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Statement of Work

The main objective of this work is the development of a unified mathematical technique
allowing one to handle optimal design problems directly, i.e. without reference to G—closures.
The direct approach has originally been put forth in [1], its detailed description given in [2].
This approach has been applied here to problems of the second order arising in the optimal
design of heat conducting bodies [3,4], and to the 4th order problems arising in the optimal
design of plates [5]. The ultimate aim of this work is to create an exact analytic procedure able
to provide special microstructures that eventually participate in the optimal layout for
non—self—adjoint problems. Currently, these microstructures are worked out numerically [6],
this step forming an inner loop in the major computational procedure aimed to determine the
desired optimal layout. This latter approach (i) provides with only suboptimal sets of
composites, and (ii) it has not yet been adjusted to non—self—adjoint problems of design.

TL - approach reported here does not include such an inner loop; it addresses the
computational work at the very final stage, namely, at that of assembling the overall layout
from the special composites introduced analytically at the earlier stages of analysis. This

analysis is rigorous and provides with genuinely optimal composites.




1 Analytical Aspects

1.1  The Second Order Problems

Direct Solution of an Optimal Layout Problem for Isotropic Heat Conductors in Three
Dimensions

Consider the system of equations:
q=—.@'VT, V-q:O (1)

describing the distribution of temperature T = T(x,y,z) within the domain V in RS filled by
the heat conductor characterized by the heat conductance tensor D= Fx,y,z). This one is

allowed to be equal either to 2, =u +E orto & =u E where u, and u_ are positive

+
constants (u+ >u_>0), and E is a unit tensor E =i + jj + kk:

D= dxy.z) = x;(xy2) D_+ xo(x.¥,2) L ; (2)

Here Xl’z(x,y,z) ( X;+ X9 = 1) denote the characteristic functions of regions occupied

respectively by .@+— and & —materials.

Assume that the temperature T is prescribed along the boundary dV of the body:

T| =f (3)
v

and consider the (cost) functional

[(T)=- J[T(x,y,z) - To(x,y,z)]2 dxdydz (4)
\Y




_-—r

. where Tj(x,y,z) € Lo(V) is a known function. We desire to find the characteristic function
x1(x,y,z) maximizing the functional (4).
A similar problem in two dimensions has been discussed in [1,2].

To apply a direct method [1,2], we first establish the equivalence of

sup I (5)
X1
subjected to constraints (1) and (3), and
sup infJ (6)
Xy, T A
where
J=1(T) + J VA - @ VT dxdydz (7
\Y%

and the "conjugate variable" A is subjected to

Al =0 (8)
oV

whereas T is subjected to (3).

This latter problem is handled with the aid of two—sided estimates that constitute the

core of the direct approach [3].

We start with the following upper bound:




sup infJ =sup supinfJ < supinfsupJ =
xl,T/\ T X1 A T A X1

(9)
= S'lfp igf[I(T) + J G(VT,V))dxdydz]
\%

where (we accept the notation & = VT, n= V)

u+§ /| if 6 - N2 0;
G(&n) = (10)
u £-nif £-79<0.

We thus calculated sup J explicitly. The upper bound (9) is not final. The function G(&,7)
X1

is not a saddle: it is in fact convex with respect to each argument (but not with respect to

their union). For this reason we cannot guarantee the existence of solution of the problem

sup inf[I(T) + JG(VT,VA)dxdydz] (11)
T A v

on the basis of a saddle—point theorem. But because the arguments ¢,n7 of G(&,7) are
gradients, we need not demand that the integrand should be a saddle to ensure existence: it is
sufficient for this one to be a quasisaddle function [1,2]. We introduce the polysaddle envelope

G**(f,n) of G(¢,n) defined as [1,2]

* ¥k
G (¢1n) =supsupinf{a-£ +b-n+ w-éxn—infsupla-£ + b-n+
w b a & 7

(12)
+ w-éxn— G(&m)]};




*%k
G (&,m) thus appears to be an envelope of G(&,7) built with the aid of linear
functions as well as null-Lagrangians (§x7); = £yng — £3M9,(§xM)g = €3my — &73,(éxM)q =
§1M9 — &omy- If G(&,n) is convexin 7 and arbitrary in ¢ (which is the case here (see [1,2])),
then

G (&) > G(&m). (13)

*%
This property makes it possible to use G (¢,n) instead of G(¢,7) in (11) and thus arrive at

the new upper bound of the functional (6).
To compute (12), we first apply the operation sup. With the notation
n

H({n) =—w- Exn+ G(&n)

. we obtain

h(¢,b) = sgp[b- n—H(¢n)] =

0 if b+ wxf~ué=0, u <u<u
[ * (14)

+o otherwise.

The next step is given by the operation
inf{a - { - iréfla - £ = (-h(¢,b))]}- (15)
a

which yields the concave envelope of —h({,b) with respect to the £—variable for fixed b.

This envelope is found to be

0, Cez,
i;f{a- £—irgﬂa- ¢ — (—h(&,b))]} =[ (16)

- (g =




where = is the convex hull of the arc u € u_,u +] of the curve 7 in the £é—space
¥ b=—w{+u{=5(){ uvelu_u] (17)
or, explicitly in terms of ¢,

£=5"w) b, uefu_u]

-1 u ww Ww- €
S “(u) = E + -
wt P u(u2+w2) u2+w§
where ¢ = — ExE denotes the Levi—Civita tensor of the third rank.

Note that the above mentioned arc rests on the points ¢ L= S_l(u +) - b and
£ = S”l(u_) - b; this arc is defined by (14) as the set of points in é—space for which
h(¢,b) < w.

We should now describe the convex hull of this set. An extensive analysis of related
computational aspects is given in Section 2; here we give but a general sketch of this geometric
object. This one turns out to be the convex body in RS é—space bounded by a surface d=
comprised of two sheets. One of these sheets is a developable surface produced by straight lines
connecting the point ¢ n with other points of the arc (17); another sheet emerges from the
same construction, this time associated with the point £ . The two sheets intersect along the
arc (17) and along the chord connecting the vertices ¢ " and £ . This chord is given by

g=tS"1u,) - b+ (1-t)sHw ) -b, te[o,]. (18)

+




In view of the operation sup to be computed next in accordance with the construction

(12), we must interpret (15) as the function of argument b for some fixed value of £. It is

remarkable that this interpretation is quite similar to (16), i.e.

0, be 3R
inf{a- {—infla- {(-h(¢,b))]} = { (19)
a f -, bﬂ 2

where 2 is a convex body in the R® b—space bounded by a surface 0.8 of the same type as
the boundary 0= of =. This surface is also combined of two developable sheets, this time
produced by straight lines connecting the vertices b, = S(u 4)-¢and b_= S(u_) - ¢ with
points of the curvilinear arc (18) (this one becomes a curvilinear arcin b—space!) On the other
hand, the curvilinear arc (17) in £—space is interpreted in the b—space as a chord connecting
the points b + and b_.

The operation sup participating in (12) is now reduced to
b

sup b7 . (20)
be B

Because the chord (17) and the arc (18) belong to the boundary 0.2 of & they should be
tested for optimality in terms of the operating (20). Since the body 2 is convex and its
boundary 4.8 is assembled from two developable sheets, its tangent planes participating in the
computation of supremum will touch 9.2 either at its vertices b n and b_ or along the arc

(18). All these possibilities are embodied in the operation

sup b-n (21)
be[b+,b_]

where [b+,b_j means the closed arc (18).




The analysis of this operation together with the subsequent operation sup shows that
w

the supremum

sup sup (bp+w- &x7)
w befb, b ]

is defined by the formula

u+cos2x, 0 < tany < [—

+
B 2 r—— . 2 u_ Uy
sup  sup (b-nt+w-€xn) = (u++u_)cos X—Ju+u_sm X, |g—<Stanx < | (22)
w bE[b+,b_]

U
u_cos2y, T < tany € w.

Here, 2x denotes the angle between vectors ¢ and 7. The expression (22) realizes the
upper bound G**(g,n) for the function G(¢,7) defined by (10). The first and third lines in
(22) can be achieved as we apply the pure @ ) — and 2 —materials respectively. The second
line can be achieved by a rank 1 laminate. To show this, we introduce at each point the plane
spanned by vectors £,7. Then we introduce a layered composite assembled from 2 A and I
—materials with layers directed perpendicularly to the ¢,7—plane and bisecting the angle 2x
between ¢ and 7. For this microstructure, with its effective tensor &, and the

0
concentration t chosen in accordance with the rule

tu_+(1=t)u,. P =u.,u tan2x, (23

the expression for ¢ - ) - n coincides with that in the second line of (22). Observe that the

requirement 0 <t <1 combined with (23) gives birth to inequalities




-y

The attainability of the upper bound

involved in (22).

*%
sup inf J < sup inf [I(T) + J G (¢,m)dxdydz]
T A T A
\%

if thereby proved. In this argument, we may consider special microstructures applied above as

admissible layouts generating the lower bound for the same functional sup infJ. Both bounds
x,T A

are shown to be the same, and the existence of optimal layout is thus demonstrated. Observe
that this layout is locally two—dimensional since at each point (x,y,z) we have two vectors &,n
that define a plane; in this plane we obtain the layout essentially the same as that described in
[1,2].

This overall layout is thus to be constructed from pure & I\ and & - materials and
also from rank one laminate assembled from them; the rule (22) shows how this construction

should be arranged.

Direct Solution of an Optimal Layout Problem for Isotropic and Anisotrop’c Heat Conductors
on a Plane

This problem differs froin the previous one only in the definition of a set U of
admissible controls (materials,. Now, instead of two isotropic materials 9+ =u +E and I

= u_E, we assume that U involves the isotropic material .@1 = uE and the anisotropic

M s’ T p— 7’ ’
material .@2 RJ/‘20R R = eje; + e5ey, R™ = ee] + eqes, .@20 = dle1 1t d2e2e2, 0<




u< d1 < d2. This anisotropic material is allowed to take various orientations at each point;
particularly, the polycrystals are allowed to emerge.

The overall analysis of this problem is given in [4] (see attachment). The optimal layout
is assembled from the pure .@l—material, the (properly oriented) Zzo—material, and the rank
one laminate assembled from them. A rule is indicated showing the ranges through which
either of these three materials should be applied.

These examples illustrate the direct technique of [1,2] applied to the second order
problem of heat theory.

The following example is referred to the fourth order problem arising in the theory of
plates.

1.2  The Fourth Order Problems
Direct Approach in the Optimal Design of Plates.

The state of equilibrium of a thin plate is described by the equation

W.. @ WWw=q, V=ig}—(+jg-};, (24)
(x,y)e X

where w denotes the normal displacement, 9 the tersor of stiffness, and q the transverse

load density. The boundary 0% of the plate will be assumed clamped, this property requiring

the boundary conditions

W 0. (25)

=6w =
5 9%|gm

The tensor P= x,y) will be allowed to take at each point (x,y) one of the two admissible

values .@1, and .@2 associated with two available constructive materials:




2 =kaja; + p(agay + azaq), i=1.2 (26)

Here and below, a,,35,a5 Tepresent an orthonormal basis in the space of 2nd rank symmetric

2x2—tensors, i.e.

a, = ‘/—;(ii +ii), ey =—(ii-j), ay= ~/f;(ij + §i). (27)

-

Introducing the characteristic functions x,(x,y), X9(%,¥)(X;+xy = 1) of domains occupied by
materials 2 and % respectively, we by analogy with (2) may write

ZAxy) = x1(x9) 2 + x5(x,y) %, - (28)

The function x;(x,y) will be sought to maximize some weakly continuous functional I(w) of

solution to the problem (24), (25). As typical example, we may take the functional

I(w) = — L[w(x,y) —wy(xy)|2dxdy, wy(x,y) € Ly(E) (20)

To apply the direct approach to this problem, we go through the same steps as before. The

problem

sup I

subjected to (24), (25) is equivalent to

sup infJ (30)
XpHw A

10




where

J=1I(w)+ J(VV/\ «o P VWw — Aq)dxdy (31)
)
and ) is subjected to
o\
/\, = aﬁ- =0. (32)
0% 0%

To construct an upper estimate for (30), we proceed as in (9) and obtain

sup infJ = sup sup inf J < sup inf[I(w) —J Aq dxdy +
w A WXy A w oA 5

+ J G(V7w, V7A)dxdy] (33)
3

where (we accept the notation ¢ = VWw, = VVA)

g.._@l..n, if 5"91"772§"%"7/:
G(¢n) = (34)
{..ﬂz..n’ if g..gl..nsé..%..n_

The bound (33) is still to be improved with the aid of the polysaddle transform similar to (12).

* %
We go from G(¢,7) to a new integrand G (&,7) computed by the formula

11




*%k
G (¢n) = sup sup inf{a- - {+b- - n+w- - ({xm)+d€--T--n—
w,d b a

- irgf sup[a- - é+b- - tw- - (§xm)+dé- - T--n-G(&,m)]}- (35)
1

Apart from null-Lagrangians (§x17)1 = {oMlg = €379+ similar to those involved in the 2nd
order case, this formula includes the null—-Lagrangian £--T--7n with the 4th rank tensor T

defined as
T =aja; — 22y — 2924 . (36)

This null-Lagrangian is specific for the 4th order operator appearing in (24) namely, the

following identity holds
W..T-.-VWw=0.

The transform (35) possesses properties similar to those of (12); particularly, if G(¢,7)

is convex in 7 and arbitrary in £ (which is the case here), then (eq. (12))

*%

G (&m)2G(&m),

and G**(§,17) can be used to improve the bound (33).

We now should compute G**(ﬁ,n). This time we cannot characterize the boundary 4.2
that now appears in a manner similar to that in Section 1.1 simply in terms of two developable
sheets; the geometry of this surface is more complicated. Nevertheless, the general scheme of
Section 1.1 works well, and we are able to carry out the analysis of corresponding necessary
conditions. Detailed calculations are exposed in [5] (see attachment); the complete

classification of ranges has been provided for the case when tensors ¢ and 7 are coaxial. The

12




ultimate layout involves in this case laminates of rank one and matrix laminates of rank two,
their layers being oriented along the (common) main axes of tensors ¢ and 7.

The method works well also in the general situation when tensors ¢ and 7 are
arbitrary. The corresponding calculations have been initiated, and they show that laminates of
rank one appear as microstructures that are optimal within certain ranges of ¢ and 7. For
other ranges, general (non—matrix) laminates of rank two apply; the final classification of

ranges is still to be completed.

13




2 Computational Aspects

2.1 Introduction

In solving the materials layout problem, we wish to evaluate the function
G**(¢,7n). This function is constructed from the function G(¢,7) as follows.

G"(f,ﬂ)=5[;1P51;pixlf{a-€+b-r]+D§Try fw-Exn
—i%fsup[a-c+b-0+DCTO+w-(x § - G((,0)]}
0

where the terms in this function are defined as follows. The arguments £ and
n are symmetric tensors of size two. If, however, we choose a basis for such
tensors we can think of £ and 7 as being three-tuples (elements of R*) so that
operations such as { x 7 make sense.! In particular, we choose the basis
1 ... .. ) |
a; = —(12 + az; = —=(11 — a3 = —(17 + 11
1 ﬁ( i) ea=p(E-4i) s = =57 +ji)
We express ¢ and 77 in this basisas §; = £ --a; and g, = n--; for : = 1,2,3.2
The dummy variables a, 8, w, ¢ and @ are also thought of as being in R3.3
D is a scalar. T is defined to be the matrix representation of the operation
T = aqja; — aza; — azaz in the basis {a;, @z, a3}. In other words,

1 0 0
T=]0 -1 0
0 0 -1

In order to define G(¢,7) recall that k_, k., p_ and p, are all scalar quan-
tities. Define

Ky =kilom + pe(€am +&m)  and

a; a3 a3
Thatis, Exn=| & & & | where the set {a;, @z, a3} is the basis of the space
M M 73
of tensors.

3In other words, think of the tensor £ as being a two-by-two matrix with elements & ).
Then the scalar & = £ --a: = 3, (§n(@i)a, and € = 3, Lias.

3Note the analogous roles played by £ and (, and by n and §. We will subsequently be
considering the space R® = R? x R? with £ and ¢ belonging to the same R subspace and
n and 9 belonging to the same R subspace. Later, b will also be thought of as belonging
to the same space as n and 4.

14




K_=k_&m — p_(&m2 — &3m3)

Then finally, G(¢,7) = max{K;,K_}.
With G**(¢,7) now defined, we cousider how to evaluate it. We first turn
our attention to the terms underlined below.

G™(§:m) =sl;xpsgpirgf{a-fﬁ-n%-DETrH-w-E <1
-ixzfsup[a-(+b-9+DCTO+w-C x 8 —G((,9)]}
9

We will call this 3(¢, b); that is,
3(¢,0) = sx:p[b-@ + DCT8 +w-¢ x 8 — G((,9)]

We determine analytically that

0 at all { such that
3(¢,5) = b+ DT( — [kaya; + p(azaz + azas)]{ +w < (=0
oo at any other {

where k = k. —6(k.—k_)and p = py —8(p+ —p-) and where the parameter
§ is allowed to range through the interval (0,1). ( So, in other words, k ranges
through all of the values between k_ and k., and p ranges through all of the
values between u_ and p,.) Note that the equation

b+ DT — [kaya; + p(azaz + 23a3)]( +w x { =0

can be thought of as the parametric representation of a surface in R®, with
d acting as the parameter, and {(i, (2,3, b1, b2, b3} being the basis vectors of
R®. We call this surface M((,b), so that

M((,b) = b+ DT( — [ka1a; + p(2282 + @3a3)]( +w x (=0

It will be using it extensively in subsequent computations.
The second step in evaluating G**(£,7) is to consider also the terms
double-underlined below.

G*(&m) = SI;IPSt:pigf{a__-§+b-q+D§Tr, Fw- €«

—-ingsr:p[;_ﬁ-%—b-o-*'DCT” +w-(x8-G((0)]}

15




We call this ¢(£,5); that is,
<(§,6) = inf{a- ¢ —infla- ¢ +3(¢,5)]}

Now, for each fixed b, we can think of the set of all £ for which this infimum
is attained as being the convex hull of M((,4). In other words, the set of all
¢ for which this infimum is attained is the convex hull of the set of all  for
which 3((,6) is equal to zero, where b is held fixed and where { and ¢ are
thought of as being in the same space, R>.

To place this procedure in perspective, consider the surface M((,5) as
existing in R®. By fixing b, we take a slice through A in the (-direction. The
result is some surface in three-dimensional (-space. We then convexify this
surface; the result is the set {£ € R | ¢(&,b) attains its infimum}.

If we were to consider the above procedure taking place for all b, we would
describe a six-dimensional body B which contains M((,b) as a subset. We
imagine slicing through B in the b-direction by fixing some particular value
of {, this particular value being £. For the sake of brevity, we will refer to
this slice through B in the b-direction as B (since £ is fixed), and we will
refer to a slice through B in the ¢-direction (that is, with b fixed) as B,. Note
that with this notation, B, = {¢ € R®|c(¢,b) attains its infimum}. Figures
1 through 7 provide a schematic representation of these bodies. Note that
in these schematics, we have labeled the horizontal axis with a £ rather than
with a (; since they are both in the same R> space we could have labeled
the axis with either symbol, but we chose £ since that is the particular value
along that axis which we will ultimately be interested in. Note also that b
and £ are drawn as if they were scalar quantities, when in fact they represent
three-tuples.

As a third step in the evaluation of G**({,n), we consider the triple-
underlined terms below.

G*(¢,n) = %IPSupinf{a-i-%-b-n +DéTyp+w- € xq
W b B = =

—ix}fsup[a_-{—:g+ DCTo +w- ¢ x 8 - G(¢,0)]}
pLa Al Ry ==

Computing this latest supremum amounts to evaluating sup, b- n where b is
allowed to range throughout B, for any fixed £. So in other words, given
¢ and 7, we first find the surface M((,b). Then, for each fixed b we slice

16




through that surface in the (-direction, and compute the convex hull of the
resulting surface. Doing this for each b value obtains for us the body B.
Now with the { we have been given acting as a particular value of ¢, we slice
through B in the b-direction to obtain Be. We then compute

supb-n
668(

We call this quantity 8p ,(£,7). This process is demonstrated schematically
in Figures 8 and 9.

The fourth and final step in evaluating G**(§,7) is straightforward. We
compute

ﬁxp{so.u(f,n) + DT +w-€ x 1}

By far the most difficult step is computing bp ,(¢,7). This, in turn, is only
made difficult by the cumbersome definition of B¢ as the £-slice of the union
of all convex hulls of b-slices of M((,b). The difficulty arises not in computing
the ¢-slice itself, but in computing all possible b-slices of M((,b). Clearly,
we cannot expect to compute an infinitude of complex hulls numerically! We
will discuss possible solutions to this problem in Section 4.

2.2 Representations of M((,b)
Recall that

M(£,b) = b+ DTE — [kaia; + p(aza2 + azas)]éw x §

We call this the tensor formulation of M(£,b). We could instead write this
as a linear system of three equations in three unknowns. To do this, we must
first express w in the basis {a;,a;, a3}, so that w; = w .- a; for i = 1,2,3.
For the sake of brevity, we write A = w;, B = w; and C = w;. The system
then becomes

{D - [ky — 8(ky — k_)[}1 — C& + Bés = —by
Cé+{-D—[py —b6(py —p_)|}ea — Als = -b2
—B& + AL+ {~D ~ (p+ — 8(ps —p-)|Ya = =53

17




We call this the linear system formulation* of M(&,b). We can now write this
system in a “matrix x vector = vector” fashion as (A+8D)¢ = b where Ais a
full matrix and D is diagonal.® We call this the matriz formulation of M(£,b).
This notation essentially divorces the computation from its physical context,
but is a more standard formulation from the point of view of numerical
analysis.

So as a first step in numerically evaluating the function G**(£,n) we sup-
pose that b is fixed and compute a discretized version of the surface M(¢,5).
Let NV be the number of points in the discretization; we will write the dis-
cretized version of the M(¢,b) function as My(£,5), or more simply as My,
and we will refer to this as the discrete formulation of M(£,b). My is com-
puted by choosing N values of the parameter § in the interval {0,1] and solving
the above linear system for £ at each of these NV values of §. We will refer to
these discrete values of § as {§()}¥ . Likewise, the N discrete values of val-
ues of £ will be denoted {€("}¥,. Figures 10-14 provide a computer-graphics
representation of My and its hull for the following test problem.®

{2-[1.5-68(1.5-0.1)]}& = 0& + 06 = —1

0¢, + {—2 — (30 — 8(30 — 2)]}¢2 — 306, = —85

0¢; + 30&; + {—2 —[30 — §(30 — 2)]}¢5 = —50
The points on the discretized surface were computed in FORTRAN and
stored in a data file for eventual use in computing the convex hull of My.
The FORTRAN code used is provided as an appendix. Note that values were

assigned to the scalars b, A, B, C and D arbitrarily for the purposes of these
computations.

2.3 Computing the convex hull

At this point, we have a numerical approximation to a slice in the b-direction,
for some fixed b, through the six-dimensional body B. We now need to

“The scalar B = w3, above, should not be confused with the set B from the previous
section.

%¢ is now written as £ to emphasize the fact that the current formulation is divorced
from the physical (tensor) meaning of £. That is, € will henceforth always be thought of
as a three-tuple rather than as a symmaetric tensor.

®Hlustrations are also provided for the hull test surface z = (1 — ¢)sin(16t), y = (1 -
t)cos(16¢), z = } + 8(t — })?, where ¢ ranges between 0 and 1. See Figures 15-18.
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compute a numerical approximation to its convex hull.” Just as the discrete
analog of the surface M(&,b) is a set of IV points, the discrete analog to
the surface of the convex hull will be a set of M triangular facets, {A;};.
The algorithm we used for computing the discretized convex hull is called
the “Giftwrapping Algorithm” and is a standard algorithm in computational
geometry. We describe it, and provide our C language implementation of the
algorithm, in an appendix. Algorithms which are theoretically more efficient
are known, but are difficult to implement. At this stage of the project, we
chose the sufficiently efficient Giftwrapping Algorithm for its (relative) ease
of implementation. Also, at this stage of the project, it is just as important
to be able to view a computer graphics representation of the hull as it is to
actually compute the hull. For this reason, our C program also displays the
convex hull by making use of the X Windows graphics and interface library,
xlib. Figure 13 provide a computer-graphics representation of the convex
hull. (Note that while the program makes use of shading to provide a “three
dimensional look” to the hull on the computer screen, printouts of the screen
are necessarily black-and-white and so lack the look of depth.)

Being able to view the convex hull is important for three reasons. First of
all, its the only practical method for determining that there is no error in the
convex hull computation. More importantly, if we consider the image of the
convex hull in the context of its original physical derivation, certain facets of
the hull represent various classes of laminar composites. For example, points
on the body which lie on a line segment connecting two points on the surface
represent rank-one laminates. Finally, observing the convex hull for some
problems provides insight for methods of attacking the problem analytically
rather than numerically. For example, developable surfaces® on the convex
hull might indicate linearity in the original problem which could be exploited.

2.4 Computing supyep b 1
2.4.1 Pattern Search Approach

As we previously described the procedure for evaluating G**(&,7n), we would
have to compute the above convex hull for every possible value of b in order

TThat is, we need to approximate the set {£ € R®|¢(£, b) attains its infimum}.
SThat is, surfaces which can be traced out by the motion of a line segment through
space. The length of the line segment is allowed to vary as the segment moves.




then to compute the body B. Clearly, this is impractical! And yet, without
B, we cannot then slice through B in the b-direction so as to compute B;
at the given {. One way around this dilemma is to realize that we are not,
in fact, interested in computing either B or B¢ at all; we are interested only
in computing supyeg, b - 7. This is an optimization problem with a linear
objective function and a nonlinear constraint set. In fact, the constraint set
is not only nonlinear, its also non-smooth, and even non-convex. Worst of all,
we do not even have an analytic description of its boundary. Rather, for any
given b value we can answer the question “is bin B¢?”? but we have no other
information about the constraint set for nearby values of b or £. In particular,
we cannot even determine if we are on the boundary of the set except by
sampling nearby points and repeating the convex hull computations at each
of these points. Thus, even obtaining approximate derivative information
about the boundary is impossible. Therefore, we need to use a no-derivative
method of optimization, such as a pattern search method, in order to solve the
problem. We are currently at this stage of computer program development
in the project.

2.4.2 Higher Dimensional Approach

Another approach to alleviating this lack of an easily-defined constraint set
would be to consider the full problem in its six dimensional setting rather
than approaching it as a sequence of three dimensional problems, as we pro-
pose above. In this approach, we would compute a quasi-convex hull of
M(£,b) as in Figure 6. While algorithms for computing convex hulls abound
in the Computational Geometry literature, we know of no algorithms for
computing quasi-convex hulls. It appears, however, that an easy generaliza-
tion of the Giftwrapping Algorithm, which we used to compute our three
dimensional convex hulls, might enable us to compute directly the quasi-
convex hull of the six dimensional body. We are currently developing such
an algorithm, but have not yet implemented it.

9We would answer this question by fixing b, computing the convex hull of M (£, b), then
fixing €, and seeing if that £ values lie inside the convex hull we computed. Note that
numerical error can be a very sensitive issue here; £’s just barely inside the boundary of the
convex hull might be computed to be outside the boundary either because of roundoff error
in the coordinates, or due to discretization error caused by numerically approximating the
convex hull.
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2.5 Appendices to Computational Aspects

The following appendices are intended primarily for those involved in using
or maintaining the hull software.

2.5.1 Appendix A - Algorithm Used to Compute My

For our materials layout problem, both ¢ and b are three dimensional. So
the overall space is six dimensional. The ¢-surface is not a discrete set of
points, but rather a trajectory in three dimensions. Its convex hull is a body
in three space. By varying b, we can build up a six dimensional figure: the
B envelope.

In a {-space setting for our full problem, the surface whose convex hull
needs to be computed is given parametrically in the form

{D - [ky — 6(ky —k_)|}1 = C&: + B& = ~by
Céi+{-D ~[p4+ — 8(p+ — p_ )]}z — Ay = b,
-B& + A+ {-D — [pe ~ 6(py — p-)|}a = ~bs

which we write as (A + §D) = b where A is a full matrix and D is diagonal.
Here, the entries of the matrices A and D are known constants. In the overall
problem, both f and b are unknown, but as a sub-problem we consider b to
be fixed. So the algorithm for computing a single convex hull proceeds as
follows.

1. Fix an arbitrary three-tuple b.
2. Let {6}, be n evenly spaced values of & in the interval [0, 1].

3. For each §;, solve the equation (A + D) = b for £, where A is a full
matrix and D is diagonal.

4. This gives us a set of vectors {£1*) }¥., which form the discretized surface
in §-space.

5. From this, we compute a set of triang'es {A;}, which is the discrete
analog of the convex hull. We used the Giftwrapping Algorithm to
perform this computation.
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2.5.2 Appendix B - Notes on a Proposed Pattern Search

At this point we have a method for building up the set B. (The method is
theoretical, not practical.) We now turn our attention to computing supb .7
efficiently. Notice from Figure 19 that for a given ¢ and a given 7 we do not
need to know all of set B. In Figure 19, for instance, all we need to know is
the top boundary of B for some fixed £. In order to determine how this fact
might be used, we consider Figur~ 20. Here we imagine a two dimensional
b-space and we draw the b-image of B for some fixed £. (That is, we draw B,.
In Figure 20, B is shaped like a lemon slice.) For this particular example, we
have the unit direction vector 7 cutting through Be, but this is not necessarily
the case in general; 7 might not cut through B,.

First, it is illustrative to consider the possible correspondences between
features of Figure 19 and features of Figure 20.

e The b-axis in Figure 20 corresponds to the the entire b,,b,-plane in
Figure 20. Note that for this reason, a single point in Figure 20 might
simultaneously correspond to any number of points in Figure 20.

o The line segment 3¢ in Figure 20 corresponds to the “lemon slice” be-
tween the points © and v in Figure 20. In both cases, this set is a b
image of B corresponding to some fixed £. That is, it is the the set B.;.

e The point s in Figure 20 corresponds to the point w in Figure 20. This
point is the point at which sup,cg, b- 7 is attained.

¢ The point ¢ in Figure 20 corresponds to the line segment %7 in Figure 20.
In each case, this is the set formed by intersecting the b-space with the
original surface M. Note that in Figure 20 we draw this as a line
segment, rather than as an arbitrary surface, because in the sample
problem discussed above, b depends linearly on the parameter § for

fixed €.

e The point ¢ in Figure 20 corresponds to the point u in Figure 20. This
is the point at which sup,cps, b- 7 is attained. That is, it maximizes
b -7 over the original surface, with § fixed, rather than over the entire
set B.

It is very important to keep in mind that we do not actually know the location
of the horizontal line which passes through the point s in Figure 20. We could
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only find this line by computing an infinite number of convex hulls. Even
approximating its location would require an impractically large number of
convex hull computations, since b is really a three-tuple and not a scalar. If
we did know the location of the horizontal line, and therefore the location of
3, our problem would be easily solved.

We now consider how these observations can be used to write a con-
structive algorithm for determining the point w (or s). Again, it is useful
to consider Figure 20 in this discussion. The first algorithm we consider is
clearly impractical, however it illustrates some ideas we can use in a more
realistic algorithm. Recall that £ and 7 are given as input, since ultimately
we are trying to evaluate G**(£,7). Also, note that M(¢,b) is known; in this
case, it is the surface given parametrically by (A + D§)¢ = b.

1. Optimize b -7 over M(£,b) with the £ given. That is let
C = supgeo, (A + 6D)¢. In Figure 20, this value of C would be
attained at the point t. We now wish to somehow move “upwards”
from point ¢ towards the better solution at point s.

2. Randomly choose a value for b. There are three possibilities.

(a) This new value of b might not be relevant to computing a new value
of C. For example, consider the points b and 4" in Figure 20. In
the case of the point &', the corresponding ¢-space (horizontal line)
would not intersect the surface M at all, and so has no bearing on
finding the point s. In the case of the point 4", the corresponding
¢ space does intersect M, but not in the vicinity of the b-space
setting corresponding to cur fixed £. Since these b values are not
of interest to us, we return to step 2 and randomly guess a new

value of b.

(b) This new value of b might be relevant, but might not increase the
value of C. For example, consider the point b, in Figure 20. For
this b value, b -7 is not increased. So, we return to step 2 and
randomly guess a new value of b.

(c¢) The new value of b might increase the value of C. For example,
choose a point in Figure 20 which is slightly above the point 4,.
For this new b value, b7 is increased. Let C be equal to this new
value of the dot product, and return to step 2, to look for a still
better b.
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Clearly, this strategy of randomly guessing b values is not practical, especially
since b is actually a three-tuple and not a scalar. The above algorithm does
show how the merit of a b value can be judged. It is left, then, to replace the
random guessing with a better search scheme, such as a pattern search. For
example, given a value of b, we would consider 6 points within € of b, in the
positive and negative directions of each of the three coordinate axes. The
value of the objective function would be computed at any of these six points
which turn out to be in the set Be. The point with the lowest value is taken
as the starting point in the next step of the iteration.

2.5.3 Appendix C - Introduction to the the hull program

This appendix explains how the 3D convex hulls are rendered by the program
hull, how to use the program, and provides file listing for the code.

Running the program Hull runs in a Unix and X Windows environment,
such as is commonly found on computer workstations. At the shell prompt,
type “hull” to invoke the program. Hull will read in a number of (z,y, z)
coordinate triples from a file called surface.data, so it is assumed that this
file resides in the same subdirectory as the hull program. The data is stored
as floating point numbers, three per line, separated by blank spaces.

The main screen Most of the screen should now be taken up by the image
of a surface, super-imposed on the coordinate axes. (See Figures 3 and 4.)
In the upper left will be a dark rectangle labeled “Quit”. Clicking inside
this rectangle with any mouse button will exit from the program. Techni-
cally, these dark rectangles are not “widgets” in the sense of X-Windows
terminology, so we will refer to them as gadgets.

To the right of the “Quit” gadget is the “Save hull” gadget. Clicking in
this gadget will save the hull data into the file hull. data. Each line of the file
contains nine numbers representing one triangle: the first three numbers are
the (z,y, z) coordinates of the first vertex, the second set of three numbers is
the coordinates of the second vertex, and so on. The numbers are separated
by blank spaces.

On a color monitor, there will be a color bar to the right of the “Save
hull” button. The color bar displays 66 colors and 66 shades of grey. The
colors used are the 66 standard “named” colors in X-Windows. The shades
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of grey are the ones used to paint the convex hull. On a black-and-white
monitor, the color bars will not be drawn.

The overhead-view gadgets To the right, and slightly below the color
bar, will be a large rectangle surrounded by gadgets. The large rectangle is
an overhead map of the display area. In the center of the map is the origin.
Emanating downward from the origin is the z-axis. The y-axis extends to
the right. The small square which surrounds the origin represents the extent
of the z and y axes as they are displayed on the screen. The letter “e”
represents the location of the observer’s eye. The letter “s” represents the
target of the observers eye (the “see point”). The letter “I” represents the
location of the lamp, or light source.

Between the eye point and the see point is an imaginary plane called the
“view plane”. This is the rectangle onto which the 3D image is projected, for
purposes of viewing. The letter “v” in the overhead map is always between
the “e” and the “s” — it represents the location of the view plane.

To the right of the overhead map is an “altimeter” which shows the z-
coordinate of the eye point, the see point, and the light source. The dot in the
middle of the altimeter represents the height of the origin. The vertical bar
just inside the altimeter represents the extent of the z-axis as it is displayed
on the main screen.

The gadgets marked “Expand” and “Ex” double the size of the map area,
so everything inside the map becomes smaller. The gadgets marked “Shrink”
and “Sh” cut the size of the map area in half.

Clicking on the “Clockwise” gadget with the first (left-most) mouse but-
ton will rotate the eye point five degrees, with the see point being the center
of rotation. The rotation will occur in the sense of latitude lines. Notice
that the image in the main screen changes, as does the location of the eye
point as displayed in the overhead map. Clicking on the same gadget with
the second (middle) mouse button will rotate the see point five degrees about
the origin. Clicking with the third (right-most) mouse button will rotate the
light source about the see point.

The “Counter C” gadget performs counter-clockwise rotations in the same
fashion. The “Go over” gadget rotates these points up towards the positive
z-axis (in the sense of longitude lines). The “Go under” gadget rotates them
downwards.
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The “See point” and “Eye point” gadgets move the view plane between
these two points. Repeated clicking on the “See point” gadget, for example,
will move the view plane closer to the see point. This is indicated by the
location of the “v-slider” which connects the two gadgets. Moving the view
plane in and out is the best way to control the size of the image.

The “Zoom in” and “Zoom out” gadgets can be used to move the eye
point and light poiat closer or farther from the see point. It can also be
used to move the see point closer or farther from the origin. These gadgets
are less useful than the “See point” and “Eye point” gadgets, because (for
example) zooming the eye point towards the see point also moves the view
plane, automatically. The net effect does not actually increase the size of the
image by much.

The eye point can also be rotated around the latitude lines by using the
left and right arrow keys on the keyboard. The up and down arrow keys
rotate along the longitude lines. Again, the center of rotation is the see
point.

Finally, notice that clicking into the overhead map or the altimeter can
be used to change the locations of these points much more abruptly. Clicking
with the first mouse button in the overhead map will, for example, jump the
eye point to that location.

Hull gadgets The gadgets below these “overhead map” gadgets control
the shape of what is actually seen. Clicking on the “COMPUTE CONVEX
HULL” gadget causes the convex hull to actually be computed. If more than
4096 triangles are needed to compute the hull, the program will beep at you
and write an error message to the DECterm window which evoked it. Click-
ing on the “surface” gadget shows only the surface generated by connecting
the (z,y, z) coordinate triples from the data file. The “Wireframe” gadget
calls up a wireframe representation of the convex hull of this surface. The
“White” gadget draws the conves hull in all white, with hidden surfaces elim-
inated from the image and individual facets of the hull outlined in black. The
“Shaded” gadget draws the hull most realistically: hidden surfaces are elim-
inated and the remaining surfaces are painted shades of grey depending on
the angle of incident light emanating from the lamp. The “Highlight” gadget
attempts to show off important aspects of the image. The visible portion of
the surface is painted yellow (white, on a black and white monitor). If part
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of the surface is on the exterior of the hull, but is on the far side of the hull
and so not visible, it is painted red. If a part of the surface is interior to
the hull,it is painted brown. If the line segement connecting the beginning of
the surface to the ending point is also on the convex hull, it is painted green
(white, on a black and white monitor). This green line usually represents a
sharp corner on the hull.

The “Less fine” and “More fine” gadgets control how many of the data
points in the data file are actually used. When the program starts, it attempts
to find 16 data points to use. If the data file contains 128 data points, then
only every eighth of these is used. Clicking on the “Less fine” gadget cuts the
number of points used in half. Clicking on the “More fine” gadget doubles
them, up until all of the data points in the file are being used. The purpose
of this is to allow the user to manipulate “crude” images in order to get the
proper view, before performing the time-consuming calculations associated
with more refined images. So for example, if one wanted to rotate the image
quickly, it might make sense to click on the “surface” gadget and the “Less
fine” gadget first, so that the rotations would appear more quickly on the
screen. Note: the program only allows 4096 triangles to be displayed on the
screen. Trying to refine the image too much could exceed that limit. If so,
the computer will “beep” at you, and only render the first 4096 triangles it
has calculated (with three of these being the coordinate axes.)

On some occasions the user might want to see only the trailing portion
of the surface, or the beginning portion. The next four gadgets control this.
Clicking on the “+ t min” gadget chops off segments of the surface associated
with small parameter values. The “~ t max” gadget chops off segments of
the surface associated with large parameter values.

Scaling gadgets Below the hull gadgets are six gadgets which double of
halve the scaling of the z, y and z axes.

Files The various parts of the program as a whole can be divided into three
categories. (1) Sections which compute the convex hull. (2) Sections which
transform that data into a 3D image. (3) Sections which make use of the
X-Windows library to render that image on the workstation screen. These
routines are stored in a number of separate files, listed below.

27




main.c This file contains the main() program. All global varibles are ini-
tially declared here. Also, the main drawing routine, refreshWindow()
is found in this file.

’

2d.c This file contains the functions which transform device-independent
coordinates into actual screen coordinates. (In the device-independent
coordinate system, the computer display is thought of as a unit square,
with the point (0,0) in the lower left, and (1,1) in the upper right.) The
device-independent coordinates themselves are generate by functions in

the file 3d.c.

3d.c This file contains functions for transforming 3D coordinates to 2D co-
ordinates. The 3D coordinates are called “object space” coordinates,
and the 2D coordinates are device-independent. This file also con-
tains the functions which initialize the matrices needed to perform this
transformation.

colorx.c The suffix “x” on a file name denotes that it pertains to the X-
Windows system. In this case, the functions in this file are used to
initialize the colors and the grey-scale used by the program.

draw.c This file contains all of the 2D drawing functions, such as functions
used to draw lines and rectangles on the screen.

eventx.c The suffix “x” on a file name denotes that it pertains to the X-
Windows system. This file contains the function which waits for various
“events” (mouse button clicks, keyboard key presses, etc.) and acts
upon them.

gadgetdata.c This file contains the location and string associated with each
gadget.

getdata.c This file contains the function which reads the data file. The data
file consists of (z,y) coordinate pairs, one pair per line, which define
the surface to be convexified. The first line of this data file is an integer
which tells the program how many coordinate pairs to expect.

hull.c This file contains the functions which compute the convex hull of the
surface.
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initx.c The suffix “x” on a file name denotes that it pertains to the X-
Windows system. This file contains the functions which first initialize
and establish the connection to the X-server.

minmax.c This file contains various functions for computing minimums and
maximums of floating point values.

overhead.c This file contains the functions which convert overhead map
coordinates into screen coordintes.

quitx.c This file contains the function which cleanly severs the connection
to the X-server.

sort.c This file contains the functions needed to perform a quick-sort. This
is used to sort the facets of the convex hull and the coordinate axes, so
that they are rendered on the screen in the correct order.

textx.c This file contains the function which sets up the X-Windows font
to be used.

windowx.c This file contains the function which opens a window on the
X-server screen.

thelcon Anicon for the application when it is closed. Note that the DecWin-
dows window manager does not use this icon.

global.h A global include file for all of the “.c” files.

prototypes.h A file of the C function prototypes, also included in each of
the “.c” files.

makefile The make file for the program.

surface.data This file contains the data for the surface whose hull is to be
computed. The first line of this file consists of an integer, the number
of points on the surface. Each remaining line of the file contains three
floating point numbers, the (z,y,z) coordinates of each point. The
floating point numbers are separated by spaces.
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hull.data This file is generated by the hull program. The first line of this
file consists of an integer, the number of triangles on the hull. Each
remaining line of the file contains nine floating point numbers, the
(z,y, z) coordinates of each of the three vertices of a triangle. The
floating point numbers are separated by spaces.

surface.f This file contains a typical FORTRAN program for creating the
file curve.data

Generating convex hulls with the gift-wrapping algorithm

The general algorithm Suppose we have a set of five points in 3D and
we want to find their convex hull.

For the moment, take it as given that we have somehow found three points
which we know form one face of the hull. For the sake of visualization, let
us set up our coordinate system so that these three points are sitting on the
floor.

Choose any of the three edges of the face as an edge to “wrap” your gift
paper around. For example, choose the edge @. Also choose one of the
points on this edge for computing a vector which is normal to the face: let
us choose a.
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Now compute the unit vector &, normal to this face.
# = (c—a) x (e — a), normalized. (1)
We loop through all of the vertices which are not on this face:

case vertex = B:
consider the triangle [a,c,B]
construct a unit vector, _m_, normal to this triangle
let rho(B) = _n_ <dot product> _m_

case vertex = D:
consider the triangle [a,c,D]
construct a unit vector, _m_, normal to this triangle
let rho(D) = _n_ <dot product> _m_

As we loop through all of these vertices, we look for the smallest p value.
In other words, we look for the face whose normal is “most obtuse” to the
face we already have. So we choose D.

Now we have two faces. How do we procede from here? We keep a list of
all of the edges we have created, and we make sure that we consider each edge
exactly one time, in terms of “wrapping” the gift paper around it. So for
example, we have now considered the edge €@ exactly one time. We should
never consider it again. Still on our list of edges are the following:

[c,e] created with our initial face
[e,a] created with our initial face
[c,D] created by our second face
(a,D] created by our second face
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We loop through all of these edges until we have considered exactly once
every edge ever construced. Note that when we get around to creating the
face [a,D,B] we have to be careful not to put the edge aD in our list of edges
a second time. (It was already added to our list when we created the face
[2,¢,D].)

For a more in-depth discussion of this algorithm, see Computational Ge-
ometry, an Introduction by Franco Preparata and Michael Shamos.

Degenerate cases For our computations, we are required to also consider
two dimensional degenerate cases, where all of the points lie on a linear
manifold. Then, the convex hull is also a two dimensional object. Applying
the Gift Wrapping algorithm now, there is no clear choice of “most obtuse”
faces, since they are all in fact parallel to one another. Assuming that the
points are considered for candidacy in the same order at every iteration of
the algorith, we would find that the same four points are being chosen over
and over again, regardless of how many points are in the set.

That is, imagine five coplanar points, a,b,c,d,e. In extending face [a,b,c]
we could choose either point dor point ¢; they are both equally good choices.
Our program considers these points in order, so it would choose point d.
Likewise in extending face [a,b,d] we would choose point ¢, and so on. Point
e would never be used, and yet point ¢ might well lie on the two dimensional
hull.

In our implementation of the Gift Wrapping algorithm, we overcome this
problem by adding the extra criterion that for two equally good choices of
new faces, we choose the one which uses the point least-frequently utilized
at that phase of the computation. Thus, in the above example, [a,b,c] would
be extended to d, but [a,b,d] would be extended to e, since ¢ has been used
more often so far than e.

The first face as a special case The way in which we obtain the first
face of the hull is a special case.

To find the first vertex in the face choose, say, the lowest point in
the set of vertices as our starting vertex. We are guaranteed that this vertex
will be on the convex hull.

To find the second vertex in the face run line segments through the
first point and each of the other IV — 1 points. Choose, say, the one whose
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angle with the z-axis is largest.

To find the final vertex in the face run a plane through the plane
through the edge joining those two points and rotate that plane around this
new line segment. Compute the normal vector of these planes as they hit
each of the other V — 2 points. Choose, say, the one whose angle with the
z-axis is largest.

These three point form the first face of the convex hull.

Rendering 3D objects

3D to 2D transformations Given a set of triangles in three dimensions
(the hull), we now consider how these triangles would be projected onto a
“view plane” so that their image can be displayed on the computer screen.
More precisely, we need to find a transformation which maps points in three
dimensions to pixels on the computer screen.

There are four coordinates systems which must be used for this transfor-
mation. (See Figure 5.)

1. The coordinate system of the 3D object space. (z = right, y = up, z
= inward, away from observer)

2. The coordinate system of the 2D view plane; the origin in this coordi-
nate space is the point c.

3. The device-independent screen coordinate space {0, 1] x [0, 1].

4. The device-dependent screen coordinate space (pixels).

There are several important points in these spaces. Note that since there
is more than one space, each of these points might be represented using
different coordinates. (See Figure 21.)

e the point eye, where the observer’s eye is
e the point see, where the observer is looking (i.e. the target of his view)

e the point ¢, which is midway between eye and see; note that the scalar
variable p controls exactly where between see and eye the point c lies

o the point o, which is the point in the object space that is to be plotted
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e the point v, on the view plane, to which o is mapped; v lies somewhere
along the line segment connecting eye to o

There are also several mappings being used.

¢ the mapping PP maps from o to v, but both 0 and v are represented
using their 3D object space coordinates

o the mapping T converts v from its 3D coordinates to its 2D natural
view plane coordinates (with origin = ¢)

o the mapping DV I converts v from its 2D view plane coordinaies to its
2D screen device-independent coordinates {0,1] x [0, 1]

e the mapping DV D converts v from its 2D screen device-indpendent
coordinates to device-dependent coordinates (pixels)

How the mappings are derived

PP: represent v as v = ao+ (1 — a)eye, and note that (c—v)-(c —eye) = 0.
Then solve for a. One you have a, you can compute v as a linear
combination of o and eye.

T: note that d; = P(see + (0,1,0)) lies in the y-axis (up axis) of the view
plane. Therefore the y-axis is given as t; = d;—c. Note that ¢, = see—c
is perpendicular to the view plane. Therefore d, = ¢; x t, must be the
z-axis of the view plane. Then normalize d, to v, and ¢, to v,. Let v
be the first row of a matrix A and v, be the second row of 4. Then
A(v — ¢) converts a point v in the view plane from its 3D coordinates
to its 2D coordinates.

DVI: DVIis device independent. Still, we have to decide how much of the
view plane we want the device to capture. That is, the view plane is (of
course) infinitely big, and we just want to show some rectangle on that
plane. Let mazV, and mazV, be the maximimum (and minimum) z
and y coordinates that we want to capture. (Without loss of generality
we can just let them be 1.) Then we should multiply all view-plane
z coordinates by 1/(2mazV;) and y coordinates by 1/(2 = mazV,) so
that the rectangle we want to capture is now in the domain [~.5, +.5] x
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[-.5,+.5]. Then we should add .5 to each coordinate Now all the points
that are in the rectangle we want to see have coordinates in [0,1] x [0, 1].

DV D: DV D is device dependent. Assume for example that the screen co-
ordinate system has origin in the upper left-hand corner of the screen,
and that the screen is W pixels wide and H pixels high. Then in device-
independent coordinates we have (0,0) — (0, H) and (1,1) — (W,0).
So the point (vy,v;) in [0, 1] x [0,1] gets mapped to (v.W,1 — v  H).

Hidden surface elimination At this point, we assume that we have a
collection of triangles (the hull), and a transformation which projects these
triangles onto the computer screen. The resulting image would be a “wire-
frame” representation of the convex hull. In order to present a more realistic
computer image of the hull, we should make invisible those triangles which
are on the far side of the hull from the observer. That is, we should eliminate
from view the hidden surfaces of the hull.

Triangle sorting One easy approach to this problem is to calculate the
coordinates of the center of each triangle, and then calculate the distance
from the center of each triangle to the eye point. One then sorts the list
of triangles and draws the triangles from-back-to-front, so that the triangle
nearest the eye point is drawn last. As each triangle is drawn, it is interior
is shaded white with a “flood fill” so that it over-draws the triangles behind
it. In this way, hidden surfaces are eliminated.

Back-plane culling Unfortunately, there are some degenerate cases for
which this algorithm does not work well. For example, consider the triangles

[a,b,c] and [a,b,d] below.

~
~
g ———
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Here, triangle [a,b,c] is in front of triangle [a,b,d], and the algorithm described
above would draw these two triangles in the correct order. Now, however,
imagine moving the point ¢ downwards towards negative infinity. Then the
center of triangle (a,b,c] would also move downwards towards negative infin-
ity, and so the center of triangle [a,b,d] would eventually be closer to our eye.
Thus, triangle [a,b,d] would incorrectly be drawn in front of triangle [a,b,¢].

Since the object we are drawing is known to be convex, we can make use
of a technique called “back plane culling”. Again, consider the two triangles
above, but also consider the triangles [a,c,d] and [b,c,d] so that we now have
a convex figure (a tetrahedron). Note that triangles [a,b,d] and [b,c,d] should
not be visible to the eye point, since they are obscured by triangles [a,b,c]
and [a,c,d].

Compute a point e which is in the center of these four triangles; for
instance, let the coordinates of e be the average of the coordinates of a,b,¢,d.
Let 7@ be a vector normal to, say, triangle {a,b,c]. Project the eye point onto @
and project e onto . Note that they fall on opposite sides of the the vector;
that is, the magnitudes of the projections have opposite signs. Then triangle
(a,b,c] must be in front of the center point e, and therefore it is a triangle
which should be drawn. Repeating these computations with, say, triangle,
[a,b,d], we see that the center point e and the eye point lie on the same side
of the triangle, and therefore triangle [a,b,d] should not be drawn.

Combining the two This technique of back plane culling only works for
single convex figures. In the case of the images rendered by the hull program,
there is one convex figure as well as three coordinate axes. The coordinate
axes themselves are treated as degenerate triangles. After performing back
plane culling on the convex figure, the hull program also sorts the triangles
so that the coordinate axes will be drawn at the right time. That is, they
will be partially obscured when they are behind the convex object, and they
will be drawn last when they are in front of the convex object. So, hull uses
a combination of these two hidden surface techniques.

More sophisticated techniques, such as z-buffering, are available, but the
above two approaches were chosen for their simplicity and to reduce rendering
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time. [t should be noted that degenerate cases can still occur. For instance,
a coordinate axis might incorrectly appear in front of one facet of the convex
hull if the “center” of the axis is closer to the eye than the center of the facet.

Shading At this point we have a fairly realistic image of the convex hull, ex-
cept that each facet of the hull is shaded the same color (presumably white).
Better three dimensional depth clues can be obtained for the user’s eye by
shading the various facets of the hull. In keeping with the goal of computa-
tional simplicity and fast rendering, we adopt the following algorithm. Let
point { be the location of an imaginary light source (or lamp) in the object
space. For each facet of the convex hull, compute a normal vector 7 as well
as a vector m whose tail coincides with that of 7 but whose head is at L

I /1
£ /
al /
cl /
e| / alpha
t n

Let a be the angle between these two vectors. If a is near 1, then the lamp is
nearly orthogonal to the facet, so the facet is shaded a very light color. If &
is near 0, then the lamp is nearly parallel to the facet, so it is painted dark.
(Note that if a is near -1, we again paint the facet a light color, so in fact we
have two lamps in the object space, diametrically opposite each other.)

Programming with X-Windows Many of the the X-Windows routines
used in hull are derived from examples found in the book X Window Appli-
cations Programming by Johnson and Reichard. A more complete treatment
can be found in Introduction to the X Window System by Oliver Jones. In
brief, there are three large sections and one small section of hull devoted to
dealing with the X-Windows system.

1. The first section deals with actually opening up an X-Window on the
DECStation screen. This includes opening the window as well as setting
up the colors and the fonts to be used. The files involved here are
windowz.c, colorz.c and teztz.c.
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2. The second section deals with drawing the convex hull and gadgets into
this window. The main file of interest here is demoz.c which contains
the function refreshWindow(). The files 2d.c, 3d.c, hull.c, draw.c, and
gadgetdata.c are also involved with drawing the screen, but they do not
contain any X-Windows code.

3. The third section deals with waiting for mouse or keyboard events from
the user, and taking the appropriate action for each. The main file of
interest here is eventz.c which contains the function eventLoop().

4. The final, small, section deals with closing the X-Window cleauly. This
section is contained in the file quitz.c.

Possible improvements to the code Several compromises have been
made in the implementation of the Aull code, either to protect the relative
simplicity of the program or to increase the rendering time.

e The hidden surface elimination algorithms could be made more sophis-
ticated, although this would probably increase rendering time.

o The sorting of the triangles includes sorting all of the triangles, in-
cluding those which were culled. Rendering time could be reduced by
sorting only the non-culled triangles; this would make the program
slightly more complex.

o If the set of point whose hull is to be computed are all co-planar, then
the gift-wrapping algorithm tends to create far more triangles than are
really necessary to compute the hull. This is considered a degenerate
case.

e At the moment, the routine which computes the default location of the
eye,see light-points, called setEye(), needs the information about the
convex hull from getData() in order to set the points. But getData()
also needs some information from setEye() in order to place the co-
ordinate axes. At the moment, the main() program gets around this
by initially calling getData(), then setEye(), and then getData() again.
This needs to be fixed, probably by creating a new set Axes() routine.
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o Facets of the hull which are nearly edge-on to the observer are not
usually rendered in the “hidden surface elimination” mode of the hull
program. Normally, this does not present a problem. If, however,
one uses the axes re-scaling feature, then the absence of nearly edge-on
facets could be noticeable, since under the new scaling of the axes these
facets are no longer edge-on. Currently, the hidden surface elimination
is done before the re-scaling; that is the source of this bug. To fix it,
the re-scaling should be done before the hidden surface elimination.
Performing the calculations in that order, however, would be more
time-consuming for the computer. Since the bug rarely appears, it is
not clear that fixing it would be worth the increased computational
cost.
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C Program to compute data for the convex hull generation.

integer i,nData
real minT,maxT,deltaT

' real t/x,y,2

nData = 1024

minT = 0.0

maxT = 1.0

deltaT = (maxT-minT)/float (nData-1)

open (unit=l,file='curve.data’)

write(1,100) nData

100 format (1x,i4)

do 10 i = 0,nData-1

t = float (i) *deltaT + minT
call eval(t,x,y,z)
write(1,200) x,y,z

200 format (1x,3(£12.6,1x))

10 continue

end

subroutine eval(t,x,y,2)

real t,x,y,z

real AA(3,3),xx(3),bb(3)

real A,B,C,D,bl,b2,b3,kplus, kminus, muplus, muminus

3

o
Huwwouon

o :
b3

kminus =
kplus =

C
0
0
.0
0
0
0
0

ourNOOO

8
5

muminus
muplus

AA(1,1)
AA(1,2)
AA(1,3)

- (kplus -~ t * (kplus - kminus))

wuu
[}
wOo

AA(2,1)
AA(2,2)
AA(2,3)

c
-D - (muplus - t * (muplus - muminus))
-A

AA(3,1)
AA(3,2)

bb (1)
bb (2)
bb (3)

howon
>

-D - (muplus - t * (muplus - muminus))

-bl
-b2
-b3

call 1lsarg(3,AA,3,bb,1, xx)

x = xx(1)
Yy = xx(2)
z = xx(3)

test data

x = gin(t)+2.0
Y = sqgrt (t)

z = t*t/25.0

0000.




noa

x = (1.0-t)*s8in(16.0*t)
y = (1.0-t)*cos(16.0*t)
z = (2.0%(t-0.5))**3 + 0.5

return
end




$ X-Windows make file

igzPILER- cc

EXEC= hull

##

$%# -0 turn on optimizer

## -g turn on debugger

## -wWall nag nag nag

CFLAGS= ~-g

## >

## R4 of the X library:

##LIBS= -1X11 -1lm

## R3 of the X library:

giBs= -L/X11R3 =-1X11l -1lm

OBJECTS=
main.o
2d.o0
3d.o
colorx.o
draw.o
eventx.o
gadgetdata.o
getdata.o
hull.o
initx.o
minmax.o
overhead.o
quitx.o

". sort.o
textx.o
windowx.o

$#

;?CLUDES= global.h prototypes.h
$ (EXEC) : $(OBJECTS) $ (INCLUDES)
" $ (COMPILER) -o $(EXEC) $(OBJECTS) §$ (LIBS)

.c.0: $(INCLUDES)

$ (COMPILER) $ (CFLAGS) =-c $<
FR$444444240 4404404544
FERFRHHRF4R442004444
makedata: makedata.f

£77 -o makedata -u makedata.f -limsl

PPl P P P P P P P L P




/* FILE: prototypes.h
** prototypes */

/* X-specific functions */

oid
Qm
id

void-
void-
void
void
Window
int |

main (void);

refreshWindow (Window theWindow) ;

initX(void);

getXInfo (void);

setColorWwithName (GC theGC,char theName[]):;

initDefaultColors(void);

setColor (GC theGC,int colorNumber);

openWindow (int x,int y,int width,int height,int flag,GC *theNewGC);
createGC (Window theNewWindow,GC *theNewGC) ;

XFontStruct *initFont (GC theGC,char fontNamel}l);

int
void
void

eventLoop (void) ;
initEvents (Window theWindow) ;
quitX (void);

/* application functions */

void
void
void
void
float
float
float
float
float
float
int
int
int

at
at
oat

void
void
int
int
int

getData (veoid);

chull (void) ;

writeData(void);

setEye (void) ;

max4 (float w,float x,float y,float z);
min4 (float w,float x,float y,float z);
max3 (float w,float x,float y);

min3 (float w,float x,float y);

max2 (float w,float x);

min2 (float w,float x);

altTop (float x);

viewLeft (float x);

viewTop (float x);

fromAltTop (int 1i);

fromViewLeft (int 1i);

fromViewTop (int 1i);

gadgetData (void) ;

sortTriangles (int doDraw[],int sorted[]):
whichDraw (int doDraw[]);

getShade (int i);

isAnEdge (int pl,int p2,intTriangle T);

/* sorting functions */

int
void
void
int
void

partition(float values([],int index[],int i,int j,int pindex);
quickSort (float values[],int index[],int first,int last);
bubbleSort (flcat values[],int index[],int first,int last);
findPivot (float values[],int index[],int i,int 3j):

swap (float values{],int index[],int 1l,int r);

/* 2D graphics functions */
dvdCoord dvi2dvd(dviCoord theDviCoord);
dviCoord vr2dvi (vrCoord theVrCoord);

void
void
void
void
void
void
void
void
void

dvdDrawlLine (Window theWindow,GC theGC, dvdCoord dvdp,dvdCoord dvdqg):;
dvdDrawRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdqg);
dvdFillRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq);
dvdDrawGadget (Window theWindow,GC theGC,int whichGadget) ;

dviDrawline (Window theWindow,GC theGC,dviCoord dvip,dviCoord dviq);
vrDrawline (Window theWindow,GC theGC,vrCoord vrp,vrCoord vrq):;
dvdDrawPoint (Window theWindow, GC theGC, dvdCoord dvdp);

vrDrawPoint (Window theWindow,GC theGC,vrCoord vrp);

dvdPrint (Window theWindow,GC theGC,dvdCoord dvdp,char theString[]);
vrPrint (Window theWindow,GC theGC,vrCoord vrp,char theString(]):

void
‘SD graphics functions */
vrCoord o0s82vr (osCoord theOsCoord);

void
void

osDrawLine (Window theWindow,GC theGC,0sCoord osp, 0sCoord osq);
initShading(void);




void

void
void
id
d
void
void
void
void
float
float
void .
void
void
void
void
void

void
void

' ;sDrawTriangle(Window theWindow,GC theGC,triangle theTriangle,

int theColor);
osDrawPoint (Window theWindow,GC theGC, o0sCoord osp);

osPrint (Window theWindow,GC theGC,osCoord osp,char theStringl[]);
PSInit (void);

initPP (void):;

initT(void);

initR (void) ;

cross (float ul],float v{],float w([]);

normalize(float u(],float v{1);

norm(float v(]):

dotprd(float u(],float v[]);

PSPlot (float o[],float vr{]):;

permute (float of]);
unpermute (float o[});

doPP (float o], float ov[])
doT(float ov{],float v{[]):;
doR (float v[]},float vrl[]):;

’

rect2sphere (float rect[],float spherel]);
spherelrect (float sphere[],float rect(])

/* convex hull functions */

int
int
int

paramCurve (0sCoord theData[],float minT,float maxT,int n);
hull3d(osCoord theData[],triangle theHull{[],intTriangle intHull[],int n
GiftWrapping(osCoord theData[],triangle theHull[],intTriangle intHull[]

Triangle findFirstFacet (0sCoord theData([],triangle theHull[],int freq[],

int
int

int numD);
addToFile (Triangle F,Edge T[],int numT);
push (Triangle F,Triangle Q{],int numQ);

Triangle pop(Triangle Q[],int numQ);

void

getEdges (Triangle F,Edge t[]);

‘ i1sCommon (Edge at,Edge T[], int numT);
angle

int
int

giftWrap (Edge e,Triangle F,osCoord theData[],int freq(],int numD);
insertDelete (Triangle F,Edge T[], int numT);
storeh(Triangle F,triangle theHull[],intTriangle intHull[],osCoord thel




/* FILE: global.h
** Structures pertaining to this specific application */

typedef struct { /* device dependent coordinate system */

"

nt horizontal;
q:xt vertical;
dvdCoord;

typedef struct { /* device independent coordinate system */
float x;
float y:
} dviCoord;

typedef struct { /* view-rectangle coordinate system */
float x;
float y;
} vrCoord;

typedef struct { /* object space coordinates */
float x;
float y;
float z;
} osCoord;

typedef struct { /* a triangle in object space */
float vlx; float vly; float vlz;
float v2x; float v2y; float v2z;
float v3x; float v3y; float v3z;
float centerx; float centery; float centerz;
float normalx; float normaly; float normalz;
} triangle;

edef struct { /* the data numbers of a triangle on the curve */
nt pl;

int p2;

int p3;

} intTriangle;

typedef struct { int vertex[4]; } Triangle;
typedef struct { int vertex[3]; } Edge;

typedef struct ({

int windowWidth; /* window parameters */

int windowHeight;

int rightBarWidth; /* menu bar parameters */

int topBarHeight;

int dvdWidth; /* device dependent coordinate parameters */
int dvdHeight;

float vrleft; /* view-rectangle coordinate parameters */

float vrRight;
float vrTop:

float vrBottom;
float osLeft; /* object-space coordinate parameters */
float osRight;
float osTop;
float osBottom;

float osFront;

float osBack;
float vcleft; /* object-space-view-cube coordinate parameters */
float vcRight;

loat vcTop;

loat vcBottom;
float wvcFront;

float vcBack;

float rho; /* various transformation parameters */
float tilt;




float c(4];
float A[3]1[4]:;
float beta;
float eyel4];
float see[4}]:;
‘loat light[4];
float Rotate[3][3]:;
int’™ plotType;
int’ solidType;
int shadingColor(661];
float x_scale;
float y scale;
float z scale;
} coordParams;
typedef struct {
int top:
int bottom;
int left;
int right;
char string(80];
} gadget;
/* gadget numbers */
$define QUIT 0
#define CCWISE 1
$define CLWISE 2
#define OVMAG 3
$define OVMIN 4
#define OVHEAD 5
$define ALT 6
#define ALTMAG 7
fine ALTMIN 8
fine INWARD 9
define OUTWARD 10
$define VIEWIN 11
$define VIEWOUT 12
#define OVER 13
$define UNDER 14
#define AXESG 15
#define WIREG 16
#define HIDEG 17
#define SHADG 18
#define COARSE 19
$define FINE 20
$define MINDM 21
$define MINDP 22
$define MAXDM 23
#define MAXDP 24
$define HIGHLT 25
#define WRITEDT 26
#define X2 27
#define X5 28
#define Y2 29
#define Y5 30
$define 22 31
#define 25 32
#define DOHULL 33
f#define NUMGADGETS 33
efine STRLEN 80
fine MAXDATA 1024
efine MAXTRIANGLES 4096
$define MAXEDGES 2048

/* plotting axes types */




$define MATHPLOT 1
$define CSPLOT 2

/* how to draw the surface */
fine AXES 0
fine WIREFRAME 1

$define HIDDEN 2

#define SHADED 3

$define NUMSHADES 66

/* gadget size parameters */
#define gadgetTall 16
#define gadgetBorder 8
#define gadgetWide 57




/* FILE: textx.c
** Text rendering routines. */

/* X-windows include files: */
ﬁclude <X11/Xlib.h>

clude "global.h"
#include "prototypes.h"

/* Global variables: */
extern Display *theDisplay;

A3

/* Initialize a font. */
XFontStruct *initFont (GC theGC,char fontNamel])
{

XFontStruct *fontStruct;
fontStruct = XLoadQueryFont (theDisplay, fontName) ;
if (fontStruct != 0) { XSetFont (thebisplay,theGC, fontStruct->£fid); }
return (fontStruct) ;
}/* end function initFont () */




/* FILE: windowx.c
** put up a window. */

/* X-windows include files: */
include <X11/Xlib.h>
clude <X11/Xutil.h>

/* Standard I/O include file: */
#include <stdio.h>

#include "global.h"
$include "prototypes.h"

/* The bitmap file for the application’s icon: */
#$include "theIcon"

/* Global variables: */

extern Display *theDisplay;

extern int theScreen;

extern int theDepth;

extern unsigned long theBlackPixel;
extern unsigned long theWhitePixel;
extern coordParams theCoordParams;

#define BORDER WIDTH 2
$define WINDOW TITLE "Convex Hull"

/* Function to open a window. */
Window openWindow(int x,int y,int width,int height,int flag,GC *theNewGC)

‘ XSetWindowAttributes theWindowAttributes;

XSizeHints theSizeHints;

XClassHint theClassHint;

unsigned long theWindowMask;

Window theNewWindow;

Pixmap theIconPixmap;
~ XWMHints theWMHints;

/* Figure out how big the window should be. If the user asked for width
** or depth = -1, they want the window to be as big as possible. */
if (width == -1) { width = DisplayWidth(theDisplay,theScreen); }
if (height == -1) { height = DisplayHeight (theDisplay,theScreen); }

/* for our application, this information needs to be made global too: */
theCoordParams.windowWidth = width;
theCoordParams.windowHeight = height;

/* Define the window’s attributes. */
theWindowAttributes.border pixel = BlackPixel (theDisplay,theScreen);
theWindowAttributes.background pixel = WhitePixel (theDisplay,theScreen);
theWindowAttributes.override redirect = False;

theWindowMask = CWBackPixel T CwWBorderPixel | CWOverrideRedirect;

/* Create a window definition on the display. */

theNewWindow = XCreateWindow (theDisplay, RootWindow (theDisplay,theScreen),

x,y,width, height, BORDER_WIDTH,theDepth, InputOutput, CopyFromParent,
theWindowMask, &theWindowAttributes) ;

e /* Convert the icon file into Pixmap format. */

theIconPixmap = XCreateBitmapFromData (theDisplay,theNewWindow,theIcon bits,

thelcon_width,thelIcon_height);

/* Define the icon to be associated with this application (window). */




theWMHints.icon pixmap = thelconPixmap;
theWwMHints.initial state = NormalState;
theWMHints.flags = IconPixmapHint | StateHint;
XSetWMHints (theDisplay, theNewWindow, &theWMHints) ;

‘ /* Define the application icon name. */
XSetIconName (theDisplay, theNewWindow, WINDOW_TITLE);

/* Define the class and name of the application (window). */
theClassHint.res_name = WINDOW TITLE;
theClassHint.res_class = WINDOW TITLE;

XSetClassHint (theDisplay, theNewWindow, &theClassHint) ;

/* Define the window’s desired size and position. */
theSizeHints.flags PPosition | PSize;
b3

theSizeHints. = x;
theSizeHints.y = vy;
theSizeHints.width = width;
theSizeHints.height = height;

XSetNormalHints (theDisplay, theNewWindow, &theSizeHints);

/* Create a graphics context (GC) for the window. See below. */
if (createGC (theNewWindow, theNewGC) == 0) {

XDestroyWindow (theDisplay, theNewWindow) ;

return ( (Window) 0);
}/* end if */

/* Now that the window is defined, map it to the screen. */
XMapWindow (theDisplay, theNewWindow) ;

/* Flush out all of the gqueued up X-requests to the X-server. */
XFlush (theDisplay);

. return (theNewWindow) ;

}/* end function openWindow() */

/* Create a graphics context (GC) for the window. */
int createGC (Window theNewWindow,GC *theNewGC)

XGCValues theGCValues;

*theNewGC = XCreateGC (theDisplay,theNewWindow, (unsigned long) 0,
&theGCvValues);

if (*theNewGC == 0) { return(0); } /* error: unable to create a GC */
else {
XSetForeground (theDisplay, *theNewGC, theBlackPixel) ;
XSetBackground (theDisplay, *theNewGC, theWhitePixel) ;
return(l);
}/* end if */

}/* end function createGC () */




/* FILE: sort.c
** Routines for sorting. */

#$include <X11/Xlib.h>

.clude <X11l/Xutil.h>
clude "global.h"

$include "prototypes.h"

/* function bubbleSort */
void bubbleSort (float values[],int index[],int first,int last)
{

int 1, 3;
for (i = first; i <= last-1; ++i) {
for (j = last; 3j >= i+l; --3) {

if (values[j-1] > values[j]) {
swap (values, index, j-1, 3);
}/* end if */
}/* end for */
}/* end for */
}/* end function bubbleSort () */

/* function quickSort */
void quickSort (float values[],int index[],int i,int 3J)
{
int pindex, k;
if (j <= 1) { return; }
if ((3-1) < 9) {
@ buvbiesort (values,index, i, 3);
} else {
pindex = findPivot (values,index, i, Jj);
if (pindex != 0) {
k = partition(values,index, i, j,pindex);
quickSort (values, index,i, k-1);
quickSort (values, index, k,j),
}/* end if */
}/* end if */
}/* end function quickSort () */

int partition(float values[],int index[],int i,int j,int pindex)

float pivot;

int l,x;

prOt = values[pxndex],

1l =1i; r = 3;

do {
swap (values, index,1,r);
while (values[l] < pivot) { 1l++; }
while (values[r] >= pivot) { »--; }

} while (1 <= r);

return(l);

}/* end function partition() */

%nt findPivot (float values[],int index([],int i,int j)
float firstkey;
int k;




firstkey = values([i];
for (k = i+l; k <= j; ++k) {
if (values[k] > firstkey) { return(k); }
else { if (values[k] < firstkey) { return(i); } }
}/* end for */
return (0);
/* end function */

void swap (float values[),int index[],int 1l,int )
{ -
int t;
float v;
t = index[l]); index[l] = index[r]; index[r] = ¢;
v = values[l]; values[l] = values[r]); values|r] = v;
}/* end function swap () */
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** Routines to perform 2D (and some 3D) coordinate conversions.

#inc
#i
$#i
#inc

#include

extern coordParams

/*
* X
* %

*x *

ILE: 2d.c¢

lude
ude
ude
lude

<X11/Xlib.h>
<X11/Xutil.h>
<math.h>
"global.h"
"prototypes.h"

theCoordParams;

This function converts a device independent

a device dependent (DVD) one. Note th
lower left-hand corner of our window,
window are reserved for drawing gadget

dvdCoord dvi2dvd(dviCoord theDviCoord)

{

y/

dvdCoord theDvdCoord;

theDvdCoord.horizontal
(int) ( theDviCoord.x

theDvdCoord.vertical

theCoordParams

*/

(DVI) coordinate into

at the DVD display area is the
as the top and right side of the
s into */

* (float) theCoordParams.dvdWidth );

.topBarHeight +

(int) ((1.0 - theDviCoord.y) * (float)theCoordParams.dvdHeight);

return (thebDvdCoord) ;
* and function dvi2dvd () */

/* This function converts a view-rectangle (VR) coordinate into a DVI

¥/

coordinate. */
Coord vr2dvi (vrCoord theVrCoord)

dviCoord theDviCoord;
theDviCoord.x (theVrCoord.x~-theCoordpP

arams.vrLeft) /

(theCoordParams.vrRight-theCoordParams.vrlLeft);

theDviCoord.y = (theVrCoord.y-theCoordP
(theCoordParams.vrTop-theCoordParams.

return (theDviCoozrd);

* end function vr2dvi */

arams.vrBottom) /
vrBottom) ;

/* This function converts an object-space (0S) coordinate into a view-
** rectangle coordinate. Note that either MathInit or CSInit must be

* %

called first to initialize the various

vrCoord os2vr(osCoord theOsCoord)

{

vrCoord theVrCoord;
float o[4],vr(3]:;
o[l] = theOsCoord.x;
o[2] = theOsCoord.y;
o[3) = theOsCoord.z;
PSPlot (o,vr);
thevrCoord.x vr{l];
thevVrCoord.y = vr(2);
return (thevVrCoord) ;

"‘ end function vr2dvi */

transformations. */

/* Convert rectangular coordinates to spherical. */
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void rect2sphere (flocat rect[],float sphere[])

float theta; /* around latitude lines */
float phi; /* down longitude lines */
float rhz; /* radius */

float x,vy,2;

x = rect[l]; y = rect[2]; z = rect[3];

theta = acos (x/sqrt (x*x+y*y));

if (y < 0.0) { theta = -theta; }

rho = sqgrt (x*x+y*y+z*z);

phi = acos(z/rho);

sphere[l] = theta; sphere[2] = phi; sphere[3] = rho;

}/* end function */

/* Convert rectangular coordinates to spherical. */
void spherelrect (float sphere[],float rect(])
{

float theta; /* around latitude lines */
float phi; /* down longitude lines */
float rho; /* radius */

float x,vy,2z;

static float pi = 3.1415926;

theta = sphere[l]}; phi = sphere[2); rho = sphere[3];
if (phi < 0.0) { phi = 0.01; }
if (phi > pi ) { phi = pi-0.01; }
x = rho*cos (theta) *sin(phi);
. y = rho*sin(theta) *sin(phi);
z = rho*cos(phi);
rect[l] = x; rect[2] = y; rect[3] = z;

}/* end function */
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/* FILE: 3d.c
** Routines to perform basic 3d -> 2d coordinate conversion. */

#include <X11/Xlib.h>
$i ude <X11/Xutil.h>
#1 ude <math.h>
#$include "global.h"
#include "prototypes.h"

extern coordParams theCoordParams;

/* initialize everything for graphics-standard (z=inward) plotting */
void PSInit ()
{

float ;emp1[4],temp2[4];

int i;

permute (theCoordParams.eye) ; /* permute the data if necessary, i.e. if */
permute (theCoordParams.see); /* we’'re in MATHPLOT mode, where z=upward */
permute (theCoordParams.light);

initPP () ; /* initialize the data for projecting onto view-plane */
initT(); /* initialize data for converting to view-plane coords */
initR(); /* initialize data for rotation due to head tilt */

unpermute (theCoordParams.eye); /* un-do the permutations from above */
unpermute (theCoordParams. see);
unpermute (theCoordParams.light);
unpermute (theCoordParams.c) ;
/* also un-permute the conversion matrix A, used by the T transformation */
for (i=l; i<= 3; ++i) {
templ{i] = theCoordParams.A[l][i];
temp2(i] = theCoordParams.A[2][1i];
}/* end for */
unpermute (templ) ; unpermute (temp2);
for (i=1l; i<=3; ++i) {
theCoordParams.A(l] [i]=templ(i];
theCoordParams.A[2] [i]=temp2([i];
}/* end for */
}/* end function */

/* initialize the perspective projection */
void initPP ()
{

float t[4]):

int i;

/* ¢ = rho * see + (1 - rho) * eye */
for (i = 1; i <= 3; ++1i) {
theCoordParams.c[i] = theCoordParams.rho * theCoordParams.see(i] +
(1.0 - theCoordParams.rho) * theCoordParams.eye[i];
}/* end for */

/* beta = dot (c-eye,c-eye)
** By storing the value beta, we save some computations later. */
for (i = 1; 1 <= 3; ++1i) {
t[i] = theCoordParams.c(i]-theCoordParams.eye([i];
}/* end for */
theCoordParams.beta = dotprd(t,t);

}/* end function */




/* initialize the array A that is used by doT; A converts
** from 3D object space to 2D view plane coordinates */
id initT ()

float upward(4],d1([4],d2(4],v1[4]),v2[4],t1(4]),t2([4];
int i;

/* find the up-direction emanating from see */
for (i = 1; i <= 3; ++i) {
upward[i] = theCoordParams.see[i];
}/* end for */
upward(2]+=1.0;

/* let tl = c-see, normalized; tl is perpendicular to the view plane */
for (i = 1; i <= 3; ++i) {
tl(i] = theCoordParams.c[i]-cheCoordParams.see[i];
}/* end for */
normalize(tl,tl);

/* project the see-plus-unit-y-vector onto the view plane in order
** to start finding the view plane y-axis */
doPP (upward, d2) ;

/* let v2 = d2-c,normalized; t2 is parallel to the view plane y-axis */
for (i = 1; i <= 3; ++i) {
t2[i] = d2[i]-theCoordParams.c[i];
}/* end for */
normalize(t2,v2);

/* find a vector that is perpendicular to both tl1 and t2; this must
* be the view plane x-axis */

ross(tl,t2,dl);

normalize(dl,vl);

/* Form A; the first row of A is vl and the second row is v2.
** note then that A*vl1=<1l,0> and A*v2=<0,1>. Then to convert from
** 3D to 2D coordinates will only require A* (v-c). */
for (i = 1; i <= 3; ++i)
theCoordParams.A{1] [i] = v1[i];
theCoordParams.A[2] [1i] = v2[i];
}/* end for */

}/* end function */

/* initialize the rotation matrix Rotate */
void initR{)
{
theCoordParams.Rotate[1] [1]
theCoordParams.Rotate[1] [2]
theCoordParams.Rotate[2][1]
theCoordParams.Rotate[2] (2]
}/* end function */

cos (theCoordParams.tilt);
sin (theCoordParams.tilt);
-sin (theCoordParams.tilt);
cos (theCoordParams.tilt) ;

’compute the (left handed) cross product of vectors u and v */
id cross(float u(],float v[],float w[])
{

wil] = -u[2]*v([3]+v[2]*u[3];
wi2] = u(l]*v[3]-v[1]*u[3];




w(3] = —u(l]*v([2]+v([1l]*u[2];
}/* end function */

/* normalize a vector u to get v */
void normalize(float u{],float v{])
{
float normu;
int i;
normu = norm(u);
if' (normu != 0.0) {
for (i = 1; 1 <= 3; ++i) {
v[(i] = u[i]/normu;
}/* end for */
}/* end if */
}/* end function */

/* compute the Euclidean norm of v */
float norm(float vi})
{
float s;
8 = sgqrt (dotprd(v,v));
return(s);
}/* end function */

’compute the dot product of u and v */
float dotprd(float u[]},float v{])
{

float d;
int i;
d = 0.0;
for (i = 1; i <= 3; ++1i) {
d+= u[i] * v[i];
}/* end for */
return (d) ;
}/* end function */

/* The routines above are all system initializations.
* %

** The routines below actually perform the transformations. */

/* convert from 3d object-space coordinate system to view-plane coords */
void PSPlot (float o], float vr(])
{

float ov([4],v(3];

* re-scale the points */

(1] *=theCoordParams.x_scale;
o(2]*=theCoordParams.y_. “scale;
o[3])*=theCoordParams.z scale,

/* project onto the view plane in 3D coordinates */
doPP (o, 0v) ;




/* convert to view plane natural coordinates centered on point ¢ */
doT (ov,v);
/* perform the rotation due to theCoordParams.tilt */
doR (v, vr);

." end function*/

/* permute a vector from (x,y,z) to (z,x,y) */
void permute (float o[])

float t([4]:;
if (theCoordParams.plotType == MATHPLOT) ({
t(1] = ol2];

00Ot
—rve e

}/* end if */
}/* end function */

/* unpermute a vector from (x,y,z) to (z,x,y) */
void unpermute (float o[])

float t({4];
if (theCoordParams.plotType == MATHPLOT) (

t[2] = o[l];
t[3] = o[2];
t(1l] = of3];
ofl] = t[1]);
o[2] = t[2];
o[3] = t[3];

}/* end if */
}/* end function */

/* project from 3d object-space onto the view plane in object-space
** coordinate system */
void doPP(float o[],fleoat ov(])
{
float alpha t1[4],t2[4]);
int i;

/* alpha = dot (c-eye,c-eye)/dot (o-eye, c-eye)
** v = alpha * o + (1 - alpha) *eye */

for (i = 1; i <= 3; ++1i) {
tl[i] = theCoordParams.c[(i]~-theCoordParams.eye[i];
t2(i] = o[i]-theCoordParams.eye[i];
}/* end for */
alpha = theCoordParams.beta/dotprd(t2,tl);
or (i = 1; i <= 3; ++i) {
ov[i] = alpha*o[i]+(1l.0-alpha)*theCoordParams.eye[i];
}/* end for */

}/* end function */




/* convert a point on the view plane from its object-space
‘ coordinate system into the view plane’s coordinate system */
id doT(float ov([],float vI[])
{

int i,3;

/* T(ov) = A * (ov = ¢c) */
for (i = 1; 1 <= 2; ++i) {
v[ii] = 0.0;
}/* end for */
for (3 = 1 ; j <= 3; ++3) {
for (i = 1; 1 <= 2; ++i) {
v(i]+= theCoordParams.A[i] [j] * (ov[j]-theCoordParams.c[3j]);
}/* end for */
}/* end for */

}/* end function */

/* perform the rotation due to head tilt */
void doR(float v[],float vr(])
{
vr{l] = theCoordParams.Rotate[l][l]*v([l]+theCoordParams.Rotate[l] [2]*v[2];
vr[2] = theCoordParams.Rotate[2][l]*v[l]+theCoordParams.Rotate[2][2]*v[2];
}/* end function */
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** name,

nclude

$include
#include

extern

/* Set

/* FILE: colorx.c

** Set up the application colors; be able to specify colors by number or by
for the first 66 X-Windows named colors */

X-windows include files: */

’clude <X11/X1lib.h>
1 : <X11/Xutil.h>
$#include <stdio.h>

/* Global variables:

"global.h"
"prototypes.h"
extern coordParams theCoordParams;

*/

extern Display *theDisplay;

extern int theDepth;

extern unsigned long theBlackPixel;
extern

unsigned long theWhitePixel;
Colormap theColormap;

up English text for colors. */
$define maxPixels 132

#define stdColors 66

unsigned long thePixels[maxPixels];

char *theColorNames [stdColors]
{"Aquamarine”, /* 00 */
"Black", /* 01 */
"Blue", /* 02 */
"BlueViolet", /* 03 */
"Brown", /* 04 */
"CadetBlue", /* 05 x/
. "Coral"™, /* 06 */
"CornflowerBlue", /* 07 */
"cyann’ /* 08 */
"DarkGreen", /* 09 */
"DarkOliveGreen", /* 10 */
"DarkOrchid”, /* 11 */
"DarkSlateBlue", /* 12 */
"DarkSlateGrey", /* 13 */
"DarkTurquoise"”, /* 14 */
"DimGrey", /* 15 */
"Firebrick", /* 16 */
"ForestGreen", /* 17 */
"Gold", /* 18 */
"Goldenrod", /* 19 */
"Grey", /* 20 */
"Green", /* 21 */
"GreenYello", /* 22 */
"IndianRed", /* 23 */
"Khaki", /* 24 */
"LightBlue", /* 25 */
"LightGrey", /* 26 */
"LightSteelBlue", /* 27 */
"LimeGreen", /* 28 */
"Magenta", /* 29 */
"Maroon", /* 30 */
"MediumAquamarine", /* 31 x/
"MediumBlue", /* 32 */

"MediumForestGreen", /* 33 */

"MediumGoldenrod", /* 34 */
"MediumOrchid", /* 35 %/
"MediumSeaGreen", /* 36 */
"MediumSlateBlue", /* 37 */

"MediumSpringGreen", /* 38 */
"MediumTurquoise"”, /* 39 */




{

"MediumVioletRed", /* 40 */

"MidnightBlue", /* 41 */
"Navy", /* 42 */
"Orange", /* 43 */
"OrangeRed", /* 44 */
"Orchid", /* 45 */
"PaleGreen", /* 46 */
"pPink", /* 47 */
"Plum", /* 48 */
"Red", /* 49 */
"Salmon", /* 50 */
"SeaGreen", /* 51 */
"Sienna", /* 52 */
"SkyBlue", /* 53 */
"SlateBLue", /* 54 */
"SpringGreen", /* 55 */
"SteelBlue", /* 56 */
"Tan", /* 57 x/
"Thistle", /* 58 */
"Turquoise”, /* 59 */
"Violet", /* 60 */
"VioletRed", /* 61 */
"Wheat", /* 62 */
"White", /* 63 */
"Yellow", /* 64 */
"YellowGreen"}; /* 65 */

/* This function sets the GC with the foreground color named. */
void setColorWithName (GC theGC,char theName(])

int i;

i=0;

while?(strcmp(theName,theColorNames[i])!=0)&&(i<stdColors)) { i++; }
if (i < stdColors) { XSetForeground(theDisplay,theGC,thePixels([i]); }

}/* end function setColorWithName () */

/* Attempt to set up a local color table with the default X11 colors. */
void initDefaultColors ()

XColor theRGBColor,theHardwareColor;
int theStatus;

char theString[80];

unsigned int i,h,r,g,b,top,bottom;

if (theDepth > 1) {
/* use the 66 standard colors */
for (i=0; i<stdColors; i++) {
theStatus = XLookupColor (theDisplay,theColormap,theColorNames([i],
&theRGBColor, &theHardwareColor) ;
if (theStatus != 0)
theStatus = XAllocColor (theDisplay,theColormap, &theHardwareColor);
if (theStatus != () ({
thePixels[i] = theHardwareColor.pixel;
} else {

. thePixels[i] = theBlackPixel;

})/* end if */
}/* end if */
}/* end for */
/* and also create a 66 color grey scale */
for (i=mstdColors; i<=maxPixels-1l; i++) (




h = i-stdColors;

bottom = 16; top = 255-16; /* range of rgb color values */
h = bottom + ((top)-bottom)*h/66; /* h ranges from top to bottom */
r = h;

® ::-:
b = h;
- sprintf (theString, "#%2x%2x%2x" ,r,g,b);
theStatus = XParseColor (theDisplay,theColormap,theString,

&theRGBColor) ;
if (theStatus != 0) {
theStatus = XAllocColor (thebisplay, theColormap, &theRGBColor);
if (theStatus != 0) {
thePixels[i] = theRGBColor.pixel;
} else {

thePixels[i]
}/* end if */
}/* end if */
}/* end for */
} else {
for (i=0; i<stdColors; i++) (
if (strcmp("White",theColorNames[i]) == 0) {
thePixels{i] = theWhitePixel;
} else {
thePixels[i] = theBlackPixel;
}/* end if */
}/* end for */
}/*end if */
}/* end function initDefaultColors() */

theBlackPixel;

‘ Set the graphic context (GC) to have a foreground color of colorNumber */
id setColor(GC theGC, int colorNumber)

if ((colorNumber < maxPixels) && (colorNumber >= 0 ))
{ XSetForeground(theDisplay,theGC,thePixels[colorNumber]); }
}/* end function setColor() */




/* FILE: quitx.c
** Close down X-Windows. */

/* X-windows include files: */
$include <X11/Xlib.h>
#"1ude <X11/Xutil.h>

$include "global.h"
#include "prototypes.h"

extern Display *theDisplay;

void quitX()

XCloseDisplay (theDisplay);
}/* end of function quitX() */
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/* FILE: minmax.c
** Routines for computing mins and maxs. */

#include <X11/Xlib.h>

- #igmmlude <X11l/Xutil.h>
# ude <math.h>
#include "global.h"
#include "prototypes.h"

/* function max of four elements */
float max4 (float w,float x,float y,float z)
{
float m;
m= w;
if (x> m) {m= }
if (y>m {(m=y; }
if (z>m) {m= }
return (m) ;
}/* end function max() */

/* function min of four elements*/
float min4 (float w,float x,float y,float z)
{

float m;

m= w;

if (x < m) {m=x; }

‘(y<m){m=y;}
(z <m) {m=z2; }

return(m) ;
}/* end function min() */

/* function max of three elements */
float max3(float w,float x,float y)
{
float m;
m = w;
if (x>m) {m=%x; }
if (y>m {m=y; }
return(m) ;
}/* end function max () */

/* function min of three elements*/
float min3 (float w,float x,float y)
{

float m;

m = w;

if (x < m) {m=x; }

if (y<m) {m=y; }

turn(m) ;

} end function min() */




.
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/* function max of two elements */
float max2 (float w,float x)

float m;
= w;
(x >m) {m=x; }
return (m) ;
}/* end function max() */

/* function min of two elements*/
float min2 (float w,float x)
{
float m;
m= w;
if (x <m) {m=x; }
return{m);
}/* end function min() */




/* FILE: overhead.c
** Rout.ines to perform computations for the overhead-view gadgets. */

#include <X11/Xlib.h>
#imclude <X11/Xutil.h>
Qlude <math.h>
#$1ficlude "global.h"
#include "prototypes.h"

extern coordParams theCoordParams;
extern gadget theGadgets[80];

extern int drawGadgets;
\

/* function to compute altimeter coordinates from object space coordinate */
int altTop(float x)
{

int i;
i = theGadgets[ALT].top +
(int) ( (theCoordParams.osTop-x)
*(float) (theGadgets[ALT] .bottom - theGadgets[ALT].top)
/ (theCoordParams.osTop-theCoordParams.osBottom) );
return (i) ;
}/* end function altTop() */

/* function to compute view-screen left coordinates */
int viewLeft (float x)

{

.int i;
i = theGadgets[OVHEAD] .left +
(int) ( (x-theCoordParams.osLeft)
*(float) (theGadgets [OVHEAD] .right - theGadgets[OVHEAD].left)
/ (theCoordParams.osRight-theCoordParams.osLeft) );
return (i) ;
}/* end function viewLeft () */

/* function to compute view-screen top coordinates */
int viewTop (float x)
{
int i;
i = theGadgets[OVHEAD] .bottom -
(int) ( (theCoordParams.osTop=-x)
*(float) (theGadgets [OVHEAD] .bottom - theGadgets[OVHEAD] .top)
/ (theCoordParams.osTop-theCoordParams.osBottom) );
return (i) ;
}/* end function viewTop () */

/* function to compute from altimeter coordinates */
float fromAltTop (int i)
{
float x;
x = theCoordParams.osTop -
. (float) (i-theGadgets [ALT] .top)
* (theCoordParams.osTop~theCoordParams.osBottom)
/ (float) (theGadgets[ALT] .bottom-theGadgets [ALT] .top);
return (x);
}/* end function fromAltTop() */




function to compute from view-screen left coordinates */
oat fromViewLeft (int i)

float x;
x = theCoordParams.osLeft -
(float) (i-theGadgets [OVHEAD] .left)
* (theCoordParams.osRight-theCoordParams.osLeft)
./ (£loat) (theGadgets [OVHEAD] .left-theGadgets [OVHEAD] .right) ;
return (x);
}/* end function fromViewLeft () */

/* function to compute from view-screen top coordinates */
float fromViewTop (int i)

float x;
x = theCoordParams.osBack +
(float) (i-theGadgets [OVHEAD] .top)
* (theCoordParams.osFront-theCoordParams.osBack)
/ (float) (theGadgets [OVHEAD] .bottom~theGadgets [OVHEAD] .top) ;
return (x);
}/* end function fromViewTop() */
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/* FILE:

draw.c

** Routines to perform drawing functions. */

#include <X11/Xlib.h>

#i ude <X11/Xutil.h>

#ig@Llude <stdio.h>

#include <string.h>

#include <math.h>

#include "global.h"

#include "prototypes.h"

extern Display *theDisplay;
extern coordParams theCoordParams;
extern gadget theGadgets[80];

/* Draw a line from p to g which has been presented in dvd coordinates. */
void dvdDrawline (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdqg)

{

XDrawLine (theDisplay, theWindow, theGC,dvdp.horizontal,dvdp.vertical,
dvdg.horizontal,dvdg.vertical);
}/* end function dvdDrawLine() */

/* Draw a rectangle, p to g ,which has been presented in dvd coordinates. */
void dvdDrawRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdqg)

{

int height,width;

eight = abs(dvdg.vertical
idth

-dvdp.vertical);

= abs (dvdg.horizontal-dvdp.horizontal);
XDrawRectangle (theDisplay, theWindow, theGC,dvdp.horizontal,dvdp.vertical,
width,height);
}/* end function dvdDrawRectangle() */

/* Draw a fill rect, p to g ,which has been presented in dvd coordinates. */
void dvdFillRectangle (Window theWindow,GC theGC,dvdCoord dvdp,dvdCoord dvdq)

{

int height,width;
height = dvdqg.vertical -dvdp.vertical;
width = dvdg.horizontal-dvdp.horizontal;
XFillRectangle (theDisplay,theWindow,theGC,dvdp.horizontal,dvdp.vertical,
width, height);
}/* end function dvdFillRectangle() */

/* Draw a gadget, p to g ,which has been presented in dvd coordinates. */
void dvdDrawGadget (Window theWindow,GC theGC, int whichGadget)

{ »
int

height,width;

dvdCoord dvdp,dvdqg;

char

.jvdp .vertical
dvdp.horizontal

dvdg.vertical
dvdg.horizontal

theString[STRLEN];

theGadgets [whichGadget].
theGadgets [whichGadget] .
theGadgets [whichGadget] .
theGadgets [whichGadget].

top;
left;
bottom;
right;




[ 4
strcpy (theString, theGadgets [whichGadget] .string);

height = dvdg.vertical - dvdp.vertical;
width = dvdg.horizontal - dvdp.horizontal;

.setColor (theGC,13); /* dark slate blue */
if ((whichGadget == OVHEAD) || (whichGadget == ALT)) {
XDrawRectangle (theDisplay,theWindow,theGC,dvdp.horizontal,dvdp.vertical,
width,height);
} else {
XFillRectangle (theDisplay, theWindow, theGC,dvdp.horizontal, dvdp.vertical,
. width,height);
'dvdp.horizontal+=1l;
dvdp.vertical+=height;
dvdp.vertical-=4;
setColor (theGC, 63); /* white */
XDrawString (theDisplay, theWindow, theGC,dvdp.horizontal,
dvdp.vertical,theString,strlen(theString));
}/* end if */

}/* end function dvdDrawLine () */

/* Draw a line from p to g which has been presented in dvi coordinates. */
void dviDrawlLine (Window theWindow,GC theGC,dviCoord dvip,dviCoord dviq)

dvdCoord dvdp,dvdqg;

dvdp = dvi2dvd(dvip);
dvdg = dvi2dvd(dviq);
‘vdbrawLine (theWindow, theGC, dvdp, dvdq) ;
end function dvdDrawline () */

/* Draw a line from p to g which has been presented in view-rectangle
** coordinates. */
void vrDrawline (Window theWindow,GC theGC,vrCoord vrp,vrCoord vrq)

{
dviCoord dvip,dvigqg;

dvip = vr2dvi(vrp);

dvig = vr2dvi (vrq);

dviDrawline (theWindow, theGC, dvip,dviq);
}/* end function vrDrawLine () */

/* Draw a line from p to g which has been presented in object-space
** coordinates. */

void osDrawLine (Window theWindow,GC theGC,o0sCoord osp,osCoord osq)
{

vrCoord vrp,vrq;

vrp = os2vr (osp);

vrqg = os2vr (osq);

vrDrawLine (theWindow, theGC, vrp, vrq) ;
end function osDrawLine () */




/* Set up the shadings needed for drawing shaded triangles, below. */
void initShading()

{
int i;
for (i = 0; i<= NUMSHADES-1l; ++i) {
‘ theCoordParams.shadingColor[i] = i+NUMSHADES;
}/* end for */
}/* end function initShading() */

/* Draw a triangle presented in object-space coordinates. */
void osDrawTriangle (Window theWindow,GC theGC,triangle theTriangle,
int theColor)
{
osCoord osp,o0s8q,o0sr;
dvdCoord dvdp, dvdq, dvdr;
XPoint thePoints[4];

osp.x = theTriangle.vlx; osp.y = theTriangle.vly; osp.z
0s8g.x = theTriangle.v2x; osq.y = theTriangle.v2y; osq.z
osr.x = theTriangle.v3x; osr.y = theTriangle.v3y; osr.z

theTriangle.vlz;
theTriangle.v2z;
theTriangle.v3z;

dvdp = dvi2dvd(vr2dvi (os2vr(osp)));
dvdg = dvi2dvd(vr2dvi (os2vr(osq)));
dvdr = dvi2dvd(vr2dvi (os2vr{osr)));

thePoints[0] .x
thePoints[1l] .x
thePoints[2)] .x
thePoints (3] .x

dvdp.horizontal; thePoints([0].
dvdg.horizontal; thePoints[1l].
dvdr.horizontal; thePoints[2].
dvdp.horizontal; thePoints[3].

dvdp.vertical;
dvdg.vertical;
dvdr.vertical;
dvdp.vertical;

K

' switch (theCoordParams.solidType) {

case WIREFRAME:
setColor (theGC, theColor);
XDrawlines (theDisplay, theWindow, theGC, thePoints, 4, CoordModeOrigin) ;
break;

case HIDDEN:
setColor (theGC, 63) ;
XFillPolygon (theDisplay, theWindow, theGC, thePoints, 4, Convex,

CoordModeOrigin) ;

setColor (theGC,theColor);
XDrawlLines (theDisplay, theWindow, theGC, thePoints, 4, CoordModeOrigin) ;
break;

case SHADED:
setColor (theGC, theCoordParams.shadingColor[theColorl);
XFillPolygon (theDisplay,theWindow,theGC,thePoints, 4, Convex,

CoordModeOrigin) ;

/* setColor (theGC,1l); black */
XDrawLines (theDisplay,theWindow, theGC, thePoints, 4, CoordModeOrigin) ;
break;

}/* end switch */

}/* end function osDrawTriangle() */

coordinates. */
oid dvdDrawPoint (Window theWindow,GC theGC, dvdCoord dvdp)

{
XDrawPoint (theDisplay, theWindow,theGC,dvdp.horizontal, dvdp.vertical);
}/* end function dvdDrawPoint () */

‘ Draw a point p which has been presented in device-dependent




. Draw a point p which has been presented in view-rectangle
** coordinates. */
void vrDrawPoint (Window theWindow,GC theGC,vrCoord vrp)
{
dvdCoord dvdp;
dviCoord dvip;

dvip = vr2dvi (vrp);

dvdp = dvi2dvd(dvip):;

XDrawPoint (theDisplay,theWindow,theGC,dvdp.horizontal, dvdp.vertical);
}/* end function vrDrawPoint () */

/* Draw a point p which has been presented in object-space coordinates. */
void osDrawPoint (Window theWindow,GC theGC,o0sCoord osp)
{

vrCoord vrp;

vrp = os2vr (osp);
vrDrawPoint (theWindow, theGC,vrp);
}/* end function osDrawPoint () */

Q Render text with position presented in dvd coordinates. */
id dvdPrint (Window theWindow,GC theGC,dvdCoord dvdp,char theString(])

XDrawString (theDisplay, theWindow, theGC,dvdp.horizontal,
dvdp.vertical,theString, strlen(theString));
}/* end function dvdPrint() */

/* Render text with position presented in vr coordinates. */
void vrPrint (Window theWindow,GC theGC,vrCoord vrp,char theString[])
{
dvdCoord dvdp;
dviCoord dvip;
dvip = vr2dvi (vrp);
dvdp = dvi2dvd(dvip);
dvdPrint (theWindow, theGC, dvdp, theString);
}/* end function vrPrint () */

/* Render text with position presented in os coordinates. */
void osPrint (Window theWindow,GC theGC,osCoord osp,char theString[])

vrCoord vrp:;

vrp = os2vr(osp);

vrPrint (theWindow, theGC, vrp, theString);
* end function osPrint () */




/* The event handler. */

/* X-windows include files: */
#include <X11/Xlib.h>
anclude <X1l/Xutil.h>
clude <Xl1ll/keysym.h>
#include <X1ll/keysymdef.h>
$#include <X1ll/cursorfont.h>
#include <math.h>

#include "global.h"
#include "prototypes.h"

/* Global X-Windows variables: */
extern Display *theDisplay:;

/* global variables pertaining to this application: */
extern coordParams theCoordParams;

extern gadget theGadgets[80];

axtern int drawGadgets;

extern int nData;

extern int highlight;

extern int minDelta,maxDelta, numbelta;
extern int nHull;

extern osCoord theData [MAXDATA];

extern triangle theHull [MAXTRIANGLES];
extern intTriangle intHull [MAXTRIANGLES];

/* Define the set of X-Windows events we wish to detect */
#define EV_MASK (KeyPressMask | ButtonPressMask | ExposureMask \
| StructureNotifyMask)

/* This is the main X-Windows event loop. Based on the events detected
** below (such as mouse clicks and key presses) various computations are
**» performed, and then refreshWindow() is called. 1If the event detected
** ig a "quit" event, then control returns to the main program, where
the X-Window is shut down and the program terminates. */

int eventLoop ()

{

XEvent theEvent;
XComposeStatus theComposeStatus;
KeySym theKeySym;
XWindowAttributes theAttribs;
Cursor theCursor;

/* storage for incoming keystrokes */

int theKeyBufferMaxLen = 64; /* arbitrary big number */
char theKeyBuffer([65];

int length;

/* storage for mouse button events */
int mouseX;

int mouseY;

int whichButton;

/* other stuff =*/

. float sphereCoords(4];
float tempCoords(4];
int i, whichGadget;
float x,y,z;




/* wait for an event */
XNextEvent (theDisplay, &theEvent);

/* turn the cursor into a clock */

theCursor = XCreateFontCursor (theDisplay,XC_watch);
XDefineCursor (theDisplay, theEvent.xany.window, theCursor);
XFlush (theDisplay);

/* decode the event */
switch (theEvent.type) {

/* the window has been exposed */

case Expose:
refreshWindow (theEvent .xany.window) ;
break;

/* the window is mapped */

case MapNotify:
refreshWindow (theEvent .xany.window) ;
break;

/* detect if a mouse button is pressed down */
case ButtonPress:

/* if drawGadgets equals false, then no button gadget could have
** been clicked into, so don’t bother decoding this event */
if (drawGadgets == False) { break; }

/* figure out which button was pressed, and where on the screen it
** was pressed */

mouseX = theEvent.xkey.x;

mouseY = theEvent.xkey.y;

whichButton = theEvent.xbutton.button;

/* figure out which gadget was clicked into, if any */

whichGadget = -1;

for (i = QUIT; i <= NUMGADGETS; ++i) ({
if ((mouseX > theGadgets(i].left) && (mouseX < theGadgets([i].right)
&& (mouseY > theGadgets[i].top) && (mouse¥Y < theGadgets([i] .bottom)) {

whichGadget = i;

}/* end if */

}/* end for */

/* The ALT and OVHEAD gadgets are special; if the user did not click
** into one of them, then he might have clicked intoc one of the other
** movement gadgets. If so, then we need to convert the coordinates
** he wants to change into spherical form so that we can move them as
** he requested, and then convert them back to rectangular coordinates.
** If the user _did_ c¢lick into the ALT or OVHEAD gadget, then he is
** moving one of the points directly, so we can keep them in
** rectangular coordinates. */
if ((whichGadget != ALT) && (whichGadget != OVHEAD)) ({
switch (whichButton) {
case 1: .
tempCoords[l] = theCoordParams.eye[l] - theCoordParams.see[l];
tempCoords[2] = theCoordParams.eye[2] - theCoordParams.see[2];
tempCoords (3] = theCoordParams.eye[3] - theCoordParams.see[3];
rect2sphere (tempCoords, sphereCoords); break;
case %: rect2sphere (theCoordParams. see, spheraCoords); break;
case 3:
tempCoords(l] = theCoordParams.light[l] - theCoordParams.see(l];
tempCoords (2] = theCoordParams.light (2] - theCoordParams.see(2];
tempCoords{3] = theCoordParams.light[3] - theCoordParams.see[3];
rect2sphere (tempCoords, sphereCoords) ; break;
}/* end switch */
} else {




switch (whichButton) {

case 1: x = theCoordParams.eye(l]; y = theCoordParams.eye(2};
z = theCoordParams.eye(3]; break;
case 2: x = theCoordParams.see[l]; y = theCoordParams.see[2];
z = theCoordParams.see[3]; break;
. case 3: x = theCoordParams.light[1]; y = theCoordParams.light([2];
z = theCoordParams.light[3]; break;

}/* end switch */
}/* end if */

/* now perform the various computations which depend on exactly which

** gadget was pressed */

switch (whichGadget) ({
case -1: /* do nothing */ break;
case QUIT: return(0); break;
case WRITEDT: writeData(); break;
case CCWISE: sphereCoords{l]+=(1.0/36.0); break;
case CLWISE: sphereCoords{l]-=(1.0/36.0); break;
case OVMAG: theCoordParams.oslLeft*=2.0;
theCoordParams.osBack*=2.0;
theCoordParams.osRight*=2.0;
theCoordParams.osFront*=2.0;
theCoordParams.osTop*=2.0;
theCoordParams.osBottom*=2_.0; break;
case OVMIN: theCoordParams.osLeft*=0.5;
if (theCoordParams.osleft > theCoordParams.vcleft)
theCoordParams.oslLeft*=2.0; break; }
theCoordParams.osBack*=0.5;
theCoordParams.osRight*=0.5;
theCoordParams.osFront*=0.5;
theCoordParams.osTop*=0.5;
theCoordParams.osBottom*=0.5; break;
. case OVHEAD: y = fromViewLeft (mouseX);
x = fromViewTop (mouseY) ; break;
case ALT: z = fromAltTop (mouseY) ; break;
case ALTMAG: theCoordParams.oslLeft*=2.0;
theCoordParams.osBack*=2.0;
theCoordParams.osRight*=2.0;
theCoordParams.osFront*=2.0;
theCoordParams.osTop*=2.0;
theCoordParams.osBottom*=2.0; break;
case ALTMIN: theCoordParams.osleft*=0.5;
if (theCoordParams.osleft > theCoordParams.vclLeft)
theCoordParams.oslLeft*=2_.0; break; }
theCoordParams.osBack*=0.5;
theCoordParams.osRight*=0.5;
theCoordParams.osFront*=0.5;
theCoordParams.osTop*=0.5;
theCoordParams.osBottom*=0.5; break;
cagse INWARD: sphereCoords([3]*=0.9; break;
case OUTWARD: sphereCoords([3]*=1.1; break;
case VIEWIN: theCoordParams.rho+=0.05;
i€ (theCoordParams.rho > 0.95)
{theCoordParams.rho = 0.95;} break;
case VIEWOUT: theCoordParams.rho-=0.05;
if (theCoordParams.rho < 0.05)
{theCoordParams.rho = 0.05;} break;
case OVER: sphereCoords[2]-=(1.0/36.0); break;
case UNDER: sphereCoords (2]+=(1.0/36.0); break;
case AXESG: theCoordParams.solidType = AXES; break;
case WIREG: theCoordParams.solidType = WIREFRAME; break;
‘ case HIDEG: theCoordParams.solidType = HIDDEN; break;
case SHADG: theCoordParams.solidType = SHADED; break;
case HIGHLT: highlight = l1-highlight; break;
case DOHULL: chull():; break;
case COARSE: if (numDelta > 4) {




N

case

case

case

case

case

case

case

case

case

case

case

FINE:

MINDM:

MINDP:

MAXDM:

MAXDP:

X2:

XS:

Y2:

¥5:

z2:

25:

numDelta/=2;
minDelta = 1
getData(); }

nData = numbDelta;
; maxDelta = nData;
break;

if (numbDelta < MAXDATA) {

numDelta*=2;
minDelta = 1
getData(); }
minDelta--;

getData();
minDelta++;

getData();
maxDelta--;

getData() ;
maxDelta++;

getData();

theCoordParams
theCoordParams
theCoordrParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams
theCoordParams

nData =
if (minDelta > maxDelta-3)

nData =
if (minDelta > maxDelta-3)

nData =
if (maxDelta > numbDelta)

nData = numbDelta;
; maxDelta = nData;
break;

nData = numbDelta;
if (minDelta < 1)

{ minDelta = 1; }
break;
numDelta;
{ minDelta
break;
numDelta;
{ maxDelta
break;
numDelta;
{ maxDelta =
break;
.x_scalex*=2;
.eye[l]*=2;
.s8ee[l] *=2;
.light[1]*=2;
.Xx_scale*=0.5;
.eye{l]*=0.5;
.seefl]*=0.5;
.1light[1]*=0.5;
.y_scale*=2;
.eye[2]*=2;
.8ee[2]*=2;
.light [2] *=2;
.y_scale*=0.5;
.eye(2]1*=0.5;
.8ee[2]*=0.5;
.light [2]*=0.5;
.z_scale*=2;
.eye[3]*=2;
.see[3]*=2;
.light [3]*=2;
.z_scale*=0.5;
.eye[3]1*=0.5;

break;

break;

break;

break;

break;

= maxDelta-3;

= minDelta+3;

numbDelta; }

}

}

theCoordParams.see[3]*=0.5;
theCoordParams.light [3]*=0.5; break;
}/* end switch */
/* Now convert back to rectangular coordintes, if necessary. */
if ((whichGadget != ALT) && (whichGadget != OVHEAD)) ({
switch (whichButton) (
case 1:
spherelrect (sphereCoords, tempCoords) ;
theCoordParamgs.eye(l] = tempCoords([l]
theCoordParams.eye(2] = tempCoords (2]
theCoordParams.eye (3] = tempCoords (3]
break;
case 2:
case 3:
sphere2rect (sphereCoords, tempCoords) ;
theCoordParams.light{1l] = tempCoords(l] +
theCoordParams.light [2] = tempCoords([2] +
theCoordParams.light (3] = tempCoords([3] +
break;
}/* end switch */
} else {
switch (whichButton) {
case 1: theCoordParams.eye[l] = x; theCoordParams.eye(2] = y;
theCoordParams.eye (3] = z; break;

+ theCoordParams.see[l];

+ theCoordParams.see([2];

+ theCoordParams.see[3];
)

sphere2rect (sphereCoords,theCoordParams.see); break;
theCoordParams. see|

1];
theCoordParams.see(2];
theCoordParams.see(3];




case 2: theCoordParams.see(l] x; theCoordParams.see(2] = y;
theCoordParams.see[3] z; break;
case 3: theCoordParams.light[l] = x; theCoordParams.light[2] = y;
theCoordParams.light (3] = z; break;
}/* end switch */
}/* end if */

/* Re-initialize the 3d->2D transformation and re-draw the window. */
PSInit ();

refreshWindow (theEvent .xany.window) ;

break;

/* a key on the keyboard has been pressed down */
case KeyPress:
/* This line causes a compiler warning, but is legal, since theEvent */
/* is of Union type. */
length = XLookupString(&theEvent,theKeyBuffer,theKeyBufferMaxLen,
&theKeySym, &theComposeStatus);

/* check to see if the user pressed one of the ASCII keys */
if ((theKeySym >= ’ ’) && (theKeySym <= ’~’) && (length == 1)) {

/* quit if the key was a "gq" */
if (theKeyBuffer[0] == 'q’) { return(0); }

/* toggle the gadget drawing if the key was a "g" */
if (theKeyBuffer[0] == ’g’) drawGadgets = l-drawGadgets;

/* rotate the image quickly, if the key was a "a’ */
if (theKeyBuffer(0] == ’a’) { /* animate! */
for (i=1l; i<=72; ++i) {
tempCoords[l] = theCoordParams.eye[l] -~ theCoordParams.see([l];
tempCoords (2] = theCoordParams.eye[2] -~ theCoordParams.see(2];
tempCoords (3] theCoordParams.eye (3] ~ theCoordParams.see[3];
rectlsphere (tempCoords, sphereCoords) ;
sphereCoords[1]+=(3.1415926/36.0) ;
sphere2rect (sphereCoords, tempCoords) ;
theCoordParams.eye[l] = tempCoords([1l]
theCoordParams.eye([2] = tempCoords[2]
theCoordParams.eye[3] = tempCoords (3]
PSInit ()
refreshWindow (theEvent .xany.window) ;
}/* end for */
}/* end if */

theCoordParams.see[l}];
theCoordParams.see(2];
theCoordParams.see[3];

+++

/* the user must hav pressed a non-ASCII key */
} else {

/* as above, convert to spherical coordinates */
tempCoords[1] theCoordParams.eye{l] -~ theCoordParams.see[l];
tempCoords (2] theCoordParams.eye[2] - theCoordParams.see(2];
tempCoords [3] theCoordParams.eye[3] - theCoordParams.see[3];
rect2sphere (tempCoords, sphereCoords) ;
switch (theKeySym) ({

case XK Up : sphereCoords([2]-=(1.0/36.0); break;

case XK Down : sphereCoords[2]+=(1.0/36.0); break;

cagse XK Right: sphereCoords[l]+=(1.0/36.0); break;

case XK Left : sphereCoords([l]-=(1.0/36.0); break;

case XK KP_1 : sphereCoords(3]*=1.1; break;

cagse XK KP 4 : sphereCoords(3]*=0.9; break;
}/* end switch */
/* and then re-convert back to rectangular coordinates */
spherel2rect (sphereCoords, tempCoords) ;
theCoordParams.eye[l] = tempCoords[l] + theCoordParams.see(l];
theCoordParams.eye{2] = tempCoords([2] + theCoordParams.see[2]:;
tg§Coor?Params.eye[3] = tempCoords (3] + theCoordParams.see[3];
PSInit();




}/* end if */
refreshWindow (theEvent .xany.window) ;
break;

/* the window has been sized or changed */

. case ConfigureNotify:
XGetWindowAttributes (theDisplay,theEvent.xany.window, stheAttribs);

theCoordParams.windowWidth = theAttribs.width;
theCoordParams.windowHeight = theAttribs.height;
refreshWindow (theEvent .xany.window) ;

break;

}/* end switch */

/* make the pointer be an arrow again, instead of a clock */
XUndefineCursor (theDisplay, theEvent.xany.window) ;

return(l);
}/* end function eventLoop() */

/* function initEvents, set the event mask */
void initEvents (Window theWindow)

XSelectInput (theDisplay,theWindow,EV_MASK) ;
}/* end function initEvents */




/* PRINT SOME STATISTICS */

dvdp.horizontal = theGadgets[X5].right + gadgetBorder;
dvdp.vertical = theGadgets{X5] .bottom - 4;

sprintf (theString, "scaling factor = %5.2f",theCoordParams.x_scale);
dvdPrint (theExposedWindow, theGC, dvdp,theStrlng),

h

dvdp.horizontal theGadgets([¥Y5] .right + gadgetBorder;
dvdp.vertical = theGadgets{[Y¥5] .bottom - 4;
sprlntf(theStrlng,"scallng factor = %$5.2f",theCoordParams. y_scale);
dvdPrint (theExposedWindow, theGC, dvdp,theStrlng),

dvdp.horizontal theGadgets[Z3] .right + gadgetBorder;
dvdp.vertical = theGadgets[Z25] .bottom - 4;

sprintf (theString, "scaling factor = %5.2f", theCoordParams z_scale);
dvdPrint (theExposedWindow, theGC, dvdp,theStrlng),

dvdp.horizontal = theGadgets[22].left;

dvdp.vertical = theGadgets[Z2] .bottom + 3*gadgetBorder;

sprintf (theString, "light point = (%7.2£,%7.2f,%7.2£f)",
theCoordParams.light (1], theCoordParams.light (2] ,theCoordParams.light[3]);
dvdPrint (theExposedWindow, theGC, dvdp, theString) ;

dvdp.vertical+=10;

sprintf (theString," eye point = (%7.2f£,%7.2f,%7.2£f)",
theCoordParams.eye[l], theCoordParams.eye[2],theCoordParams.eye(3]);
dvdPrint (theExposedWindow,theGC, dvdp, theString) ;

dvdp.vertical+=10;

sprintf (theString," see point = (%7.2f£,%7.2f£,%7.2f)",
theCoordParams.see[l],theCoordParams.see[2],theCoordParams.see(3]);
dvdPrint (theExposedWindow, theGC, dvdp, theString) ;

if ((highlight) && (theDepth > 1)) ({
dvdp.vertical+=30;
setColor (theGC,49); /* red */
sprintf (theString, "Red - curve is exterior on far side of hull");
dvdPrint (theExposedWindow, theGC,dvdp, theString);
dvdp.vertical+=10;
setColor (theGC,1); /* black */
sprintf (theString, "Yellow - curve is exterior on near side of hull");
dvdPrint | _heExposedWindow, theGC,dvdp, theString);
dvdp.vertical+=10;
setColor(theGC,4); /* brown */
sprintf (theString, "Brown - curve is in interior of hull");
dvdPrint (theExposedWindow, theGC,dvdp, theString);
dvdp.vertical+=10;
setColor(theGC,1l); /* black */
sprintf (theString,"Green - connecting line, if visible");
dvdPrint (theExposedWindow, theGC, dvdp,theString);
}/* end if */

}/* end if (drawGadgets) */
XFlush (theDisplay);

}/* end function refreshWindow() */

¢

* function to determine the shade of a facet of the hull */
nt getShade (int i)

float u(4}]; /* a unit vector normal to the face of the hull */
float v{4]; /* a unit vector pointing towards light source (lamp) */
float w(4]; /* scratch storage */




float angle; /* angle between u and v */

int s; /* shade number, based on angle */

static float pi = 3.1415926;

u(l] theHull[i] .normalx;
. u(2] theHull(i] .normaly;

ul[3] = theHull{i] .normalz;

w[l] = theCoordParams.light (1] - theHull(i].v3x;
w(2] = theCoordParams.light (2] - theHull[i].v3y;
w(3] = theCoordParams.light[3] - theHull([i].v3z;

normalize(w,v);
angle = acos(fabs (dotprd(u,v)));
s = (NUMSHADES-1l) - (int) (angle*2.0*(float) (NUMSHADES-1) /pi);
return(s);
}/* end function getShade () */

/* function to sort the faces of the object */
void sortTriangles(int doDraw(],int sorted[])
{

int i, temp [MAXTRIANGLES];

float diffx,diffy,diffz;

float dist [MAXTRIANGLES]:;

/* measure distances from eye points to triangles for all triangles */
for (1 = 1; i <= nHull+3; ++i) {

diffx = theHull([i].centerx-theCoordParams.eye(l];
diffy = theHull[i].centery-theCoordParams.eye([2];
diffz = theHull[i].centerz-theCoordParams.eye([3];

dist[i] = Qiffx*diffx + Aiffy*diffy + diffz*diffz;
. }/* end for */

/* store the sorted list in a temporary variable */
for (1 = 1; i <= nHull+3; ++i) { temp{i] = i; }
quickSort (dist,temp, 1l,nHull+3);

/* reverse the order of the sort and return */
for (1 = 1; 1 <= nHull+3; ++i) { sorted[i] = temp[nHull+4-i]; }
}/* end function sortTriangles() */

int whichDraw({int doDraw(])
{
int i, counter;
float numer, signl, sign2;
float normal(4],diff(4];

counter = 0;
for (i=1; i<=nHull; ++i) {

/* project the center of the hull onto the normal of this triangle */°

normal(l] = theHull(i] .normalx;
normal (2] = theHull({i].normaly;
normal(3] = theHull[i] .normalz;

diff(1l] = centerHull.x - theHull(i].v3x;

diff[2] = centerHull.y - theHull[i].v3y;
‘ diff(3] = centerHull.z - theHull(i].v3z;

numer = dotprd(diff,normal):

signl = numer;

/* now project the eye point onto the normal of this triangle */
diff[1l] = theCoordParams.eye([l] - theHull([i].v3x;




diff(2 theCoordParams.eye[2]

- theHull([i] .v3y;

]
diff (3] theCoordParams.eye[3] - theHull([i].v3z;
numer = dotprd(diff,normal);
sign2 = numer;

** game side of the triangle as the the hull,
** NOT see this triangle. */
if ((signl*sign2) > 0.0) {

doDraw[i] = 0;
} else (

doDraw([i] = 1;

counter++;

}/* end if */
}/* end for i */

/*
/*
%* %
x %

CONSIDER THE AXES AS A SPECIAL CASE */

they are behind the hull.

** where this reliance is a mistake. */
for (i=nHull+l; i<=nHull+3; ++i) ({
doDraw([i] = 1;
counter++;
}/* end for i */
return (counter);
}/* end function whichDraw() */
/* figure out if edge connecting (pl,p2) is on

int isAnEdge (int pl,int p2,intTriangle T)

if (pl == p2) {
if ((pl == T.pl) || (p
if ((p2 == T.pl) ||
return(1l);
}/* end if */
}/* end if */
return(90) ;
}/* end function isAnEdge ()

return(0) ;

}
T.
(pz =

r2) 1]
T.p2)

*/

/* if sign2 and signl have the same sign, then our eye point is on the

and therefore we do

the axes should always be drawn; rely on the sorting to put them in
the right place in the rendering list so that they’ll be obscured if
Note that there are some degenerate cases

triangle T or not */




/* FILE: main.c

** This file contains the main program for the convex hull generator. It also
** contains the refreshWindow() functions which draws the hull and gadgets. */

X-windows include files: */
clude <X11/Xlib.h>
tinclude <X11l/Xutil.h>

/* include files for your application: */
tinclude <stdio.h>

tinclude <string.h>

tinclude <math.h>

:include "global.h" /* contains structure definitions and #define’s */
:include "prototypes.h" /* contains C prototypes */

'* X-windows global variables */

isplay *theDisplay; /* a pointer to the display structure */

.at theScreen; /* which screen within the display */

.nt theDepth; /* depth of screen in bitplanes */

:nsigned long theBlackPixel; /* system black color, xet in colorx.c */
:nsigned long theWhitePixel; /* system white color, set in colorx.c */
Zolormap theColormap; /* color map, set in colorx.c */

5C theGC; /* graphics context, set in windowx.c */
~xFontStruct *fontStruct; /* font structure, set in textx.c */

’* global wvariables pertaining to this application: */

3sCoord theData [MAXDATA+1]; /* the (x,y,2z) triples of points */

int nData; /* the number of such triples to be used */
zriangle theHull [MAXTRIANGLES+1];/* the triangles making up the hull */
intTriangle intHull [MAXTRIANGLES+1];/* data points on the curve mut the hull */
int nHull; /* the number of triangles computed */
coordParams theCoordParams; /* parameters related to image rendering */

get theGadgets[80]; /* gadget data */
drawGadgets; /* whether or not gadgets should be drawn */

int highlight; /* whether or not curve should be highlit */
osCoord centerHull; /* a point in the center of convex hull */
int minDelta,maxDelta,numDelta; /* see file getdata.c for explanation*/

void main ()

/* declarations pertaining to X-Windows: */

Window theWindow;
int windowX, windowY, popUp;
int windowWidth, windowHeight;

/* declarations pertaining to this application: */
/* (none) */

/* initializations pertaining to X-Windows: */

windowX = 0; /* place the window in the upper left hand corner */
windowY = 0; .
windowWidth = -1; /* -1 would mean make the window as big as possible */
windowHeight = -1;
popUp = 0; /* an X parameter, see usage below */
/* initializations pertaining to your application: */
nData = 8; /* use 8 data points for curve initially */
inDelta = 1; /* of those 8, use numbers 1 to 8 completely */
xDelta = nData;
numDelta = maxDelta-minDelta+l;
getData () ; /* read in the input data file (this should be fixed) */
setEye() ; /* getData and setEye are, unfortunately, interdependent, so */

getData() ; /* read in the input data file a second time */




windowWidth;

windowHeight;
gadgetBorder*2+gadgetTall;
gadgetBorder*7+gadgetWide*4+gadgetTall;

theCoordParams.windowWidth
theCoordParams.windowHeight
theCoordParams.topBarHeight
theCoordParams.rightBarWidth
heCoordParams.x_scale = 1.0;

heCoordParams.y scale = 1.0;

theCoordParams.z scale = 1.0;

theCoordParams.rho = 0.5;

theCoordParams.tilt = 0.0;

theCoordParams.plotType = MATHPLOT; /* z=up, y=right, x=towards viewer */
theCoordParams.solidType = AXES; /* just draw curve & axes */
drawGadgets = 1; /* do draw the gadgets */
highlight = 0; /* don’t highlight (color) curve */
PSInit () /* intialize 3D->2D projection */

/* open up an X-Window: */

initX(); /* set up the connection to the X-Server */
initDefaultColors(); /* set up X-windows colors */
initShading() ; /* initialize hull shading array */
theWindow = openWindow (windowX,windowY, windowWidth, windowHeight, popUp, &theGC) ;
fontStruct = initFont (theGC,"6x10"); /* load in a font */
initEvents (theWindow) ; /* set up window to receive events */
refreshWindow (theWindow) ; /* "refresh" window for the first time */
XFlush (theDisplay) ; /* flush this refresh to the display */

/* check for events; this is the heart of the program; most of the code
** would go here, or in the eventLoop() itself, or in the refreshWindow()
** function below: */

while (eventLoop()):; /* handle events */
/* close everything down: */
estroyWindow (theDisplay, theWindow) ; /* free the window resources */
reeFont (theDisplay, fontStruct); /* free the font resources */
XFlush (theDisplay) ; /* final flush to display */
quitX(); /* exit from X-Windows */

}/* end main program */

/* Function refreshWindow is probably the work-horse of the application.
** Based on events obtained from eventLoop(), you would perform various

** computations and then update the screen. Most of that could probably
** happen in this routine. */

void refreshWindow (Window theExposedWindow)

{

int i,3;

int nDraw; /* how many triangle survive the culling */
int doDraw [MAXTRIANGLES]; /* which triangles survived the culling */
int sorted [MAXTRIANGLES]; /* sort based on distance to eye point */
int localshade [MAXTRIANGLES]; /* what color to shade each triangle */
int colorBarWidth; /* how wide the color bar should be: =/
char theString[STRLEN]; /* generic string */ ‘
dvdCoord dvdp, dvdqg; /* generic DVD coordinates */

osCoord osp,o0s8qg; /* generic 0OS coordinates */

/* some computations that depend on how our window opened;
** how wide and high the convex hull display area is: */
‘ theCoordParams.dvdWidth =
theCoordParams.windowWidth - theCoordParams.rightBarWidth*drawGadgets;
theCoordParams.dvdieight =
theCoordParams.windowHeight - theCoordParams.topBarHeight*drawGadgets;
colorBarWidth = (theCoordParams.dvdWidth-2*gadgetWide~-3*gadgetBorder) /66;




/* clear the entire window */
XClearWindow (theDisplay,theExposedWindow) ;

/* DRAW THE OBJECT */

switch (theCoordParams.solidType) |

case AXES: /* draw just the curve and the axes */
/* --- draw the axes --- */
setColor (theGC, 5); /* grey is the color of the axes */

osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow, theGC, osp, "o") ;

osqg.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osg.z = 0.0;
osDrawline (theExposedWindow, theGC, osp,0s8q);

osPrint (theExposedWindow, theGC, 0s8q, "x") ;

osq.x = 0.0 ; osqg.y = 0.5*theCoordParams.vcRight; osq.z = 0.0;

osDrawLine (theExposedWindow, theGC, o8p,08q);
osPrint (theExposedWindow, theGC,o0sq,"y");
osq.x = 0.0 ; osq.y = 0.0 ; osq.z = 0.5*theCoordParams.vcTop;
osDrawLine (theExposedWindow, theGC, osp, 0sq) ;
osPrint (theExposedWindow, theGC,0sq, "2") ;
/* =--- draw the curve ---~ */
setColor (theGC, 1) ; /* black is the color of the curve */
for (i=1l; i <= nData-l; ++i) {
osDrawline (theExposedWindow, theGC, theData[i],theData[i+1l]);
}/* end for */
break;
case WIREFRAME: /* draw the wireframe of the hull */
/* =-~- draw the axes =--- */
setColor (theGC,5); /* grey */
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow, theGC,osp, "0o");

0osq.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osg.z = 0.0;
osDrawLine (theExposedWindow, theGC, osp,0s8q) ;

osPrint (theExposedWindow, theGC, 08q, "x") ;

osg.x = 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osg.z = 0.0;

osDrawline (theExposedWindow, theGC, osp,08qg) ;
osPrint (theExposedWindow, theGC,0s8qg, "y") ;
osqg.x = 0.0 ; osq.y = 0.0 ; osg.z = 0.5*theCoordParams.vcTop;
osDrawline (theExposedWindow, theGC, osp, 08q) ;
osPrint (theExposedWindow, theGC,o0s8q, "2");
/* =-- draw the hull =--- */
for (i = 1; i <= nHull; ++i) {
osDrawTriangle (theExposedWindow, theGC, theHull[1i],1);
}/* end for */
break;
case HIDDEN: /* draw the hull with hidden surface elimination */
/* --- draw the axes labels --- */
setColor (theGC,S5); /* grey */
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow, theGC, osp, "o") ;
osg.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osg.z = 0.0;
osPrint (theExposedWindow, theGC, 08gq, "x") ;
osg.x = 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osg.z = 0.0;
osPrint (theExposedWindow, theGC,0s8q,"y") ; .
osq.x = 0.0 ; osq.y = 0.0 ; osq.z = 0.5*theCoordParams.vecTop;
osPrint (theExposedWindow,theGC,038qg,"z") ;

/* =--- draw the hull, and axes as triangles =~-- */

/* figure out which of these triangles to draw, and set their color to

** black, so that they will have black outlines with white interior */

nDraw = whichDraw (doDraw);

for (i = 1; i <= nHull; ++i) {
localShade([i] = 1; /* black */

}/* end for */

for (i = nHull+l; i <= nHull+3; ++i) { /* these triangles are the axes */
localShade([i] = 5; /* grey */




}/* end for */

/* sort the triangles based on distance to the eye point */
sortTriangles (doDraw, sorted);

/* now draw the triangles */
for (i = 1; 1 <= nHull+3; ++1i) {

if (doDraw([sorted{il]) {

osDrawTriangle (theExposedWindow, theGC, theHull {sorted([1i]],
localshade [sorted(1]]);

}/* end if */
}/* end for */
break;

case SHADED: /* draw the hull with shaded facets */
/* --- draw the axes labels =-=-- */
setColor (theGC,5); /* grey */
osp.x = 0.0 ; osp.y = 0.0 ; osp.z = 0.0;
osPrint (theExposedWindow, theGC, osp, "0");

osq.x = 0.5*theCoordParams.vcFront; osq.y = 0.0 ; osg.z = 0.0;
osPrint (theExposedWindow, theGC, 0osq, "x") ;
osq.x = 0.0 ; osq.y = 0.5*theCoordParams.vcRight; osg.z = 0.0;

osPrint (theExposedWindow, theGC,o0sq, "y") ;
osq.x = 0.0 ; osq.y = 0.0 ; osg.z = 0.5*theCoordParams.vcTop;
osPrint (theExposedWindow, theGC,08q,"z") ;

/* --- draw the hull, and axes as triangles --- */
/* figure out which of these triangles to draw, and set their color */
nDraw = whichDraw (doDraw) ;
for (i = 1; i <= nHull; ++i) {
if (doDraw[i]) { localShade[i] = getShade(i); }
}/* end for */
for (i = nHull+l; i <= nHull+3; ++i) { /* these triangles are the axes */
localShade([i] = 1; /* 1 means black in my private shading system */
}/* end for */

/* sort the triangles based on distance to the eye point */
sortTriangles (doDraw, sorted);

/* now draw the triangles */
for (i = 1; i <= nHull+3; ++i) {

if (doDraw([sorted[i]]) (

osDrawTriangle (theExposedWindow, theGC, theHull [sorted([i]],
localShade[sorted([i]]);

}/* end if */
}/* end for */
break;

}/* end switch */

if (highlight) {

/* =--- draw the curve in brown --- */ )
if (theDepth == 1) ( setColor(theGC,63); } /* white */ ‘
else ( setColor(theGC,4); } /* brown */
for (i=l; i <= nData-~1l; ++i) {

osDrawlLine (theExposedWindow, theGC,theData{i],theData[i+l]);
}/* end for */
/* --- draw the invisible but exterior edges in red --- »/
if (theDepth == 1) { setColor(theGC,63); } /* white */
else { setColor (theGC,49); } /* red */
for (i=l; i <=nData-l; ++i) {

for (j=1; j <= nHull; ++3j) {

if (isAnEdge(i,i+l,intHull{j])) {(
osDrawline (theExposedWindow, theGC,theData(i],theData[i+l]);




break;
}/* end if */
}/* end for j*/
}/* end for i*/
/* =--- draw the exposed curve in yellow (white on a b&w monitor) =--- */
. if (theDepth == 1) { setColor(theGC,63); } /* white */
else { setColor(theGC,64); } /* yellow */
nDraw = whichDraw (doDraw) ;
for (i=l; i <=nData-1l; ++i) {
for (j=1; 3j <= nHull; ++3j) {
if (doDraw([j]) { /* this facet is being drawn */

if (isAnEdge(i,i+1l,intHull(j])) {
osDrawline (theExposedwWindow, theGC,theData[i], theData{i+1l]);
break;

}/* end 1f */
}/* end if */
}/* end for j*/
}/* end for ix*/

/* draw the line connecting the two endpoints of the curve in green,
** agsguming that it can be seen and is not obscured by the hull */
if (theDepth == 1) { setColor(theGC,63); } /* white */
else { setColor(theGC,21); } /* green */
for (j=1; j <= nHull; ++3j) {
if (doDraw[j]) {
if (isAnEdge(l,nData,intHull[j])) {
osDrawline (theExposedWindow, theGC,theData[l],theData[nData]l);
break;
}/* end if */
}/* end if */
}/* end for j*/

. }/* end if */

if (drawGadgets) {

/* clear the top and side bars */

XClearArea (theDisplay,theExposedWindow, 0,0, 0,theCoordParams.topBarHeight,
False);

XClearArea (theDisplay,theExposedWindow, theCoordParams.dvdWidth,
theCoordParams.topBarHeight,0,0,False);

/* draw the borders of the top and right-bar gadget areas: */
setColor (theGC, 1) ;

dvdp.horizontal = 0;

dvdp.vertical = theCoordParams.topBarHeight;
dvdg.horizontal = theCoordParams.dvdWidth;
dvdqg.vertical = theCoordParams.topBarHeight;
dvdDrawLine (theExposedWindow, theGC, dvdp, dvdq) ;
dvdp.horizontal = theCoordParams.dvdWidth;
dvdp.vertical = theCoordParams.topBarHeight;
dvdqg.horizontal = theCoordParams.dvdWidth;
dvdg.vertical = theCoordParams.windowHeight;
dvdDrawlLine (theExposedWindow, theGC, dvdp, dvdqg) ;

/* draw the gadgets themselves: */

gadgetData() ;
for (1 = QUIT; i <= NUMGADGETS; ++i) {
dvdDrawGadget (theExposedWindow, theGC, i) ;
’ }/* end for */

/* draw the color bars: */
if (theDepth > 1) (
/* -=-- 66 named colorsg =--- *»/




\orizontal

theCoordParams.dvdWidth-colorBarWidth;

worizontal = dvdp.horizontal+colorBarWidth;
rertical = gadgetBorder;
rertical = gadgetBorder+gadgetTall/2;

. = i <= 65; ++1i) {

2ol.g(theGC, i);

‘il1lRectangle (theExposedWindow, theGC, dvdp, dvdq) ;
:olor (theGC, 1) ;

ivdDrawRectangle (theExposedWindow, theGC,dvdp,dvdqg) ; */
y.horizontal-=colorBarWidth;
t.horizontal-=colorBarWidth;

12 for */

t3rizontal = theCoordParams.dvdWidth-colorBarWidth;
>cizontal = dvdp.horizontal+colorBarWidth;
raztical = gadgetBorder+l+gadgetTall/2;

r2czical = gadgetBorder+gadgetTall;

-~ 35 shades of grey --- */

.= 66; i <= 131; ++i) {

.2 .>»r(theGC, 1) ;

.. ..Rectangle (theExposedWindow, theGC, dvdp, dvdqg) ;

.. .>r(theGC,1);

I DrawRectangle (theExposedWindow,theGC,dvdp,dvdqg); */
» .orizontal-=colorBarWidth;

.. "rizontal-=colorBarWidth;

v for */

Ry

-T3cial gadget items: */

TXS VIEW-PLANE LOCATION DESCRIPTION: */
- theGC,13); /* dark slate grey */

Lz al = theGadgets[VIEWIN].right;

=3 = theGadgets [VIEWIN].top + 7;
‘2zontal = theGadgets[VIEWOUT].left;
=ical = dvdp.vertical;

.ine (theExposedWindow, theGC, dvdp, dvdqg) ;
Lzontal+=
I:O-EhegoordParams.rho)*(float)(dvdq.horizontal-dvdp.horizontal));
‘Tical-=-=y;

‘izontal = dvdp.horizontal;

tical+=5;

ine (theExposedWindow, theGC, dvdp, dvdqg) ;
‘izontal-=3;

tical+=8;

.(theExposedWindow, theGC,dvdg, "v") ;

THE OVERHEAD VIEW DESCRIPTION */

rigin: */

‘(theGC,1); /* black */

‘izontal = (theGadgets[OVHEAD].left + theGadgets[OVHEAD].right)/2;
tical = (theGadgets[OVHEAD] .top + theGadgets[OVHEAD] .bottom)/2;
oint (theExposedWindow, theGC, dvdp) ;

.ye point: */

‘(theGC,4), /* brown */

‘izontal = viewLeft (theCoordParams.eye(2]);
tical = viewTop (theCoordParams.eye{l]);
(t xposedWindow, theGC, dvdp, "e") ;

oi theExposedWindow, theGC, dvdp) ;

ee point: */
‘(theGC,3); /* BlueViolet */
izontal = viewLeft (theCoordParams.see([2]);




dvdp.vertical+=4;
dvdPrint (theExposedWindow, theGC,dvdp, "s") ;

/* the light-point bar: */

setColor (theGC,18); /* Gold */

dvdp.horizontal theGadgets [ALT] .right-6;
dvdp.vertical altTop (theCoordParams.light {3]);
dvdg.horizontal theGadgets {ALT] .right;
dvdg.vertical dvdp.vertical;

dvdDrawLine (theExposedWindow, theGC, dvdp, dvdqg) ;
dvdp.horizontal+=8;

dvdp.vertical+=4;

dvdPrint (theExposedWindow, theGC,dvdp, "1") ;.

hun

/* the top view-cube bar: */

setColor (theGC,5); /* cadet blue */
dvdp.horizontal = theGadgets([ALT].left;
dvdp.vertical altTop (theCoordParams.vcTop) ;
dvdg.horizontal dvdp.horizontal+l;
dvdg.vertical = dvdp.vertical;

dvdDrawlLine (theExposedWindow, theGC, dvdp, dvdq) ;

/* the bottom view-cube bar: */

dvdp.horizontal = theGadgets[ALT].left;
dvdp.vertical = altTop(theCoordParams.vcBottom);
dvdg.horizontal = dvdp.horizontal+l;

dvdqg.vertical dvdp.vertical;

dvdDrawlLine (theExposedWindow, theGC, dvdp, dvdq) ;

/* the view-cube tob/bottom connection bar: */
dvdp.horizontal theGadgets [ALT] .left+2;
dvdp.vertical altTop (theCoordParams.vcTop) ;
dvdg.horizontal theGadgets[ALT] .left+2;
dvdg.vertical altTop (theCoordParams.vcBottom) ;
dvdDrawlLine (theExposedWindow, theGC, dvdp, dvdqg) ;

/* the center bar: */

setColor (theGC,1); /* Black */

dvdp.horizontal = theGadgets([ALT].left+8;

dvdp.vertical = (theGadgets[ALT].top + theGadgets[ALT] .bottom)/2;
dvdg.horizontal = theGadgets[ALT].right-8;

dvdqg.vertical = dvdp.vertical;

dvdDrawLine (theExposedWindow, theGC, dvdp, dvdqg) ;

/* DRAW THE NUMBER OF DATA AND HULL POINTS */

dvdp.horizontal = theGadgets[COARSE].right + gadgetBorder;
dvdp.vertical = theGadgets[COARSE].top + 6;

sprintf (theString, "%3d points on curve",nData);

dvdPrint (theExposedWindow, theGC, dvdp, theString) ;

dvdp.vertical = theGadgets[COARSE] .bottom + 1;
sprintf (theString, "%$3d facets on hull ",nHull);
dvdPrint (theExposedWindow, theGC, dvdp, theString);

/* DRAW THE LOWEST AND HIGHEST VALUES BEING USED */

dvdp.horizontal = theGadgets[MINDM].right + gadgetBorder;
dvdp.vertical = theGadgets[MINDM] .bottom - 4;

sprintf (theString, " Using %d >= 1." minDelta);

dvdPrint (theExposedWindow, theGC, dvdp, theString) ;

dvdp.vertical = theGadgets {MAXDM] .bottom - 4;
sprintf (theString, " Using %d <= %d.",maxDelta,numDelta);
dvdPrint (theExposedWindow, theGC, dvdp, theString) ;




- -

/* FILE: gadgetdata.c
** Routines to initialize gadget data. */

#include <X11/Xlib.h>

‘:clude <X11l/Xutil.h>
clude "global.h"

#include "prototypes.h"

extern coordParams theCoordParams;
extern gadget theGadgets(80Q];
extern int drawGadgets;

/* initialize gadget data: where the gadget should be drawn and what
**x gtring it should be labeled with */

void gadgetData()

{

theGadgets [QUIT] .top = gadgetBorder;
theGadgets [QUIT] .bottom = theGadgets[QUIT].top + gadgetTall;
theGadgets [QUIT] .left = gadgetBorder;

theGadgets [QUIT] .right = theGadgets[QUIT].left +gadgetWide;
strcpy (theGadgets [QUIT] .string, "Quit"”);

theGadgets [WRITEDT] .top = theGadgets[QUIT].top;
theGadget s [WRITEDT] .bottom = theGadgets[QUIT] .bottom;

theGadgets [WRITEDT] .left = theGadgets[QUIT].right + gadgetBorder;
theGadgets [WRITEDT] .right = theGadgets|[WRITEDT].left +gadgetWide;
strcpy (theGadgets [WRITEDT] .string, "Save Hull");

/* observation-parameters control panel */

‘ theGadgets [CCWISE] .top = gadgetBorder;
theGadgets[CCWISE] .bottom = theGadgets(CCWISE].top + gadgetTall;
theGadgets [CCWISE] .left = theCoordParams.dvdWidth + gadgetBorder;
theGadgets [CCWISE] .right = theGadgets[CCWISE].left + gadgetWide;
strcpy (theGadgets [CCWISE] .string, "Counter C”);

theGadgets [OVMAG] .top
theGadgets [OVMAG] .bottom

theGadgets [CCWISE] .top;

theGadgets [CCWISE] .bottom;

theGadget s [OVMAG] . left theGadgets [CCWISE] .right + gadgetBorder;
theGadgets ([OVMAG] .right theGadgets [OVMAG] .left + gadgetWide;
strcpy (theGadgets [OVMAG] . string, "Expand”) ;

theGadget s [OVMIN] .top = theGadgets[CCWISE] .top;

theGadgets [OVMIN] .bottom = theGadgets[CCWISE] .bottom;

theGadgets [OVMIN] .left = theGadgets [OVMAG] .right + gadgetBorder;
theGadgets [OVMIN] .right = theGadgets[OVMIN].left + gadgetWide;
strcpy (theGadgets [OVMIN] .string, "Shrink");

theGadgets ([CLWISE] .top = theGadgets [CCWISE].top;

theGadgets [CLWISE] .bottom = theGadgets[CCWISE] .bottom;

theGadgets [CLWISE] .left = theGadgets[OVMIN].right + gadgetBorder;
theGadgets [CLWISE] .right = theGadgets[CLWISE].left + gadgetWide;
strcpy (theGadgets ([CLWISE] .string, "Clockwise") ;

theGadgets [OVHEAD] .top = theGadgets [CCWISE] .bottom + gadgetBorder;
theGadgets [OVHEAD] .bottom = theGadgets{OVHEAD].top
+ (gadgetWide+gadgetBorder) *3;
. theGadgets [OVHEAD] .left = theGadgets [CCWISE].left;
theGadgets ([OVHEAD] .right = theGadgets(CLWISE].right;
strcpy (theGadgets [OVHEAD] .string,"") ;

theGadgets [ALT] .top = theGadgets[OVHEAD] .top;
theGadgets (ALT] .bottom = theGadgets[OVHEAD] .bottom;




theGadgets [ALT] .left
theGadgets [ALT] .right
strcpy (theGadgets [ALT] .

st

theGadgets [ALTMAG] .top
theGadgets [ALTMAG] .bottom
theGadgets [ALTMAG] .left
theGadgets [ALTMAG] .right
strcpy (theGadgets [ALTMAG]

theGadgets [INWARD] .top
theGadgets [INWARD] .bottom
theGadget s (INWARD] . left
theGadget s [INWARD] .right
strecpy (theGadget s [INWARD]

theGadgets [OVER] .top
theGadget s [OVER] .bottom
theGadgets [OVER] .left
theGadgets [OVER] .right
strcpy (theGadgets [OVER] .

theGadget s [UNDER] .
theGadgets [UNDER] .
theGadgets [UNDER] .left
theGadgets [UNDER] .right
strcpy (theGadget s [UNDER] .

top
bottom

theGadget s [OUTWARD] .top

theGadgets [OUTWARD] .bottom

theGadgets [OUTWARD] .left
theGadgets {[OUTWARD] .right
strcpy (theGadgets [OUTWARD

theGadgets [ALTMIN] .top
theGadget s [ALTMIN] .bottom
theGadgets [ALTMIN] . left
theGadget s [ALTMIN] .right
strcpy (theGadgets [ALTMIN]

theGadgets ([VIEWIN] .top
theGadgets [VIEWIN] .bottom
theGadgets [VIEWIN] .left
theGadgets [VIEWIN] .right
strepy (theGadgets [VIEWIN]

theGadgets [VIEWOUT] .top

theGadget s [VIEWOUT] .bottom

theGadgets {VIEWOUT] .left
theGadgets ([VIEWOUT] .right
strcpy (theGadget s [VIEWOUT

theGadgets [OVHEAD] .right + gadgetBorder;
theGadgets [ALT].left + gadgetTall;
ring, " n) ;

theGadgets [CCWISE] .top;
theGadget s [CCWISE] .bottom;
theGadgets [ALT].left;
theGadgets [ALT] .right;
string, "Ex");

theGadgets [OVHEAD] .bottom + gadgetBorder;
theGadgets [INWARD] .top + gadgetTall;
theGadgets [CCWISE] .left;

theGadgets [CCWISE] .right;

.string, "Zoom in");

theGadgets [INWARD] .top;
theGadgets [INWARD] .bottom;
theGadgets [OVMAG] .left;
theGadgets [OVMAG] .right;

string, "Go over");

theGadgets [INWARD] .top;
theGadgets {INWARD] .bottom;
theGadgets [OVMIN] .left;
theGadgets [OVMIN] .right;
string, "Go under");

theGadgets (INWARD] .top;
theGadgets [INWARD] .bottom;
theGadget s [CLWISE].left;
theGadgets {CLWISE] .right;
string, "Zoom out");

].

theGadgets [INWARD] .top;
theGadgets [INWARD] .bottom;
theGadgets (ALT] .left;
theGadgets [ALT] .right;
string,"Sh");

theGadget s [INWARD]
theGadgets [VIEWIN])
theGadgets [INWARD]
theGadgets [INWARD]
string, "See point"”);

.bottom + gadgetBorder;
.top + gadgetTall;
.left;

.right;

theGadgets [VIEWIN] .top;
theGadget s ([VIEWIN] .bottom;
theGadgets [OUTWARD] .left;
theGadgets [OUTWARD] .right;
] .string, "Eye point");

/* solid-type control panel */

)
theGadgets [AXESG] .top = theGadgets [VIEWIN] .bottom + S*gadgetBorder;"
theGadgets [AXESG] .bottom = theGadgets[AXESG].top + gadgetTall;
theGadget s [AXESG] .left = theGadgets [INWARD] .left;
theGadgets [AXESG] .right = theGadgets [INWARD].right;
strcpy (theGadgets [AXESG] .string, "Curve") ;

theGadgets (WIREG] .top
theGadget 3 [WIREG] .bottom
theGadget s (WIREG] .left
theGadgets [WIREG] .right
strcpy (theGadgets [WIREG] .

theGadgets {AXESG] .top:
theGadgets [AXESG] .bottom;
theGadgets [OVER] .left;
theGadget s [OVER] .right;
string, "Wireframe") ;




theGadgets [HIDEG] .top =
theGadgets [HIDEG] .bottom =
theGadgets [HIDEG] .left =
theGadgets [HIDEG] .right =

strcepy (theGadget s {HIDEG] . s

theGadgets (SHADG] .top =
theGadgets [SHADG] .bottom =
theGadgets [SHADG] .left =
theGadgets [SHADG] .right =

strcpy (theGadget s [SHADG] . s
theGadgets [HIGHLT] .top
theGadget s [HIGHLT] .bottom
theGadgets [HIGHLT] . left
theGadgets [HIGHLT] .right
strcpy (theGadget s [HIGHLT] .

theGadget s [DOHULL] .top
theGadgets [DOHULL] .bottom
theGadget s [DOHULL] .left
theGadgets [DOHULL] .right
strcpy (theGadget s [DOHULL] .
/* grid refinement control
theGadgets [COARSE].
theGadgets [COARSE] .
theGadget s [COARSE] .left
theGadgets [COARSE] .right
strcpy (theGadgets [COARSE]

top
bottom

theGadgets (FINE] .top
theGadgets [FINE] .bottom
theGadgets [FINE].left
theGadgets [FINE] .right
strcpy (theGadgets [FINE] .

Wnuan

st
/* parameter range control

theGadgets [MINDM] .top
theGadgets [MINDM] .bottom
theGadgets [MINDM] . left
theGadgets [MINDM] .right
strepy (theGadget s [MINDM]

.3

theGadgets [MINDP] .
theGadgets [MINDP] .
theGadgets [MINDP] .left

theGadgets [MINDP] .right
strecpy (theGadget s [MINDP]

top
bottom =

.S
theGadget s [MAXDM] . top =
theGadget s [MAXDM] .bottom
theGadgets [MAXDM] . left
theGadget s [MAXDM] .right
strcpy (theGadget s [MAXDM]

.8

theGadgets [MAXDP] .top
theGadget s [MAXDP] .bottom
theGadgets [MAXDP] .left
theGadgets [MAXDP] .right
strcpy (theGadgets [MAXDP] . s

/* independent scaling of

theGadget s [AXESG] .top;
theGadgets [AXESG] .bottom;
theGadget s [UNDER] .left;
theGadgets [UNDER] .right;
tring, "White");

theGadgets [AXESG] .top;
theGadget s [AXESG] .bottom;

theGadget s [OUTWARD] .left;
theGadgets [OUTWARD] .right;
tring, "Shaded");

theGadgets [AXESG] .bottom + gadgetBorder;
theGadgets [HIGHLT] .top + gadgetTall;
theGadgets [SHADG] .left;

theGadgets [SHADG] .right;

string, "Highlight");

naum

theGadgets [HIGHLT] .top;
theGadgets [HIGHLT] .bottom;
theGadget s [AXESG] .left;
theGadgets [WIREG] .right;
string, "COMPUTE CONVEX HULL");

panel */

= theGadgets[HIGHLT] .bottom + S5*gadgetBorder;
= theGadgets[COARSE] .top + gadgetTall;

= theGadgets [AXESG] .left;

= theGadgets[AXESG] .right;

.string, "Less fine");

theGadget s [COARSE] .top;
theGadgets [COARSE] .bottom;
theGadget s [SHADG] .left;
theGadget s [SHADG] .right;
ring, "More fine");

panel */

theGadgets [COARSE] .bottom + S5*gadgetBorder;
theGadgets [MINDM] .top + gadgetTall;
theGadgets[COARSE] .left;
theGadget s [COARSE] .right;
tring, "~ t min");

theGadgets [MINDM] .top;
theGadget s [MINDM] .bottom;
theGadgets [FINE] .left;
theGadgets (FINE] .right;
tring,"+ t min");

theGadget s [MINDM]
theGadget s [MAXDM]
theGadget s [MINDM]
theGadget s [MINDM]
tring,"- t max");

.bottom + gadgetBorder;
.top + gadgetTall;
.left;

.right;

theGadget s [MAXDM]
theGadget s [MAXDM]
theGadgets [MINDP]
theGadget s [MINDP]
tring, "+ t max");

.top;
.bottom;
.left;
.right;

axes */




theGadgets [X2] .top
theGadgets[X2] .bottom

theGadgets [MAXDM] .bottom + 3 * gadgetBorder;
theGadgets [X2].top + gadgetTall;

theGadgets [X2] .left theGadgets [MAXDM] .left;

theGadgets (X2] .right theGadgets [MAXDM] .right;
‘ strcpy (theGadgets (X2] .string," x * 2");

theGadgets[X5] .top
theGadgets{X5] .bottom

theGadgets [X2] .top;
theGadgets [X2] .top + gadgetTall;
theGadgets [X5] .left theGadgets[X2].right + gadgetBorder;
theGadgets [X5] .right theGadgets[X5].left + gadgetWide;
strcpy (theGadgets (X5] .string,” x / 2");

theGadgets [Y2] .top
theGadgets{¥2] .bottom
theGadgets [¥2] .left theGadgets[X2].left;
theGadgets[Y2] .right theGadgets [X2].right;
strepy (theGadgets[Y2] .string," ¥y * 2");

theGadgets[X2] .bottom + gadgetBorder;
theGadgets [¥2] .top + gadgetTall;

theGadgets [¥5] .top
theGadgets {Y¥5] .bottom
theGadgets [¥5] .1left theGadgets[X5].left;
theGadgets[Y¥5] .right theGadgets[X5].right;
strcpy (theGadgets{¥5] .string," vy / 2");

theGadgets[Y2] .top;
theGadgets[Y2].top + gadgetTall;

theGadgets [22] .top
theGadgets{22] .bottom
theGadgets[Z22] .left theGadgets([Y¥Y2] .left;
theGadgets [Z2] .right theGadgets(Y¥2] .right;
strcpy (theGadgets[z22] .string,"” z * 2");

theGadgets([Y2] .bottom + gadgetBorder;
theGadgets([Z2] .top + gadgetTall;

theGadgets{Z5] .top
theGadgets [25] .bottom
. theGadgets[Z25] .left theGadgets[¥5] .left;
theGadgets(25] .right theGadgets [Y5] .right;
strcpy (theGadgets[25] .string," 2z / 2");

theGadgets[z2] .top;
theGadgets[22] .top + gadgetTall;

wunw

}/* end function gadgetData() */
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/* FILE: getdata.c
/* Routines to get the curve and hull data. */

#include <X11/Xlib.h>
#i ude <X11/Xutil.h>
#1 ude <stdio.h>
#include <strings.h>
#include <math.h>
#include "global.h"
#include "prototypes.h"

extern osCoord theData [MAXDATA];

extern int nData;

extern triangle theHBull [MAXTRIANGLES];
extern intTriangle intHull [MAXTRIANGLES];
extern int nHull;

extern coordParams theCoordParams;

extern osCoord centerHull;

a2xtern int minDelta,maxDelta,numbDelta;

/* The variables minDelta and maxDelta need some explanation. Here goes:

** The data file which contains the (x,y,z) coordinate triples may have

** an arbitrary number of triples in it. Typzcally it’s expected that there

** would be MAXDATA trlples there, since that’s the largest number of data point

** that this program is designed to use. The variable nData would tell how

** many of those triples would be used. For instance, if nData were set to

** 32, then every (MAXDATA/32)th triple would be used, and the others would be

** ignored. Now, the user may also specify that he wants to chop off part

** of the curve: for instance the user might want to chop off the tail of

** the curve and view the convex hull of just the head. 1In that case, we

** set minDelta to something larger than 1; for example, say minDelta = 3.

* hen of our 32 triples, the first and second would not be used. Now,

*‘ata would have to be set to 30, since there are only 30 data points
eing used. The variables numDelta would be set to 32, signifying that

** these 30 data points are a subset of the original 32. If numDelta =

** nData, that means that the user wants to see all of the curve. If the

** user wanted to also chop off the head of the curve, then maxDelta would

** be set to something less than 32. Note that we always shift the data

** in the theData[] array so that the data we actually intend to use is

** gstored in indices 1 through nData. 1In this manner, all of this numDelta

** confusion is avoided in all of the other subroutines of this program. */

void getData ()
{

int i,j,counter,k,ratio,nFile,nToUse,extra;
float t,ul4],vi4],wl[4];

float centerx,centery,centerz;

osCoord tempData;

/* open the data file */
FILE *fl, *fopen();

if ((f1 = fopen("curve.data”,"r")) == NULL) {
printf ("Unable to open flle %s for reading.\n","curve.data");
exit (1);

}

/* check to make sure the data file has enough data in it */
fscanf (f1,"%d",&nFile);
if (nFile < 4) {
rintf ("Insufficient data for generation of convex hull.\n");
exit (1) ;
}

/* if the user asks for more points than there are in the data file
** then use all of the data in the data file; he’ll have to be




** disappointed */
if (nFile < nData) {
nData = nFile;
printf
‘"%c You h7ve requested more data than is available in the data file.\n",7);
end if *

/* only read every ratio-th entry from the data file; note that we

** always wuse the first and last data point in the file, so that the
** entire curve will be seen */

counter = 0;

ratio = nFile/nData;

extra = nFile - nData*ratio + ratio - 1;

/* read in the first nData-1 data points */
for (i = 1; i <= nData-1; ++i) {
/* read this record and store it */
£scanf (£f1,"%f %f %£f",&theDatali].x,&theData[i].y,&theData(i].z);
counter++;
for (3 = 1; j <= ratio-1l; ++3j) {
/* read this record and ignore it */
fscanf (f1,"%f %f %f", &tempData.x, &tempData.y, &tempData.z);
counter++;
}/* end for 3 */
if (i <= extra ) {
/* read this extra record and ignore it */
fscanf (£f1,"%f %f %f",&tempData.x, &tempData.y,&tempData.z);
counter++;
}/* end if */
}/* end for i */

counter+l;
r (1 = k; i <= nFile-1; ++i) {
/* read this record and ignore it */
fscanf (fl,"%f %f %f",&tempData.x,&tempData.y,&tempData.z);
counter++;
}/* end for i */
i = nData;
/* read this record and store it */
fscanf (£f1,"$f %£f %f",&theData[i] .x,&theDatali].y,&theDatali).z);
counter++;
fclose (£fl);

1i read in the nData’th data point as the last record in the file */

/* if counter != nFile, then we screwed up somehow */
if (counter != nFile) {

printf ("Error reading data file: quantity of data is in error.\n");
}/* end if */

/* chop off the bottom or the top of the curve at the user’s request */
nToUse = maxDelta-minDelta+l;
for (i=1l; i <= nToUse; ++i) {
theData{i] = theData[(minDelta-1+i];
}/* end for */
numbDelta = nData;
nData = nToUse;

/* compute the center of the curve */
centerx = 0.0; centery = 0.0; centerz
for (1 = 1; i <= nData; ++i) {
.centerx centerx + theDataf{i].x;
centery = centery + theDatal[i].y;
centerz = centerz + theData(i].z;
}/* end for */
centerx = centerx/ (float)nData;
centery = centery/(float)nData;

I
o
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centerz = center
centerHull.x = ¢
centerHull.y = ¢
centerHull.z = ¢

‘Ilull = 0;

/*
/*

* %
%* %
*x %
* %
* X

/* the x-axis: *
theHull [nHull+l]
theHull [nHull+l]
theHull [nHull+1l]
theHull [nHull+1l]
theHull [nHull+l)
theHull [nHull+l)

Just as you would in the routine chulll.
ADD THREE MORE TRIANGLES:

Stupid mistak

/* the y-axis: *
theHull [nHull+2]
theHull [nHull+2]
theHull [nHull+2]
theHull [nHull+2]
theHull [nHull+2]
theHull [nHull+2]

the z-axis: *

eHull [nBull+3])
theHull [nHull+3]
theHull [nHull+3]
theHull [nHull+3]
theHull [nHull+3)
theHull [nHull+3]

/* compute other
t 0.333;
for (i = 1;

i <=

the
.cen
.cen
.cen

/* compute
theHull[i]
theHull [i]
theHull[i])

/* compute the
u{l} theHull
ul2] theHull
ul3) theHull
v[l] theHull
v[2] theHull
v (3] theHull
cross{(u,v,w);

nuuwnn

theRull[i] .normalx
theHull (i] .normaly
theHull{i] .normalz

.* end for */

/* the axes don’'t really have a unique normal, since they

for (i = nHull+l;

theHull[i]. normalx
theHull[i].normaly

2/ (float)nData;
enterx;
entery;
enterz;

e. */
/
wvlix =0
viy = 0.0;
vlz = 0.0;
v2x = 0.0;
v2y = 0.0;
.v2z = 0.0;
/
vix = 0.0;
.vly = 0
.vlz = 0.0;
v2x = 0.0;
.v2y = 0.0;
v2z = 0
/
vix = 0.0;
.vliy = 0.0;
.vliz = 0
v2x = 0.0;
.v2y = 0.0;
.v2z = 0.0;
aspects
nHull+3; ++i) {

*/

THE COORDINATE AXES */

I have a problem here: the values of vcFront, et al,
in the function setEye() below,
every time I call this function.

are computed

and I don’t want to call that function

So really, the following code should

theHull [nHull+l].v3x
theHull [nHull+l] .v3y
theHull [nHull+l].v3z

theHull (nHull+2] .v3x
theHull [nHull+2] .v3y
.0; theHull([nHull+2].v3z

center of each triangle

terx = (theHull[i].vlx +
tery = (theHull[i].vly +
terz = (theHull{[i].vlz +
normal of each triangle
[i].vl1x - theHull[i].v3x;
(i} .vly - theHull[i] .v3y;
[i] .v1lz - theHull[i].v3z;
(i} .v2x - theHull{[i].v3x;
(i) .v2y - theHull[i] .v3y;
[i].v2z - theHull([i].v3z;

normalize (w,u);
ufl};
u2);
ul3];

i <= nHull+3;

++1)

{

.5*theCoordParams.vcFront;

.5*theCoordParams.vcRight;

QOO

.5*theCoordParams.vcTop;
theHull [nEull+3] .v3x
theHull [nHull+3].v3y
theHull [nHull+3].v3z

OO0

of the triangle data */

*/

theHull[i]
theHull(i]
theHull([i]

*/

centerx - theHull[i].v3x;
centery - theHull([i].v3y;

be moved into its own function and called from main(). 1 . -
getData() is currently called twice during the main initialization.

o000

This is why

.v2x + theHull[i].v3x)*t;
.v2y + theHull[i] .v3y) *t;
.v2z + theHull[i].v3z)*t;

are lines */
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.

theHull{i] .normalz = centerz - theHull([i].v3z;
}/* end for */

}/* end function getData() */

/* COMPUTE THE CONVEX HULL */

void chull ()
{

int + i;

float t,u{4],v(4],w[4];

float centerx,centery,centerz;

nHull = hull3d(theData,theHull, intHull, nData);
/* ADD THREE MORE TRIANGLES: THE COORDINATE AXES */

/* the x-~-axis: */

theHull [nHull+l}]l.vlx = 0.5*theCoordParams.vcFront;

theHull [nHull+l) .vly = 0.0;

theHull [nHull+l].vlz = 0.0;

theHull [nBHull+l].v2x = 0.0; theHull[nHull+l].v3x = 0.0;

theHull [nHull+l).v2y = 0.0; theHull[nHull+l].v3y = 0.0;

theHull [nHull+l].v2z = 0.0; theHull[nHull+l].v3z = 0.0;

/* the y-axis: */

theHull[nHull+2).vix = 0.0;

theHull [nHull+2] .vly = 0.5*theCoordParams.vcRight;

theHull [nHull+2].vlz = 0.0;

theHull [nHull+2].v2x = 0.0; theHull[nHull+2].v3x = 0.0;
eHull [nHull+2] .v2y = 0.0; theHull[nHull+2].v3y = 0.0;
eHull [nHull+2].v2z = 0.0; theHull[nHull+2).v3z = 0.0;

/* the z-axis: */

theHull [nHuUll+3].vlix = 0.0;

theHull [nHull+3].vliy = 0.0;

theHull [nHull+3].vlz = 0.5*theCoordParams.vcTop; ‘

theHull [nHull+3].v2x = 0.0; theHull[nHull+3].v3x = 0.0;

theHull [nHull+3].v2y = 0.0; theHull[nHull+3].v3y = 0.0;

theHull [nHull+3] .v2z = 0.0; theHull[nHull+3].v3z = 0.0;

/* compute other aspects of the triangle data */

t = 0.333;

for (i = 1; i <= nHull+3; ++i) {

/* compute the

center of each triangle */

theHull[i] .centerx
theHull [i] .centery
theHull{i] .centerz

/* compute the normal

(theHull[i].vlx + theHull([i].v2x + theHull[i].v3x)*t;
(theHull(i].vly + theRull{i].v2y + theHull([i].v3y)*t;
(theHull{i].vlz + theHull[i].v2z + theHull[i].v3z)*t;

of each triangle */

u{l] = theHull{i].vlx
u{2] = theHull([i].vly
u[3] = theHull[i].vlz
v[l] = theRull([i].v2x
v(2] = theHull(i].v2y -
v(3] =

cross(u,v,w);

theHull(i] .v2z -

theHull[i] .v3x;

theHull[i]
theHull[i]
theHull (i)
theHull[i]
theHull[i]

normalize (w,u);

theHull[i].normalx = u[l];
theHull(i] .normaly = u{2];
theHull [i] .normalz = u[3];
}/* end for */

v3y;
.v3z;
v3x;
v3y;
.v3z;

/* the axes don’t really have a unique normal,

since they are lines */



for (i = nHull+l; i <= nHull+3; ++i) {
theHull[i] .normalx = centerx - theHull(i].v3x;
theHull[i] .normaly = centery - theHull[i].v3y;
theHull[i] .normalz = centerz - theHull{i].v3z;

* end for */
} nd chull =*/

/* set the eye/see/light points */
void setEye ()
{

float 1,r,T,b,F,B; /* left, right, Top, bottom, Front, Back */
float maxall;
int i;

/* compute maximum size needed for view cube */
-1.0e32; r =F; T = F;

1.0e32; 1 = B; b = B;

i =1; i <= nData; ++i) {

max2 (F,theData[i] .x);

min2 (B, theData(i] .x);

max2 (r,theData[i] .y);

min2 (1,theData(i].y):

max2 (T, theData[i].z);

= min2 (b, theData[i].z);

end for */

Hhw
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/* set the minimum/maximum initial values: */
maxall = max4 (fabs (F),fabs (B),fabs(r),fabs(1l));
maxall = max4 (maxall,maxall, fabs(T),fabs(b));

define the size of the view area, based on the size of the object
we just read in */

theCc:rdParams.vcRight = maxall;
theCoordParams.vcleft = -maxall;
theCoordParams.vcTop = maxall;
theCoordParams.vcBottom = -maxall;
theCoordParams.vcFront = maxall;
theCoordParams.vcBack = -maxall;

theCoordParams.vrRight
theCoordParams.vrleft
theCoordParams.vrTop
theCoordParams.vrBottom

0.4*maxall;
-0.4*maxall;
0.4*maxall;
-0.4*maxall;

theCoordParams.osRight
theCoordParams.oslLeft
theCoordParams.osTop
theCoordParams.osBottom
theCoordParams.osFront
theCoordParams.osBack

20.0*maxall;
-20.0*maxall;
20.0*maxall;
-20.0*maxall;
20.0*maxall;
-20.0*maxall;

theCoordParams.eye([1]
theCoordParams.eye[2]
theCoordParams.eye[3]

10.0*maxall;
5.0*maxall;
2.0*maxall;

theCoordParams.light[1]
theCoordParams.light [2]
‘eCoordParams .light [3]

10.0*maxall;
10.0*maxall;
10.0*maxall;

eCoordParams.see[l] = (F+B)*0.5;
theCoordParams.see[2] = (r+l)*0.5;
theCoordParams.see[3] = (T+b)*0.5;




}/* end function setEye() */

/ rite out the convex hull data to a file, at the user’s request */
v writeData ()

{

int i;

FILE *fl, *fopen();

if ((f1 = fopen("hull.data","w")) == NULL) {
printf ("Unable to open file %s for writing.\n","hull.data");
exit (1) ;

}/* end if */

fprintf (£1,"%d\n",nHull);
for (i=1; i <= nHull; ++i) {
fprint£(£fl, "%£f %f %£ $f %f %£ $f %£f %f\n",
theHull[i].vlx,theHull[i].vly,theRBull({i].vlz,
theHull{i].v2x,theHull[i].v2y,theHBull[i].v2z,
theHull[i]).v3x,theHull[i].v3y,theHull(i].v3z);
}/* end for */

fclose (£fl);

}/* end function write() */




/* FILE: intix.c
** Initialize the connection to the X-server. */

/* X-windows include files: */
#imclude <X1ll1l/Xlib.h>
lude <X11/Xutil.h>

/* Standard I/O include file: */
$include <stdio.h>

#include "global.h"
#include "prototypes.h"

)
/* Global variables: */
extern Display *theDisplay;
extern int theScreen;
extern int theDepth;
extern unsigned long theBlackPixel;
extern unsigned long theWhitePixel;
extern Colormap theColormap;

/* Function initX sets up the connection to the X-server and stores
** information about the environent. */
void initX()

/* Establish a connection to the X-gserver: */
theDisplay = XOpenDisplay (NULL);

/* Check to make sure the display opened okay: */
‘if (theDisplay == NULL) (
fprintf (stderr,
"ERROR: Cannot establish a connection to the X-Server %s\n",
XDisplayName (NULL) ) ;
exit (1);
}/* end if */

/* Find out what the default screen and it’s (color) depth is.
** If theDepth == 1 then we have a monochrome system. */
theScreen = DefaultScreen (theDisplay)

theDepth = DefaultDepth(theDisplay,theScreen);

theBlackPixel = BlackPixel (theDisplay,theScreen);
theWhitePixel = WhitePixel (theDisplay,theScreen);

theColormap = DefaultColormap (theDisplay, theScreen);

}/* end function initX () */

/* Function getXinfo prints out information about the current X-Window

** display and screen. Entirely optional to include this, of course. */
void getXInfo ()

{

printf ("%s version %d of the X Window System, X%d R%d\n",
ServerVendor (theDisplay),
VendorRelease (theDisplay),
ProtocolVersion (theDisplay),
ProtocolRevision (theDisplay));

if (theDepth == 1) {

printf ("Color plane depth..... $d (monochrome) \n",theDepth) ;
} else ({

printf ("Color plane depth..... $d\n", theDepth) ;




}/* end if */

printf ("Display width......... $d\n",DisplayWidth (theDisplay,theScreen));

printf ("Display height........ $d\n",DisplayHeight (theDisplay,theScreen));
* printf ("The display %s\n",XDisplayName (theDisplay)); */

}/* end function getXInfo() */
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/* FILE: hull.c

**x
x %

** from the 3d.c file is used. Accordingly, the

**Qake it a right-handed cross product.) */
#iMClude <X11/Xlib.h>

#include <X11/Xutil.h>
#include <stdio.h>
#include <math.h>
#include "global.h"
#include "prototypes.h"

/* Returns the number of points in the hull. */
int hull3d(osCoord theData[],triangle theHull[],intTriangle intHull({],int n)

{

int i, nHull;

Function to coﬁpute the convex hull of a set of 3D points.
(Programming note: in this file the left-handed cross product function

sign is changed here to

nHull = GiftWrapping(theData,theHull,intHull, n);

return (nHull);

}/* end function hull2d() */

/%
/* The giftwrapping
/* Note that I have

algorithm, taken from page 128 of Preparata and Shamos.
modified the algorithm somewhat. Their version had

/* some bugs.
/Ugedef struct { int vertex([4]; } Triangle; */
/ edef struct { int vertex{3]; } Edge; */

/* This function returns the (integer) number of triangles in the hull. =*/
int GiftWrapping(osCoord theData[],triangle theHull{],intTriangle intHull([],int

{

each point is used */

int i, numH, numQ, numT;

int freq[MAXDATA] ; /* counts how often

Triangle F,Fprime; /* F is a single facet */

Triangle Q[MAXTRIANGLES]; /* Q is a queue of facets */

Edge T [MAXEDGES] ; /* T is a file of edges */

Edge t(4]; /* £t is a list of the edges in F */
Edge e; /* e is a single edge */

/* set frequency count to zero; used for 2D degeneracies where the same

** point might get chosen over and over again,
** the least-frequently-used points */
for (i=1; i<=MAXDATA-1; ++i) { freq[i] = 0; }

/* Q := empty set */

numQ = 0;
/* T := empty set */
numT = 0;
* find an initial starting facet */
,:Hf:ngi"irsti'acet (theData, theHull, freq,n);

numH = sgstoreh(F,theHull, intHull, theData, numH);

/* T <== gubfacets of F */

if we didn’t try to choose




-

numT = addToFile (F,T,nunmT);

/* Q<’-F */
numQ = push (F, Q,numQ) ;

.ile (numQ > 0) { /* while Q != empty set */
F = pop (Q,numQ); numQ--
getEdges (F,t) ;
/* for each e in t intersect T */
for (i=1l; i<=3; ++i ) {
if (isCommon(t[i],T,numT)) {
e.vertex[l] = t[i].vertex[l];
e.vertex[2] = t([i].vertex(2];
Fprime = giftWrap(e,F,theData,freq,n);
numT = insertDelete (Fprime, T, numT);
if (numT > MAXEDGES-1) {
printf ("$c ERROR: Insufficient workspace for computing edges.\n",7);
return (numH) ;
}/* end if */
numQ = push (Fprime, Q, numQ) ;
if (numQ > MAXTRIANGLES-1) {
printf ("$c ERROR: Insufficient workspace for computing hull.\n",7);
return (numH) ;
}/* end if =*/
}/* end if */
}/* end for each */
numH = storeh(F,theHull,intHull,theData,numH);
if (numH > MAXTRIANGLES-4) {
printf ("%c ERROR: Hull consists of too many triangles for the storage allo
return (numH) ;
}/* end if */
}/* end while */

==
return (numi) ;
}/* end function GiftWrapping() */

/* Very loosely based on page 129 of Preparata and Shamos. */

Trlangle findFirstFacet (osCoord theData[],triangle theHull([],int freql],
int numD)

{

int i,pl,p2,p3;
float a[4] n[4] x[4],y(4]1,2[4],u(4]),v[4],w([4];
float minz, extRho rho;

Triangle theTriangle;

/* find the lowest point among all the data */
minz = theData({l].z; pl = 1;
for (i=2; i<=numD; ++i) {
if (theData[i].z < minz) { minz = theData(i].z; pl = i; }
}/* end for */

/; iteration #2:

*
/* x is in the direction of the x-axis */
x{1] = 1.0; x{2] = 0.0; x[3] = 0.0;

/* y is in the direction of the y-axis */
vi1] =2050; y(2] = 1.0; y[3] = 0.0;

/* z is in the direction of the z-axis */
z2[{1] = 0.0; z[2] = 0.0; =2[3] = 1.0;




}

/*

*/

extRho = 1.0e32; p2 = 0;
for (i=1; i<=numD; ++i) {
if (i == pl) { continue; }

/* v is the direction of the proposed first edge */
w[l] = theData[i].x - theData[pl].x;

w(2] = theData[i].y - theData[pl].y:

w([3] = theData[i].z - theData([pl].z;
normalize(w,v);

/* we want the edge which is ’‘most obtuse’ to the x-axis */
rho = dotprd(v,x);
*if (rho < extRho) {
extRho = rho;
P2 = i;
}/* end if */

}/* end for */

if (p2 == 0)
printf ("$c ERROR: Unable to find second starting point.\n",7);
exit (1);
}/* end if */

iteration #3:

/* u is the direction of the edge we found above */
w[l] = theData([p2].x - theData[pl].x;

w(2] = theData[p2].y - theData(pl].y;

w({3] = theData[p2].z - theData{pl].z;

normalize (w,u);

extRho = 1.0e32; p3 = 0;
for (i=1; i<=numD; ++i) {
if ((L == pl) || (i == p2)) { continue; }

/* v is the direction of the proposed second edge */

w[l] = theData[i].x - theData[pl].x;
w(2] = theData[i].y - theData[pl].y;
w[3] = theData[i].z - theData(pl].z;

normalize (w,v);

/* n is the normal of the proposed first face */
cross(u,v,a); normalize(a,n);

/* we want the normal to be ’‘most obtuse’ to the x-axis */
rho = dotprd(n,x);
if (rho < extRho) {
extRho = rho;
p3 = i;
}/* end if */

}/* end for */

if (p3 == 0) ({
printf ("%c ERROR: Unable to find third starting point.\n",7);
exit (1) ;
}/* end if */

theTriangle.vertex[l] = p1l;
theTriangle.vertex[2] = p2;
theTriangle.vertex[3] = p3;

¢

eqlpll++; freq(p2]++; freq[p3]++;
turn (theTriangle);




/* only add F to the T file if it’s not already there */
int addToFile (Triangle F,Edge T[], int numT)

{
int numVl, numV2, a;

Aot irji
‘r (i=1; i<=3; ++i) {
if (i==1) { numvl
if (i==2) { numvl
if (i==3) { numvl
a = False;
for (j=1; j<=numT; ++3) {
if (((numVl == T{j].vertex[l]) && (numv2 =
vl ((numVl == T[j].vertex[2]) && (numvV2 =
{ a=True; }
}/* end for j */
if (a == False) {
numT++;
T [numT] .vertex[1]
T [numT] .vertex([2]
}/* end if */
}/* end for i */
return (numT) ;
}

F.vertex[1l]; numv2
F.vertex[2]; numV2
F.vertex[3]; numV2

F.vertex([2]; }
F.vertex[3]; }
F.vertex[l]; }

= T[j].vertex[2]))
= T[j].vertex[1l])))

numVl;
numvz;

/* push a face onto the stack ONLY if it’s not already there */
int push(Triangle F,Triangle Q[],int numQ)
{

int i,facelIsNew;
int s[4],t[4]);

facelsNew = True;
l] = F.vertex[l]; s[2] = F.vertex[2]; s[3] = F.vertex[3];
r (i=1; i<= numQ; ++i) {

;él] = Q[i].vertex([1l]; t[2] = Q[i].vertex[2]; t[3] = Q[i].vertex[3];
i

( ((s[l]==t[1l]) && (s[2]==t[2]) && (s[3]==t[3]))
Il ((s{1l]l==t[1l]) && (s[3]==t[2]) && (s[2]==t[3]))
I ((s[2]==t[1l]) && (s[l]==t([2]) && (s[3]==t[3]))
i1 ((s[2]==t[1l]) && (s[3]==t[2]) && (s[l]==t[3]))
Il ((s{3]==t[1]) && (s[l]l==t[2]) && (s[2]==t[3]))
Il ((s[3])==t[1l]) && (s[2]==t[2]) && (s[l]==t[3]))
} { facelsNew = Faise; }
}/* end for */
if (facelsNew) ({
numQ++;
Q[numQ] .vertex[1] F.vertex|

Q[numQ] .vertex[2]

Q[numQ] .vertex [3]
}/* end if */
return (numQ) ;

W Hu

1};
F.vertex[2];
F.vertex[3];

/* pop a face off the stack */
Triangle pop(Triangle Q[],int numQ)

Triangle F;
vertex(l] = Q[numQ].vertex(1l];
,vertex[Z] = Q[numQ] .vertex[2];
.vertex{3] = Q[numQ].vertex[3];
return (F) ;

}




/* find out which edges belong to face F */
void getEdges (Triangle F,Edge t([])
{

/

l]} .vertex[l] = F.vertex[l];
t[l]).vertex[2] = F.vertex[2];
t{2].vertex[1l] = F.vertex(2];
t[2] .vertex[2] = F.vertex[3];
t[3].vertex(l] = F.vertex[l]:;
t[3]'.vertex[2] = F.vertex[3];
* gsee if edge at is in the list of edges T */

int isCommon (Edge at,Edge T{[],int numT)

{

/

int j,a;
a = False;
for (3=1; 3 <= numT; ++3j) {
if (((at.vertex{l] == T[j].vertex([l]) && (at.vertex[2]) == T[j].vertex[2
Il ((at.vertex([l] == T[j].vertex[2]) && (at.vertex[2] == T{j].vertex[l

{ a=True; }
}/* end for j */
return(a);

ery loosely based on page 127 of Preparata and Shamos. */
ngle giftWrap(Edge e,Triangle F,osCoord theData[],int freq[],int numD)
int i k;

osCoord pl,p2,p3;
float ul4],v[4],w{4],n[4],E[{4],a[4],rho,extRho;
Triangle newF;

/* f£find out which point of face F is not in edge e */

for (i=1l; i <=3 ; ++i) {
if ((F.vertex[i] != e.vertex([l]) && (F.vertex[i] != e.vertex[2]))
{ k =1i; )

}/* end for */

Pl.x = theData[e.vertex[1l]].x;

Pl.y = theData[e.vertex[1l]] .y’

pl.z = theData(e.vertex[1l]].z;

P2.x = theData[e.vertex{[2]].x;

pP2.y = theData{e.vertex[2]].y;

P2.z2 = theData[e.vertex[2]].z;

p3.x = theData[F.vertex(k]].x;

p3.y = theData([F.vertex[k]].y;

p3.z = theData F.vertex([k]]).z;

/* E is one edge of the face we are wrapping around */

E{l] = p2.x-pl.x; E[2] = p2.y-pl.y; E[3] = p2.2-pl.z;

v(l] = p3.x-pl.x; v[2]
cross(E,v,w);
n[1]*=(-1-0);

n

is normal to the face we are wraprning around */

= p3.y-pl.y;
normalize(w,n);
n{2]*=(-1.0);

vis] = p3.2z-pl.z;
n[3]*=(-1.0);

1)
1

)




extRho = 1.0e32; i=0;
for (k=1; k<=numbD; ++k)
if ((k==F.vertex[l]) || (k==F.vertex([2]) || (k==F.vertex[3])) { continue; }
w[l] = theDatal[k].x-pl.x;
‘w[Z] = theData([k].y-pl.y;
w[3] = theData(k].z-pl.z;
normalize (w,v);

/* a is normal to both E and v, which are on the proposed new face */
cross(E,v,w); normalize(w,a);
afll*=(-1.0); a[2]*=(-1.0); a[3]*=(~-1.0);

/* we want the proposed new face to be 'most obtuse’ with the old face */
rho = dotprd(n,a);
if (rho < exctRho) {
extRho = rho;
i=k;
} else {
/* in case of a tie, choose the point least frequently used; this
** ensures that as many points ‘on the curve’ as possible will be
** used in the convex hull --- this is important for 2D degeneracies */
if (rho == extRho) {
if (freqlk] < freg[i]) {
i=xk;
}/* end if */
}/* end if */
}/* end if-else */

}/* end for */

if (i == 0)
printf ("%$c ERROR: Unable to giftwrap. Degenerate problem?\n",7);
exit (1);
/* end if */

newF .vertex|[1l]
newF.vertex[2]
newF .vertex[3]
freq{i]++;

return (newF) ;

e.vertex[1l];
g.vertex[Z];
17

'* if an edge of face F is in the list T, then delete it; else add it */
.nt insertDelete (Triangle F,Edge T[],int rumT)

int numVl,numv2,a;

int counter,filled[MAXEDGES];
Edge tempT[MAXEDGES];

int i, 3;

for (i=1; i<=numT; ++i) { filled[i] = True; }
for (i=1l; i<=3; ++i) {
if (i==1l) { numvl
if (i==2) { numvl
if (i==3) { numvl
a = False;
for (j=1; j<=numT; ++3j) {

F.vertex([l]; numV2
F.vertex[2]; numV2
F.vertex[3]; numVv2

F.vertex[2]; }
F.vertex([3]; )}
F.vertex[1]; }

if (filled[j] == False) { continue; }
if (((numVl == T[j].vertex[l]) && (numV2 == T[j].vertex[2]))
‘ Il ((numVl == T[j].vertex[2]) && (numv2 == T[j].vertex[1l])))
{ a=True; filled[3j] = False; /* delete this element from the list */}

}/* end for § */

if (a == False) { /* add this element to the list */
numT++;
filled[numT] = True;




/* store the triangle F as a set of 9 floating points numbers

»

T[numT] .vertex([1l] = numVl;
T[numT] .vertex[2] = numV2;

}/* end if */
}/* end for i */

. re-compress the list */
counter = 0;

for (i=l;

i<=numT;

if (filled[i})
}/* end for */

for (i=1;

i<=counter;

++1i)

{ counter++;

++1)

T[i] = tempT([i];
}/* -end for */

return (counter) ;

{

tempT [counter]

(three

** vertices) as well as 3 integers (the points on the curve) */
int storeh(Triangle F,triangle theHull[],intTriangle intHull[],osCoord theData(]

{

theHull [n]
theHull [n]
theHull [n]

theHull [n]

Hull([n].
eHull [n].
theHull [n].

intHull[n].
intHull[n].
intHull[n].

n++;
return(n);

.vix
.vly
.vlz

V2%
theHull[n].
theHull[n].

theDatalF.
theDatalF.
theData [F.

theData|F.
theDatalF.
theData([F.

theDatalF.
theDatalF.
theData[F.

vertex[1l]].
vertex[1l]].
vertex[l]].

vertex (2
vertex|
vertex|

vertex|

2
2
vertex[3
3
vertex[3

[y W Y VY

F.vertex[l];
F.vertex[2];
F.vertex[3];
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Points eye and see ar2 given as input.

Tne view plane is defined Lo tbe orthogonal To eye,5ee.

Tne point ¢ is defined 10 de the center of the view plane.

Tne view plane’s y-axis is found Dy projecting the object space Z axis Dack Lowards tne eye point.

e ————

The view plane’s x-2ax1s 1S then perpendicular Lo bGUh eye,see and its y-axis.

eye

DVI: (0,0)

The point v can be represented in four different coordinate systems:

1) The three dimensional object space coordinates.

2) The two dimensional view plane coordinates.

3) The two dimensional device independent coordinates, with (0,0) at the lower left corner of the view
rectangle and (1,1) at the upper rignt corner of the view rectangte.

4) The two dimensiona! device dependent coordinates, representing locations of pixels on the computer
screen.

Figure 21. 3D to 2D Transformation




3 Some General Results Related to Equivalence Classes of Composites in 2D—elasticity
and in the Theory of Plates

In the context of the reported effort, a further development was made of an observation
[7] dated back to 1984 regarding the equivalence between strains arising in plates with tensors
D+ dT, d = const (see (36)) of stiffness.

A similar equivalence also holds for composite plates. Assume, for instance, that
isotropic composite with moduli k,u is generated by isotropic constituents with moduli kl’“l
and kz"‘z' respectively. If we now apply the constituents with moduli k1 —d, # + d and
k,—d, 4 + d, d = const, then the same composite (i.e. composite of the same microgeometry)

will possess moduli k’ =k —d, u* = g + d. In other words, the Young’s modulus k’ + u’ of

such composite will remain the same as before whereas the Poisson’s ratio '—t' =

#l + ’
prd—k—d) _p—k , 2d _ . . . —k . :
it (k) =k T itk will differ from the original value LE;; —x Particularly, this means

that the effective Young’s modulus for an isotropic elastic material containing voids is
independent of the Poisson’s ration of the matrix material [8]. This effect have been recently
observed by Day, Snyder, Garboczi and Thorpe [9] as well as by Thorpe and Jasiuk [10],
through numerical simulation. Various extensions of this result are about to come, specifically

in the context of a shape optimization.
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4 Status of the Research Effort

At this point the mathematical technique has been developed making it possible to
analytically specify microstructures appearing in the optimal layout of materials for systems
described by elliptic equations of the 2nd and 4th order with material constants treated as
controls. The results obtained provide a theoretical basis for a subsequent implementation of a
direct approach which promises drastic simplification in the numerical computation of optimal
layouts. This computation will then be direct, i.e. based on the list of special laminar
microstructures from which the global layout will be assembled with the aid of standard
numerical procedures.

The effort in its present state has been shown to provide bounds and microstructures for
several new situations never treated before. At the same time, the concept introduced here is
expected to apply to a wide range of physical problems, including problems of optimal design.
For this reason, a major theoretical development of this approach is anticipated. Specifically,
stemming from the prior work, we expect to develop a general theory of quasisaddlification for
integrands depending on two gradients. More precisely, the necessary and sufficient conditions
for the integrand guaranteeing attainability of sup inf for functionals of the type (11) should
be found. Secondly, the extension of the method to more than one physical field, i.e. fields of
temperature and stress, etc., should be pursued. Also, the linkage between quasisaddlification
and quasiconvexification should be investigated. All these issues will be treated in the sequel

and will form the content of the renewal of this grant.
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On a General Concept in Optimal Material Layout

K. A. LURIE

Abstract. The proposed paper is intended to develop a methodology
for the determination of optimal structural characteristics of elastic
bodies designed for work in a variety of external conditions (load,
static and dynamic regimes, loss of stability), or under the action of
c~mbined physical fields (stresses and temperature, electric and mag-
..ctic fields, etc.). By the term structural characteristics we mean the
clastic constants, heat and electrical conductances and other similar
parameters varying with position; also, the problems of optimal dis-
tnibution of thickness of elastic constructions, i.e., plates and shells,
and of holes and cavities in elastic bodies could as well be formulated
along similar lines. The structural characteristics (controls) are in all
cases assumed to admit values belonging to some admissible set U .

The cost (objective) functional is assumed to be any weakly semi-
continuous functional of the solutions to the corresponding boundary
value problem; also, it may depend explicitly on the design parame-
ters. (The assumption of weak semicontinuity is rather nonrestrictive:
it is satisfied for many typical cost functionals used in practice.) The
constraints are imposed on the design parameters as well as on the
variables characterizing the system’s behavior relative to each physi-
cal field considered.

The method of solution is construciive; it provides an effective
procedure of immediate transformation of optimization problems to
their relaxed form, which ensures that they are well-posed, e.g., the
existence of the optimal structural characteristics (controls). This
fundamental step has hitherto been committed with the aid of the
so-called G-closures of the original sets U of admissible controts.
Since the G-closures are known for a very restricted set of examples
and the construction of the new ones provides substantial difficulties,
it is impractical to rely on them for problem relaxation. The tech-
nique developed in this study is intended 10 avoid any reference to
G-closures at all.
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In essence, what is really needed is the specific relaxation adapted
for the particular optimization problem considered. We propose be-
low a constructive method of such a relaxation; based on that we aiso
propose a numerical procedure, along with a computer implementa-
tion of the procedure, which will permit a designer to find the optimal
matenals layout and to present a required design in a form convenient
for practical use. This new approach is more feasible because it re-
quires significantly less information than the G-closure approach.

Introduction. The development of the general theory of structural op-
timization has by now passed through two stages. The first period may
be called naive: it has been characterized by a firm belief in the power
of the necessary conditions of optimality per se with almost no regard to
the existence considerations. The necessary conditions were intended
to describe potentially optimal regimes, and it only remained to as-
semble them to form an optimal pattern of materials. This reasoning
has also motivated the wide-spread conviction that the preliminary dis-
cretization of the problem combined with subsequent use of nonlinear
programming would generally make it possible to determine the optimal
control.

This entire concept has turned out to be unjustifiable: first, it has been
disproved by a thorough analysis of the necessary conditions (1] and
later by a careful inspection of numerical procedures associated with
the initial discretization (2], [3].

Physically speaking, failure of a naive approach is closely connected
with the remarkable phenomenon of the appearance of microstructures
in the process of formation of the optimal materials layout. This phe-
nomenon may be illustrated by the following example related to the
distribution of temperature in a heat-conducting medium,

Assume that we are given two isotropic materials with differing heat
conductances; the materials should be placed in a given domain O so
as to maximize a certain functional associated with the distribution
of temperature caused by some fixed system of sources under some
set of boundary conditions. For such a functional, one may choose
the mean square difference between the actual and desired temperature
distributions, or the heat flux across some particular part of the domain’s
boundary.

To obtain the required temperature distribution, it is necessary to
facilitate the conditions for the heat to flow in some selected favorable
direction, and to inhibit this flow along the perpendicular direction; all
this must be done at every point in the region. This implies that the
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heat conductance of the required medium must at every point be depen-
dent on direction; i.e., it must be a tensor function of the coordinates,
and the material itself must be anisotropic. The difficulty which now
arises is that we have no appropriate anisotropic materials among the
originally given compounds, which are themselves isotropic. The only
alternative is to build the required medium artificially by assembling
some microstructure from the given compounds. The simplest example
is provided by a laminate composite; its effective conductances along
and across the layers differ from one another. It must be added that
the problem in question does not contain any parameter which might
restrict thickness of initial materials from below, e.g., the width of lay-
ers in a laminate. We must therefore expect that the optimal value of
a functional will be attained for an infinite partitioning of the domain
(or some part of it) into parts occupied by various original compounds.
(See Figure 1.)

!
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FiGURE 1. Optimal materials layout for torsion problem

Mathematically, the inconsistency of a naive statement could be made
evident by a careful inspection of the set of necessary conditions of op-
timality. Consider for example the problem of torsional rigidity of an
elastic prismatic rod of cross-section .5 ; its torsion rigidity I is equal
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to
(1 I=2/wdx, x=(xl,x2),
5

where w denotes Prandil’s function, i.e., the solution of the boundary
value problem

(2) V-D(x)Vw =-2, wl, =0,
(3) D(x) = u(x)E.
Here, u(x) denotes the elastic compliance of the rod’s material at the
point x € S, and E denotes a unit tensor.
It is necessary to choose the function u(x) so as to maximize the

rigidity I of a rod if the mean value u, of its elastic compliance and
the interval [u,, u,] of the admissible values of u(x) are fixed:

(4) u, Su(x) <uy,
(5) /u(x) dx = u,meas(S),
(6) 0<u <uy<u,<oo.

This problem has been examined in [4] where it has been shown
that the necessary condition of Weierstrass requires that the optimal
layout can only include the limiting values u, and u, of compliance
in accordance with the rule

(7 u=u,, if (Vw)®>xu,/u,,

(8) u=u,, Iif (Vw)2 <xu/u,.

Here, the constant k¥ > 0 denotes the Lagrange multiplier associated
with the integral constraint (5).

Because u,/u, < I, from (7), (8) we deduce that none of the sta-
tionary regimes can be optimal provided that the values (Vw)2 belong
to the banned interval (xu,/u,, ku,/u;). On the other hand, those
parts of § which are occupied by u, and u, materials are separated
by some line ' with normal n and tangent t; across this line, the

value of (Vw)2 suffers a jump. The latter can be determined from the
continuity conditions

(9) [Vw -]} =0,
(10) [uVw -n]} =0,

where [-]f =[]}, -], denotes the jump of a quantity within the square
brackets.
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From inequality (7) taken at some point close to I' on that side of
I" where u = u, we deduce (bearing (9), (10) in mind) that
u 2 u 3 s fu, u
< 21 1 =22 - g =L - 22
(1) k< ) = 2w+ (Fu-y (u2 ul) .

The latter condition can be made compatible with inequality (8) only
provided that

(12) Vw-t=0.

Both inequalities (7), (8) are then fulfilled as strict equalities on each
sideof T,

The latter curve should thus satisfy both conditions (7) and (8) si-
muitaneously; this makes the problem of finding it overdetermined and
therefore contradictory. Formally, the situation is as if the position of
this curve and its slope were to be determined each from a separate in-
dependent equality. Such a problem is known to be unsolvable in a class
of smooth curves. One may expect that the solution might exist among
the generalized curves whose windings would be dense within a set of
nonzero measure. The correct layout is in fact illustrated in Figure 1.

The latter observation has found support in the analysis of numerical
data associated with the attempts to apply nonlinear programming to the
originally discretized version of the optimization problem. The numer-
ical procedure has failed to display any evidence of convergence; rather,
it has demonstrated fast oscillating behavior of the materials’ layout. In-
creasing the accuracy of the calculations and refining the discretization
may lead to a substantial instability resulting in a completely different
pattern. These observations, {2], [3], have shown that the computational
procedure should be chosen in accordance with existence considerations
which could be the only ones to guarantee necessary convergence of a
numerical scheme.

In the course of successive approximations to the optimal pattern, the
so-called chattering regimes of control have been discovered to appear.
Applied to problems like those described above (and many related ones
containing controls in coefficients, see equation (2)) this implies the ap-
pearance of infinitely many small zones occupied by different regimes of
control (i.e., by different materials). The interfaces of such subregions
form a set which is dense within some well-expanded part of the orig-
inal domain. In this specific sense, we could speak about generalized
curves separating the two types of material. This is nothing but a real-
ization of an old idea by L. C. Young, [5], applied to the specific type of
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problems considered here. Such a layout is nothing but what has been
identified above as a microstructure; we have thus justified numerically
the physically expected distribution of controls.

The chattering regimes appear almost inevitably whenever we attempt
to build up the optimal layout of two or more materials. This is be-
cause the multidimensional problems, e.g., problems related to rods,
plates, shells, and three-dimensional bodies, are associated with vector
and tensor fields (currents, strain, stress, etc.), and the corresponding
optimization problems are concerned with the optimal formation of
such fields. The latter are associated with one or more advantageous
directions at each point; for this reason, to provide an effective control,
we need a certain type of anisotropic medium, and this is generally not
at the designer’s disposal. To form it up, one has to introduce chat-
tering regimes, and this is what really happens when we construct a
minimizing sequence of controls.

In other words, the chattering regimes appear whenever the origi-
nal set of admissible controls does not contain the required anisotropic
medium; mathematically, we say that this set does not possess some
specific type of closure property. Applied to the optimization problems
considered here, it means that the set of admissible controls should in-
clude, along with the original constituents, all the composites assembled
from them. This new set of controls, emerging from the original set U,
is called the G-closure of U and designated GU (see [7] where this
notion was first introduced). The set U is called G-closed if U = GU;
generally, U is contained in GU. In many applications, the origi-
nal sets U of controls are not G-closed, and the problem arises of
constructing their G-closures. For a number of important examples,
mostly associated with the second-order operator V - uV, G-closures
have been built explicitly, [8]-[19]). Associated with this problem is the
second stage of the theory’s development. The reason is that the optimal
control generally belongs to GU rather than to U . In other words, the
necessary conditions of optimality, among them the Weierstrass condi-
tion, would now be noncontradictory provided that the admissible set
U of controls coincides with its G-closure.

This approach will be illustrated by an example from the theory of
heat. Consider the following problem of optimal control [6).

We consider a plane rectangular domain (-a < x<a,0<y <)
(see Figure 2; note that line segments dividing the regions in this figure
might in fact be curved arcs). Across its upper boundary I', (y = 1)
there flows a uniform flux of unit intensity, and other parts of the bound-
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ary are either thermoisolated, i.e., free of heat flux (these parts will be
designated by TI',), or the temperature along them will be kept equal to
zero (such parts will be denoted by I';). The temperature distribution
is assumed to depend only on the coordinates x, y. The domain is
occupied by two isotropic materials whose specific thermal conductiv-
ities are given by u_ and u_ respectively, with 0 < u_ < u_ < .
The temperature distribution can be found from the boundary value
problem

(13) q=-D(x,y)-VT,

(14) V.q=0,

(15) D(x,y)=[u_x_(x,y)+u,x.(x,y)]E,
(16) q-n=-1 onl,

(17) qg-n=0 onl,,

(18) T=0 onIj,

where n denotes a unit vector along the outer normal to the boundary,
E aunit tensorand y_, x, characteristic functions of the subdomains
S_ and §_ of § occupied by the u_ and u_ materials, respectively,

L if(x,y)eS],
0 if (x,y) ¢S]

We desire to distribute the materials in such a way that the functional

(20) I= /r p(T)q-n(l)dT

(19) x:(x,y)={

attains its maximum value. Here, p(I') denotes a weight function, and
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might be chosen, for instance, so as to “focus” the heat flux onto some
portion of T';.
Particularly, if this function is given by

1) p(r)={é i) elycly
if (x, ) ¢T,
then the problem reduces to that of maximization of a heat flux through
the “window” I'; on the boundary of a plane domain. (See Figure 2.)
To determine the optimal distribution of materials, we will introduce
the G-closure of a set U of controls; the latter is defined here as

(22) U={u_,u.}.

The GU-set is the set of tensors D, = d, e e, +d,e,e, of effective heat
conductances of all composites assembled from the elements of U. The
invariant description of GU is given below by the following inequalities
[12], [14] (see hatched region in Figure 3):

(23) u <d < —2=tr

—_— - <d,<u
'“u_+u, -d, =27

+*

Particularly, for d, = u_u_/(u_ + u,_—d,) we have laminates as ele-
ments of GU .

- _ U_ U,

u_+u,—ds
[ P

GU

dy

FiGURE 3. Invariant description of GU

In order to maximize the value of / we should choose among the el-
ements of GU the corresponding composites to be placed at each point
of the domain. In other words, we have to find the proper point (A4y+ 4y)
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within the figure in the (d,, d,)-plane restricted by a set of inequalities
(23), as well as the angle ¢ which characterizes the orientation of the
unit vectors e, and e,:

(24) e, =icosp +jsing,
(23) e, = —ising + jcos p.
The original problem (13)-(21) should now be reformulated; instead
of equations (13), (14) we must use the relationships
(26) q=-Dy(x,y) VI, V-q=0,
with Dy(x, y) subject to the inequalities (23).

Making use of the conventional procedure of the calculus of varia-
tions we now introduce the augmented functional

(27) J=/r p(r)q-n(r)dr+//s1v-uo.vmxdy

where A = A(x, y) is the Lagrange multiplier, taking into account the
heat equation

(28) V.D,-VT =0.

The conjugate system for A is written down in the form
(29) V.Dy-Vi=0,

(30) n-D,-Vi=0 alongl, andT,,
(31 A=p(I") alongT,.

The necessary conditions show that the second inequality (23) must
in fact be an equality; in other words, stationary composites may only be
laminates. If we denote by 2y the angle between the vectors VT and
V4 then the necessary conditions dictate the following classification of

regimes:
(32) Ay=dy=u_ if tanx_<_,/u_/u+,
(33) Ay=hy=u_ iftany > ju fu_,

(34) u+u_/d,2=tanzx if‘/u_/u*<tanx<‘/u+/u_.

The optimal distribution of materials is thus characterized by a zone
of highly conducting #, material provided that the directions of the
gradients VA and VT are close to each other, by a zone of low con-
ducting u_ material if these directions are almost antiparallel, and by
a zone of anisotropic laminate if the vectors are almost perpendicular
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to each other (see Figure 2). Within this latter zone, the layers bisect
the angle between the two gradient vectors; the optimal laminate tends
to rotate the vector of heat flux to maximum possible extent.

One can observe that for a relaxed statement we obtain three regimes
of control instead of two, as in a naive formulation of the problem. The
new regime (34) is associated with a composite buili from the original
components. The domain filled in by a composite corresponds to the
interval (\ﬁg Ju,, \/ u fu_) of tany which was prohibited in the
nonrelaxed formulation.

This example illustrates how the optimal control could be evaluated
provided that the GU-set has already been constructed starting from a
given U-set.

Such a construction of GU is itself a difficult problem: it has been
solved only for a few examples (aimost all of which are listed in {6]).
Describing G-closure is the same as describing a body in the space of
invariants of the tensor of effective constants characterizing all possi-
ble composites assembied from the original elements in the U-set. The
space of invariants can itself be high-dimensional; its dimensionality
equals 18 for a general tensor of elastic constraints in three-dimensional
problems. The body in question should have as its boundary a manifold
in 17 dimensions. Above that, this manifold will be piecewise continu-
ous, since various parts of it are described in different analytical terms. .
In summary, one will arrive at the conclusion that the use of G-closures
for obtaining analytical information about optimal regimes is far from
being practical.

At the same time, for many applications there is no need to know the
G-closure in full. If an elastic body is subjected to some fixed system
of loads, then with a corresponding optimal design we shall associate
some well-defined field e of strain. The tensor D of elastic constants
enters the problem only through Hooke’s law ¢ = D-e¢, e.g., through its
projection along the strain e. We therefore need not know the entire
tensor D ; rather we require some linear combination of its components.

For this reason one could look for a method of relaxation which would
provide us with exactly the required combination, without any reference
to G-closure since this set is not necessary for our specific purposes. We
will see that this will be associated with a substantial reduction in di-
mensionality and therefore will leave more computational resources for |
considering more sophisticated problems, ¢.g., those involving a variety |
of external conditions. |
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New approach [20]. This approach will be illustrated by the same ex-
ample as used to explain the G-closure approach. This time, however,
we will not refer to the G-closure given in this specific case by inequal-
ities (23).

We start with a reformulation of the constrained optimization prob-
lem (13)-(21} in terms of a max-min control problem. Introducing the
Lagrange multiplier A(x, y) corresponding to the equation V-D.VT =
0 it is easy to show that the problem

(35) sup/
u
under the additional constraints (13)-(18) is equivalent to
(36) sup inf J
u, T 4

under the side conditions (18) and
(37) M, = p(x).
Here, the functional J is defined as

(38) ==—/:l(x, 1)¢x+/uw.vrdxdy.

For the functional (38) we will construct two types of estimates.
The upper estimate will be built with the aid of a special mathemat-
ical technique, i.e., the combination of a preliminary estimate of the
type supinfJ < infsupJ, followed by an additional estimate based
on a new transform of the integrand. This transform provides a new
function which is pointwise greater than or equal to the onginal. We
have specifically

supinfJ = supsupinfJ < supinfsup J
u.T A T u & T A u

{
(39) =51;p1r}f[—/_!).(x, 1)dx+/sG(VT,VA)dxdyl,
4 A ug-n if§-n20
“o Gem2 L e <o

here we introduced the notation
(41) E=VT, n=Va

PR
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Inequality (39) will be strengthened if we apply the transform
G (&, me sgpsgpigf{a §+b-n+ A n,-Sn)

(42) .
~ u{xfst’x’p[a §+bon+ A& -&n) - GE. n}

and use the property

(43) G, n>GE,n

which is valid provided that G(&, ) is convex in the n-vanable (which
is the case for the specific function (40)).
The calculation shows that

(u, cos2y, O<tany< . u_fu,,

" (u, +u_)coszx- Ju u_sin2y,
(44) G(&, m) = &4

Vu-fu, Stany <\ Ju fu_,
| #_cos2y, ‘/u+/u_ <tany < oc.

Here, 2x denotes the angle formed by the vectors ¢ = VT and n=V4i
at the corresponding point (x, y).

It can be checked directly that the inequality (43) holds. We arrive
at the inequality

1
(45) supix}fjgsupix}f[-/ ix, l)dx+/G"(VT,V).)dxdy]
u, T T -1 s

which is the required upper bound.

On the other hand, the functional supu',.inf ,J may be estimated
from below if we evaluate it for some specific microstructure; let D, =
d,e e, +d,e,e, be the tensor of its effective heat conductances. Assume
that D, is chosen according to the following rule: (a) for 0 < tanx <

m we set Dy = u _E (pure u_ material), (b) for \/m <
tany < oc weset Dy = u_E (pure u_ material), and (c) for \/;4__/;:
<tany < m we apply a layered composite whose tensor D, has
eigenvalues

(46) d =[mu' +(1-mu_'1",

(47) dy=mu_+(1l-mu_,

and where the eigenvector e, bisects the angle 2y between VT and
V4. The concentration m in the latter case will be chosen in accordance
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with the rule
(48) uy_/dl2 = tan’ X

Now we have to use the integrand VT -D,- V4 instead of uVT Vi
in the original setting; we have finally

) [ u,_cos2y, OStanzs\/m,

(u++u_)coszx—\/ﬁIsin21,
Vu_fu, <tanyg <\ Ju_ju_,

Lu_cosZJ(, \/mstanxs:x:.

Comparing this with (44) we see that the two bounds, upper and lower,
of the functional sup, ,inf; J are coincident, which means that the
desired supremum is attained and is equal to

VT.-D,-Vi=|VT| V)

(50)  maxmin [- /_ll Alx, 1) dx + /SG“(VT, Vl)dxdy] .

One can see that the variety of optimal regimes offered by (44) does
not differ from that provided by (32)-(34), the latter deduced from the
explicit formulas (23) for a G-closure. In other words, both procedures
lead to the same results when applied to a specific problem of optimiza-
tion.

Other applications. The direct approach developed here can be ap-
plied to a wide class of optimal design problems. In this respect, special
mention should be made of elastic rods, plates, and shells as the most
widely used constructive elements. For all these, the spatial distribution
of materials possessing different values of elastic moduli presents a very
effective controller. For plates and shells, a similar role is played by the
distribution of thickness along their midsurfaces. The latter problems
could equally well be associated with the desire to save as much material
as possible. The total cost of material used is also of great importance;
a strong material is often more expensive than a weak one, and one
may wish to make the combined construction be the strongest of all
affordable. There is little physical intuition concerning optimal distri-
butions of materials or thickness along the midsurfaces of plates and
shells. The experience already gained (much of it having come directly
from engineering practice) shows that such designs are characterized by
the formation of microstructures, e.g., grillage—like systems of ribs for
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a plate of varniable thickness. Structural parameters of these systems,
their topology and orientation, should be determined in the course of
optimization.

The new approach described above can specificaily be applied to these
types of problems, and essentially speaking, this is the only approach
which may then be suggested, because for most of these problems, G-
closures of the typical U-sets are unknown. We could also work with
a fairly broad range of cost functionals, among them all functionals
which are weakly continuous in the corresponding Sobolev spaces. It
is also very important that the dimensionality of spaces to be used in
the process of obtaining a solution (be it analytical or numerical) be
the same as the dimensionality of the space of dependent variables,
not of the invariant space of the elements of G-closures. In the heat
problem described above, this distinction was unimportant (we had the
two-dimensional space of invariants of a planar D-tensor and the two-
dimensional space of V7T -vectors). For the plate problem, however, the
difference will be great: the invariant space of D,-tensors will be five-
dimensional, and the space of strain terms ¢ only three-dimensional;
for general elasticity the difference will already be striking: eighteen for

the D,-tensor and six for strain. '

This reduction in dimensionality makes it possible to take into ac-
count a variety of external conditions under which the same construc-
tive elements may be designed to work. Applied to aircraft elements,
for example, this idea may permit us to handle, along with the regime
of static equilibrium, also the failure of stability (static and dynamic),
additional restrictions upon the spectrum of eigenfrequencies, etc. Also,
one could allow for the analysis of optimal design of constructive ele-
ments with regard to a combination of physical fields, e.g., the fields
of stress and temperature, which is particularly important for work in
extremal conditions.

Extensions of the theory. There are fundamental mathematical is-
sues which are still unsolved and which are closely related to the new
approach. The fact of coincidence of two types of estimates reflects the
property of the transformed integrand to be attained with the aid of
some specific material microstructure. Mathematically speaking, this is
the case when the solution of the sup-inf form exists and coincides with
the value of the max-min form. The fundamental problem of general
kind which arises is that of necessary and sufficient conditions of exis-
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tence of solution to the sup-inf type of variational probiem in the case
of many independent variables. It is well known that the saddle point
type of behavior of the integrand is sufficient for existence [21]. At the
same time, the above-mentioned example shows that this property is
not necessary and could allow weaker restrictions on the behavior of
the integrand. In other words, that means that the class of functions
which are good from the point of view of existence is wider than that
of saddle functions. The situation which arises here is very similar to
that encountered in the analysis of nonconvex minimization problems
in many independent variables [22]. Applied to these problems, the
method of two-sided estimates has also demonstrated its effectiveness.
In the latter context, ordinary convexity of the integrand was sufficient
for existence of the minimum but by no means necessary, and the class
of functions providing the minimum was wider than that of the convex
functions alone. In the absence of convexity the method of estimates
worked well: the upper estimate being provided by some microstruc-
ture, and the lower estimate being provided by the polyconvexification
transformation [22] which played the role of transformation (42). The
following observation seems to be remarkable: convex functions stay un-
changed when subjected (o the polyconvexification transformation. The
same phenomenon is observed with regard to saddle functions if we
subject them to transformation (42). For these reasons, the fact of co-
incidence of two types of estimates in the sup-inf context seems to be
not accidental, but rather it expresses the property of the transformed
integrand to satisfy necessary and sufficient conditions of sup-inf type
to be attained. Continuing this analogy between this approach and that
of quasiconvexification, we could argue that the transformed integrand
plays the same role as the quasiconvex envelope of the integrand in the
problem of nonconvex minimization.

The problem consists of developing strict mathematical theory of ex-
istence of solution of min-max variational problems with nonsaddle in-
tegrands in the case of many independent variables. A notion similar to
quasiconvexity should be outlined and examined. Connections must be
described between this notion and the behavior of the original function
with regard to the passage to weak limits of the arguments (a prop-
erty similar to that of weak lower semicontinuity). This investigation
could be carried out in a broader context than merely optimization; the
original function is not necessarily produced by some optimal control
problem.
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Development of computer software. We now consider the computa-
tional aspects of the new approach. Formally speaking, the basic oper-
ations associated with the transformation (42) include construction of
a convex hull of some original set in the space of dependent variables.
This set can be fairly arbitrary; for the plate problem, for example,
it could be a segment of some smooth curve in three dimensions, the
curve being described in analytical terms. The convex hull of this orig-
inal curve is some body in three-space. The surface of this body is
piecewise smooth, but might also possess vertices, edges, etc. All of
these types of features allow an immediate interpretation in terms of
microstructures associated with the corresponding layout of materials,
and for this reason it is important to build up the convex hull in full
detail. This construction of the convex hull is the main difficulty to be
overcome by the development of software. More specially, the various
types of points on the surface of the convex hull are each to be set in
correspondence with composites of various specific microstructures. The
purpose of the overall analysis is to provide an exhaustive classification
of all possible cases which might arise in this connection. Formally
speaking, this classification will come as a result of solving a purely
geometrical problem ‘

(51) supb-n
beB

where 7 is some unit vector (which plays the role of a parameter) in
the space of dependent variables, and B denotes the above-mentioned
convex hull. The unit sphere swept out by the n-vectors is to be parti-
tioned into sections associated with various types of points b extremal
in the sense of (51). {These points might be smooth, edge points, vertex
points, etc.) The classification mentioned above is not immediate, since
each of these types of points is connected with some well-specified mi-
crostructure. At this point, then, the software to be developed will have
computed the supremum over b in Equation (42). The next compu-
tational step would be to compute the outer supremum, the supremum
over A in (42). Typically, this will be a low-dimensional optimization
problem. Note, however, that the computation (51) needs to be carried
out for each evaluation of the objective function in this new (outer)
optimization problem, making the combined problem computationally
intensive. Finally, given the classification of a regime, the computa-
tion of the materials layout is a standard problem for which algorithms
already exist [23].
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The software to be developed will perform the following tasks. Given
a curve in three dimensions (either in parametrized or numerical form)
the software will render this curve graphically. It will then compute and
display the convex hull of this curve. The user will be able to rotate this
image in three dimensions in real time, so as to understand the qual-
itative nature of the hull (and thus the classification of the composite
regimes). Also, given a unit direction vector 7, the software will dis-
play cross sections of the convex hull which are perpendicular to 7;
the software will also find the extreme values of b for which the cross
sections are tangential to the convex hull. Given these values of b, and
so likewise knowing the points of intersection p of the cross sections
with the convex hull, the software will categorize the points p as being
on the smooth surface of the hull, or on an edge, or on a vertex, etc.
Next, the software will perform a low-dimension optimization problem,
essentially reshaping the convex hull, so as to maximize the values of

supb-n+ A(€n, - &,n,)
beB

as A varies. The software will then carry out this computation as n
sweeps out the unit sphere, and so we will have a complete classification
of the regimes.

While convex hulls have been studied and used extensively in math-
ematics, algorithms for actually computing hulls efficiently have not re-
ceived as much attention, due possibly to a previous lack of practical
applications. Computation of convex hulls in two dimensions have been
studied, [24], [25], [26], but the problem in three dimensions has only
recently gained attention. From a computational standpoint, then, this
is the least understood aspect of the total new approach to materials
layout. Note that the issue here is not the difficulty of computing the
hulls, since there are many intuitive approaches which can be used, but
computing the hulls efficiently. That is, if we discretize the parametriza-
tion of the original curve with N grid points, then naive approaches to
computing the convex hull, such as using the geometric definition, have
a computational complexity of O(N 2). Typically, N would be quite
large, making computation of the hull time consuming when using naive
algorithms, and so defeating attempts to generate real-time images, or
to perform the optimization (42) in reasonable time.

The other computational aspects of the new approach are better un-
derstood. Determining the extremal values for b is a fairly standard
problem in nonlinear programming, albeit one still requiring some care
in solving. Likewise, the computation of the supremum over 4 can
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be cast in a standard way as a problem in nonlinear programming; this
would not take into account, however, any special structure in the outer
optimization problem due to the speciil nature of the objective func-
tion (51). Rendering the image of the hull, of course, would involve
standard techniques from computer graphics.

Significance of research. In Figures 4, 5, and 6 we illustrate the spe-
cific optimization procedures associated with the naive, G-closure, and
new approaches, respectively. For practical considerations it is impor-
tant to obtain some suboptimal layouts; that is, those characterized by
some simple types of internal geometry which could be realized in prac-
tice. (In this context simple means depending on some finite number of
structural parameters.) Once the ideal (optimal) solution is known, we
can introduce some kind of cost functional to estimate the difference
between the optimal and suboptimal solution. This provides the basis
for evaluating the best approximation to the optimal layout which could
be achieved with the aid of available simplified microstructures.

In summary, we can say that ihe proposed (new) approach provides
a practical (as compared to G-closure) yet systematic (as compared to
naive) methodology to handle layout problems arising in applications.
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Abstract. The paper suggests a procedure of direct construction of minimal
extension of constrained optimization problem for a three dimensional heat equation
containing controls in coefficients. For a two dimensional case, this approach has
been initiated in Ref. 1.

1. Introduction. We consider nonselfadjoint optimization problems for a
system of equation in a three dimensional region V
q=2-VT, V.q=0 (1)
where T = T(x,y,z) denotes the temperature and the tensor 2 = P(x,y,z) of heat
conductance plays the role of control. The set U of admissible values of 2
includes two elements (materials):
U= 'D:’D+=u+E,17_=u_E,E=ii+jj+kk}. (2)
It is required to find the distribution
Dxy,2) = x1(x,y,2)D_ + Xo(x,y,2)D_
of a heat conductance tensor throughout V which maximizes some weakly

continuous functional I(T). Here T denotes a solution to the boundary—value
problem obtained when Egs. (1) are complemented by the linear boundary condition
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LT =1 (3)
along 8V. To specify the problem, we will consider the Dirichiet condition

Tl av =1 (4)
and the functional

(1) == [ [(x) = Ty asdsde, 0
where To(x,y) e Lo(V).

This problem is known to be ill—posed and therefore requiring relaxation,
i.e., the construction of an appropriate minimal extension of the initial set U of
admissible controls. Such an extension can be constructed on the basis of 2 precise
knowledge of the G—closure of U, i.e., the set GU of invariants of the effective
heat conductance tensors ﬂc of all composites assembled from the elements of U

(Ref. 2). However, the G—closures are known only for a few particular examples,
the case of U defined by (2) among them (Ref. 33. Yet for these selected examples,
the construction of GU represents a difficult problem. For more complex
situations, e.g., that of an elliptic equation of the 4th order, the problem of
constructing the G—closure still remains open.

At the same time, for many applications we do not need to know the
GU—set in full detail. Instead, it is often enough to specify some linear
combinations of components of WO, particularly, for our example the combination

Dy - VT entering the first of equations (1). This is the only combination which

really matters for our purposes; to determine it, we apply a direct approach, free
from any reference to the G—closure.
A similar problem in two dimensions has been discussed in Ref. 1.

2. Transformation of the problem. We first reduce the problem to the
convenient sup inf form. Introduce the Lagrange multiplier A and comsider the
augmented functional

J= (T = I(T) —JV,\V . D . VT dxdyds, (6)

the right—hand side taking into account the heat equation
V-2.'T=0 (7)
following from (1).
Equating to zero the first variation of (6) with respect to T and bearing (4)
in mind, we arrive at the conjugate equation
V:2.Vx= —2(T-T0) (8)

and the boundary condition
/\l = 0. (9)
av

After integration by parts with the boundary condition (9), the functional (6) takes
on the form

—I(T) + j TA- 2. VT dxdydz (10)
v

convenient for subsequent use.
It can be shown that the problem
sup I,
?

subjected to (1) and (4) is equivalent to
sup infJ
2, T X
subjected to (4), (9). Indeed, since




3 =1(T) +J5V/\n LD VTdS—J AV - 7. VT dxdyde
A"
the operation ix;f J yields, in view of (9),

infJ = I(T),
)

the constraint (7) now appearing as a necessary condition for a minimum in A.
The functional sup infJ has the following upper bound:
2,T X
sup inf J = sup supinfJ < supinfsupJ
2, T A T 7 A T ) 2

= sup inf[— J (T-T ) dxdydz + J G(\"T,VA)dxdydz] (11)
T Al Jv v
where (we accept the notation ¢ =VT, n= V})

u+§' U if €° T]ZO)
G(&n) = (12)
u_¢-n if £-7<0.
The function G(§,7n) is convex with respect to any of its arguments but

non—convex with respect to their union.
The problem

supiat —JV(T—T0)2dxdydz +j G(VT,77))dxdydz|, T € (4), ) € (9) (13)
A%

is still ill-posed. It would be well—posed if the integrand G(¢,7) were a saddle
function, i.e. concavein ¢ for fixed 7 and convex in 7 for fixed £. The solution
would then exist and the operations sup and inf would commute. For our
problem it is obviously not the case. However, the requirement that the function
G(&,n) be saddle is too restrictive when £ and 7 are gradients; to ensure
exastence of sup inf for this case it is enough to require that this function be only
quasisaddle (Ref. 1). We will consider in this connection its quasisaddle envelope
G**(¢,n) applying the s.c. polysaddlification transformation introduced in Ref. 1
and playing the same rolein sup inf problems as the polyconvexification
transformation (Ref. 4—6) plays for the infimum problems. This new transformation
is given by the formula
G**({,rﬂ:supsgpinf{a- E+b-n+w-€xn
w a
~infsupla- £+b -+ w- &= n—G({7)]} (14)

{7
The term w - { x 7 represents the null-Lagrangians (§ x 7); = €3 — 75¢,,
(€ x Mg = ma&y — myég, (& x Mg =1 €y — My€; taken into account with the aid
of Lagrange multiplier u(wl, W, w3). 1f G(¢,n) is convexin 7 (which is now the

case, see (12)) and arbitrary in ¢, then SRef. 1)

Co &**(£,n) 2 G(£1). )
This inequality represents the characteristic property of G**(£,7) making it
possible to use this function instead of G(¢,n) in (13) and thus arrive at the upper
bound for this functional.

3. Computation of G**(£.1): the upper bound for sup infJ. We first

compute h(¢,b) = sup[b-n—H(¢n)) with H(én) =—w- £ x 7+ G(&n). This

Y]
cct))mputation is similar to that of the two dimensional analysis done in Ref. 1. We
obtain




0 if b+wx€—uf=0, u_$u5u+,
h(¢,b) = sup[b-n—H(¢,n)] = (16)

K + o otherwise .
The transformation (14) now involves the operation

igf{a - §-i1§1f[a - £= (=R (&R (17)

Erhjgh yields the concave envelope of —~h(£,b) with respect to the ¢ — variable for
xed b.

According to (16), — h(¢,b) = 0 alongthearc uefu_,u ] of the curve 7
in the £—space

Y b=—wx £+ uf=5(u)- ¢ (18)
or, explicitly in terms of ¢,

§=S_l(u)-b, u_<ugu

+ < m,
-1 u b . w wx b
S (u)-b= b+ W+ 5. (19)
R u(u2+w2) 1+

If we introduce a Cartesian coordinate system (x,y,z) with z—axis parallel
to the w-vector (w= 0,0,w)), then (19) will reduce to the system

__u W
=7 307 30y

u+w U +w

(20)

£ =—nornb +——sb_,

VNI B A

_1
€, =730
showing that the curve (18) lies on the surface of the cylinder (Fig. 1)

2 2 _

w(f, + fy) + byfx - bxfy = 0. (21)

Figure 1. The shape of curve (19)




The concave envelope (17) will now be defined as
0, €=
inf{a - ¢ —infla - £~ (= R(&D)))} = (22)
a { -, £
where = is the convex hull of the curvilinear segment (19).

The hull is a convex body with boundary composed of two sheets. These
sheets intersect along the arc + with the endpoints A and B given by

A g=5u,) b=8T"-b
(23)

B: ¢=SY(u_)-b=5"1.1,
respectively. Also, they intersect along the straight line segment (chord) AB

=15 - b+ (1-)S7 - b, t e [0,1] (24)
connecting the same points. With the reference to Fig. 1 and because u + is finite,

it is obvious that both the arc vy and the chord AB belong to the boundary of the
convex hull =.
In view of the subsequent sup operation in (14), we have to interpret (22)
b

as the function depending on the argument b for fixed £. It is remarkable that
Eq. (19) which represents an arc of v in {—space may be interpreted as Eq. (18)

representing a straight line 4 in b—space. Analogously, Eq. (24) represents a

chord in ¢{—space and at the same time a curve AB in b—space. Both will belong
to the boundary of a body 2 in b—space which appears as we interpret the
lefthand side of Eq. (22) as a function of b for fixed ¢:

0 ,beZ
inf{a - £ —infla - £~ (= h(&D))]} = (25)
a 3 o, b g 2B
In view of (25), the operation

sup{b - n—infla - £ —inf(a - € — (- h(£D)))]}
b a £

reduces to
supb- 7
be 2
or
supb - 7. (26)
beconv 2

Because the chord (182 and the curve (24) obviously belong to the boundary of the
convex hull conv 2 of 2 they should be tested for optimality in terms of the
operation (26). Since the body conv .2 in convex, its tangent planes participating
in the computation of supremum will touch its surface, among other points, also

either at its vertices A and B or along the arc AB. We first consider the case

where the contact point occurs on AB and carry out the combined computation for
supsup [b:n+w- £x 7).
Y 1¢AB
Though this expression is generally less than G**(£,7), we expect that it will
nevertheless satisfy the inequality




supsup [b-n+w- {1 2G(&n)
Y beAB
and thus provide us with the upper estimate for G(¢,7).
In Eq. (24) for AB, the matrices S 4+ and S__ are defined by (23) as
S(u +), S(u_), respectively, where S(u) is given by (see(18))

Su)=w- €+ uE (27)
where E = ii + jj + kk is a unit teasor, and € = — E = E is the Levi—Civita tensor
of the third rank. The combination

-1 -1
t5.7 - b+ (1)S_" - b,

appearing in (24) represents the {—convexification of the basepoints S:l - b, S_—_1 .
b of the curve v (see(18)) corresponding to the values u
The operation

U of parameter u.
supsup [b-n+w- £x7)
Y beAB
now reduces to the examination of the extreme points of the function
K=K(wbt)=b:-7+ A" [§—t5:1 -b- (l—t)S:1 b+ w- Ex7n (28)

where A denotes the Lagrange multiplier for the constraint (24). The necessary
conditions for extrema require that

Ky=1-tA- S —(1-t)A - SZ' =0, (29)
K, =~t(1=)[(S." =2 - b= {A - (ST -sTh) =0. (30)
K,==A- (S, -8_") - b=0. (31)

The Egs. (29) and (31) are obwous whereas Eq. ((30) follows from the analysis
given in Appendix 1.
Eq. (30) shows that

(ST =S -b=oh- (ST

+
where a is a scalar multiplier.
Introducing the symbols m,n,p defined as

o u, _ u__
uf_+w2 ui+w2

1_s7h (32)

1 1
n= - (33)
2 2 2, 2y
+( Lt ) u_(u+u%)
pe 1 1
uf_+w2 ui-}-wz
we obtain
S:l S:l =mE + nww - pw - €,
and Egs. (32) and (31) become
mb+n b wWwtpwxb = a[mA+n$\A u)w—pw x Al, 234;
-b+nA-wib-w+p 35
respectively.

This system can be simplified. To this end we assume that neither of three
vectors

wxb wx A, Axb




is zero. Computing the dot products of (34) wiun b, A w respectively, we arrive at
mb? + n(b - w)2 =amA-b+nA-w)(b w-pb-wxA] (36)

- mA « b+a(A - w)(b - w)+pb - A x w= a[mAZ+n(A - W),
(b w—oh - w)(m+0s)=0. (38)

Assuming that a# 0 and taking (35) into account, we conclude that Eqgs.
(36) and (37) reduce to

mA? + n(A - m)2 =0, (39)
mb? + n(b - w)2 = 0. (40)
Eq. (38) allows for two possibilities: m + n?=0and b-w=ch-w It
is evident from (33) that the first never occurs. As to the second possibility, this
together with (39) and (40) implies
m(b2 ~ 02A2) =0,
which means that either m =0 or |b| = |a||A]|. The first possibility together
with (39) and (40) implies that
Acw=b-w=0 (41)
which in view of (35) shows that
A=pBb (42)
where f is a scalar multiplier. We thus conclude that A x b =0 which is
admissible as a final result.
REMARK: Eqs. (41) imply that the curve (24) in the b—space lies in the

plane perpendicular to w.

As to the second alternative |b| = |a||A|, this one together with b - w=
el - w does not contradict the Eqs. (35)—(37) of stationarity. This possibility is in
fact eliminated as we demand that the Legendre condition K ww SO holds. This is

shown in Appendix 2. There it is also demonstrated that the relationships (41)
together with m = 0 satisfy the Legendre condition provided that £> 0.
The requirement m = 0 yields
W = u JU_ - (43)

. Now, in view of (27), (33), (42), (43), Eqgs. (24) and (29) can be rewritten as
ollows

1 1
= b+ wxDb,
u tu_ (u_J{_+u__)d1
(44)
n=hg -}-u b_(u +111 )d wx b,
+ + =1
where
u,u

d * =

17 tu_+ ﬁ—t)u+

and the vector beAB maximizing the function K(wb,t) is equal to

u, +u__
b=—i2—-f+Jl—§-]"T)
Y

which coincides with the result obtained in Ref. 1 for the two dimensional case. We
then arrive at the expression

(u++u_)c052x - \/u_*_u_ sin2y




for sup suplb: 7+ w- £ x 7], here, 2x denotes the angle between vectors ¢
Y beAB
and 7. This result is valid provided that sup occurs at some point b within
beAB

the arc AB. This is equivalent to the requirement
lu
|%_$ tan x € ﬁi )
+ —

Another two possibilities allow for sup to be attained at the endpoints A or B.
beAB

'u+cos2x, 0 < tan ¢ '3—

u b
+
u
sup sup[b-7+w-{xn}=|¢£|[7]; (u++u_)coszx~w/u _u_sin2yx, '%—stanxslui,
Y beAB v + -

We finally obtain (Ref. 1)

Yy
u_cos2y, u—s tany ¢ o.

45
The expression (45) is an upper bound for (12) which can be checked as in Rei(. 1.)
On the other hand, this expression can be achieved by rank 1 laminate. To
illustrate that, we introduce at each point the plane spanned by vectors £,7, with
normal w. Then we introduce a layered composite with layers aligned parallel to w
and bisecting the angle 2y between ¢ and 7. For this microstructure, with its
effective tensor _@0 and the concentration t chosen in accordance with the rule

(Ref. 1)
u,u__
—2—: = tan2x,

the expression for { - 4 - 7 coincides with that of (45) and thus proves its
attainability.

4. Conclusion. We thus arrive at the conclusion which has to be expected:
the three dimensional case is essentially the same as its two dimensional
counterpart. At each point the optimal layout is that which occurs within the local
plane defined by vectors £ and 7.

5. Appendix 1: Derivation of Eq. (30)

The w-—derivative of a scalar function —A - sl b s computed in
accordance with the rule

(8- ST b), = [((=A - ST, 1) - Bl = (A - (57),, - 1) - Bl

S

where r° is a vector basis (Ref. 7).

The w—dependence of the tensor s~ will be perceived occurring through
the dependence of this tensor on S(w). We obtain (anrsrtrsrt)

5= (s, - sl = (57T
- T T _ ¢ o s5=CnS . gt
65=5 - bul; 68T = Cpp 5= CpproS - bl




- -1 T
=(S )s..CII..Sw.éw ,
and, consequently,
) =Y -Crye-S = (S e orr, (50 S
w= 8 g -Cp-5,=(8 T)g- 1y W
On the other hand,
. giS

-1 -1

and

(S—l)s--rarﬁ=-—5 . rﬁra- _1,
(sh, =-s71. T ST ob..s).

But S =e=¢€"Yr r 1, and consequently

P q r
2P, S,= rarﬂ- -qurrprqrr = Eaﬁrrr.
We obtain
(S_l)w= s, Ha S ( ) -1, (ryro—To1;) - S-lr3
-s1 + (1gTa—TaT,) - s~ —s71 (r3 17 T1%3) - S-1r2.

As we compute the expression
-1
(A - (57, - 1) - b,

assume that the basis I, is orthonormal; we obtain, for example,

-1 3 -1 -1 3
—{(A - (S )y T3) - bjT=[A-5 - (1y15-1,1;) - S (rg-15) - Dl
=[A-S70 . (rprr)) - STH B,
and analogous expressions for other components. We finally arrive at the formula

-1 -1 1 1
—(A-S5T b)) = (A (ST, r) BT =A ST xS - b,
We now obtain

-1 -1
K =-t(A- S, b),—(1-t)(A-S_"-b) +&xn

=th- S st b4 (1-t)A - SThasT bt
+1t870 - b+ (1-)sTh - b [th - ST+ 0-0)A - ST =
= (- t+t2)S ‘bxA-S 1+(t—t)Sl brA- STl
+H~(1=t) + (1) ]s:l.be.s_ (t=9)s7! - bx A - ST =

= —t(1-t)(s7 =52 - bx A+ (s7T-5TH).

6. Appendix 2: The Legendre condition. The function K(w,b,t) defined by
(28) should be maximum with respect to w. This means that K W should be

negative definite. We apply this test first tothecase m=0,A=fb, A - w=1b -
w= 0, to show that this case is an admissible alternative. The expression for K

can be obtained from that for K , which is given by (see (32) and (34))
K = -t(1-t)[mb + n(b - w)w+ pwxb] x [mA + n(A - ww-

w
—pwx A] = —t(1 —t){mb A+ mn(A - w)%bxw)—-
—pmbxwxA+mnb - w)(wxA)-npb: Wwxwx A -

ww




—mpA x wxb—np(A - Wwx wx b—pz(wx b) x (wx A)}.
Before we differentiate this with respect to w, we disregard all terms involving
more than one factor that vanishes under the hypotheses m = 0, A = fb.
A+ w=Db - w=0. The expression for K W then becomes
K, = —t(1~t)[~2pm(A - b)w +1p(b - w)e?A + np(A - w)u?b].
Differentiation with respect to w of K, gives

_ 2
K, = —t(1-t)p[-2(A - b)mw2ww + nw”(bA + Ab)].

Here we omitted terms which vanish under the adopted hypotheses. Applying the
relationship A = fb and referring to (33) we conclude that

dm ,2 2
K,o= —t(l—t)pﬂ[—me ww + 2nw”bb]

is negative for § > 0 because of the inequalities p < 0,n < 0, dm/ du? > 0 and
recalling that u, > u_. We now show that the second option, namely |b| =

+
|c§ |Al,b - w= aA - w, contradicts the Legendre condition. To this end, we
differentiate K & with respect to w, the derivative can be written in the following
form:
Kw = —t(1-t) e,
b b A A
p=mn[Q - weA + (A - w)Q-{Q - w)eb—b  w)Q] -
—pm|[(A - b)E — Aeb] —pm[(A - b)E-be A] -
~pn{[w(A - w)— PAJeb + (b - wwe A+ (A- WE-248 )+
+ [w(b - w)—w2b]9A+ (A - wweb+ (b wWE-2be ]} +
pz[we (A xb)+ w- (A xb)E]
b A

where Q, Q are defined by

b A
Q-w=bxw Q- -w=Axuy,
and the symbol @ denotes the dyadic product.
We examine the quadratic form Q - wa - §1 for the admissible test vector

1 =k A xb. Referring to (35), it is easy to verify that the form vanishes for this
choice. Now, as we perturb the test vector by a small term € and linearize the
expression for (2 + Q) - K " (Q + Q) with respect to 2/, then we find the

principal part of it to be linear in € which means that it may be made of
arbitrary sign for an appropriate choice of Q’. This completes the proof.
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Abstract. The paper suggests an application of a direct procedure initiated in Ref. 1 to problems
of optimal layout for plates. Optimal microstructures are explicitly indicated for a number of

special cases, particularly, for the case when the original and conjugate strain tensors are coaxial.

Key Words. Direct relaxation, optimal microstructures, necessary conditions.




Introduction
In this paper we consider nonselfadjoint optimization problems for thin anisotropic plates

subjected to transverse load. The state of equilibrium of such a plate is described by the equation
V-V.-D..VWw=gq, (x,y)e (1)

where w denotes the normal displacement, & — the tensor of stiffness, and q the transverse

load density. The boundary J% of a plate will be assumed clamped, this property expressed by

the boundary conditions

W = wlta| =0 2)

It will be assumed that P= F(x,y) plays the role of control and may take one of two
admissible values P, or I, at each point of the plate. The materials 1 and 2 with tensors

2, and 9 9 of stiffness will both be assumed isotropic, i.e.
9, =kaa; + n(agagtaqa,), i=12 (3)

Here and below, a,, a,, 33 represent an orthonormal basis in the space of 2nd rank symmetric

tensors in the plane, i.e.
2y = (UV2)(i+]), ag = (1/V2)(ii-j), ag = (1/v2)(ij+ij). (4)
Introduce the characteristic function xl(x,y) of domain occupied by material 1 with

tensor & 1 of stiffness, and a similar function x2(x,y) for material 2; obviously, X;+ X9 =1

It is required to find the distribution




D(xy) = x;(xy) D + xy5(xy) 2, (5)

of the stiffness tensor throughout ¥ which maximizes some weakly continuous functional I(w) of
solution to the boundary value problem (1), (2). Weak continuity is supposed to be with respect
to Wg(E), this space naturally associated with (1), (2). Specifically, as a typical example, we

will consider the functional

I(w) = - | [w(xy) = wolxy)Pdxdy
)

where w(x,y) € Lo(Z).

This and similar optimization problems are known to be ill—posed and therefore requiring
relaxation, i.e., the construction of an appropriate minimal extension of the initial set
U= {91, 92} of admissible controls. Such an extension is currently offered on the basis of a
precise knowledge of the G—closure of U, i.e. the set GU of invariants of the effective stiffness
tensors . of all composites assembled from the elements of U (Ref. 2). However, the
G—closures are known only for a few particular examples (Ref. 3), and the plate problem is not
among them. Yet for these selected examples, the construction of GU represents difficulti-s, and
for the plate problem these difficulties are still not overcome.

At the same time, for many applications we do not need to know the GU—set in full.
Instead, it is often enough to specify some linear combination of components of 90; for our
problem, this is the combination .@0 - -¥Vw which only matters in view of the Hooke’s law. To
determine this combination, we apply a direct approach, free from any reference to the G—closure.

Similar problems for the 2nd order equation V- &-Yw = { have been discussed in Refs.

1,9.




2. Reduction to a sup inf problem

We first reduce the problem to a convenient sup inf form. Introduce the Lagrange

multiplier A and consider the augmented functional

I = J(w,A) = I(w) + J A(V-¥- D+ .TWw — q)dxdy, (6)
5

the second member at the right—hand side taking into account the equation (1).
Equating to zero the first variation of (6) with respect to w and bearing (2) in mind, we

arrive at the conjugate equation
V-V-.@--VV/\=2(w—w0) (7)

and boundary conditions

d

az:= 6A/6nl32=0. (8)

After integration by parts with the boundary conditions (8), the functional (6) takes on the

form

J=1+[ (V9A- - D -T9w — Aq)dxdy 9)
5

convenient for a subsequent use.

The problem

g
g o




subjected to (1), (2) is equivalent to
inf J (10)
subjected to (2), (8). This is since by (6),

infJ=14+ inff A(T-V- D+ -VWw—q)dxdy =
) Az

0 f V-V ..VWw=q,
I+
other wise.
We observe that Eq. (1) appears as a necessary condition for a minimum in A. Bearing

(8) in mind, we may assume that J in (10) has the form (9). We have finally for (10)

sup inf{I+| (VWA.- - -VWw—Aq)dxdy} (11)
Dw A .

where e U = {2, D,},and w and A satisfy, respectively, equations (2) and (8).

In the sequel, we will establish the upper and lower bounds for the functional (11). An
upper bound will be constructed analytically through an appropriate mathematical construction,
and the lower bound will be generated by a specially chosen composite assembled from the original

constituents. Both bounds will be shown to coincide, and desired relaxation will thus be achieved.

3. Upper bound for sup infJ
Dw A

This functional possesses the following upper bound:




sup infJ =supsupinfJ <supinfsupJ =
Dw A w 9 A w A9

= sup inf[-—J (w—w0)2dxdy —J Aqdxdy +J G(VVw,VV))dxdy] (12)
LS > >

where

6.._@1..7’,5..91..7,25..92..7,’
G(¢m) = (13)
6..92..7’,é..gl..n56..g2..7).

The notation & = VVw, n = VVA will be used below. The function G(&,7) is convex with respect
to any of its arguments but non—convex with respect to their union.

The problem

sup inf[—J (w—wo)zdxdy —J Agdxdy + J G(VVw, V7)) dxdy] (14)
LS > ) )

is still ill-posed. It would be well—posed if the integrand G(¢,7) were a saddle function, i.e.
concave in £ for fixed n and convexin 7 for ixed £. The solution would then exist and
operations sup and inf commute. For our problem it is obviously not the case. However, the
requirement that the function G(&,7) be saddle is too restrictive now that ¢ and 7 are
gradients; to ensure the existence of sup inf for this case, it is enough to require that this
function be only quasisaddle (Ref. 1). The quasisaddle envelope G**(f,n) of G(&,m) will be
constructed applying the so called polysaddlification transform introduced in Ref. 1. This
transform plays the same role for sup inf problems as the polyconvexification transform (Refs.

4-6) plays for the minimum problems. For the fourth order problem considered, the




polysaddlification transform is given by the formula

*x%
G (&7) = sup sup inf{a- - £4b- -+ w- - (€xn)+dé--T- -7
w,db a

- irgf sup(a: - €+b- - ntw- - (€xn)+dé- - T - —G(&,7)]} (15)
n

Here we introduced the notation T for a tensor
T =aja; ~ 353, ~ 3534; (16)

the terms w--& x 7 and d€--T-..7 represent the null-Lagrangians éxn and £ -- T -- g
(Refs. 3—6) taken into account with the aid of Lagrange multipliers w and d.
X
The transform G (&,7) defined by (15) satisfies the inequality

G (&) 2 (&) (17)

for any G(&,7) convexin 7 and arbitrary in & (Ref. 1).
Applying G**(E,n) instead of G(&,7) we arrive at the upper bound

sup inf[—J (w—wo)zdxdy—J Aqdxdy +J G**(f,n)dxdy] (18)
WAy > 3

for (14), and, consequently, for the original functional (10).

4. Computation of G“(f,n)
We first compute h(¢,b) = sup(b--n—H(¢,n)] with H({,n) = — w--(éxn) —dé--T--n +

1
G(¢,m):




Cl"77 if ne 5-'(91--92)-'172 0,

b--n-H({7) =
c2--n if ne f--(.@l—.@?)--ng 0.

The tensors cl,c2 are defined as (dev{ = {yay + {334)

Cl = b + (d_k1)§1a1 - (d + [.l,l)deVE + wx é)

=b+ (d—ks)§yay — (d + po)devé + wx & (19)

By argument similar to that described in Ref. 1 we arrive at the formula

0 if b =(S)--¢
B(¢,b) = sup[b- - n-H(&,7)] = (20)
n +o otherwise.

In (20), the matrix (S) is defined as the convex hull

(S) =t,5; + 1550, 11,1520, t; +t,=1 (21)
of matrices
SizAi+w~e, Ai= 9,-dT, i=12, (22)
where the matrix
e=—ExE (23)
9




defines the Levi—Civita tensor of the 6th rank acting in the linear space of 2 x 2 symmetric

tensors. The unit tensor E in this space can be defined as

E =253 + 2929 + 2434 (24)

in the basis (4), and by a similar formula in any other orthonormal basis.

We make note of the formulas (Ref. 7)

skt stk

e=-ExE=-aa ~aa =-aaa ¢ =aaac (25)
where
Koa(a xa) (26)
are Levi—Civita symbols (5123 = 5231 = 5312 =1, 5132 = 218 5321 = -1, eStk =0
otherwise); also
wete=—w - ExE=z-wxE=-Exw=c¢--w. (27)

Geometrically, the function h(¢,b) of ¢ for fixed b is equal to positive infinity everywhere

except for points of the set

b=(S)--€& )ty € (20). (28)

Equation (28) can be inverted to express ¢ in terms of b. To this end we introduce symmetric

tensors of the 4th rank (see (22))

10




Aj= D —dT, By= Fo—dT, (A) =t +1t,4, (29)

and compute the inverse matrix (S)"1 =[(A) + w-- e]'-1 =[(A) —wx E]-l. We obtain by

direct calculation
(S)I=[1/(det(A)+w- - (A) - w){(det{A))(A) T Huwwt(w- - (A))<E}=5+QxE (30)

where

§ = [1/(det(A)+w- - (A) - - w)]{(det(A))(A) " +ww}) (31)

denotes the symmetric part of (S)_1 and
Q= [1/(det(A) +w-- () - w)](w-{A)) (32)

denotes the 2x2 tensor associated with its skew—symmetric part.

The set (28) is a segment of the curve in £—space traced as t, varies between 0 and 1.

This segment connects points 5(1) and 5(2) corresponding, respectively, to t;=1 and t, =0:

1

5(1)=511,,b, £2) - SLeob. (33)

We now compute the result of the operation

11




inf{a- - §-infla- - £ — (—h(£,b))]} (34)
a §

which comes second in the sequence (15). This one is known to put into correspondence with any
given function —h(¢é,b) its concave {—envelope, i.e. the least concave function of £ greater than

or equal to —h(&,b). Particularly, if ~h(&b) is itself concave in ¢, then the operation (34)

leaves this function intact.

In our special circumstances, this is obviously not the case. The concave envelope of

—h(¢,b) appears to be the function defined as negative infinity everywhere except for points of

the convex hull = of the curvilinear segment (28) where this envelope is equal to zero:

0, &€=
int{a- £ ~infla- € — (-B(EB) = (35)
a ¢ o, £

0

The hull = is a convex body in the {—space. We will assume that the curvilinear segment

(28) and a line segment
(60N (eV-¢(2) = (681680 -¢8D) = (eg-eN-h o)

connecting the endpoints 5(1) and 5(2) (see (33)) both belong to the boundary G= of Z.

For our future purposes we need to know the left—hand side of (35) as the function of b
for fixed ¢. This function can be defined as equal to negative infinity everywhere in the b—space
except for the body 2 which appears as the "b—image" of Z, specifically, the boundary 4.3 of
2 is described by the same equation as that of 4=, this time, however, should be kept fixed
whereas b should be considered variable. Obviously, the set (28) which is perceived as a

curvilinear segment in the £—space appears as a line segment in the b—space, and in this capacity

12




belongs to 4.2 Also, the set (36) which represents a line segment in the é—space appears as a
curvilinear segment in the b—space, and this segment also belongs to 4.2 Summarizing these

results, we arrive at the following: the transform (15) reduces to a single operation

sup [b-+7n + w--(éxn) + d¢--T- 1] (37)

w)d)

subjected to the constraint b € 2 Note that the set 2 itself depends on w and d.

The curvilinear segment (36) in the b—space obviously represents a ribon 4.2 The
calculation (37) of the supremum with respect to b will include among others the possibility that
the supremum is attained at points belonging to this segment. In the sequel, we investigate this

possibility in major detail. Equation (36) can be represented in the equivalent form (see (33))
¢=(m,S7  + m,S;h) .- b=(S7L) b (38)
171 272 )
Here, m,, m, >0, m, +m, = 1.

This relationship will be taken into account with the aid of the Lagrange multiplier A in

the course of the maximization operation (37). We will examine stationary points of the function
§=bembw-(fxn) + dg--Toen+ A+ (E=(571)-+b) (39)

viewed as the function of b,w,d and m,.

A routine calculation shows that
-1
¢b=77_‘A . <S >=0

which means that

13




A=q--(sTH7L (40)
With equations (38) and (40) in mind, the function ¢ becomes
1=
$=m (ST g+ e (Exm) + - To o, (41)

It can be shown (c.f. Ref. 7) that

6=~ (5T b)  + £ xn=m (A--ST) = (ST D)

-1 -1
+m2(A -+ Sq ) (S2 IR NER
This expression can be rewritten in either of two forms:

¢w = ml(A. .SII) x (SII, -b) + mz(A- ,551) . (S;I- -b)
-1 - _ _
# (ST +maSy ) b) (b (my S 4my S5 ) = (42

-1 -1 ~1_ 1 ol
= —m;my(AST - b)x(A--ASTY); AST =8, -ST,

or
-1,-1 -1 o-1 -1 -1 -1,-1

g, =1 (ST e [m 8] XS] +mySy xSy ] (ST T - £k e (43)
The stationarity condition ¢ W 0 can now be written as

As~hob=(as7h. sl =kpea57 = (44)

= xn-- (STH7H - (asTh

14




where & is a scalar multiplier. An equivalent representation is associated with equation (43):
-1,-1 -1 -1 -1 o1y o141
M (S ) oo [myS xS T + meSy xS (STT) T+ Exn =0 (45)
Condition ¢ q=0 reduces to
3 -1 —1y_ —1 A1 -1 1\

$4=-m;my(AS "--b)--T--(A-+AS ")=—m;mos "(AS "--b)--T- -(AST"--b)=0. (46)

or, equivalently,
-1,— - -1 - 5 T O |

$g=—n+(S Ly 1..[m1511..T..sl + m2321..T..52 (s ege. T og=0. (47)
Note that the stationarity condition (46) applies as the necessary condition for a maximum if the
corresponding root d is such that the function ¢ defined by (41) is concavein d for all w. To
guarantee this, we must require that det S, > 0(i = 1,2), i.e. that

detd, + w--A- w20, i=12 (48)
These inequalities should be considered as additional constraints influencing the d—maximization.
Computing the expression (41) for ¢ at the stationary values of w and d we have to

maximize it with regard to m,. Before we do so we investigate this expression in terms of its
attainability with the aid of special microstructures. This is a right time for such investigation

since the aforementioned construction explicitly depends on m,, this dependence being very

special for a number of popular microstructures.
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After maximization in m,, the expression (41) should produce a final construction (37) for
*x¥k
G (¢,n). This program is elaborate in its entirety, and we will begin with the analysis of several

special cases.
5. Case when tensors ¢ and 15 are proportional
In this case, the assumption w = Q = 0 obviously satisfies equation (45) since the

matrices $,, S,, (S) and (S—l) are then symmetric. Equation (46) is reduced to
(A6 (87H €T (86 (8 ) = 0 (49)
where (c.f. Eq. (31))
AS = 8,6, = 030~ AT, (97 = (ma7 +mya0h) T
The tensors A(i = 1,2) are defined by Egs. (29), (3) and (16) as
A, =Kaa, + M. (253, +2q35), K; = k—d, M; = 1 + d. (50)
We therefore obtain

A - (6)“1- €= [AK—1a1a1+AM—I(a2a2+a3a3)]- -[(K_l)_1a1a1+(M—l)—l(a2az+a3a3)]- -£

= (aK Ik e, + (aMT ) TN ga,+ £52,) (51)
where

5 R, R | N |
AK™ =K, —K[', AM™ =M, -M[,

-1\-1 -1 -1\—-1 -1,-1 -1 -1,-1
(K7) " = (mK; +myK,") (M) T = (my M T m M) (52)
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Equation (49) shows that the second invariant of (51) equals zero, i.e.
~1\2,—1,-2 2 =132 a1\ -2, ,2, 2
(AK )(K ) 74y = (AM )M ) “(£5+¢3).

Introducing the ratio

(= Idevfl/fl = ‘ §2+53)/§1 (53)

of deviatoric and spherical parts of tensor £, we arrive at the equation

2
_ (kg% )(d+m, py+mop,)
(o= Nld—m, ko—mok, )
defining the Lagrange multiplier d

d = ((kAp—udk)/((Ap+AK), (54)

k= m1k2+m2k1, =My pe + Mokty,
Ak = ko—k, Dy = pg = piy. (55)
Equation (54) has been obtained earlier by Gibianskii and Cherkaev in Ref. 8. We use (54) to

eliminate d from the expression (39), the resulting construction is attainable by a laminar

composite of the Ist rank (Ref. 8).
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6. Case when tensors ¢ and 75 are coaxial

This case generalizes the previous one but is related to a new situation when we cannot
apply the G—closure technique (Ref. 3) to construct the required relaxation; on the contrary, the
case of Section 5 is self-adjoint and therefore can be handled with the aid of such technique. In
the new circumstances, no G—closure is known, and the direct method demonstrates here its
genuine power.

Because the tensors { and 7 are coaxial, we can choose the basis a;,a,,34 (see (4)) so

that
§=¢13; + §92q, (56)
® n=13; + Nody; (87)
the tensor w will be assumed having only ag—component, namely
W= Walda. (58)
Direct calculation of the matrix (S'_l)"1 shows that
(s =271 (PQ+uaR%) T (QZa, 8, +PZaya, + PQagay +wiR 2 ga,-w,RZa,xE) (59)
where

P= <M/(KM+w§)>, Q= <K/(KM+w§)>, R= <1/(KM+w§)>, Z = (1/M), (60)

and symbol (-) denotes averaging, i.e., for example,




(1/M) = m /M, + my/Mo= m, /(p,+d) + my/(uy+d), (61)
etc.

The tensor b computed as b = (S"l)"1 -+ & (c.f. (38)) turns out to be coaxial with ¢
because of (56) and (59):

b= (s £ = 1/(PQ+uJRII[(Qe +ugRE sy + (PeyugRe sy (62)
The matrix AS—1 can easily be computed, too; this one equals
ast = Pa;3; + Qag2y + 23334 + WaTagxE (63)
where
p = AM/(KM+u2)), q = ACK/(KM+4d), r = A(L/(KM+4)), 2 = A(1/M), (64)
and symbol A(-) denotes the difference, i.e. for example,
A(1/M) = 1/M,—1/M,, (65)

etc.

The tensor AS™!..b=aAs7L.. (S_l)_1 --£¢ is now computed as
-1, 2,2 2
AST"--b = [1/(PQ + waRY){[(PQ + wgrR)¢; + wa(PR —1P){ola; +

[(aP + WATR)E, — wp(aR — 1Q)€, ag}.
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A similar formula for A--AS7! = n-- (S-l)_l- .AS7L s given by
-1 _ 25,2 2
A--AS" = [1/(PQ+waRY){[(PQ+w;rR)n; — wy(pPR-1P)7,]a,

+ [(qP+w§rR)7]2 + wa(qR-1Q) 7, Ja }.

Direct calculation shows that (Bi = KiM%+w§, i=12)

-1 252 y -
~(AS7"--b)(PQ+waR")B, By = (MAkE —waAuéy)ay + (KAuéy + waAk, )ay, (66)
-1 252 Y -
—(A--AS 7)(PQ+w3R%)B B, = (MAkn, +waApmg)ay + (KAung — walkn, Jag, (67)
K=mK, +m)K, M=mM, +mM,. (68)
We are now ready to apply the necessary conditions (44) and (46). The first of them is reduced to

(“-’%“MK)(§1772"§2771) + 2“3(_K§27I2 + 1\7151771) =0, (69)

K = K Ap/Ak, M =M Ak/Ax, KM = KM.
In view of (44), Eq. (46) can be rewritten as
(As7L..b)..T-.(AS7L..b) = 0. (70)

Combining this with (66) we get

6161 = (M F wp)/(wy + K)|(Ak/Ap). (71)
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Equations (69) and (71) comprise a system that can be solved to determine wa and d; we obtain

(¢ =&y/&, o= ny/m)
uy = (1) /2) AkAK 0~0) (o b Ak) (A AK)] (72)
and
d=[1/2(c0 s K)( (A= AK)][20Ck(Ap) < ApAk(0+ () (k—s)-2u AK)). (73)

Equations (72), (73) provide a basis for the subsequent final calculations. We compute the
bilinear form (41) making use of (72), (73). Direct calculation shows that

6= 91, =1 ( D £ = lmymy/(k+))(§; ke y0m) (ny AksmyAp) (74)
where

(& =m F +m, %,

The values (74) of ¢, 4 is attained by the rank 1 laminate with layers parallel to the

main axes of tensor a,, i.e. the main axes of £ and 7.
This regime will be valid within the range of parameters (= §,/{;, ¢ =7y/n, defined
by Inegs. (48) together with (72), (73). Without the range, rank 2 laminates will be applied to

saturate the corresponding bounds.

To show this, consider for example, the case detdy + w-+ Ay -w =0 or, in view of (58),
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2 _
9= K2M2 + wy = 0. (75)

This is a manifold in the space (w,,d), and the variations fw = a36w3, 0d are therefore linked

by the relationship (see (50))
2d6d — (ky — ig)6d — 2wabwy = 0
as we move along this manifold. The latter relation can be rewritten as (see (50))

and instead of two necessary conditions ¢ =@, =0 (see (44) and (46)), we arrive at only one

condition

(AS7he b)x(A- - ASTY)- agbuy + (ASTH ) T+ (Ar - ASTY) 2upfug/(My—K,) = 0
or, equivalently,

(AS7E - b)x(A- - ASTY) oy + [20g/(My—K)(AST - -b)- - T--(A--ASTH) = 0. (77)
This condition should hold along with (75).

Equation (77) can be transformed with the aid of equations (66), (67) defining matrices
AS7Y..b and A--AS”Y. We arrive at the relationship

[1\71{( —ul 4 2w§(1\'4-12:)/(M2-K2)] (0-0) + 2 {[(M2-K M)/ (M,—Kp)}-M](Ak/ Ap)

~ [(K*~KyMy)/(MyKy) + KI(Ap/ Ak)ac} = 0. (78)
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‘ Expressions in the square brackets can be transformed as we use (75) to eliminate wg. After some

algebra we arrive at the relationships

MK-ui+203(M-K)/(My=K,) = [my/(My—Ky)](8d+7),

(79)
(MK M) (MK ) -MI( Ak A)—{(K*~K )M, )/ (MoK ) +K]( 8] Ak)r¢==moe/ (MyK))

Here, symbols £, vand c are defined as

f=—(u+v),
T = kov — o, (80)
‘ c=u-va(
where
u= (ky + WAk, v = (k + py) A (81)
Eq. (78) now shows that
wy = (1/26)(8d + 7)(7 = ). (82)

We now use this relation to eliminate wa from (75). The result will be quadratic equation

for d:

23




1670 — 0% ~ 4c%) + 2(px( 0-0)% + 2¢X(k, — py)ld

+ 70— )% + 4cPkppy = 0. (83)
The discriminant of this equation is equal to
4¢3 {(0- )2 (1K) (1Bity) + c(ky + 1) ).
From Egs. (80), (82) it follows that
(7 + Bg)(7 = Bitg) = — uv(ky + p)?

and the discriminant turns out to be

4c2(k2+;12)2[—(a2 -20( + (2)uv +ul- 2uvo( + v2a2(2]

= 4v2cP(ky + o)X (0® = ufv)(E —u/v) .

Eq. (83) now shows that

d =~ {1/18(0-0% ~ 4} Br(0-0)? + 2cX(kot)

F 2velley + wll (0~ w/v)(¢*~ w/v)] (84)

The corresponding values of wa will be

wy = {(0=0)/18%(0=0) >~} {~ Be(ky=tsg) — 2rvefv(iy )] (a%=u/v)(Pu/¥)}
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or, in view of (80),

wg = —{(ky + )0 = /(6% = O = 4’ He(v — ) + v(u + VW (*=u/v)(¢*u/v)}.  (85)

Now it is easy to compute the bilinear form (41). After some algebra we obtain

8/6,m, = (KoM, — K M))/(Kolp + MAK)|[Ky + Mya( — wa( — Q)] +

+ wa(a = ¢) + d(1 - ().
Making use of (50) and (68), we reduce this to the form

B1E,n; = ky + iyo¢ + {m AkAu/[kyAp + pAk + d(Ak — Ap)]}

[~k +d + wa(o—¢) = (d + pg)a(]. (86)
With the aid of (84) and (85) one can show that
—ky 4+ wy(0 = Q) = (d + ) = {(ky + my)/[(u + V(0 - % — 4’} £
kyOu + BAK + d(Ak — Ap) = {1/[(u+v)%(0-0)% — 4]} 4

where
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P 2= 2(1+00)[cP—uv(o-0) Y+ vi2e(1-0Q)~(u+v)(=0) U (*~ u/v)(¢*= u/v),

M= 2uv(u+v)(a—§)2—2c[2cu—-(u—v)[civ](02— u/v)((Q— u/v)H

Now it is easy to check by direct inspection that

2] M= ~((kytpo) ] [u/v + o¢a (2= u/v)(¢- u/v)],

and from (86) we obtain

¢/€1771 = ¢2*/£1771 = k2 + ﬂQUC - [mlAkA/“(kg + /‘2)/2]

P 1v + (0¢/u) + (1/u)d (*—a/v)(¢—u/v)). (87)

The values (87) of ¢,, are attained by the rank 2 lamination with material 2, being the core and

layers being parallel to the main axes of £ and 7. To show this, consider the formula

Zy=2+m,(( 2 %) +[2m 2+u2)](a1nnnn+aztttt)]—l=.ﬁz+m1A_1 (88)

for the effective tensor 2, ~f such a composite assembled from materials 9 and 4, taken with
volume fractions m, and m,, respectively. Parameters a, 0220 (a1 +ay = 1) are linked with

the geometric parameters f,p of microstructure (see Figure) by the formulas

o = {(1-p)/m,, ay=p/m,.

‘ The matrix A in (88) can be represented in the form
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A =Taa;+Hajaq+202) )+ 0252, 1202,
where

™= = (k) [(kg +y)AK] = = /[(leyrhig) Ak,

6 = my(2a)—1)/(ko+to), (89)
p = = (gt [(eyHig) M) = = u/[(koy+ ) A AL,
T=—1/Ap,

and the basis a,,3,,a4 is chosen as suggested in (4) and (56), (57) with the unit vectors i, j

oriented along the main axes of £ and 7.
The inverse matrix AL is computed as
Al= (p/x)aq3 = (0/x)(aj35+302,) + (7/X)ag2q + (1/7)agaq
where x is defined by the formula
X = 7rp—02.

The bilinear form ¢ .. .90.. n obviously depends on a; the extremal values of this parameter can

be found from the relationship
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(f..A_l..n)al = f..(A_l)al..n =0

or, equivalently, from

This one is easily reduced to

(92 + WP)(§17I2 + 52771)*20(/’51771 + 7"52772) =0,

and we obtain the extremal values of 4

6= [r/(c+ Ol|(o/m) + o¢ + {(6® — p/mN(& — o/7) (90)

(recall that £ = 52/51 and o = n2/771).

With these values for #it is easy to arrive at the following expression for the bilinear form

£+ Dy nf €y = Ky + byl + (ml/z)[(l/w) + 0C/p + (1/p)](° — p/m(¢" - c/w)]

or, in view of (89)

- By 1/ €1 = Ky + iy — [my AkAMy 1) 2] [(1/v) + agfus (1/w)] az—u/v)(cz—u/v)].

This expression is the same as (87), and the attainability of the latter bound is thereby proved. A
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result similar to (87) can be established if the condition
B, =K M +u=0 (91)
1771710 73
holds instead of (75). We then arrive at the formula

¢/§1711 = ¢3¢/§1771 = kl + #IUC + [m2AkAy(k1+,u1)/2]

(1/v) + aC/'ﬁi(l/E)J CARET0) (ST (92)
with u, v defined as (cf. (81)).
U= (k; + Ak, v=(k+p)0p (93)

The values (92) are attained for the 2nd rank lamination with material 4, being the core and
layers parallel to the main axes of ¢ and 7. Now it is easy to specify the ranges of parameters
{1,111,0,( that maximize the function ¢ with respect to Wy and d (see (37) and (39)). We will
consider, without loss of generality, the following two possibilities:
(i) Ak >0, Ap > 0 —the "well ordered " case,
(ii)) Ak <0, Ap > 0 —the "badly ordered" case.
Case (i) — "well ordered".

Let us first select between regimes (74) and (74){. We obtain

b1, —0y_=—lm mo/(k+)[(AkAR)(E; My +Eym) = ~lm my/(k+p)|(ARAR)E, 71, (0+€)
which means that if 61"1 <0, then
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max(¢; .4, ) =
61—
Also, if 517’1 >0, then
61
max(¢1+)¢1_) =
P14+

The regimes (74) may neighbor either (87) or (92).

if

if

if

if

(74) 4 and (92) have the common interface; both ¢ and

o+ (20,

(94)
o+ ¢<0.
o+ (20,

(95)
o+ ¢<0.

Consider the case when the ranges

¢ will be assumed continuous across

this surface. The values of ¢/ {1711 should be equal at the interface, i.e.

@ (k) + () o€ —lmymy /() Ak + EARN(AK + o) =

= i o€ + [mykuliy+ay) /2| (1) + 00T (RN = TN = T

or, equivalently,

lwe apply the subscript "+" to designate the regime (74) related to the upper sign. This and

similar agreements apply to other regimes as well.
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® (8 + VoQ)/(k + u) - m Akdu(o + )/ (k + 1) =

[AkAu(k, + ,ul)/2_1—1_v-] [E + vol Vj(a2 - E/V)(C2 - 3/7)}.
Arother form of the latter equation is given by

(@ + o() [(W/AkAu) + mfAkA,;] —2m W(0 + () =

. [(W/Akau) -m';’AkAu] l(a2 - 3/)¢E - T/ (96)
Here, we made use of the relationship
(. (k; + u)(k + pp) = (kg + ul)(i +u)+ mfAkAp.
If we square both sides of Eq. (96), then after some algebra we arrive at
(T7/AkAR) + m3AkAL(o + ¢) ~ 2m (T + F0¢) = 0
or, equivalently,

[¢- -‘I/(mlAkAl‘)](a - mlAkAﬂ'/.‘—’.)

+(¢ —my AkA/V)[o — u(/m AkAE)] =0 . (97)
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This equation represents a hyperbola in the o({—plane; it will be convenient to introduce

'@ -
coordinates

Xy =0+ Xg=0-¢(

and parameters

a; = u/(m;AkAp) + m AkAu[V, @y =u/(m AkAp) —m,AkAp/v.

In the plane x;, x,, Eq. (97) represents the hyperbola (see Fig. 2 illustrating the well ordered

case)

=2 _ 2_=2
(x;—a))"—x5=a;. (98)

Figure 2

With points of its right branch we associate the combination (74) - (92) 4 of neighbors, with
points of the left branch — combination of (74) + - (92) . We will assume below that §1m <0,
then

¢q__ if (xl,x2) € I,

ma.x{¢1+,¢3+, ¢3_} = ¢1+ lf (xlaxz) € 217
29 if (xl,xz) € %,
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In this classification we should assume that x; = o + (2 0 since the range (74) + is then
selected by (94) for £;n, < 0.

The possibility of contact between (74) + and (87), should now be examined. The
corresponding analysis reproduces the one preceding Eq. (98); the obvious modification requires
that m,(m,) should be substituted for my(m,), and p (uy), k (ky) for po(s;), ky(k,),
respectively. Also —u should appear instead of u, and —v instead of v.

Equation (98) is then substituted for

)2 2

(x;=e)% = x2 = &3 (99)

where
a == u/(myAkAp) — myAkApfv, oy =- u/(myAkAp) + moAkApu/v.

The hyperbola (99) is reproduced on Figure 3. With points of its right branch we associate the
combination (74) = (87)_ of neighbors whereas points of its left branch correspond to the

combination (74) + = (87) +

Figure 3

For points belonging to the half—plane x, 20,

maxldyp fa) = by if (x;xp) € Fy.

If we lay Fig. 3 upon Fig. 2, then, depending on the relationship between u/v and u/v, there will
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appear three possibilities. If u/v > u/v, then the half-plane x; 20 will be partitioned into

zones with regimes (74)+, (87)_,(92), shown on Fig. 4.
Figure 4
If u/v =1u/v, then the partitioning is illustrated by Fig. 5; the case u/v < U/v is given by Fig.

6. In this case, regimes (87)_ and (92)_ are separated by a curve along which ¢g_ = P5_; this

curve intersects the x2—a.xis at the points

Xy =2 2J (ky +u0) (kg +py ) u/v .

Figure 5

Figure 6

The case ¢ 17 2 0 as well as the "badly ordered" case (ii) can be handled in a similar way.
Once this classification is completed, the final operation nf maximizing ¢ with respect to

m, can be applied to construct the desired material pattern. Obviously, the results described

above apply in more general situations, i.e. those when the relative amounts of original materials

are prescribed.

Appendix: computation of (S—l)m1
This procedure is similar to that applied to compute (S)"1 = [(4A) - wxE]-1

(c.f. Eq. (30)). We start with the expression
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-1 -1 -1
(5 7)) =mS;" + mpSy” =m 6 + mydy + (m;Q; + myQ,) x E

where §;(6,) and Q,(Q,) are defined, respectively, by Egs. (31) and (32) in which we apply
AI(A2) instead of (A).

Using the notation
(6) = m161 + m252,
(Q) = m;Q, + myQ

27

we may now invert the matrix
(ST = (&) + (V=E.
Referring to Eq. (20), we get
(57171 = [1/(det () +(Q) - - () - - (2))]{det(H(H T + ()(R) - ((Q)--(6)<E}
where
(8) =m 6 + myby = [m /(detA +w--A - w)|(detd - AT+ ww) +

+ [mz/(detA2+w- By w)](detA2- A51+ww) = <[detA/(detA+w- ‘A u)]A_1> +
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@

+ (1/(detA+w-- A w))ww =@ + guw,
() =mQ, + myQ, = [m, /(detA; +w- B rw)]w A+ [mz/(detA2+w- By w)Jw- Ay =
= w--(Af(detA+w--A--w)).
The matrix (§) = & + gww allows invertion:
(7' = (8 +guw) T =87 - [g/(14gu-- 37Ty (@ 7 w)(@ 7 w)

We also compute det(d):

det(8) = det(@+gww) = (det®)[1 + g(w--& 1 --w)].
The final expression for (S™2) ™! becomes

(s7H™ = (1/A){det@[1+g(w- - 871 W)L - gdetd(@ L W) (@7 ) +
(MW - --(2 + gww)] x E},

where

A = det®[1+g(w-- 31 w)] + (Q) - - (B+guw)- - ()

and matrices ®, (Q) and the scalar parameter g are defined by the formulas
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& = ([detA/(detA+w--A--w)]ATD,
() = w--(A/(detA+w--A--w)),

g = (1/(detA+w--A- - w)).

37



@

References

1.

2

LURIE, K.A,, The Extension of Optimization Problems Containing Controls in the
Coefficients, Proceeding of the Royal Society of Edinburg, Vol. 1144, pp. 81-97, 1990.

LURIE, K.A,, FEDOROV, A.V., and CHERKAEV, A.V., Regularization of Optimal

Design Problems for Bars and Plates, Parts 1 and 2, Journal of Optimization Theory and
Applications, Vol. 37, pp. 499-521, 1982 and Vol. 37, pp. 523—543, 1982.

LURIE, K.A., and CHERKAEV, A.V., The Effective Characteristics of Composite
Materials and Optimal Design of Constructions (in Russian), Advances in Mechanics
(Poland), Vol. 9, No. 2, pp. 3-81, 1986.

BALL, J.M., Convexity Conditions and Existence Theorems in Nonlinear Elasticity,
Archive for Rational Mechanics and Analysis, Vol. 63, pp. 337—403, 1977.

STRANG, G., The Polvconvexification of F(Vu), Research Report CMA—-R09—83,
Australian National University, 1983.

KOHN, R.V., and STRANG, G., Optimal Design and Relaxation of Variational
Problems, Parts 1,2,3, Communications on Pure and Applied Mathematics, Vol. 39, pp.
113—137, 1986; Vol. 39, pp. 139~182, 1986; and Vol. 39, pp. 353—377, 1986.

LURIE, A.L,, Nonlinear Theory of Elasticity, North Holland, Amsterdam, New York,
Oxford, Tokyo, 1990.

GIBIANSKII, L.V., and CHERKAEV, A.V., Design of Composite Plates of Extremal
Stiffness (in Russian), A.F. Ioffe Institute Report 914, Leningrad, 1984.

LURIE, K.A,, and LIPTON, R., Direct Solution of an Optimal Layout Problem for
Isotropic Heat Conductors in Three Dimensions, Theoretical Aspects of Industrial Design,
Edited by David A. Field and Vadim Komkov, SIAM, Philadelphia, pp. 1-11, 1992.

38




@

List of Captions

Fig. 1 Rank 2 laminates

Fig. 2 Contact between ranges (74) 4+ amd (92),: well ordered case
Fig. 3 Contact between ranges (74) + and (87),: well ordered case
Fig. 4 Partitioning of the half-plane x, > 0; case u/v> u/v

Fig. 5 Partitioning of the half—plane x, > 0; case u/v = u/v

Fig. 6 Pa.rtitionihg of the half-plane x, 2 0; case u/v < u/v

39




f ——le] —fo

Fig. 1 Rank 2 laminate

¥ Lonie g /




s
PN -
IS
- | =
N
o
' I
¢ ST
1= IS 13

X |




0+




2Vu/v

2vVu/v

*»

=

£44




|
2Vu/v = 2Vu /¥
Pay
® X

-2Vu/v = -2V4/¥




AT +2) /i) -

+mﬁ

ACT+23) fo(Bri+ A A2




Invariant properties of the stress in plane elasticity
and equivalence classes of composites

By ANDREI V. CHERKAEV!T, KoxsTtantIN A LURriE?
AxXD GRAEME W. MiLtOoN!

Uourant Institute of Mathematical Seiences. 23] Mercer Street. New York.
New York 10012, US54,
2 Department of Mathematics, Worcester Polytechnic Institute. 100 Institute Road,
Worcester. Massachusetts 01609, U.S.A.

Attention is drawn to the invariance of the stress field in a two-dimensional body
loaded at the boundary by fixed forces when the compliance tensor &(x) is shifted
uniformly by &£ '(A. —A). where A is an arbitrary constant and S k. p) is the
compliance tensor of a isotropic material with two-dimensional bulk and shear
moduli x and z. This invariance is explained from two simple observations: first. that
in two dimensions the tensor & (1, —1) acts to locally rotate the stress by 90° and the
second that this rotated field is the symmetrized gradient of a vector field and
therefore can be treated as a strain. For composite materials the invariance of
the stress field implies that the effective compliance tensor & * also gets shifted by
% YA\ =) when the constituent moduli are each shifted by & '(A. —A). This
imposes constraints on the functional dependence of & * on the material moduli of
the components. Applied to an isotropic composite of two isotropic components it
implies that when the inverse bulk modulus is shifted by the constant 1/A and the
inverse shear modulus is shifted by —1/A. then the inverse effective bulk and shear
moduli undergo precisely the same shifts. In particular it explains why the effective
Young's modulus of a two-dimensional media with holes does not depend on the
Poisson’s ratio of the matrix material.

1. Introduction

The purpose of this paper is first to review some results for two-dimensional
elasticity. which are not widely known but which may have wide application. and
second to give an appropriate physical interpretation of the formal mathematical
statements embodied in these results. These results concern the invariance of the
stress field in materials with different elastic moduli subject to the same loadings. In
fact this property was noted many times in different contexts. beginning with the
work of Michell (1899). who studied the behaviour of media with holes. Dundurs
(1967) used the complex representation of the Airy stress potential to show the
invariance of the stress field for mixtures of two isotropic components. Lurie &
Cherkaev (1984 a) studied the problem in the context of Kirchhoff plate theory which
involves the same cquations as two-dimensional elasticity. The interest in this
problem increased when Day et al. (1991) observed. through numerical simulation.
that the effective Young's modulus of a two-dimensional media with holes does not
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220 A V. Cherkaer. K. A. Lurie and ¢ W. Milton

depend on the Poisson ratio of the matrix material. Most of these results. togethe‘
with some new applications. are reviewed by Thorpe & Jasiuk (1992).

In §2 we fix notations and state the standard equations of two-dimensional
clasticity (see, for example, Atkin & Fox (1990) for a general reference). In §3 we
explain how the material constants can be modified without altering the stress field.
and in §4 we discuss the implications for composite materials.

We use bold face small letters to denote vectors. Second-order tensors are denoted
b vither bold face capital letters or bold face Greek letters. and fourth-order tensors
arc denoted by caligraphic letters.

2. Equations of planar elasticity

Here we consider a planar simply connected domain @ filled by an elastic material
and loaded on the boundary (2 by a force #(x): this constrains the normal stress
a(x) n at ¢§2 according to o(x)n = t(x), VxeiQ, ()
where n denotes the normal to the surface. For the body to be in equilibrium the net
force and net torque acting on it must be zero:

f t(x)=0. f xxtx)=0. (2)
) )
The equilibrium equation of plane elasticity

Vie=0. oc=0". (3)

may be satisfied identically by means of the Airy potential function ¢ (Atkin & Fo.
1990) in terms of which the stress is given by

d=( P 2 —¢.21)=<0 _l)(¢.11 ¢.12)( 0 l)‘ (4)
—®.12 P 1 0 P2 P/\-1 0
where the comma means differentiation with respect to subsequent cartesian
directions. By introducing the tensor of rotation by a right angle,

0 1 ~
r=(" o) )

&tfie, ix,
¢¥/lx,Crx,

and the differential operator.
W= (

we can re-express (4) in the more compact form
6 =R"(VV¢$) R. (7)

Note that R is the two-dimensional counterpart of the completely antisymmetric
Levi-Civita tensor. We write it as R to emphasize the key point (made in §3) that
the stress field o rotated locally by 90° can be treated as a strain field because VV¢
is the symmetrized gradient of V¢.

The requirement that Q be simply connected is needed to ensure that ¢ is single
valued. Multiply connected domains also have a single valued ¢ provided that
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integrals of the type (2) vanish separately on each internal boundary. Under this
restriction our analysis applies equally well to multiply connected domains.
Now given any symmetric 2x 2 matrix 4 with elements «,; we have

RT-4-R =( a2 —“12) = ("11+"z~: 0 )_(”n "le) =ITrA)—A. (8)

LTy Ay 0 Uy + ity e My,

2y

where Tr denotes the trace of the matrix and I denotes the identity tensor.
Consecuently we can also rewrite (7) using a fourth-order tensor 4. representing the
action of rotation by a right angle on syvmmetric second-order tensor. detined as
follows: )
. — Iy 2 142 N NN NN
-’ﬂjm = E‘)a')' ’)kl_i(‘)ik ())'l +0u ’)jk "’51)")1:1)~ (9)
in the form c=2.VVj. (10)

Here. as elsewhere. the symbol : denotes a double contraction of indices in the same
way that the symbol - denotes a single contraction. Specifically. if &/ and Z are
fourth-order tensors with cartesian elements o/, and 4,,,. and 4 and B are second-
order tensors with cartesian elements d4,; and B;; then we define

3 2 \
(LB = T Ajmn Bnit-
Mm=1 n=1
a2
(A B)i} =3 ¥ &/Um,le". (11)
m=1 n=}
2 2
AB=7S S 4,8,
me=|l n=1

In other words &/ : B is the second-order tensor that results when &/ acts upon B.
&/ A is a fourth-order tensor and represents the product of the two tensors &/ and
2. while 4:B represents the trace of the second-order tensor ATB. or equivalently
the inner product of 4 and B.

The equilibrium condition for the stress is to be supplemented by the constitutive
(Hooke's) law e=%a. (12)

where ¢ is the strain tensor and & denotes the fourth-order compliance tensor of the
elastic material possibly depending on the position x.

If the material is isotropic. then the elasticity tensor € = (¥ )~! = € !(x. ) can be
expressed in the form

Elili.pp) = K0, 84+ p(8, 8, + 0,8, — 3, 0,,). (13)

and its associated compliance tensor ¥ = % (k. u) is given by
S Lk ) = (1/4K6) 0,0, + (1/4p0) (88, + 0,8, — 0, 8,)). (14)
where « denotes the two-dimensional bulk modulus and # denotes the shear modulus.
It should be noted that « is not the same as the customarily used three-dimensional

bulk modulus k: however. for the problem of generalized plane stress where a thin
plate of uniform thickness is deformed in its own plane they are related by the

formula k= 9ku/(3k+4u). (13)

In this context the fields ¢ and & represent the transverse components of the strain
and stress fields averaged over the thickness of the plate. (For more explanation see.
for example. Atkin & Fox (1990).)
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The strain field g(x) is connected with the displacement ufx) via ‘
e=4Vu+(Vu)"). (16)

The last equation is equivalent to requiring that the strain satisty the scalar
differential constraint

V V(R ¢ R)) =0 (17)
or. in the notation of (6) and (9).
VV: R ¢e=0. (18)
Indeed. we have
e I TR L] B
—€n €, —sluy ,+iu, ) wy

and so0 one can easily check that
VV.R:6=V- [V (RT & R)] = (g ,) 1, =y s+ Uy ) (g ) sa =0 (20)

Note that (18) is the well-known infinitesimal strain compatibility condition of two-
dimensional linear elasticity. Combining the equations (10), (12). and (18) we arrive
at the fourth-order differential equation for the Airy potential

V. & :VVg =0. (2h)
where ¥ _is & rotated by a right angle:
F =RS A (22)
Clearly. the isotropic tensor ¥ ! coincides with the rotated one:
FlUx.u) = Lk p). (23)

and equation (21) takes the form

o &1 1y & &
——+—= -+ )|+
Cx,Cx, Cx,x,/\k p/\Cx Cry Caylry

¢t o2/ & ¢oN2f & ¢t N4/ &
—(.‘ C )_(\ C )—(“ C )_(‘ ¢ )+<~ C )—(\ C ¢=0 (24)
cx cx,/p\cx,Cr, crycx,/ u\cxr, Cr, Cx Cx,) u\Cx, Cry

We remark in passing that (21) also describes the bending of thin plates according
to Kirchoff theory: ¢ represents the vertical detlection of a horizontal plate. VVg is
the tensor of curvature of the plate. & _is the tensor of Hexural rigidity dependent
on the local thickness of the plate and ¥_: VV@ represents the tensor of bending
moments, satisfving the equilibrium equation (21) (Timoshenko 1959). Thus all the
ensuing analysis applies equally well to the plate equation (see Lurie & Cherkaev
1984 4).

3. Equivalent plane elasticity problems

It is remarkable that any potential ¢ satisfving the equation (21) is for any choice
of the parameter A also a =olution of

VV. ¥ . VVp =0, (25)
where L =R A S = L+ LU =N) (26)
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implyving that the Airy potential and therefore the stress tield remains unchanged
when the material constants are modified from ¢ to %" We will call such a pair of
materials with compliance tensors #(x) and % '(x) equivalent. The result (23) can be

established directly by substituting « = A\, g = — A in (24) thereby showing that
VV: YA =) VVs =0 (27)

for any function ¢. Formally speaking the compliance tensor ¥ /(A. —A) is nothing
other than a multiple of the fourth-order rotation tensor #: from (10) and (14) it
tollows that

The physical explanation for the identity (27} is that the stress field ¢ when rotated
by a right angle at each point results in a field (see (7))

=R 6 R' =R:06=VV3 (29)

satisfving the same differential constraints (17) as a strain field. Indeed. it is clear

that
VV.RT-e""R=VV:6=V:(V-a)=0. (30)

Furthermore. from (29) it follows that
e ={Vu"+(Vu")T). u® =V4. (31)

So this strain field is associated with a special vector displacement field u® which is
in turn the gradient of the Airy potential function. Note. that the displacements u
and ' in the equivalent materials % and %’ under the same surface loading #(x)
differ by a multiple of «°

W =u+u/2\) =u+Vo/(2A). (32)

In particular this gives a direct way of finding the gradient of the Airy stress
potential V¢ from measurements of the displacements u and u’.

Another explanation of the equivalence (23). (26) follows from consideration of the
elastic energy variational principle

minJ‘ (). (33)
L4 Q
where the minimum is over all & satisfving (1) and (3). and
WP o)y=0:F 6a=VV: AL R VV. (34)
The Euler-Lagrange equation associated with this minimization over 4. or

equivalently ¢. coincides with (21). It is easy to observe that the integrand
W(ZL YA —A).6) can be expressed as the divergence of a vector field

(L UA. —).0) = (1/20) VVS: R: VVS

=@ P9 )/A=V 0 (35)
; S _L R __l_ ¢.1¢.32—¢.z¢.12) o
where v = i V3-A.VV5 = N (¢'1¢.”_¢.l¢.” . (36)

and therefore its integral depends only on the boundary terms. Such functions are
called null lagrangians (see. for example. Ball ¢t al. 1981) because their Euler-
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Lagrange equations vanish identically. Thev play an important role in tht‘
theories of quasi-convexity (Kohn & Strang 1986) and compensated compactness
(Tartar 1979) used now in many applications including optimal design. hom-
ogenization. liquid erystals. and bounds on eftective moduli of composite materials.

In fact these arguments parallel results of Dyvkhne (1970). and Stroud & Berman
(1984) (see also Keller 1964: Milton 1988) for conductivity in two dimensions in the
presence of a magnetic field perpendicular to the plane of conduction. which
generates through the Hall-effect a non-symmetric conductivity tensor. They
observed that any electrical potential I'(x) satistving the equation

V- Z(x):VI'=0. (37)
where Z{(x) represents the conductivity of the body. also solves
V(Z(x)+AR)- VI = 0. (38)

for any choice of A. Just as a stress field rotated by a right angle produces a strain
field so does an electric field. when rotated by a right angle produce a current
(divergence free) field. (Note, however. that a strain field rotated by a right angle
does not produce a stress field whereas a current field. when rotated by a right angle
does produce an electric field.)

Now we investigate some particular physical consequences that follow from (25).
The representation (23) shows that the coefficients of the compliance tensor ¥ and
consequently the strain field ¢ cannot be determined from the solution & of the
boundary value problem (see (25). (1). and (7)). For example. instead of a locally
isotropic elastic material with moduli « and g one can substitute into the equation

(25) the moduli «* and s’ ‘
1 i

= ~—— - — =

K'(x) «(x)

p—
—

1 1
A (39)

=

and it does not change the solution ¢ nor the stress field 6. We will call such a pair
of materials equivalent. Note. that the substituted material does not necessarily
have positive moduli «” and 4" and therefore may not have a physical interpretation.
Let us consider the relation between the Young moduli £ and E” and the Poisson
ratios v and v’ of equivalent materials. Comparing the constitutive law (12) with the

defining equation
ey = (1/EY (o), —vo,,). (40)

for the Young modulus £ and the Poisson ratio » we obtain the relations

1 1 1 L WV/L 1 _ k—p
_:_._._.{.—~ v=|l——— ,‘ —+—- = . (41)
E 1 du k)i \k n) k+u

It is clear from (39) that the equivalent materials have the same Young moduli at
each point in the body

E'(x) = E(x). (42)
and Poisson ratios linked by
vi(x) = v(x)—E(x)/2A. (43)

where A is an arbitrary parameter constant throughout the hody.
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In particular this implies that the stress field in a loaded body with constant
Young modulus does not react when the Poisson ratio v(x) is shifted uniformly.

4. Applications to composites

Finally. there are useful implications of the identity (27) to the theory of
composites. Suppose now that the body @ is a statistically homogeneous (or periodic)
composite with grain sizes much smaller than the size of Q. subject to the loading (1).
This composite can be replaced by an equivalent homogeneous effective medium
with compliance tensor & *, connecting the locally averaged stress and strain tensor
fields.

(&) =L *:{a). (+4)

where () denotes local averaging over a test sphere @(x) centred at x, which is
larger than the grain sizes but smaller than all other characteristic lengths such as
the size of £ and the length scale over which #(x) varies. To obtain the effective
compliance & * it suffices to consider an infinite body of the composite loaded
uniformly. and the averages {-) can then be taken over the whole body. or
equivalently over a period cell.

Since the stress g is the same in the equivalent materials .¥(x) and ¥ ’(x) (where
& ’(x) is given by (26)) when they are loaded uniformly in the same way. it follows
that the strain fields satisfy the relation

£§=F"6=F0+F A -A:e=c+F A —A): 0. (43)

Taking the average of this relation over a period cell. and remembering that
& YA, —A) does not depend on x. gives

F*. a)=F*: (a)+ LA —A): (o). (46)

Since this holds for all uniform loadings. or equivalently for all values of the average
stress (a). we deduce from (46) that the effective tensors are linked through the
equation

Fr=F*L PN —A). (47)

In other words the effective compliance tensor is translated by the same tensor as the
compliance tensor of the initial inhomogeneous medium. Applied to an isotropic
composite of isotropic components it implies that when the moduli 1/x(x) and 1/u(x)
are shifted according to (39) their effective moduli are shifted in the same way
1 1 1 1 1 1

K* K*+/\' W ot A (48)
This observation explains the numerical results of Day ef al. (1991): see also Thorpe
& Jasiuk (1991). They found that the relative Young's modulus E*/E of a two-
dimensional sheet containing a statistically isotropic distribution of circular holes.
overlapping or not. is independent of the Poisson’s ratio v of the sheet. The reason
for this is clear. From dimensional considerations £*/E can only depend on v and on
the geometrical configuration of the holes. So. without loss of generality. let us
suppose the Young's modulus £ of the plate remains fixed. A uniform shift in the
Poisson’s ratio of the sheet from v to v’. while keeping the Young's modulus £’ = E.
corresponds to a transformation of the form (42) and (43) with A = E/2(v—v'). In
other words plates with different Poisson’s ratios but sharing the same Young's
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modulus and geometrical configuration of holes are equivalent. Under this
transformation the holes remain holes and according to (48) and (41) the effective
Young's modulus £* and effective Poisson’s ratio v* are transtormed to

E'*=FE* (49)
v*¥=yp*—(r—v)E*/E. (50

Conzequently the ratio £*/E remains unchanged. ie. it can only depend on the
geometrical configuration of the holes.

An interesting consequence of (48) is that it leads to a very simple proof of the
Hashin-Shtrikman—Hill bound on the bulk modulus «* (Hashin & Shtrikman 1963
Hill 1964). We begin with the Voigt bound on «* (Hill 1952)

k* < kD, (31)

which holds for all choices of A such that " and &’ given by (39) remain non-negative.
In particular. when A takes its extreme value.

A = p” = max pu(x), (52)

X

-1 -1
(51) implies (—1—+—l—) < <(—l——+L) > (33)
K* pt k(x) u*

which is the Hashin-Shtrikman-Hill bound. This is one of the simplest examples of
the so-called translation method to bounding the effective moduli of composites. The
method generalizes the idea of equivalence. and it not only provides an alternative
derivation of the Hashin-Shtrikman bounds on the effective conductivity. buik a’
shear moduli (Lurie & Cherkaev 1984a. b. 1986«: Tartar 19853: Francfort & Mur
1986 : Milton 1990. 1991) but also generates coupled estimates on the possible (x*. u*)
pairs (Cherkaev & Gibiansky 1991). exact estimates of the elastic energy stored in the
composite for a given applied field (Lurie & Cherkaev 19866 : Gibiansky & Cherkaev
1987 Allaire & Kohn 1991), and sharp bounds on the effective elastic moduli of
polverystalline materials (Avellaneda & Miiton 1989 : Cherkaev ef al. 1991).

The equivalence (47) was the kev point used in the paper by Lurie & Cherkaev
(1984a) to get the bounds for the set of all possible effective tensors & *(x) when
#(x) is isotropic and either the bulk or shear modulus of the material is constant.
When the shear modulus is constant then the effective tensor is necessarily isotropic
and shares the same shear modulus as the components (Hill 1964). To obtain the
effective bulk modulus one can choose A = u giving

1 1 1 1

A= ——t—. — =0, (34)
K'(x) «x(x) @ n

From (25) it is immediately clear that the Airy potential satisfies
{ l)
Al—+=|A¢ = 0. 55)
(K(x) Iz ? (
where A denotes the laplacian. implying that the scalar field
Tre'(x) = 31/k(x)+ 1/p) Ap(x) (56)

is harmonic (see {33)).
The physical explanation of this is quite clear. The equivalent material has infinite
shear modulus and so its only possible deformations are conformal ones since a
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change in the angle between two lines under deformation indicates shear. In
particular, if the deformation in the equivalent media is on average uniform then it
must necessarily be a uniform dilation. The associated strain field in the equivalent
media is independent of x. and proportional to the identity tensor

g;(x) =gy = ady; V. (57)
and the trace of the average stress field is
Trde' ) = {Ag(x)) = 2{(1/x(x)+1/)" ' Tre)
2(1/k(x)+ /)7 Tr e, (58)

This in conjunction with (48) shows that the effective bulk modulus «* satisfies

I A 1 1\! -
F) ==+ ) o

independent of the microstructure of the composite. The same conclusion was also
reached by Hill (1964), and by Francfort & Tartar (1991). who showed the relation
can be generalized to three-dimensional composites with constant shear modulus.
The result also follows from the Hashin—Shtrikman bounds (Hashin & Shtrikman
1963) which collapse to the single relation (59) when the shear modulus is constant.

Since the equivalent medium has infinite shear modulus its Poisson ratio given by
(41) is — 1. Materials with Poisson’s ratios close to —1 although not vet found in
nature can nevertheless be constructed (see. for example, Lakes 1991 Milton 1992).

In a similar way. supposing that the bulk modulus is constant and choosing A =
—«k one can get the equivalent incompressible medium. For two-phase composites
of isotropic incompressible media. mixed in prescribed proportions. Lipton (1988)
has obtained a complete characterization of the set of all possible effective elasticity
tensors. This immediately gives. via (47), a complete knowledge of the possible
elasticity tensors when the bulk-modulus is finite and constant in both phases.

Clearly equivalent media differ very much in their elastic behaviour. The
equivalence means that when subject to the same loading conditions they (as well as
infinitely many other equivalent materials) possess the same stress tensor in each
point of the body Q. Finally. note that (47) also provides a useful test for numerical
codes for evaluating effective moduli. no matter if the component phases are
isotropic or polyverystalline.
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