
AD-A260 075T2 2

Progressive Retry for Software Error Recovery in
Distributed Systems

Yi-Min Wang*, Yennun Huangt and W. Kent Fuchs*

"Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

1308 West Main Street
University of Illinois, Urbana, IL 61801

t AT&T Bell Laboratories, Muriray Hill, NJ 07974

Primary contact: Yi-Min Wang.
E-mail: ymwang(crhc.uiuc.edu DIC

Phone: (217) 244-7161 ELECTE
FAX: (217) 244-5686 jANI 5 1993 L

Abstract E
In this paper, we describe a method of execution retry for bypassing software errors based

on checkpointing, rollback, message reordering and replaying. We demonstrate how rollback
techniques, previously developed for transient hardware failure recovery, can also be used
to recover from software faults by exploiting message reordering to bypass software errors.
Our approach intentionally increases the degree of nondeterminism and the scope of rollback
when a previous retry fails. Examples from our experience with telecommunications software
systems illustrate the benefits of the scheme.

Key words: distributed systems, software boundary errors, checkpointing and message log-
ging, message reordering, progressive retry

'Acknowledgement: This research was supported in part by the National Aeronautics and Space Admin-
istration (NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS), and in part by the Department of the Navy and managed by
the Office of the Chief of Naval Research under Contract N00014-91-J-1283. .. , .

U,.t.butioAn t

A30a0i,7l26 1 1
L

93-00726 ",
swamplmallfl

1 Introduction

Numerous checkpointing and rollback recovery techniques have been proposed in the

literature to recover from transient hardware failures. Independent checkpointing schemes

(1, 2] allow maximum process autonomy and general nondeterministic execution, but suffer

from potential domino effect [3]. Coordinated checkpointing schemes [4,5] eliminate the

domino effect by sacrificing a certain degree of process autonomy and paying the cost of

extra coordination messages. Recently, a lazy checkpoint coordination technique [6] has been

proposed as a mechanism for bounding rollback propagation and providing a flexible trade-off

between run-time coordination overhead and recovery efficiency.

Log-based recovery provides another way of achieving domino-free recovery. Under the

piecewise deterministic model [7], the domino effect is avoided through message logging and

deterministic replaying. In a pessimistic logging protocol [8,9], each message is logged upon

receipt which prevents the rollback of a faulty process from causing the rollback of any

other process. Optimistic logging protocols [7, 10-12] have been proposed to reduce run-

time overhead by using asynchronous message logging at the expense of possible rollback

propagation due to lost volatile message logs upon failure.

Instead of proposing another checkpointing and recovery protocol, this paper investigates

the possibility of applying the log-based techniques to recovery from software errors [7, 13-

16]. We previously proposed message reordering for changing the communication pattern at

run-time in order to reduce the rollback distance for hardware failures [17]. In this paper, we

demonstrate how message reordering can also provide an effective way of bypassing software

errors. Fig. I illustrates the basic concept. When a software error is detected at the point

marked "X", rollback and message replaying based on the complete checkpoint and message

log information may lead to the same error. By intentionally discarding part of the message

logs, we can deterministically reconstruct the system state up to the dotted line shown in

2

Fig. 1, and then use message reordering to introduce nondeterministic execution beyond the

dotted line in order to bypass the software error. Unlike the recovery block approach [31 and

the N-version programming [181 which both use different programs to execute on the same

set of data, the above on-line retry approach [14, 19] uses the same program to operate on a

different but consistent set of data obtained through message reordering.

P0-PO ..:

P -4

P 2

...................... .. °........°''°..

P3

P4

+ Checkpoint e Message

Figure 1: Nondeterministic execution beyond the dotted line through message reordering.

Based on our experience with telecommunications software systems, the technique of

execution retry with rollback and message replaying has demonstrated its usefulness for

bypassing the so-called software boundary errors. Usually, an application contains a main

routine that performs the designated functions, and some boundary code for handling situa-

tions such as program exceptions, resource failures, urgent or unexpected messages, failures

on system or function calls, etc. In many application programs that we have observed, the

boundary code is usually not well tested due to the difficulty in creating such boundary

conditions in a test environment [15]. Consequently, the possibility of software errors in the

3

Ij

boundary code, called the software boundary errors, can potentially be higher than that in

the main routine [151. These kinds of software boundary errors may cause a catastrophic

event such as the AT&T 4ESS switching systems failure on January 1990 [20]. The fact that

a software boundary condition usually occurs very rarely also suggests that if a boundary

error does occur, then on-line retry by replaying and/or reordering the incoming messages

may be helpful in bypassing the boundary condition.

The simplest approach to execution retry is to Troll back the entire system and restart

from a consistent global checkpoint. This can result in nondeterministic execution in a

distributed message-passing environment and this nondeterminism may result in bypassing

the boundary condition. However, it is often desirable to limit the scope of rollback, the

number of involved processes as well as total rollback distance, in order to achieve faster

recovery [21]. It is possible that a small-scope rollback involving only a few processes suffices

for successful retry. This motivates our progressive retry idea which progressively increases

the scope of rollback to intentionally introduce more nondeterminism when a previous retry

fails. Such an idea has been implemented in some telecommunication systems software and

has been shown to improve the availability of the systems. The objective of this paper

is to describe and formalize the concept of progressive retry with message reordering to

bypass software errors and to present a systematic method for implementing the retry. The

technique is being built into an existing fault tolerance library [22] in order to facilitate

future software development.

2 Logical Checkpoints and Recovery Line

Let N be the number of processes in the system. Suppose pi in Fig. 2 initiates a rollback

at the point marked "X". In a general nondeterministic execution, the rollback of p, to its

4

checkpoint C will unsend messages Mi and M3 , and thus require p0 to Loll back to a state

before the receipt of M, in order to unreceive M, and similarly require p2 to unreceive M3;

otherwise, M, and M3 are recorded as "received but not yet sent", which results in the

inconsistency of system state.

P 0
P 0

M3 M

Logical checkpoint
(a) (b)

Figure 2: State consistency (a) example checkpoint and communication pattern (b) logical
checkpoint dependency and recovery line.

However, if p, retains enough information and can guarantee to resend M, during its

reexecution1 , the execution of po based on the processing of M1 is still valid and therefore po

need not roll back. This can be achieved by the yiecewise deterministic model and additional

message logging and replaying. The piecewise deterministic model says: process execution

between two consecutive message receipts, called a state interval, is deterministic. So if p, has

logged both the message content and the state interval index [10] (i.e., the processing order)

for messages M0 (but not for M2) by the time it initiates the rollback, pi can deterministically

reconstruct the state up to immediately before the receipt of M 2 (an nondeterministic event)

and therefore M1 remains a valid message.

A useful way to unify these two seemingly different state consistency concepts is to

introduce the notion of a logical checkpoint. While a phaysical checkpoint like checkpoint C

1Under the fail-stop [231 assumption.

5

allows the restoration of process state at the point the checkpoint was taken, checkpoint

C and the message log of Mo, plus the underlying piecewise deterministic model effectively

place a logical checkpoint at the end of the state interval started by Mo (as shown in Fig. 2(a))

because of the capability of state reconstruction. In other words, although pi "physically"

rolls back to checkpoint C, it "logically" rolls back to the above logical checkpoint and

therefore does not unsend MI. For clarity, we let each physical checkpoint initiate a new

state interval and represent it by a logical checkpoint at the end of that interval. Based on

the above notion of logical checkpoints, the following rollback propagation rtIe 2 is then valid

with or without the piecewise deterministic model:

if the sender rolls back and unsends a message M, the receiver must

also roll back to unreceive M.

We define a global checkpoint as a set of N (logical) checkpoints, one from each process.

A consistent global checkpoint is a global checkpoint that does not contain any two check-

points violating the above rollback propagation rule. The recovery line is the latest available

consistent global checkpoint which uniquely minimizes the total rollback distance. As an

illustration, suppose all the messages in Fig. 2(a) except for M2 are logged when p1 initiates

the rollback. Fig. 2(b) shows the dependency graph for the available logical checkpoints. By

starting with the set of the last logical checkpoints of each process and applying the rollback

propagation rule described above, we can determine the recovery line to be the set of shaded

checkpoints in Fig. 2(b).

'In contrast, when the receiver rolls back and unreceives a message M', the sender does not have to roll
back if M' is logged and can be retrieved by the receiver during reexecution.

6

3 Progressive Retry for Bypassing Software Errors

We base our discussions on the following system model and recovery protocol.

FIFO channel : messages sent along the same channel between any two processes are

ordered by monotonically increasing sequence numbers

Nondeterministic merge component [7]: messages from all incoming channels are merged

by the merge component based on a possibly nondeterministic merge function, and are

assigned the state interval indices

Logging before processing : every message is logged before delivery to the application

process3

Direct dependency tracking (10, 24, 251: only the dependency of the receiver's logical

checkpoint on the sender's logical checkpoint resulting from each message processing

is recorded, as opposed to the transitive dependency tracking which has been used in

many log-based papers [7, 11].

Centralized recovery line computation : the global dependency information is col-

lected by a single process [2, 10] which is responsible for the recovery line computation4

3.1 Recovery Line and Message Logs

With respect to the recovery line consisting of the shaded checkpoints shown in Fig. 3,

messages can be classified into four categories.

3Our work can be extended to systems with asynchronous (optimistic) message logging by making addi-
tional logical checkpoints unavailable for those lost volatile message lop due to the failure.

'A distributed and synchronized algorithm has been proposed by Sistla and Welch [11]. A distributed
and asynchronous algorithm can be found in Strom and Yemini's paper [7].

7

1. Obsolete messages: In order to reconstruct the state up to the recovery line, the

system can restart from the set of restarting checkpoints, called the restart line, as

illustrated in Fig. 3. Messages that were processed before the restart line, for example,

Mo, are therefore obsolete messages and not useful for recovery.

2. Messages for deterministic replay (deterministic messages): Messages pro-

cessed between the restart line and the recovery line must have both their message

contents and state interval indices logged. These messages need to be replayed in their

original order for deterministic state reconstruction. MD and Mb are such messages.

3. In-transit (or channel-state) messages: For messages sent before the recovery line

and processed after, only the message contents in the log are valid. The state interval

indices are either not logged or invalidated. Messages like Mt and Mj' belong to this

category and can be processed in arbitrary order.

4. Orphan messages: Messages sent after the recovery line are orphan messages. MI

can not exist because otherwise the recovery line is not consistent. MR is invalidated

by the rollback and should be discarded.

In an optimistic logging protocol [71, rollback propagation can result from the nondeter-

minism due to the lost volatile message logs upon failure. Based on the available message logs

from stable storage, the recovery line is uniquely determined and each message must stati-

cally belong to one of the four categories depending on its position relative to the recovery

line. In contrast, our retry technique progressively increases the degree of nondeterminism

and the scope of rollback by discarding more message logs as a previous retry fails. At each

step, a new recovery line or restart line is computed based on the remaining checkpoint and

message log information. Since the recovery line moves backward in time during the pro-

gressive retry, messages belonging to the ith category can shift to the jth category, where

8

POp 0 0

MD MR.. M

MR
P 2

--- Restarting checkpoint

Figure 3: Example obsolete, deterministic, in-transit and orphan messages.

j _ i, at a later stage.

3.2 Progressive Retry

We will use the example checkpoint and communication pattern shown in Fig. 4 to illustrate

progressive retry in five steps. We assume one retry per step and no hardware failure for the

following discussion.

Step 1 - Receiver deterministic retry: When p2 detects an error, it first initiates a

local recovery by rolling back to checkpoint C and deterministically replaying the

message logs. Because every message is logged before processing, message logs for M0,

Mb and M, must be available and allow p2 to reconstruct the state up to the point

it detected the error, as illustrated by the recovery line shown in Fig. 4(a). In some

cases, transient failures may be caused by some environmental factors which will simply

disappear after the recovery, and the Step-1 retry may succeed. If the reexecution still

leads to the same error, the checkpoint and message log information is copied to a

trace file for off-line debugging and Step 2 is initiated.

9

P 0 A

Bc

m /V C

D

E
(a)

p 0
4
A

M 0 b M 8 c
P2 C

Ma Md

D

P 4 +A

(b)

10

Po A

Pb2 M X-M--

M
dS

P4 D

E

(c)

P O 0 + wA

Ma M

P4 M Y / M d/J

(d)

Figure 4: Progressive retry (a) Step 1: receiver deterministic retry (b) Step 2: receiver non-
deterministic retry (c) Step 3: sender deterministic retry (d) Step 4: sender nondeterministic
retry.

11

Step 2 - Receiver nondeterministic retry: p2 starts introducing nondeterminism by

discarding the state interval indices of Ma, Mb and Al, in order to allow message

reordering. As a result, the last three logical checkpoints of p2 are now unavailable

and the resulting recovery line is shown ii Fig. 4(b). Notice that only VM, and Mb

are in-transit messages available for reordering; message M, now becomes an orphan

message and should be discarded.

Message reordering can be achieved by restoring the in-transit messages to the input

of nondeterministic merge function and re-assigning them .iith possibly different state

interval indices. An alternative is to group the messages from the same process together

if the software bug is possibly due to concurrency control.

Step 3 - Sender deterministic retry: Messages that have been received but not yet

logged, i.e., still in the system queue, can be lost upon failure. Message Md in Fig. 4

is an example. Such lost messages can be detected' when the receiver receives another

message from the same sender which indicates a discontinuity in the message sequence

number [7]. The sender is then requested to resend the message if sender logging is

available [7], or to regenerate the message through deterministic state reconstruction

111].

The immediate recovery of such lost messages is useful for increasing the number of

messages available for reordering. p2 now discards the message contents of MI and A/b

as well. Although the resulting recovery line as shown in Fig. 4(c) is the same as the

one in (b), p3 in addition to pi and p2 is rolled back6 in order to regenerate (recover) the

lost message A 1., Again, if sender logging is available, p3 can simply resend messages

For some applications, lost messages may be acceptable. For example, if the lost message is a channel
request message in a telephone switching application, the user will simply redial or try again later.

Sp2 can notify p3 to roll back by sending p3 the largest sequence number of any message sent from p3 and
received by p2 before checakpoint C. Similar messages are sent to all other processes.

12

M. and Md without rolling back.

Step 4 - Sender nondeterministic retry: When reordering Ma, Mb, Md and possibly

other newly-arriving non-orphan messages still fails to bypass the software error, p2

suspects some of these messages should not have been generated in the first place.

Therefore, pi and p3 are requested to roll back further by discarding the state interval

indices of the message logs that can deterministically generate these messages. The

resulting recovery line is given in Fig. 4(d). Nondeterminism can be introduced by p,

reordering M,, and M,,, and p3 reordering M•, M. and M•.

Step 5 - Large-scope rollback retry: When all previous small-scope retries fail, a large-

scope rollback can be initiated. Instead of backing off a few state intervals for reorder-

ing a small number of messages involving a small number of processes, all processes in

the system are requested to roll back K intervals where K should be a large number

compared to Step 1 through Step 4. The recovery line computed from the remaining

available logical checkpoints is then used for the final-step retry.

The choice of K is a trade-off between output commit and garbage collection versus

the available nondeterminism. Outputs to the outside world that cannot be rolled

back should only be released after the recovery line has advanced beyond the state

intervals that generate these outputs. Checkpoints and message logs can only be

garbage-collected after the restart line has passed their corresponding state intervals

[11]. Therefore, while a larger K means more nondeterminism is available, it also results

in slower output commit and less effective garbage collection, which are translated into

slower response to the users and larger space overhead, respectively. In the extreme

case where fast output commit is the most important requirement for the system,

only those state intervals beyond the last output can be backed off for introducing

13

nondeterminism t7].

4 Experience and Discussion

In this section, we describe two examples from telecommunications software with software

boundary errors. These errors resulted in program hang-up or program crash. However, by

using the progressive retry technique (Step 2 for Case 1 and Step 3 for Case 2), these programs

were able to quickly recover from the errors. To simplify the description, we have abstracted

only the components which contributed to the errors. These software errors were later found

and fixed. These examples show that even before the software faults were repaired, the

software errors did not interrupt the services, due to progressive retry.

Case 1
In a file replication mechanism, all "open", "write" and "close" system calls are trapped

by the primary node and passed to an agent process on a backup node. The agent process

performs the system calls to replicate files. The agent process opens a file when an open

command is received and closes a file when a close command is received. There is only one

agent process to serve many applications on the primary node. Since the number of available

file descriptors for the agent process is limited and each application process could open many

files at the same time, the agent process may run out of file descriptors. Therefore, it has to

keep track of how many files are open. A boundary condition for the agent process occurs

when all file descriptors are used. The agent process then searches for an open file descriptor

with the earliest access time and closes that file.

A software bug existed in the search procedure so that once the agent process entered the

boundary condition, the search process never finished and the agent process hung up. The

14

agent process implemented the checkpointing and logging mechanism and had an external

hang-up detection mechanism. Once the agent process entered the boundary condition, the

failure was detected and the agent process was rolled back. When the agent process was

restarted, it restored the checkpointed state, reordered and reexecuted the message logs.

Once the messages were reexecuted, the agent program was able to continue its operation.

The following example illustrates how progressive retry functions in this instance. Let

ol command stand for opening file 1, vi command-stand for writing data to file 1 and ci

command stand for closing file 1. The agent process can open at most 2 files at the same

time. The following command sequence will cause the agent program to enter the boundary

condition when processing o3 and hang up.

oi o2 wi wl v2 wl w2 o3 w3 ci c2

Suppose the logging mechanism had logged all the commands before the failure. When the

agent process is restarted, the command log may be reordered with the following sequence:

ol wl wl wl cl o2 w2 w2 c2 o3 v3.

In this sequence, the boundary condition never occurs, and therefore the reexecution of the

command log succeeds.

Case 2
In a cross-connection system, a process (BK) is used to track the available channels in

the switch. The BK process gets information from two other processes: process (CA) which

sends the channel allocation requests and process (DA) which sends the channel deallocation

requests. A boundary condition for BK occurs when all channels are used and the process

receives additional allocation requests. In that case, a clean-up procedure is called to free

up some channels or to block further requests. However, the clean-up procedure contained

a software glitch which could cause the process to crash.

15

The cross-connection system uses a daemon watcher to detect a process failure and em-

ploys checkpointing and message logging mechanism to recover from the failure. The fol-

lowing example illustrates how progressive retry works in this system. Suppose the number

of available channels is 5. The command r2 stands for requesting two channels, and the

command f2 stands for freeing two channels. The following command sequence can cause

the BK process to crash because of the boundary error.

CA sends r2 r3 rl

DA sends f2 f3 fl

BK receives r2 r3 rl and crash

If the message f2 is received and logged before BK crashes, BK will be able to recover

by reordering the message logs. However, if BK crashes before the f2 message is logged,

reordering messages r2, r3 and rl (Step 2) will not help. In this case, the local recovery of

BK fails and CA and DA will be requested to resend their messages (Step 3). Because of

the nondeterminism in operating system scheduling and communication delay, the messages

may arrive at BK in a different order. For example, the message order can be

r2 r3 f2 f3 rl fl

Since the boundary error does not occur in this case, the progressive retry involving three

processes succeeds.

5 Concluding Remarks

We have described a method of applying the log-based recovery technique, previously

developed for fail-stop hardware failures, to recovery from transient software errors. Our

16

five-step progressive retry approach discards partial message log information at each step in

order to introduce an increasing degree of nondeterminism for bypassing software errors. Al-

though not every software error can be recovered through message resending, reordering and

replaying, we have observed that progressive retry can provide an effective way of recovering

from boundary errors in long-life software systems.

The techniques described are being implemented in the fault tolerance library libft

which has been developed in AT&T Bell Laboratories [22]. Libft is a C library which

supports N-version programming, recovery blocks, exception handling, message logging, and

checkpointing and rollback recovery, and has been used by several AT&T products. Cur-

rently, the recovery mechanism in libf t provides the first step of receiver deterministic retry

with implementation of the remaining steps in progress.

Acknowledgement

The authors wish to express their sincere thanks to Chandra Kintala (AT&T), Andy

Lowry (IBM) and Pi-Yu Chung (UIUC) for their valuable discussions.

References
[1] B. Bhargava and S. R. Lian, "Independent checkpointing and concurrent rollback for

recovery - An optimistic approach," in Proc. IEEE Symp. on Reliable Distr. Syst.,
pp. 3-12, 1988.

[21 Y. M. Wang and W. K. Fuchs, "Optimistic message logging for independent check-
pointing in message-passing systems," in Proc. IEEE Symp. on Reliable Distr. Syst.,
pp. 147-154, Oct. 1992.

[3] B. Randell, "System structure for software fault tolerance," IEEE Trans. on Software
Engineering, vol. SE-1, pp. 220-232, June 1975.

[4] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of
distributed systems," ACM Trans. on Computer Systems, vol. 3, pp. 63-75, Feb. 1985.

17

[5] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "The performance of consistent
checkpointing," in Proc. IEEE Symp. on Reliable Distr. Syst., pp. 39-47, Oct. 1992.

[6] Y. M. Wang and W. K. Fuchs, "Lazy checkpoint coordination for bounding rollback
propagation." Tech. Rep. CRHC-92-26, Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign. Submitted to Int'l Conf. on Distributed Computing
Systems, 1993.

[7] R. E. Strom and S. Yemini, "Optimistic recovery in distributed systems," ACM Trans.
on Computer Systems, vol. 3, pp. 204-226, Aug. 1985.

[8] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault-tolerance,"
in Proc. 9th ACM Symp. on Operating Systems Principles, pp. 90-99, 1983.

[91 M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication
mechanism," in Proc. 9th ACM Symp. on Operating Systems Principles, pp. 100-109,
1983.

[10] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic
message logging and checkpointing," J. of Algorithms, vol. 11, pp. 462-491, 1990.

[11] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging," in
Proc. 8th A CM Symposium on Principles of Distributed Computing, pp. 223-238, 1989.

[12] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," in Proc. IEEE
Int'l Conf. on Distributed Computing Systems, pp. 454-461, 1991.

[13] J. Gray, "A census of tandem system availability between 1985 and 1990," IEEE Trans.
on Reliability, vol. 39, pp. 409-418, Oct. 1990.

[141 J. Gray, "Dependable systems." Keynote Speech, 11th Symp. on Reliable Distr. Syst.,
Oct. 1992.

[15] M. Sullivan and R. Chillarege, "Software defects and their impact on system availability
- A study of field failures in operating systems," in Proc. IEEE Fault- Tolerant Computing
Symposium, pp. 2-9, 1991.

[16] D. Jewett, "Integrity S2: A fault-tolerant UNIX platform," in Proc. IEEE Fault-Tolerant
Computing Symposium, pp. 512-519, 1991.

[17] Y. M. Wang and W. K. Fuchs, "Scheduling message processing for reducing rollback
propagation," in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 204-211, July
1992.

[18] A. Avizienis, "The N-version approach to fault-tolerant software," IEEE Trans. on
Software Engineering, vol. SE-11, pp. 1491-1501, Dec. 1985.

18

[19] J. Gray and D. P. Siewiorek, "High-availability computer systems," IEEE Computer

Magazine, pp. 39-48, Sept. 1991.

[20] M. N. Meyers, "The AT&T telephone network outage of January 15, 1990." Invited Talk

at FTCS-20, 1990.

(21] M. Baker and M. Sullivan, "The recovery box: Using fast recovery to provide high
availability in the UNIX environment," in Proc. Summer '92 USENIX, pp. 31-43, June
1992.

[22] Y. Huang and C. Kintala, "Software fault tolerance: Technologies and experience."
Submitted to FTCS-25, 1993.

[23] R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An approach to designing
fault-tolerant computing systems," ACM Trans. on Computer Systems, vol. 1, pp. 222-
238, Aug. 1983.

[24j Y. M. Wang, P. Y. Chung, 1. J. Lin, and W. K. Fuchs, "Checkpoint space reclamation
for independent checkpointing in message-passing systems." Tech. Rep. CRHC-92-06,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. Submit-
ted to IEEE Trans. on Parallel and Distributed Systems, 1992.

[25] Y. M. Wang, A. Lowry, and W. K. Fuchs, "Consistent global checkpoints based on
direct dependency tracking." Research Report RC 18465, IBM T.J. Watson Research
Center, Yorktown Heights, New York, Oct. 1992. Submitted to Information Processing
Letters.

19

