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1 Introduction The general shift of attention to dynamical systeniii in
"...Since all our measurements and obser- the 2 0' century, as well as the introduction of the Ynaz-

iaimum likelihood method by R. A. Fisher in 1912 led to
rations are nothing more than approximations new developments in the field of estimation theory. Kol-

mogorov in 1941 and Wiener in 1942 independently de-
lations resting upon them, and the highest atin veloped a linear minimum mean square estimation tech-
of all computations made concerning concrete nique that received considerable attention and laid the
phenomena must be to approximate, as nearly# foundations for the development of Kalman filter theory
as practicable, to the truth." This approach allowed for systems with state changing

K. F. Gauss, 8 Theor. a Motus Corporui with time, as well as both continuous and discrete obser-
Coelestium" (1809,). vations. Kolmogorov's and Wiener's work focuses on the

Estimation theory deals with the problem of estimat- analysis and synthesis of systems in terins of their input-
ing the state of a stochastic dynamical system from output characteristics, reflecting the general trend in the
noisy observations. The earliest stimulus for its develop- scientific community at. that time. The problems were
ment was apparently provided by astronomical studies of formulated in terms of integral equations and the mnain
planet and comet motion in the 181h century. The mo- tools used were the Laplace and Fourier transforms.
tion of these bodies can be completely characterized by a Subsequent scientific developments have stressed the
finite number of parameters and the estimation problem state space approach, which uses difference and differen-
that was considered was that of inferring the value. of tial rather than integral equations for describing a sys-
these parameters from telescopic measurement data. tem. Although both these approaches are inatheniati-

To be more precise, suppose nt measurement vector cally equivalent the latter proved much more convenient
quantities Yi... , Yn E lR1 are available at discrete in- and useful, opening the door to many new developments.
stants of time t .  tin. The parameter vector x E D•' The state space reformulation of the estimation prob-
which we wish to determine is assumed to be linearly lem suggested a recursive approach, first attempted for a
related to the measured data, i.e. specific system in 1955, by J. W. Follin at John., Hopkimm.-

(1) Yk = Mkx + Vt University. Five years later, R. E. Kalman published a
very influential paper (120]). in which he described an

where ob represent the measurement errors that occur optimal recursive algorithm for solving the linear esti-
at each observation time. Let dt denote the the esti- mation problem using a general state space approach.
mate of x based on the data samples {Yi.... , ym}. This became known as the Kalman filter. In a sense, the
Then the residual rk (1 < k < ni) associated with the Kalman filter is nothing but an efficient computational
kth measurement is defined to be the difference between solution of Gauss's least-squares problem in a more gen-
the observed value yA and the value predicted from the eral state space setting.
estimate i,: The value of Kalman's reformulation was that it led to

(2) rk = yk - ML-i,. significant new insights and had the effect of unifying all

Around 1795 Karl Friedrich Gauss invented the rev- previous results. Moreover, the Kalmnan filter equations

olutionary method of least-squares for attacking the provided an extremely convenient procedure for digital
above problem. The method was independently invented computer implementation, and its recursive structure,
aiid published by Legendre in 1806 in his book "Nou- together with the fact. that the Kalman gain is inde-elies pbithodes pour la determination des orbites des pendent of the observations and can be precomputed.

comeites". A detailed description of the method was pul)- opened the door for real time estimation.
lished by Gauss in 1809 in his book "Theoria Motus Co- Nature is inherently nonlinear. Hence, in order to ap-
porum Coelestium". The name "least-squares method" ply estimation techniques to real physical systems, it was
comes from the fact that the optimal estimate x,, for x necessary to develop algorithms that can deal with non-
based on the observations Ym = {yil_<i<,< is the value linear dynamical systems. There are many reasons why
of r which minimizes an appropriately weighted sutn of nonlinear filtering theory is much harder than linear thee-
the squares of the residuals ory. The main difference is that the linear filter has es-

In sentially a finite description: the state of the system con-
(.3) Lm = wk r kr sists of the mean and the covariance immatrix, which are

) Lk enough to completely determine the conditional proba-
k=i bility density that contains all relevant information. In

where the elements of the matrices Wi. are selected to the nonlinear case, the state of the filter is iunfinith coli-
indicate the degree of confidence that one can place on sisting of the whole conditional density function used to
the individual measurements. compute oprimal estimates. The numerical problems in-

We notice that the state/parameter vector x is as- volved in computing the whole probability density func-
sumed to be fixed in the above description. Moreover, tion are, in general, intractable, since they involve the
the least-squares approach has no probabilistic meaning. solution of complicated integro-differential equations or
I functional integral equations.

'It should be noted that Gauss also considered a proba- In practice, finite approximations to the conditional
bilistic approach to the estimation problem, but rejected in probability density are considered. An approximate non-
favor of minimizing function 3. linear filter is obtained by parametrizing the conditional



density via a finite set of parameters, and computing geometric structures on parameter variations.
equations for the evolution of these parameters, which The global algorithm gives extremely accurate esti-
comprise the state of the system. One of the most popu- mates for the parameters of these systems systems (lii-
lar approaches used in practice, is to linearize the system proving the initial estimate by more than 13 orders of
in question and apply linear filtering theory. This gives magnitude in a certain case). Moreover. appears t, hc
rise to the Extended Kalman Filter and its variants. The very robust with respect both to observatioli ttoli.i- ard
main characteristic of all these approaches is that they dynamical noise.
try to follow locally a nominal trajectory, keeping track of
how the state (finite approximation to an infinite condi- 2 Parameter Estimation and Global
tional probability density) changes. This local character Geometry
imposes serious limits to the applicability and effective-
ness of these algorithms. The study of how geometric structure.- in phase space

We notice that the traditional estimation algorithms change as system parameters vary is of great interest
are in effect attempts to extend inherently linear ideas and has received much attention. The main focus so far
to the nonlinear setting. One can completely understand has been the study of changes ill thc pl,,,gqy of phas•,
linear systems by looking at isolated integral curves, but
this is hopeless for the nonlinear case, because of the spac ostrcture ifrto n theory).

immese cmpleity f nnlinar eoluton.Our objective is to exploit the way fc-arl gcoin Urinalimmense comp~lexity of nonlinear evolution, rather than topological features of phase space st ruct ure.s

Henri Poincarý was the first to realize that the at- chan tep arates vary slightly, n irer
change as system parameters vary slightly. [in order to

tention should be shifted from an analysis of isolated obtain novel extrennelv accurate paramneler estimalioij
trajectories and local characterizations, to a more global algorithms that do not depend on local aplroxiiatlous.
topological and geometric understanding of the phase This approach led us to the discovery of what seenis to
space of nonlinear dynamical systems2 . At the present be a very general power law that enables us to quantify
time we are witnessing a spectacular blossoming of non- the dependence of global geometry on small changes ill
linear dynamics, made possible on the one hand by great the parameters of the system.
theoretical developments on global topological and geo- In order to demonstrate our app)roach we will restrict
metrical analysis, initiated by Poincar6's revolutionary
work in the 1 9 th century, and on the other hand by the our attention to how basins of attraction change as pa-

wide availability of increasingly powerful computers. rameters vary, and show how to transform the paraun-
We believe that very interesting new insights and ex- eter estimation problem into an optimization problem

tremely accurate novel algorithms can be obtained by over an appropriate space of functiois contauning global
attacking parameter estimation problems using a global dynamical i niformation.
geometrical point of view. Moving up one level of ab- Our discussion in this paper will be restericted to es-
straction we wish to consider parameter estimation algo- timating a single parameter of a system, hut our tech-
rithms whose primitive objects are geometric structures niqtues can be readily generalized to higher dimensional

in phase space (represented as points in an appropriate problems.

function space), rather than points on isolated trajecto- We begiit by dernonstrating this approach for the fain-

ries. ily of complex quadratic polynomials.

We demonstrate how to exploit the complexity of
global geometrical phase space structures of nonlinear 2.1 The Quadratic Family
dynamical systems and their dependence on parameter Given any complex quadratic polynomial p(:) = a:.! +
variations in order to obtain extremely accurate param- 2b: + d, let AM(:) = az + b and c = ad + b - 2. If
eter estimation algorithms that do not depend on local f, : 7- - -TC denotes the map f,(:) = z2 + c, where Tý is
approximations, in the context of complex analytic dy- the Riemann sphere, then:
namics.

In particular, the global algorithm was tested on the (4) M- o f, o M(:) = M-'((az + b)2 + c)
family of quadratic maps of the Riemann sphere and ra- = M-i(a*':-' + 2ab: + b•2 + r)
tional maps obtained from Newton's method on complex , 2
cubic polynomials. We show how to transform the esti- -(aZ + 2abz + b-' + c) - b
mation problem into a problem of minimizing a dissimi- a
larity measure between images containing global dynam- = p(:)
ical information. Our experiments indicate that the dis-
similarity function to be minimized is locally unimodal. i.e. p and f, are (analytically) conjugate. It follows
In fact it seems to obey an exact power law locally. The that in order to understand the dynamics of all complex
exponent appears to be a new invariant of these dynarni- quadratic polynomnials, it, is enough to understamnd the
cal systems, which we call the parameter srnsibtviy expo- dynatnics of the complex one-I)aralleter famlnilv
nint. and which characterizes the dependence of global ý) = ( f, : '•-'-,C'.rE C'Z,f ,()= + r I

'it is interesting to note that, just like Gauss' idea in
the case of estimation theory, the motivation for Poincari's Both the variable z and the parameter c fill out a coin-
development of global geometrical dynamics comes from the plex plane. We will refer to the :-plane as the dynn•amuvl
study of the motion of celestial bodies. 2 planc and to the r-plane as the 1praavinrlc, plairr.



2.1.1 Julia Sets 2.1.2 The Mandelbrot Set

Given a rational map f C of the Riemann In 1905, P. Fatou proved the following very surprising
sphere C = C U {oo}, we can get a dynamical system by result 5 :

repeated application of f. In the begining of the twen- Theorem 2.1 Every, attracting cylcle for a ,olul,,Inn
tieth century. the French mathematicians P. Fatou and or rational function attracts at least one critical pi,,nt.
G. Julia studied the iteration of complex polynomials of Each quadratic polynomial f, in Q has a unique crit-
degree d > 2. Having at their disposal a powerful the- ical point, namely no' = 0. The corresponding critical
orem of Montel that gave a sufficient condition for the value is na(meo) = f(0) = c. It follows that f. can havet
normality of a family of meromorphic functions, they re- at most one attracting cycle in the complex plane. More
alized that it is very interesting to consider the following al a ol
decomposition of the dynamical plane: generally, a polynomial of degree d > 2 can have at most

d - I attracting cycles.

Definition 2.1 A point z E 7C is an element of the Fa- In 1918-1919 P. Fatou and (. .Julia proved another

tou set, F! of a rational mapping f, if there exists a result which further supported their conjecture that the
neighborhood U of:, such that the family of iterates {f") dynamical behavior is dominated by tihe behavior of crit-

is a normLal family on U. The Julia set Jj of f is the ical points:

complemnent of the Fatou set. Theorem 2.2 Let Of denote the set of critical miiits

where, f" denotes n-fold functional composition of f by for a polynomial f : C - C. and let Aj be the set of all

itself. points in C which do not escape to infinitt under f. iit.

Without recalling the exact definitions, let us only re- Kf = 7C - A(oo). Then:

mark that normal families have values that do not di- 1. £f1 C K! 4* Jj is connected.
verge under iteration. So, in some sense the Fatou and O2. n fl = 0 = Jf is a Cantor .%et.
Julia sets of f are the sets of stable, unstable points of Cpwith respect to f, respectively. Since for a quadratic map f,, there exists only one

Withirespct toat f e rpecntat iiiv icritical point namely z0 = 0. an immediate corollary of
We notice that the point at infinity oo is always an theorem 2.2 is the following:

attracting fixed point for quadratic maps3 . Let

Corollary 2.1 The Julia set df, of the quadratic map
A,(oo) = 4z E C : f o - 00 as n - oo} f is either connected or a Cantor set. Moreover. I..

is connected if and only if f,"(0) does not tend to o as
be the basin of attraction of infinity. We have the fol- n -00.

lowing result: The above corollary suggests a natural decomposition
Proposition 2.1 The Julia set Jf, of f, : 7 - C, of the parameter plane into the Mandelbrot set
fZ) = : 2 + c, is equal to OA,(oo). (5) M = {c E C : Jf, is connected)

The proof of this statement is a direct consequence of
the fact that the boundary of any completely invariant and its complement C- M. Moreover, corollary 2.1 gives
component (here A,(oo))of the complement of the Julia us a way to compute the Mandelbrot set: in order toset has to equal the Julia set. check whether a point c of the parameter plane is in Al.The set As = C - Ac(oo) is called the .filled i Julia it is enough to check whether the orbit of 0 under f, does

The set =s al i in Jua not tend to infinity.
set. We clearly have 0K, = Jfh = 0A,(oc), i.e. J, We remark that sets similar to tihe Mandelbrot set. oc-
separates competition between orbits being attracted to cur in many other families of complex analytic maps.
oo and orbits remaining bounded for all time. This happens since many mappings or their iterate, lo-

Example 1: (Consider the map fo : C - C, fo(:) = cally behave like a quadratic polynomial. Hence the
:2. Clearly any point outside the unit circle S' has an Mandelbrot set is in some sense a universal object.
orbit that escapes to infinity. Moreover, any point in- The boundary OM of the Mandelbrot set is a bifur-

side the unit circle has an orbit converging to 0. Conse- cation set, i.e. the topological nature of tile Julia set.
quently. the Julia set Jf. of fo is the unit circle ,0. . changes as we cross this set in the paraieter plane. In

Example 2: The Julia set of the map f-2 : C - C, the next sections we will investigate how tile geometryf_•2(:) = :2 2 is the interval [-2, 2] on the real linJe 4 , rather that the topology of Julia sets depends on parain-

In general, Julia sets are not smooth, but very coni- eter variations..
plicated fractal objects, exhibiting an amazing variety of P or
geometric forms as the parameter c changes. Figure 1 1
(taken fromn [26]) shows examples of Julia sets of complex rt, ,A n
quadratic polynomials corresponding to various points c
on the complex plane, along with the Mandelbrot set
which controls their topological structure.

'in fact ox is an attracting fixed point for all complex , ........
polynomial maps on C Di"pration/

4 The proof is not obvious. See [6]. 'The proof can be found in [9]. -- --_ _- , -°-_--I

3* AvRI)*M1it~y Coo-s
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2.2 Global Parameter Estimation for the the equipotential curves of the filled in Julia set hK, when
Quadratic Family J, is connected (see for example 127)).

The complex one-parameter family of dynamical systems As c moves on the parameter plane where the Miandel-
" brot set lives, the corresponding Julia set changes fron

(6) n -~ + c shape to shape producing an immense variety of pos.dib,'

can be considered as the following real two-parameter geometric forms (figure 1)
fan baoLet us fix ý to the value • = 0.3. and consider how
family the geometry of the Julia sets changes as A varies locally
(7) Xn+= Yn + around the value A = -1. Figures 2.3, 4 show a window

(8)n+ + of the Juliaset for A = -1.0. A = -l.0000 1. A = -l.UUUI

(8) Y/n+i - 2 Zfly + • respectively. We see that the human eye can clearly sense

under the usual identification of p 2 with C sending zn to changes of the order 10-4 or so and tell which phase

xZ,+yni and c to A+ýi. We want to consider the problem image from 3 and 4 is closer to 2. We expect that by

of estimating A, when ý is held constant, in the presence comparing these images we can sense very small changes

of observation and dynamic noise. In particular, suppose in parameters and obtain extremely accurate estinmation

the real system has noisy dynamical evolution: algorithms. In the next section we describe how to turn

2 2 A +the above intuitive approach of comparing images to gel
(9) xn+1 = x, -- y + A + Vd,z(fl) an estimate of a parameter into a precise algorithim.

(10) y.+ = 2znyn + + Vd,y(11) 2.2.2 The Global Approach

and we actually observe: In order to be able to store in the computer and Ina-
nipulate the images that we get by running LSNI on a

(11) xn = Zn + vo,•(n) domain D C R1 x R1, we chose to represent theiit as two

(12) = Yn + VoY(n) dimensional arrays A = AA(D) =

where The array A = A\(D) is a lookup table (a discrete

both that the dynamical {Vd,:(nI))nEZ+, {Vd,l(n)}nEZ. representation) of a function:

as well as the observation {vo,E(n)},,Ez+, {Voy(n)},nz+ FA : D -- P
noise sequences are white Gaussian random sequences. which we will refer to as the global function for f, on D.

2.2.1 Setting up global functions for quadratic Before we proceed, let us recall that if (X, it) is a niea-
Imaps sure space, for p > 1, LP = LP(X, I) = {f : X - R

The primitive objects used in local methods are points measurable such that fx Ilf lldl, < oo}. It is a standard
on isolated trajectories. In the next section, we will show result of functional analysis that LP(X, p) is a vector
how to obtain extremely accurate estimates of the pa- space and II.f,. is a norm on LP(X,pt). For f E LP the
rameter A by moving up one level of abstraction and value:
consider an algorithm that uses representations of the ) i/p

Julia sets of the maps as primitive objects. in this see- (14) Il lr - Ilf)Jpdp)
tion, we describe how to use proposition 2.1 in order to
obtain a discrete representation of Julia sets of quadratic is called the LP-norm of f. Let us define the LU-distance
maps f, : C - C, f,(z) = z 2 +c. The method we will de- between two functions f,g E LP to be:
scribe is often refered to as the Level Set Method (LSM)
([26], [27]). (15) dp(f,g) = Ilf - gll,

We restrict our attention to a domain D C C - R x PR, Let us choose the domain D to be a compact rectangle
on which we impose a grid of n x n cells. Choose a large *in R 2. Then the function FA E Lp, where X = D and
integer Nma,. (iteration resolution) and an arbitrary set it is the Lebesgue measure on D C R2. The distance dp,
T (target set) containing oo. We will take T = {z : gives us a measure of how different Fk, F1, are for A,it
I zI: _> R), where R is a large number . For each cell two different, values of the parameter. If
in the decomposition of the domain D assign an integer
label 1(p) = G(p.T), where p is the centerpoint of the Ax = (aj)l<i<ni<rn

cell. in the following way: Am = (a'.j)l~i<,._<.5,,,

(13) are the discrete representations of F\, F, respectively, a
k provided f,(p) V T and f'(p) E T, natural measure of their difference, Is the discrete UV-

1,(p) = for0< i<k and k< Nmno. distance (p < oo).

otherwise (16)

If 1(p) is nonzero then p escapes to infinity and 1,(p) is d,(A.\, AM) = IIAk - AM.i. = 1Z02- \ J 1II
the escapc 1iinr (measured in the number of iterations)
needed to hit the target set T around oc. The contours
obtained by the above algorithm are approximations of From now on we will tend to use the samie notation for

both the continuous quantities and their discrete repre-
6 n most of our experiments we take R = 100. sentations.



Figure 2: J ulia Set for A 1 -. 0,~ 0.3, D =[-0.079555, -0.07952-5] [0.2653120, 0.26.53,50].

6



rigure 3: Julia Set for A = -1.00001,ý 0.3, D = -0.079555, -0.0795251J x 10.265:320,0.265:350).
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Figuire 4: Jullia Set for A 1-.0001,~ ().:1, 1) 1 -0.07955F), -0.079525] [ 0.265320,0.2615350).



It would seem that the LP distance of global functions fk(P) = dl(,A. FM)
FA. F0 is a rather coarse characterization of the differ- is obtained using the Golden Section Method. Plhasr
ences of the corresponding images. It turns out that it windows are represented as 512 x 512 arrays, and tit,
is ideally suited for doing parameter estimation in the Boundary Scanning algorithm used. checks- for escape
presence of noise. The reason is that, intuitively, taking or orbits out of a circle of radius 100 centered a! th,
the LP distance of global functions has the effect of av- origin. The noisy phase portrait .4k corresponds t,, A =
eragyng away the effects of noise, returning a incasurf of -1.0 and is obtained with (iaussian observation noisr
the difference between the inages which is rather noise with variance ao, = 10-3 and no dynatiic noise I'lh,

siens a pi tiwi accuracy achieved gives an upper bound on the distance
niven a parameter value A, let us define the following of the global method estimate front the real value of the

functional: prmtrparameter.
(17) VA: :L P- R A = 0.3

(18) V),\(G) = d (F,\,G) -1. Domain: [-1.5.-1.0] X [0.0.0.5]

Let its now define the dissimilarityfunction for parame- Accuracy Achieved : 10"
ter A to be the function: Number of Orbit Points ii typical itiage
(19) R - R 4120137

(20) •(p) = ?,\(Fu) = dp(F\, FM) Average Number of Orbit Points per cell :1F

As p - A we expect ýpk(p) = d4(AA\A) - 0. In- 2. Domain: [-1.445. -1.37] x [0.05.0.2]

tuitively, we expect the dissimilarity function px to be Accuracy Achieved: 10"

unimodal7 . locally around A with a local minimum at Number of Orbit Points ii typical itage
p = A. 7150541

Our experiments not only confirm the above conjec- Average Number of Orbit Points per cell : 27

ture, but indicate that there is a lot of structure in the 3. Domain
way the dissimilarity function decreases to the local min- -V1.40507, -1.40506]) x [0.100155.0.1OUt165]
imum: an exact power law is obeyed around A. More- Accuracy Achieved : 10`3
over, local unimodality of fl around A seems to be very Number of Orbit Points in typical image
robust with respect to dynamical and especially obser- 17446074
vation noise. Average Number of Orbit Points per cell : 66

Once we know the dissimilarity function p, is locally 4. Domain
unimodal, with the real value of the parameter A be- [-0.079555, -0.079525] x (9.265320, 0.265350]
ing the local minimum, we can use one of the standard Accuracy Achieved : 10"
optimization algorithms to determine A. it our experi- Number of Orbit Points in typical image
ments we use the (.olden Section Method, described in 33692290
Appendix A. This method uses the fact. that we catl Average Number of Orbit Points per cell : 128
bracket the location of the minimum of a unimodal func- 5. Domain
tion by evaluating the function at two distinct points in [-0.07954;-. -0.079535] x [0.265330.0.265:140]
the region L of unimodality. Accuracy Achieved : 10-

2.3 Performance of the Global Algorithm for Number of Orbit Points in typical image

the Quadratic Family 36951018

In this section we give a list of sample runs of the global Average Number of Orbit Points per cell : 140

algorithm for quadratic maps f, : C- C, f,(z) = :2 +c. A=0.35
Ifc = A +i we want to consider the problem of estimat- 1. Domain : [-1.445, -1.37] x [0.05, 0.2]
ing A assuming ý is fixed, in the presence of observation Accuracy Achieved : 10-'
and/or dynamical noise (equations 11, 9). Number of Orbit Points in typical iniage

Let FA• be the (noisy) global function whose discrete 3905591
representation A,\ is obtained by performing Mteatsure- Average Number of Orbit Points per cell : 15

ments (according to equation 11) on the noisy real sys- 2. Domain : [- 1.4075, - 1.40701 x [0.0992.0.0997]
tent. Local minimization of the dissimilarity function Accuracy Achieved : 10-l"

-pA :R-. -R Number of Orbit. Points in typical image
9058660

'A function P : R - R is said to be unniodalon a closed Average Number of Orbit Points per cell : :35
interval L C R if there is an z° E L such that r' mininmizes 3. Domain
V on L and, for any two points zi,x2 E L, such that r, < Z2 [-1.40715,-1.40710) x [0.09957. 0.09962]
we have: X2< X* f(zt) > f(z2) Accuracy Achieved : 10-"

Number of Orbit Points in typical image
Note ta *i f(uc )o > f(at) 12225105

Note that uniiodal functions are not necessarily differetn- Average Number of Orbit Points per cell : 47
tiable or even continuous.Strictly convex functions and most
of their generalizations are unimodal. 9 A=0.40



1. Domain: [-1.445,-1.37] x [0.05,0.2] 1 s i < 3, then the value assigned to the cell in que•stion
Accuracy Achieved : 10-8 is 3k + (i - 1).
Number of Orbit Points in typical image Suppose p1 ,p 2 are known. We want to consider tl,
3100158 problem of estimating P3 in the presence of observat wil
Average Number of Orbit Points per cell : 12 and dynamical noise. We let

2.4 Cayley's Problem and Newton Basins q.() = (- P)(: - P2)(: - 1'3)

In this section, we consider the problem of estimating
a parameter in a dynamical system obtained from New- and define F,•,.,, to be the Newton basin global itage
ton's method for cubic complex polynomials. corresponding the polynomial qp,.A. Suppose the real

Newton's method and its variants are among the most value for A is A = 1.0 and let us restrict. A to move o0n the
prominent numerical methods for finding solutions to real axis. This gives us a situation exactly analogous to
nonlinear equations. From a numerical point of view the one for Julia sets of complex quadratic maps. Again
Newton's method has always been considered a local we get an estimation algorithm by trying to nlinmnlize:
method, ý.e .w,? assumes that the initial guess is suffi-
ciently close tu a root, and then the orbit under Newton's '-
iteration scheme tends to this root.

hi 1879 A. Cayley, in a one page paper [10]. sug-
gested the extension of what he calls the Newton-Fourier • 1 ,,p 2(j') = dl(F,,,.,,. F,,,., )
method where F1 ,,p.s is the noisy Newton basin global fuzct iol

(21) Xk+1 = N(Xk) = - hf(xk) for the third root equal to A.

2.5 Performance of the Global Algorithm for
appli-, to complex polynomials f : 0, where h is Newton's Basins
a real number. It is interesting to note that 21 can be
interpreted as the Euler method with stepsize h for the In this section we give a list of sample runs of the global
initial value problem: algorithm for the case of dynamical systems obtained by

()f(x()) Newton's method. Local minimization of the dissimilar-
(22) •(t) = f- ~t)) ity function 'p,,,• where pi = 0.5i and P2 = -0.5i, is

f'(z(t)) obtained using the Golden Section Method. Global func-
tions are represented as 512 x 512 arrays. If the numzber

(231) z(0) = x0of iterations it takes for the centerpoint of a given cell to

Each of the roots of f is an attracting fixed point of enter a neighborhood of one of the root:, say p, (where
the Newton-Fourier iteration. (Cayley suggestred study- p3 = p is the parameter) is k, then the value assigned to
ing the inethod globally, i.e. understanding the geometry each the cell in question is 3k + (i - 1). Tie noisy phase
of the basins of attraction of the roots in phase space. portrait F-,.,,,.x corresponds to A = 1.0 and is obtained

The problem is easy in the case of quadratic poly onii- with Gaussian observation noise with variance a,, = 10-3
als: we have seen that any quadratic map is analytically and no dynamic noise. The accuracy achieved gives an
conjugate to one of the form fe(z) = z2 + c. Newton's upper bound on the distance of the global method esti-
method for f, is a rational map of degree 2: mate from the real value of the parameter.

X2 + c(24) N(x) = - I. Domain: [-0.044, -0.024] x [-0.105, -0.0851
2.r Accuracy Achieved : 10-q

It can be shown that the Julia set JN of N is tile perpen- Numlber of Orbit Points in typical image 105384 13
dicular bisector of the segment joining the roots -t-. Average Number of Orbit Points per cell 40
Thus the basins of attraction of the two roots are the
half planes defined by Jiv. 2. Doinain

The geometry of the problem for higher degree poly- [-0.033842. -0.033822] × (-0.09:3942. -0.09.3922]
nomials is extremely complicated. To get a feeling for Accuracy Achieved : 10-l"
why that should be so, it is enough to note that we have Number of Orbit Points in typical iniage : 25907786
an poynomial f of degree it, then if A, is the ba.sin of Average Number of Orbit P'oints per cell : 99
attraction of the it ' root pi of f, we must have: 3. Domain

J1 = dAi, i = I ... Il [-0.033833, -0.033832] x [-0.0939325 -0.09393151

i.e. each point in the Julia set J1 must touch simultane- Accuracy Achieved : 10- t

ously all basins of attraction. Figure 5 shows the Newtoi Average Number of Orbit Points per cell - 133
basin portrait for the cubic

q(z) = (z - 0.5i)(: + 0.5i)(: - I) 4. [)omnain : (0.075.0.080] . [0.077.0.080]
Accuracy Achieved : 10`

The values assigned to each cell in phase space corre- Number of Orbit Points in typical image: 124642XS
spond to convergence time to a root. If k is conver- Average Number of Orbit Points per cell : 48
gence time of the center point of a cell to p, where, 10



Figure 5: Newton Basins for 1(z) 0 z .5i)(: + tJ.5i)(z - 1), and] domain D) [-0.5, 1.5] x [-1 ., LU].
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Figure 6: Quadratic Family: Plot of 6FA,6Ax as a func- Figure 7: Quadratic Family: Plot of log(bFk,h) as a
tion of t16All, 6A > 0, for A = -1, ý = 0.3. The function of loglIbAn, 6A > 0, for A = -1, 4 = 0.3.
maximum number of iterations-is 100, and the do- The maximum number of iterations is 100, and the do-
main is D = {(x,y) : x E [-0.0 7 9 55 5 ,-0.0 79525],y E main is D = {(x,y) : x E [-0.07955 5.-0.079525).y E
(0.265320,0.265350]). A 512 x 512 cell resolution is used. (0.265320,0.265350]). A 512 x512 cell resolution is used.
The real image is measured with Gaussian observation The real image is measured with Gaussian observation
noise with variance ao = 10-3 and no dynamical noise noise with variance o, = 10' and no dynamical noise
(O' = 0). The plot on the top shows some sample points, (O4 = 0). The plot on the top shows some sample points,
and the one on the bottom is the same plot with straight and the one on the bottom is the same plot with straight
lines connecting the sample points, lines connecting the sample points.
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Figure 8: Quadratic Family: Plot of Iog(6F5 .A) as a Figure 9: Quadratic Family: Plot, of log(6F•.•) a.s a
function of logll6Alj, 6A > 0, for A = -1. • = 0.:3. Each func•tio,, of loIoI6AII, 6A > 0, for A = -1, • = 0.3. Eac,
line corresponds to a different domain. The resolu tion line corresponds to a different, domain. The resolution
increases from right to left. The real image is measured increases from right to left. The real image is mea~sured
with (;aussian observation noise with variance cro = 10-3 with (Gaussian observation noise with variance err = l0-:'
and no dynamical noise. and no dynamical noise.
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Figure 10: Newton Basins: Plot of logpo,,,,2 (A + 6A) a.s Figure I I: Newton Basins: Plot of logj',,,,2 (A + 6A) a.,
a function of 116A11, 6A > 0, for pi = 0.5i,p2 = -0.5i, a function of 116A11, 6A > 0, for p, = 0.5i.p2 = -0.5i.
where A = 1. The real image is measured with Gaus- where A = 1. The real image is measured with Gaussian
sian observation noise with variance ao = 10-3 and observation noise with variance a. = 10-' and no dy-
no dynamical noise (ad = 0). The plot on the top ical noise
shows some sample points, and the one on the bottom nampl noinse ad = 0). The plot on the top) shows soaie
is the same plot with straight lines connecting the sam-the saie
pisthe p same plot with straighteliesolonnisuseting r the s plot with straight lines connecting the sample points. A
pie points. A 512 x 512 cell resolution is used over the 512 x 512 cell resolution is used over the doiiiain D =

domain D = {(,y):x E [-.033842,-.033822],y E y) E -0.044,-0.024], y E [-0.105.-0.0851}.[-0.093942, -0.093922]. {z )a
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3 The Parameter Sensitivity Power Law

"Let chaos storm!
Let cloud shapes swarm'
I wait for form. "
R. Frost. -A Further Range: Ten Malls. (V)
Perhtnaz" (1936).

The numerical experiments not only confirm that the
dissimilarity function 'PA is locally undiniodal around A.
but indicate that there is a lot of structure in the way it
decreases to the local minimum. In particular. if F, is
the global function corresponding to A. and p = A + 6,A.
then for 116AII small enough, a power law of the form.

(25) j6Fxs = dp(Fr+bA. F,) = M1!A•I"I

7 is obeyed. We will refer to equation 25 as the parain-
1. 10 ter sensitivity power law.

6 Let us consider. for example. the quadratic map
•' 10 fe(Z) = Z:2 + c, c = A + i. Figure 6 is a plot of

Sdm(FA+6x, FA) as a function of 6A. for A = -1. ý = 0.3.
They shape of the curve that we get immediately sug-

6 /gests a power law around A = -I with exponent less
1. 10 than 1. If in fact. a power law of the formn of equation 25
0ooooo. holds, then taking the logarithms of both sides gives a

straight line of slope d:

(26) [loglirFk,h = dlogI6bAll +

100000. where ni = log M. Figure 7 shows a log-log version of
figure 6, which is in fact a straight line. We give the

50000. /following definitions:

Definition 3.1 Suppose that the local power law holds
for some global function Fx = Fk.Ao : D - RP:. Wc define

1000. the parameter sensitivity exponent (p.s.e.) "I of the global
function Fk to be -y = I - d. Moreover. we define it
"log M to be the resolution factor of Fx.

-12 - -6 00•.• The iparameter sensitivity exponent "1 is it miLst.•ire (if
I.10 1. !0 1. 10 the performance of the global algorithin, since it quanl-

tifles our ability to distinguish nearby global functions
(irmages). If -r = 0, i.e. a linear power law is obeyed. the
global function is rather insensitive to parameter varia-
tions. The performance of the global algorithm improves
as I gets closer to 1, i.e. as the slope d in the log -log

plot decreases towards 0.
Looking at the plot of logdm(Fk+AA, F\) as a function

of log 11b,11 for different domains of a system and putting
the resulting plots together (for example figures X, 12),

Figure 12: Newton Basins: Plot of Iog',,. 2(A + 6A) leads to the conclusion that the slope d changes very lit-
as a function as a function of logl6bAII, 6A > 0. for tIe as we change our focusing window, i.e. the domain D,

pm = 0.5i,p 2 = -0.5i, A = 1. Each line corresponds to a in phase space! Hence it makes sense to talk about the
different domain. The resolution increases from right to parameter sensitivity exponent of the system. All experi-
left. The real image is measured with Gaussian obser- inents performed indicate that the following conjectures
vation noise with variance a, = 10-3 and no dynamical are true:
noise. Conjecture 3.1 The parameter sensitivity exponent of

a system is the same for all typical domains' .

8By typicalwe mean that the global fuinction F : 1) - R
is representative of the complexity of the system. For exam-
pie, in the case of connected Julia sets a typical domain is an.%
domain near the boundary aA,(ou). A domain lying wholy
in the interior of the Julia set, in which the global function

15 is identically zero. is not a typical domain



The above limit is a imean dervativr in Lr-norm of the
global function FA with respect to the parameter A. \We
see that when d = 1, then the limit exists. \When d < I

the limit 28 does not converge, and the parauetcr .sensi-
0tivty exponent -y = I - d measures its rath of dir, rgr'nur

Remark: The knowledge that a power law is obeyed
50000. locally around the true value A of the parameter cai bu

used to improve the performance (number of function
evaluations) of the global approach enormously! More-
over, it can be used to check for errors and place a safe
bound on the distance fromt the real value of thle parain-

10000. eter.

3.1 The power law for smnoothly changing
global functions

In this section we demonstrate that if a global function
is sufficiently smooth with respect to changes in the pa-
rameter, then a linear power law must be obeyed locally.

1000. In particular, we prove the following proposition:

Proposition 3.1 Given a global functtion FA : D -
R, if for every point z E D. F),(x) is twict dlff, rt i-

-8 -7 -6 0.00001 0.o000o 0.oi tiable with respect to the parameter A and tMt dtr'ratzvt
1. 10 1. 10 d2 FA(z)/dA2 is continuous and bounded sn a ncighbor-

hood U of A, then a linear power lauw is obeyed locally

Figure 13: Quadratic Family: Plot of log(bF),.hA) as a for any U-norm. Moreover. th( L"-derivatin of F.\
function of logll6All for A = -0.12 and ý = 0.74. The with respect to A exists and is equal to the space aver-
maximum number of iterations is 100, and the domain is age JIdFA/dAlIL,.
D = {(x,y) :x E [0.3,0.4],yE (0.3,0.4]}. The linesfrom Proof:
left to right are for resolutions of 512 x 512, 256 x 256. The proof is a straightforward application of Taylor's
128 x 128, 64 x 64 cells. formula. Since F),(x) has a continuous second derivative

with respect to A, then for any i = A + 6A E U we have:

C(onsequently, the parameter sensitivity exponent n= F(x) - A +
seems to be a new dynamical system invariant (29 A)" + E,,(p)
that quantifies the dependence of global geometry' on =0
variations of the parameter. (30)

Conjecture 3.2 The parameter sensitivity exponent of E,.( 1 i) = - (1a -
a system is independent of the cell resolutionI° used k

in approximating the global function. Higher resolution where Fx\(r) = d FA(x)IdAk and n = 1. If A is an upper
only increases the resolution factor ni. bound for Fi(x) over U, then

Of course the parameter sensitivity exponent (p.s.e.) is p31) E1  ! A1" A 116\
not exactly the same for all resolutions, because we get - 2

discretization errors in low resolutions. The p.s.e stays Consequently. for bA small enough we have
close to a dynamical system invariant and converges to ,\ (x.)
it as the number of cells goes to infinity. An example on (32) JFk+A),(z) - F),(x)l ;1 d-d All
which conjecture 3.2 is tested is show in figure 13. The U-distance between F), and F, is:

To gain some more insight into the power law let us
rewrite equation 25 as: (33) 6F(A. 6A) = dp(FA+6,, F.)

(27) Wk. _ M M = ( IIF\+h.\(x) F)- rk(a)dzJJ
6A -11 6All-7d - 16AlP V

Consider the limit Hence, for sufficiently small IiAII:
(28) (dF = lim 6F),6, (34) 6F(X. 6A) z ( IJlAI.llrdx) 116,\ll

d'\8) 6.,-o 11bAll
The above linear power law implies that:9or more generally, of global information as represented (35)

by the global function FA.
' 0The cell resolution is the number of cells used in the finite ( = d ln 6A - (f 6_ ddF '

representation of the global function. 16 kI /L, X 1-" 11h\I in d



0 where the n unknown constants cj are to he deterinhed
The above proof not only shows that a power law holds by initial conditions. If A(A) has n linearly independetw

locally, but actually it holds pointwise. The following eigenvectors iJ, I < j _< n. then we nminak , ;t, a Ik~t-
lemma gives us a simple test for pointwise validity of the for the space of solutions the vector valued fuct itin-
power law. (40) •(tl =
Leinma 3.1 If a power law holds pointwise in norm
LPo, then the power law with the same exponent holds where Aj is the eigenvalue associated with tJ Let us-
for any norm LP. assume that al least one of the eigenvalues is real and

positive. Let Al be the largest of the positives eigenival-
The proof is trivial. It turns out that when the expo- ues Ten for tve large w e have

nent of the parameter sensitivity power law is not 1, the ues. Then for I very large we hav

law does not hold pointwise, but is the effect of spatial X(t) 2 cJCA'1c v

averaging in LP-norm. Figure 14 gives an example of a Hence escape time from a very large circle around the
system where this is tested using lemma 3.1. origin is approximately

Consider now the linear differential equation

dx Fx(t) In 1W - In 1, I 11
(36) dt= h(A)x AI(A)

on the real line R. The solution of the above equation Essentially the problem is reduced to the one-
(equation :6) satisfying the initial condition x(q) = xo dimensional problem considered above. If .4 is a stuf-(equaon 3) sficiently smooth function of A, the maxirnutm eigenvalue
"is given by A1 is a sufficiently smooth function of A and the require-

(37) x(t) = xoeh(A)t ments of proposition 3.1 are satisfied. All this can 1)e
made more rigorous.

Suppose h(A) > 0. In this case, we have a repelling It seems that almost, all linear systems of differential
fixed point at x = 0. Given a domain D = [a, b] C R, equations would give rise to dynamical systems exhibit-
and we define a function FA = FAM : D - R assigning ing a linear parameter sensitivity law with respect to
to each point in the domain D its escape time from a global functions measuring convergence tine to the fixed
large interval [-M, M]. Let us ignore the point x = 0, point and infinity. A more precise and rigorous theory
where Fk(x) = 0, since it does not change anything when of global estimation on linear systems can easily be de-
we integrate over it. For x different from zero we have: veloped.

F In M - In lxj In the previous section we have discussed discrete
F.(x) = maps rather than continuous ones. In those cases time

g(A) is discrete and hence FA might noý "e differentiable with

For most smooth functions g the above global function respect to A. For example, if we ke the discrete dy-
satisfies the requirements of proposition 3.1 hence a lin- namical system:
ear power law is valid. x.+, = Ax, A > I

For example, if g(A) = rA, we get then escape time out of a circle of radims Al is given by

d -F ), ( T (In M - In 11-I(1) d 2 log 1 I 1
dA2

dA" d A (g(1A)Fx~x log A
-(In M - In iixI)eA Proposition 3.1 can still be applied in the sense that

which is continuous and bounded for any A. Similarly. the curves of equal discrete escape time are just ap-
for g(A) = A a linear law holds around any A different proximations to curves of the continuous escape time
from 0. (;A(x) = log fliI/logA which satisfies the requirements

The same reasoning applies to the case when g(A) < of the proposition.
0. The only difference is that FA(x) measures the time
needed to enter some predetermined neighborhood of the 3.2 Additional Examples
attracting fixed point 0, instead of a neighborhood of 3.2.1 The Forced Pendulum
infinity. So far we have only seen discrete dynamical systems

Let us now consider a linear system from complex analytic dynamics exhibiting a positive

dx parameter sensitivity exponent (p.s.eI. in this section,
(38) d- = A(A)z we provide an example of a continuous time dynamicalsystem with high p.s.e. which has a completely differ-

where x E PR". A general solution to (38) can be obtained ent dynamical structure, and enforces the belief for the
by a linear superposition of it linearly independent solu- universality of the parameter sensitivity power law.
tions 4x'(f) . xTI(t)}: In particular, we consider the forced pendluhm de-

scribed by the equation (see [3. 23])
(39) x(t) = Z e~x'(t) d6 d

j= x17 (41) d + A -7 +.3sin 0 cosI



For parameter values A = 0.I,/3 = 1.0.- = 1.75 the
system has (at least) four attracting periodic orbits (each
having period 27). For the time 2-,r Poincarf ret urn jma.
these orbits are attracting fixed points located at:

(42) pi • (3.287.0.262)

188888. (43) P2 - (4.301.0.397)
(44) p3 • (0.053, -1.070)

(45) P4 (0.084. 1.608)

Let us assume the unknown parameter is A. for a given
a domain D define the global function F,\ D - T. to

i0008, have discrete representation Ax assigning to each cell
the label of the fixed point its centerpoint is attracted
to. This means that if the centerpoint 1, is attracted
to pi we assign to the cell the value i. This is a rrry
coarse representation of a global function: we do not
record convergence time or any such infortiation: just
the label of the attractor. Figure 15 shows a picture of

1888, the resulting image for a 128 x 128 cell decomposition of
the domain D = [0, 27r] x [-2, 4]. All computations lhave
been made with a Bulirsch-Stoer integrator.4.00001 0.0001 -.701 Figure 16 demonstrates that the local parameter sen-
sitivity power law is obeyed in a very impressive way

1. 1 1. 1H 1. 1H around A = 0.1. The parameter sensitivity exponent
seems to be -y = I - d t 0.907 This is an enormous
p.s.e., giving a global parameter estimation algorithm
with very impressive performance.

20V1. 3.2.2 The tent map

1500, The next step is to consider the simplest possible
systems for which the parameter sensitivity power law
holds, and for which an analytic proof is possible.

1AL8. To that end, consider the tent map:

708, f,\ = f:i-I

588. (46) f(z) = fA- if < 0.5,

fA(l - x) if r->0.5.

30i, where I = [0, 1] is the unit interval. The global function
F, : D - R, D C 1 that we will consider, just like
in previous cases, measures escape time from an interval

[-M, MI. in particular, we will take M = 1. i.e. measure
158. escape times from the unit interval.

if the slope A is less than 1, then no points ever escape
S 7 - 80,00001 8.01 0,081 from the unit interval. Consequently, FA(7) = 0, for all

zEI.
1, 1H 118 1. 18 Let us restrict to the case A > 1. If we define a to be

I/A, then we notice that the points in the interval
11(A) = [a, I - a]

Figure 14: Plot of log(6F,\,6 x) vs. loglIAII for the
quadratic map with e = A + 0.74i, A = -0.12, where ape after one iteration of the tentl map f,. Moreover.
F, is escape time out of a circle of radius R = 100. A points in the intervals
resolution of 512 x 512 cells is used, and the domain cho- I.(A) = [o•, a - o•], I•(A) = [I - (2 - o-), I - o-2]
sen is D = [0.3,0.4] x [0.3, 0.4]. The plot on the top is a escape after 2 iterations, and points in
display of the data in L'-norm. The slope is d ;t 0.54.
The plot on the bottom shows the data in L2-_ , L 3 ,L 4- I4 (A) = [0n, -" _ A 31
norm (from top to bottom) with slopes ,t 0.23,0.13,0.08 132(A) = [a - (( 2 - a 3 ), 0 - a31
respectively. 13(A) = [I _ ( (k2 - 0n), _ - W3]

18 134I(A) = [I - (a - 03), I -(o _ (W2 _ n))]



Figure 15: The basins of attraction of the four fixed points of the 2w Poincari return map for the forced penl(hum

with A = 0.1,# = 1.0,7 = 1.75, over the domain D = 10,2r] x [-2,4).
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Figure 16: Plot of log(6Fx,6x) vs. iogl6bAll for the forced 10000.
pendulum for A = 0.1,/3 = 1.0,y = 1.75. The are four
attracting fixed points {P, P2, P3, P4} for the 27r Poincart
return map. FA(z) is just the label i of the fixed point
to which z is attracted (I < i < 4). A resolution of
128 x 128 cells is used, and the domain chosen is D = 1000
[0,2r] x [-2,4]. LV-norm is used and the slope of the
line is approximately 0.093!!!

escape after 3 iterations. In general, there are 2k-1 in-
tervals each of which has length 1k = ak-(1 - 2n) con- 0.00001 0.0 i:.
taining points that escape after k iterations. ..

Figure 17 clearly shows that the parameter sensitivity
power law holds, and that the p.s.e. (the slope of the Figure 17: Plots of log(6Fk,sx) vs. logIb6All for the tent
lines in the log-log plots) is an invariant of the system map, with A = 3, where Fk is escape time out of the
independent of the resolution. unit interval, with a maximum number of iterations tol-

3.2.3 A fractal curve boundary of attraction erated equal to 1000. The domain chosen is the unit
e Iinterval. The plots are, from top to bottom, the dataMiven 1 < A < 2, consider the map ([14], [18]) Mb y with a resolution of 200000, 100000,50000,30000. 10000

M : Ix ,S x ,S, defined by cells. The slope of the linear segments is about d 2 0.35,
(47) M(zk,Ok) = (Zk+i,0k+I) i.e. t+ 0.65.

where

(48) Zk+1 = Azk + cosOk

(49) Ok+1 = 2 0k (mod 2r)

This map has two attractors +oo and -oo for the
first component, meaning, if P(xo,00) = (x,,O,,) then
lirm._, x. = -oo. M has no finite attractors since the
eigenvalues of the Jacobian matrix are 2 and A > 1.

To calculate what the boundary between the basins
of attraction AA(±oo), we proceed as in [18]. We first
notice that given any initial point (xo,Oo), we have
Ok = 2 k00 . The map M is two to one (and hence nonin-
vertible), but given any point zN and ON = 2 N 0 o we can 20
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Figure 18: Plot of Iog(6Fk,5A) vs. loglI6All for the Figure 19: Plot of log(bFA,A,) vs, logll6AII for the
map 47, where FA is escape time out of a circle of ra- map 47, where FA is escape time out of a circle of ra-
dius R = 150 (maximum number of iterations tolerated dius R = 150 (maximum number of iterations tolerated
is 200). The parameter value is A = 1.5, a resolution is 200). The parameter value is A = 1.5, a resolution
of 256 x 256 cells is used, and the domain chosen is of 256 x 256 cells is used, and the domain chosen is
D = [-l.3,-1.2] x [0.1,0.2]. D = [-1.3,-l.2] x [0.1,0.2]. The plots are, from top

to bottom, the data in L', L2 , L3 , L4 norli.

always select an orbit that ends at (XN,,ON), by taking
Xk-l = A-1z. - A-i cos(2k-' o). This orbit starts at 4 The Effect of Noise on Convergence

N-1 We notice that the information obtained from each orbit

(50) xo = AN-NXN -- I()'+' cos(22
0 0) (number of iterations it takes to enter a neighborhood

i=O Aof an attractor) is very insensitive to observation noise,
i.e. noise that enters in the measurement equation (for

The boundary between the two basins A,\(loo) are those example equation I I for the quadratic family)'". More-
(xo, 00) for which ZN remains finite as N - oc. So: over, observation noise is averaged away by taking the

LP norm of the corresponding images. Consequently, oh-
0A,\(-oo) = {(, 0) : = fA(0)) servation noise has no important effect on convergence

properties of the global method.
where It is much more interesting to see how the dynamic

noise. i.e. noise that enters in the dynamic evolution
(51) co(2') eqation, affects the convergence and accuracy of the

"ZA)~ ~ ''global approach. It is very important to check that rea-
i=O sonably small dynamic noise does not destroy conver-

Since A > I the above sum converges absolutely and gence properties of the global algorithms because in all
uniformly. In addition, the following sum systems some sort. of small dynamical noise always ex-

ists. In particular, all numerical simulations introduce
dfA (0) _ l° ) dynamic noise by rounding off.

dO 2 A( Let us call the the log-log plot of the LP distance of the
1=o image FA+6A generated for parameter value A + bA from

diverges, because A < 2. Hence the curve f.(O) is nondif- the noisy image Pk corresponding to the true value A as
ferentiable. Moreover it has been proved (in [211) f,(O) '"We believe this is a remarkable property: using very
has fractal dimension d = 2 - In A/In 2. coarse information from each orbit fcoarse building blocks).

Figure 18 is evidence that the parameter sensitivity we build a structure containing global information which is
power law holds locally, and figure 19 proves that the very delicate with respect to changes in parameters (fine over-
power law does not hold pointwise. 21 all structure).



a function of 116AI1 the performance curve of the global
algorithm.

Our experiments have shown that the presence of dy-
namic noise has the effect of leveling off the performance
curve of the global algorithm to around a value of the
order of the difference dp(FA, Fx).

It is very important to note that if the dynamical noise
is below a certain value, then the local unimodality of the
dissimilarity function is not destroyed. This is demon-
strated by the experiments depicted in figures 20 and
21.

Intuitively, we would expect the presence of dynamic
noise not to be disastrous, since the results of sec-
tions 2.3,2.5 show that on the average there are from 10
to 150 iterations per brbit, and the dynamic noise does
not have the time to manifest itself if it is small enough.
On the contrary, local algorithms attempt to follow a
nominal trajectory for significantly longer. Hence, the
presence of dynamic noise can have disastrouss effects
on the convergence properties of local algorithms, espe-
cially in the case of chaotic dynamical systems.

5 Combining Estimation and Control

Let us onsider again the problem of estimating the pa- 0
rameter A in the case of the quadratic system 7, but now
instead of assuming that ý is fixed, suppose ý is a coin-
trol parameter that. we can tune. We want to address the
question of what value of ý gives optimal performance for
the global method for estimating A. :o0c>

Consider the domain D = [- 1.445, -1.37] x [0.05, 0.2].
and observe how the performance plots of the global al- ,
gorithm for the given phase space window change as we
vary A (figure 24). We notice that, as we approach the
boundary of the Mandelbrot set the global algorithm :-. .. .

reaches b)etter and better accuracy, increasing the pa- ,- - 0001
ranieter sensitivity exponent (p.s.e.) Iy = I - d for the
domain. So our experiments suggest that we can max-
imize the p.s.e. -y and hence optimize performiance of
the global algorithm by choosing ý so as to minimiize the
distance of c = A + Ci from the boundary of Mandelbrot
set M.

We remark that we should be careful about the above
statement since the distance to the Mandelbrot set is not
the only thing that controls t: it matters a lot which
part of the Mandeibroi set we are close to. Consider for
example varying A close to the point c = -0.75 + Oi
(the round top of the main cardioid of the Mandelbrot Figure 20: Quadratic Family: Plots of log(6FA.6x) as
set). The point c = -0.75 is on the boundary of the a function of logllIAll, 6A > 0, for ý = 0.3. for varius
Mandelbrot set, but as we move A along the real axis we strengths of dynamnic noise, and fixed observation noise

move inside the Mandelbrot set obtaining a paranieter with or. = 10'. Time curves (from top to hottomin) cor-
sensitivity exponent (p.s.e.) of' I 1 -0.687 = 0.31:1. A respond to dynamic noise Tr,i = 10", 10-. K10-1, 1IU-12

much bigger p.s.e. (y' _ I - 0.218 = 0.782) is obtained The niaximurn number of iterations is 100, and the dc-
when we are close to the boundary of M on the vertical ,,main is D) = {(x, .y) : - E [-0.079555. -0.0795251,.y E
line A = -1.0. [0.26-5320.0.265350] }. A 512 x 512 cell resolution is used.

We have seen that the boundary of the Mandelbrot
set is a bifurcation set for the quadratic family, since the
topology of the Julia set changes as we cross it. We con-
jecture that for more general systems we can get optimal
performance out of a global estimation algorithm by tun-
ing control parameters so as to drive the system near a
bifurcation set in parameter space. Intuitively we expect 22



to have much more sensitivity to changes in paraiiieter>
(high p.s.e.) as we get close to bifurcations.

We believe it would be very interesting Ill develop ai
general theory of optimal global geometric estituat ion
through control and in general atialyze Z, I lI,. d f
the the parameter sensitivity exponent on the posit ou

in parameter space.

5.1 A Global Geometric Controller for the
Quadratic Family

In this section we will show how to use a result of .1.
Milnor and W. Thurston [25, 27] for bounding the di.-
tance to the Mandelbrot set Al, to obtain a global geo-
metric controller for the quadratic family. Our method
for determining the control ý value gives an astonish-
ingly good performance, improving the initial estimale
by more than 13 orders of magnitude (figure 26). and

b improving the best estimate that we had for c = 0.3 by
more than 7 orders of magnitude for the given domain.•0000o.

5.1.1 Bounding the distance to M

J. Milnor and W. Thurston proved a bound for the
distance d(c, M) of a point r in the parameter plane

100000. from the Mandelbrot set M, on which some algorithbis

for producing pictures of the Mandelbrot set, are based.
In particular, they have shown the following result
(see [27]):
Theorem 5.1 If c Is a point outside of Al. then

10000.
sinh (;(c) 2 siuli (;(c)

.(52) 2exp ;(c)II('(e)Ij < d(c,M ) < 1(;'(c)jl

Similar inequalities can be obtained for points inside the
Mandelbrot set, as well as for the distance of points in

Ioo•. the dynamical plane from connected Julia sets.
_ ....... ....... ....... _ ,_...... ...... Let us approximate, somewhat arbitrarily, the dis-

-11 -9 -7 0.00001 0.001 tance of a point c outside of M, by the estimate of the
1. 10 1. 10 1. 10 upper bound in inequality 52, i.e. let

(53) d(c, At) ;z2 sinh G()

IK;'(c)II
For c near Al, we may approximate sinh (;(c) by (;(c).
A further approximation to G(c) gives:

(54) d(c, M ) ;z- 2 L log z,-,i

where
Figure 21: Quadratic Family: Plots of log(6FA,6.A) as

a function of loglIbAll. 6A > 0, for ( = 0.3, for varius (,-d
strengths of dynamic noise, and fixed observation noise 5n de
with a, = 10'. The curves (from top to bottom) cor- 5.1.2 The Controller
respond to dynamic noise ad = 10', 10', 10-". The Using the approximation 54 it is easy to build a pro-
maximum number of iterations is 100, and the domain tn that minimizes the distance to At. First of all in
isr) = {(x, Y) : x E [-1.445 , -1.3 7],y E [0-05,0.2]). A gr512 ( ) x 512 cell13] resolution [0.0A order to obtain an estimate for the distance of r froin
512 x 512 cell resolution is used. AM. iterate:

:4+1 = f O = =:k + c, zu = 0. k= 0. .2....

until either Ik--k+jl 1 > R (where H is large) or k = N,nld.
where Nmaj. is the maximum number of iterations that
we allow (we take A',,, 1 = 1000). If we stopped at

23 k = Na. we let d(c, M) = 0. If we have slopped at



Figure 22: The Mandeibrot Set: D~ [-2.45,0.75) x [-1.3, 1.3]1.

24



-,-.,'7 7

Figuire 23: The Mandeibrot Set: D =[1. 1, -0.9] x [0.2,0.4] (inagiiificatioii of the winidow showti Mi figure 22).
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10000.

1000.

b

S0000C. 100.

--6 .0000 0000. .1' 0..
1. 10 1. 10

100000.

50000. Figure 25: Plot of log(bFx.oh) vs. logiIbAll for the
quadratic map with c = A + ýi, ý = 0. where FA is
escape time out of a circle of radius I? = 100. and the
cell resolution is 256 x 256. The real global function is

10000. at A = -0.75, and the slope is approximately 0.687.

000. n < Nma,., then having saved the orbit {J z ..... :,,I we

compute:

zk+, =2zk+1,-o =0,k=0,1 . ... n--

-10 1- .1 0.0001 0.01 If we get an overflow in the course of this iteration, then
this means that, c is very close to Mt and we return
d(c, M) = -1. Otherwise, we return

d(c, M) = 2 jt{log i-z,, 11

A simple program implementing this is shown in fig-
ure 27.

The optimal control value ý is the value for which the
distance estimate d(A + ýi, M) is iiifiiininzed. Figure 2?i
shows a listing of the very simple program that achieves

Figure 24: Plot of iog(6 FA,6A) vs. logi6,All for the the value of q which minimizes the estimate
(quadratic map with r = A + ýi, where FA is escape time
out of a circle of radius R = 100, and the cell resolution (MSetDist (make-rectangular p q) maxiter R
is 512 x 512. The real global function is at A = -1, and overflow)
is measured with Gaussian observation noise with vari-
ance ao = 10-3 and no dynamical noise (ad = 0). From for given values of maziter, R, overflow.
top to bottom, the lines correspond to • = 0.3, { = 0.25, We first fix a value of ý and obtain an estimate for

- 0.35, • = 0.2, • = 0.4. A to feed the function optimal-control (figure 5.1.2)
by running a local algorithm (for example aii extenided
Kalman filter). The local algorithii (imlpleiiented by
Elmer Hung [17]) that we have used gave ati accuracy
of 10-5 - 10-r. The function optimal-control will
return a value q for 4 whose distance from the Irully
optimal value will be of the order of 10-r - 1U'. We

26 can then drive E to the estimate q and run the global



(define (MSetDist c maxiter R overflow)
(let ((zorbit (make-vector (+ max-

iter 1) 0.0)))
(define (orbit-loop i z)

(cond ((> x maxiter)
0.0)

((> (magnitude z) R)
(der-loop 1 i 0.0+0.0i))

(else
(let ((nevz (+ (* z z) c)))

(vector-set! zorbit i neez)
(orbit-loop (+ i 1) nevz)))))

(define (der-loop i iter zder)
(let ((z (vector-ref zorbit (- i 1))))

(cond ((> (magnitude zder) overflow)
-1)

((. i iter)
6 (let ((m (magnitude z)))

S( ( 2 (* m (log m)))
(magnitude zder))))

(else
(der-

loop (+ i 1) iter (+ (* 2 (* z zder)) 1)))))

6 (orbit-loop 0 0.0+0.0i)))
i. I0

500000. Figure 27: A program estimating the distance of a point
c in the parameter plane from Al.

algorithm. After having obtained a better estimiate for p

(= A) from the global algorithm, we may feed that esti-
100000. / mate into optimal-control to get a better estimatte for

the optimal control value and repeat the whole process.
5000-t until we get satisfactory accuracy./

--1' -0.00-: 0.o0: 6 Cooperation between local and global
i. It i. 1 1. t0 1. 10 1. 10 approaches

W%'e know that the dissimilarity function is locally tuin-
modal but we have to have a way of entering the region
of unimodality in order for the global algorithm to work.

One approach is to look at the domain D at different
cell resolutions. In other words increase the number of
cells used to represent the global function. As we get it.
coarser and coarser resolutions, the region of unimodal-
ity starts at. bigger and bigger values. A imiore interesting

Figure 26: Plot of log(bFA,6A) vs. logiI6All for the solution to this problem is to use a combination of lo-

quadratic map with c = A + ýi, where F,\ is escape time cal and global approaches. In particular, we can use the
out of a circle of radius R = 100, and the cell resolution local algorithms to obtain an esstimatr of the parametcr
is 512 x 512. The real global function is at A = - 1. and that place• us in a region of unnmodality of the dissi.u-
is measured with Gaussian observation noise with vari- lartlyfuncthon. and then use a global approach to :ero ti
ance or, = 10-3 and no dynamical noise (a'd = 0). Fromt to thf correct parameter value. Numerical experiments
top to bottom, the lines correspond to ý = 0.28651237 seem to indicate that local methods we have tried, reach
(d : 0.218) 4 = 0.3 (d • 0.35), ý = 0.25 (d = 0.48), rather quickly an good estimate of the parameter but
S= 0.35 (d • 0.59), • = 0.2 (d -t 0.58). • = 0.4 then get. stuck and do not seem to improve further (prob-
(d t 0.68). ably because of numerical problems, invalid linearization

aissumiptions. or bad finite approximation assumnptions).
The global algorithm, given the estimate obtainetl by
the local method, increases it. by many orders of ziag-
nitude. It seems that a cooperation between local and
global approaches is the right way to attack real estimna-

27 tion problems.



(define (optimal-control p tol qi q2) ponent y also arise. To our knowledge these results are
(define (loop qi q2 dl d2 completely new.

(let* ((q (U (4 q1 q2) 2)) Moreover, we believe that it would be interesting to
(c (make-rectangular p q)) develop a general theory of optimal global geometric pa-
(d (msetdist c 1000 1000 1e100))) rameter estimation through control, and investigate how

(cond ((< dl tol) p.s.e. changes with the position of the parameter in pa-
q() rameter space.

((- d 0.0) The ultimate goal is to use chaos and instability anddl d)) combine the local and global approaches to parameter

(else estimation in order to obtain breakthrough extraordi-
(loop q q2 narily precise measurements of quantities that are very

d d2))))) difficult to measure, such as the Universal Constant of
(loop qi q2 Gravity.

(msetdist (make-
rectangular p qi) 1000 1000 letO0) Acknowledgements

(asetdist (make-
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Figure 28: A program returning an estimate of an opti- would like to point out that the idea for a global ap-
mal control value ý, given an estimate p for \ and two proach to parameter estimation was born through con-

points q1 not in M, and q2 inside M. versations with Prof. Sussman, who was the first person
that motivated me to work in this direction.

I would also like to thank John Tsitsiklis, Steve Stro-
7 Final Comments gatz, Elmer Hung, and George Verghese for many very

useful discussions, as well as all the members of Project
In this paper, we propose a new approach to parame- MAC at the Al lab for tolerating my using all the ma-
ter estimation based on exploiting the global geometri- chines in the group for the necessary computations.
cal complexity of nonlinear dynamical systems, rather
than trying to do local approximations as the classical Appendix
algorithms do.

We demonstrate the power of a global approach in the A The Golden Section Method
context of complex analytic dynamics. Under very rea- The Golden Section Method uses the fact that we can
sonable magnification and noise assumptions, and with a bracket the location of the minimum of a unimodal func-
careful combination of global estimation and control, we tion by evaluating the function at two distinct points in
reach an improvement as big as 13 orders of magnitude the region L of unimodality.
over the initial estimate. To describe how it works, we first assume that the

The approach which we follow in the case of complex function ýpA is unimodal in the interval L1 = (11, ri]. Sup-
analytic dynamics can be extended to much more general pose we evaluate the function at two points x 1 , Xr in L
settings. such that xI < x-) and find that f(x 1) < f(x.). It follows

We remark that the choice for global functions that we from the definition of unimodality that A E [11, X2]. Simi-
have made is just one of the many possibilities. We have larly, if (xij) > f(P2), then we must have A E [xz, rl]. If
just given one implementation of the much more the function values at xi, r. are equal then A E [X1 , X2. ,
general idea of global parameter estimation. In but for simplicity we may again consider that it belongs
different settings, we are forced to chose different global to any one of the above bigger intervals. In any case, af-
functions or minimization algorithms. For example, in ter the first two function evaluations, a portion of L) to
the case of Hamiltonian dynamical systems no attractors the right of x2 or to the left of zx can be eliminated from
exist and completely different global functions must be further search. If L2 = [12, r2] is the remaining interval,
devised (for example functions that reflect the shape of we can obtain two more-function evaluations and fur-
chaotic layers). ther reduce the length of the interval containing A. By

The global approach is computationally much more using this procedure we can keep reducing the unimodal-
demanding than the local approaches but can be much ity interval, obtaining an increasingly tighter brarketing
more accurate and can have more robust convergence of the minimum value.
properties. With the use of increasingly faster computers An improved version of the above naive algorithm is
the disadvantage mentioned above becomes less and less the Fibonacci method, which gets its name from using
important. Moreover, the global approach is ideally the Fibonacci sequence
suited for parallel computation, opening the door
to tremendous icrease in performance. (56)

There are many new directions to follow: first ofall the To = 0, 17' = 1, Yk = Y"k-I + Y- - 2, k = 2.3 ....
power law that the dissimilarity function locally obeys in picking the points at which the function is evaluated.
needs to be understood thoroughly and analyzed the- The method works as follows: Let N be the total number
oretically. Many interesting open questions concerning of points at which the function will be evaluated. Sup-
the nature and behavior of the parameter sensitivity ex- pose that at iteration k, the interval containing A (the



local minimum) is [lk, rd]. For k = 1,2. N - 1, the [10] A. Cayley, "The Newton-Fourier Imaginary Prob-
function values are computed at the two points lem", Amer. J. Math., 2, p. 97, 1879.

k '+-k [11] A. Douady, J. H. Hubbard. "Iteration de'. po1h.-(57) k +2- nomes quadratiques complexes". ('RAS Paris 29•4.

k 17N+i -k pp. 123-126, 1982.
( + N+2-k [12] R. 0. Duda, P. E. Hart. -Pattern Classificativi and

Scene Analysis", J. Wiley and Sons.
We notice that (by the definition of the Fibonacci se-
quence) one of the points X k, 2 is the same as one of [13] C. Grebogi, E. Ott. J. A. Yorke, "Crises. stid-
the points at a previous iteration. Hence, only one new den changes in Chaotic Attractors. and Transient

function evaluation is required at each point. This is ex- Chaos", Physica 7D, p. 181-200. 1983.
tremely important in our case where function evaluations [14] C. Grebogi, E. Ott, J. A. Yorke. "'Fractal
are computationally very expensive, basin boundaries, long-lived chaotic and unstable-

One of the disadvantages of the Fibonacci method unstable pair bifurcations". Phys. Rer. Letters. 50.
is that the number of function evaluations N must be p. 9 3 5 -9 3 8 , 1983.
known in advance. Getting rid of this requirement leads [15] K. F. Gauss, "Theory of Motion of th( Hraruz lyl
to a method known as the Golden section method, which Bodies", New York. Dover Pubt.. 1963.
is a good approximation to the Fibonacci search. It can

be shown that [16] J. Guckenheimer, P. Holmes, Nonhlnear O.-czla-

lions, Dynamical Systems. and Bifurcations of Vec-
(59) i1 /-1 toar Fields", Applied Mathematical Sciences. Vol.

N-Mo .FN r 2 42, Springer-Verlag, 1983.
The golden section method then places the points at [17] E. S. Hung, "Dynamics Enhanced Parameter E.s-
which the function is to be evaluated at timnalion in Chaotic Systems", Massachusetts In-

(6) r - Ik (rk - k) stitute of Technology, Bachelor of Science Thesis.
(60) X = lk + r-- r1991.

(61) l= k + I(rk - lk) [18] E. Atlee Jackson, Perspective of Nonlinear Dynain-
r ics, Vol. 2, Cambridge University Press, 1989.

Again, only one function evaluation is required. [19] A. H. Jazwinski, "Stochastic Processes and Filtering

References Theory", Academic Press, 1970.

[20] R. E. Kalman, "A new approach to linear filtering
[1] H. Abelson, G. J. Sussman, with J. Sussman, and prediction problems", J. Basic Eng., vol. 82D.

"Structure and Interpretation of Computer Pro- pp.35-45, Mar. 1960.
grams", The MIT Electrical Engineering and Com- [21] J. L. Kaplan, J. Mallet-Paret, J. A. Yorke, "The
puter Science Series, MIT Press, McGraw-Hill, Lyapounov dimension of a nowhere differentiable
1985. attracting torus", Ergodic Theory and Dynamical

[2] L. V. Ahifors, Complex Analysis, Third Edition, S;ystems, 4, p. 261-281, 1984.
McGraw-Hill, 1979. [22] L. Keen, "Julia Sets", Proceedings of Symposia in

[3] K. T. Alligood, J. A. Yorke, "Fractal Basin Bound- Applied Math., Volume 39, 1989.
aries and Chaotic Attractors", Proceedings of Sym- [23] J. Kennedy, J. A. Yorke, "Basins of Wada", Physica
posia in Applied Mathematics, Vol. 39. 1989. D, 51, p. 213-225 (1991).

[4] M. Aoki, "Optimization of Stochastic Systems", [24] A. J. Lichtenberg, M. A. Lieberman, "Regular
Academic Press, 1967. and Stochastic Motion", Applied Mathematical Sci-

[5] M. Avriel, "Nonlinear Programming: Analysis and ences, Vol. 38, Springer-Verlag, 1983.
Methods", Prentice-Hall Series in Automatic Com- [25] J. Milnor, "Self-similarity and hairiness in the Man-
putation, 1976. delbrot set", Institute for Advanced Study, preprint.

[6] P. Blanchard, "Complex Analytic Dynamics on the 126) H.O. Peitgen, P. H. Richter, The Beauty of Fraeials.
Riemann Sphere", Bulletin of the American Math- [26) . 0. eitge, P .
ematical Society, Vol. 11, Number 1, 1984. Springer-Verlag, 1986.

[7] M. L. Blank, "Stochastic Attractors and their Small [27] H. 0. Peitgen, D. Saupe eds., The Science of Fractal
Perturbations", Mathematical Problems of Statisli- Images, Springer-Verlag, 1988.
cal Mechanics and Dynamics, pp. 161-197, Reidel [28] H. L. Royden, "Real Analysis", Second Edition,
Pub. Co., 1986. Macmillan Press, 1968.

[8] B. Branner, "The Mandelbrot Set", Proceedings of [29] D. Ruelle. "Elements of Differentiable Dynamics
Symposia in Applied Math., Volume 39, 1989. and Bifurcation Theory", Academic Press. 1989.

[9] H. Brolin, "Invariant Sets under Iteration of Ratio- [30] C. L. Siegel, "Iteration of Analytic Functions", Ann.
nal Functions", Ark. Mat., 6, pp. 103-144, 1965. 29 of Math., (2) 43, pp. 607-612, 1942.



[311 H. W. Sorenson, "Kalman Fiftering: Theory and
Application", IEEE Press, 1985.

[32) H. W. Sorenson, "Least-squares estimation: from
Gauss to Kalman", IEEE Spectrum, vol. 7, pp. 63-
68, 1970.

[331 D. Sullivan, "Quasiconformal homeomorphisms and
dynamics I", Ann. Maih. 122, pp. 401-418, 198-5.

30


