
Technical Report

CMU/SEI-92-TR-35
ESC-92-TR-035

Carnegie-Mellon University

Software Engineering Institute

Control Integration Through Message Passing
in a Software Development Environment

Alan W. Brown

December 1992

hUz&m

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment or administration
of its programs on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964. Title IX of the Educational
Amendments of 1972 and Section 504 of the Rehabilitation Act ol 1973 or other federal, state or local laws, or executive orders

In addition. Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state or local laws, or executive orders While the federal government does
continue to exclude gays, lesbians and bisexuals from receiving ROTC scholarships or serving in the military, ROTC classes on this campus are available to
all students

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. Pa.
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue. Pittsburgh, Pa 15213, telephone
(412)268-2056

Technical Report
CMU/SEI-92-TR-35

ESC-TR-92-035
December 1992

Control Integration Through Message Passing
in a Software Development Environment

Alan W. Brown
CASE Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction

2. Integration In an SDE

3. The Message Passing Approach
3.1. Inserting a Tool into a Message Passing Architecture
3.2. Comparison with "Point-to-Point" Tool Connection

4. Examples of the Message Passing Approach
4.1. FIELD

4.1.1. The Message Server
4.1.2. Messages
4.1.3. Summary

4.2. SoftBench
4.2.1. The Message Server
4.2.2. Messages
4.2.3. Summary

4.3. ToolTalk
4.3.1. The Message Server
4.3.2. Messages
4.3.3. Summary

7
7
8

11
11
11
12
12
13
13
14
15
16
16
16
17

Discussion 19
5.1. Conceptual Issues 19

5.1.1. A Conceptual Framework 19
5.1.2. Applying the Conceptual Framework to the Message Passing Approach 20

5.2. Practical Issues 22
5.2.1. Extensibility 22
5.2.2. How Easy Is "Encapsulation"? 22
5.2.3. Message Passing as Part of a Complete SDE 23
5.2.4. Standard Message Protocols 24

6. Summary 27

References 29

CMU/SEI-92-TR-35

CMU/SEI-92-TR-35

List of Figures
Figure 2-1 Integration Through a Common Repository 4
Figure 2-2 Integration Through Message Passing 5
Figure 5-1 A Conceptual Framework for Analyzing an SDE 20
Figure 5-2 A Possible SDE Architecture? 23

CMU/SEI-92-TR-35 Hi

iv CMU/SEI-92-TR-35

Control Integration Through Message Passing in a
Software Development Environment

Abstract: Understanding tool integration in a Software Development Environment (SDE)
is one of the key issues being addressed in current work on providing automated support for
large-scale software production. Work has been taking place at both the conceptual level
("What is integration?") and the mechanistic level ("How do we provide integration?").
Many people see the answers to these questions as providing the cornerstone of real
progress in the area.

Until recently, existing integration mechanisms have been very rigid in the support for
integration that they provide. Users have been offered a fixed level of integration with little
flexibility. However, one approach that has been recently implemented employs a control
integration paradigm that appears to be flexible, supportive, and adaptable to a wide range
of end-user needs. Implementations of this paradigm are based on the notion of "message
passing" as the underlying communication mechanism between SDE services.

In this paper we examine the message passing approach to integration in an SDE, look
at the general principles of the approach, describe some existing implementations, and
discuss the use of such a mechanism as the basis for a more flexible environment that is
open to experimentation with different approaches to integration.

1. Introduction

Controlling and coordinating tool interactions in a software development environment (SDE)
requires an approach to tool integration that is both flexible and adaptable enough to suit
different user needs, as well as simple and efficient. These two conditions will ensure that
new tools can be easily integrated and that the productivity of the tools is not significantly
impaired. Traditional approaches towards tool integration have been based on data sharing,
most often through a common database in which all tools deposit their data [2]. While this
approach can provide a high level of control and coordination between tools, it also imposes
a significant overhead on the tools, both because of poor performance of existing database
mechanisms when used in this way, and because of the necessary agreement required
between the tools to define a common syntax and semantics for their data (e.g., a common
data schema).

One approach to integration that has been developed lately has been called control integration.
This approach is based on viewing an SDE as a collection of services provided by different
tools. Actions carried out by a tool are announced to other tools via control signals. The tools
receiving such signals can decide if the other tool's actions require that they take any actions
themselves. For example, when an editing tool announces that changes have been made
to a source file, a build tool may receive this information and initiate a new system build. In
addition, one tool may directly request that another tool perform an action by sending it a
control signal. For example, the build tool may request that the source file be compiled by a
particular compiler. Hence, the primary means of coordination between tools is through the
sending and receiving of control signals.

In the rest of this paper we examine the notion of control integration in an SDE, review a
number of existing systems, and analyze those systems to identify their differences and to
reveal interesting future directions for this work.

CMU/SEI-92-TR-35 i"

The reviewed systems do not represent an exhaustive examination of systems implementing
a control integration approach. Rather, they are illustrative of the range of sophistication of
such systems.

The paper is organized as follows. Section 2 contains a discussion on integration, illustrating
its importance, and introducing the concept of control integration. Section 3 describes a
control integration technique employed by a number of SDEs known as the message passing
approach. Three such SDEs — FIELD, SoftBench, and ToolTalk — are reviewed in Section
4 and analyzed in Section 5. The paper concludes with a summary in Section 6.

CMU/SEI-92-TR-35

2. Integration in an SDE

We can identify three strands of work associated with the analysis of integration in an SDE:

1. Defining new mechanisms for integration — database solutions, common
user interface standards, intermediate data interchange formats, and so on.
Examples of this work are the CAIS [17] and PCTE [14] efforts in the defini-
tion of public tool interfaces and services and the CDIF standard [9] for data
interchange between CASE tools. The reference model for frameworks of
CASE environments adopted by both the National Institute of Standards
and Technology (NIST) and the European Computer Manufacturers Asso-
ciation (ECMA) as a technical report [1] fits mainly into this category, as
its present focus is the description of framework services to facilitate the
comparison of different CASE products.

2. Examining the semantics of integration —discussing what integration means,
what levels of integration are possible, what the costs of integration are, and
so on. Initial work by Wasserman [23], the classifications by both Thomas
and Nejmah [22], and Brown and McDermid [6], and the work of Wallnau
and Feiler [5] are all useful in this regard. To a lesser extent, the NIST/ECMA
reference model also discusses tool integration semantics.

3. Analyzing the relationship between integration and process — how tool
integration affects the software development process, where in the devel-
opment life-cycle different levels of integration are most appropriate, and
so on. Little documented work appears to be available in this area.

A general conclusion in much of this work is that the issue of integration is a much more subtle
and pervasive characteristic of an SDE than may have initially been envisaged. In particular,
the work points to the fact that:

• Integration is a property that may be applied to many different facets of an
SDE.

• Addressing integration in one facet does not necessarily imply anything
about improving integration in other facets.

• Measurement of integration within any facet should be more refined than
simply stating that there is 'light" or "loose" integration — producing a suit-
able calibration for each facet is currently a topic for research.

• Trying to achieve the greatest amount of integration within each facet is
not always desirable in a particular SDE, as there are potential drawbacks
associated with tight integration (for example, the difficulties of evolving the
SDE and of reusing components of the SDE [6]).

All of these points lead us to consider the nature of existing mechanisms for integration and
the architectural framework within which those mechanisms can be found. As an example,
consider the most widespread mechanism that is envisaged when the issue of integration
is discussed — a common data repository. The classic approach to tool integration, as

CMU/SEI-92-TR-35 3

Common
Data

Repository

Figure 2-1 Integration Through a Common Repository

defined in the Stoneman report [7], has been integration through a common database of tool
information. The use of a central repository as a means of integration can be referred to as
a data integration approach. In this approach, tools deposit data into a common repository,
and refer to the repository when information is required, as illustrated in Figure 2-1. There
are clear advantages to this approach in terms of its central control of all operational data,
allowing tools to share information in an unambiguous, well-defined way. However, there are
also problems associated with this approach:

1. A definition of the common data structures must be agreed a priori. This
requires the development of an understanding of both the structures and
the semantics of those structures as they will be produced/used by all tools
to be integrated. Difficult as this is, it is made considerably worse when,
at some time in the future, a new tool needs to be integrated. In order for
existing tools not to be affected, only consistency-preserving additions to
the common data definitions are permitted.

2. The common data repository is often a large, complex resource that must
be controlled, managed, and maintained. This can occupy a great deal of
time, money and effort on behalf of the organization using the SDE.

3. To support the large common data repository, a complex software system
will typically be required. This will add to the cost and complexity of the
SDE itself and have an impact on overall system performance. In some
documented cases, this overhead has been far from negligible, and has
significantly impaired the usability of the SDE.

These factors have lead to the development of much simpler, less demanding approaches
to tool integration. While these simpler approaches may reduce the level of support, the
corresponding costs involved in introducing, using and maintaining the SDE are also reduced.

CMU/SEI-92-TR-35

Toon Tool 2 Tool 3

messages messages

Figure 2-2 Integration Through Message Passing

One approach that is of particular interest is based on a control integration approach. In this
approach, rather than communication between tools primarily taking place via shared data
structures, tools interact more directly by requesting services of each other.1 When one tool
requires some action to be taken, it can request that another tool perform that action, rather
than directly implementing (and possibly duplicating) that functionality itself. Implementing
this approach results in an SDE architecture in which tools can be viewed as collections of
services. Each tool performs a small, well-defined set of functions, and provides access to
its services through a programmatic interface. One way to visualize the control integration
approach, as illustrated in Figure 2-2, is as tools communicating via messages.

We now look in more detail at the control integration paradigm by describing an architectural
approach to an SDE based on message passing.

'Intuitively, we can distinguish control integration from data integration by making the conceptual distinction that
data integration has a single point of control to which all data is moved. In contrast, control integration allows data
to be dispersed across different tools and allows control signals to coordinate the interaction of those tools.

CMU/SEI-92-TR-35

CMU/SEI-92-TR-35

3. The Message Passing Approach

In the message passing approach, tools in an SDE communicate by passing messages
informing other tools of their actions and requesting services from the other tools. In order for
meaningful communication to take place between the tools appropriate mechanisms need to
be in place to allow the communication, and an agreed protocol must be established between
the tools to ensure that messages are sent at the necessary times and that their meaning can
be interpreted upon receipt.

The mechanistic aspects of the architecture are provided by a message server, which is
responsible for distributing all messages between tools. The message may contain some
indication of which tool, or set of tools, should receive the message, and may define a scope
(e.g., local host) for which the message is applicable. Typically, however, the message server
has no knowledge of the semantics of the messages.

For effective communication, tools must agree on both the syntax and semantics of the
messages they send to each other. For example, between a configuration management
(CM) and a design tool, the syntax and semantics of a version check-in operation, or event,
may be agreed to allow the design tool to issue such an operation at the end of each design
session and for the CM tool to respond in the appropriate manner. The messages themselves
generally have a very simple format, each message containing sufficient information to identify
the sender, recipient, and the operation being requested (with any necessary parameters such
as the names of the files that are being manipulated). Achieving these syntactic and semantic
agreements between tools is essential for meaningful communication.

As a further illustration we can consider a typical program editing session. Here, on invocation
the editing tool would send out a message to inform other interested tools that it had started.
Subsequently, when important events occur (such as the saving of the file being edited)
appropriate messages are sent. On saving a file, for example, a program build operation,
the collection of metrics, or the sending of electronic mail to the quality controller could all be
triggered.

An important point to emphasize in this process is that the tools that are sending messages
essentially broadcast their messages to all tools by sending them to the message server.
The tools do not need to know which other tools are currently running in order to send
messages, and hence are uneffected by changes to executing tools in the environment. It is
the responsibility of the message server to selectively forward messages to appropriate tools
(a process that is sometimes called selective broadcast or multicast} or to initiate execution
of a tool to handle the current message.

3.1. Inserting a Tool into a Message Passing Architecture

Inserting a tool into a message passing architecture typically requires that at least the following
actions take place:

• Conversion of the input to, and output from, a tool into message responses
and requests. Message events must be defined that initiate some part

CMU/SEI-92-TR-35 7

of the tool's functionality on receipt of a particular message and messages
transmitted when the tool performs a particular action or reaches a particular
state.

• Modification of the tool's user interface can also be applied to provide a
common "look and feel" for all the tools in an environment. To aid the visual
consistency and ease of use of the tool, a window-based interface with
buttons and menus can be constructed.

The message and user interface handling routines can be provided as an envelope, or
wrapper, for the original tool to enable the original tool to remain unchanged.

The only remaining task is to write the application routines that dictate the connections and
sequencing of events that model a particular development scenario. For example, part of
a typical software development scenario could be that the action of quitting from the source
code editor initiates the following events:

1. A CM tool is called to record the saved source code as the latest version of
the software.

2. A new object module is generated from the source code by invoking the
compiler.

3. Assuming the source code compiles successfully, the appropriate libraries
are used to build a new executable image of the system.

4. A metrics tool is invoked to collect and store information about the new
source code module.

5. A test case generation tool is invoked to generate a new set of test cases
so that the new executable image can be checked for correct operation.

The application routines necessary to implement such a scenario would initiate events, test
the values returned in response to those events, set up the appropriate control structures,
and so on.1

3.2. Comparison with "Point-to-Point" Tool Connection

The most prevalent way in which tools are currently interconnected is via direct "point-to-
point" connection between the tools — one tool will make direct calls to the interface(s) of
another tool. Where access to the source code of the tools exists (e.g., when the tool vendors
themselves implement the integration) the tools are often amended to use those interfaces.
Otherwise, some translation and filtering routines may be used to implement the integration.

In both cases the disadvantage of the "point-to-point" integration is that the integration is
targeted specifically toward those tools and the particular interfaces provided by those tools.
1 We have implemented a very similar scenario to this using the HP SoftBench product and a number of commercial
CASE tools [3].

8~~ CMU/SEI-92-TR-35

Thus, a design tool that wishes to integrate with three different CM tools typically offers
three different versions of its integration software, each targeted at one of the CM tools.
Furthermore, there is the ongoing problem of maintaining the integrations as the products
evolve.

The message passing approach attempts to overcome these shortcomings by generalizing
and abstracting the tool interconnection service in the form of a message server. Hence, the
necessary communication between tools is more explicit, visible, and controllable. Agree-
ments between the tools on when and what to transfer are still required, but the message
passing approach provides the mechanism and forum within which such agreements can be
made, documented, and allowed to evolve.

CMU/SEI-92-TR-35

4. Examples of the Message Passing Approach

There have been a number of SDE implementations based on the principles described above.
In this section we describe three such implementations — FIELD, SoftBench, and ToolTalk.
Two other prominent implementation, Digital's FUSE and IBM's WorkBench/6000, are deriva-
tions of FIELD and SoftBench, respectively. Hence, for the purposes of this paper a review
of those products would be superfluous.

4.1. FIELD

Developed by Steven Reiss at Brown University, the FIELD1 environment is the origin of
most of the work on the message passing approach [20, 21]. The initial implementation was
available at the end of 1987.

The FIELD environment was developed for use at Brown with the following basic aims in
mind:

• To establish the principle that highly interactive environments as seen with
many PC-based packages can be developed for large-scale programming
with equal success;

• To experiment with the extensive graphical capabilities of current worksta-
tions to enhance the quality and productivity of software development;

• To provide a platform for tool integration at Brown University capable of sup-
porting the teaching of programming and as the basis for further research.

The two basic components of FIELD which support these aims are the use of a consistent
graphical user interface as a front-end to all tools and a simple integration mechanism based
on message passing.2

4.1.1. The Message Server

The message server, Msg, corresponds very closely with the general description given above.
It is claimed that the power of this approach is a consequence of the flexibility that it provides.
In particular, messages are passed as arbitrary length text strings. This ensures that no
fixed protocol for messages is predefined, encouraging tools to form their own collaborations,
sharing knowledge of message formats to provide closer cooperation. In addition, allowing
the user to amend Msg easily facilitates different approaches towards creating, transferring,
and parsing of messages.
1 FIELD stands for "Friendly integrated Environment for Learning and Development."
7 While the graphical front-end aspects of FIELD are interesting and important to its use, in this paper we concentrate
exclusively on the integration mechanisms.

CMU/SEI-92-TR-35 11

In FIELD the message server is implemented as a separate UNIX process, communicating
with other processes via sockets. The implementation is approximately 2,000 lines of C code
comprising the server, a client interface, and a pattern matcher.

4.1.2. Messages

There are a number of interesting characteristics of the messages sent and distributed in the
FIELD environment.

First, FIELD distinguishes two broad categories of message — commands and information
messages. Commands are sent to a particular tool or class of tools requesting some service
be performed. Information messages are typically more widely broadcast to inform all other
interested tools of some event that has just occurred. Secondly, messages may be sent
synchronously or asynchronously. In synchronous transmission, a tool sends a message and
waits for a response. In asynchronous transmission, once a tool sends a message it resumes
normal operation. As can be expected, command messages are normally synchronous
messages and wait for an acknowledgement or response to be returned from the command,
while information messages are asynchronous.

As a result of the above, message formats take one of two forms, corresponding to the two
kinds of message.

1. Commands — name of recipient, command name, system name, argu-
ments to command.

2. Information messages — name of sender, event causing message, sys-
tem name, arguments to message.

In both of the above cases, a system name is used to allow the message server to distinguish
between different invocations of the same tool.

4.1.3. Summary

The FIELD environment is an interesting example of the message passing approach to
integration, and a number of success are claimed for it, including support for the development
of a system of greater than 100,000 lines of code.

However, there are two areas of concern. One is that there are a number of unsubstantiated
claims made by Reiss about the FIELD environment. For example, the statement:

...my experience is that the level of integration [in FIELD] is high
enough for almost all applications and that complete integration is not
necessary. [20]

This is a very strong statement to make without any substantive discussion. At best it must
be considered an interesting hypothesis to examine. In fact, the testing of this hypothesis

12 CMU/SEI-92-TR-35

may be the key to many of the problems being addressed in tool integration. In particular, it
is unclear what level of integration is required, and indeed, whether an environment can be
justified in providing only one level of integration, no matter which tools are being integrated,
where they fit in the development life-cycle, how they are to be monitored by management,
and so on. We shall return to this crucial point in the final discussion section of this paper.

It is also worth noting that FIELD has so far been directed at programming. From FIELD'S
point of view it remains to be seen if the same mechanisms can scale up to project support —
supporting technical and managerial aspects of software development, covering much more
of the development life-cycle, and supporting simultaneous multiple access to the system.
Some of these aspects are described in the papers on FIELD as "work in progress."

At a more pragmatic level, Reiss recognizes the problems with performance of the current
FIELD implementation suggesting various possible optimizations. However, he also points
out that much of the problem lies in the layering of the FIELD environment directly on top of
UNIX, and the problems of attempting to use batch-based tools in an interactive mode. This
leads to the possible conclusion that tools must be designed and implemented with message
passing integration in mind in order to properly exploit the message passing mechanism. If
true, this conclusion has important implications for tool vendors.

4.2. SoftBench

The SoftBench environment, a product of Hewlett-Packard (HP), was expressly developed to
provide an architecture for integrating CASE tools as part of HP's CASEdge initiative [8, 16].
SoftBench is based on a control, or process, approach to integration comprising three main
functional components:

1. Tool Communication;

2. Distributed Support;

3. User Interface Management.

In this paper we shall concentrate on the first of those components, tool communication,
which employs a message passing mechanism based on the one used in FIELD. Hence,
the general approach used is as defined earlier for FIELD. In the description that follows we
concentrate on the main differences from the FIELD approach.

4.2.1. The Message Server

In SoftBench the message server is known as the Broadcast Message Server (BMS). It is
this component which forms the core of the SoftBench product. In most respects it is similar
in operation to FIELD'S Msg, with messages being received by the BMS for distribution to
all tools that have registered interest in those messages. There are, however, the following
points to note with the BMS:

CMU/SEI-92-TR-35 13

• The BMS has the concept of a tool protocol. This is the abstract notion of
a set of operations that are available for each class of tools. For example,
the class of "debug" tools would have a protocol that included operations
such as "step", "set-breakpoint", and 'continue'. Any new tools which are
added to the "debug" class must fully support the associated protocol. This
ensures that a calling tool can rely on a client tool providing a well-defined
set of operations without knowing which tool from the required class is
invoked. This greatly increases tool independence, or "plug compatibility."

• All SoftBench tools send a notification message whenever they perform an
action. This approach allows triggers to be defined which are fired when
notification of events is broadcast (e.g., system builds following file updates,
or automatic collection of metrics data).

• Existing tools, not developed to use SoftBench, can be adapted for use
with the SoftBench environment using HP's Encapsulator tool. Through
the Encapsulator the user develops an envelope within which the tool can
execute and send/receive messages. The encapsulation is written in an
Encapsulation Description Language (EDL) which acts as an interpreter for
the tool.

• When executing, if a tool sends a message requesting a service which no
currently executing tools can provide, the SoftBench Execution Manager
will automatically look for a suitable tool and execute it. The request for the
service is then forwarded to that tool.

4.2.2. Messages

In SoftBench messages are strings of text that follow a consistent format. In particular, there
are three kinds of messages — request messages (R), success notification (N), and failure
notification (F). Each has the following components:

• Originator—the tool that sent the message. This is left empty in SoftBench
as all messages are broadcast to the BMS, so the originator is not required;

• Request-Id — is a unique identifier constructed from the message number,
process identifier, and host machine name;

• Message Type — one of R, N, or F;

• Command Class — is the class of tool (e.g., "debug" or "edit");

• Command Name — the name of the operation or event;

• Context — provides the location of the data being processed. It is formed
from the host machine name, the base directory, and the filename;

• Arguments — a list of arguments to the command.3

Hence, there is a single, well-defined format for all three types of SoftBench messages.
3Note that all data arguments are by reference to avoid having lots of data copied around in the messages.

14 CMU/SEI-92-TR-35

4.2.3. Summary

The SoftBench environment is a very exciting recent development in the integrated CASE
marketplace. Indeed, the product has already received enthusiastic support, with over 10,000
reported sales.

Based on the descriptions of SoftBench available we make the following critical observations:

• At least initially, SoftBench is a "program design, build, and test" system,
not a complete software development environment. Part of the reason for
this lies in the choice of tools that HP has made to integrate with SoftBench
— program editor, static analyzer, debugger, program builder, and mail
tool. However, it is interesting to postulate that there is a more fundamental
reason than this. In fact, it may be the case that the approach works
best, and tools are more readily integrated, when there is an obvious and
clear relationship between the tools. The set of program development tools
available fall into this category. It is not at all clear that integrating, say,
technical and managerial tools, or documentation and development tools,
would be nearly as "clean" or as "convenient". We discuss this point in more
detail later in the paper.

• No details at all are given about the implementation of SoftBench. In partic-
ular, it would have been reassuring to have seen performance figures for the
use of SoftBench. As nothing is mentioned, it must remain an open issue,
particularly given Reiss's earlier comments regarding poor performance in
FIELD.

• Almost a throw-away line in the description of SoftBench states:

...one copy of the BMS executes to control the environment of
each user. [16]

If there is a BMS per user it is not clear how users communicate, or access
tools being used by another user. The implication is that the way in which
messages can pass between many users is if all the tools that users require
are installed on a single host, with each user's desktop machine acting as
the remote client for the tool's input and output display. The administrative
burden of this arrangement given the large and complex nature of many
existing CASE tools (e.g., a CASE tool may often require 32 Megabytes
of RAM and over 100 Megabytes of disk space) may make it infeasible.
Hence, multi-user collaborative development may be difficult in the current
version of SoftBench.4

4
The forthcoming release of SoftBench, version 3.0, is expected to address some of these multi-user problems.

CMU/SEI-92-TR-35 15

4.3. ToolTalk

A recent offering from Sun Microsystems is the ToolTalk service, described as "a network
spanning, interapplication message system" [11,12,13]. Initially, ToolTalk 1.0 is implemented
on top of SunSoft's ONC Remote Procedure Call (RPC) mechanism, and runs on SunOs
4.1.1 or later.

In abstract terms, ToolTalk shares many of the characteristics of the SoftBench product.
Perhaps the most noticeable difference is the object-oriented emphasis that has been used in
describing the ToolTalk service. For example, the ToolTalk service is said to manage "object
descriptions", the messages of ToolTalk are described as "object-oriented messages", and
one of the main advantages claimed for the ToolTalk service itself is that it provides both a
solution to today's integration problems, and a migration path to tomorrow's object-oriented
architectures.

4.3.1. The Message Server

The message server in ToolTalk is a special process called TTsession. Each user session
has its own instance of the TTsession process.

Programs interact with the ToolTalk service by calling functions defined in the ToolTalk ap-
plication programming interface (API). This allows applications to create, send, and receive
ToolTalk messages.

4.3.2. Messages

In ToolTalk, the messages have a more complex format than either FIELD or SoftBench,
and hence more information can be conveyed in them. Processes participate in message
protocols, where a message protocol consists of a description of the set of messages that
can be communicated between a group of processes, a definition of when those messages
can be sent, and an explanation of what occurs when each message is received.

A message consists of a number of attributes. These are:

1. An address. This can be the address of a procedure, process, object, or
object type. Thus, the receiver of a message can be of any of these types,
providing a great deal of flexibility.

2. A class. There are two kinds of message class - notices and requests. A
notice is a message which provides information about an event (such as
start up of an editor, or termination of an editor), while a request is a call for
some action to be taken (such as a build request). For a request message,
the process making the request may continue while the request is handled
(e.g., a window based application can continue to handle window events,
mouse clicks, and so on), or may wait for an appropriate reply.

W CMU/SEI-92-TR-35

3. An operation. The identifier for the actual event that has occurred, or the
requested action.

4. A set of arguments. Any parameters to the event or action are listed.

5. An Indication of scope. Messages have a particular scope within which
they are valid, limiting their potential distribution. The possible values for a
message scope in ToolTalk are session (all processes with the current login
session), file (a particular named file), both (the union of session and file),
file-in-session (the intersection of session and file).

6. A state. Some messages are returned to the sender to indicate that the
message server has, or has not, been able to find a recipient. Valid states
of a message are created, sent, and failed.

Within the defined scope of a message, the receivers of that message are obtained by
matching the message's attributes with the message patterns registered as being of interest
to each of the processes (i.e., tools).

4.3.3. Summary

ToolTalk shares many of the characteristics of HP's SoftBench product, and it is difficult not to
conclude that ToolTalk is Sun's reaction to the high level of interest that has been generated
by SoftBench.

There are a number of observations that can be made about ToolTalk in comparison with the
SoftBench product. We highlight the following:5

• There is no mention of any generally available tools that have been inte-
grated with the ToolTalk services. While there is much discussion of the
ease with which existing tools can be integrated through these services,
no tools are actually named. The only example used [13] is an Electronic
Design Automation (EDA) system. The tools integrated were very special-
ized and appear to have been integrated to support a fixed life cycle of tool
interaction. The reason that little information on tools is given stems from a
marketing decision that Sun have made to provide ToolTalk as a message
passing layer that can be purchased in isolation from any tools. Separately
available is an SDE called SPARCWorks — a set of tools that makes use
of the ToolTalk product.

The decision to market ToolTalk in this way may be a distinct advantage to
Sun in the longer term, when customers have a better understanding of the
ToolTalk product, and there are many tools and SDEs available to choose
from which operate on ToolTalk. However, in the short term this decision
may cause confusion and misunderstanding if application developers pur-
chase ToolTalk only to find that no tools are provided with it to help evaluate
and become familiar with the ToolTalk product.

5These observations are broadly consistent with a similar review carried out internally within Hewlett-Packard [19].

CMU/SEI-92-TR-35 17

• The amount of work required to integrate a new tool with the ToolTalk service
is also not discussed. There is no equivalent to SoftBench's Encapsulator,
and Sun have not announced any plans to provide such a capability. As
a result, to integrate tools into ToolTalk without amending the tools' source
code it is necessary to write routines in the C (or C++) programming lan-
guage. A wrapper for an existing tool would hence consist of the use of
a graphical user interface generator such as Sun's DevGuide to allow a
window-based interface for a tool to be constructed, and the necessary
calls to ToolTalk using the Unix operating system calls of "fork" and "exec"
with subsequent communication via Unix pipes.

While it is claimed that knowledgeable Unix and C (or C++) programming
personnel will find the writing of a tool wrapper for ToolTalk to be an easily
managed task, the Encapsulator tool provided by SoftBench appears to be
a way to make the task of tool encapsulation more accessible to SoftBench
users, with the ability to write wrappers in the C (or C++) programming
language if necessary.

• As with SoftBench, ToolTalk does not have a notion of groups of users
collaborating on a project. Messages are sent to processes or are session-
based. However, ToolTalk does have away for users to collaborate through
the notion of "file scoped messages."

In file scoped messages a user specifies a file or directory that they are
interested in. ToolTalk maintains a record of which users are interested
in which scoped files. When a message is sent scoped to a file, ToolTalk
forwards the message to all the user sessions interested in that file. A
demonstration of multiple simultaneous editing of a shared file has been
produced to illustrate the use of this scoped file concept.

18 CMU/SEI-92-TR-35

5. Discussion

In this section we review a number of interesting points raised in the above descriptions and
amplify some of the issues which were addressed. We first introduce a conceptual model
which helps in understanding the three implementations described, then focus on some
practical issues.

5.1. Conceptual Issues

It is tempting to view the three implementations of the message passing approach that we
have examined as no more than three competing systems based on the same underlying
principles. However, with hindsight, their differences can perhaps best be analyzed with
reference to a conceptual framework developed in a previous paper [6]. Here, we briefly
review that framework, and examine the relationship between the three implementations
discussed in this paper in the light of that framework.

5.1.1. A Conceptual Framework

Analysis of existing tools and environments has led to a number of proposals describing a
spectrum of levels of integration within an SDE. Each proposal can be considered a conceptual
framework for analyzing the architecture of particular SDE implementations.

In the proposal by Brown and McDermid [6], five such levels for discussing tool integration
were identified, as illustrated in Figure 5-1.

The five levels of the Brown/McDermid proposal were intended to be interpreted within the
context of data sharing between tools in an SDE.1 We can summarize the description of the
levels as follows:

1. Carrier Level — Composing tools by enforcing a single, consistent file
format.

2. Lexical Level — Sharing a common understanding of the lexical conven-
tions of structures which are shared between tools.

3. Syntactic Level — Agreeing on a set of data structures, and rules for the
formation of those structures, between a set of tools.

4. Semantic Level — Augmenting a common understanding of the data struc-
tures used by tools with a common definition of the semantics of those
structures.

5. Method Level — Determining a common model of the software develop-
ment process in which all tools are compatible.

1They provide a framework for discussing tool integration, not an architecture for implementing tool integration in
an SDE.

CMU/SEI-92-TR-35 19

Level
of

Integration

Figure 5-1 A Conceptual Framework for Analyzing an SDE

5.1.2. Applying the Conceptual Framework to the Message Passing Approach

We can now apply the five levels of the Brown/McDermid proposal to the message passing
approach, with the three implementations addressed in this paper as examples. In this
approach it is the messages that form the primary means of communication between tools
and, hence, the information content of the messages that must be considered in analyzing
different approaches to integration.

In their simplest form, messages are uninterpreted text strings. It is entirely the responsibility
of the tools to agree on an interpretation of the messages. We could view this as carrier level
integration between tools.

However, by building into groups of tools some common understanding of the data items (or,
tokens) contained in the text strings, a lexical level integration can be established. All tools,
together with the message server itself, know how to divide a message string into tokens such
as identifiers, operation names, and so on.

Building on this level, a common syntax for the tokens leads to syntactic level integration. Not
only can tools identify tokens in a message string, they now also have an agreed format for
those tokens.

By agreeing on the meaning of the tokens in a message string, semantic level integration
is achieved. At this level, not only has the identification of tokens been agreed, but their
interpretation in terms of actions and events has also been agreed.

Finally, knowledge about the software development process in which the tools are participating
leads to method level integration. The tools now have much more context in which to interpret
the messages, having some knowledge of the operations and events that have preceded this
message and those that are likely to follow.

Based on this analysis of the various levels of integration in the message passing approach,

20 CMU/SEI-92-TR-35

we can assess the three implementations we have examined with regard to this classification:

• FIELD is an academic prototype system, with the goal of being a flexible,
adaptable system for experimentation. As a result, messages are essen-
tially uninterpreted strings of text, with agreement between tools necessary
to interpret messages. The implementation of Msg, the message server,
has a protocol for identifying the tokens of a message built-in. This places
FIELD in the carrier level of this classification in concept, but the lexical
level in practice.

• SoftBench is a commercial product with the aims of both standardizing an
approach to tool integration with the SoftBench product, and to making
integration of tools as straightforward as possible. Hence, SoftBench has
included rules about the structure of a message in terms of the tokens and
their ordering. In addition, the notion of a tool protocol has been introduced.
This allows collections of tools to agree on a common set of services to allow
users of those services to be independent of which actual tool implements
the services at any particular time. This raises SoftBench to syntactic level
integration, as the information communicated between tools is essentially
through 'typed messages."

• ToolTalk attempts to encode much more information in the messages it
sends than either FIELD or SoftBench. It describes its messages as "object-
oriented" because the ToolTalk service supports many message protocol
styles, messages can be addressed to groups of tools, and message pro-
tocols can be inherited through a hierarchy relating objects in the ToolTalk
service. We can see ToolTalk as an attempt at semantic level integration,
based on the fact that knowledge of the message components themselves
is shared between tools through inheritance.

In summary, we see that the three implementations of the message passing approach dis-
cussed in this paper can be distinguished by their differing approaches towards the information
conveyed between tools in the messages transmitted. In fact, the implementations show a
progression from lexical, to syntactic, to semantic levels of tool integration according to the
Brown/McDermid classification.

It is interesting to speculate how the "next step" in this progression might take place —
towards method level integration. In the context of the message passing approach discussed
in this paper, method level integration can be interpreted as the encoding of policy, or process
information within the message passing mechanisms themselves. In practice, this may mean
that, in addition to tool protocols, policy protocols could be defined for a group of tools,
describing the permitted interactions between tools, which sequences of messages encode
a particular policy action, and so on. For example, in considering configuration management
(CM) services within an SDE, a tool protocol may consist of a standard set of CM operations
such as "check-in-version," "check-out-version," and "merge-versions." A number of individual
CM tools may conform to this CM tool protocol by implementing those operations. A CM policy
protocol, however, would encode particular uses of the CM tool protocol operations to support
a particular CM process. Handling change requests, for instance, may be encoded as a CM
policy by ensuring that a "check-in-version" operation is always preceded by a "QA-approval."

CMU/SEI-92-TR-35 2?

Such a CM policy enforces a particular use of the CM tool protocol. Further investigation
of method level integration within the message passing approach to integration is under
investigation [4].

5.2. Practical Issues

5.2.1. Extensibility

One of the major strengths of the message passing approach to integration appears to be
its flexibility with regard to tool interactions. In particular, the use of the protocol concept as
seen in the BMS of SoftBench leads to an easily extensible environment. For example, tools
in execution do not need to be aware of exactly which other tools are running — they simply
broadcast notification messages through the message server, or request a service from any
tool in a particular tool class. Even if there is no tool of that class currently executing, the
message server has enough information to be able to start up such a tool and forward the
request (through maintaining an internal database of tools and classes).

Such extensibility is highly desirable in any system interested in event-based operation.
The message passing approach appears to provide an ideal mechanism to support such a
technique.

5.2.2. How Easy Is "Encapsulation"?

One problem that must be addressed by any SDE is the integration of existing third-party
tools. Most of these tools were not designed and implemented with the SDE in mind, nor is
the source code available to be able to amend them. The approach adopted by SoftBench
and FIELD involves encapsulation. It is claimed for SoftBench that:

Simple tool encapsulations can be described in two to five pages of
code, which can be written in less than a mornings work... [16]

Clearly, further qualification of this statement is required to understand the work involved in
tool encapsulation, but a typical encapsulation involves writing code to control four aspects of
the tool — Input/Output streams, BMS messages, Operating System events, and X-Window
events. Each of these aspects can be more or less complex depending on the tool to
be encapsulated and the constraints on the desired results (e.g., attempting to produce a
consistent graphical user interface across a set of tools).

The two major components of encapsulation in SoftBench, developing a graphical user in-
terface and generating a message interface, are relatively independent. However, both may
potentially involve significant amounts of effort, and may require a deep understanding of the
tool to be encapsulated to achieve a reasonable result. More work is certainly needed to
establish the ease and effectiveness of this form of encapsulation within a message passing
mechanism. It is relatively straightforward to imagine the use of encapsulation for simple data

22 CMU/SEI-92-TR-35

SDE
End-Users

Presentation
Integration

Control
Integration

Data
Integration

t I t
UIMS

Message Passing
Mechanism

Data Repository

Example

X Window System

SoftBench

PCTE

Figure 5-2 A Possible SDE Architecture?

producer/consumer tools such as simple UNIX utilities. However, for complex tools that have
sophisticated interactive processing, or that assume an "egocentric" approach to integration
and have been designed with little emphasis on open access to their internal services, it is
much less obvious how useful this approach would be. Indeed, the SoftBench descriptions
clearly state that encapsulation is intended for capturing the UNIX input and output actions of
simple tools. There is a need for more work to establish a set of tool architecture classifica-
tions that relate to the ease (or otherwise) with which tools from each class can be integrated
though an encapsulation approach.

Our own experiments with encapsulating tools with SoftBench have shown that for tools with
relatively simple command line interfaces the Encapsulator provides a rapid way to produce
a "point-and-press" interface for the tool. It is much more difficult, however, to design an
appropriate message interface for a tool as it requires knowledge of both the other tools in
the SDE and a well defined operational scenario in which the tool will operate [3].

5.2.3. Message Passing as Part of a Complete SDE

The use of message passing mechanisms as a component of a larger development environ-
ment is an area in need of exploration. Many people consider three aspects of integration
when examining an SDE — data integration, control integration, and presentation integration.
While message passing mechanisms provide control integration, it is intuitively appealing to
envisage a data repository and User Interface Management System (UIMS) as providing the
other two forms of integration. Hence, an SDE could be considered to have an architec-
ture consisting of some combination of these three mechanisms, as illustrated in Figure 5-2.
Taking this approach may provide the means to broaden the appeal of message passing as

CMU/SEI-92-TR-35 23

a technique for integrating software development tools into a more general SDE context.

In this regard there are experiments currently taking place at HP's laboratories in the UK to
re-implement the BMS of SoftBench on top of PCTE, taking advantage of the message queue
facilities it provides [18]. Both SoftBench and PCTE provide X-Window System interfaces
to their services to provide the user interface component of the architecture. A recent an-
nouncement by HP that they will support a PCTE-based implementation of SoftBench shows
a high level of commitment to pursuing this approach towards an SDE.

Such an approach holds much promise with regard to providing a broad, flexible approach to
tool integration. It will be interesting to monitor how the work develops.

5.2.4. Standard Message Protocols

The need for defining a common set of message protocols has been described earlier in this
paper. In summary, we made the argument that syntactic and semantic levels of agreement
between tools enhanced the quality of information that was transferred, and facilitated higher
levels of integration. This argument can be made for tools from a single vendor within a
message passing system, for tools from multiple vendors within a message passing system,
and for tools from multiple vendors using multiple message passing systems. In particular, as
message passing systems will be offered by a number of major suppliers2 there is interest in
ensuring that standards are developed that will allow third party tools to operate on different
message passing systems, and to allow those message passing systems to communicate.
In the past few months there have been three initiatives aimed at addressing this situation.

The Object Request Broker. As part of the work of the Object Management Group (OMG)
they issued a request for proposals to specify an Object Request Broker (ORB). The ORB
provides the mechanisms through which objects may transparently make requests and receive
responses in an object management system. Having worked on separate proposals, a
consortia consisting of DEC, HP, Hyperdesk Corporation, NCR Corporation, Object Design
Inc., and SunSoft Inc. worked together to submit a joint proposal to the OMG [15]. This
proposal, while still in draft form, has the potential to be an important route to providing open
access to services provided by different tools using different object based message passing
systems. It would be expected, for example, that an ORB would allow a request for an action
from a tool working in a SoftBench environment to be serviced by a tool working in a ToolTalk
system.

CASE Communique. A group led by HP, IBM, Informix, and CDC has held a number
of meetings over the past year with the aim of eventually developing standards for CASE
tool communication based on HP's SoftBench product [10]. This group, known as "CASE
Communique," has recognized that if a common set of messages could be defined for each
?HP and Sun offerings have been described in this paper. Both IBM and Digital have control integration products. In
1990 Digital licensed FIELD and have productized and extended it under the name of FUSE. IBM recently licensed
SoftBench technology from HP, and ported it to their RISC System/6000 under the name SDE WorkBench/6000.

24~~ CMU/SEI-92-TR-35

class of CASE tool, then tools within a SoftBench environment would be more interchangeable
within each class. For example, with an agreed set of messages for all CM tools, an editor
tool could make calls to standard check-in and check-out operations with the knowledge that
any CM tool in the environment would be able to act on those requests.

The CASE Interoperability Message Set. Digital, Silicon Graphics and SunSoft have pro-
duced a proposal for a set of message standards that describe semantic (not syntactic) sets of
messages. The intention is that these message definitions be offered to one of the American
National Standards Institute (ANSI) committees for standardization. The aim has been to
provide a number of message sets for particular application areas and scenarios, with the
encouragement to other vendors to help in refining those message sets and in proposing
other such sets.

While these three initiatives are clearly in their infancy, the results from the work of these
groups have the potential to aid tool writers in providing a set of messages to guide their
implementation and tool users to allow greater choice over tools used in an environment. A
further aim of these initiatives is to influence the direction of future development of message
passing products. This should ensure that future versions of such products are more in tune
with the needs of tool writers and tool users.

CMU/SEI-92-TR-35 25

26 CMU/SEI-92-TR-35

6. Summary

In this paper we have examined the message passing approach to tool integration as exem-
plified by the FIELD, SoftBench, and ToolTalk environments. Both FIELD and SoftBench have
been very successful in practice — FIELD as a research vehicle that has stimulated a great
deal of interest, and SoftBench as a product which is said to have sales of more than 10,000
seats. As the most recent product of the three, it remains to be seen how widely accepted the
ToolTalk service will be within the large Sun user community. However, a number of issues
and questions of the message passing approach have been raised. In particular, how much
this approach is appropriate for project (as opposed to programming) support is a matter for
debate and further investigation. Similarly, it is unclear whether the necessary syntactic and
semantic agreements between tool vendors are yet in place to allow meaningful interaction
between different tools.

While a number of open issues and shortcomings of the approach have been identified in
this paper, there is clearly evidence to support further investigation of the message passing
approach as the basis for providing an SDE architecture that is more open to the addition
of new tools. In particular, the simplicity and flexibility that the approach provides appear to
facilitate experimentation with different levels of integration between tools. As a result, it may
well provide the ideal platform for experimenting in some of the most crucial aspects of SDE
technology:

• Tool Integration — an examination of different semantic levels of tool inte-
gration in an SDE, how they can be supported in the same architecture, the
relationships between the levels, the benefits and drawbacks of integrating
tools at different levels, and so on.

• Process vs. Data vs. User Interface Integration — an analysis of how
independent (or otherwise) tool integration in each of these dimensions is
in practice.

• Open Tool Interfaces — an opportunity to learn about encapsulation of
existing tools into an SDE to provide knowledge about the ease of providing
access to third party tools, the amount of work involved in such integration,
and to determine the characteristics required of tools to ensure integration
in an SDE is both practical and efficient.

We have also pointed towards possible future directions for the work on the message passing
approach by describing the latest moves towards standardization of requests between object-
based message systems and message protocols in the SoftBench product and through the
application of the Brown/McDermid classification of tool integration levels in an SDE. Experi-
ence with current approaches to control integration in an SDE, coupled with experimentation
leading to support for method level concepts within an SDE, appears to be an interesting
direction for further work. It is our hope that in the near future we will examine each of these
areas in more detail, focusing in on one aspect of tool support which pervades many areas
of an SDE — configuration management.

CMU/SEI-92-TR-35 27

Acknowledgements

My thanks to Peter Feiler at the Software Engineering Institute (SEI), Kurt Wallnau at PARA-
MAX, Ant Earl of Mark V Systems and Jack Bond of the U.S. Department of Defense for their
comments on earlier drafts of this paper. Feedback from Richard McAllister of Sun on the
ToolTalk product has also been very helpful.

28 CMU/SEI-92-TR-35

References

[1] European Computer Manufacturers Association. A Reference Model for
Computer-Assisted Software Engineering Environments. ECMA Report Num-
ber TR/55, January 1991.

[2] A.W. Brown. Database Support for Software Engineering. Chapman and Hall,
London, England, 1990.

[3] A.W. Brown, W.M. Caldwell, F.W. Long, E.J. Morris, and P.F. Zarrella. Experi-
ences with a Federated Environment Testbed. Technical Report In Press, Soft-
ware Engineering Institute, Pittsbugh, PA, 1992.

[4] A.W. Brown, S.A. Dart, PH. Feiler, and K.C. Wallnau. The State of Automated
Configuration Management. In Annual Technical Review, Pittsbugh, PA, 1992.
Software Engineering Institute.

[5] A.W. Brown, PH. Feiler, and K.C. Wallnau. Understanding Integration in a Soft-
ware Development Environment. In Proceedings of the 2nd International Confer-
ence on Systems Integration, pages 22-31, Morristown, NJ, June 1992. IEEE.

[6] A.W. Brown and J.A. McDermid. On Integration and Reuse in a Software De-
velopment Environment. In F. Long and M. Tedd, editors, Software Engineering
Environments '91, Chichester, England, 1991. Ellis Horwood.

[7] J.N. Buxton and L. Druffel. Requirements for an Ada Programming Support
Environment: Rationale for Stoneman. In Proceedings of IEEE Conference
on Computer Software and Applications (COMPSAC 80), Chicago, IL, October
1980.

[8] M.R. Cagan. The HP SoftBench Environment: An Architecture for a New Gen-
eration of Software Tools. Hewlett-Packard Journal, pages 36-47, June 1990.

[9] EIA. CDIF: Organization and Procedure Manual. Report Number EIA/PN-2329,
January 1990.

[10] H. Fischer. Notes from CASE Communique Meeting, 17th October 1991.

[11] R. Frankel. Introduction to the ToolTalk Service. Sun Microsystems Inc., Mountain
View, CA, 1991.

[12] R. Frankel. The ToolTalk Service. Sun Microsystems Inc., Mountain View, CA,
1991.

[13] R. Frankel. ToolTalk in Electronic Design Automation. Sun Microsystems Inc.,
Mountain View, CA, 1991.

[14] F. Gallo, R. Minot, and I. Thomas. The Object Management System of PCTE as a
Software Engineering Database Management System. Proceedings of2ndSIG-
SOFT/SIGPLAN Symposium on Practical Software Development Environments,
pages 12-15, December 1986.

CMU/SEI-92-TR-35 29

[15] Object Management Group. The Common Object Request Broker: Architecture
and Specification. Draft 91.8.1, 26th August 1991.

[16] R. Ison. An Experimental Ada Programming Support Environment in the HP
CASEdge Integration Framework. In F. Long, editor, Software Engineering Envi-
ronments, number 467 in Lecture Notes in Computer Science, pages 179-193,
Berlin, Germany, 1990. Springer-Verlag.

[17] P.A. Oberndorf. The Common Ada Programming Support Environment (APSE)
Interface Set (CAIS). IEEE Transactions on Software Engineering, 14(6):742-
748, June 1988.

[18] H. Oliver. Adding Control Integration to PCTE. In A. Enders and H. Weber,
editors, Software Development Environments and CASE Technology, number
509 in Lecture Notes in Computer Science, pages 69-80, Berlin, Germany, 1991.
Springer-Verlag.

[19] H. Oliver. Private Communication, September 1991.

[20] S.P. Reiss. Connecting Tools Using Message Passing in the FIELD Environment.
IEEE Software, pages 57-99. June 1990.

[21] S.P. Reiss. Interacting with the FIELD Environment. Software - Practice and
Experience, 20(S1):S1/89-S1/115. June 1990.

[22] I. Thomas and B. Nejmah. Tool Integration in a Software Engineering Environ-
ments. Technical Report SESD-91-11 Revision 1.1, Hewlett-Packard, Software
Engineering Systems Division, Sunnyvale, CA, June 1991.

[23] A. Wasserman. Tool Integration in Software Engineering Environments. In
F. Long, editor, Software Engineering Environments, number 467 in Lecture
Notes in Computer Science, pages 138-150, Berlin, Germany, 1990. Springer-
Verlag.

30 CMU/SEI-92-TR-35

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOB

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICnVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRffiUTION/AVArLABrLrTY OF REPORT

Approved for Public Release
Distribution Unlimited

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-35

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-92-035

6i. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, Rate, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

ESC/AVS
Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AVS

9. PROCUREMENT INSTRUMENT IDENnFICATION NUMBER

F1962890C0003

8c. ADDRESS (city, • tate, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Control Integration through Message Passing in a Software Development Environment

12. PERSONAL AUTHOR(S)

Alan W. Brown

13«. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

December 1992
15. PAGE COUNT

39 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

automated sunnort massaoa nassinn FIELD GROUP SUB. GR.

control integration
integration

software development environment (SDE)

19. ABSTRACT (continue on reverie if necessary and identify by block number)

Understanding tool integration in a Software Development Environment (SDE) is one of the key issues being
addressed in current work on providing automated support for large-scale software production. Work has been taking
place at both the conceptual level ("What is integration?") and the mechanistic level ("How do we provide integration?").
Many people see the answers to these questions as providing the cornerstone of real progress in the area.

Until recently, existing integration mechanisms have been very rigid in the support for integration that they provide,
users have been offered a fixed level of integration with little flexibility. However, one approach that has been recently
implemented employs a control integration paradigm that appears to be flexible, supportive, and adaptable to a wide
range of end-user needs. Implementations of this paradigm are based on the notion of "message passing" as the
underlying communication mechanism between SDE sen/ices.

(please turn over)

20. DISTRfflUTON/AVATLABILrTY OF ABSTRACT

UNCLASSIFIEDAJNLIMrrED | SAME AS RPTrj DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code) 2

(412)268-7631 f
2c. OFFICE SYMBOL

ESC/AVS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

