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1 Introduction

“..Stnce all our measurements and obser-
valions are nothing more than epprozimations
o the truth, the same musl be true of all calcu-
lations resting upon them, and the highest aim
of all computations made concerning concrele
phenomena must be lo approzimate, as nearly
as praclicable, to the truth.”

K. F. Gauss, “Theoria Motus Corporum
Coelestium” (1809).

Estimation theory deals with the problem of estimat-
ing the state of a stochastic dynamical system from
noisy observations. The earliest stimulus for its develop-
ment was apparently provided by astronomical studies of
planet and comet motion in the 18" century. The mo-
tion of these bodies can be completely characterized by a
finite number of parameters and the estimation problem
that was considered was that of inferring the value. of
these parameters from telescopic measurement data.

To be more precise, suppose m measurement vector
quantities y1,...,ym € R' are available at discrete in-
stants of time {;,... ,{y. The parameter vector r € R"
which we wish to determine is assumed to be linearly
related to the measured data, i.e.

(1)
where v, represent the measurement errors that occur
at each observation time. Let Z,, denote the the esti-
mate of r based on the m data samples {y;.... ,ym}.
Then the residual rp (I < k < m) associated with the
k'" measurement is defined to be the difference between
the observed value y; and the value predicted from the
estimate Zy,:
(2)

Around 1795 Karl Friedrich GGauss invented the rev-
olutionary method of least-squares for attacking the
above problem. The method was independentiy invented
and published by Legendre in 1806 in his book “Nou-
velles méthodes pour la determination des orbites des
cométes”. A detailed description of the method was pub-
lished by (iauss in 1809 in his book “Theoria Motus Co-
porum Coelestium”. The name “least-squares method”
comes from the fact that the optimal estimate z,,, for z
based on the observations Ym = {i}1<i<m is the value
of £ which minimizes an appropriately weighted sum of
the squares of the residuals

m
Lm = Z rZWkrk
k=1

e = Myz + vy

re=yr — MpZm

(3)

where the elements of the matrices W are selected to
indicate the degree of confidence that one can place on
the individual measurements.

We notice that the state/parameter vector r is as-
sumed to be fixed in the above description. Moreover,
:.he least-squares approach has no probabilistic meaning.

'1t should be noted that Giauss also considered a proba-
bilistic approach to the estimation problem. but rejected in
favor of minimizing function 3.

]

The general shift of attention to dynamical systems i
the 20'" century. as well as the introduction of the ma:-
imum likelthood method by R. A. Fisher in 1912 led 10
new developments in the field of estimation theory. Kol-
mogorov in 1941 and Wiener in 1942 independently de-
veloped a linear minimum mean square estimation tech-
nique that received considerable attention and laid the
foundations for the development of Kalman filter theory.
This approach allowed for systems with state changing
with time, as well as both continuous and discrete obser-
vations. Kolmogorov's and Wiener's work focuses on the
analysis and synthesis of systems in terms of their input-
output characteristics, reflecting the genera! trend in the
scientific community at that time. The problems were
formulated in terms of integral equations and the main
tools used were the Laplace and Fourier transforms.

Subsequent scientific developments have stressed the
state space approach, which uses difference and differen-
tial rather than integral equations for describing a sys-
tem. Aithough both these approaches are mathemati-
cally equivalent the latter proved much more convenient
and useful, opening the door to many new developtnents.

The state space reformulation of the estimation prob-
lem suggested a recursive approach, first attempted for a
specific system in 1955, by J. W. Follin at John~ Hopkin~
University. Five years later, R. E. Kalman published a
very influential paper ([20]). in which he described an
optimal recursive algorithm for solving the linear esti-
mation problem using a general state space approach.
This became known as the Kalman filter. In a sense, the
Kalman filter is nothing but an eflicient computational
solution of GGauss’s least-squares problem in a more gen-
eral state space setting.

The value of Kalman'’s reformulation was that it led to
significant new insights and had the effect of unifying all
previous resuits. Moreover, the Kalman filter equations
provided an extremely convenient procedure for digital
computer implementation, and its recursive structure,
together with the fact that the Kalman gain is inde-
pendent of the observations and can be precomputed.
opened the door for real time estimation.

Nature is inherently nonlinear. Hence, in order to ap-
ply estimation techniques to real physical systems, it was
necessary to develop algorithms that can deal with non-
linear dynamical systems. There are many reasons why
nonlinear filtering theory is much harder than linear the-
ory. The main difference is that the linear filter has es-
sentially a finite description: the stale of the system con-
sists of the mean and the covariance matrix, which are
enough to completely determine the conditional proba-
bility density that contains all relevant information. In
the nonlinear case, the state of the filter is mfinutc, con-
sisting of the whole conditional density function used to
compute oprimal estimates. The numerical probletus in-
volved in computing the whole probability density func-
tion are, in general, intractable, since they involve the
solution of complicated integro-differential equations or
functional integral equations.

In practice, finite approximations to the conditional
probability density are considered. An approximate non-
linear filter is obtained by parametrizing the conditional




density via a finite set of parameters, and computing
equations for the evolution of these parameters, which
comprise the state of the system. One of the most popu-
lar approaches used in practice, is to linearize the system
in question and apply linear filtering theory. This gives
rise to the Extended Kalman Filter and its variants. The
main characteristic of all these approaches is that they
try to follow locally a nominal trajectory, keeping track of
how the state (finite approximation to an infinite cond:-
tional probability density) changes. This local character
imposes serious limits to the applicability and effective-
ness of these algorithms.

We notice that the traditional estimation algorithms
are in effect attempts to extend inherently linear ideas
to the nonlinear setting. One can completely understand
linear systems by looking at isolated integral curves, but
this is hopeless for the nonlinear case, because of the
immense complexity of nonlinear evolution.

Henri Poincaré was the first to realize that the at-
tention should be shifted from an analysis of isolated
trajectories and local characterizations, to a more global
topological and geometric understanding of the phase
space of nonlinear dynamical systems®. At the present
time we are witnessing a spectacular blossoming of non-
linear dynamics, made possible on the one hand by great
theoretical developments on global topological and geo-
metrical analysis, initiated by Poincaré’s revolutionary
work in the 19'* century, and on the other hand by the
wide availability of increasingly powerful computers.

We believe that very interesting new insights and ex-
tremely accurate novel algorithms can be obtained by
attacking parameter estimation problems using a global
geometrical point of view. Moving up one level of ab-
straction we wish to consider parameter estirnation algo-
rithms whose primitive objects are geometric structures
in phase space (represented as points in an appropriate
function space), rather than points on isolated trajecto-
ries.

We demonstrate how to exploit the complexity of
global geometrical phase space structures of nonlinear
dynamical systems and their dependence on parameter
variations in order to obtain extremely accurate param-
eter estimation algorithms that do not depend on local
approximations, in the context of complex analytic dy-
namics.

In particular, the global algorithm was tested on the
family of quadratic maps of the Riemann sphere and ra-
tional maps obtained from Newton’s method on complex
cubic polynomials. We show how to transform the esti-
mation problem into a problem of minimizing a dissimi-
larity measure between images containing global dynan-
ical information. Our experiments indicate that the dis-
similarity function to be minimized is locally unimodal.
In fact it seems to obey an exact power {aw locally. The
exponent appears to be a new invariant of these dynami-
cal systemns, which we call the parameter sensitivity czpo-
nen!. and which characterizes the dependence of global

1t is interesting to note that, just like Gauss' idea in
the case of estimation theory, the motivation for Poincaré’s
development of global geometrical dynamics comes from the
study of the motion of celestial bodies.
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geometric structures on parameter variations.

The global algorithm gives extremely accurate esti-
mates for the parameters of these systems systetns (im-
proving the initial estimate by more than 13 orders of
magnitude in a certain case). Moreover. appears to be
very tobust with respect both to observation uoise aud
dynamical noise.

2 Parameter Estimation and Global
Geometry

The study of how geometric structures in phase space
change as system parameters vary is of great interest
and has received much attention. The main focus so far
has been the study of changes in the topulogy of phase
space structures (bifurcation theory).

Our objective is to exploit the way eract geometrical
rather than topological features of phase space structuresx
change as system parameters vary slightly. in order to
obtain novel extremely accurate parameter estitnation
algorithms that do not depend on local approximations.

This approach led us to the discovery of what seems to
be a very general power law that enables us to quantify
the dependence of global geometry on small changes in
the parameters of the system.

In order to demonstrate our approach we will restrict
our attention to how basins of attraction change as pa-
rameters vary, and show how to transform the param-
eter estimation problem into an optimization problem
over an appropriate space of functions containing global
dynamical information.

Our discussion in this paper will be restricted to es-
timating a single parameter of a system, but our tech-
niques can be readily generalized to higher dimensional
problems.

We begin by demonstrating this approach for the fain-
ily of complex quadratic polynomials.

2.1 The Quadratic Family
Given any complex quadratic polynomial p(z) = az® +
2b:+d, let M(z) = az+bandc=ad+b- b?_ If
fo : © — C denotes the map f.(z) = % + ¢, where C is
the Riemann sphere, then:
4) M7 ofioM(z)= M ((az +b)° + )

= M~ Ya?:2 + 2abz + b7 + c)

(22 + 2abz 4+ b+ ¢) - b
a

= p(z)

i.e. p and f, are (analytically) conjugate. It follows
that in order to uaderstand the dynamics of all complex
quadratic polynomials, it is enough to understand the
dynamics of the complex one-parameter family

Q:{fr :?—E.re(_"fr(:)___::_’_d

Both the variable = and the parameter ¢ fill out a com-
plex plane. We will refer to the z-plane as the dynamzcal
planc and to the c-plane as the parameter plane.




2.1.1 Julia Sets

Given_a raticnal map f : € — C of the Riemann
sphere C = CU {00}, we can get a dynamical system by
repeated application of f. In the begining of the twen-
tieth century, the French mathematicians P. Fatou and
(i. Julia studied the iteration of complex polvnomials of
degree d > 2. Having at their disposal a powerful the-
orem of Montel that gave a sufficient condition for the
normality of a family of meromorphic functions, they re-
alized that it is very interesting to consider the following
decomposition of the dynamical plane:

Definition 2.1 A point z € T is an element of the Fa-
tou sel, Fy of a rational mapping f, if there exisis a
neighborhood U of =, such that the family of tterates { f™)
is a normal family on U. The Jula set J; of f 1s the
complement of the Falou sel.

where, f denotes n-fold functional composition of f by
itself.

Without recalling the exact definitions, let us only re-
mark that normal families have values that do not di-
verge under iteration. So, in some sense the Fatou and
Julia sets of f are the sets of stable, unstable points of C
with respect to f, respectively.

We notice that the point at infinity oo is always an
attracting fixed point for quadratic maps®. Let

A(oo)={z€C: ff — o0 as n — oo}

be the basin of attraction of infinity. We have the fol-
lowing result:

Proposition 2.1 The Julia set J;_ of f. : T — T,
fe(2) = 22 + ¢, is equal to DA.(00).

The proof of this statement is a direct consequence of
the fact that the boundary of any completely invariant
component (here 4.(00)) of the complement of the Julia
set has to equal the Julia set.

The set Ky, = C — A (o0) is called the filled in Julta
set. We clearly have K. = J;, = 0A.(ox), ie. Jy,
separates competition between orbits being attracted to
oc and orbits remaining bounded for all time.

Example 1: -Consider the map fo : C — T, fo(z) =
2%, Clearly any point outside the unit circle 5! has an
orbit that escapes to infinity. Moreover, any point in-
side the unit circle has an orbit converging to 0. (‘onse-
quently, the Julia set Jy, of fo is the unit circle 5.

Example 2: The Julia set of the map f_» : C — T,
f-2(z) = 2% — 2 is the interval [~2, 2] on the real line®.

In general, Julia sets are not smooth, but very com-
plicated fractal objects, exhibiting an amazing variety of
geometric forms as the parameter ¢ changes. Figure |
(taken from [26]) shows examples of Julia sets of complex
quadratic polynomials corresponding to various points ¢
on the complex plane, along with the Mandelbrot set
which controls their topological structure.

*In fact o is an _attracting fixed point for all complex
polynomial maps on C

2.1.2 The Mandelbrot Set

In 1905, P. Fatou proved the following very surprising
results:

Theorem 2.1 Every altracting cycle for a polynomial
or rational function atiracls atl least onc critical pont.

Each quadratic polvnomial f. in Q has a unique crnt-
ical point, namely 20 = 0. The corresponding critical
value is f.(20) = f-(0) = c¢. It follows that f. can have
at most one attracting cycle in the complex plane. More
generally, a polynomial of degree d > 2 can have at most
d — 1 attracting cycles.

In 1918-1919 P. Fatou and (. Julia proved another
result which further supported their conjecture that the
dynamical behavior is dominated by the behavior of crit-
ical points:

Theorem 2.2 Let Qy denote the set of critwcal ponts
for a polynomial f : T — C. and let Ky be the set of all
potnts in C which do not escape to mfinily under f. e
Ry = C = A(oo). Then:

1. Qs C Ky & Jy is connected.
2 QUK =0=J; s a Canlor Set.

Since for a quadratic map f., there exists only one
critical point namely zo = 0. an immediate corollary of
theorem 2.2 is the following:

Corollary 2.1 The Julia sct J;_ of the quadratic map
f- is either connected or a Cantor sef. Moreover. Jy
1s connected if and only if fI'(0) does not tend to o as
n— oc.

The above corollary suggests a natural decownposition
of the parameter plane into the Mandelbrot set

(5) M ={ceC:J; is connected}

and its complement C— M. Moreover, corollary 2.1 gives
us a way to compute the Mandelbrot set: in order to
check whether a point ¢ of the parameter plane is in M.
it is enough to check whether the orbit of 0 under f, does
not tend to infinity.

We retnark that sets similar to the Mandelbrot set oc-
cur in many other families of comiplex analytic maps.
This happens since many mappings or their iterates lo-
cally behave like a quadratic polynomial. Hence the
Mandelbrot set is in some sense a universal object.

The boundary @M of the Mandelbrot set is a bifur-
calion scl, i.e. the topological nature of the Julia set
changes as we cross this set in the parameter plane. In
the next sections we will investigate how the geometry
rather that the topology of Julia sets depends on param-
eter variations.
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2.2 Global Parameter Estimation for the
Quadratic Family

The complex one-parameter family of dynamical systems
(6) In4l = :721 +c

can be considered as the following real two-parameter
family

(7) Tag1 =Th—VYa+ )

(8) Yn+l = 2Zpyn +&

under the usual identification of ®? with C sending z, to
In+Yyni and cto A+Ei. We want to consider the problem
of estimating A, when £ is held constant, in the presence

of observation and dynamic noise. In particular, suppose
the real system has noisy dynamical evolution:

(9) Ta4l =T — Yo + A+ vaz(n)
(10) Yn+1 = 2ZnYn + & + vay(n)
and we actually observe:

(11) Tpn = 2Zn + voz(n)

(12) Un = Yn + Vo,y(n)
where

both that the dynamical {vaz(n)}nez,, {vdy(n)}nez,
as well as the observation {vo,z(n)}nez,, {Voy(n)}nez,
noise sequences are white Gaussian random sequences.

2.2.1 Setting up global functions for quadratic
maps

The primitive objects used in local methods are points
on isolated trajectories. In the next section, we will show
how to obtain extremely accurate estimates of the pa-
rameter A by moving up one level of abstraction and
consider an algorithm that uses representations of the
Julia sets of the maps as primitive objects. In this sec-
tion, we describe how to use proposition 2.1 in order to
obtain a dlscrete representation of Julia sets of quadratic
maps f. : C — C, fo(z) = z2+¢. The method we will de-
scribe is often refered to as the Level Set Method (LSM)
((26], [27]).

We restrict our attention to a domain D C Cx= R xR,
on which we impose a grid of n x m cells. Choose a large
integer Npqr (iteration resolution) and an arbitrary set
T (target set) containing co. We will take T = {: :
” || > R}, where R is a large number®. For each cell
in the decomposition of the domain D assign an integer
label {.(p) = I.(p.T), where p is the centerpoint of the
cell. in the following way:

(13)
k  provided fi(p) € T and ff(p) € T,

for0<i<kand k< Npgs
0 otherwise

l(p) =

If 1.(p) is nonzero then p escapes to infinity and I.(p) is
the escape {ime (measured in the number of iterations)
needed to hit the target set T around oc. The contours
obtained by the above algorithm are approximations of

$In most of our experiments we take R = 100.

in B2,

the equipotential curves of the filled in Julia set K. when
J. is connected (see for example [27]).

As ¢ moves on the parameter plane where the Mandel-
brot set lives. the corresponding Julia set changes from
shape to shape producing an immense variety of pussible
geometric forms (figure 1)

Let us fix £ to the value £ = 0.3. and cousider how
the geometry of the Julia sets changes as A varies locally
around the value A = —1. Figures 2. 3. 4 show a window
of the Juliaset for A = =1.0. A = =1.00001. A = —1.00Ul
respectively. We see that the human eye can clearly sense
changes of the order 10~* or so and tell which phase
image from 3 and 4 is closer to 2. We expect that by
comparing these images we can sense very small changes
in parameters and obtain extremely accurate estimation
algorithms. In the next section we describe how to turn
the above intuitive approach of comparing images to get
an estimate of a parameter into a precise algorithm.

2.2.2 The Global Approach
In order to be able to store in the computer and wa-
nipulate the images that we get by running LSM on a
domain D C R x [, we chose to represent them as two
dimensional arrays A = Ax(D) = (a};)ici<n.icim:
The array A = Ax(D) is a lookup table (a discrete
representation) of a function:

Fr:D—R

which we will refer to as the global function for f. on .

Before we proceed, let us recall that if (X, y) is a mea-
sure space, for p > 1, LF = LP(X,p) = {f : \ — E
measurable such that [, ||fllds < oo}. It is a standard
result of functional analysis that LP{X, u) is a vector
space and ||.||, is a norm on LP(X.pu). For f € L the
value:

(14) e =/ unv'du)w

is called the LP-norm of f. Let us define the LP-distance
between two functions f,g € L? to be:

(15) dp(f,9) = If — gllp

Let us choose the domain D to be a compact rectangle
Then the function Fy € L”, where X' = D and
st is the Lebesgue measure on D C B:*. The distance d,,
gives us a measure of how different Fj, F}, are for A, u
two different values of the parameter. If

Ax = (o) hicicnagycm
Al‘ = (n:"j)ISiSn,lSjSm

are the discrete representations of F,, F, respectiveiy, a
natural measure of their difference. is the discrete L7-
distance (p < 00).

(16)

n I/p
dp(Ax. Ay) = || Ax = Aullp = [ZZ““' g " IP]

1=1 =1

From now on we will tend to use the satne notation for
both the continuous quantities and their discrete repre-
sentations.
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Figure 3: Julia Set for X = —1.00001,€ = 0.3, D = [-0.079555, ~0.079525] x [0.265320, 0.265350).
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It would seem that the LP distance of global functions
F\.F, is a rather coarse characterization of the differ-
ences of the corresponding images. It turns out that it
is ideally suited for doing parameter estimation in the
presence of noise. The reason is that, intuitively, taking
the L? distance of global functions has the effect of av-
eraging away the effects of noise, relurning a measure of
the difference belween the 1mages which ts rather noisc
msenstlive.

(iiven a parameter value A, let us define the following
functional:

(1rn ¥a: LP =R
(18) Ua(G) = dp(Fi, )

Let us now define the dissimilarily funclion for parame-
ter A to be the function:

(19) pr:R—=R

(20) oa(pe) = Ya(Fyu) = dp(Fa, Fu)

As j — X we expect py(p) = dp(Ax. Ay} — 0. In-
tuitively, we expect the dissimilarity function ¢, to be
unimodal?. Jocally around A with a local minimum at
H=A

Qur experiments not only confirm the above conjec-
ture, but indicate that there is a lot of structure in the
way the dissimilarity function decreases to the local min-
imum: an exact power law is obeyed around A. More-
over, local unimodality of f) around A seems to be very
robust with respect to dynamical and especially obser-
vation noise.

Once we know the dissimilarity function ), is locally
unimodal, with the real value of the parameter A be-
ing the local minimum, we can use one of the standard
optimization algorithms to determine A. In our experi-
ments we use the (Golden Section Method, described in
appendix A. This method uses the fact that we can
bracket the location of the minimum of a unimodal funec-
tion by evaluating the function at two distinct points in
the region L of unimodality.

2.3 Performance of the Global Algorithm for
the Quadratic Family

In this section we give a list of sample runs of the global
algorithm for quadratic maps f. : C — C, fo(z) = z° +¢.
If ¢ = A+ &1 we want to consider the problem of estimat-
ing A assuming £ is fixed, in the presence of observation
and/or dynamical noise (equations 11, 9).

Let Fy be the (noisy) global function whose discrete
representation A, is obtained by performing measure-
ments (according to equation 11) on the noisy real sys-
temm. Local minimization of the dissimilarity function

oy : R—E

TA function ¢ : B — R is said to be unimodal on a closed
interval L C [ if there is an z° € L such that r* minimizes
w on L and, for any two points z,,z, € L, such that 7, < 7,
we have:

12 2" = f(x1) > fl(z2)

2* <11 = fz2) > fla)
Note that unimodal functions are not necessarily differen-
tiable or even continuous.Strictly convex functions and most
of their generalizations are unimodal.

falw) = di(Fr. F)

is obtained using the (iolden Section Method. Phase
windows are represented as 512 x 512 arrays. and the
Boundary Scanning algorithm used. checks for escape
or orbits out of a circle of radius 100 centered at the
origin. The noisy phase portrait 4, corresponds 10 A =
—1.0 and is obtained with (Gaussian observation noise
with variance o, = 107% and no dvnamic noise. The
accuracy achieved gives an upper bound on the distance
of the global method estimate from the real value of the
parameter.

e )=0.3

1. Domain : [—1.5.—1.0] x [0.0.0.5]

Accuracy Achieved : 10~

Number of Orbit Points i typical unage :

4120137

Average Number of Orbit Points per cell : 15
2. Domain : [=1.445. —1.37] x [0.05.0.2]

Accuracy Achieved : 107!

Number of Orbit Points in typical nunage :

7150541

Average Number of Orbit Points per cell : 27
3. Domain

[~1.40507, —1.40506) x [0.100155.0.100165]

Accuracy Achieved : 1013

Number of Orbit Points in typical image :

17446074

Average Number of Orbit Points per cell : 66
4. Domain :

{=0.079555, —0.079525] x L[).265320, 0.265350]

Accuracy Achieved : 10710

Number of Orbit Points in typical image -

33692290

Average Number of Orbit Points per cell : {28
5. Domain :

[=0.079545. —0.079535) x [0.265330. 0.265340]

Accuracy Achieved : 10-'¢

Number of Orbit Points in typical umage :

369510138

Average Number of Orbit Points per cell : 140

e A=0.35

1. Domain : [—1.445,—1.37] x [0.05.0.2]
Accuracy Achieved : 10~°
Number of Orbit Points in typical mumage :
3905591
Average Number of Orbit Points per cell : 15
2. Domain : [—1.4075, —1.4070] x (0.0992.0.0997)
Accuracy Achieved : 1071
Number of Orbit Points in typical image :
9058660
Average Number of Orbit Points per cell : 35
3. Domain
[-1.40715, —1.40710] x [0.09957. 0.09962]
Accuracy Achieved : 107!
Number of Orbit Points in typical image -
12225105
Average Number of Orbit Points per cell : 47
e A=0.40

e ——————————————————————




1. Domain : [~1.445, ~1.37] x [0.05, 0.2]
Accuracy Achieved : 10-8
Number of Orbit Points in typical image :
3100158
Average Number of Orbit Points per cell : 12

2.4 Cayley’s Problem and Newton Basins

In this section, we consider the problem of estumating
a parameter in a dynamical system obtained from New-
ton’s method for cubic complex polynomials.

Newton's method and its variants are among the most
prominent numerical methods for finding solutions to
nonlinear equations. From a numerical point of view
Newton’s method has always been considered a local
method, i.e »une assumes that the initial guess is suffi-
ciently close tu a root, and then the orbit under Newton's
iteration scheme tends to this root.

In 1879 A. Cayley, in a one page paper [10]. sug-
gested the extension of what he calls the Newton-Fourier
method
(2 1) f(xk)

f(zk)

appli=i to complex polynomials f : T — T, where & is
a real number. It is interesting to note that 2] can be
interpreted as the Euler method with stepsize h for the
initial value problem:

Tep) = N(ze) =21 = h

N =)
(22) 0= Fe0)
(23) z(0) = ¢

Each of the roots of f is an attracting fixed point of
the Newton-Fourier iteration. Cayley suggested study-
ing the method globally, i.e. understanding the geometry
of the basins of attraction of the roots in phase space.

The problem is easy in the case of quadratic polynomi-
als: we have seen that any quadratic map is analvtically
conjugate to one of the form f.(z) = :2 + ¢. Newton's
method for f. is a rational map of degree 2:

Pt

T 2r

It can be shown that the Julia set Jy of N is the perpen-
dicular bisector of the segment joining the roots +./c.
Thus the basins of attraction of the two roots are the
half planes defined by Jy.

The geometry of the problem for higher degree poly-
nomials is extremely complicated. To get a feeling for
why that should be so, it is enough to note that we have
an poynomial f of degree n, then if A; is the basin of
attraction of the i** root pi of f, we must have:

Jy=04;, i=1,....n

i.e. each point in the Julia set J; must touch simultane-
ously all basins of attraction. Figure 5 shows the Newton
basin portrait for the cubic

9(z) = (2= 05)(=4+0.5i) (== 1)

The values assigned to each cell in phase space corre-
spond to convergence time to a root. If & is conver-
gence time of the center point of a cell to p, wherr

(24) N(z)

10

1 €1 < 3, then the value assigned to the cell in question
is 3k + (i —1).

Suppose p), pa are known. We want to consider the
problem of estimating p3 in the presence of observation
and dynamical noise. We let

ql'l-)').ﬁ.l(:) = (: —/'l)(: - P'_’)(: - /'3)

and define £, ,, » to be the Newton basin global unage
corresponding the polynomial g, », ». Suppose the real
value for X is A = 1.0 and let us restrict A to move on the
real axis. This gives us a situation exactly analogous to
the one for Julia sets of complex quadratic maps. Again
we get an estimation algorithm by trying to miniize:
F.

Pprpz i B—

F

l’l-l'.’«“)

¢l'\.02(“) = dl(F,)\‘,,_.‘A.

where F,, ,,  is the noisy Newton basin global function
for the third root equal to ).

2.5 Performance of the Global Algorithm for
Newton’s Basins

In this section we give a list of sample runs of the global
algorithm for the case of dynamical systems obtained by
Newton's method. Local minimization of the dissimilar-
ity function ,, ,, where p; = 0.5 and p, = —0.54, is
obtained using the (Golden Section Method. Global fune-
tions are represented as 512 x 512 arrays. If the nuinber
of iterations it takes for the centerpoint of a given cell to
enter a neighborhood of one of the roots. say p, (where
ps = pis the parameter) is k, then the value assigned to
each the cell in question is 34 + (i — 1}. The noisy phase
portrait F, . » corresponds to A = 1.0 and is obtained
with GGaussian observation noise with variance ¢, = 10~4
and no dynamic noise. The accuracy achieved gives an
upper bound on the distance of the global method esti-
mate from the real value of the parameter.

1. Domain : [—0.044, —0.024] x [-0.105, —0.085)
Accuracy Achieved : 10~°
Number of Orbit Points in typical image : 105358413
Average Number of Orbit Points per cell : 40

2. Domain :
[—0.033842. ~0.033822] x (—0.093942. —0.093922)
Accuracy Achieved : 10~
Number of Orbit Points in typical image : 23907786
Average Number of Orbit Points per cell : 99

3. Domain :
[—0.033833, —0.033832] x [-0.0939325. ~0.0939315]
Accuracy Achieved : 10714
Number of Orbit Points in typical image : 34889936
Average Number of Orbit Points per cell : 133

4. Domain : [0.075.0.080] x [0.077.0.080]
Accuracy Achieved : 10-%
Number of Orbit Points in typical nnage : 12464285
Average Number of Orbit Points per cell - 48
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Figure 5: Newton Basins for f(z) = (2 — 0.5{)(z + 0.5{)(z — 1), and domain D = [-0.5, 1.5} x [-1.0, 1.0].
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Figure 6: Quadratic Family: Plot of §F) s» as a func-
tion of ||6A]], 62 > 0, for A -1, € = 03. The
maximum number of iterations -is 100, and the do-
main is D = {(z,y) : z € [0.079555, —0.079525), y €
[0.265320.0.265350]}. A 512 x 512 cell resolution is used.
The real image is measured with (Gaussian observation
noise with variance ¢, = 10~2 and no dynamical noise
{4 = 0). The plot on the top shows some sample pcints,
and the one on the bottom is the same plot with straight
lines connecting the sample points.
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1000, b2

100000.

10000.

1000.

Figure 7: Quadratic Family: Plot of log(6F\ 5.} as a
function of log||6Al), 64 > 0, for A = =1, £ = 0.3.
The maximum number of iterations is 100, and the do-
main is D = {(x,y) : # € [-0.079555. —0.079525). y €
[0.265320,0.265350]}. A 512 x 512 cell resolution is used.
The real image is measured with (iaussian observation
noise with variance ¢, = 10~3 and no dynamical noise
(¢4 = 0). The plot on the top shows some sample points,
and the one on the bottom is the same plot with straight
lines connecting the sample points.
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Figure 8: Quadratic Family: Plot of log(6F) s,) as a
function of log||6 ||, 6A > 0, for A = —1. £ = 0.3. Each
line corresponds to a different domain. The resolution
increases from right to left. The real image is measured
with GGaussian observation noise with variance o, = 103
and no dynamical noise.
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Figure 9: Quadratic Family: Plot of log(6F, ;1) as a
function of log||6 ||, X > 0, for A = —1, £ = 0.3. Each
line corresponds to a different domain. The resolution
increases from right to left. The real image is measured
with (iaussian observation noise with variance ¢, = 10=%
and no dynamical noise.
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Figure 10: Newton Basins: Plot of logyp,, »,(A + 6X) as
a function of ||6A]], 64 > 0, for p; = 0.57,p2 = —0.54,
where A = 1. The real image is measured with Gaus-
sian observation noise with variance o, 10-3 and
no dynamical noise (o4 0). The plot on the top
shows some sample points, and the one on the bottom
is the same plot with straight lines connecting the sam-
ple points. A 512 x 512 cell resolution is used over the
domain D = {(z,y) : z € [-0.033842,-0.033822},y €
[—-0.093942, —0.093922).

14

LI ,

500000. '

100000. ’

50000. .

10000.

6
1. 10

500000,

100000.

50000.

10000.

0.01

Figure 11: Newton Basins: Plot of logg,, ., (A + ) ax
a function of |[|6A]|, 6A > 0, for p; = 0.5i, p» = —0.54.
where A = 1. The real image is measured with (iaussian
observation noise with variance ¢, = 10~% and no dy-
namical noise (a4 = 0). The plot on the top shows some
sample points, and the one on the bottom is the same
plot with straight lines connecting the sample points. A
512 x 512 cell resolution is used over the domain D =
{(z,y) : ¢ € [-0.044, -0.024],y € [-0.105. —0.085]}.
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166000.
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1000C.

Figure 12: Newton Basins: Plot of loge,, ., (A + 6X)
as a function as a function of log||6)||, éA > 0. for
m = 0.54, ps = —0.5¢, A = |. Each line corresponds to a
different domain. The resolution increases from right to
left. The real image is measured with (GGaussian obser-
vation noise with variance g, = 10~2 and no dynamical
noise.
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The Parameter Sensitivity Power Law

“Let chaos storm!

Let cloud shapes swarmn!

I wait for form.”

R. Frost. “A Further Range:
Pertinar™ (1936).

The numerical experiments not only confirm that the
dissimilarity function ¢, is locally undinodal around A.
but indicate that there is a lot of structure in the way 1t
decreases to the local minimum. In particular. if Fj is
the global function corresponding to A. and pu = A + 2\,
then for {|0A]| sinall enough. a power law of the foru.

Ten Mulls. (V)

(25) 6Fxsx = dp( Fagsa. Fa) = M{JoA|)"

is obeyed. We will refer to equation 25 as the parame-
ter sensitivity power law.

Let us consider. for example. the quadratic map
fe(2) = 22 4. ¢ A+ & Figure 6 is a plot of
di(Fagsa. F)) as a function of 6A. for A = —1. £ = 0.3.
They shape of the curve that we get immediately sug-
gests a power law around A = ~1 with exponent less
than 1. if in fact a power law of the form of equation 25
holds, then taking the logarithms of both sides gives a
straight line of slope d:

(26) lTogéF,\_“ = dlog |6 || +ﬂ
where m = log M. Figure 7 shows a log-log version of

figure 6, which is in fact a straight line. We give the
following definitions:

Definition 3.1 Suppose that the local power law holds
Jor some global function F, = Fy p : D —F.. We define
the parameter sensitivity exponent (p.s.c.) 7 of the global
Junclion F) lo be v = | —d. Moreover. we define m =
log M 1o be the resolution factor of F.

The parameter sensitivity exponent 7 is a measure of
the performance of the global algorithin, since it quan-
tifies our ability to distinguish nearby global functions
(1mages). If ¥ = 0, 1.e. a linear power law 1is obeyed. the
global function is rather insensitive to parameter varia-
tions. The performance of the global algorithm improves
as 7 gets closer to 1, i.e. as the slope d in the log— log
plot decreases towards 0.

Looking at the plot of logd,(Fa+sa, Fa) as a function
of log |[6A[] for different domains of a system and putting
the resulting plots together (for example figures 8, 12),
leads to the conclusion that the siope  changes very lit-
tle as we change our focusing window, i.e. the domain D,
in phase space! Hence it makes sense to talk about the
parameter senstltvily exponent of the system. All experi-
ments performed indicate that the following conjectures
are true:

Conjecture 3.1 The parameter sensilavily exponenl of
a system s the same for all typrcal domans® .

®By typical we mean that the global function Fi: ) — P
is representative of the complexity of the system. For exam-
ple, in the case of conrected Julia sets a typical domain is any
domain near the boundary dA4.(~). A domain lying wholy
in the interior of the Julia set, in which the global function

. is identically zero. is not a typical domain
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Figure 13: Quadratic Family: Plot of log(6Fxs.) as a
function of log|}éA|| for A = —0.12 and £ = 0.74. The
maximum number of iterations is 100, and the domain is
D= {(z,y) : € {0.3,0.4],y € {0.3,0.4]}. The lines from
left to right are for resolutions of 512 x 512, 256 x 256,
128 x 128, 64 x 64 cells.

Consequently, the parameter sensitivity exponent
seems to be a new dynamical system invariant
that quantifies the dependence of global geometry® on
variations of the parameter.

Conjecture 3.2 The parameter sensilivily exponent of
a system is independent of the cell resolution'® used
in approzimating the global function. Higher resolution
only increases the resolution factor m.

Of course the parameter sensitivity exponent (p.s.e.) is
not exactly the same for all resolutions, because we get
discretization errors in low resolutions. The p.s.e stays
close to a dynamical system invariant and converges to
it as the number of cells goes to infinity. An example on
which conjecture 3.2 is tested is show in figure 13.

To gain some more insight into the power law let us
rewrite equation 25 as:

8Fasn _ M M

Bx 6T T Al

(27)
Consider the limit
dF,
dr /,,
or more generally, of global information as represented
by the global function Fi.

1%The cell resolution is the number of cells used in the finite
representation of the global function.

6Fx 52

(28) = oo A

0.000i 0.001

dFy = hm ——-
16 dA Le Ar—0 “h’\”

The above limit is a mean derivative in L'-norm of the
global function F) with respect to the parameter A. We
see that when d = |, then the limit exists. When d < |
the limit 28 does not converge, and the parameter sensi-
livity ezponen! v = | —d measures ils rale of divergenee

Remark: The knowledge that a power law is obeved
locally around the true value X of the parameter can be
used to improve the performance (number of function
evaluations) of the global approach enormously! More-
over, it can be used to check for errors and place a safe
bound on the distance from the real value of the param-
eter.

3.1 The power law for smmoothly changing
global functions

In this section we demonstrate that if a global function
1s sufficiently smooth with respect to changes i the pa-
rameter, then a linear power law must be obeyved locally.
In particular, we prove the following proposition:

Proposition 3.1 Giren a global function Fy @ ) —
R, if for every point z € D, Fy(x) s twice differcn-
tiable with respect to the parameter X and the derivative
d?F)(z)/d\? is conlinuous and bounded 1 a neighbor-
hood U of A, then a linear power law s obeyed locally
Jor any LP-norm. Moreover. the L'-derwvative of F)
with respect o A exists and is equal to the spacc aver-
age ||dFy/dA|jLs.

Proof:

The proof is a straightforward application of Taylor's
formula. Since Fi(z) has a continuous second derivative
with respect to A, t.hen for any g = A+ 61 € U we have:
F "(?)

(29) =T

Fu(r) = - '\)k + Eu r(1)
k=0

(30)
l 1
Enx(p) = F/ (=~ O FrH (x)dt
s JA

where Ff(x) = d*F)\(z)/dA* and n = 1. If A is an upper
bound for F?(x) over U/, then

A
(31) E1.s(s) < .2.|Iu = AlI? = S8l
Clonsequently. for 6\ small enough we have
dF(x
(32 NP - A@l~ 156

The Lr-distance between F) and F u 18
(33) 6F (A 8X) = dp(Fagan. Fi)

Ur
= (/[)||Fx+ax(1)‘ FA(T)“Pd-T)

Hence, for sufficiently small ||8A]l:
1/p
(34)  SF(A6N) = (/ n“’FA i ir) 12V

The above linear power law implies that:

(35)
tnr
OF, s _ ( IIdFA”"d.r)




w]

The above proof not only shows that a power law holds
locally, but actually it holds pointwise. The following
lemma gives us a simple test for pointwise validity of the
power law.

Lemma 3.1 If a power law holds pointwise in norm
LPe . then the power law with the same erponent holds
for any norm LP.

The proof is trivial. It turns out that when the expo-
nent of the parameter sensitivity power law is not 1, the
law does not hold pointwise, but is the effect of spatial
averaging in LP-norm. Figure 14 gives an example of a
system where this is tested using lemma 3.1.

Consider now the linear differential equation

dr

(36) = = h(V)z
on the real line R. The solution of the above equation
(equation 36) satisfying the initial condition z(0) = z,
1s given by

(37) z(t) = zoehM)t

Suppose (M) > 0. In this case, we have a repelling
fixed point at z = 0. Given a domain D = [a,b] C R,
and we define a function F) = F) p : D — R assigning
to each point in the domain D its escape time from a
large interval [-M, M]. Let us ignore the point z = 0,
where Fi(x) = 0, since it does not change anything when
we integrate over it. For z different from zero we have:

InM — In|jz||

9(})
For most smooth functions g the above global function
satisfies the requirements of proposition 3.1 hence a lin-

ear power law is valid.
For example. if g(A) = ¢*, we get

R _ pg - o ()
e =(lnM lnlltll)‘b\2 ey
= (InM = In|jz||)e*

F,\(.‘L‘) =

which is continuous and bounded for any A. Similarly.
for g(A) = A a linear law holds around any A different
from 0.

The same reasoning applies to the case when g()) <
0. The only difference is that Fy(z) measures the time
needed to enter some predetermined neighborhood of the
attracting fixed point 0, instead of a neighborhood of
infinity.

Let us now consider a linear system

dz
(38) i A(M)z
where r € P.". A general solution to (38) can be obtained
by a linear superposition of n linearly independent solu-
tions {z'(t)....,z"(t)}:

(39) () =Y (1)
j=1
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where the n unknown constants ¢; are to be deternned
by initial conditions. If A(A) has n lineariy independent
eigenvectors 17, 1 < j < n. then we may take as i hasis
for the space of solutions the vector valued funenions

(40) () = eyl

where A; is the eigenvalue associated with /. Let us
assume that al least one of the eigenvalues 15 real and
positive. Let A, be the largest of the positives eigenval-
ues. Then for ¢ very large we have

z(t) = cpety!
Hence escape time from a very large circle around the
origin is approximately

l 4”-“ .
Fa(z) = L_):(_;_l)u

Essentially the problem is reduced to the one-
dimensional problem considered above. 1f 4 ix a suf-
ficiently smooth function of A, the maximum eigenvalue
A1 1s a sufficiently smooth function of A and the require-
ments of proposition 3.1 are satisfied. All this can be
made more rigorous.

It seems that almost all linear systems of differential
equations would give rise to dynamical systems exhibit-
ing a linear parameter sensitivity law with respect to
global functions measuring convergence time to the fixed
point and infinity. A more precise and rigorous theory
of global estimation on linear systeins can easily be de-
veloped.

In the previous section we have discussed discrete
maps rather than continuous ones. In those cases time
is discrete and hence F might noi e differentiable with
respect to A. For example, if we ke the discrete dy-
namical system:

Tn4l = AT, A D]

then escape time out of a circle of radins A is given by

logll%’-ll]

Fx(z) = [ log A

Proposition 3.1 can still be applied in the sense that
the curves of equal discrete escape time are just ap-
proximations to curves of the continuous escape time
Ga(z) = log|l37]l/log A which satisties the requirements
of the proposition.

3.2 Additional Examples
3.2.1 The Forced Pendulum

So far we have only seen discrete dynamical systems
from complex analytic dynamics exhibiting a positive
parameter sensitivity exponent (p.s.e.). In this section,
we provide an example of a continuous time dynamical
system with high p.s.e. which has a completely differ-
ent dynamical structure, and enforces the belief for the
universality of the parameter seusitivity power law.

In particular, we consider the forced pendulum de-
scribed by the equation (see [3. 23])

d?9 dé
+ A— + Jsinf = v cost

(41) = G
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Figure 14: Plot of log(6Fx s1) vs. log||8)A|| for the
quadratic map with ¢ = A 4+ 0.74i, A = —0.12, where
F) is escape time out of a circle of radius R = 100. A
resolution of 512 x 512 cells is used, and the domain cho-
sen is D = [0.3,0.4] x [0.3,0.4). The plot on the top is a
display of the data in L'-norm. The slope is d =~ 0.54.
The plot on the bottom shows the data in L2-, L3-, L*.
norm (from top to bottom) with slopes = 0.23,0.13,0.08
respectively.

For parameter values A = 0.1,8 = 1.0.~» = 1.7) the
system has (at least) four attracting periodic orbits (each
having period 27). For the time 27 Poincaré return ay..
these orbits are attracting fixed points located at:

(42) p1 =~ (3.287.0.262)
(43) p» = (4.301.0.397)
(44) p3 = (0.053. ~1.070)
(45) pa ~ (0.084. 1.608)

Let us assume the unknown parameter is A. for a given
a domain D define the global function Fy : D — F. 10
have discrete representation A, assigning to each cell
the label of the fixed point its centerpoint is attracted
to. This means that if the centerpoint p is attracted
to p; we assign to the cell the value i. This is a very
coarse representation of a global function: we do not
record convergence time or any such information: jusi
the label of the attractor. Figure 15 shows a picture of
the resulting image for a 128 x 128 cell decomposition of
the domain D = [0, 27] x [~2,4]). All computations have
been made with a Bulirsch-Stoer integrator.

Figure 16 demonstrates that the local parameter sen-
sitivity power law is obeyed in a very impressive way
around A = 0.1. The parameter sensitivity exponent
seems to be y = 1 — d = 0.907 This is an enormous
p.s.e., giving a global parameter estimation algorithm
with very impressive performance.

3.2.2 The tent map

The next step is to consider the simplest possible
systems for which the parameter sensitivity power law
holds, and for which an analytic proof is possible.

To that end, consider the tent map:

hh=f:1-=1
A if r < 0.5,
(46) falz) = {A(l —-z) ifz>05.

where | = [0, 1] is the unit interval. The global function
Fy, : D — R,D C ! that we will consider, just like
in previous cases, measures escape time from an interval
[-M. M]. In particular, we will take A = |.i.e. measure
escape times from the unit interval.

If the slope A is less than 1, then no points ever escape
from the unit interval. Consequently, Fa(z) = 0. for all
rel.

Let us restrict to the case A > 1. If we define a to be
1/A, then we notice that the points in the interval

h(}) =[a,1-q]

escape after one iteration of the tent map f,. Moreover.
points in the intervals

I3(A) = [e2,a=a?, BA)=[l~(a-a?).1-a?
escape after 2 iterations, and points in
() = [0% a? = a?)
12(A) = [a = (@® —a®).a - o
BA) =[l-(a®=0a®).1=0aY%
BA)=[1-(a=a®.1-(a=(a®=a®)]




Figure 15: The basins of attraction of the four fixed points of the 2% Poincaré return map for the forced pendulum
with A = 0.1, = 1.0,y = 1.75, over the domain D = [0, 27] x [-2,4].
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100000. }

Figure 16: Plot of log(é F) s5)) vs. log||6A|| for the forced
pendulum for A = 0.1,8 = 1.0,v = 1.75. The are four
attracting fixed points {py, p2, p3, p4} for the 27 Poincaré
return map. Fy(z) is just the label i of the fixed point
to which z is attracted (I < i < 4). A resolution of
128 x 128 cells is used, and the domain chosen is I) =
[0,27] x [-2,4). L'-norm is used and the slope of the
line is approximately 0.093!!!

escape after 3 iterations. In general, there are 2¢~! in-
tervals each of which has length Iy = a*~!(1 = 2a) con-
taining points that escape after k iterations.

Figure 17 clearly shows that the parameter sensitivity
power law holds, and that the p.s.e. (the slope of the
lines in the log-log plots) is an invariant of the system
independent of the resolution.

3.2.3 A fractal curve boundary of attraction

Given 1 < A < 2, consider the map ([14], [18}) M, =
M R xS —Rx S defined by

47) M(ze,0e) = (241, 0641)
where

(48) Tesel = AZp + cos b,
(49) Ory1 = 20 (mod 27)

This map has two attractors +o0o0 and —oc for the
first component, meaning, if f™(zo,80) = (zn,0,) then
limp—~c, Zn = +00. M has no finite attractors since the
eigenvalues of the Jacobian matrix are 2 and A > [.

To calculate what the boundary between the basins
of attraction A,(+o0), we proceed as in [18]. We first
notice that given any initial point (z¢,8), we have
0 = 2%6,. The map M is two to one (and hence nonin-
vertible), but given any point zx and 8x = 2V8, we can
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-8 9 ¢  0.00001 0.0001 0.001 0.01
Lo 1. 10 1. 10

10000,

20

1000.
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Figure 17: Plots of log(8Fx 52) vs. log||8Al} for the tent
map, with A = 3, where F) is escape time out of the
unit interval, with a maximum number of iterations tol-
erated equal to 1000. The domain chosen is the unit
interval. The plots are, from top to bottom, the data
with a resolution of 200000, 100000, 50000, 30000. 10000
cells. The slope of the linear segments is about d = 0.35,
1e. 5 = 0.65.
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Figure 18: Plot of log(6Fx sx) vs. log|l6A|] for the
map 47, where F) is escape time out of a circle of ra-
dius R = 150 (maximum number of iterations tolerated
is 200). The parameter value is A = 1.5, a resolution
of 256 x 256 cells is used, and the domain chosen is
D=[-1.3,-1.2]x [0.1,0.2].

always select an orbit that ends at (zn,0xn), by taking
Zi—y = A"lzp — A1 cos(28=6,). This orbit starts at

N-1}
(50) zo=A"Nzy - Z(%)‘“ cos(2'6;)

i=0

The boundary between the two basins A,(Zoc) are those
(20, 80) for which zn remains finite as N — . So:

dAx(2o0) = {(z,6) : z = fr(8))

where

(51) INOEE Z(%)"“ cos(2°6)

i=0

Since A > 1 the above sum converges absolutely and
uniformly. In addition, the following sum

dH(8) _ 1= 20ih1 i
—%9-— =3 ;(X) +sin(2'6)

diverges, because A < 2. Hence the curve f)(8) is nondif-
ferentiable. Moreover it has been proved (in {21]) f1(8)
has fractal dimension d. =2 ~1InA/In2.

Figure 18 is evidence that the parameter sensitivity
power law holds locally, and figure 19 proves that the

power law does not hold pointwise. 91
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Figure 19: Plot of log(6Fxsa) vs. log||dA]| for the
map 47, where F, is escape time out of a circle of ra-
dius K = 150 (maximum number of iterations tolerated
is 200). The parameter value is A = 1.5, a resolution
of 256 x 256 cells is used, and the domain chosen is
D =[-13,-12] x [0.1,0.2]. The plots are, from top
to bottom, the data in L', L?, L3, L* norwm.

4 The Effect of Noise on Convergence

We notice that the information obtained from each orbit
{number of iterations it takes to enter a neighborhood
of an attractor) is very insensitive to observation noise,
L.e. noise that enters in the measuretent equation (for
example equation 11 for the quadratic family)'!. More-
over, observation noise is averaged away by taking the
L" normn of the corresponding images. ((onsequently, ob-
servation noise has no important effect on convergence
properties of the global method.

It is much more interesting to see how the dynamic
noise. i.e. noise that enters in the dynamic evolution
equation, affects the convergence and accuracy of the
global approach. It is very important to check that rea-
sonably small dynamic noise does not destroy conver-
gence properties of the global algorithms because i all
systeins some sort of small dynamical noise always ex-
ists. In particular, all numerical simulations introduce
dynamic noise by rounding off.

Let us call the the log-log plot of the L distance of the
image Fy s, generated for parameter value ) + 6) from
the noisy image F corresponding to the true value A as

"'We believe this is a remarkable property: using very
coarse information from each orbit {coarse building blocks).
we build a structure containing global information which is
very delicate with respect to changes in parameters (fine over-
all structure).

-~




a function of ||6A|| the performance curve of the global
algorithm.

Our experiments have shown that the presence of dy-
namic noise has the effect of leveling off the performance
curve of the global algorithm to around a value of the
order of the difference d,(Fa, F)).

It is very important to note that if the dynamical noise
is below a certain value, then the local unimodality of the
dissimilarity function is not destroyed. This is demon-
strated by the experiments depicted in figures 20 and
21.

Intuitively, we would expect the presence of dynamic
noise not to be disastrous, since the results of sec-
tions 2.3,2.5 show that on the average there are from 10
to 150 iterations per brbit, and the dynamic noise does
not have the time to manifest itself if it is small enough.
On the contrary, local algorithms attempt to follow a
nominal trajectory for significantly longer. Hence, the
presence of dynamic noise can have disastrouss effects
on the convergence properties of local algorithms, espe-
cially in the case of chaotic dynamical systems.

5 Combining Estimation and Control

Let us onsider again the problem of estimating the pa-
rameter A in the case of the quadratic systeri 7, but now
instead of assuming that £ is fixed, suppose £ is a con-
trol parameter that we can tune. We want to address the
question of what value of £ gives optimal performance for
the global method for estimating A.

Consider the domain D = [~1.445, —1.37] x [0.05,0.2].
and observe how the performance plots of the global al-
gorithm for the given phase space window change as we
vary A (figure 24). We notice that as we approach the
boundary of the Mandelbrot set the global algorithm
reaches better and better accuracy. increasing the pa-
rameter sensitivity exponent (p.s.e.) ¥ = | — d for the
domain. So our experiments suggest that we can max-
imize the p.s.e. 4 and hence optimize performance of
the global algorithm by choosing £ so as to minitize the
distance of ¢ = A + £i from the boundary of Mandelbrot
set M.

We remark that we should be careful about the above
statement since the distance to the Mandelbrot set is not
the only thing that controls v: it matters a lot which
part of the Mandelbrot set we are close lo. Consider for
example varying A close to the point ¢ -0.75 + 0/
(the round top of the main cardioid of the Mandelbrot
set). The point ¢ = —~0.75 is on the boundary of the
Mandelbrot set, but as we move A along the real axis we
move inside the Mandelbrot set obtaining a parameter
sensitivity exponent (p.s.e.) of y = 1 —-0.687 = 0.313. A
much bigger ps.e. (y &~ 1 —0.218 = 0.782) is obtained
when we are close to the boundary of M on the vertical
line A = =1.0.

We have seen that the boundary of the Mandelbrot
set is a bifurcation sef for the quadratic family, since the
topology of the Julia set changes as we cross it. We con-
Jecture that for more general systems we can get optimal
performance out of a global estimation algorithm by tun-
ing control parameters so as to drive the system near a
bifurcation set in parameter space. Intuitively we expect

10000¢.

22

10002,

(.000!

Figure 20: Quadratic Family: Plots of log{8F sx) as
a function of logl{éAjl. 64 > 0, for £ = 0.3. for varius
strengths of dynamic noise. and fixed observation noise
with ¢, = 1073, The curves (from top to bottom) cor-
respond to dvnamic noise g4 = 107% 10=% 1019 19-'2.
The maximum number of iterations is 100, and the do-
main s D = {(x,y) : ¢ € [-0.079555. —0.079525),y €
[0.265320.0.265350)}. A 512 x 512 cell resolution is used.
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Figure 21: Quadratic Family: Plots of log(6Fx s,) as
a function of log||éA|l. A > 0, for & = 0.3, for varius
strengths of dynamic noise, and fixed observation noise
with g, = 1073, The curves (from top to bottom) cor-
respond to dynamic noise o4 = 1076, 1078 107'°. The
maximum number of iterations is 100, and the domain
is D= {(z,y) : z € [-1.445,~1.37),y € [0.05,0.2]}. A
512 x 512 cell resolution is used.

to have much more sensitivity to changes in parameters
(high p.s.e.) as we get close to bifurcations.

We believe it would be very interesting to develop a
general theory of optimal global geometric estunation
through control and in general analyze the dependece of
the the parameter sensitivity exponent ou the position
In parameter space.

5.1 A Global Geometric Controller for the
Quadratic Family

In this section we will show how to use a result of J.
Milnor and W. Thurston [25. 27} for bounding the dis-
tance to the Mandelbrot set A . to obtain a global geo-
metric controller for the quadratic fanly. Our method
for determining the control § value gives an astonish-
ingly good performance, unproving the initial estumate
by more than 13 orders of magnitude (tigure 26). and
improving the best estimate that we had for £ = 0.3 by
more than 7 orders of magnitude for the given domain.

5.1.1 Bounding the distance to M

J. Milnor and W. Thurston proved a bound for the
distance d(c, M) of a point ¢ in the parameter plane
from the Mandelbrot set M. on which some algorithms
for producing pictures of the Mandelbrot set are based.
In particular, they have shown the following result
(see [27)):
Theorem 5.1 If ¢ ts a point oulside of M. then

; sinh G/(¢)
(52) 2exp ()G () <d(c,M}) <

2sinh (/(¢)

o (el
Similar inequalities can be obtained for points inside the
Mandelbrot set, as well as for the distance of points in
the dynamical plane from connected Julia sets.

Let us approximate, somewhat arbitrarily. the dis-

tance of a point ¢ outside of M, by the estiumate of the
upper bound in inequality 52, i.e. let

2sinh ({c)
G (el

For ¢ near M, we may approximate sinh G;(¢) by (/(c}).
A further approximation to (:(c) gives:

(53) d(c, M) =

(54) dic, M) = z“”j‘“ log ||zl
where

- o _ dzn

(55) T de

5.1.2 The Controller

Using the approximation 54 it is easy to build a pro-
gram that minimizes the distance to M. First of all in
order to obtain an estitnate for the distance of ¢ from
M . iterate:

Skl =f,(:k)=:E+(‘,:u=().k=().l.2....

until either ||z44,]] > R (where R is large) or k = Nppur.
where Npar is the maximum number of iterations that
we allow (we take N5, = 1000). If we stopped at

3 k = Npar we let d(ie, M) = 0. If we have stopped at
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Figure 22: The Mandelbrot Set: D = [-2.45,0.75) x [-1.3,1.3].
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Figure 24: Plot of log(6F) sx) vs. log|ldA)| for the
quadratic map with ¢ = A + £i, where F), is escape time
out of a circle of radius R = 100, and the cell resolution
is 512 x 512. The real global function is at A = —1, and
is measured with (iaussian observation noise with vari-
ance g, = 10~3 and no dynamical noise (¢4 = 0). From
top to bottom, the lines correspond to £ = 0.3, £ = 0.25.
£§=035,6=02,6=04.
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Figure 25: Plot of log(6Fx sx) vs. loglié)]| for the
quadratic map with ¢ = A + &, £ = 0. where F) is
escape time out of a circle of radius £ = [00. and the
cell resolution is 256 x 256. The real global function is
at A = —0.75, and the slope is approximately 0.687.

1 < Npmar, then having saved the orbit {zo, ...
compute:

y :n} we

gy =2n5+Lg=0k=0,1.....n-1

If we get an overflow in the course of this iteration, then
this means that ¢ is very close to M and we return
d(c, M) = —1. Otherwise, we return

lzal
2——log||2n
AR

d(e, M) =
A simple program implementing this is shown in fig-
ure 27.

The optimal control value £ is the value for which the
distance estimate d(A + £i, M) is mininized. Figure 25
shows a listing of the very simple program that achieves
the value of q which minimizes the estimate

(MSetDist (make-rectangular p q) maxiter R
overflow)

for given values of maxiter, R, overflow.

We first fix a value of £ and obtain an estimate for
A to feed the function optimal-control (figure 5.1.2)
by running a local algorithm (for example an extended
Kalman filter). The local algorithiu (implemented by
Elmer Hung [17]) that we have used gave an accuracy
of 107 — 10=% The function optimal-control will
return a value q for £ whose distance from the trully
optimal value will be of the order of 107° = 10~". \We
can then drive £ to the estimate q and run the global
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Figure 26: Plot of log(6Fx sa) vs. log|l6)A|| for the
quadratic map with ¢ = A + £i, where F) is escape time
out of a circle of radius R = 100, and the cell resolution
is 512 x 512. The real global function is at A = =1, and
is mieasured with (saussian observation noise with vari-
ance g, = 1072 and no dynamical noise (¢4 = 0). From
top to bottom, the lines correspond to & = 0.28651237
(d =~ 0.218) € = 0.3 (d = 0.35), £ = 0.25 (d ~ 0.48).
£ =035 (d ~ 059), £ = 02 (d ~ 0.58). £ = 04
~ 0.68).
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(define (MSetDist ¢ maxiter R overflow)
(let ((zorbit (make-vector (+ max-
iter 1) 0.0)))
(define (orbit-loop i 2z)
(cond ((> 1 maxiter)
0.0)
((> (magnitude z) R)
(der-loop 1 i 0.0+0.01))
(else
(let ((newz (+ (= z z) ¢)))
(vector-set! zorbit i newz)
(orbit-loop (+ i 1) newz)))))
(define (der-loop i iter zder)
(let ((z (vector-ref zorbit (- i 1)}))
(cond ((> (magnitude zder) overflow)
-1)
((= i iter)
(let {(m (magnitude z)))
(/ (¢ 2 (s m (log m)))
(magnitude zder))))
(else
(der-
loop (+ i 1) iter (+ (= 2 (» z zder)) 1))))))
(orbit-loop 0 0.0+40.01)))

Figure 27: A program estimating the distance of a poimt
c in the parameter plane from M.

algorithmi. After having obtained a better estimate for p
(= A) from the global algorithm. we may feed that esti-
mate into optimal-control to get a better estinate for
the optimal control value and repeat the whole process,
until we get satisfactory accuracy.

6 Cooperation between local and global
approaches

We know that the dissimilarity function is locally uni-
modal but we have to have a way of entering the region
of unimodality in order for the global algorithm to work.

One approach is to look at the domain D at different
cell resolutions. In other words increase the number of
cells used to represent the global function. As we get ta
coarser and coarser resolutions, the region of unimodal-
ity starts at bigger and bigger values. A more interesting
solution to this problen: is to use a combination of lo-
cal and global approaches. In particular, we can use the
local algorithms (o obtain an estimale of the paramcter
that places us tn a region of unimodality of the dissima-
larity function. and then usc a global approach to zecro w
o the correct parameter value. Numerical experiments
seein to indicate that local methods we have tried. reach
rather quickly an good estimate of the paraweter hut
then get stuck and do not seem to itprove further (proh-
ably because of nunierical problems, invalid linearization
assumptions, or bad finite approximation assumptions).
The global algorithm. given the estimmate obtained by
the local method. increases it by many orders of mag-
nitude. It seems that a cooperation hetween local and
global approaches is the right way to attack real estima-
tion problems.




(define (optimal-control p tol qi q2)
(detine (loop q1 q2 di 42
(let* ((q (/ (+ q1 q2) 2))
(¢ (make-rectangular p q))
(d (msetdist c 1000 1000 1e100)))
(cond ((< d1 tol)
ql)
((=d 0.0)
(loop q1 q
d1 d))
(else
(loop q q2
d d2)))))
(loop q1 q2
(msetdist (make-
rectangular p qi) 1000 1000 1e100)
(msetdist (make-
rectangular p g2) 1000 1000 1e100)))

Figure 28: A program returning an estimate of an opti-
mal control value £, given an estimate p for A and two
points q1 not in M, and q2 inside M.

7 Final Comments

In this paper, we propose a new approach to parame-
ter estimation based on exploiting the global geometri-
cal complexity of nonlinear dynamical systems, rather
than trying to do local approximations as the classical
algorithms do.

We demonstrate the power of a global approach in the
context of complex analytic dynamics. Under very rea-
sonable magnification and noise assumptions, and with a
careful combination of global estimation and control, we
reach an improvement as big as 13 orders of magnitude
over the initial estimate.

The approach which we follow in the case of complex
analytic dynamics can be extended to much more general
settings.

We remark that the choice for global functions that we
have made is just one of the many possibilities. We have
just given one implementation of the much more
general idea of global parameter estimation. In
different settings, we are forced to chose different global
functions or minimization algorithms. For example, in
the case of Hamiltonian dynamical systems no attractors
exist and completely different global functions must be
devised (for example functions that reflect the shape of
chaotic layers).

The global approach is computationally much more
demanding than the local approaches but can be much
more accurate and can have more robust convergence
properties. With the use of increasingly faster computers
the disadvantage mentioned above becomes less and less
important. Moreover, the global approach is ideally
suited for parallel computation, opening the door
to tremendous icrease in performance.

There are many new directions to follow: first of all the
power law that the dissimilarity function locally obeys
needs to be understood thoroughly and analyzed the-
oretically. Many interesting open questions concerning
the nature and behavior of the parameter sensitivity ex-

2

ponent v also arise. To our knowledge these results are
completely new.

Moreover, we believe that it would be interesting to
develop a general theory of optimal global geometric pa-
rameter estimation through control, and investigate how
p.s.e. changes with the position of the parameter in pa-
rameter space.

The ultimate goal i1s to use chaos and instability and
combine the local and global approaches to parameter
estimation in order to obtain breakthrough extraordi-
narily precise measurements of quantities that are very
difficult to measure, such as the Universal Constant of
Gravity.
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Appendix
A The Golden Section Method

The Golden Section Method uses the fact that we can
bracket the location of the minimum of a unimodal func-
tion by evaluating the function at two distinct points in
the region L of unimodality.

To describe how it works, we first assume that the
function @, is unimodal in the interval L, = [l;, r]. Sup-
pose we evaluate the function at two points r;.x2 in L
such that z; < 71 and find that f(z;) < f(z2). It follows
from the definition of unimodality that A € [{}, z2]. Simi-
larly, if f(z1)} > f(z2), then we must have ) € [z,,r;]. If
the function values at z,, z, are equal then X € [z,.z,],
but for simplicity we may again consider that it belongs
to any one of the above bigger intervals. In any case, af-
ter the first two function evaluations, a portion of L, to
the right of 22 or to the left of z; can be eliminated from
further search. If Lo = [I2, r2] is the remaining interval,
we can obtain two more function evaluations and fur-
ther reduce the length of the interval containing A. By
using this procedure we can keep reducing the unimodal-
ity interval, obtaining an increasingly tighter bracketing
of the minimum value.

An improved version of the above naive algorithm is
the Fibonaccr method, which gets its name from using
the Fibonacci sequence
(56)

Fo=0, Fi=)l, Fr=Fecy+Fewn, k=2.3....

in picking the points at which the function is evaluated.
The method works as follows: Let N be the total number
of points at which the function will be evaluated. Sup-
y Pose that at iteration &, the interval containing A (the




local minimum) is [lg,re). For k = 1,2,... N ~ 1, the
function values are computed at the two points

Fn-
(57) =+ =2 e = l)

Fn42-k

- E_ Fr+1-k
(58) £y =l + ———(rc — i)

N+2-k

We notice that (by the definition of the Fibonacci se-
quence) one of the points z¥,z% is the same as one of
the points at a previous iteration. Hence, only one new
function evaluation is required at each point. This is ex-
tremely important in our case where function evaluations
are computationally very expensive. ,

One of the disadvantages of the Fibonacci method
is that the number of function evaluations N must be
known in advance. Getting rid of this requirement leads
to a method known as the Golden seclion method, which
is a good approximation to the Fibonacci search. It can
be shown that

V-1

2

The golden section method then places the points at
which the function is to be evaluated at

l("'k - k)

Fynoy _ 1}

(59) Nh—ronoo Fn

T

T -

(60)

zf =l +

T

1
(61) 1:; =lk+;(rk—lk)

Again, only one function evaluation is required.
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