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Abstract

The control of the transition from laminar to turbulent flow in a boundary layer
of a flat plate is investigated using numerical simulations. The numerical model is
based on the incompressible Navier-Stokes equations, which are -coupled with the
energy equation through the temperature dependent viscosity. A fully implicit finite-
difference spectral method was used to solve the governing equations. The numerical
model allows for the spatial evolution of the disturbances in a non-parallel boundary
layer. Active control of wave packet disturbances in the non-isothermal boundary
layer is studied in detail. Wave packet disturbances are created in the flow field by
simulating the effect of thermally activated heater elements on the plate surface.
Through a controlled spanwise variation of the temperature of the heater elements,
two- and three-dimensional wave packet disturbances can be studied. The propaga-
tion and amplification of the wave packet disturbances in the boundary layer is
examined. The heater elements on the plate surface act as locally strong heat sources
causing thermal wakes within the boundary layer that spread in the downstream
direction. A transfer function technique is used for the control strategy. The transfer
function is based on the vorticity response to a finite temperature fluctuation at the
heater strip and is obtained from the numerical simulations. With additional heater
segments (controller) located downstream of an excitation source, the possibility of
attenuating wave packet disturbances is investigated. With the numerical transfer
function, a successful control strategy for the wave packet cancellation could be
developed. Initially, for the low amplitude, two-dimensional disturbances in the tran-
sition process the wave packet disturbances could be almost completely cancelled. For
the attenuation of three-dimensional wave packet disturbances, the transfer function

technique was extended to allow for spanwise variations. The attenuation of three-
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dimensional wave packets with the modified transfer function technique was almost
equall_y as successful as for the purely two-dimensional flow disturbances. For the
simulation of the three-dimensional flow development with no control applied, non-
linear interaction of wave components of the wave packet first appeared for the
oblique modes in the low frequency range, which was also observed in experimental
investigations. The attenuation of only the two-dimensional components of a three-
dimensional wave packet disturbance delays the onset of the nonlinear interaction of

the oblique spanwise modes in the lower frequency range.
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1. Introduction

The study of laminar to turbulent transition for wall bounded shear flows is of
great practical interest for the application of flow control. The delay of transition
from laminar to turbulent flow at high .Reynolds numbers reduces the friction drag
on streamlined bodies. The effective control of laminar flow, for example to extend
the regime of laminar flow on the surface of airplane wings, may lead to an increased
range and speed, or reduced fuel costs of an airplane. On the other hand, in
processes where the mixing of the fluid properties is desirable in order to improve
momentum, energy or mass transport, an acceleration of transition to the turbulent
state is advantageous. Applications of the control of laminar flow were reviewed in
great detail by Bushnell and Malik (1985), and more recently, by Wagner et al. (1989)
The present numerical investigation employs the flat plate model of a boundary layer
flow in water. The instability mechanisms leading to turbulence are reviewed first to

gain insight into the relevant issues prior to the discussion of laminar flow control.

1.1 Background

One route of transition to turbulence begins with the occurrence of small ampli-
tude, two-dimensional disturbance waves (Tollmien Schlichting waves). These distur-
bance waves propagate in the direction of the flow. The development of these distur-
bances, that is amplification or decay, can be closely predicted by the linear stability
theory. At later stages the Tollmien Schlichting (TS) waves develop a spanwise
periodic, three-dimensional deformation, and associated with this is the formation of
longitudinal vortices. In the experiments of Klebanoff et al. (1962), this behavior was
enhanced by placing physical geometric disturbances on the plate surface at selected

spanwise intervals. A very regular peak-valley structure appeared (regions of
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enhanced and reduced amplitudes) with the peaks corresponding to regions of max-

imum wave amplification and the valleys to regions of minimum amplification.

The growth rates at the peak positions in the Klebanoff pattern are much larger
than the original TS growth rates and subsequently a localized high shear layer is
formed. Then, shortly after, highly nonlinear processes lead to breakdown and to

turbulent spots, which spread to form a fully turbulent boundary layer.

Unlike the above mentioned route to transition, at somewhat lower amplitude
levels (between 0.2% and 1% of the free stream velocity), Saric and Thomas (1983),
and Kachanov and Levchenko (1984) observed a different pattern. Instead of an
aligned pattern seen in the experiments of Klebanoff et al. where peaks followed
peaks, and valleys followed valleys, this alternative pattern consisted of a staggered

structure, i.e. peaks followed valleys and vice versa.

The staggered structure at the lower initial forcing amplitudes leads to a strong
amplification of the subharmonic mode, and also to the growth of a broad band of
lower frequency disturbances. Kachanov and Levchenko (1984) did not observe the |
characteristic high frequency stages of the Klebanoff type transition. In addition to
the above mentioned routes to turbulence, certain bypass mechanisms may occur,
that is, if the external forcing results in large enough amplitudes in the initial stages,

nonlinear effects may trigger breakdown to turbulent flow in a more direct manner.

In an early theoretical study on the breakdown process, Craik (1971) proposed a
weakly nonlinear resonance model based on the interaction of a two-dimensional and
two three-dimensional oblique modes with opposite signs. The resonance interaction
would involve modes whose phase velocities match in streamwise direction. In this
theory, which is based on the temporal amplification, this would typically involve

three-dimensional wavenumbers o3p = 1/2 ap. However, the relatively large distur-
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bances observed in Klebanoff's experiment could not be explained by Craik’s theory.

Much later the experiments by Saric and Thomas (1983), and Kachanov and
Levchenko (1984) provided clear evidence of the existence of the subharmonic mode.
In the smoke wire flow visualizations by Saric and Thomas two different peak-valley
structures were identified. For a very low initial disturbance amplitude ( .3% based
on the free stream velocity) the spanwise wavenumbers matched Craik’s theory well
A spanwise to streamwise wavenumber ratio of Y/ & = .67 was reported. However, at
slightly higher initial forcing amplitudes (4%), a spanwise to streamwise
wavenumber ratio of y/ o =1.46 was identified, which cannot be explained with
Craik’s theory.

An explanation of this difference was later given by Herbert (1984). He studied
the stability of the Blasius profile and a superimposed plane, time-periodic TS wave
with respect to three-dimensional Squire modes. According to Herbert’s calculation
the growth of spanwise wave components can be explained by the fact that the phase
velocities of the Squire modes (disturbance modes with zero normal disturbance
amplitude) are independent of the spanwise wave angle. This growth of spanwise
modes is an important feature of the boundary layer. The effective control of any
three-dimensional waves in the boundary layer will have to address these important
aspects.

However for important practical applications, such as flow over airplane wings,
the instability mechanism that ultimately leads to transition to turbulent flow is
essentially linear at first, before nonlinear interactions take over. In addition, for a
disturbance background of small amplitudes this linear regime covers by far the larg-
est distance in the entire transition process. Therefore the first control attempt of

transition will have to concentrate on the early transition stages.

]
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1.2 Linear Theory

In natural transition Tollmien Schlichting waves can be observed when the
amplitudes of the background disturbances are very small. As long as the amplitudes
of the disturbances in the boundary layer remain small one can study the stability of
steady laminar boundary layers by decomposing the flow quantities as
4= qolx) + q’(x ), where g is the base flow, and 4’(x,t) is a small disturbance quan-
tity, the momentum equations can be linearized. The resulting equations can be
further simplified by assuming a locally parallel flow, so that terms involving the
mean normal velocity and streamwise derivatives of mean quantities can be omitted.
Then, by using local velocity profiles, the stability of a boundary layer can be investi-
gated (cf. Schlichting, 1982, p454 ff).

A solution ansatz in the form ¢ (y) - e ™ ~P leads, after some algebra, to

the derivation of the Orr-Sommerfeld equation

(U=c)¢"—02¢] - U”¢ = aR%imW"-za%"m%] ) 1.0)

where o, B are the complex wavenumber and the frequency, respectively, and ¢(y) is
the complex streamfunction, which is a function only of the distance normal to the
wall.
The nondimensional wavenumber a and the Reynolds number Re; are based on
the displacement thickness, and the prime denotes differentiation with respect to y.
This equation together with the boundary conditions
0=¢'=0 ; y=0,c (1.1)
forms an eigenvalue problem with the parameters @, ¢, and with the eigenfunction

¢ (¥). For example, a real valued B and a complex a = a+ia; represents the spatial

amplification case, where -0;>0 denotes spectrally amplified and —a;<0 spatially
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damped waves. For each o fixed, and U(y) , U “(y) given from the Blasius solu-
tion, the eigenvalue ¢ can be computed. A finite number of distinct eigenvalues exists,
together with a continuous spectrum for which the eigenfunctions vary sinusoidally
as y—ee. (Jordinson, 1971, and Grosch and Salwen, 1978). However the solution of
the stability problem fér the boundary layer yields only one discrete amplified mode
for an unstable case. All the other discrete modes are damped.

The neutral stability curve, where a; = f; =0, for a zero pressure gradient
boundary layer is shown in Figure 3. One can discern an upper and a lower branch
of the neutral stability curve, which is divided by the point where the tangent to the

curve is normal to the Res -axis. This point defines a critical Reynolds number Rey;,
because for lower Res no amplified oscillations can exist. This minimum Re; for
the parallel flow assumption is approximately 520. Between the lower and upper

branches of the neutral curve, the disturbances amplifv exponentially, and outside of
these branches the disturbances decay.

A great deal of theoretical and experimental effort has been expended on the
study of single frequency disturbances. However, natural excitation by free stream
disturbances produces modulated wave-trains or wave packets, which are observed

to break down to turbulence in a much more dramatic manner than two-dimensional

single frequency waves.
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1.3 Wave Packets

Often natural transition from laminar to turbulent flows in a boundary layer is
initiated by broad band, pulse-like disturbances or wave packets. Such wave packets
can already be seen as modulated waves in the time traces at certain streamwise sta-
tions in the early experiments of Schubauer and Skramstad (1948). For such distur-
bances in the flat plate boundary layer, the amplified modes vary continuously with
respect to one or more frequencies, and the most amplified mode is merely one
among equals because the neighboring modes have relative growth rates and phase
velocities close to the most amplified one. The amplified modes represent a group of

waves, with their development being in time and space.

Gaster and Grant (1975), in an experiment on the development of isolated wave
packets, kept the initial amplitudes of a localized wave packet small to study the
linear evolution of the packet, and to avoid nonlinear distortion of the boundary
layer in the early transition stages. Thus, the evolution of the packet is controlled by
the amplification rate and the dispersion relation of constituent waves. The wave
packet first followed the linear prediction manifested in the Gaussian envelope of the
amplitudes. At locations further downstream, these envelopes became distorted,
which may indicate a non-uniformity of the mean flow, or, the appearance of non-

linear interactions of the wave packet modes.

Gaster (1975) then applied a theoretical model based on the solution of the Orr-

~ Sommerfeld equation. By a direct summation of the eigenfunctions, he tried to

assemble the wave packet disturbances of the experiment. The initial conditions for
the summation of the eigenfunctions were chosen to be close to that of the experi-
ment. The agreement between experiment and theory was remarkably good, except

for the development of a two peak phenomena (a distortion of the envelope) that




was observed in the experiment at locations further downstream from the excitation

source.

In a direct numerical simulation with the complete Navier-Stokes equations,
Fasel (1983) has calculated two-dimensional wave packets with an initially large
amplitude input, to demonstrate that the distortions of the envelopes in the experi-
ments of Gaster and Grant (1975) maybe attributed to nonlinear effects. These simu-
lations showed a broadening of the amplitude spectrum due to wave interactions of

the amplified modes in the wave packet.

Recently, Konzelmann (1991) simulated numerically the experiment of Gaster
and Grant (1975) using the complete three-dimensional Navier-Stokes equations. The
parameter of this computation closely matched those of the experiment and a
remarkably good agreement between the numerical simulation and the experiment
was found. These simulations provided strong evidence that the breakdown process
was subharmonic. This, for example, would explain the appearance of the low fre-
quency components for the oblique modes.

1.4 Control

First attempts to control the laminar boundary layer concentrated on passive
methods. There, the modification of the mean velocity profile, for example, using
pressure gradients, wall suction, constant heating or cooling of the wall, alters the
stability characteristics of the base flow. For the flat plate boundary layer in water,
the effect of constant cooling is destabilizing, whereas the effect of a constant heating
is stabilizing. Since the viscosity of water at ambient temperature decreases sharply
with increase in temperature, heating yields a fuller velocity profile which, according
to the linear stability theory, results in a more stable flow. In the water experiments

of Strazisar et al. (1977), uniformly heating the boundary layer increased the




minimum critical Reynolds number and shifted the maximum amplification rates to
lower frequencies. Strazisar et. al. tested several wall temperatures in their experiment
and showed that the transition to turbulence could be delayed considerably.

Lowell (1974) , and Wazzan, Okamura and Smith (1968) extended the linear sta-
bility theory (see eqn. 1.0) to the non-isothermal case. They allowed for a variation of
fluid viscosity with temperature, and Lowell also introduced an additional stability
equation for the temperature. Both linear models predicted the disturbance behavior
observed in the experiments only qualitatively.

In a numerical simulation, Bestek et al. (1987) used the full Navier-Stokes equa-
tions coupled with an energy equation and showed qualitatively good agreement to
the experimental results of Strazisar (1968). Their numerical model allowed the study
of a non-uniform as well as a uniform temperature distribution along the plate sur-
face and showed the stabilizing as well as the destabilizing effect of heating and cool-

ing, respectively, of the boundary layer in water.

Economic considerations limit the practical value of passive heating control. The
large amount of heating necessary to reduce the fluid viscosity in water affects a
technical operation economically because of increased operation and maintenance
cost for the heating devices. Thus, more recently, the application of control of lam-
inar flow has focussed on active methods. For this control approach the disturbance
waves are directly attacked, their amplitude attenuated or enhanced (depending on
the application), while the base flow stability characteristics are approximately unal-
tered. Thus, the amplification rates remain unchanged, but the disturbance waves
begin to grow again from a much lower amplitude level. The basic principle of
active control is the superposition of two disturbance waves. With proper phase and

amplitude control between disturbance waves of the same frequency, reinforcement




24

or cancellation of the disturbance wave can be observed.

In experimental investigations several techniques were applied for an active con-
trol such as: heated wires (Corke, 1989), heater strips (Liepmann et al, 1982a,b),
vibrating ribbons (Thomas 1983 , Pupator and Saric 1989, and Milling 1981) and flexi-
ble walls (Wehrmann,1965). For example, with the heater strips used in the experi-
ments by Liepmann et. al., controlled TS waves could be produced. In these experi-
ment it was shown that active control of Tollmien Schlichting waves in a water boun-
dary layer with one activating and one controlling heater strip, led to a considerable
increase of the transition Reynolds number in comparison with the uncontrolled case.
Also Liepmann et al. were able to excite wave packets using the heater strip tech-
nique. However, their experiment exclusively addressed the control aspect of two-

dimensional single frequency disturbances.

Active control of two-dimensional wave-trains was studied experimentally by
Milling (1981), Thomas (1983), and Pupator and Saric (1989). In all experiments the
disturbances were introduced with a vibrating ribbon and subsequently controlled by
additional ribbons placed inside the boundary layer and downstream of the activator
ribbon. Milling (1981) and Thomas (1983) concentrated on the control of single two-
dimensional disturbances, and Pupator and Saric (1989) focussed on the control of
random two-dimensional disturbances. In all experiments the amplitudes of the two-
dimensional disturbances were considerably reduced, although' a completely distur-
bance free environment could not be achieved. Eventually the three-dimensional dis-
turbance background in the flow caused the breakdown to turbulent flow. With the
low free stream turbulence wind tunnel of Pupator and Saric, the natural transition
number of Re=3.5-10°. With the control of the two-dimensional random disturbances

the transition Re- number increased to 5-10°. Apparently, the control of two-




dimensional disturbances appreciably increased the regime of laminar flow, yet for
further improvement a two-dimensional control is not sufficient, because of the
three-dimensional disturbance amplification.

Numerical studies on active transition control have also been performed by Lau-
rien and Kleiser (1989) and McMurray et. al. (1983). They considered temporally
growing TS waves only, and were limited in their investigation to a parallel base
flow. In both investigations a wall normal disturbance component was applied on
the entire plate surface. Using the wave superposition principle the disturbances were
attenuated by adjusting the amplitudes and the phases. However, only partial
attenuation of the two-dimensional wave was achieved and it was concluded that

control would only be effective if applied at an early two-dimensional stage.

Recently three-dimensional spatially amplified disturbances in the flat plate
boundary model were studied numerically by Fasel, Rist and Konzelmann (1987).
Both two-dimensional and three-dimensional disturbances were introduced into an
isothermal boundary layer by means of suction and blowing through a slot on the
plate. The motivation for these simulations was to investigate the mechanisms of
fundamental and subharmonic disturbance growth. Fasel et al. (1987) achieved
remarkably good agreement with the experimental investigations of Klebanoff et al.
(1962) for the fundamental case, and of Kachanov and Levchenko (1984) for the

subharmonic case.

Kral (1988) extended the numerical approach of Fasel et. al (1987) to model dis-
turbance excitations with the heater strip technique. Kral (1988) studied the cancella-
tion of two- and three-dimensional spatially amplified disturbances on the flat plate
boundary layer. However, only single frequency disturbances were considered and

emphasis was placed on the control of the subharmonic and fundamental breakdown
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processes. Also for passive control, the effect of uniform and non-uniform plate tem-
perature on the growth rates of the disturbances was investigated. The passive con-
trol method effectively altered the growth rate of the two-dimensional mode which
then delays the growth of the three-dimensional components.

1.5 Problem Statement

Active control of the laminar boundary layer with heater strips is investigated
using numerical simulations based on the complete Navier-Stokes equations. From
experimental observations it is evident, that disturbance waves in the boundary layer
evolve spatially. Spatially propagating disturbance waves can be created with a con-
trolled temperature variation over a heater strip as was demonstrated experimentally
by Liepmann et. al. (1982a). Such temperature variations over a heater strip result in
a local change of the fluid viscosity, and, when the temperature varies with time, pro-
duces a vorticity fluctuation on the wall surface and its immediate vicinity. In a
boundary layer flow of water along a flat plate, a temperature variation of 20°C at
ambient temperature creates a vorticity response, which corresponds to a typical dis-

turbance present in a natural transition process.

The heater strip technique also has the advantage of not placing a physical
obstruction in the flow field, unlike vibrating ribbons or heated wires placed away
from the wall, inside the boundary layer. The heater strips are easily activated by an
alternating current which produces temperature fluctuations of twice the current fre-
quency.

For the present investigation a numerical method is used that is based on the
vorticity- velocity formulation of tihe complete Navier-Stokes equations, coupled with
the energy equation through a temperature dependent viscosity. The simulation are

based on the so-called spatial model, thus allows for the spatial amplification of
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disturbance waves in a laminar boundary layer. Finite difference approximations are
used in streamwise and wall normal directions, and spectral approximations are used
in spanwise direction for the three-dimensional simulations.

First, the propagation and amplification of two-dimensional wave packet distur-
bances are investigated, where the wave packets are created with the heater elements.
From experiments we know that m natural transition a broad band of frequency
components are amplified. Thus numerical simulations of wave packet disturbances,
which also contain a broad band of frequency components are more relevant for

investigating the control of natural transition.

A control strategy based on a numerically determined transfer function is intro-
duced to achieve the attenuation of wave packet disturbances. The transfer function
is based on the wall vorticity response of the boundary layer from a pulse tempera-
ture fluctuation over the heater strip. The applicability of the control strategy is first
demonstrated for purely two-dimensional wave packet disturbances. Then the control
strategy is extented for attenuating three-dimensional wave packet disturbances. The
three-dimensional wave packet disturbance is assumed to be periodic in spanwise
direction. Then the wave packet can be spectrally decomposed with respect to the

spanwise wavenumbers, where each spanwise mode can be controlled separately.

For a practical application of the control of three-dimensional disturbance
waves, the heater elements have to be divided into several spanwise segments, which
can be controlled independently. Such arrays of spanwise heater elements have been
successfully used in experiments by Robey (1986), to create single, oblique distur-
bance waves in the flat plate boundary layer, and by Nygaard (1991), to force three-
dimensional disturbances in the boundary layer of a splitter plate, where the distur-

bances then propagated into a free shear layer. However, both experimental investi-




28

gations did not attempt the cancellation of disturbance waves.

In the present investigation three-dimensional control is also attempted, where
spanwise wavenumber components are treated individually. Then for the control of
the individual spanwise wavenumber components different control procedures can be
investigated. For example, by attenuating only the dominant two-dimensional wave
packet and leaving the spanwise modes uncontrolled, the effect on the three-
dimensional components can be studied. Also the control of wave packet distur-
bances for the two- and three-dimensional wave components is attempted. The

effectiveness of the control strategy, applied to each mode individt.auy, 1s examined.
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2. Governing Equations

The flow of a viscous fluid along a flat plate with nonuniform temperature is
governed by the Navier-Stokes equations and the energy equation. In order to study
the effect of a temperature field on the flow, the Navier-Stokes and energy equations
must be coupled through temperature dependent fluid properties. The present inves-
tigations require the numerical solution of the governing equations for both two-

dimensional and three-dimensional disturbance waves.

2.1 Equations for Two—dimensional Flow

It will be assumed that the flow is incompressible, the fluid is Newtonian, and
that the specific heat capacity, the thermal conductivity and the density are indepen-
dent of temperature. These assumptions are valid for water and many other liquids,
as long as in the investigated control volume, large pressure and temperature
differences can be avoided. However the change of viscosity with respect to tempera-
ture cannot be assumed constant for most fluids. For water at 20°C, a temperature
increase of 25°C already gives rise to a 40% change in the kinematic viscosity. For
the derivation of the Navier-Stokes equations it will be assumed, that the kinematic
viscosity is a function of temperature. Since the temperature is expressed as a scalar
field with spatial dimensions, the spatial viscosity gradients in the Navier-Stokes

equations do not vanish.

The Navier-Stokes equations were derived with the nondimensional variables

x L’ Lr' t L~
a vV ®e L
u_-—U-, v———u Re, 0=0 Re
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where the x, y coordinates denote the streamwise and wall normal flow directions
(Figure 2), respectively, u, v are the streamwise and wall normal velocity com-
ponents, ® the vorticity, 9 is the dimensionless temperature, v the kinematic viscos-
ity, U,, is the free stream velocity, T.. is the free stream temperature, T,, is the wall
temperature, L is a characteristic length, and v, is the free stream viscosity. All quan-

tities with a bar are dimensional.

Then the Navier-Stokes equations in dimensionless form can be derived with the

above nondimensional variables as:

Av.”ﬂxwa_u:-ézw{_l_gz yu}

o~ ox ay ox |R 3y’
2 o o, 1d
*Reaxa +ay(6y+Reax)' (2.2a)
v, v, vl w, v [1H R
at a ay ay Re | Re 9x2 ayZ
2 duov dv,du . 1 dv
Redy oy Re 2oy T Reax )} (2.2b)

The viscosity in the above equations (2.2) is assumed to be a function of the
temperature alone. Consequently, all the spatial derivatives which involve the viscos-
ity could be replaced with the chain rule, i.e. du/dx = (3v/96) (36/dx). However for
clarity in the derivation of the vorticity transport equation, the spatial viscosity
derivatives are left in place.

By taking the curl of equation 2.2, the vorticity transport equation
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can be derived, where the vorticity o is defined as
du 1 oav
=94 ___ oV 24
dy Reox @4
To solve for the velocity components, two Poisson equations
1 u , 90
—_—_—— = =, (2.53)
Re 322 ay? oy
1y, & do 2.5b)

Re ax2 w2 >
are used.
The energy equation, in nondimensional form with the temperature as the

dependent variable, is

L) 20 ¥ 1,190  6,_
at+uax+vay Pr(Re32 ayz)_o. (2.6)

The viscous dissipation term in the energy equation has been dropped, since the Eck-
ert number , Ec = U.2/ (c T.), for incompressible flow at ambient temperature is
very small.

In the above equations, Re = U.L/v,, is the Reynolds number, Pr=v./x,, is the
Prandtl number, where v,, is the kinematic viscosity and x,, the thermal diffusivity at

free stream temperature.

For the kinematic viscosity an empirical relation of the form

2.7)

) T, T,
V= 0= P | 9AT+T. ~ T,+T,




32

is used, where T,=506 and T,=-140 are empirical constants estimated for water
(Truckenbrodt, 1981), and AT=T,,-T,, is the difference between the free stream tem-

perature and a wall temperature.

2.1.1 Boundary Conditions

In this work, boundary conditions are employed that Fasel (1976) had success-
fully used for transition simulations for the flat plate boundary layer. Analogous
conditions are applied for the energy equation. In the following discussion of the
boundary conditions, the letters A to D refer to the four corners of the integration
domain, which is shown schematically in Figure 2.

At the plate surface, A-B in Figure 2, of the integration domain, the conditions

{Oma(x,t) ifx;<x<x,
0=

0 otherwise (2.8a)
u=0 , v=0 (2.8bc)
do _ _ v (2.8d)

ax ayz

are used, where the interval [x, , x,] is the streamwise extent of a heater strip. Thus,
no slip and an impermeable wall is assumed. The relationship (2.8d) for calculating
the wall vorticity was derived from 2.5b using the continuity equation together with

the no slip condition.

Several choices of boundary conditions to model the heater strip are available.
Following a theoretical analysis for thin-film heated elements, which can be used to
measure the local wall shear stress, an approximation for the spatial temperature dis-
tribution of the heater strip can be found. Thin-film heaters are based on the Rey-
nolds analogy of heat-transfer and skin friction. The heat supplied to the fluid is

related to the local value of the skin friction, and can be found from the electrical




power supplied to the heated film. However, one part of the electrical power sup-
plied to the heater is transferred to the substrate through heat losses. In a theoretical
analysis of thin-film heating elements, Brown (1967) derived an expression relating

the electrical power P input to a heated film and the wall shear stress by

P - 13
ooy =Mt eC (2.92)
with
M=kw[—PP—'2] L, (2.9b)
1.9

where k is the thermal conductivity, p is the fluid density,  is the dynamic viscosity,
W and L are the spanwise width, and the streamwise length of thin-film, respectively,

and C denotes conductive losses to the substrate.

In an experiment in a laminar boundary layer flow along a flat plate, Brown
(1967) verified the relation (2.9) by calibrating a heated film on the plate surface. The
film was controlled by a constant-temperature feedback bridge and values of P were
recorded for several free stream velocities and wall shear stresses. The corresponding
value of the skin friction is found from the theoretical solution of the zero-pressure
gradient case. The experiments supported the validity of equation (2.9) by demon-
strating a strong linearity between the electrical power input and the cubic root of the

wall shear stress.

The derivation of equation (2.9) assumed a top-hat temperature distribution for
the "physical” streamwise length of the heated film. In the presence of heat losses to
the substrate it is unrealistic to assume a perfectly insulated film. However, Brown
calculated the "effective” streamwise length of the heated film from the calibration
curve by measuring the slope M and the spanwise width W and using equation

(2.9b). For this procedure Brown determined the effective streamwise length of the




heated element to be twice the actual film length.

From the above analysis for thin-film heaters, the heater strip temperature at the
plate surface in the interval [x{,x,] is approximated to

u(x-xl)
XrX1y

Oty (X 1) = (14T (#)) sin’( ) . (2.10)

where T, (t) is a heater temperature disturbance signal.

For the computation of the steady state solution, T, in (2.10) is set to zero. The
special form of T, which introduces the wave packet disturbances in the flow field is
discussed in the chapter for the numerical results.

At the inflow boundary, A-D in Figure 2, the similarity solution (Blasius solu-
tion) for the isothermal boundary layer is imposed.

U=Uplsivs + V=VBasius + O=Oppgus , 0 =0. 211
The flow at the inflow boundary is assumed steady and isothermal. The wave packet

disturbances are introduced so far downstream of the inflow boundary that no
noticeable upstream effects of the disturbances are present near the inflow boundary.

At the top of the integration domain, C-D in Figure 2, the flow variables are
separated to a steady and a transient part according to

u=U+u" , v=V+v, (2.12)
0o=Q+0 , 0=60+6¢,

where U, V, Q, © are the steady components, and u’, v/, @ and 8’ denote the distur-

bance components. The following conditions are used:

av
U=1 |, — =0 (2.13)
dy
u _ __a . o __ &
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=0 , 0=0
A zero pressure gradient in streamwise direction is assumed, so that the streamwise
base velocity remains constant at the upper boundary of the integration domain. The
disturbance components are assumed to decay exponentially, where a is 2 nondimen-
sional wavenumber o =3 L of a most amplified frequency cémponent of the wave

packet.

At the outflow boundary, B-C in Figure 2, the conditions

%‘2{ -0 _gi_‘; ~0 . (2.142,b)
%’x_‘} -0 %’% -0 2.14,c.d)
%ﬁ;% - ot %i"'.z_ - o 2140
%zxﬂz'. = oo |, %i% = o9 (2.14g,h)

are used. The conditions for the disturbance quantities allow a wave motion in the
downstream direction, through the outflow boundary out of the integration domain.
The wavenumber a is selected from the maximum amplified disturbance component

of the wave packet at the outflow boundary.

2.2 Equations for Three—Dimensional Flow

For the derivation of the vorticity transport equation, we start with the dimen-

sional Navier-Stokes equations in cartesian coordinates
du
p ¥“+ (u-Vu y=-Yp +vV-z+ Vv, (2.15)

where 1 is the rate of strain tensor
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T= ay+ax Zay az+ay : (2.16)
du dw v dw .,w
[ 9z dx dz Iy dz |

For the three-dimensional equations, the following set of nondimensional variables

are introduced

x=%, y=%@, z=%, t=%"—t—, 2.17)
u=-L—I-a:, v=-l%@, w=—g:,
0= ;w:’;: , u=£— , P=z:;;:° ,
n”‘:m’u,.lw‘l'ﬁé’ wy=m,—u£.—, m,=m,uj§; , (217)

which are partially different from the two-dimensional set of the previous section.
The vorticity field is defined as ® = -~ VxU, and with the above nondimensionaliza-

tion the vorticity components are

- 1v_ow
L il (2.18a)
@, = %%’- - %“ . (2.18b)
=9 _19v
= “Redr - (2.18¢)

By taking the curl of the momentum equation (2.15) and exploiting the fact that for
incompressible flows V-u =0, V-@ = V-Vxu =0 and V?u = - Vxg, the vorticity

transport equation for a fluid with temperature dependent viscosity is
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—-@Vu + u-Vioa=oV, c_o-Vlux(V1x9_)+Eé—V1x Vv-1), (219
where 7 is the nondimensional rate of strain tensor :
[ u M, v w o aw ]
P "  YRedxr & ax
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I=) Ryt R o P TR @20
du w1 v modw dw
2z " ox VRe oz * eay 282 ]
The nondimensional operators V, and V7 are defined as:
1 0 d 1 4
V, = —-2. 2 —_k, 2.21
TR T wlt Rult 2.21a)
2 1 & & 1 &
Ve Ren 3T TR (221b)

For the calculation of the velocity components u, v, w the three partial

differential equations
2, _ 90, Py
Viu=—— oy (2.22a)
0}
viyo 90 00 (2.22b)
0z ox
0 o>
2= 2Oy _ OV
VY w x ez (2.22¢)
are used, where ¥ is the two-dimensional Laplace operator defined by
2_ 3 2 2.23
% ox?  9z2 @2)

These Poisson type equations are derived using the vorticity equations (2.18) and the
continuity equation V-u =0. This particular form with u and w treated differently

from the v component is advantageous for the numerical method employed (Fasel et.
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al. 1987). Using an implicit numerical scheme, the Poisson equations for the stream-

wise velocity component u and the spanwise component w can be solved directly.
Finally the thermal energy equation in nondimensional form is

L+ uve=vio, 229)

where 0 is the nondimensional temperature, and the viscous dissipation has been

dropped as in the two-dimensional equation, since the Eckert number is very small.

2.2.1 Boundary Conditions

The numerical simulations presented in this work are based on the assumption
of a two-dimensional base flow subject to three-dimensional disturbances. These
three-dimensional disturbances are assumed to be spanwise periodic. Then the boun-
dary conditions for the steady flow are the same as the boundary conditions dis-
cussed in section (2.1.2).

At the plate surface, A-B in figure 2, the conditions

{e,,.,,cx,t) fr;<x <xq
9 =

=lo otherwise (2.252)
u=0,v=0, w=0, o, =0 (2.25b)
P, Fo, 1 9

= - ——(V
ox? dx3dy * Re 2z . 2250
0, 0y 1
- 3 Re Vév (2.25d)

are used. At the plate surface two equations for the streamwise and the spanwise
wall vorticity have to be solved. A discussion of the choice of conditions for the wall

vorticity components can be found in Fasel et. al. (1987). The generation of three-

‘dimensional waves in the boundary layer with heater strips is discussed in the next
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chapter.

At the inflow boundary, A-D in Figure 2, the same conditions as for the purely
two-dimensional flow are used. The three-dimensional disturbances are introduced in
the flow field downstream of the inflow boundary using heater strips. Then all dis-
turbancé flow quantities are zero at the inflow boundary, and for the base flow quan-
tities the similarity (Blasius) solution is used.

At the top of the integration domain, C-D in Figure 2, exponential decay for all
disturbance components of the velocity is enforced similar to the two-dimensional
case. Also the flow is assumed irrotational, so that all vorticity components vanish.

The following conditions are used,

ou’ o oV o ow’ o
- ’ , = - v , = - ’ ’ 2.26 ,b,
E» VR_eu % = Y ’—Rew (2.26a,b,c)
o =0, o =0 o,=0, 06=0, (2.26d,ef,g)

where the prime quantities denote disturbance flow. The choice of o' will be dis-

cussed later in the context of the numerical method.

At the outflow boundary, B-C in Figure 2, the conditions for the disturbance

components of the velocity and the vorticity are

%zi =0, % =0, (2.27a.b)

| % =0, a;:); -0, (2.27¢d)
P, :

axz =0, a;:); =0, (2.27e.f)

% =0 . .27g.h)




The outflow boundary conditions (2.27) are chosen so that no disturbance com-
ponents reach the downstream boundary. A special numerical treatment, which will
be discussed in the next chapter, ensures that no adverse effects are introduced

- through these conditions during the numerical integration.
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3. Numerical Method

For the solution of the set of partial differential equations given in the previous
chapter, two computer codes were developed, one for the solution of the two-
dimensional problem, and one for the three-dimensional problem. For the numerical
solution of the two-dimensional problem, a fully implicit finite-difference method of
fourth-order accuracy in streamwise and wall normal direction and second order
accuracy in time was developed. The basis for this was a numerical method
developed by Fasel (1976) for the solution of the Navier-Stokes equations for the flat
plate boundary layer, and the extension to fourth-order accuracy by Bestek (1980) for
plane channel flow. The numerical method is based on the vorticity transport equa-
tion and two Poisson equations for the velocity components. Following their
approach for the solution of the Navier-Stokes equations, the energy equation is
incorporated in the numerical scheme. Also the additional viscosity derivative terms,
which all vanish in the case of isothermal flow, have to be treated in the vorticity

transport equation (2.3).

First a computer code for second order accuracy in streamwise and wall normal
directions was developed based on the equations 2.3, 2.5 and 2.6, (Dittrich, 1985). For
the extension to fourth-order accuracy, special attention had to be given to the spatial
finite-difference approximations for the boundary points and for the grid points adja-

cent to the boundary.

For the three-dimensional computations, Kral (1988) developed « numerical
method for non-isothermal boundary layer flows based on the method of Fasel et. al.
(1987). This method uses a spectral decomposition method in spanwise direction,

which is based on the set of equations introduced in chapter 2.2.
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3.1 Calculation of Two-Dimensional Flows

For the discretization of the equations (2.3), (2.5 and (2.6) the rectangular
integration domain is divided into finite intervals of length Ax, Ay (Figure 2), and the
time coordinate is discretized using the interval At. The coordinates of the grid
points in the streamwise (x), wall normal (y) and the time (t) directions are specified
by the integers

x=nAx, OSnSN,
y=mAy, 0sm<s<M,
t=p At, p=012 ---.

The left boundary of the integration domain is at the distance xg, measured from the
leading edge of the plate. The distance x is chosen so that the inflow boundary is at
a position, where the disturbance waves, according to linear stability theory, pass into
a region of amplification. A list of the finite-difference approximations used in the
numerical method is given in Appendix B for the energy equation. The finite-
difference approximations for the Navier-Stokes equations and the Poisson equations
for fourth-order accuracy in streamwise and wall normal direction can be found in

Bestek (1980).

The discretized equations are solved using a line iteration method with overre-
laxation. At each line the vorticity transport and the Poisson equation for the wall
normal velocity component are solved simultaneously. Then the Poisson equation for
the streamwise velocity component and the energy equation is solved. The base flow
is calculated first using a starting solution as obtained from the similarity solution of
the unheated boundary layer, with T, for the heater temperature of the boundary
condition (2.10) set to zero. The nonlinear terms are upgraded at each iteration level
and the iteration for the base flow solution is repeated until the difference of two

consecutive iterations for all the flow variables reach the threshold e<1078.
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After the base flow has been calculated for a certain heater strip configuration, a
temperature disturbance is introduced into the flow field through the boundary con-
dition at the wall modeling the heater strips. At each time step, the integration of the
discretized equations is similar to that for obtaining the steady solution. However,
now at each time step the iteration continues until the threshold of £<10™ for the all

flow variables is reached.

For the wave packet simulations the number of time steps to be computed is
determined by the speed of propagation of the wave packet disturbances. The max-
imum number of time steps is chosen so that at in the computational domain the last

x station of interest, the disturbances have completely passed that position.

3.2 Calculation of Three-Dimensional Flows

For the three-dimensional computations a spanwise periodicity of the distur-
bance components is assumed. Then the three-dimensional equations can be spec-
trally decomposed in spanwise direction by a Fourier series

k=+K

fayzt)= Y Flyt)e*®, 3.1
k=K

where f (x,y,zt ) represent all the dependent variables in the physical domain,

Fi(x,y t) are the complex spectral components and ¥ is the spanwise wavenumber.

With the above Fourier approximation the vorticity transport equation, the
energy equation and the Poisson equations for the velocity components are

transformed. Then all derivatives with respect to the spanwise direction are replaced

by
k=+K
at (xé!zrzlt) = iYk Z Fk(x’y,t) e'*lyz , (3-23)
k=—K
k=+K
Pfayzt) 0;;2'2'” =—PR T Flyt)etrr. (3.2b)
k=K




The nonlinear terms in the vorticity transport equations require a special attention.
For a series truncation with a large number K each quadratic term in the equations
would require a expansion proportional to K? terms to fully account for the non-
linear interaction. Our computations shall be restricted to the study of the initial
three-dimensional stages where only a small number of nonlinear interactions are
relevant and therefore K can be kept small. The nonlinear terms are calculated with a

purely spectral method.

Substitution of the series representation (3.1) into equations (2.19), (2.22) and

(2.24) yields a new set of equations of the form

oQ
—at"i=4,k+§,k+g,k, (3.3a)
'a_";'?Lk':éyk*'B_yk"'gykl (3.3b)
0
—f—=4ﬂ+§ﬂ+gd, (3.3¢)
U, vV
— k _ ‘szz Uy = - I’Yk‘lyk - ﬁ (3.3d)
gﬂ 3.3e)
azwk 2 w AV I
-k W, = —1yk3;—+ ot (3.30)
20,

and

02 L 32 R i
Re 3x2 ay2 Re

In the equations above all variables are spectral coefficients as defined in (3.1). The
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term A; is a sum of all the nonlinear terms of the vorticity transport equation, By
accounts for the diffusion term which is multiplied by the viscosity coefficients, and
C; combines all the additional viscosity derivative terms in the vorticity equation. The
term Dj in the energy equation includes all the convective terms. With this spectral
approximation (3.1), the o required in the boundary conditions for the free-stream
boundary conditions (2.26) is « =(c? + (k1))'2.. A complete list of the terms
Ay.Bx.Cx and Dy can be found in Kral (1988).

The three-dimensional temperature disturbances © are assumed to be sym-
metric with respect to the z=0 axis. Then the disturbance variables U’,V’ ', are also
symmetric to the z=0 axis in the spanwise direction. Since all variables f (x,y,z,t) in
(3.1) are real, then the U’, V', &, are purely real, while @', , Q'y, and W are purely
imaginary. For the complete solution of the system of equations (3.3) it is therefore
only necessary to compute the spectral coefficients from k=0 to k=K, since for a real
valued function f, the spectral coefficients follow the relation F_; = F "¢, where the

asterisk denotes the complex conjugate.

Once the equations are spectrally decomposed in the spanwise direction, the
implicit solution is analogous to that for the two-dimensional flow which was dis-
cussed previously. However, for the three-dimensional calculations, at each grid line,
during the x-direction sweep, K equations (3.3) have to be solved for each spanwise
coefficient, before the procedure can advance to the next grid line. Thus, for the
three-dimensional calculations the solution has to completely solve for a N x M x

(K+1) grid, before proceeding to the next iteration level.

For the control of three-dimensional disturbances, the boundary conditions
modeling the heater strips have to incorporate the spanwise variation. For the present

investigations the boundary conditions for the wall temperature (2.25a) are




46
Opat, k=0 = ( 1+A2p T, )sinz[uix—;l)} , (3.42)
241
Oualt, k=1 = A3p T, Sinz[%(x—:—l)} , (3.4b)
21

where the heater strip location is in the interval {x;, x,], and A;p and Ajp are the
amplitudes of the two- and three-dimensional disturbances, respectively. For the
evaluation of a control strategy to attenuate three-dimensional wave packet distur-
bances, a flow perturbation was triggered using only one spanwise mode. Thus for
such a control strategy to be practical one would have to assume that dominant
three-dimensional modes are present in the flow field. Experimental investigations
have shown that at initial three-dimensional stages of transition, preferred spanwise
modes are indeed present. However, for a more advanced flow control strategy,
applicable to later stages of the transition process, several spanwise modes would be
required.

The outflow condition at the boundary B-C in Figure 2 poses a special problem
in the computation, since it is actually not a physical boundary. In order to avoid
that disturbance components reach the outflow boundary and become reflected, a
similar numerical procedure was applied as discussed in Kloker, Konzelmann and
Fasel (1991). At each iteration level a tapering function is imposed for the spanwise
disturbance vorticity ®@,, so that in the last 10% of the integration domain, the span-
wise disturbance vorticity is forced to zero. The tapering function used for this pro-

cess, is
0y = @, (1 -10x3 +152% —6x°) . (3.5)

With this condition imposed, also all the other disturbance variables are diminished
within the last 10% of the integration domain. Several tests for this boundary condi-
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tion have been performed. It was confirmed, that the upstream effect of this tapering
function remains confined to the last 10% of the integration domain, as required.




4. Results

4.1 Computation of Two—Dimensional Flows

The first part of the numerical results considers a two-dimensional base flow
with two-dimensional disturbances. In this case the set of equations is reduced to a
scalar vorticity transport equation for the spanwise vorticity ®,.

For the two-dimensional computations, the following parameters have been

used:
Re = 100000 , L=.05m, xo=1.2169,
Res, (at xo) = 600 , Ax =8.267x1072, Ay = 2.1345x107?,
At = 1.122x1072, a=38, T, =30°C ,
Reg (at xy) =920, T.=20"C, Pr=7
Y/Ay =80, X/Ax =200 .

Figure 3 shows the location of the integration domain in the linear stability

diagram frequency parameter F versus Re;. The nondimensional frequency parame-
ter F is defined as

F=——=10% @.1

where B is the dimensional angular frequency. However, the frequency of the

Navier-Stokes simulations is nondimensionalized by

gL
B—Bu_ : (4.2)

Then, the relation between these two frequencies is given by
Re
==e g 4.3)
P 10*

where Re is the Reynolds number based on a characteristic length L.
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Based on wavenumber of the most unstable frequency of a wave packet distur-

bance for the Rej range, covered in this computation, the streamwise stepsize Ax

was calculated from

2r
= , 44
Ax & N (4.9

with Ny =20 for sufficient streamwise resolution of the disturbance components.
Therefore, the integration domain spans approximately ten wavelengths in the
streamwise direction. The height of the integration domain Y was calculated from
the displacement thickness at the inflow boundary so that Y =9 §,.

For all simulations, two heater strips were used on the plate surface. The first
heater strip is strictly used to create the initial wave packet disturbances. The second
heater strip, placed further downstream on the flat plate, is used to control the dis-
turbances. For the control aspects discussed in this work, the creation of the initial
wave packet in the flow field could have also been achieved by other methods, (for
example suction-blowing through wall slots). However, aspects of the initial creation
of wave packet disturbances with heaters could also have an effect on the control

implementation.

4.1.1 Wave Packet Disturbances

In a first attempt to create wave packet disturbances, the first heater strip was

activated by
n(x—x,)
9,,,,”=Tc(t)sin2(———l—-) X1Sx <x5,
XyX1
sin() 0st<TP
T.=] o t>TP |, 4.5)

where TP is the duration of the temperature forcing of the heater strip.




Figure 4 shows the vorticity disturbance signal at the wall over the whole
integration domain at several time steps after the forcing is completed. The heater
strip is located between 20 < x/Ax < 30. A wave packet disturbance can be identified,
which travels in streamwise direction. Furthermore, besides this Tollmien Schlichting
wave mechanism, a second effect is clearly identifyable. A strong vorticity defect at
an early time in the vicinity of the heater strip indicates a local departure from the
initially isothermal mean flow. The forcing signal (4.5) introduces a local heat spot,
which is due to the unsteady heating. This heat spot convects slowly in downstream
direction, and diffuses in the wall normal direction. Eventually, the spot disappears,

and the isothermal condition reappears over the heater strip.

For the prospective control, the effect of this unsteady heating phenomena is
disadvantageous for two reasons. First, the local non-stationarity appears in the vorti-
city signal as a very low frequency band which would have to be filtered out by a
high pass filter to identify the proper TS mechanism. Second, the unsteady heating
can locally affect the stability characteristics of the mean flow.

To minimize the effect of such an unsteady component the heater strips are
operated over a steady temperature component. Then, a temporal disturbance com-
ponent is superimposed so that the total mean heat input is minimized. The heating
procedure for the heater strips is therefore modified to incorporate a steady heater
temperature by using

n(X‘xl)

- T ]
Ooun (x.4) = (T (1)) sind(——

), (4.6)

in the interval (x; S x < x,).

The forcing temperature T, (t) is taken to be
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2415 ~ 45t + 2083 if 0st<TPR .

T.(¢) =1 24(2—t)° - 45Q2~t)* +202~t)® if TP/R2<t <TP 4.7
0 if t>TP

The modulus of the forcing temperature versus F is shown on the left hand side of
Figure 3. This particular choice ensures that the spectrum has a broad amplitude dis-
tribution over the range of typical frequencies of the boundary layer and was derived
so that

TP
!Tc t)dt =0 . (4.8)

The effect of a steady temperature distribution on the steady flow profiles for
two heater strips is shown in Figure 5. A thermal wake behind the two heater strips
now appears and reaches far downstream. The thermal wake lies within the boun-
dary layer since for Pr=7 the ratio of the thermal to the fluid boundary layer is
approximately one half. However, the magnitude of the temperature in the thermal
wake is small cbmpared to the temperature at the heater strip. Therefore, the isother-
mal contours in Figure 5 are chosen at a lower temperature range to visualize the
small thermal wake. The temperature gradients at stations further downstream,
although noticeable, are small. The line contours in Figure 5 denote the constant
streamwise velocity. Over the heater strip a slight indentation of the streamwise velo-
city is apparent, however, the change of the velocity profiles downstream of the

heater strips is very small.

Results of a computation with the revised heating procedure (4.7) are shown in
Figure 6. The heater strip location is between 30 < x/Ax < 40. The wave packet distur-
bance propagates in the downstream direction, and the local effect of the unsteady
heating is greatly reduced. Only at time t/At =80 can a small non-stationary heat
spot be identified.
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A more comprehensive look at the evolution of the wave packet disturbance is
given in Figure 7. The disturbance components are plotted in perspective representa-
tion for five time instances, ¢/A¢=40, 80, 120, 160, 200, (the forcing ended at ¢/At=40).
The streamwise disturbance velocity component #’, at approximately y/6 =0.4 (8 is
the local boundary layer thickness), shows the typical group of disturbance extrema
in the vicinity of the wall, and a smaller, second group of disturbance extrema
further out, where y/5 = 1.2. The wall normal velocity component v’ in comparison
has only one group of disturbance extrema. The vorticity disturbance shows two
groups of disturbance extrema, with the larger one at the wall surface. At the time
t/At = 40, for the u’ velocity and for the vorticity signal @', a spike close to the
heater strip is visible. At the same time, the disturbance temperature 6’ shows two
temperature spikes, which are then strongly reduced and eventually disappear over
the next four time levels. Then the temperature wave packet emerges at a very low
amplitude level which propagates in streamwise direction.

With the revised temperature forcing procedure, a slight deviation from a sta-
tionary base flow is still present. However, the TS wave mechanism dominates

immediately after the end of the forcing.

From a complete simulation one can analyze the wave packet disturbances by
decomposing the signals using a fast Fourier transform (FFT). The details of using
such a FFT on non-periodic signals are explained in Appendix A.

For example, the wall vorticity disturbance signal from the computed data at
se\}eral streamwise positions were Fourier analyzed. Figure 8 shows the amplitude-
and phase-spectra of the wall vorticity when only the first heater was activated. The
amplitude- and phase-spectra were computed at several streamwise positions x/Ax =

50, 80, 110, 140, 170. In the lower frequency range, for F < .8, and for frequencies
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above F= 2.0, each individual frequency component becomes damped, since the rhag-
nitude of their amplitudes for increasing streamwise positions are reduced. In the
intermediate frequency region (.8 < F < 2.0) the amplitudes of the frequency com-
ponents of the wave packet disturbance increase. The most amplified frequency com-
ponent shifts to lower frequencies from F = 2.0 at x/Ax= 50 to F = 1.4 at x/Ax = 170,
and the band of amplified frequency components narrows considerably. The phase-
spectrum confirms the convective instability mechanism through the rapid change in
phases of the frequency components for increasing streamwise distance from the
heater strip. At a wall normal distance of y/Ay =20 (y/8 = 1.2), the amplitude- and
phase-spectra from analyzing the wall normal velocity component is shown in Figure
9. The amplitude- and phase-spectra, which are analyzed at a wall normal distance
outside the boundary layer y/Ay = 20, agree with the results of the wall vorticity
analysis.

In Figures 8 and 9, no single point of neutral stability of the frequency com-
ponents can be idmtiﬁéd. Instead, several points of neutral amplification exist, which
can be defined by the intersection of the amplitude spectra for two consecutive

streamwise positions. These neutral amplification points are shifted to lower fre-

| quency components for increasing downstream positions. The non-parallel boundary

layer continuously alters its stability characteristics as can be seen from the stream-
wise dependence of the maximum amplification rate, and from the streamwise

dependence of the neutral points of the frequency components in the spectra.

From the phase-spectrum ¢ one can extract information on the dispersive nature
of the wave packet evolution. The wavenumber « of each frequency component can

be found by

a=—9 4.9)
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The phase velocities then follow from

e = £ . | 4.10)

The computed dispersion relation o= a(B) of the wall vorticity signal at the
position x/Ax = 140, Res; = 835 is shown in Figure 10. The range of the curve is lim-
ited by the band of detectable frequencies in the wave packet spectrum. For the
range of frequencies that constitute the wave packet disturbance, the dispersion rela-
tion is not exactly a straight line. However, the departure from a straight line is

small

In Figure 11, a comparison is made of the phase velocities and the amplification
rates obtained from the Navier-Stokes computations at a position x/Ax = 140 with
those of the linear stability theory. The amplification rate o;, which denotes the ima-
ginary part of the complex wavenumber, is calculated from

=9
%==—InA, 4.11)

where A are the amplitudes of the frequency components. The phase velocities and
the amplification rates in Figure 11 were determined by analyzing the wall vorticity
signal of the Navier-Stokes equations. For the range of frequencies present in the
wave packet, the phase velocities of the linear theory and of the computations agree
very well The rate of amplification in Figure 11b are identical for almost all fre-
quency components, which can be detected in the wave packet. However, at the
maximum rate of amplification of the linear theory is slightly under the value found

from the Navier-Stokes computation.

In Figures 12 and 13, a comparison of the amplification rates of the Navier-
Stokes computation at the location of the second maximum of the vorticity and of

the maximum of the wall normal velocity with the linear theory is presented. The

———
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amplification rates of the wall normal velocity component exceeds the linear theory
slightly, and also lie above the prediction.from the wall vorticity analysis. However,
the Navier-Stokes solution of the vorticity at the second maximum shows a strong

underprediction of the amplification rates compared to the linear stability theory.

For all flow quantities that were analyzed at three different locations in the flow
field, the phase velocities are in very good agreement with the linear theory (Figures
11a, 12a, 13a). However, the rate of amplification can vary considerably depending on

the criteria used.

The amplification rates of the linear spatial theory have been calculated with the
Orr-Sommerfeld equation (1.0) using the computed Navier-Stokes velocity profile as
the base flow. This profile includes the small deviation from the unheated Blasius
profile because of the presence of the thermal wake. Although this effect at first
seemed negligible, it causes a difference of almost 15% in the amplification rates of

the most amplified components.

The predicament is choosing the proper flow component at a certain location
with which to compare the amplification rates with linear stability theory. An addi-
tional source of disparity between these results is the assumption of a locally parallel
base flow in the linear theory. Nonparallel effects are strongest close to the wall, and
the growth rates strongly depend on the criteria used (Fasel and Konzelmann, 1990).
As for the computation of wave packet disturbances with a broad band of frequen-
cies, the analysis of the amplification rates show the same trend as the findings of

Fasel and Konzelmann.

4.1.2 Passive Heated Segments

The comparison of the computed wave packet disturbances with the linear sta-

bility theory showed a significant deviation in the amplification rates when the
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Blasius profile instead of the Navier-Stokes profile was used in the linear stability cal-
culations. This effect can be attributed to the thermal wake downstream of the heater
strip.

To further investigate the effect of passive heating segments on the stability of
wave packet disturbances, a heated segment was used as a boundary condition as
shown in Figure 14. The wall temperature distribution is shown on the lower part of
Figure 14a, where the heated segment starts at x/Ax = 70 and continues to the end of
the integration domain. From the Fourier analysis of the wave packet signal of the
wall vorticity, several frequency components were chosen and their normalized

streamwise amplification was plotted (Figure 14a).

For the computation with the heated segment, all the frequency components are
damped as soon as they have passed the temperature ramp (Figure 14a). This agrees
favorably with the passive control computations of Bestek et. al (1987). Heating of the
boundary layer in water stabilizes the flow since the viscosity is reduced and the
velocity profiles become fuller. However, during the passage of the temperature
ramp, where d 6/dx |,y > 0, the frequency components from analyzing the wall vorti-
city shoot up to a higher level. Then they all become damped shortly behind the tem-

perature ramp, where d 6/dx |,y = 0.

In Figure 14b a similar computation has been repeated, however without the
heated segment. In this case, three frequency regions of amplification of wave com-
ponents can be identified. First, the lower frequency range consists of modes whose
amplitudes initially decrease in streamwise direction until a minimum is reached,
from which point on the modes are amplified (see e.g. F=.93). These frequencies pass
through the lower branch of the neutral stability loop. At higher frequencies, certain

modes are first amplified as they propagate downstream, and then become damped
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(see e.g. F=1.89), which means that they passed through the upper branch of the neu-
tral loop. Frequency components smaﬂer than F=.55 are damped over the entire
computational domain, but their damping rate is progressively reduced in streamwise
direction.

To further study the effect of the temperature ramp, a simulation with a passive
heater strip was investigated. Figure 15 shows a comparison of the streamwise
amplification of four frequency components from the wave packet disturbance with
and without a passive heater strip. The heater strip is between 70 < x/Ax < 90. The
frequency components from the wall vorticity (Figure 15 a) show the selective
amplification as described above. Furthermore, over the first half of the passive
heater strip, the amplitude of each frequency component increases approximately by
10%. Then, in the second part, the amplitude of each frequency component drops
below the value of the unheated case.

A comparison of the same frequency components by analyzing the wall normal
velocity component away from the wall ( y/Ay = 10, Figure 15b) does not show the
local frequency "hump" of the wall vorticity. However, both analyses show a stabiliz-
ing trend downstream of the heater strip that continues until the end of the integra-
tion domain. It appears that the additional heating from the passive heater strip rein-
forces the thermal wake. The effect of this reinforcement reduces the rate of
amplification of the most amplified mode by approximately 27% (Figure 16). The dis-
tance where the wall vorticity signal was recorded for the computation of the
amplification rate is two and a half heater lengths downstream of the passive heater.
As seen in Figure 16, the dome-shaped amplification curve for all frequency com-
ponents at the position x/Ax = 140 is within the one computed without the passive

heater. The additional passive heater therefore leads to an overall less unstable boun-
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dary layer due to the thermal wake.

Figure 17 shows the streamwise velocity profile of the base flow and the base
flow vorticity at a position x/Ax=100 close to the passive heater strip. Also shown in
this figure are the differences of the quantities between the case with the passive
heater and the case without the passive heater. A fuller velocity profile throughout
the boundary layer can be observed for the heated case. However, the differences in
the velocity profiles are very small. Also, an inflection point in the streamwise velo-
city in the vicinity of the wall can be identified, where davdy = 0. This inflection
point can only be attributed to the thermal wake, which makes the fluid hotter
within a region inside the boundary layer. Since the momentum and energy equa-
tions are coupled, the viscosity in the thermal wake is reduced, which contributes to

a fuller velocity profile.

In Figure 18, the steady streamwise pressure gradient at the wall surface for two

passive heater strips is presented. The pressure gradient at y = 0 is calculated from

2
dp _,47u _(dv,d6,du, 412)

dx dy>* de" dy  dy

In the absence of the heaters, the pressure gradient dp/dx vanishes, since no external
pressure gradient is imposed on the flow field. In the vicinity of the heater however,
the sudden temperature rise leads to a negative d6/dy locally, so that the wall pres-
sure rises. Note that dv/d0 for a small temperature difference is approximately a
negative constant. In the second half of the heater, the sudden drop in temperature
then leads to a region of higher fluid temperature near the wall, and the temperature
gradient d 0/dy changes its sign.

For the local analysis of the wall vorticity signal, the "hump" in the frequency
components in Figure 15 could be explained by the local rise and drop of the pres-




59

Sure gradient. In the first half a positive, adverse wall pressure gradient leads to the
strong growth of the frequency components, and in the second half the stronger
negative, favorable pressure gradient reduces the amplitudes of the frequency com-
ponents to a level, which is lower compared to the unheated case. Away from the
wall heater, for positions downstream of the heater strip, this effect is diminished.
However, the growth rates of the frequency components downstream of the heater
strip are slightly reduced, as previously explained in connection with Figure 16, since
the thermal wake changes the velocity profiles of the base flow through the tempera-

ture dependence of the kinematic viscosity.

4.1.3 Transfer Function Concept

Boundary layer transition is a very complex phenomenon and many aspects are
not yet understood. However, in the early stage of the transition, where small dis-
turbance waves become amplified, nonlinear effects can be considered small
Although the mechanism by which the heater strip creates disturbances in the boun-
dary layer may be nonlinear, the amplitudes of the heat input were such that the
amplitudes of the disturbance response were very small initially, so that the
amplification process can be considered linear. Here a relationship between an input
disturbance (the heater temperature), and an output fluctuation (the wall vorticity) is
sought. The transfer function H ( F ), which is defined through the input-output rela-
tionship, can be found from

0, F)

(4.13)
L)

HEF)=

where O,I(I-' ) and f,o(I-’ ) are the complex amplitudes of the wall vorticity signal and

the temperature input, respectively. Once the transfer function is determined, it can

be used to predict the linear response of the boundary layer flow to any heat input




fluctuation.

Figure 19 shows a schematic representation of the transfer function technique
applied between two stations x; and xqg. On the left side of the Figure 19, the input
temperature signal from the heater strip is shown together with the modulus of its
transform. The input temperature signal is superimposed at the center location of the
heater strip at xq according to (2.8). The right hand side of Figure 19 shows scheméti—
cally the vorticity response and the modulus of its transform at the station x;. The
numerical approximation of this transfer function assurues a relatively flat input spec-
trum over all the relevant boundary layer modes. A discussion of the definition and

validity of the transfer function is given in Appendix A.

Figure 20 shows the modulus of the transfer function for three different heater
strip widths. The three widths are chosen relative to the wavelength of the most
amplified mode of the wave packet in the region of the heaters. The heater lengths
N = 10, 20, 30 correspond to approximately 1/2, 1 and 1 1/2 wavelengths of the
most amplified frequency component. In all three cases, the same input temperature
disturbance was used, and the response signal was recorded at the same position
x/Ax =70. The strongest vorticity response was found for N=10. The heater strip
with N=30 shows a trough in the region of F=1.9. Close to this frequency component,
the phases were undergoing a shift of =, so that partial cancellation of neighboring
modes traveling with approximately the same phase velocities occurred. The appear-
ance of such troughs in the transfer function is disadvantageous for the control stra-
tegy. Thus, a heater strip length of N=10 was chosen for the numerical investigation

of this control concept.




61

4.1.4 Boundary Layer Control of Two-Dimensional Wave Packets

Using the numerical transfer function discussed previously a relation is esta-
blished between the wall vorticity response at a certain position downstream of the
heater and the forcing input temperature at the heater. The transfer function is based
on a linear model. Gaster (1984) extended the transfer function model to allow for
quadratic interaction of frequency components. For the high amplitude forcing in the
experiments, using suction and blowing through a hole in flat plate, the quadratic
interaction term accounted for approximately 5% of the total response. Therefore, in
the control attempt introduced here, the initial forcing temperatures are chosen to be
small enough, so that the amplitudes of the resulting disturbances are below the
threshold for the nonlinear effects to be important. As a result, once the effect of a
pulse temperature disturbance is known through the transfer function, it follows that
the effect of other disturbance forms is known as well

For the control of wave packet disturbances in the boundary layer two heater
strips were assumed on the plate surface. The strategy for the attenuation of the dis-
turbances in the boundary layer is as follows: In a first computation a wave packet
disturbance is created in the flow field using only the upstream heater strip. From
this computation the amplitude- and phase-spectra of the wave packet disturbance
are found from the wall vorticity signals at all grid points downstream of the first
heater. This computation provides information for a flow when no control is applied.
From a second computation, where only the downstream heater strip is activated and
the first heater strip is left passive, the amplitude- and phase-spectra of the vorticity
response are determined. This second computation provides the necessary informa-
tion for numerical calculations of the transfer function as explained in the previous

section. Then, for the attenuation of wave packet disturbances, a third computation is
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performed with both heater strips activated. The first heater strip creates a wave
packet disturbance with the same temperature input signal as in the first computa-
tion. However, the second heater strip acts now as a controller whose temperature
input has to be determined so that the disturbances are attenuated downstream of

the controller. The control temperature is found by the relation
LF)=0,(F)/AF), | (414
where O,,(F ) denotes the complex vorticity amplitudes of the first computation, and
H(F) is the transfer function from the second computation. In the frequency domain,
the phases of O,,‘(F) of each frequency component are shifted by =, yielding the
desired phases of the control temperature input. Then the inverse Fourier transform

of the complex temperature amplitudes (4.14) yields the temperature input for the

controller strip in the time domain.

In order to establish the numerical transfer function, the streamwise distance
x1—x of the sensor location from the center of the controller strip was varied. For a
sensor position too close to the controller strip, the transfer function spectrum is
influenced by the locally high vorticity spikes, which are created directly at the strip
surface. If the sensor is moved too far downstream, the characteristic distribution of
the amplitude spectrum has narrowed considerably and the transfer function H has
lost information at the lower and the upper frequency components due to the very
low amplitude level in the spectrum. Figure 21 shows the modulus of the transfer
function at several poéitions downstream of the controller strip. Downstream from
the position x/Ax = 88, the moduli of the transfer functions nearly coincide within the
frequency region .7 < F < 2.0, where the curves are almost horizontal. At frequencies
F 2 2, the moduli branch out quickly due to the strong damping of the frequency

components for large F. After several tests, the transfer function at the station




x/Ax =92 was picked for the control strategy. Figure 22 shows the temperature con-
trol signal for the disturbance with the characteristic time delay and the typical wave

packet shape.

For a computation with two heater strips the control strategies which were
introduced above have been applied. The first heater created a wave packet distur-
bance using the forcing signal T, of the relation (4.6), while the second heater strip
used the control temperature shown in Figure 22. Figure 23 shows the amplitude
and phase spectra obtained from the wall vorticity signal at several streamwise posi-
tions for the case where control was applied. The first amplitude spectrum was deter-
mined at station x/Ax =50 which is before the controller strip and may be used as
reference to compare with the downstream spectra. The second amplitude spectrum
at x/Ax = 80 is exactly at the end of the controller strip and shows a strong increase
in amplitude. However, this increase is due to the locally strong vorticity at the
heater surface which creates the antiphase wave packet. Further downstream at the
positions x/Ax = 110, 140, and 170, the amplitudes are reduced by more than a factor
of ten as compared with the uncontrolled case. The wave packet signal of the wall
normal velocity component (Figure 24) at y/Ay =20 (outside the boundary layer)
shows the same attenuation trend of the wave packet. Thus the control of the wave
packet disturbances is not just a wall effect. The most unstable disturbances in the

wave packet were attenuated by about 97% of their uncontrolled levels.

An alternative approach to the above control strategy could be based on an
additional sensor placed upstream of the controller strip. Then the control system
exhibits a time delay, which could be found by relating the wall vorticity at the
upstream sensor to the wall vorticity at the downstream sensor. In addition to the

above described strategy based on (4.13), a time shift operator similar to (4.13) but




based on the wall vorticity at the upstream sensor as the input quantity, would be
used. This would account for the time delay of the disturbances between the
upstream and the downstream sensor. Thus, for a realistic control strategy, the dis-
turbances are picked up by the upstream sensor. Then with this signal the required
input for the actuator (controller) is calculated (using the technique just discussed)
and the actuator heater stnp is triggered accordingly. Therefore, for this control stra-
tegy, the downstream sensor is only needed once (before the actual control of transi-
tion) to establish the transfer function (between the actuator and the downstream
sensor) and the required time delay (between the upstream sensor and the down-
stream sensor). During the actual control of wave packet disturbances, the down-
stream sensor may be used to check the efficiency of the control technique, that is of

the wave cancellation.

The crucial component of this control strategy is the control element based on
(4.14) between the wall temperature at the actuator and the wall vorticity at the
downstream sensor station. Therefore, in the present work emphasis has been placed

on exactly this part of the control strategy.

4.2 Computation of Three~Dimensional Flows

In the later stages of the transition process the instability waves become three-
dimensional, and in the experiments preferred spanwise structures can be identified.
Therefore, the three-dimensional computations described here assume that the distur-
bance flow is periodic in the spanwise direction. With a spectral decomposition in the
spanwise direction, the equations (3.3) have to be solved for the K terms of the series
representation of (3.1). For the computations of three-dimensional wave packet dis-
turbances, as discussed in the following sections, the maximum spanwise

wavenumber is K=2. The three-dimensional wave packets are created by forcing the
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two-dimensional mode (k=0) and the first three-dimensional spanwise mode (k=1).
The wave packet computations here can be viewed as a model to simulate the early
stages of transition up to the point when the disturbances become three-dimensional,
and where dominant three-dimensional modes exist.

For the three-dimensional computations, the following parameters were used:

Re=100000, Ax =50265x102%, T, =44°C, K=2,

L=.05m, Ay =2.8461x107, y=20, Y/ay =81,

xo=12169, At =3.74x107%, T.=24°C, X/Ax =901,
Res (at x¢) =600, a=25, Pr=63  Res(at xy)=1304.

The height of the integration domain Y was chosen so that at the inflow boun-
dary Y =128,. This results in a boundary layer thickness at the outflow boundary of

approximately 1/2 Y.

4.2.1 Linear Spatial Stability Theory

For the selection of the spanwise wavenumber y of the three-dimensional com-
putations, the linear stability theory was used to give an overview of the linear
amplification of pairs of oblique modes, their phase velocities and the spanwise to
streamwise wavenumber ratios for several frequencies.

For linear spatial stability theory the wavenumber in equation (1.0) is complex
a=o+0o; and the circular frequency B is real Equation (1.0) is based on the the
assumption of a two-dimensional disturbance wave. The three-dimensional deriva-
tion of (1.0) follows from assuming three-dimensional waves of the form
o(y) exp(azx + 3z — f3t), and assuming a parallel, two-dimensional base flow
Upese = (tipase (), 0, 0). With the aid of the Squire’s transformation (Drazin and Reid,
1981), a three-dimensional, oblique disturbance wave can then be found from equa-
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tion (1.0) through

o=+, o Re=03Re; , = , (4.15a,b,0)

where the subscripts 2 and 3 refer to the two-dimensional and the three-dimensional
modes, respectively, and where Re; is the equivalent three-dimensional Reynolds
number. The phase velocity ¢ of equation (1.0) must then be replaced by

¢ = Bsp/azp, which is the three-dimensional component in the streamwise direction.

Since we study pairs of oblique waves, which propagate with a wave angle
tan"!(y/ @) to the streamwise direction of equal and opposite sign, the amplification
rate in spanwise direction y; is assumed to be zero. Then, by specifying the spanwise
wavenumber v, equation (1.0) can be used to calculate the eigenvalues of the pairs of
oblique modes.

Figure 25 shows the rate of amplification, the phase velocity and the ratio of the
spanwise to streamwise wavenumber, which are obtained from the linear stability

theory. The eigenvalues are shown for two streamwise positions Res = 800, 1200 and

for pairs of oblique modes with y= 10, 20, 30, 40, and the two-dimensional mode
with y = 0.

The rate of amplification for the oblique modes decreases with increasing
wavenumber for both Reynolds numbers. The maximum amplification shifts to
lower frequencies for increasing Reynolds numbers. For both Reynolds numbers the
highest rate of amplification is found to belong to a frequency component of the
two-dimensional mode (y = 0) . However, at Res = 1200 for frequencies below F = .5,
the oblique mode with y = 10 shows a locally higher amplification rate than the two-
dimensional mode. Although the maximum amplification of a frequency is connected

with the two-dimensional mode (y = 0), at some other frequency a three-dimensional
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wave can still be more amplified than a two-dimensional one. Although generally
more stable than two-dimensional waves, the three-dimensional waves with a small

wavenumber y can have similar growth rates as the two-dimensional waves.

The streamwise phase velocities are calculated from the relation (4.10) for each
frequency and oblique wavenumber v. For increasing v, the phase velocities in Figure
25b become higher. Towards the lower frequencies, the phase velocities decrease for
the two-dimensional mode. However, for the higher spanwise wavenumbers y 2 20,

the phase velocities, after first decreasing, start to increase.

Also, Figure 25c¢ shows that the ratio of spanwise to streamwise wavenumber

¥/ a does not change from the position at Re; = 800 to Res = 1200. At the first Rey-

nolds number, the wavenumber y=20 at the frequency F=12 has a ratio of
y/io= 67 At this frequency the two-dimensional mode has a maximum
amplification (Figure 25a). At the Reynolds number Re; = 1200, where the most
amplified modes have shifted to the lower frequencies, the ratio changes to
Y/ o= 1.26 at the frequency F = 0.6.

For the forcing of the pair of two oblique modes with a wave packet distur-
bance, the wavenumber y= 20 was selected for the computations. A similar ratio of
spanwise to streamwise wavenumber was also reported in the transition experiments
of Saric and Thomas (1983) for single frequency components at amplitude levels of
3% to .4% based on free stream velocity. With our wave packet simulations based on
initially low amplitude forcing of a wide band of frequency components, we intend

to further investigate the role of TS modes in the transition process.

4.2.2 Three—=Dimensional Wave Packet Disturbances

Figure 26 shows the instantaneous wall temperature at t/At =70 for the two

heater strips. The first heater strip was activated with a physical amplitude of the
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forcing temperature for the two-dimensional and the three-dimensional mode of
Aap = Agp = 20°C. The forcing period is TP = 120 and the second heater strip is pas-
sive. The temperature signal was recomposed by summing the series (3.1), and the
spanwise extend of the integration domain was chosen to comprise two spanwise
wavelengths. The strong three-dimensional forcing of the wall temperature is visible

in the two temperature peaks which are one spanwise wavelength A, apart.

The disturbance signal of the spanwise wall vorticity at several instances in time
is shown in Figure 27 for the two-dimensional @, xo and the first three-dimensional
spanwise mode ®, y.;. At the first timestep £/At = 180 (the end of the forcing is at
t/At = 120), the trailing side of the wave packet illustrates the non-stationarity of the
base flow due to the unsteady heating, which is an effect discussed earlier in conjunc-
tion with the computations for purely two-dimensional flow. The three-dimensional
wave packet propagates in the downstream direction and spreads due to dispersion.
The wall normal velocity components v, and v;.; at a wall normal location
y/Ay =40 outside the boundary layer (Figure 28) also confirm a traveling wave
packet. At the time level t/At = 180, the unsteady heating effect is not visible since
the thermal wake remains confined inside the boundary layer.

The spectrally decomposed streamwise velocity components u;o and u;.; are
displayed in Figure 29 in the vertical (x-y) plane at z=0. Shortly after the end of the
wave packet excitation at timestep 130 (the duration of the excitation is until timestep
120), the streamwise disturbance velocity contours indicate a wave packet for both
the two-dimensional (k=0), and the three-dimensional (k=1) component. In this early

stage the spatial selection of the unstable frequencies is not yet fully completed.

At the later timestep 1200 (Figure 30), the wave packet has spread considerably.
The three-dimensional component has spread over less cycles than the two-
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dimezsional one. This indicates th.t the difference of phase velocities between indivi-
dual frequency components for the three-dimensional mode is less than the difference
of phase velocities for the two-dimensional mode. Also, a third group of disturbance
extrema in the velocity contours of the three-dimensional mode can be identified in

the immediate vicinity of the wall

For the spanwise vorticity @, contours in Figure 31, the two- and the three-
dimensional modes appear more distinct than for the streamwise velocity at the same
time level (¢t/At=1200). The three-dimensional spanwise vorticity mode has a group of
disturbance extrema at the wall surface. Away from the wall, a second group of dis-
turbance extrema of the vorticity along a 45° angle to the x-axis can be distinguished.
The magnitude of the disturbance extrema away from the wall is larger than that of
the group of extrema on the plate surface. In contrast, the two-dimensional spanwise
vorticity mode has a group of disturbance extrema at the wall surface, whose magni-

tude is larger than a second group of extrema which is located at y/Ay=15.

The amplitude- and phase-spectra of the spanwise wall vorticity o, for the two-
dimensional and the three-dimensional mode are given in Figure 32. The spectra are
recorded at several streamwise positions x/Ax = 90, 100, 110, 120, 130 downstream of
the first strip. At the station closest to the activator strip, the spectra for both the
k=0 and k=1 component are still very broad, and are similar to the temperature input
spectrum. However, further downstream the shape of the spectra illustrates the selec-
tion mechanism of the boundary layer. The very high and very low frequency com-
ponents are strongly damped and the characteristic dome-shaped spectrum appears,

where the intermediate frequency components are most amplified.

The amplitude spectrum of the k=1 component shows a sharp minimum at a

frequency of approximately F = .75. The phase-spectrum in the neighborhood of this




70

frequency undergoes a sudden phase change of %, so that modes in the vicinity of
this trough cancel each other. The region of amplification for the k=1 spectrum is
shifted to lower frequency components compared to the k=0 spectrum. Also, the

amplification rates are reduced.

The amplitude spectra of the wall normal velocity component at the same
streamwise position and y/Ay = 40 (Figure 33) exhibit a similar behavior as for the
spanwise vorticity. Furthermore, the three-dimensional component does not indicate
the sharp trough in the vicinity of F = .75 . From the position x/Ax =110 on, the
amplitude spectra of Figures 32 and 33 are of the characteristic dome-shape of wave
packets in the boundary layer. This position is a distance of two heater lengths away

from the center of the heater strip in downstream direction.

The streamwise development of the amplitude spectra over a larger distance is
illustrated in Figures 34 and 35 for the spanwise wall vorticity and the wall normal
velocity component. The positions are at x/Ax = 180, 260, 340, 420, 500. For the
spanwise vorticity, the two-dimensional mode amplifies and selects its frequency
components according to linear theory. The three-dimensional mode, however, shifts
to lower frequency components without increasing amplification. Instead, at the
lower frequency range F <.5, frequency components with an initially very low
amplitude become amplified. The three-dimensional spanwise vorticity has its first
group of disturbance extrema at y/Ay = 10, close to the wall At the wall surface
itself, only a smaller group of extrema is present (Figure 31). By analyzing the span-
wise vorticity signal at the position y/Ay=10 (Fig. 34c) with maximum disturbance
amplitude, the three-dimensional mode shows an increasing rate of amplification of
the lower frequency components. As already pointed out by the strictly two-

dimensional computations, the rate of amplification can be determined at any wall
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normal position for any flow quantities. Although there is no unique amplification
rate using the direct numerical simulation to compare with the linear parallel theory,
comparisons are usually made from disturbance quantities at their maximum ampli-
tude location. From our computational results we find the best agreement with the
parallel theory also for the location with the maximum disturbance amplitude.

The amplitude spectra for the wall normal velocity component in Figure 35 is
calculated at y/Ay = 40 outside the boundary layer at the disturbance maxima. The
amplitude spectra indicate the same stability characteristics as for the spanwise vorti-
city. The three-dimensional spanwise mode exhibits the shift to lower frequency com-

ponents together with an increase in amplification.

The amplitude spectra of all the analyzed flow components show a strong
growth of the lower frequency components for the three-dimensional mode. The
growth rate of these lower frequency components is much higher than the linear
growth rates. In contrast, the two-dimensional amplitude spectrum, as for all the
analyzed flow components, do not indicate the growth of these lower frequency har-

monics.

In Figure 36 a comparison of the experimental amplitude spectra with the com-
puted spectra of the linear spatial stability theory from Gaster and Grant (1975b) is
presented. The spectra to the left of Figure 36 are the experimentally determined dis-
tributions of the two-dimensional mode and a three-dimensional mode for the
streamwise velocity component, which were measured at a wall distance of y/8 = 1.1
outside the boundary layer. To the right of Figure 36 the computed spectra of the

linear stability theory are shown.

From these figures one can clearly identify a broadening of the amplitude spec-

tra for three three-dimensional modes towards the lower frequency components,




which is not present in the linear spectra. From the first appearance of the low fre-
quency "humps” at an early station, the low frequency components'eventually take
over the whole spectra, so that at the last station the most amplified frequency com-

ponents are at a lower frequency range than the linear theory could predict.

Also, and even more surprising, the two-dimensional mode does not exhibit the
low frequency interaction mechanism of the three-dimensional mode. The two-
dimensional spectrum follows closely the linear prediction up to the last station.

Our numerical computations qualitatively indicate the same interaction mechan-
ism for the three-dimensional mode as in the experimental investigation of Gaster
and Grant. However, a comparison of our numerical simulation with the experi-
ments can only be qualitative for several reasons. First, the experimental study
covered a much larger streamwise region. Second, the wave packet disturbance in the
experiment was created through a single hole in the plate surface, such that an iso-
lated three-dimensional wave packet was created rather than a two-dimensional wave
packet with a spanwise variation.

In our computations, during the forcing of the wave packet with the two-
dimensional and one three-dimensional mode, a second spanwise mode with the
wavenumber y = 40 is created also. This second spanwise mode results from a non-
linear interaction of the first spanwise mode with itself during the temperature forc-
ing over the heater strip. However, the amplitudes of all frequency components of
this second mode wave packet were small compared to the two-dimensional and first
three-dimensional modes. All frequency components of this second mode are
damped within a short distance from the heater strip. For the wavenumber v, = 40 of
the second spanwise mode, the linear spatial theory predicts damping. The rate of

damping is further increased for larger Re numbers.
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The amplification of the lower frequency components for the three-dimensional
spanwise mode indicates the presence of a subharmonic amplification mechanism.
The amplification of subharmonic frequencies was found experimentally to exist for
periodic disturbances in the early three-dimensional stages of the breakdown process
(Saric and Thomas (1983), and Kachanov and Levchenko (1984)). Corke (1989)
confirmed in an experimental investigation for single frequency disturbances at very
low initial amplitudes, that the spectral broadening of the power spectra first
appeared in the subharmonic region. There the breakdown process was absent of
higher order instability mechanisms, such as proposed in the fundamental break-

down theories.

In Figure 37, a comparison of the phase velocities is made between the two-
dimensional mode and the three-dimensional spanwise mode at x/Ax =480
(Reg, = 1021) for the wall normal velocity at y/Ay = 40. Above the frequency F =.7
the three-dimensional phase velocities agree with the linear theory. However, below
F = .5 the phase velocities are approximately .36 U... In the low frequency range,
where the strong growth of the amplitudes of the three-dimensional modes appeared,
the phase velocities deviate from the value of the linear stability theory and level to
approximately the constant value. The phase velocities of the two-dimensional mode
agree closely with the linear theory.

To summarize the generation process of three-dimensional wave packet distur-
bances using heater strips, all the flow variables have been recomposed for two span-
wise wavelengths and are displayed in the horizontal (x-z) plane in Figures 38
through 43. The grey-shaded contours were taken at the time level t/At =70, the
period of excitation being TP = 120. Superimposed are contours of the wall tempera-

ture disturbance, where the zero contour frames the physical dimension of the heater
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strip.

The streamwise and wall normal velocity components at their disturbance
extrema show the wave packet disturbance aligned with the temperature forcing at
the same spanwise position (Figures 38 and 39). During the excitation, there is an
upstream effect in the velocity components in addition to the propagation in down-
stream direction. In comparison, the spanwise wall vorticity (Figure 43) remains
more confined to the temperature disturbance during the excitation, although the
wave packet has already moved slightly in the downstream direction. The spanwise
vorticity disturbance extrema, as for the streamwise and wall normal velocity are
aligned with the temperature disturbance extrema. The strong coherence between the
spanwise vorticity component and the wall temperature confirms their choice for the

estimation of the transfer function.

A different picture is displayed for the purely three-dimensional variables
w’, o,, o, (Figures 40 to 42). There, the disturbance extrema are centered between
the wall temperature extrema, and these disturbances vanish where the local span-
wise temperature gradient is zero. During the forcing of the wave packets, the
streamwise wall vorticity ®, reaches far upstream. Instantaneously, a three-
dimensional vorticity field with a large ®, component is created in the boundary
layer.

The relation of the streamwise vorticity @, and the spanwise vorticity , at a
later time ¢/At = 1200 is shown in Figure 44. The grey-shaded contours indicate the
streamwise vorticity at the wall surface. The overlaid contours denote the spanwise
wall vorticity. In regions were the spanwise vorticity gradients are small, the stream-
wise wall vorticity disappears. On the other hand, were the spanwise vorticity gra-

dients are large, the streamwise vorticity has its disturbance maximum. The stream-
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wise vorticity disturbance is concentrated along the streamwise direction between the

the peak and valley positions as marked by the spanwise wall vorticity.

4.2.3 Boundary Layer Control of Three—Dimensional Disturbances Waves

For the control of three-dimensional wave packet disturbances the same transfer
function strategy as for the two-dimensional case (see 4.1.3) is used. Since the three-
dimensional equations are already decomposed in the spanwise direction, an addi-
tional transfer function relating the three-dimensional spanwise vorticity to the three-
dimensional temperature forcing can be introduced analogously to (4.13):

Oka‘l, xl(F )

HEF g = — —
Pt =30

(4.16)

Once the effect of a three-dimensional temperature input is found using (4.16), then a
controller signal can be created for the attenuation or the reinforcement of the distur-
bance components. The procedure to find the control temperature for disturbance
attenuation is similar to the procedure which was discussed in section (4.1.4.) in con-
nection with the purely two-dimensional disturbance computations. However, now

each spanwise component has to be treated individually.

The moduli of the transfer function for the two-dimensional and the three-
dimensional mode at several streamwise positions are given in Figure 45. The two-
dimensional mode exhibits the same behavior as in the purely two-dimensional com-
putations. The moduli have a constant amplitude ratio within the band of linearly
amplified frequencies. For frequency components above F = 1.8, the moduli of the

transfer function change rapidly with respect to the streamwise direction.

The moduli of the three-dimensional transfer function, however, show a pro-
nounced trough in the vicinity of the frequency F=.75 . This effect could already be
expected from the amplitude spectra of Figure 32. The rapid phase change near the
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frequency component F= .7 leads to partial cancellation in the vicinity of this fre-
quency, since the phase velocities of the neighboring modes of the wall vorticity
response are very close to each other.

4.2.3.1 Control of the Two—Dimensional and Three-Dimensional Spanwise Modes

For the attenuation of the two- and three-dimensional wave packet disturbances
a transfer function was used, which was selected at the streamwise position
x/Ax =230. The controller strip was placed between the streamwise position
130 S x/A < 145. The x-station for the transfer function is approximately two distur-
bance wavelengths (of the most amplified frequency in the wave packet) downstream

from the center of the controller strip.

Figures 46 to 49 show the amplitude spectra for the control of the two- and
three-dimensional disturbance components of the spanwise wall vorticity ®’, and the
wall normal velocity component v’ at several streamwise positions. The amplitude
spectra at the position x/Ax =120 is just upstream of the controller strip and may

serve as a ref rence amplitude.

For the two-dimensional mode, a 90% reduction of the most amplified fre-
quency component was achieved. The three-dimensional spanwise mode control
showed an approximately 80% reduction for the spanwise vorticity. The control
based on the transfer function for the three-dimensional spanwise vorticity is not
quite as successful as the control for the two-dimensional, spanwise mode. The
three-dimensional vorticity has its primary disturbance maximum away from the
wall. A more successful estimation of the transfer function of the three-dimensional

mode might be found away from the wall or using the streamwise vorticity.




4.2.3.2 Control of the Two—Dimensional Mode

Finally, control of only the two-dimensional mode has been attempted. By
suppressing the two-dimensional mode in the wave packet it was hoped to gain
insight on the development of the subharmonic frequency modes which are present
in the three-dimensional disturbance development of the uncontrolled flow.

Figure 50 shows the spanwise vorticity @', in the horizontal plane at the plate
surface for the attenuation of the two-dimensional mode only (grey-shaded contours)
at the time 1200. The spanwise vorticity of the uncontrolled flow is overlaid as line
contours. The suppression of the two-dimensional mode advances the spanwise vorti-
city at the valley location. At the peak locations the maxima still coincide. However,
the effect of trying to cancel only the two-dimensional mode on the lower frequency
interactions can be interpreted better from the amplitude spectra.

In Figure 51, the amplitude- and phase-spectra of the three-dimensional mode of
the vorticity at y/Ay=10 and the wall normal velocity at y/Ay=40 are shown for
several streamwise positions. Both flow components are analyzed at their amplitude
maxima in wall normal direction. The two-dimensional mode of both flow quantities
was attenuated similarly to the "two-mode” control case. The attenuation of only the
two-dimensional mode leaves the linear amplification mechanism of the three-
dimensional mode intact. However, the strong amplification of the low frequency
components of the three-dimensional mode, which were present in the uncontrolled
case, are not identifiable now in the amplitude spectrum. The attenuation of only the
two-dimensional, spanwise mode of the wave packet disturbance effectively delayed

the onset of the nonlinear, subharmonic type interactions.
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5. Conclusions

A numerical investigation of the control of the transition from laminar to tuf-
bulent flow in a flat plate boundary layer flow was undertaken. The numerical
method is based on the complete Navier-Stokes equations and allows for the spatial
amplification of disturbance waves in a non-parallel boundary layef'. For the numeri-
cal method finite-differences are used in the streamwise and wall normal directions
for the two- and three-dimensional computations, and a spectral Fourier approxima-
tion is used in the spanwise direction for the three-dimensional computations.
Emphasis is placed on the simulation of two- and three-dimensional wave packet dis-
turbances since they more realistically model the natural transition process than sin-
gle frequency disturbances. In the numerical simulation flush mounted heater strips

on the plate surface were modeled to generate disturbance waves.

We investigated the mechanism by which Tollmien Schlichting (TS) waves are
created in the boundary layer through a local viscosity variation. The time dependent
heat transfer during the thermal forcing with the heaters locally alters the viscosity,
which then imposes a temporal fluctuation on the streamwise velocity profile. Strong
vorticity gradients over the heater strip appear instantaneously, thereby generating

the TS waves.

During the temperature forcing, in addition to the TS mechanism, a net amount
of heat is introduced in the flow field. At the end of the forcing, a region of locally
high temperature (heat spot) appears in the vicinity of the heater strip, which is con-
vected in the streamwise direction at a speed much slower than the group velocity of
the TS wave packets. The heat spot rapidly diffuses in wall normal direction and
almost vanishes at a downstream distance of approximately two heater strip lengths.

The effect of this non-stationarity appears in the Fourier analyzed signals as a low
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frequency component, which adversely influences our control strategy.

A steady temperature component over the heater strip reduces the effect of this
non-stationarity in the sensor signal. However, this introduces a thermal wake in the
boundary layer which reaches far downstream, and although its maximum tempera-
ture differences are small, it was found that the small changes in the mean velocity
profile noticeably altered the local stability characteristics of the flow. This was also
verified with linear spatial stability calculations using the base profiles obtained from

the Navier-Stokes solutions.

A linear transfer function technique based on the vorticity response at the wall
surface and the temperature input at the heater strips was developed. The heating
mechanism that creates the TS wave packets over the heater strip is nonlinear due to
the inseparability of the momentum and energy equation. However, for low ampli-
tude forcing the vorticity response downstream from the heater strip, the nonlinear
effects can be assumed small. The control model based on the transfer function
assumes prior knowledge of the disturbances in the flow field. For the study of the
applicability of wave packet attenuation in the boundary layer, the uncontrolled dis-
turbance field was first determined with an independent computation. Then, by
analyzing the wave packet disturbances for a computation with no control applied, a

direct comparison can be made with computations, when control is applied.

A study on varying the heater strip width revealed that for a width of typically
one half the wavelength of the dominant unstable frequency component, the vorticity
response was maximized. A study on the effect of varying the distance of the sensor
location to the actuator location showed that the cancellation of the disturbances was
optimized for a distance of approximately two disturbance wavelength of the main

frequency component in the wave packet. For a distance closer to the disturbance




actuator the presence of the above mentioned non-fluctuating heat spot adversely
affects the control efficiency. Also, for distances further from the actuator the transfer
function loses information on the higher frequency range due to the strong spectral
filtering of the boundary layer.

Numerical simulations of the control of the boundary layer transition applying
the transfer function technique showed .that two-dimensional and three-dimensional
wave packet disturbances can be drastically attenuated.

For a simulation with no control applied, nonlinear interactions of frequency
components of the wave packet first appeared in the lower frequency range of the
three-dimensional spanwise mode. The growth rates of the lower frequency com-
ponents of the three-dimensional mode exceeded the linear growth rates of the TS
frequency components. The two-dimensional spanwise mode, however, did not show

the low frequency interactions of the three-dimensional mode.

Experimental investigations by Gaster and Grant (1975) also showed the low fre-
quency interaction mechanism in the subharmonic region for the three-dimensional
spanwise mode of a wave packet disturbance. This suggests that a resonance
mechanism for the three-dimensional disturbances promotes the amplification of a
large band of frequency components. However, neither in the present numerical
simulations nor in the experiments by Gaster and Grant could a specific higher order
interaction mechanism be identified that can be explained by one of the fundamental
breakdown theories.

To verify the role of the two-dimensional, spanwise modes of the wave packet
on the amplification mechanism in the subharmonic frequency range, a numerical
simulation with only the control of the two-dimensional part of the wave packet was

investigated. For in this case, no nonlinear amplification of the lower frequency com-
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ponents of the three-dimensional modes was present. Although the attenuation of
only the two-dimensional mode leaves the linear amplification of the three-
dimensional mode intact, the amplitude of the two-dimensional mode influences the
nonlinear amplification of the three-dimensional mode considerably.

Future investigations of the control of the wave packet disturbances should con-
centrate on several points. The effect of the amplification of the three-dimensional
mode on the attenuated two-dimensional mode should give further insight on the
importance of three-dimensional mode control concepts. For the investigation of the
later stages of the breakdown process to turbulent flow, nonlinear interaction necessi-
tates the incorporation of many more spanwise modes. We believed that the transfer
function concept can be extended to also include quadratic wave interactions which
would become important for the later stages of the transition from laminar to tur-
bulent flow. Also, this transfer function technique is applicable to the control of ran-
dom two- and three-dimensional disturbances.
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Fig. 31: Spanwise vorticity disturbance at t/At = 1200 for a) the two-dimensional
mode ® . _and b) the three-dimensional spanwise mode ® ___with no
z k=0 z ksl
control applied.
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color contour (.36e-3, .64e-3, inc. .11e-3)

Fig. 38: The streamwise velocity component u’ in the horizontal plane at the distur-
bance maximum (color contours) and the wall temperature disturbance ¢’
(line contours) at t/At =70 during the forcing cycle.
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Fig. 39: The wall normal velocity component v’ in the horizontal plane at the

disturbance maximum (grey-shaded contours) and the wall temperature

disturbance &’ (line contours) at t/At = 70 during the forcing cycle.
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Fig. 40: The spanwise velocity component w ’ in the horizontal plane at the
disturbance maximum (grey-shaded contours) and the wall temperature
disturbance ©’ (line contours) at t/At = 70 during the forcing cycle.
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Fig. 41: The streamwise vorticity @’ in the horizontal plane at the disturbance

—120

maximum (grey-shaded contours) and the wall temperature disturbance 6’

(line contours) at t/At = 70 during the forcing cycle.
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Fig. 42: The wall normal vorticity o’ in the horizontal plane at the disturbance
maximum (grey-shaded contours) and the wall temperature disturbance 6’

(line contours) at t/At = 70 during the forcing cycle.
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Fig. 43: The spanwise vorticity @’  in the horizontal plane at the disturbance
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maximum (grey-shaded contours) and the wall temperature disturbance ¢’

(line contours) at t/At = 70 during the forcing cycle.
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Fig. 44: The streamwise vorticity @ in the horizontal plane at the plate surface
(grey-shaded contours) and the spanwise vorticity @’ (line contours) at t/At
= 1200.
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Fig. 45: Modulus and argument of the transfer function at several streamwise
positions with the heater strip width 130 S x/Ax< 145 for a) the two-dimensional
mode (k=0) and b) the three-dimensional spanwise horizontal mode (k=1).
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Fig. 45b: continued.
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Fig. 46: Amplitude- and Phase- spectra of the spanwise vorticity signal o’ = at the
wall surface for the two- dimensional mode at several streamwise positions,
with control applied. The control strip is at 130 < x/Ax < 145.
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Fig. 47: Amplitude- and Phase- spectra of the spanwise vorticity signal @’ |~ at
y/Ay=10 for the three-dimensional mode at several streamwise positions,
with control applied. The control strip is at 130 < x/Ax <145.
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Fig. 50: The spanwise vorticity ', in the horizontal plane at the plate surface for the
control of the two-dimensional spanwise mode only (grey-shaded contours)
and the spanwise vorticity &’_for no control (line contours) at t/At=1200.
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attenuated, for a) the three-dimensional wall normal velocity v’ at
y/Ay=40 and b) the three-dimensional spanwise vorticity o . aty/ay=10.
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Appendix A: Fourier Transform of Non-Periodic Signals and
Estimation of the Transfer Function

For the practical implementation of the discrete Fourier Transform (DFT) we are
restricted to ﬁnité length sequences of digital signals at selected values of the angular
frequency. A periodic signal of period N has the property that

u(n+N) =u(n). (A1)
This periodic sequence can be represented by the discrete Fourier Transform of a
finite-length sequence u (0),u (1),....,.u (N-1) by
u(n) = EIOU (m )ei@Nmm (n=012---,N-1) (A2)
m=
and the inverse discrete Fourier Transform (IDFT) of a finite-length frequency
sequence U (0),U(1),....,.U(N-1) by
Um) = LS (n)ei@eimm m=012,---,N-1) (A3)
N, 2o
The equations A.2 and A.3 form a DFT pair. The digital signal u(n) and the frequency
signal U(m) are assumed to be periodic sequences, since they are both associated
with Fourier series. Hence if u(n) is actually zero for n<0 or n>N-1, the DFT will
not be aware of this, since it assumes the digital signal is periodic and exists for all
integers n. Thus one must be careful in interpreting the DFT and IDFT outside the
range of 0sn<N-1 and 0sm<N-1.

In A2 and A3 the quantity u(n), n = 0,1,2, ... N-1 is the real, sampled time-data
function of the computation at some position (xgyg) in the flow field. The above for-

mula assume, that the length of the sampled data to be transformed consists of N

points spaced At apart. In our computations, the timestep is chosen as At = |§_1Lt
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where L is an integer number for proper temporal resolution, and P is a typical fre-
quency of the most amplified wave component in the wave packet. The DFT is
defined at N discrete values of the frequency extending up to the frequency
fs = NAf, where Af = 1/T, is the elementary bandwidth, and T, is the time period
of the data sample (T = NA¢). For a time waveform to be faithfully reconstructed, it
is necessary that the highest frequency f, present in the signal is less than or equal to
the folding frequency fy = f,/2. In our computations the folding frequency is deter-
mined by fy = BL/4x.

Before the digital time waveform is analyzed a data windowing or tapering is
applied to avoid a discontinuity at the end of the data set and to increase the number
of the sample points to N2. After the mean flow values were subtracted from the

time traces a linear taper to the first and last 10% of the data is multiplied by

1 ( m
- AR <
> 1—COS(N1)] 0<n <N,
Pe =% 1 elsewhere (A4)
1 ( T
-2- L‘I—COS(WI-(?I—I\I))] N—NIS?I <N
\

where N; = N/10.

After this tapering, zeros are added to the data samples so that a total sample

length consists of 2'2, or 4096 elements.

The Fourier transform of the discrete time data is then found by using an FFT
algorithm based on the DFT pair A.2 and A.3. However one problem always arises
when estimating the discrete spectra because of the finite length of the data. To
represent the finite data length mathematically, the actual computationally generated

data sequence # mp Can be expressed in terms of a sequence of infinite data length
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u .(n) multiplied by a window function g(n) so that

. Ueomp(n) =u (n)gn) (A.5)
with
1 n=01,---,N-1
gm)=1g elsewhere (A-6)

In the Fourier transformed space the equation A.5 is expressed by

Ueomp(m) = Uu(m) * G(m) m=0,1, - - - M-1 (A7)
where U, denotes the Fourier transform of the infinite data length record, m is the
frequency index, and the asterisk denotes the convolution. The equation A.7 indi-
cates that the computational Fourier transform is given by the true Fourier transform
and its convolution with the window function in the frequency space. From the pro-
perties of the convolution integral, it is known that U, will approximate U.. only
in the case when G(m) is confined to a narrow band of frequencies. In the limit,
where G(m) approximates a delta function, Uymp = U.. The wave packets in our
computation consist of a nonperiodic signal which disappears once the disturbance
has completely passed the recording station, thus leakage of frequency components
through the sidebands of the window function (the taper function) plays a minor
role. Instead, pruning of the nonperiodic signal by adding zeros to the time sequence
greatly sharpens the peak of the box car function A.6 and improves the spectral esti-
mate considerably. Finally, the amplitude spectrum A(m) and the phase spectrum
¢(m) of the Fourier transformed time data are found through the relationships

Alm) = @2+ b, , om)= tan"’(z—"'). (A.8)

where 4,, and b,, are the real and imaginary parts of U (m), respectively.
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The general relation between input and output in continuous time of a linear

system is given by
y®) = [ h@x(t—) dt (A9)

For our computations we restrict the above integral to a physically realizable
system by assuming that the input to the system for 1<0 is zero. Then, by taking the
Fourier transform on both sides of A.9, one arrives at:

Y(m) = H(m)X(m) (A.10)
where Y(m) and X(m) are the discrete Fourier Transform of the input and output sig-

nals respectively.

From the relation A.10, one can easily find the transfer function H(m). The rela-
tion A.10 is strictly true only in the absence of any noise. In our numerical data,
there will always be some computational noise present. This noise level is deter-
mined by the accuracy of the machine and the convergence criteria used in our
numerical scheme. The convergence criteria is set so that the magnitude of the trun-

cation is several orders lower compared to the level of flow perturbation.

The estimation of H(m) in A.14 is limited to the range of frequencies where nei-
ther X(m) or Y(m) is exactly zero. To avoid this mathematical dilemma of dividing by
zero, a filter in the frequency domain is applied on H(m) whenever X(m) or Y(m) is
below the machine accuracy. Below this threshold, the convolution loses all informa-
tion, and reconstructing that frequency component becomes impoésible. Since the
transfer function gradually falls off to zero for higher frequency components, a sim-

ple step function filter is used when the threshold of machine accuracy is reached.
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Appendix B: Finite Difference Approximations for the
Energy Equation

The integration domain is divided into N grid points in the x-direction and M
grid points in the y-direction. The grid is uniform in both directions. In the following
expressions, the subscripts m and n refer to constant grid lines in the y- and x-
direction respectively. The subscript p denotes the time. As a result, the spatial coor-
dinatesarex = nAxr andy = mAy and the timeist = pAt.

The first derivative in time for p > 1 at 1Sn<N and 1Sm<M is approximated by:

%"l,w = S (38mp =4 8mpt + Onapd)  + OB ®.1
and for p=1:
%In,m,p = é(en,m,p - en,m,p—‘l) + O(At) (B.2)

where 0 is the temperature.

For the following spatial derivatives, the superscript p for the time has been dropped,
and each derivative is evaluated at the current time step. Also the coordinate z refers
to the either the streamwise (x) or the wall normal direction (y), respectively.

For 2<n<N-2 and 2<sm <M -2;

1
12Az

)

0z
78, __1
22" 12872

(Br2-80,;+86,,,-0,,) + O (AzY (B.3)

'k=

(- 62 +166,_; - 30 6 +166;,,;-6,,,) + O (AZ‘) (B.4)

at m=1 (the plate surface), the y-derivatives are given by:

9, __1 _ar- — 4. — 4
ay" To0ny(~AF <6500+ 40, + 666, 46:-0, ) + O (&yh)  ®)
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&0 | 1
dy? th 120Ay?

AF is a known scalar at the wall surface at the timestep p:

(-AF +1450;)-304 0, + 1740, - 16 63+ 6, ) + O (Ay*) (B.6)

AF =1289%-Pr |90, _

1 azeI
ot

Re Pr g2 = ®.7)

At the outflow boundary, at grid lines N and N-1, the first and second derivatives

are approximated by:

9| ol 40y .+270y., - 108 By_; + 850
%N Gear. " FINaF S OUNa - N-1+ 065 Uy

- 180?Ax%(6y-67"0y) ) + O (Ax%) (B.8)
®  _ (43 By_s ~ 20 84 + 60 Oy_a — 120 Oy + 65 8
9z N1 = Goax +3 Uys - N4t N-3 = N2 T N-1

+126y ) + O (AxY (B.9)

'g-z;%lN—‘l = ;2( -20y3+30 On2—540N_,+26 On (B.10)

+ 202Ax%By-85""0) ) + O(axYH

At the grid line next to the inflow boundary n=1, and the grid line next to the upper
boundary m = M-1, the following one-sided approximations are used for the y-

derivatives
20 4
B;-lM_I = —-—( 3 Bp+10 Op1~18 Bpy_4+6 By 53— B4 ) + O (AyY) (B.11)
28 s
ayz M-l szz( IOGM 159M_1-49M_2+149M_3-69M.4+9M_5 )+ 0 (Ay ) (B.12)

The temperature dependent terms of the vorticity transport equation (2.3) are refor-
mulated with

Rl S —=— (313)




R2 = % =‘\,)’-%;1
. )
Ry = ox? =Y | dx | * ox?
v (30]° , %

Re= 22 |98 1y
ayz \ay‘ ay2
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(B.14)

(B.15)

(B.16)

(B.17)

The prime on the viscosity v indicates a derivative with respect to temperature 6,

which is known analytically from equation (2.7).

With the above approximations the temperature dependent terms can be evaluated:

Rllu,m =v" lex( ) —2,»:_8 ) -lm+8 en+1,m" en+2,m )
, 1
RZ'n,m =V E( en,m--Z‘8 en,m—l"‘s en,m-l- en,m—Z )
2
R3|,,,,,, =v” 1 2 [en-z,m_s 9,,_1,,,,+8 en+1,m— en+2,m]
1
12Ax2 n—2,m+16 0,,_1,,,,—30 9,,’,,,+16 9,,.,1,,,,- 9,”,2'," )
R4In,m = 0"'—"'1__'[91:,":-2-8 9,, m—l+8 en,m+1‘ 9ﬂ,m+2]2
144Ay2 ’
+v’ 12Ay2( -0,, m_2+16 9,,',,,_1 =30 6,,’,,,+16 0,,,,,”1 9,,,,,”.2 )

’”, 1

RSIn,m =V m(en,m—z_s en,m-l"“s en,mﬂ- en,m+2)

(en-z,m_s en—l,m"'s en+l,m_ 9n+2,m)

’ 1
v 144AxAy( On_2m-2-8 On_1m-218 Onsim-2— Oni2m—2

—0,, -2,m -1+64 9,, -1,m —1'64 9,, +1,m -1+8 9,, +2,m-2
+8 en -2m +1"64 9,, —l,m+1+64 en +1,m +1'8 9,, +2,m+1
+ 9n -2m +2""8 9,, -lm +2‘8 en +1,m 2t 9,, +2,m+2 )

(B.18)

(B.21)

(B.22)

(B.23)
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