is often enough to specify some linear
combinations of components of *Do, particularly, for our example the combination

T0 * VT entering the first of equations (1). This is the only combination which

really matters for our purposes; to determine it, we apply a direct approach, free
from any reference to the G-closure.

A similar problem in two dimensions has been discussed in Ref. 1.

2. Transformation of the problem. We first reduce the problem to the
convenient sup inf form. Introduce the Lagrange multiplier A and consider the
augmented functional

J = J(T,A) = I(T) - | AV T2) VT dxdydz, (6)

the right-hand side taking into account the heat equationV.2'. VT =0 (7)

following from (1).

Equating to zero the first variation of (6) with respect to T and bearing (4)
in mind, we arrive at the conjugate equation

V -.2T VA =-2(T-T 0 ) (8)

and the boundary condition
h =0. (9)

1 6V

After integration by parts with the boundary condition (9), the functional (6) takes
on the form

J = I(T) + [ T . VT dxdydz (10)

convenient for subsequent use.
It can be shown that the problem

sup 1,

subjected to (1) and (4) is equivalent to
sup inf J
s e,T ,I

subjected to (4), (9). Indeed, since



J =I(T) +Jf An. 7). VTdS- I AV - 7). VT dxdydz

the operation inf J yields, in view of (9),
A

inf J = I(T),
A

the constraint (7) now appearing as a necessary condition for a minimum in A.
The functional sup inf J has the following upper bound:

T,T A
sup inf J = sup sup inf J < sup inf sup J
T),T A T T A T A T

-sup inf (T-T 0 )dxdydz + G(VT,VA)dxdvdz] (11)

where (we accept the notation I =VT, 17 VA)
11+6.7, if C' 77Ž0,

S=.(12)

11 77, if 77 < 0.

The function G(C,77) is convex with respect to any of its arguments but
non-convex with respect to their union.

The problem
sup inf[- JV(T-T )2 dxydz + j G(VTVA))dxdydz] , T e (4), A ( (9) (13)

is still ill-posed. It would be well-posed if the integrand G(C,77) were a saddle
function, i.e. concave in C for fixed 17 and convex in 7 for fixed C. The solution
would then exist and the operations sup and inf would commute. For our

0 problem it is obviously not the case. However, the requirement that the function
G(,77) be saddle is too restrictive when C and 77 are gradients; to ensure
existence of sup inf for this case it is enough to require that this function be only
quasisaddle (Ref. 1). We will consider in this connection its quasisaddle envelope
G**(C,77) applying the s.c. polysaddlification transformation introduced in Ref. 1
and playing the same role in sup inf problems as the polyconvexification
transformation (Ref. 4-6) plays for the infimum problems. This new transformation
is given by the formula

G**(C,7) = sup sup inf{a • C + b 77 + w. - C 77
w b a

-inf supla • C + b. 7+ w. -,, 7- G(C,77)]}. (14)
S77

The term w • C 77 represents the null-Lagrangians (C - 77), = 7273 - 73ý2,

( 7x)2 = 73ý1 - 71ý3, (C 77)3 = 71V2 - 772A taken into account with the aid

of Lagrange multiplier u(wl, w2 , w3). If G(C,77) is convex in 77 (which is now the

case, see (12)) and arbitrary in ý, then (Ref. 1)
G**(C,77 ) _ G(C,77). (15)

This inequality represents the characteristic property of G**(C,'7) making it
possible to use this function instead of G(ý,7) in (13) and thus arrive at the upper
bound for this functional.

3. Computation of G**(C.7): the upper bound for sup inf J. We first

compute h(•,b) = sup[b.7- H(,'7)] with H(ý,7) = - + 7 G(C,7). This
77

computation is similar to that of the two dimensional analysis done in Ref. 1. We
obtain



"(0 if b+w0-u-O, U-< u<u+7

ih(C,b) = sup[b. 7-7 H(t,i)] = . (16)
*71 .+ m otherwise .

The transformation (14) now involves the operation

inf{a {-inf[a - (17)
a

which yields the concave envelope of -7h( ,b) with respect to the { - variable for
fixed b.

According to (16), - F(i,b) = 0 along the arc u f [u.,u+] of the curve 7

in the C-space 'r. b =-wx • +u = S(u). •, (18)

or, explicitly in terms of ý,

S=S-1(u)u- b, u_, u < u+ <w,

= u b . w W W b (19)s-l~u'b=• b u(u2+2)W u"• "

If we introduce a Cartesian coordinate system (x,y,z) with z-axis parallel
to the w-vector (w = 0,0,w)), then (19) will reduce to the system

= u _ w b

(20)
Ux

6y= 2 2b y+ 2 2bx)

Cz = bz'

showing that the curve (18) lies on the surface of the cylinder (Fig. 1)
U(62 + byCx- bxýy = 0. (21)

x y yx x

Figure 1. The shape of curve (19)



The concave envelope (17) will now be defined as

inf{a -inf[a . C -(-h'(C,b))]} = I (22)
a

where "" is the convex hull of the curvilinear segment (19).
The hull is a convex body with boundary composed of two sheets. These

sheets intersect along the arc -y with the endpoints A and B given by

A: S-1 (U)b b=S 1  b+~ +

(23)
B: S-1(u )b=S-1.b

respectively. Also, they intersect along the straight"line segment (chord) AB

= tS7 1  b + (1-t)S 1  b, t f [0,1] (24)
connecting the same points. With the reference to Fig. 1 and because u + is finite,
it is obvious that both the arc "y and the chord AB belong to the boundary of the
convex hull E.

In view of the subsequent sup operation in (14), we have to interpret (22)
b

as the function depending on the argument b for fixed C. It is remarkable that
Eq. (19) which represents an arc of -y in 6-space may be interpreted as Eq. (18)

representing a straight line y in b-space. Analogously, Eq. (24) represents a

chord in C-space and at the same time a curve AB in b-space. Both will belongS to the boundary of a body .2 in b-space which appears as we interpret the
lefthand side of Eq. (22) as a function of b for fixed C:

[0 , b E2

inffa -C -infga •-(-h'(ý,b))]} = (25)
a C --M, b 2

In view of (25), the operation

sup{b • ij - infja • - inf(a • - (- h(-,b)))}
b a

reduces to
sup b •
bc 2

or
sup b • 17. (26)
bcconv.2

Because the chord (18) and the curve (24) obviously belong to the boundary of the
convex hull cony .2 of A they should be tested for optimality in terms of the
operation (26). Since the body conv ,e in convex, its tangent planes participating
in the computation of supremum will touch its surface, among other points, also

either at its vertices X and R or along the arc AB. We first consider the case

where the contact point occurs on AB and carry out the combined computation for
sup sup [b. 77nw" C77].

* W bcAB
Though this expression is generally less than G**(C,77), we expect that it will
nevertheless satisfy the inequality



sup sup [b • 7 + w C. - 17] _ G(C,i7)

w b eA-B

and thus provide us with the upper estimate for G(C,7).

In Eq. (24) for AB, the matrices S + and S_ are defined by (23) as

S(u+), S(u), respectively, where S(u) is given by (see(18))

S(u) = w . E + uE (27)
where E = ii + jj + kk is a unit tensor, and E = - E E is the Levi-Civita tensor
of the third rank. The combination

ts + b + (1-t)S- 1 " b,

appearing in (24) represents the &-convexification of the basepoints S+1 • b, S- 1

b of the curve y (see(18)) corresponding to the values u+, u_ of parameter u.

The operation
sup sup [b- 77+w"x q7]
' b AB

now reduces to the examination of the extreme points of the function

K = K(w,b,t) = b 7 + A • [C-tS[1 • b- (1-t)S-1 • b]+ w - 77 (28)
where A denotes the Lagrange multiplier for the constraint (24). The necessary
conditions for extrema require that

Kb = 77-tA S+ 1 - (1-t)A • S-1 = 0, (29)

K =- -1 b]-J S1 - 1WK =-t(1-t)[(S+ - ) b] {A. (SA -)]=0. (30)

Kt = -A (S+ 1 - S- 1 ) b-= 0. (31)

The Eqs. (29) and (31) are obvious whereas Eq. ((30) follows from the analysis
given in Appendix 1.

Eq. (30) shows that

(S 1 - S•1 ). b = aA - (S+ 1 -S-) (32)
where a is a scalar multiplier.

Introducing the symbols m,n,p defined as
u + u_

u 2 u2 +W u
1 1 (3

n 2 , (33)
u+(u++w ) uu T+w

1 1

we obtain
S1 - S-1 -mE + nww- pw . E,

and Eqs. (32) and (31) become
mb+n~b -w)u).Pw -b = amA+n(A -w)tw-pw A], 4mA b+ n(A -w)(b. )+pA •wxb=0,

respectively.
This system can be simplified. To this end we assume that neither of three

vectors
WX b, w- A, A - b



is zero. Computing the dot products of (34) witn b, A w respectively, we arrive at

mb2+n(b- W)2= a[mA.b+n(A. w)(b w)-pb.w -A], (36)

( mA. b+n(A. -w)(b- w)+pb A - w= a[mA 2+n(A- w)2],(37)

(b. -w- aA • w)(m + nw2) = 0. (38)
Assuming that a 0 0 and taking (35) into account, we conclude that Eqs.

(36) and (37) reduce to

mA2 + n(A. -W)2  0, (39)
mb 2 + n(b- aW)2  0. (40)

Eq. (38) allows for two possibilities: m + nw2 = 0 and b - w = aA • w. It
is evident from (33) that the first never occurs. As to the second possibility, this
together with (39) and (40) implies

m(b 2_a 2A2=0,
which means that either m = 0 or b I a IA The first possibility together
with (39) and (40) implies that A. w=b- w=0 (41)

which in view of (35) shows that h = •(42)

where fi is a scalar multiplier. We thus conclude that A - b = 0 which is
admissible as a final result.

REMARK: Eqs. (41) imply that the curve (24) in the b-space lies in the

plane perpendicular to w.
As to the second alternative Ib I = I al IA I, this one together with b w w

aA •-w does not contradict the Eqs. (35)-(37) of stationarity. This possibility is in
fact eliminated as we demand that the Legendre condition K, <, 0 holds. This is

shown in Appendix 2. There it is also demonstrated that the relationships (41)
together with m = 0 satisfy the Legendre condition provided that f Ž 0.

The requirement m = 0 yields

W2 =u (43)

Now, in view of (27), (33), (42), (43), Eqs. (24) and (29) can be rewritten as
follows

u + + u b+ (u,)d
(44)

where = u+ --u _ b -(u + +u _)d W x b

u 11

l-tu+ ( 1-t)u+

and the vector bcAB maximizing the function K(w,b,t) is equal tou ++u_

which coincides with the result obtained in Ref. 1 for the two dimensional case. We
* then arrive at the expression

(u++u)cos2x - lu sin2X



for sup s u p [b • 71 + w • x 17]; here, 2X denotes the angle between vectors
" bfAB

and 77. This result is valid provided that sup occurs at some point b within

bEAB

the arc AB. This is equivalent to the requirement

t anx X

Another two possibilities allow for s u p to be attained at the endpoints A or B.

bEAB
We finally obtain (Ref. 1)

u+cos 2 X, 0 < tan < u+
2 u-

sup-)Cos X-Vu-,u~sin2X, u-•tanX( -,sup spb.77+w.{x77}=I•II77lt(u++u + tan_

SbAB + -r -F__
u~~cos--, < t anX < .

(45)
The expression (45) is an upper bound for (12) which can be checked as in Ref. 1.
On the other hand, this expression can be achieved by rank 1 laminate. To
illustrate that, we introduce at each point the plane spanned by vectors ý,77, with
normal w. Then we introduce a layered composite with layers aligned parallel to w
and bisecting the angle 2X between ý and 77. For this microstructure, with its
effective tensor -00 and the concentration t chosen in accordance with the rule

(Ref. 1)

U+U tan 2x,

1
the expression for g • 77 coincides with that of (45) and thus proves its

attainability.
4. Conclusion. We thus arrive at the conclusion which has to be expected:

the three dimensional case is essentially the same as its two dimensional
counterpart. At each point the optimal layout is that which occurs within the local
plane defined by vectors ý and 77.

5. Appendix 1: Derivation of Eq. (30)
The w-derivative of a scalar function -A - S-1 . b is computed in

accordance with the rule

(-A. S 1  b)= [((- S 1)w * r b]rs = -[(A -(S-)w rs) . b]rs

where rs is a vector basis (Ref. 7).

The w-dependence of the tensor S- 1 will be perceived occurring through

the dependence of this tensor on S(w). We obtain (C i=rsrtr~rt )

es-1 = (s-), , 6 T = (S-1), s.ST;

S= * If•T;5 = CII 11".. s = 6S •



•s1=(s-,)s' cI" sW. bj,

and) consequently,
(s-1)w= (s-1)s -.Cn..-S" = (S-1)S.. -rsrt(r Sr t. .S•.

On the other hand,
(S-1)S = _S-1 . rtrs - S-1rtrS

and

(S-1) S.r ar =-S-1 . (r ar S-1,

(S-1)w = -s-l . 0r a .S-1l(r .B..S J.

But S = E = Epqrrprqrr, and consequently

rWrfba. .S = r"r . Epqrrp rqrr = E afrrr.
We obtain

-1 _-1. 1 a~

(S-) = 1 ror. -l(EOrr) =-S-1 (rlr2-r2r1). S-lr3
- S- 1 . (r 2 r3 -r 3r 2 ) * S-lr-S- 1 . (r 3 r -rlr 3). S-1 r2

As we compute the expression

-[(A - (S-1), .r) birS,
assume that the basis rs is orthonormal; we obtain, for example,

-[(A-(S- 1 )W.r 3 ). b]r 3 = [A.S- . (r1 r2-r 2 r1 ). S-1 (r3 .r 3 ). b]r3

= [A -S1 (rlr2 -r 2r). S-1. b]r3,
and analogous expressions for other components. We finally arrive at the formula

-(A. s- 1 .b)=-[(A (S 1 )w rs) brs= AS- 1 S 1 .b.
We now obtain

K W= -t(A. S + 1. b) w- (1-t) (A. S-1. b)w+ •

=tA. S+1 S+1 +1 b + (-t)A S1 S-1._ b +

+[tS+1 . b + (1-t)S I • b] [tA - S+1÷ (1-t)A1 S _

= +- tt2 )S+1. b A. S+I + (t-t 2)S-1. b A- S+1+

+[-(1-t) + (1-t) 2 ] S-1 b A • S-1 + (t-t 2 )S bAS 1 =
=-t(1-t)(s + 1- s-1) b A.- (S +1-S--1).

6. Appendix 2: The Legendre condition. The function K(w,bt) defined by
(28) should be maximum with respect to w. This means that K should be
negative definite. We apply this test first to the case m = 0, A = A, A - w = b •
w = 0, to show that this case is an admissible alternative. The expression for K
can be obtained from that for K which is given by (see (32) and (34))

KW= -t(1-t)[mb + n(b- w)w+ pw b] x [mA + n(A • w)w-

-pw A] = -t(1-t){m 2 b - A + mn(A . w)(b w) -
-pmb - wx A + mn(b , w)(w A A)-np(b, w)w - w w A-



-mpA x wx b-np(A- w)w wx b-p 2(wX b) x (wx A)}.
Before we differentiate this with respect to w, we disregard all terms involving
more than one factor that vanishes under the hypotheses m = 0, A = fib,
A - w = b • w = 0. The expression for Kw then becomes

KW= -t(1-t)[-2pm(A - b)w +np(b - w)w2A + np(A • )2b].
Differentiation with respect to w of K gives

K aW = -t(l-t)p[-2(A- b)m 2ww + nw2(bA + Ab)].

Here we omitted terms which vanish under the adopted hypotheses. Applying the
relationship A 3 fib and referring to (33) we conclude that

Kww = -t(l-t)pl[-.2d--.b 2 WW + 2nw2 bb

dw
is negative for 13> 0 because of the inequalities p < 0, n < 0, dm/dw2 > 0 andrecalling that u+ > u_. We now show that the second option, namely I b =

I ct I A i, b - w = aA . w, contradicts the Legendre condition. To this end, we
differentiate K with respect to w, the derivative can be written in the following

form:
K =-t(1-t)(p,

b b A AO = mn[fl • w)6A + (A • w)Ql - (0! w)ob --(b -wQ

-pm[(A • b)E - Aeb] - pm[(A b)E - b @ A]-
2-pn{[4(A. w) -wA]ob + (b- w)[w eA + (A. w)E- 2A a w] +

+ 14b. W) -w2 b]eA + (A . w)[w@ b + (b, w)E -2b e w]} +

p 2[we (A b) + w. (A x b)E]
b A

where 0, Q2 are defined by
b A
0 . w=b w, ?- w=Axw,

and the symbol * denotes the dyadic product.
We examine the quadratic form n2 KW • * for the admissible test vector

S1 = k A x b. Referring to (35), it is easy to verify that the form vanishes for this
choice. Now, as we perturb the test vector by a small term Q" and linearize the
expression for (SI + S1') • Kww,. (SI + f2") with respect to S1', then we find the

principal part of it to be linear in f2' which means that it may be made of
arbitrary sign for an appropriate choice of £l'. This completes the proof.
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Abstract. The paper suggests an application of a direct procedure initiated in Ref. 1 to problems

I of optimal layout for plates. Optimal microstructures are explicitly indicated for a number of

special cases, particularly, for the case when the original and conjugate strain tensors are coaxial.

Key Words. Direct relaxation, optimal microstructures, necessary conditions.
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Introduction

In this paper we consider nonselfadjoint optimization problems for thin anisotropic plates

subjected to transverse load. The state of equilibrium of such a plate is described by the equation

V. V- .J.. VVw=q, (x,y)EE (1)

where w denotes the normal displacement, .0- the tensor of stiffness, and q the transverse

load density. The boundary ff of a plate will be assumed damped, this property expressed by

the boundary conditions

w awlon =0. (2)

It will be assumed that .0 = .0(x,y) plays the role of control and may take one of two

p admissible values .01 or .02 at each point of the plate. The materials 1 and 2 with tensors

". 1 and "02 of stiffness will both be assumed isotropic, i.e.

.i = kiala + -(a2a2+a3aa3) i = 1,2. (3)

Here and below, al, a2 , a3 represent an orthonormal basis in the space of 2nd rank symmetric

tensors in the plane, i.e.

a, = (1/4)(ii+jj), a2 = (l/v2)(ii-jj), a3 = (1/4)(ij+ij). (4)

Introduce the characteristic function X1 (x,y) of domain occupied by material 1 with

tensor "01 of stiffness, and a similar function X2(xy) for material 2; obviously, X1 + X2 .

It is required to find the distribution

3



.O(x'Y) = X1(xy) - + x 2(xy) -2 (5)

of the stiffness tensor throughout E which maximizes some weakly continuous functional I(w) of

solution to the boundary value problem (1), (2). Weak continuity is supposed to be with respect

to W (2), this space naturally associated with (1), (2). Specifically, as a typical example, we

will consider the functional

l(w) = - j [w(x,y) - w0(x,y)] 2dxdy

where w0(x,y) e L

This and similar optimization problems are known to be ill-posed and therefore requiring

relaxation, i.e., the construction of an appropriate minimal extension of the initial set

U = {.O 012 of admissible controls. Such an extension is currently offered on the basis of a

precise knowledge of the G-closure of U, i.e. the set GU of invariants of the effective stiffness

tensors .00 of all composites assembled from the elements of U (Ref. 2) However, the

G-closures are known only for a few particular examples (Ref. 3), and the plate problem is not

among them. Yet for these selected examples, the construction of GU represents difficultis, and

for the plate problem these difficulties are still not overcome.

At the same time, for many applications we do not need to know the GU-set in full.

Instead, it is often enough to specify some linear combination of components of .00; for our

problem, this is the combination .0 0 "VVw which only matters in view of the Hooke's law. To

determine this combination, we apply a direct approach, free from any reference to the G-closure.

Similar problems for the 2nd order equation V. -.0 . Vw = f have been discussed in Refs.

1,9.
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2. Reduction to a sup inf problem

S We first reduce the problem to a convenient sup inf form. Introduce the Lagrange

multiplier A and consider the augmented functional

J = J(w,A) = I(w) + f A(V-V. - .VVw-q)dxdy, (6)

the second member at the right-hand side taking into account the equation (1).

Equating to zero the first variation of (6) with respect to w and bearing (2) in mind, we

arrive at the conjugate equation

V.V.0 .. VVA = 2(w- w0 ) (7)

and boundary conditions

A = OAonl =0. (8)

After integration by parts with the boundary conditions (8), the functional (6) takes on the

form

J = I + { (VVA-..0 -- VVw- Aq)dxdy (9)

convenient for a subsequent use.

The problem

sup I
5'w

05



P subjected to (1), (2) is equivalent to

s up inf J (10)
.0,w A

subjected to (2), (8). This is since by (6),

inf J = I + inff•A(V-V- .V..VVw-q)dxdy
AAE

if V-V.-S .- VVw=q,

other wise.

We observe that Eq. (1) appears as a necessary condition for a minimum in A. Bearing

(8) in mind, we may assume that J in (10) has the form (9). We have finally for (10)

s up inf{I+ (VVA. • -. VVw-Aq)dxdy} (11)
21,wA

where O1E U = {f.01' "2}, and w and A satisfy, respectively, equations (2) and (8).

In the sequel, we will establish the upper and lower bounds for the functional (11). An

upper bound will be constructed analytically through an appropriate mathematical construction,

and the lower bound will be generated by a specially chosen composite assembled from the original

constituents. Both bounds will be shown to coincide, and desired relaxation will thus be achieved.

3. Upper bound for s up inf J
.0,wA

This functional possesses the following upper bound:

6



Ssup infJ =supsupinfJ <supinf supJ=
.0,w A w .0 A w A .0

= S inP-f (w-w0 )2 dxdy - j Aqdxdy + { G(VVw,VVA)dxdyl (12)

where

(13)
• 2"' 7 , '0- 1"- 7_ ý "- ' 2 ""7.

The notation • = VVw, 77 = VVA will be used below. The function G(C,77) is convex with respect

to any of its arguments but non-convex with respect to their union.

The problem

sup in4-f (w-wo) 2dxdy - ,Aqdxdy + F G(VVw, VVA)dxdy] (14)
w A E£

is still ill-posed. It would be well-posed if the integrand G(C,7) were a saddle function, i.e.

concave in C for fixed 77 and convex in 7 for fixed C. The solution would then exist and

operations sup and inf commute. For our problem it is obviously not the case. However, the

requirement that the function G(C,7) be saddle is too restrictive now that C and 77 are

gradients; to ensure the existence of sup inf for this case, it is enough to require that this

function be only quasisaddle (Ref. 1). The quasisaddle envelope G (C,77) of G(C,7) will be

constructed applying the so called polysaddlification transform introduced in Ref. 1. This

transform plays the same role for sup inf problems as the polyconvexification transform (Refs.

4-6) plays for the minimum problems. For the fourth order problem considered, the

0
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polysaddlification transform is given by the formula

G (ý,r7) = sup sup inf{a. - +b*.77+w.. (,r77)+dý-. T- -?I
w,d b a

- inf sup[a.- *+b- -77+w. .(ýx 7)+dý. •T. .•-G( ,i7)]} (15)
6 77

Here we introduced the notation T for a tensor

T = ala 1 - a2a 2 -a 3 3; (16)

the terms w-. , 77 and d .- T-- 77 represent the null-Lagrangians • , 77 and T.. T ..

(Refs. 3-6) taken into account with the aid of Lagrange multipliers w and d.

The transform G (ý,77) defined by (15) satisfies the inequality

SG*(6,77) _ G(6,7) (17)

for any G(6,77) convex in 77 and arbitrary in 6 (Ref. 1).

Applying G (6,77 ) instead of G(6,77) we arrive at the upper bound

sup inq-1 (w-w 0 )2 dxdy - Aqdxdy + G (6,77)dxdy] (18)

for (14), and, consequently, for the original functional (10).

4. Computation of G (ý,i)

We first compute Nl(6,b) = sup[b. .77 - H(6,77)] with H(6,77) = - (6x77) - d6-. T.- -7 +
77



PI
Db.. -n -H(6,i7) = c 77 if 7E .-.( - 2)-.7 _ 0,

c2.. if 7 .E 6 (- 1- . 2) .77_0.

The tensors c ,c2 are defined as (dev6 = 62 a2 + 63a3)

c1 = b + (d-kl)61 al - (d + /l)dev6 + w 6,

c2= b + (d-k 2 ) 1 aj - (d + i2)dev6 + w x 6. (19)

By argument similar to that described in Ref. 1 we arrive at the formula

[0 if b = (S)..6,

F(6,b) = sup[b-. ---H(6,77)] = (20)
77 +m otherwise.

In (20), the matrix (S) is defined as the convex hull

(S) = t S1 + t2 S2 , tl,t2 _0, tl + t 2 =1 (21)

of matrices

Si= Ai+ w..C, A .0i-dT, i= 1,2, (22)

where the matrix

E= - E (23)

9



defines the Levi-Civita tensor of the 6th rank acting in the linear space of 2 x 2 symmetric

P tensors. The unit tensor E in this space can be defined as

E = alai + a2 a2 + a3 a3  (24)

in the basis (4), and by a similar formula in any other orthonormal basis.

We make note of the formulas (Ref. 7)

=-E x E = -asas akak = -asatak fskt = asatake stk (25)

where

fskt =as-* (ak- at) (26)

are Levi-Civita symbols ( 123 = 231 = 3 1 2 
-1, E13 2 = 213 = C3 2 1 = -1, Estk =0

otherwise); also

w-.E =-w..E x E =- x E -Ex W = . W. (27)

Geometrically, the function h(ý,b) of ý for fixed b is equal to positive infinity everywhere

except for points of the set

b = (S)--., tl,t 2 E (21). (28)

Equation (28) can be inverted to express ý in terms of b. To this end we introduce symmetric

tensors of the 4th rank (see (22))

10



S A = ." 1 -dT, A 2 = ." 2 -dT, (A) =t 1 A 1 +t 2 A2  (29)

1 1 -and compute the inverse matrix (S)- = [(A) + W. ]-- = [(A) - w x E]-. We obtain by

direct calculation

(S)-l=[1/(det(A)+w..(A). .w)]{(det(A))(A)-l+ww+(w..(A))xE}=6+flxE (30)

where

=[1/(det(A)+w..(A).. w)]{(det(A))(A)--+ww} (31)

denotes the symmetric part of (S)- 1 and

"Q = [1i/(det(A)+w. • (A). .w)](w- (A)) (32)

denotes the 2M2 tensor associated with its skew-symmetric part.

The set (28) is a segment of the curve in --space traced as tI varies between 0 and 1.

This segment connects points ý(1) and ý(2) corresponding, respectively, to tI = 1 and t1 = 0:

S=11..b, (2)=$2l..b. (33)

We now compute the result of the operation

S
11



inf{a.- - -infga. - - (--h'(6,b))]}1 (34)

* a

which comes second in the sequence (15). This one is known to put into correspondence with any

given function -hK(6,b) its concave c-envelope, i.e. the least concave function of 6 greater than

or equal to -h'(6,b). Particularly, if -h(6,b) is itself concave in 6, then the operation (34)

leaves this function intact.

In our special circumstances, this is obviously not the case. The concave envelope of

-h'(6,b) appears to be the function defined as negative infinity everywhere except for points of

the convex hull E of the curvilinear segment (28) where this envelope is equal to zero:

inf{a. - inf[a..6 - (-Ei(6,b))]} = (35)
a ,

The hull E is a convex body in the i-space. We will assume that the curvilinear segment

(28) and a line segment

_ (36)Sl,, 1•1 1 (ý2- 2 s 2 •2 (-6•3-63 s•3 3

connecting the endpoints 6(i) and 6(2) (see (33)) both belong to the boundary 8E of S.

For our future purposes we need to know the left-hand side of (35) as the function of b

for fixed 6. This function can be defined as equal to negative infinity everywhere in the b-space

except for the body 2 which appears as the "b-image" of 'E, specifically, the boundary Z12 of

2 is described by the same equation as that of aE, this time, however, 6 should be kept fixed

whereas b should be considered variable. Obviously, the set (28) which is perceived as a

curvilinear segment in the 6-space appears as a line segment in the b-space, and in this capacity

12



belongs to a, Also, the set (36) which represents a line segment in the c-space appears as a

S curvilinear segment in the b-space, and this segment also belongs to a, Summarizing these

results, we arrive at the following: the transform (15) reduces to a single operation

sup [b..77 + w..(+x7) +dýT..7 7] (37)
w,d,b

subjected to the constraint b E 2 Note that the set 2 itself depends on w and d.

The curvilinear segment (36) in the b-space obviously represents a rib on a,2 The

calculation (37) of the supremum with respect to b will include among others the possibility that

the supremum is attained at points belonging to this segment. In the sequel, we investigate this

possibility in major detail. Equation (36) can be represented in the equivalent form (see (33))

= (mIS1 1 + m2 S21 ) b = (S-) .b. (38)

Here, min, m2 ?O,m 1+m 2 =1.

This relationship will be taken into account with the aid of the Lagrange multiplier A in

the course of the maximization operation (37). We will examine stationary points of the function

S= b..77+w--( ) + dýT..W..77 + A -. ( -s--.b) (39)

viewed as the function of b,w,d and m1

A routine calculation shows that

•b A -A'" (s-1) = 0

which means that

1
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A=77.. (S- - (40)

With equations (38) and (40) in mind, the function 0 becomes

S= 77- • (S- 1 ) 1I. . + w- .(ý77) + d. T. .77. (41)

It can be shown (c.f. Ref. 7) that

•ow= -(ýA. - S-1) - -b) W + 77 =ml(A..-S I~ (S 1..b)

+ m 2 (A" S )X (S2 1- b) + C x/.

This expression can be rewritten in either of two forms:

,= n1(A. .S- ) 1 (S' 1--b) + m2(A. S21) - (S21. -b)

+ ((m1S11+m2S2 1) b) x (A.- (mjSl'+m2 S 2)) = (42)

-m 1m2 (As-. b)x(A.. AS-'); AS-1 = 2 1-Sll,

or

Ow= 77. (S- 1 )-1.. -mlSllxSll+m 2 S21 XS2 .1 (S-1) -1. 77+ X/. (43)

The stationarity condition 0 W = 0 can now be written as

AS- 1 .. b = (AS- 1 ) (S-')-'. -. = # A..AS- = (44)

= 77.. (S- 1 )- 1 . .(AS -)

14



* where x is a scalar multiplier. An equivalent representation is associated with equation (43):

7.. (S-)>-"'[m 1S s1  + m2 S2 IxS ]< (S-1)-"' + 0 (45)

Condition Od = 0 reduces to

Od=-mlm 2 (AS-1.- b)• .T. .(A. AS- 1 )=-m1 m 2 X"1(AS- 1 . .b). -.T. .(AS-1. b)=0. (46)

or, equivalently,

Od=-77- • (S->-1. • mlSll1. •T. •-S1 1+ m2S2 1..T. •S $1]. • (S-1)-i- • •+•..T- • rt=0. (47)

Note that the stationarity condition (46) applies as the necessary condition for a maximum if the

corresponding root d is such that the function 0 defined by (41) is concave in d for all w. To

guarantee this, we must require that det Si Ž 0(i = 1,2), i.e. that

detALi + w--A iŽ..w > 0, i = 1,2. (48)

These inequalities should be considered as additional constraints influencing the d-maximization.

Computing the expression (41) for 0 at the stationary values of w and d we have to

maximize it with regard to m1 . Before we do so we investigate this expression in terms of its

attainability with the aid of special microstructures. This is a right time for such investigation

since the aforementioned construction explicitly depends on mi, this dependence being very

special for a number of popular microstructures.
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After maximization in mi, the expression (41) should produce a final construction (37) for

G (ý,7,). This program is elaborate in its entirety, and we will begin with the analysis of several

special cases.

5. Case when tensors ý and j7 are proportional

In this case, the assumption w = Q = 0 obviously satisfies equation (45) since the

matrices S1 , $2, (S) and (S-1) are then symmetric. Equation (46) is reduced to

(AS. (9)-1- )-. T- .(AS.( -) = 0 (49)

where (c.f. Eq. (31))

As= 52-51 = A21 - AlI, (o6- = (mIAl1-1+m 2 A2 1)FI.

The tensors Ai(i = 1,2) are defined by Eqs. (29), (3) and (16) as

Ai Kia1a 1 + Mi(a 2a2 +a 3a3 ), Ki = ki-d, Mi = + d. (50)

We therefore obtain

A ()-l- • • = [AK-la1a1+AM-l(a2a2+a3a3)1.. [(K-1)-lalal+(M-1)-l(a2a2+aa)] ••

= (AK-1)(K-1)-Y1 1 a1 + (AM- 1 )(M- 1 )-1 (ý2 a2 +± 3 a3 ) (51)

where

AK-1 K 2 1 1- M-1

(K-')-1 = (mlK1 +m 2K21)-1, (M- )-1 = (mlMl +m 2 M2 )1. (52)
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Equation (49) shows that the second invariant of (51) equals zero, i.e.

Introducing the ratio

C =-Idevýl/Cl- J'+•)/Cl (53)

of deviatoric and spherical parts of tensor C, we arrive at the equation

4 p r~2-kl)(d+ml/A2+m2/Al)]2

C' [(A2-A1)(d--mlk2--m2 ki)

defining the Lagrange multiplier d

d = ((kA s-Ak)/(C(A+Ak), (54)

k = mk 2 +m 2kl, A = Ml1A2 + m2/1

Ak = k2 -k 1 , AA = t42 A1 (55)

Equation (54) has been obtained earlier by Gibianskii and Cherkaev in Ref. 8. We use (54) to

eliminate d from the expression (39), the resulting construction is attainable by a laminar

composite of the Ist rank (Ref. 8).
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6. Case when tensors C and j7 are coaxial

This case generalizes the previous one but is related to a new situation when we cannot

apply the G-closure technique (Ref. 3) to construct the required relaxation; on the contrary, the

case of Section 5 is self-adjoint and therefore can be handled with the aid of such technique. In

the new circumstances, no G-closure is known, and the direct method demonstrates here its

genuine power.

Because the tensors C and 77 are coaxial, we can choose the basis aa 2,a 3 (see (4)) so

that

C=ia + C2 a2, (56)

77= 7la, + 772a2 ; (57)

the tensor w will be assumed having only a3-component, namely

w= w3 a3 . (58)

Direct calculation of the matrix (S- )-1 shows that

1i- -i 2aa2(59

(S )1 =Z1 (PQ+-2R2 ) 1 (QZalaI+PZa2 a2 +PQa 3 a3 -+23 R a a3-w 3 RZa 3 E)(59)

where

= = (M/(KM+ 2 )), Q = K(KM+w2 )), R = -- /(KIM+w2)), Z = (,/M), (60)

and symbol (-) denotes averaging, i.e., for example,



(1/M) = ml/Ml+ m2 /M 2= ml/(G1+d) + m2 /(/ 2 -+d), (61)

etc.

The tensor b computed as b = (S- )- . (c.f. (38)) turns out to be coaxial with

because of (56) and (59):

b=(S1)1.. =[(P w2R2 )I [Q~+w 3R 2 )a, ( 2-d 3Rei)a2 ] (62)

The matrix AS-I can easily be computed, too; this one equals

AS- = paal1 + qa2 a2 + za 3a3 + w3 ra 3 xE (63)

. where

= 2 2 2 ~'K +~ z t '''4p (= ,(M/(KM+w 3 )), q = A(K/(KM+w 3 )), r = A(,1(,,+)),- A(,1M), (64)

and symbol A(.) denotes the difference, i.e. for example,

A(1/M) = 1/M 2- 1/M1 , (65)

etc.

The tensor AS-1. b = AS- 1 .. (S-')- -. - is now computed as

AS- 1 .- b = [1/(PQ + w3R )]{[(pQ + wrR) 1 + w3 (pR - rP) 2 ]al +

0 [(qP + w~rR) C2 - w3 (qR - rQ)ClIa 2 }.
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A similar formula for A.. AS- = 77.. (S- 1 )- 1 . • AS-' is given by

A.. AS- = [1/(PQ+w3R 2)]{[(pQ+w~rR)i71 - w3 (pR-rP)i72 ]a,

+ [(qP+wgrR)i7 2 + w3 (qR-rQ)i71]a 2 }.

Direct calculation shows that (Bi -= Ki M2 + , i = 1,2)

-1 2 2

-(AS-. .b)(PQ+wR 2 )B1 B2 = (MAk l-w 3 AAý2 )a, + (KIAAý 2 + w3 Aký1 )a2 , (66)

-(A-- AS- 1 )(PQ+w R2 )B B2 = (M11Aki7 1+w3 AA,72 )a, + (KA/u7 2 - w3 Ak771)a2 , (67)

K = mt1 K2 + m2KI, M = mM 2 + m2 MI. (68)

We are now ready to apply the necessary conditions (44) and (46). The first of them is reduced to

2 (9(U)3-1••(ý1772-.2-71) + 2w3 (Ký2i72 + Mý17 71 ) = 0, (69)

K = KAu/Ak, IZ=MAk/A•RK =KM.

In view of (44), Eq. (46) can be rewritten as

(AS-. .b).-T..(AS-'. .b) = 0. (70)

Combining this with (66) we get

ý2/l [(RM T w3)I(W 3 * K)J(Ak/A2). (71)
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Equations (69) and (71) comprise a system that can be solved to determine w3 and d; we obtain

(¢ = ý/Q 0 = 72/77)

w3 = ((k+ 1 )/2)AkA/( a-C)/[(aA/*Ak)( AA*Ak)] (72)

and

d=[1/2( •n.*nk)( CAA/•Ak)][2a•(A/•)2 *AAk( a+ )(k¢-A)-2A( Ak)] (73)

Equations (72), (73) provide a basis for the subsequent final calculations. We compute the

bilinear form (41) making use of (72), (73). Direct calculation shows that

0*+ = 77= C - [mlm 2 /(k+A)](CiAk* 2AA)(771 Ak*77 2 A/A) (74)

where

m= l m 1  +

The values (74) of 01+ is attained by the rank 1 laminate with layers parallel to the

main axes of tensor a2 , i.e. the main axes of C and 77.

This regime will be valid within the range of parameters =2/Ci a = 772/77, defined

by Ineqs. (48) together with (72), (73). Without the range, rank 2 laminates will be applied to

saturate the corresponding bounds.

To show this, consider for example, the case detA 2 + W. -A.. 2w = 0 or, in view of (58),
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B2 = K2 M2 + w3 = 0. (75)

This is a manifold in the space (w3 ,d), and the variations 6w = a3 & 3 , 6d are therefore linked

by the relationship (see (50))

2dbd - (k2 - A2 )6d - 2w3 6w3 = 0

as we move along this manifold. The latter relation can be rewritten as (see (50))

6d = 2w3 6w3 /(M2 -K 2 ), (76)

and instead of two necessary conditions 0. = Od = 0 (see (44) and (46)), we arrive at only one

condition

(AS -1 b)x(A.. AS- 1 ). a36bw 3 + (AS-' --b)..T..(A.. AS- 1 ) 2w 3 6w3 /(M2-K 2 ) = 0

or, equivalently,

(AS-'. b),(A. AS-'). .a 3 + [2w 3 /(M 2 -K 2 )](AS- 1 .- b)-. T. .(A. .AS- 1 ) = 0. (77)

This condition should hold along with (75).

Equation (77) can be transformed with the aid of equations (66), (67) defining matrices

AS-I. •b and A. •AS- 1 . We arrive at the relationship

MK- w3 + 2 w3(M-K)/(M 2-K2)] (a-() + 2w3 {E(M -K2 M2)/(M2-K 2 )-M](Ak/Ais)

* - 2[(K2 -K 2 M2 )/(M 2 -K 2 ) + K](A//Ak)a(} = 0. (78)
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* 2w Expressions in the square brackets can be transformed as we use (75) to eliminate w3 . After some

algebra we arrive at the relationships

MKl-w+2w3(M-K)/(M 2 -K 2 ) = [m2/M2-2)](0d+7),

(79)

[(M 2 -K 2 M 2 ) /(M2 -K 2 )-MI](Ak/AA)-[(K22-K 2 M2 )/(M 2 -K 2 )+ K](A//Ak)oTC=- m2 c/(M2 -K 2 ).)

Here, symbols 3, - and c are defined as

S= - (u + v),

",y= k2v - 9u, (80)

c =u - voC,

where

u = (k2 + ,)Ak, v = (k + 4)A,. (81)

Eq. (78) now shows that

w3 = (1/2c)(O3d + y)(a - c). (82)

We now use this relation to eliminate w3 from (75). The result will be quadratic equation

for d:
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d 2[#2(0- _) 2 _ 4c2] + 2[3-y(or( _) 2 + 2c2 (k2 -,a2)]d

+ 7 2 (0, _ () 2 + 4c2 k22P2 =0. (83)

The discriminant of this equation is equal to

4c 2 f (0--(')2 (''+k2)(T--O.,2) + c2(k2 + A2)2}

From Eqs. (80), (82) it follows that

(-Y + fik 2 )(- -#A) = -uv(k 2 + U)2

and the discriminant turns out to be

0 4c 2 (k22 +A2) 2 [--(a 2 - 2a( + (2 )uv + u2 - 2uv0. + v2 a2 el

= 4v2c2(k 2 + p12)2(a2 _ u/v)(• _ u/v).

Eq. (83) now shows that

d = - {1/[/2(a-() 2 - 4c 2 ]}[O__Y(o-C) 2 + 2c2 (k2-/12)

T 2vc(k 2 + A2 )j (o a- u/v)((2- u/v)A. (84)

The corresponding values of w3 will be

W3 = {(0-C)/[(02(a_-) 2-4c 2]}{- Oc(k 2-A2) - 2 +c±fv(k2+i2)ý (a2-u/v)(e2u/v)}
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or, in view of (80),

w3= -{(k 2 + A2)(Oi -_ )/[0 2(o, - )2 - 4c2]}{c(v - u) ± v(u + v) (02-ulv)(e-ulv)}. (85)

Now it is easy to compute the bilinear form (41). After some algebra we obtain

0/ýin7 = [(K 2M2 - KM K + +k M2 o- M- )] +

+ w3 (o - () + d(1 - a().

Making use of (50) and (68), we reduce this to the form

0/ý1771 = k2 + tV(, + {mlAkA/u/[k2 Ais + AAk + d(Ak- A-)])

[- k2 + d + w3(a- C) - (d + t)a(]. (86)

With the aid of (84) and (85) one can show that

-k2 + d + w3(a C) - (d + a2)c,( = {(k2 + A2)/I[(u + v)2('- C)2 - 4c2I}.

k 24 + AAk + d(Ak - AO) = {1/[(u+v) 2 ('L-() 2 _ 4c 2]} J*

where

2
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e= 2(l+o()(c 2-uv(oa-) 2]+± v[2c(1-a()-(u+v)('-() 2]f ( C2_ ulv)(e - u/v),

.M= 2u~~)o-)2-c1c-uv cv ( 9 2_ -/)(2 u/v)I.

Now it is easy to check by direct inspection that

-el .JC -9 [(k 2+i&2)/u] [UIV + a +J (an-

and from (86) we obtain

= k2+/ý1r71 -k 2 + Ia - [mlAkA/i(k 2 + A2)/21

* [1/v + (0,(/u± )l C (i uiv)(iuI5]. (87)

The values (87) of 02," are attained by the rank 2 lamination with material .S1 being the core and

layers being parallel to the main axes of ý and ?7. To show this, consider the formula

.00= .- +m1 [( .• 1-.• 2)- +[2m 2/(k2+1 )](annnn+ca2tttt)-1 = .02+miA- 1  (88)

for the effective tensor ."0 -f such a composite assembled from materials "0i and . taken with

volume fractions mI and mi2 , respectively. Parameters al, a2ŽO (a, + a2 = 1) are linked with

the geometric parameters f,p of microstructure (see Figure) by the formulas

a1 = f(l-p)/m 2 , a2 = p/m 2.

* The matrix A in (88) can be represented in the form
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A = ar a a1 +(a 1a2 +a 2 a1 )+0a2 a2 + 'a3a3

where

7r= - (=+A2)/[(k2+A2)Ak - v/[(k-2+u2)AkAju],

0 = m2 (2a 1-1)/(k±2+A 2 ), (89)

p = -2+)/[(k2+A2)AA] = _ 2+2)-AkAAJ,

r = - 1/AA,

and the basis aj,a2 ,a3 is chosen as suggested in (4) and (56), (57) with the unit vectors i, j

* oriented along the main axes of ý and 77.

The inverse matrix A-1 is computed as

A-1 = (p/X)a a1 - (O/X)(ala 2 +a 2 a1 ) + (7r/x)a 2 a2 + (1/7r)a 3 a3

where X is defined by the formula

X = 7rp-0
2.

The bilinear form ý ...00"" 77 obviously depends on a1 ; the extremal values of this parameter can

be found from the relationship
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S0-1

or, equivalently, from

6..A-I.. A a.A-I.. 77= 0.

This one is easily reduced to

(•2 + + ý2 n1)-20(Pý71i + 7272)= 0)

and we obtain the extremal values of 0

0 = [7r/(u+ C)1[(P/Ir) + a I ( -2_Pr)(&e - P/7r)] (90)

(recall that C = •2C11 and a = 772/771).

With these values for 0 it is easy to arrive at the following expression for the bilinear form

C." .. 0"" 717/C71 = k 2 +A2°(+ (m112)[1(1/70)+ °''/P-I-(1/p)1(02- p/1r)(e2 _-1/')]

or, in view of (89)

C. .go* 0.- == k2+ /'20- [mlAkApt(k 2 +As2 )/2] [(1/v) + a(/u + (1/u)a 2-u/v)(e2-u/v)].

This expression is the same as (87), and the attainability of the latter bound is thereby proved. A

2
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result similar to (87) can be established if the condition

B1 - KIMI+ 2=0 (91)

holds instead of (75). We then arrive at the formula

01/1i7i = 03-*/ýi = k + 1l 10 + [m2 AkAjs(kl+gl)/2]

[(1/-V) + o0Ii•± (llu-)J (u2 a i)(c 2 -2ii• )] (92)

with i, i defined as (cf. (81)).

u = (k 1 + A)Ak, V ( +/AI)A/A. (93)

The values (92) are attained for the 2nd rank lamination with material .0 being the core and

layers parallel to the main axes of ý and 77. Now it is easy to specify the ranges of parameters

ýi,771,o,,( that maximize the function 0 with respect to w3 and d (see (37) and (39)). We will

consider, without loss of generality, the following two possibilities:

(i) Ak > 0, AA > 0 - the "well ordered " case,

(ii) Ak < 0, AA > 0 - the "badly ordered" case.

Case (i) - "well ordered".

Let us first select between regimes (74)+ and (74)._ We obtain

01+-01-=-[m Inm2/(lk+A)J(AkAtt)(ý1772 +ý27) = -[mm2/(k A)](AkAA)ý,?jj(°'+ý)

which means that if ýi771 < 0, then
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max(ol¢,0 1+ =- (94)

0i- if 0T+ < o.

Also, if ý1771 > 0, then

1-- if o+ >0,
-ax(¢l+,¢1.) = (95)

01+ if a + <0.

The regimes (74) may neighbor either (87) or (92). Consider the case when the ranges

(74)+ and (92) have the common interface; both o and ( will be assumed continuous across

this surface. The values of ¢/ý1771 should be equal at the interface, i.e.

A0 (k) + () o( - [mIm2 /(k+A)I(Ak + CA/s)(Ak + ouA/)=

= l+Ala• + [m2 AkAii(k1+As1 )/2] (I/v) + o9fui (I/U)J (a2 - /v)(• 2 - u/v)]

or, equivalently,

1We apply the subscript "'" to designate the regime (74) related to the upper sign. This and

similar agreements apply to other regimes as well.
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[AXk-A(k I + ul)/2u-] Iu + C 7 V (02 - /)(u 2 - f/v)

Another form of the latter equation is given by

(i + A) [( kA)+ mAki] -2m•v(c + C)-

=*v [(Tv/,•A)-m 2AkA J ] a 2 - iv)(•2 - U/v (96)

Here, we made use of the relationship

(k1 + IL)(k + p1) = (k 1 + A1 )(k + g) + miAkAL.

If we square both sides of Eq. (96), then after some algebra we arrive at

[(-UV/AkAjA) + m2AkAA](a + C) - 2ml(U + Vo) = 0

or, equivalently,

[C - '/(m 1AkAA)](o" - m,1 LAkAlA/V)

+f -mAkAg/ v)[a - -u (/mIAkAl)j = 0. (97)
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This equation represents a hyperbola in the o4-plane; it will be convenient to introduce

coordinates

X or=+ , X2 =0-

and parameters

" -u/(mlAkA/A) + mlAkA•/-v -a2 = u/(mlAkAA) - mjAkAA/•/.

In the plane xj, x2, Eq. (97) represents the hyperbola (see Fig. 2 illustrating the well ordered

case)

(x -a,)2 _ x2 = - a (98)

Figure 2

With points of its right branch we associate the combination (74)+ - (92)+ of neighbors, with

points of the left branch - combination of (74)+ - (92). We will assume below that ji•7 < 0,

then

03-- if (xlx 2 ) E Z3,

max{0-+,' 3 +, 0 3 J = 01j if (xlx 2 ) E El,

.03+ if (xrx2) E••T
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In this classification we should assume that x o + 0 + 0 since the range (74)+ is then

U selected by (94) for ýjn, < 0.

The possibility of contact between (74)+ and (87),, should now be examined. The

corresponding analysis reproduces the one preceding Eq. (98); the obvious modification requires

that mr1(m 2 ) should be substituted for m2 (m ), and /,(,u2), k,(k2 ) for p2(u,), k2 (kj),

respectively. Also -u should appear instead of Ui, and -v instead of V.

Equation (98) is then substituted for

(x1 -a 1 ) 2  = (99)

where

a= u/(m2 kAA) - m2 Akg//v, a2 = - u/(m2 kn•) + m2 kAi//v.

The hyperbola (99) is reproduced on Figure 3. With points of its right branch we associate the

combination (74)+ - (87)_ of neighbors whereas points of its left branch correspond to the

combination (74)+ - (87)+.

Figure 3

For points belonging to the half-plane x1 > 0,

01+ if (xl 1x2 ) E F1,

max(01+, 2-) = 102- if (xr 1x2 ) E F2.

If we lay Fig. 3 upon Fig. 2, then, depending on the relationship between u/v and ii/V, there will
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appear three possibilities. If u/v > ii/•, then the half-plane x1 > 0 will be partitioned into

zones with regimes (74)+, (87)_, (92).• shown on Fig. 4.

Figure 4

If u/v = ii/V, then the partitioning is illustrated by Fig. 5; the case u/v < ii/v is given by Fig.

6. In this case, regimes (87)_ and (92)_ are separated by a curve along which 02- = 03-; this

curve intersects the x2 -axis at the points

x 2 2 (k1 + 2)/(k 2 +9 1 )j u/v

Figure 5

Figure 6

The case y177, > 0 as well as the "badly ordered" case (ii) can be handled in a similar way.

Once this classification is completed, the final operation of maximizing € with respect to

m1 can be applied to construct the desired material pattern. Obviously, the results described

above apply in more general situations, i.e. those when the relative amounts of original materials

are prescribed.

Appendix: computation of (S-l)-1

This procedure is similar to that applied to compute (S)-I = [(A) - wxE]-'

(c.f. Eq. (30)). We start with the expression
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(S-') = miS1t + m2 S2 1 = m 1 6 1 + m 2 62 A +(mlQ 1 + m 2 2 ) x E

where 61(62) and Q1012) are defined, respectively, by Eqs. (31) and (32) in which we apply

a 1(A2) instead of (A).

Using the notation

(6) = m 16 + m2J2,

(Ql) M I Q 1 + m2 Q 2,

we may now invert the matrix

(S-1) = (6) + (11)xE.

Referring to Eq. (20), we get

(S-1)-1 = [1/(det(b) +(1)-- (6)-- (Q))] {det(6) (b) -1 + (f) (Q) - ((0). . (o))xE}

where

(6) = m 16 1 + m 2 62 = [ml/(detAl+w. .A,..w)](detAi. A1 + WW) +

+ [m 2 /(detA 2 +w.'.A2 • •w)](detA 2 .A2 1 +ww) = K[detA/(detA+w- -A-- w)]A- 1  +
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+ (1/(detLA+w. -A - -w)) ww + gww,

(11 = IQ1+ m2 '12 = [m,/(detA,+w. -AIw)]w.. AI~ + [m2 /(det A2 + w" A~2 .w)]w. -A2

w. (-A/(detzA+w. A w)

The matrix (b) = -1 + gww allows invertion:

(0-1 = ((D + gwwYl b-1 - [g/(1+gw. .I- W).

We also compute det (6):

det(b) det(-I+gww) = (det~b)[1 + g(w. w]

The final expression for (S 1 )-1 becomes

S-)'= (1/A){det-I[1+g(w- - -,-. . w)](P1 - gdet-t(I 1 - w1. . w) +

(Q) (Q) - [(Q) -.QIý + gww)] - }

where

A = detP(l~g(W. -t-1 .W)A + (Q) - *(-+gww) -.Q

and matrices PI, (Q2) and the scalar parameter g are defined by the formulas
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=([det A/(detA+ w. -A - w)]iA7 )

()=w. -(zA/(detA+w- .A .-w)),

g =(1/(detzA+w- -A. - w)).
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Invariant properties of the stress in plane elasticity

and equivalence classes of composites

By ANDREI V. CHERKAEV'it KONST.\NTIN A. LURIE
2
'

AND (GRAEME W. M I [LT(0N'

C(oirant Ins'tilule of Muthematical Scirpm's. 2_51 JIererr Strnet. NpVw York.

AN'w York 10012. U.S.A.
"IDipvirtm nt ,Jf M.thenatic.i. IWorre.4er Polytechnic In.itute. 100 Intitute Road.

lorcrp4ter. Ih.s.achW)t~-ittS 01609. LU.S.A.

Attention is drawn to the invariance of the stress field in a two-dimensional body

loaded at the boundary by fixed forces when the compliance tensor .9'(x) is shifted

uniformly by Y' (,. -,A). where A is an arbitrary constant antd .9"(K./) is the

compliance tensor of a isotropic material with two-dimensional bulk and shear

moduli K and/1. This invariance is explained from two simple observations: first. that

in two dimensions the tensor Y '(1. -. ) acts to locally rotate the stress by 900 and the

second that this rotated field is the svmmetrized gradient of a vector field and

therefore can be treated as a strain. For composite materials the invariance of

the stress field implies that the effective compliance tensor .Y * also gets shifted by

'(,\. -,A) when the constituent moduli are each shifted by '(,\. -A). This

imposes constraints on the functional dependence of Y * on the material moduli of

the components. Applied to an isotropic composite of two isotropic components it

implies that when the inverse bulk modulus is shifted by the constant 1/A and the

inverse shear modulus is shifted by - 1/,I. then the inverse effective bulk and shear

moduli undergo precisely the same shifts. In particular it explains why the effective

Young's modulus of a two-dimensional media with holes does not depend on the

Poisson's ratio of the matrix material.

1. Introduction

The purpose of this paper is first to review some results for two-dimensional

elasticity, which are not widely known but which may have wide application. and

second to give an appropriate physical interpretation of the formal mathematical

statements embodied in these results. These results concern the invariance of the

stress field in materials with different elastic moduli subject to the same loadings. In

fact this property was noted many times in different contexts. beginning with the

work of Michell (1899), who studied the behaviour of media with holes. Dundurs

(1967) used the complex representation of the Airy stress potential to show the

invariance of the stress field for mixtures of two isotropic components. Lurie &

Cherkaev (1984a) studied the problem in the context of Kirehhoff plate theory which

involves the same equations as two-dimensional elasticity. The interest in this

problem increased when Day 4t al. (1991) observed, through numerical simulation.

that the effective Young's modulus of a two-dimensional media with holes does not

t Present address: Department of Mathematics. University of Utah. Salt Lake (City. Utah 84112. U.S.A.
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h-pt(nd oin the Poisson ratio of the matrix material. Most of these results. togeth *
% ith sonne nlew applications, are reviewed by Thorpe & Jasiuk (19.92).

In §2 we fix notations and state the standard equations of two-dimensional
elasticity (see, for example, Atkin & Fox (199)0) for a general reference). In §3 we
explain how the material constants can be modified without altering the stress field.
an, l in §4 we discuss the implications for composite materials.

We use bold face small letters to denote vectors. Second-order tensors are denoted
I . ither bold face capital letters or bold face Greek letters. and fourth-order tensors
arc denoted by caligraphic letters.

2. Equations of planar elasticity

Here we consider a planar simply connected domain .Q filled by an elastic material
and loaded on the boundary v•2 by a force t(x): this constrains the normal stress
6(x) .n at Z? according to

where n denotes the normal to the surface. For the body to be in equilibrium the net
force and net torque acting on it must be zero:

f t(x)=0. fXXt(x)=0. (2)

The equilibrium equation of plane elasticity

V'C=0, 6 =UT. (3)

may be satisfied identically by means of the Airy potential function 0 (Atkin & FoO
1990) in terms of which the stress is given by22 0.2 11_( ,) 0 .12;) (_0 (4)
where the comma means differentiation with respect to subsequent cartesian
directions. By introducing the tensor of rotation by a right angle.

and the differential operator.

VV = (•/C §ý'x, 2/l1XN•2ýx" (6)

we can re-express (4) in the more compact form

a = RT.(VVO)"R. (7)

"Note that R is the two-dimensional counterpart of the completely antisymmetric
Levi-Civita tensor. We write it as R to emphasize the key point (made in §3) that
the stress field a rotated locally by 900 can be treated as a strain field because VVO
is the symmetrized gradient of V5.

The requirement that £2 be simply connected is needed to ensure that 0 is single
valued. Multiply connected domains also have a single valued 0 provided that

Proc. R. Sor. Lond. A (1992) 0
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inte.grals of the type (2) vanish separately on each internal bondar. Under t h is
restriction our analysis applies equally well to oultil 'y connected dornains.

Now given any synmmetri( 2 x'2 matrix A with elements a we have

R-.A.R = (. .u ( 1= 4)+'. -m ".., -(TrA)-A. (8)

where Tr denotes the trace of the matrix and I denotes the identity tensor.
Consequently we can also rewrite (7) using a fourth-order tensor .4. representing the
action of rotation by a right angle on symmetric second-order tensor. defined as
follows: = 1 4k (Yik jA+ d - 4 5) (9)

in the form a = -1: WO. (10)

Here, as elsewhere, the symbol : denotes a double contraction of indices in the same
way that the symbol •denotes a single contraction. Specifically. if / and R are
fourth-order tensors with cartesian elements •']jkL and •j•. and A and B are second-
order tensors with cartesian elements Ai, and Bj then we define

2 2

2 2
( ,-J : B ) ij = -Y I _z H m nj m. B ,1

rn-I n-1

2 2

A:B = N Z AmnBm,.
Mr-I n-1

In other words .-4: B is the second-order tensor that results when .'r acts upon B.
d /:R is a fourth-order tensor and represents the product of the two tensors Z( and
-4, while A :B represents the trace of the second-order tensor ATB, or equivalently
the inner product of A and B.

The equilibrium condition for the stress is to be supplemented by the constitutive
(Hooke's) law E = Y: 4. (12)

where c is the strain tensor and Y denotes the fourth-order compliance tensor of the
elastic material possibly depending on the position x.

If the material is isotropic. then the elasticity tensor `6- (= - = ,(K. 11) can be
expressed in the form

tijkl(K./t) = Ktij 41 +/t(3i 4JI + 3i 4k -- 8i 8d, (13)

and its associated compliance tensor . = .9 -'(K. ) is given by

Y•ijkl(K./i) = (1/4K) di 6, + (1/4/t) (6 ds +a 4)k '• -6% dk). (14)

where K denotes the two-dimensional bulk modulus and ji denotes the shear modulus.
It should be noted that K is not the same as the customarily used three-dimensional
bulk modulus k: however, for the problem of generalized plane stress where a thin
plate of uniform thickness is deformed in its own plane they are related by the
formula K = 9ku/(3k+41 u). (15)

In this context the fields c and a represent the transverse components of the strain
and stress fields averaged over the thickness of the plate. (For more explanation see.
for example. Atkin & Fox (199)).)

Proc. R Soc. Lond. A (1992)
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The strain field -(x) Is ionnected w it h the displacinenoot u(x) via

- = *I(Vu + (VU)"').(I)

The last equation is eqjuivalen~t to requiring' that the strain sat isfy the scalar
dlifferential constraint

VLV(%R)1~).(17)

or. in the notation of (6) and (9).

V V .4 = (S

InldeedI. we have

Rr~e.R~K+ (2 (i~+,~) (9

and so one can easily cheek that

VV: JP: c=V-V-(RT-cR)I = o.2 . 1 ( 1 .+..) 1 +u.L . (20)

Note that (18) is the well-known infinitesimal strain compatibility condition of' two-
dimensional linear elasticity, Combining the equations (10). (12). and (18) we arrive
at the fourth-order differential equation for the Airy' potential

VV:9 Y:VWOV=0. (21)

where .Y' is Y' rotated by a right angle:

Y' = 9'R:Y:Z4 (22)

Clearly, the isotropic tensor Y'' coincides with the rotated one:

Y' 1(K. II) = Y' (K,,U). (23)

and equation (21) takes the form

- ~ 2~____ (2 2) ( + (j (c ) -0.(24)

We remark in passing that (21) also describes the bending of thin plates accordingz
to Kirchoff theory: 0 represents the vertical detlection of a horizontal plate. WO~ is
the tensor of curvature of the plate. Y9' is the tensor of flexural rigidity dlependent
on the local thickness of the plate and Y' : WO~ represents the tensor of bendingz
moments, satisfying the equilibrium equation (21) (Timioshenko 1959). Thus all the
ensuing analysis applies equally wvell to the plate equation (see Lurie & Cherkaev
1984 a).

3. Equivalent plane elasticity problems

It is remnarkable that any potential 0 satisfying the equation (21) is for anv' choice
of the parameter I also a solution of

VV: .9": WO~ 0. (25)

where Y' = R: Y': R9' Y '9iA (26)

Prow R. .1;or Lond. A (11)(02
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implyinig that the Airy potential and therefore the stress field remains unchanged
when the material constants are modified troni Y0 to Y0 '.c Weill c'all such a pair of
materials with complianice tensors .91(x) andl Y '(x) equi valent. The result (25) can he
establishe(l (lirectlv by substitutingY K = 1,.l~ = -,I in (24) thereby showing that

VV: .91 '(,1. -,1): VVO = 0 (27)

for an\- fuinction ~.Formally speaking the compliance tensor .91 '(,1. - A) is nothingy
other than a multiple of' Hthe CUrth-oruler rotation tensor .ý9 : from (10)) andl~ (14) it
follows that

Y0 1(1. - A1) =C1/2,1) *#0 (28)

The physical explanation for the identity (27) is that the stress field a when rotated
by a right angle at each point results in at field (see (7))

' = R -a -R~r= R: a =VVO (29)

satisfyingy the same differential constraints (17) as a strain field. Indeed, it is clear
that

VV: R'r ~R = VV: a = V -(V -a) = 0. (30)

Furthermore. from (29) it follows that

CO = 1(u+V 0 T .u=~ (31)

So this strain field is associated with a special vector dlisp~lacement field u" which is
in turn the gradient of the Airy potential function. -Note. that the displacements u
and u' in the equivalent materials Y0 and Y' under the same surface loading t(x)
differ by a multiple of u0

u'= u +u'1 /e(2,) = u+VO/ (2,1). (32)

In particular this gives a direct way of finding the gradlient of the Airy stress
potential VO from measurements of the dlisplacements u and u'.

Another explanation of the equivalence (23). (26) follows from consideration of the
elastic energy variational principle

minf lr($0 (33)

where the minimum is over all a s;atis;fying, (I) and (3). and

=(Y Y:$: a=VVO: R: -0 -4: VVO5. (34)

The Euler-Lagrangye equation associated w ith this minimization over ca. or
equivalently 0. coincides with (21). It is easy to observe that the integrand

'V(,I
1(. -t7. ) can he ex1)res~sedl as the d ivergenc-e of at vector field

W(• I'(AI. -,I). o7) 12,1) VVO: R~: VVO

=(0. It 0.2 22/ = V -V' (35)

where V = IV .V V ,4:WO ( 010.2 2-0,20 (36i)
2,1~ 2,1 0 .1 ,-~ 0. 1.:2)

an(I therefore its integ~ral depends only on the boundary terms. 'Such functions are
called null latirangians (see. for example. Ball ,t a/. 1981) because their Euler-

Pror. RSw~ Loind. A (1992)
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Lagrange equations vanish identically. They play an important role in th*
theories of quasi-convexity (Kohn & 5tranii 1986) and compensated compactness
(Tartar 1979) used now in many applications including optimal design. hom-
ogenization. liquid erystals. and bounds on effective moduli of composite materials.

In fact these arguments parallel results of Dykhne (1970). and Stroud & Berman
(1984) (see also Keller 1964: Milton 1988) tbr conductivity in two dimensions in the
presence of a magnetic field perpendicular to the plane of conduction. which
generates through the Hall-effect a non-symmetric conductivity tensor. They
observed that any electrical potential V(x) satisfv'in-,, the equation

V.-,(x) .V ' = 0. (37)

where Z(x) represents the conductivity of the body. also solves

V'(X(x)+AR)-VV= 0. (38)

for any choice of A. Just as a stress field rotated by a right angle produces a strain
field so does an electric field, when rotated by a right angle produce a current
(divergence free) field. (Note, however, that a strain field rotated by a right angle
does not produce a stress field whereas a current field, when rotated by a right angle
does produce an electric field.)

Now we investigate some particular physical consequences that follow from (25).
The representation (25) shows that the coefficients of the compliance tensor .Y and
consequently the strain field e cannot be determined from the solution o" of the
boundary value problem (see (25). (1). and (7)). For example. instead of a locally
isotropic elastic material with moduli K and It one can substitute into the equation
(25) the moduli K' and /(': 0

1 = 1 1 _ 1 1
K'(X) = K(x) A• " (x) Ix) (39)

and it does not change the solution 0 nor the stress field a. We will call such a pair
of materials equivalent. Note. that the substituted material does not necessarily
have positive moduli K' and i' and therefore may not have a physical interpretation.

Let us consider the relation between the Young moduli E and E' and the Poisson
ratios v and v' of equivalent materials. Comparing the constitutive law (12) with the
defining equation

= (1/E) (o - r'_). (40)

for the Young modulus E and the Poisson ratio v we obtain the relations

-1K-11
+_ (41)E 4K4/K t Kl*

It is clear from (39) that the equivalent materials have the same Young moduli at
each point in the body

E'(x) = E(x). (42)

and Poisson ratios linked by

v'(x) = v(x) - E(x)/2o\. (43)

where A is an arbitrary parameter constant throughout the body.
Proc. R. Soc. Lond. A (MY)2:
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In particular this implies that the stress field in a loaded body with constant
Young modulus does not react when the Poisson ratio v(x) is shifted unifoirmlv.

4. Applications to composites

Finally, there are useful implications of the identity (27) to the theory of
composites. Suppose now that the body Q2 is a statistically homogeneous (or periodic)
composite with grain sizes much smaller than the size of-Q. subject to the loading (1).
This composite can be replaced by an equivalent homogeneous effective medium
with compliance tensor 9' *. connecting the locally averaged stress and strain tensor
fields,

(C = .,*: <a, (44)

where <'> denotes local averaging over a test sphere e(x) centred at x. which is
larger than the grain sizes but smaller than all other characteristic lengths such as
the size of (2 and the length scale over which t(x) varies. To obtain the effective
compliance Y * it suffices to consider an infinite body of the composite loaded
uniformly. and the averages <'> can then be taken over the whole bod. or
equivalently over a period cell.

Since the stress a is the same in the equivalent materials 5V(x) and .Y '(x) (where
5, '(x) is given by (26)) when they are loaded uniformly in the same way. it follows
that the strain fields satisfy the relation

C' = Y': e = Y': r+._ '(A. -,I): a = c+• -Y'(,I. -A): c. (45)

0 Taking the average of this relation over a period cell. and remembering that
Y '(A. -,) does not depend on x. gives

'*.: <f> = S'y*: 6K>+ Y'(A. -,):(f>. (46)

Since this holds for all uniform loadings, or equivalently for all values of the average
stress <a>. we deduce from (46) that the effective tensors are linked through the
equation

.Y'* = .9 * + Y9 (A. -A). (47)

In other words the effective compliance tensor is translated by the same tensor as the
compliance tensor of the initial inhomogeneous medium. Applied to an isotropic
composite of isotropic components it implies that when the moduli l/K(x) and 1/pt(x)
are shifted according to (39) their effective moduli are shifted in the same way

1 1 1 1 1 18S= -- + : = .(48)
K"* K* 1 tt'* tt* ,A

This observation explains the numerical results of Day -?t al. (1991): see also Thorpe
& Jasiuk (1991). They found that the relative Young's modulus E*/E of a two-
dimensional sheet containing a statistically isotropic distribution of circular holes.
overlapping or not, is independent of the Poisson's ratio v of the sheet. The reason
for this is clear. From dimensional considerations E */E can only depend on v and on
the geometrical configuration of the holes. So. without loss of generality, let us
suppose the Young's modulus E of the plate remains fixed. A uniform shift in the
Poisson's ratio of the sheet from v to V'. while keeping the Young's modulus E' = E.
corresponds to a transformation of the form (42) and (43) with I = E/2(v-v'). In
other words plates with different Poisson's ratios but sharing the same Young's0 Proc. R. Soc. Lond. A (1992)
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modulus and geometrical configuration of holes are equivalent. Under this
transformation the holes remain holes and according to (48) and (41) the effective
Youongs modulus E* and effective Poisson's ratio V* are transformed to

E'* = E* (49)

V'* = * -(i- i') E */E. (50)

Consequently the ratio E*/E remains unichanmged. i.e. it can only depend on the
geometrical configuration of the holes.

An interesting consequence of (48) is that it lead.s to a very simple proof of the
Hashin-Shtrikman-Hill bound on the bulk modulus K* (Hashin & Shtrikman 1963
Hill 1964). We begin with the Voigt bound on K"* (Hill 1952)

K:'* •< <K:'>, (1

which holds for all choices of A such that K' andlt' given by (39) remain non-negative.
In particular. when A takes its extreme value.

, = u- = max t(x), (52)
x

(51) implies -+-L K(--+ ), (53)

which is the Hashin-Shtrikman-Hill bound. This is one of the simplest examples of
the so-called translation method to bounding the effective moduli of composites. The
method generalizes the idea of equivalence, and it not only provides an alternative
derivation of the Hashin-Shtrikman bounds on the effective conductivity, bulk a,&
shear moduli (Lurie & Cherkaev 1984a. b. 1986a: Tartar 1985: Francfort & MurW
1986: Milton 1990. 1991) but also generates coupled estimates on the possible (K*. /I*)

pairs (Cherkaev & Gibiansky 1991). exact estimates of the elastic energy stored in the
composite for a given applied field (Lurie & Cherkaev 1986b: Gibianskv & Cherkaev
1987: Allaire & Kohn 1991), and sharp bounds on the effective elastic moduli of
polycrystalline materials (Avellaneda & Milton 1989: Cherkaev et al. 1991).

The equivalence (47) was the key point used in the paper by Lurie & Cherkaev
(1984a) to get the bounds for the set of all possible effective tensors Y *(x) when
.9P(x) is isotropic and either the bulk or shear modulus of the material is constant.
When the shear modulus is constant then the effective tensor is necessarily isotropic
and shares the same shear modulus as the components (Hill 1964). To obtain the
effective bulk modulus one can choose A = /t giving

1 1 1 1
- I-. -=0. (54)

K'(x) K (X) t1 /

From (25) it is immediately clear that the Airy potential satisfies

A AO = +. (55)

where A denotes the laplacian. implying that the scalar field

Tr '(x) = '(I /K(x) + 1//t) AO(x) (36)

is harmonic (see (55)).
The physical explanation of this is quite clear. The equivalent material has infinite

shear modulus and so its only possible deftrmations are conformal ones since a

Proc. R. Soc. Lond. A (I9iO2)
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change in the angle between two lines under deformation indicates shear. In
particular, if the deforniation in the equivalent media is on average uniform then it
must necessarily be a uniform dilation. The associated strain field in the equivalent
media is independent of x. and proportional to the identity tensor

E1i(x) = (c') = adij Vx. (57)

and the trace of the average stress field is

Tr (a'> = /A,,5(x)> = 2<(l/oc(x) -4- l//- rrc'>

= 2<((/K(x) + li/t)-'> Tr <E'>. (3d)

This in conjunction with (48) shows that the effective bulk modulus K* satisfies

= -(59)

independent of the microstructure of the composite. The same conclusion was also
reached bv Hill (1964), and by Franefort & Tartar (1991). who showed the relation
can be generalized to three-dimensional composites with constant shear modulus.
The result also follows from the Hashin-Shtrikman bounds (Hashin & Shtrikman
1963) which collapse to the single relation (59) when the shear modulus is constant.

Since the equivalent medium has infinite shear modulus its Poisson ratio given by
(41) is - 1. Materials with Poisson's ratios close to -1 although not yet found in
nature can nevertheless be constructed (see, for example, Lakes 1991 : Milton 1992).

In a similar way, supposing that the bulk modulus is constant and choosing A =
--K one can get the equivalent incompressible medium. For two-phase composites
of isotropic incompressible media. mixed in prescribed proportions. Lipton (1988)
has obtained a complete characterization of the set of all possible effective elasticity
tensors. This immediately gives, via (47). a complete knowledge of the possible
elasticity tensors when the bulk-modulus is finite and constant in both phases.

Clearly equivalent media differ very much in their elastic behaviour. The
equivalence means that when subject to the same loading conditions they (as well as
infinitely many other equivalent materials) possess the same stress tensor in each
point of the body Q2. Finally. note that (47) also provides a useful test for numerical
codes for evaluating effective moduli. no matter if the component phases are
isotropic or polyerystalline.
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