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Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

Under the sponsorship of the ONR contract N00014-90-J-1002 we have published

12 refereed journal and conference papers.

The finite difference-time domain (FD-TD) technique is applied to the solution

of Maxwell's equations. A computer program, which can be used to simulate and study

numerous electromagnetic phenomena, is developed and implemented on an IBM 386 com-

patible personal computer. The FD-TD technique is a useful tool for students in electro-

magnetics. The technique is flexible and can be applied to many basic EM scattering and

radiation problems. Because field solutions are found as a function of time, visualization

of the propagation of the EM fields is possible. The FD-TD technique is implemented for a

two-dimensional rectangular grid in conjunction with a second-order absorbing boundary

condition. Both E- and H-field polarizations are analyzed. Finite objects consisting of

dielectric, magnetic and conducting materials, and perfectly conducting infinite ground

planes are modeled. Plane wave and line current sources are implemented. In addition

to the capability of animating the propagation of the EM fields, radiation and scattering

patterns can be generated.

A methodology developed to handle dispersive materials in the time domain is

extended to model the dispersive characteristics of the impedance boundary condition

used for a thin layer coating over perfect conductors. The impedance boundary condition

is first approximated as a rational function of frequency. This rational function is then

transformed to a time domain equation, resulting in a partial differential equation in

space and time. Discretization of the time domain model to efficiently handle the thin

layer coating is presented in the context of the finite-difference time-domain (FD-TD)
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technique. The methodology is verified by solving a one-dimensional problem using the

FD-TD technique and comparing with the analytical results.

To understand the physical meaning of rational reflection coefficients in inverse-

scattering theory for optical waveguide design, we studied the relationship between the

poles of the transverse reflection coefficient and the modes in inhomogeneous dielectrics.

By using a stratified-medium formulation we showed that these poles of the spectral re-

flection coefficient satisfy the same equation as the guidance condition in inhomogeneous

waveguides. Therefore, in terms of wave numbers, the poles are the same as the discrete

modes in the waveguide. The radiation modes have continuous real values of transverse

wave numbers and are represented by the branch cut on the complex plane. Based on

these results, applications of the Gel'fand-Levitan-Marchenlo theory to optical waveguide

synthesis with the rational function representation of the transverse reflection coefficient

are discussed.

The coupled-wave theory is generalized to analyze the diffraction of waves by chiral

gratings for arbitrary angles of incidence and polarizations. Numerical results for the

Stokes parameters of diffracted Floquet modes versus the thickness of chiral gratings with

various chiralities are calculated. Both horizontal and vertical incidences are considered for

illustration. The diffracted waves from chiral gratings are in general ellipt~cally polarized;

and in some particular instances, it is possible for chiral gratings to convert a linearly

polarized incident field into two nearly circularly polarized Floquet modes propagating in

different directions.

A general spectral domain formulation to the problem of radiation of arbitrary

distribution of sources embedded in a horizontally stratified arbitrary magnetized linear

plasma is developed. The fields are obtained in terms of electric and magnetic type dyadic

Green's functions. The formulation is considerably simplified by using the kDB system

of coordinates in conjunction with the Fourier transform. The distributional singular
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behavior of the various dyadic Green's functions in the source region is investigated and

taken into account by extracting the delta function singularities. Finally, the fields in any

arbitrary layer are obtained in terms of appropriately defined global upward and downward

reflection and transmission matrices.

We investigated a method for the calculation of the current distribution, resistance,

and inductance matrices for a system of coupled superconducting transmission lines having

finite rectangular cross section. These calculations allow accurate characterization of both

high-Tc and low-Tc superconducting strip transmission lines. For a single stripline geome-

try with finite ground planes, the current distribution, resistance, inductance, and kinetic

inductance are calculated as a function of the penetration depth for various film thickness.

These calculations are then used to determine the penetration depth for Nb, NbN, and

YBa 2 Cu3 O 7 -, superconducting thin films from the measured temperature dependence

of the resonant frequency of a stripline resonator. The calculations are also used to convert

measured temperature dependence of the quality factor to the intrinsic surface resistance

as a function of temperature for a Nb stripline resonator.

The electromagnetic radiation from a VLSI chip package and heatsink structure

is analysed by means of the finite-difference time-domain (FD-TD) method. The FD-

TD algorithm implemented incorporates a multi-zone gridding scheme to accommodate

fine grid cells in the vicinity of the heatsink and package cavity and sparse gridding in

the remainder of the computational domain. The issues pertaining to the effects of the

heatsink in influencing the overall radiating capacity of the configuration are addressed.

Analyses are facilitated by using simplified heatsink models and by using dipole elements as

sources of electromagnetic energy to model the VLSI chip. The potential for enhancement o
0of spurious emissions by the heatsink structure is examined. For heatsinks of typical . _

dimensions, resonance is possible within the low gigahertz frequency range.

Because the effects of diffraction during proximity-print x-ray lithography are of ','
MIC QUALMT IN8CTED 3
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critical importance, a number of previous researchers have attempted to calculate the

diffraction patterns and minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is applicable-as calculated, for

example, by the Rayleigh-Sommerfeld formulation-and that Kirchhoff boundary conditions

can be applied. Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant in the open regions between absorbers, and a different constant in

regions just under the absorbers (i.e., that there are no fringing fields). An x-ray absorber

is, however, best described as a lossy dielectric that is tens or hundreds of wavelengths

tall, and hence Kirchhoff boundary conditions are unsuitable. We have instead used two

numerical techniques to calculate accurate diffracted fields from gold absorbers for two

cases: a 30 nm-wide line at \ = 4.5 nm, and a 100 nm-wide line at \ = 1.3 nm. We

show that the use of Kirchhoff boundary conditions introduces unphysically high spatial

frequencies into the diffracted fields. The suppression of these frequencies-which occurs

naturally without the need to introduce an extended source or broad spectrum-improves

exposure latitude for mask features near 0.1 1m and below.

In order to understand the physical meaning of rational reflection coefficients in

one-dimensional inverse scattering theory for optical waveguide design, we have studied

the relation between the poles of the transverse reflection coefficient and the modes in

inhomogeneous dielectrics. By using a stratified medium model it is shown that these

poles of the reflection coefficient have a one-to-one correspondence to the discrete modes,

which are the guided and leaky modes. The radiation modes have continuous real values of

transverse wave numbers and are not represented by the poles of the reflection coefficient.

Based on these results, applications of the Gel'fand-Levitan-Marchenko theory to optical

waveguide synthesis with the rational function representation of the transverse reflection

coefficient are investigated.

In compact modules of high performance computers, signal transmission lines be-
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tween integrated circuit chips are embedded in multilayered dielectric medium. These

signal lines are usually placed in different layers and run perpendicular to each other. The

interaction between the orthogonal crossing lines and the signal line affects its propagation

characteristics and may cause considerable signal distortion.

The interaction of a pair of crossing lines in isotropic medium has been studied using

a time-domain approach, where coupling is described qualitatively. This method becomes

computationally expensive when the number of crossing lines increases. With many identi-

cal crossing strips uniformly distributed above the signal line, the transmission properties

are characterized by stopbands due to the periodicity of the structure. Periodic struc-

ture have been investigated using frequency-domain methods. Periodically nonuniform

microstrip lines in an enclosure are analyzed on the basis of a numerical field calculation.

A technique based on the network-analytical formulism of electromagnetic fields has been

used to analyze striplines and finlines with periodic stubs. The propagation characteristics

of waves along a periodic array of parallel signal lines in a multilayered isotropic struc-

ture in the presence of a periodically perforated ground plane and that in a mesh-plane

environment have been studied. More recently, the effect of the geometrical properties on

the propagation characteristics of strip lines with periodic crossing strips embedded in a

shielded one-layer isotropic medium have been investigated. Both open and closed mul-

tilayered uniaxially anisotropic structures are considered. A fun-wave analysis is used to

study the propagation characteristics of a microstrip line in the presence of crossing strips.

The signal line and the crossing strips are assumed to be located in two arbitrary layers of

a stratified uniaxially anisotropic medium. An integral equation formulation using dyadic

Green's functions in the periodically loaded structure is derived. Galerkin's method is

then used to obtain the eigenvalue equation for the propagation constant. The effects of

anisotropy on the stopband properties are investigated. Numerical results for open and

shielded three-layer uniaxially anisotropic media are presented.
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For microwave integrated circuit applications, the characteristics of interconnects

have been investigated for the propagation modes, time response, crosstalk, coupling,

delay, etc. In these analyses, it is assumed that quasi-TEM modes are guided along the

multiconductor transmission lines. The analysis were performed for arbitrary number of

transmission lines where the load and the source conditions were presented in terms of the

modal reflection and transmission coefficient matrices.

To perform the quasi-TEM analysis, the capacitance matrix for the multiconductor

transmission line has to be obtained first. Both the spectral and the spatial domain

methods have been proposed to calculate the capacitance matrix. In the spectral domain

methods, two side walls are used to enclose the whole transmission line structure, and the

thickness of the strip lines has not been considered. In using the spatial domain method,

the structure has to be truncated to a finite extent to make the numerical implementation

feasible. The infinite extent of the structure was also incorporated, but only a two-layer

medium was considered.

In practical microwave integrated circuits, the dielectric loss due to the substrate

and the conductor loss due to the metallic strips are also studied in the analysis of circuit

performances.

Based on the scalar Green's function, a set of coupled integral equations is obtained

for the charge distribution on the strip surfaces. Pulse basis functions and a point-matching

scheme is used to solve numerically the set of integral equations for the charge distribution,

and hence the capacitance matrix. The duality between the electrostatic formulation and

the magnetostatic one is applied to calculate the inductance matrix. The conductance

matrix is obtained by using the duality between the electrostatic problem and the current

field problem. A perturbation method is used to calculate the resistance matrix.
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Finally, a transmission line analysis is derived to obtain the transfer matrix for multi-

conductor uniform lines, which significantly reduces the effort in treating the load and the

source conditions. Transient responses are obtained by using the Fourier transform. The

results for two coupled lines are obtained.

With the ever increasing speed and density of modern integrated circuits, the need

for electromagnetic wave analysis of phenomena such as the propagation of transient sig-

nals, especially the distortion of signal pulses, becomes crucial. One of the most important

causes of pulse distortion is the frequency dependence of conductor loss, which is caused

by the "skin effect", and which can be incorporated into the circuit models for transmis-

sion lines as frequency-dependent resistance and inductance per unit length. Efficient and

accurate algorithms for calculating these parameters are increasingly important.

We have developed a hybrid cross-section finite element/coupled integral equation

method. The technique is a combination of a cross-section finite element method, which is

best for high frequencies. An interpolation between the results of these two methods gives

very good results over the entire frequency range, even when few basis functions are used.

In the cross-section method, we divide each conductor into triangular patches and

choose one of the patches from the return conductor to be our reference. We then calculate

the resistance and inductance matrices for the patches. Using two conditions on the system,

that the total current in each wire is the sum of the currents in the patches, and that the

voltage on each patch in a wire must be the same (no transverse currents), we can reduce

the matrices for the patches to the matrices for the wires. In the Weeks method, the

patches are rectangles, and the quadruple integral is done quite easily in closed form.

However, it is also possible to evaluate the quadruple integral in closed form for triangular

patches, although the mathematics leading to this result is quite involved, and the final

form of the answer is complicated. We therefore use triangular patches as the most flexible

means of modelling conductors with arbitrary cross-sections; polygons are covered exactly,
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and we are able to model quite closely other shapes, such as circles.

As frequency increases, the need to keep the uniform current approximation valid in

the patches requires either the addition of many more patches as the skin depth decreases,

or a redistribution of the existing patches to the surface, where the current is. However,

changing the distribution of patches makes it necessary to recalculate the resistance and

inductance matrices of the patches, thus increasing the computation time. Since we use a

surface integral equation method for high frequencies, we do not change the distribution

of the triangular patches for the cross-section method as we increase the frequency.

For high frequencies, we use a coupled surface integral equation technique. Under

the quasi-TEM assumption, the frequency-dependent resistance and inductance result from

the power dissipation and magnetic stored energy, which can be calculated by solving a

magnetoquasistatic problem, with the vector potential satisfying Laplace's equation in the

region outside all the conductors. The resistance and inductance are usually given by

integrals of these field quantities over the cross-sections of the wires, but by using some

vector identities it is possible to convert these expressions to integrals only over the surfaces

of the wires. These expressions contain only the current at the surface of each conductor,

the derivative of that current normal to the surface, and constants of the vector potential.

A coupled integral equation is then derived to relate these quantities through Laplace's

equation and its Green's function outside the conductors and the diffusion equation and its

Green's function inside the conductors. The method of moments with pulse basis functions

is used to solve the integral equations. This method differs from previous work in that the

calculation of resistance and inductance is based on power dissipation and stored magnetic

energy, rather than on impedance ratios. It will therefore be more easily extended to

structures where non-TEM propagation can occur.

For the intermediate frequency range, where the conductors are on the order of the

skin depth, were found it very efficient to interpolate between the results of the cross-
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a C

section and surface methods. The interpolation function was based on the average size of

the conductors, measured in skin depths, and was of the form 1/(1 + 0.16a 2 /64 ), where it

a is the average cross-section of the conductors, and 6 is the skin depth.
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Simulation of
Electromagnetic Radiation
and Scattering Using a
Finite Difference-Time
Domain Technique
K. LI, M. A. TASSOUDJI, R. T. SHIN, and J. A. KONG

Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

ABSTRACT

The finite difference-time domain (FD-TD) technique is applied to the solution of Maxwell's
equations. A computer program, which can be used to simulate and study numerous
electromagnetic phenomena, is developed and implemented on an IBM 386 compatible
personal computer. The FD-TD technique is a useful tool for students in electromagnetics.
The technique is flexible and can be applied to many basic EM scattering and radiation
problems. Because field solutions are found as a function of time, visualization of the
propagation of the EM fields is possible. The FD-TD technique is implemented for a two-
dimensional rectangular grid in conjunction with a second-order absorbing boundary con-
dition. Both E- and H-field polarizations are analyzed. Finite objects consisting of dielectric,
magnetic and conducting materials, and perfectly conducting infinite ground planes are
modeled. Plane wave and line current sources are implemented. In addition to the ca-
pability of animating the propagation of the EM fields, radiation and scattering patterns
can be generated. c 1992 lohn Wiley & Sons, Inc.

I. INTRODUCTION phenomena, since electric and magnetic fields are

calculated everywhere within a computational do-

Tools which students can use as aids for under- main as a function of time. Thus, it is possible to
standing and visualizing electromagnetics are scarce. observe how electromagnetic fields propagate
In an attempt to develop such a tool, the finite dif- through space with time. By facilitating the visual-
ference-time domain (FD-TD) technique is used to ization of various electromagnetic phenomena, the
solve Maxwell's equations (1-81. This method is FD-TD code can be very useful in developing in-
especially suited for visualizing electromagnetic tuition regarding electromagnetics.

The first step in applying the FD-TD technique
involves approximating Maxwell's equations in dif-

Computer Applications in Engineering Education, Vol. [(1)45- ferential form by center differences in space and
63 (September/October 1992) time. The locations at which electric and magnetic
D 1992 John Wiley & Sons, Inc. CCC 1060-3773/92/010045-19 fields are calculated are positioned on some sort of
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grid. For two-dimensional problems, two typical imated. By storing tangential electric and magnetic
grids are a rectangular [I I] and a triangular mesh field values over a closed surface enclosing the scat-
[4]. A significant advantage of using rectangular terer. it is possible to calculate radiation patterns
grids over triangular grids is greater simplicity, using Huygens' principle.
However, since the scattering object is discretized
on a rectangular grid, curves and slanted lines are 2. FINITE DIFFERENCE-TIME DOMAIN
approximated by staircases. TECHNIQUE

To begin the FD-TD simulation, all the fields
within the computational domain are initially set 2.1. Maxwell's Equations in Rectangular
to zero. At each time step, the electric fields are cal-
culated in terms of the electric and magnetic fields
of the previous time step using the difference equa- In implementing the finite difference-time domain
tions obtained earlier from Maxwell's equations. technique, Maxwell's equations must be discretized
Next, the magnetic fields are calculated in a similar in space and time. In this case. Yee's lattice. which
manner. Boundary conditions are enforced at the is a rectangular grid, is utilized because of its sim-
outer boundary of the computational domain and plicity [ I]. Maxwell's equations in vector differential
at all dielectric and conducting interfaces. At the form in an isotropic and homogeneous dielectric
outer boundary, a second-order absorbing boundary and magnetic material are:
condition is utilized in order to simulate unbounded
space beyond the computational domain [9]. The Oa
tangential electric fields are set to zero at the con- at
ducting surfaces, and the tangential electric and
magnetic fields are kept continuous at the dielectric/ - aD (
magnetic boundaries. The implementation of the at
excitation source typically requires that certain V./b = (3)
electric and magnetic fields be updated at each time
step. These steps are essentially repeated until steady 7./ = 0 (4)
state is reached for a sinusoidal excitation, or until
all the transient scattered fields have propagated out and the constitutive relations are:
of the computational domain for a Gaussian pulse
excitation. g1.71 = f •,ot (5)

In order to keep the program simple, only two- = = ceoE (6)
dimensional problems are examined using a uni-

form rectangular grid. Despite the fact that only two- where d n, and t, are relative permeability and per-dimensional geometries are considered. valuable mittivity, and a and a,,, are electric and magnetic
insight can be gained through the observation of conductivities. respectively. Maxwell's divergence
FD-TD simulations of electromagnetic phenomena. equations, (3) and (4). are satisfied in the finite dif-

Also, in order to allow wide distribution of this pro- ference scheme by an l apin appropriate initial and

gram, the program is written for IBM 386 compat- boundary conditions. The actual difference equa-

ible personal computers. Both electric and magnetic tions used in the FD-TD technique are based upon

field polarizations are implemented and examined. Maxwell's curl equations, (I) and (2). and the con-

Scatterers can have arbitrary geometries of finite size, stitutive relations, (5) and (6).

which consist of perfect conductors, dielectrics with

finite conductivity, and magnetic materials with fi- In a rectangular coordinate system. Equations
( I ), (2), (5), and (6) can be written as the followingnile m agnetic conductivity. In addition .perfectly st o cl re u to sset of scalar equations.

conducting infinite ground planes are considered.
The excitation sources include plane waves, and all, aE, OE.
single or multiple line current sources. These exci- atp " =a" " al,,,H, (7)
tation sources can be either sinusoidal or Gaussian 0t 0: Oy
pulses in time. Since field values are calculated ev- OH,. OE: E.(,
erywhere within the computational domain, they a a=x a- 0 t (8)
can be stored and displayed using color plots. By
displaying the fields for sequential time steps in rapid OH: OE aE, H (9)
succession, the propagation of the fields can be an- Oa ay ax
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atE. OH: aOH OH: OE;a•#o t= y z E ., (10) o t= a.(24)

E,. OH., OH:
,o = -z - aE: (11) for the E-field polarization.

01 Oz Ox
The following notation for any function of time

E: OH.aE (12) and space will be used in the finite difference equa-

at ax ay tions,

For two-dimensional problems, which are as- f(iAx kAz, nat)=f"(i, k) (25)
sumed to be uniform and infinite in the ;i direction,

all the partial derivatives with respect to y are equal
to zero. Maxwell's equations in arbitrary homoge- The partial derivatives in space and time, within

neous, isotropic media, for two-dimensional prob- Maxwell's equations, are approximated using center

lems in a rectangular coordinate system, decouple differences,

into the H-field polarization,

OH1. OE- 0E 1  
Of(k) _ f(Q + At/2) -f(Q - Aý/2) (26)

,Lr LO E = 7 ,,,H,. (13) aAao t =axc az

OE., _ OH. The electric and magnetic field components are in-
,at a E, 14) terlaced in time, and are calculated in a leap-frog

manner (i.e., first the electric fields are calculated,

ErO - = . - (15) then the magnetic fields are calculated, and the se-
ot Ox " quence is repeated). The electric and magnetic field

components are interlaced spatially a half-grid cell
and the E-field polarization, apart.

Only the H-field polarization will be treated ex-
0E. OH, OH: plicitly because the E-field polarization can be

fo 49-- = a-- x aEy, (16) treated easily through the use of duality.

Hf, 49E,. a,,,H, (17)
at =a 2.2. Finite Difference Equations for the

OH- OE,
p pOH=oE.. H_ (18) H-Field Polarizationuroat aX

2.2.1. Treatment of Free Space. For the H-field po-
In free space, where e, = p, = I and a = or. = 0, larization, the finite difference equations in free

Equations (13 )-( 18) simplify to space are obtained by applying center differences to

Equations ( 19)-(21).
aH,. aE- aE,Ao t O= OE (19)

H"O1/2(i+ 0 Ox 0

OE, OH, 2
( o ", = (20 )

at az 
H 11 - i + 1aE0 OH.

fo 0-7" = ax (21) 2 2 Ax

X Ezn i + l,k+- -E"• i,k+ 1](27)for the H-field polarization and ( ) ( 2

OE, _Of OH: I Ar[E,. i+lk )

101 0 (23) - E• + 2, k
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I ,\ are obtained by discretizing Equations ( 13)-( 15)
E +n' Ni for the H-field polarization. The derivatives are re-

placed by center differences, and the electric- and
I (2e, - a7oAT) magnetic-field terms involving electric and magnetic

ENk i + •, k 2e, + aioAr conductivities are approximated by using an average

of the field values at a half time step before and after

En 1 ~i~k the desired time.
E H i + ,k-) = + . k-)

Hi++11 i++,k+

H 1 
(3 

+ I -1)-n+ riO kz + E.!'t i+ , k + I(28)+ ot, T/I

t a o n r= HE.-Hn(i + + k(+ (2))

xj+ / i\2,k, 1[ ( ,, 2,--- -

2.2.2.Te atment+ofielec anM 2Ar -1 (33

teral.Th fiit difernc eqatonsin n sot--- 'lo (2E~r +I ,,A/io)

where 21

o (O) [- n (.,i + k , k $
77o \1L=0-(O

The locations of the field components on a unit E '1 i + 2(, k+cell of the rectangular grid for the H-field polariza-

tion are shown in Figure 1. = E + • • 7oAT

S+ k7r 2r 1(4
( MX(e,+ ai7oAr)I

2.2.2. Treatment of Dielectric and Magnetic Ma- [ 2Ar
terila. The finite difference equations in an isotro- -7 r°Az(2f,-+ OrrIOAr) (33)

pic, homogeneous, dielectric, and magnetic materialII

)+ k -

Fied Plarzaton.2 2)

En i;, k +I
Ex 2a

E:' (D H, kE, + 77o[ A 2•-q iA r) (34)

X 2•' i+ , 2

Figure I Field Locations on Rectangular Grid for H- -Hn.*112 N
Field Polarization.
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2.2.3. Treatment of Interfaces Between Two Me-
dia. The interface between any two media always
occurs at integer nodes (i, k) (Figure 2). At the S1,
interface between two dielectric and magnetic ma- r

terials, the finite difference equation for the tangen-
tial electric field (i.e., E) must be treated carefully
(Figure 3). Using the integral form of Equation (2) ii1 C

to calculate the electric field tangential to the inter- i Omi

face, E,, yields y

Yl( )D
= ( ( - + a,E d9 (35)5L( )

+ ff 2 - +E aE dS Figure 3 Interface Between Two Dielectric and Magnetic
at 2  /Media for 1l-Field Polarization.

Changing Equation (35) to a finite difference equa-
tion yields

1 2.2.4. Treatment of Perfect Electric Conduc-
E' i + , = E i+ , k tor. The boundary condition at perfect electric

conductors states that the tangential electric field

[2((,, + fr2) - (a, + 6 2 )77o0,r must be zero.

in x E = 0 (37)

- 7102( + AT/ -A2)oA (36) Thp field locations for the H-field polarization with

respect to the integer nodes (i, k) are shown in Fig-
x [111"2 i+ ,k + ure I. From Figures I and 2, it is clear that the

electric fields, which are calculated at points on the

1 1)] surface of the perfect electric conductor, are always
- H:.1 (- i + -, k - tangential to the surface. Thus, in the finite differ-

2 2) ence-time domain scheme, the boundary condition

at the perfect electric conductor can be satisfied by
simply setting these electric fields equal to zero at
each time step.

2.2.5. Treatment of Perfect Magnetic Conduc-
tor. At a perfect magnetic conductor, the tangential

magnetic field must be zero, i.e.,

""(i.lk) ,0.k) * 0+1, k) - , nX- = 0 (38)

This boundary condition is satisfied when the tan-
gential electric field at the surface of the perfect

0 -m * (i1.k.-) (ik-1) 0 (i+lk4-) magnetic conductor is calculated. One way of ob-

taining a difference equation for the tangential elec-

tric field (i.e., E,) is to simplify the original problem
(Figure 4) by using image theory (Figure 5). The
difference equation for E, at the interface between

Figure 2 Positioning of a Media on the Rectangular a perfect magnetic conductor and a dielectric and
Grid. magnetic material is given by
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A (r (45)

'U'r•/r (46)

"-• ',,, (47)

H• (48)

il crfRI All other variables remain the same.

2.4. Stability and Accuracy
"q. - The choices of Ax, Az, and AT, are motivated by

reasons of accuracy and stability [3, 6]. In general,
to obtain accurate results, Ax and AZ must be a
small fraction (--L) of the smallest wavelength in
any media expected in the model or of the smallest

Figure 4 Interface Between a Media and a Perfect Mag- dimension of the scatterer. For this problem, thenetic Conductor. spacing in the x and z directions will be equal in

size,

E I Ax= Az= A (49)

A 2 / To ensure the stability of this time-stepping algo-

E 1i + I k)(2(,_- a7 0AT rithm, Ar must satisfy the following ccidition [31.
2 2t, + +y(-r (39 1\ , + ) -1/---'1

2AT/ (39) Ar _ + •--) = A (50)
- ? "O[A:(2t, + aqoArT)

2 H /+1 2.5. Implementation of Excitation
2 2 iSource

The two basic types of sources, which are planeThe implementation of perfect magnetic con-

ductors is of particular importance. By duality, the waves and line current sources, are treated differ-

perfect magnetic conductor for the H-field polar-
ization becomes the perfect electric conductor for
the E-field polarization.

2.3. Finite Difference Equations for the t
E-Field Polarization

All the difference equations needed for the E-field H,

polarization can be easily obtained thiough the use Mi mi
of duality. The difference equations used for the H- I ..
field polarization can be directly applied for the E-
field polarization with the following substitutions,

E-ft(40) -Hy

(41)
Ao-Eo (42)

(o-Mo (43)
Figure 5 Image Problem of Interface Between a Media

I7o 1/17o (44) and a Perfect Magnetic Conductor.
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inner region. The incident fields are added to field
Absorbing quantities just outside the inner regions, when they

Sare used to calculate field quantities just within the
inner region (10].

For the H-field polarization, some sample finite
Computational Domain difference equations in the vicinity of the interface

- Integration Surface between the two regions are (Figure 8):

H 1/2 - k +

Inner Region : 2 2)
O uter Region H 131 "/ .+ ! ,k )

-- H,-' 2 2),k

I AT .. 2
Figure6 Absorbing Boundary. Computational Domain + ) i+1, k+) (53)
and Closed Surface on Which Fields are Sampled With a
Finite Scatterer. _E " (i, k +

ently. When the excitation source is assumed to be I ArT ,
either a sinusoidal or Gaussian pulse plane wave, E 3 i + - k I
the computational domain is separated into two re- o 2' 1)

gions in order to facilitate the treatment of the ex- - I ) E i + k)]
citation source (Figures 6 and 7). - [EI + ( , 1+2k) ,2

For a finite scatterer, within the inner region, total
fields are calculated, while in the outer region, only E;),(i +I )k Env + )
scattered fields are calculated. The scattered fields , 2 / E 2 + ,
are defined to be the difference between the total AT (r1r2) I
fields and the incident plane wave. - 7- , i + -. k +

Hl(x, z,t)= 0 ,(x, 2,t) - Hl(x, z,1) (51) (54)

fE(x, z, t) = .,(x, z, 1) - Ei(x, z, t) (52) 2 2

The incident fields are subtracted from field - H.i/2(i + , k -

quantities just within the inner regions, when they

are used to calculate field quantities just beyond the

Absorbing
•... •Boundary

Computational Domain

Y Outer Region:Scattered Field Region Integration Surface Scattered Fields
S ToW• Field Region L-*

Infinite Ground Plane

inner Region:
Total Fields

Figure 7 Absorbing Boundary. Computational Domain
and Surface on Which Fields are Sampled With an Infinite
Ground Plane Geometry. Figure 8 Interface Between Inner and Outer Regions.

-......................................................Inoi ý. _ • w • m • • •
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I AT through the current source. The advantage of im-
k + ,) E:i, +k + +-o posing field values is that the value of the field at

that point is known for all time.

X [1,+ 1/-" i + !, k + ! (55) The actual amplitude of the current is not strictly
S 2 2 determined by the amplitude of the adjustment to

H ( 1  ) ~a field quantity at a particular node. The fields near
- H'P311 1/" i - •,k + a point source are singular. Thus, in this FD-TD- scheme. the adjustment of a field value at a single

For an infinite ground plane configuration, the point does not correspond to a two-dimensional

computational domain is basically divided into the point source (i.e., a line current source with zero
cross section), rather this implementation more ac-

region above the ground plane and the region below curately models a line current source with a finite
the ground plane. For plane-wave illumination from nozrcossetn.Oewvfobaigthnonzero cross section. One way of obtaining the
the upper half space, total fields are calculated in amplitude ofthe line current source is by performing
the lower region, while in the upper region, only amltdofheincurtsucesbypfrigthe owe reion whle n th uper egin, nly some sort of calibration [ 8]. In particular, the pre-
scattered fields are calculated. In this case, the scat- dic t obtaine auing th F - scheme th a

tered fields are defined to be the total fields minus particularnrd sing the pow e r ite a

theparticular grid spacing, for the power radiated by athe ncient lan wae an th plne wve hat line current source in free space, can be compared
would have been reflected from a uniform infinite

ground plane. to the closed-form solution. The power radiated in
the FD-TD scheme can be obtained by integrating

17,(., -, t) = ,(x, :, ) the time-average Poynting power density over some

A (56) closed surface. The time-average Poynting power
- ,, )/,(, ,density can be found from the electric and magnetic

, )= ,(x, , t) fields produced by the FD-TD simulation. The am-

(57) plitude of the field quantity added at a single point
- E,(x, :. t) - ',(x, :, t) for a particular grid spacing can be related to the

amplitude of the current in the line source. This
The removal of the reflected plane wave from the calibration factor will, in general. be a function of
upper half space is essential, because the reflected the grid spacing [8]. This calibration factor is also
plane wave is infinite in size and could not otherwise applicable to line current sources which interact with
be adequately modeled within the finite computa- each other and/or arbitrary media, so long as the
tional domain. For plane-wave illumination from grid spacing. which is used, is the same as the spacing
the lower half space the total and scattered fields are used in performing the calibration.
simply calculated in the opposite regions. The im- The presence of reactive fields generated by a line
plementation of a plane wave is basically identical current source, which decay rapidly further away
to the implementation for a finite scatterer, except from the source, can cause inaccuracies in calculat-
with the slightly different definition of the scattered ing field values in the vicinity of the line source [7 ].
field. Hence, interaction between a line current source

The implementation of line current sources is and some arbitrary media may not be adequately
straightforward. In this situation, total fields are cal- modeled when the media is close enough to be af-
culated within the entire computational domain. fected by the reactive fields generated by the line
Line current sources are essentially point sources in current source. One simple remedy to this problem
this two-dimensional simulation. For the E-field involves using a finer mesh in the vicinity of the
polarization, an electric line current in the Y direc- line current source [7].
tion is the source, while for the /l-field polarization
the source is a magnetic line current in the v direc- 2.6. Absorbing Boundary Condition
tion. For a sinusoidal excitation, the value of each
line current source is added to the value of either An absorbing boundary condition (ABC) at the
E, or H., depending on the polarization, at a single outer boundary is needed to make the computa-
point at every time step. Alternatively, for a Gauss- tional domain finite, and to simulate unbounded
ian pulse excitation, the value of the appropriate space beyond the computational domain (Figures
field component is set to be equal to the line current 6 and 7) [ 9-12 ]. The absorbing boundary condition
source. The advantage of adding field values instead used for this problem is the second-order approxi-
of imposing field values is that fields can propagate mation derived by Engquist and Majda [9],
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a ( 0 2 I 2 \ the edges, because there is only one point at each
-+ d2 2O•) 0 (58) corner, while there are many points on the edges.

analT T 2  2 aThus, in general, using the first-order ABC at the

where w is a field quantity which is tangential to the corners will not cause significant deterioration in

absorbing boundary, ri is the normal direction, t"is the accuracy of the algorithm.

the tangential direction, and r is time normalized For the H-field polarization, the absorbing

with respect to the speed of light. The second-order boundary conditions are applied to the magnetic

ABC works very well for waves which are at or near field, H .. Applying center differences to Equation

normal incidence, and not as well for waves which (58) for the +z boundary (k=K4 ++ ,andthen
are incident at grazing angles. This second-order 2

ABC can be applied to all the edges of the compu- using temporal and spatial averages to obtain H, at

tational domain, except in the vicinity of any media positions and times where H,. is calculated, yields

other than free space which extends beyond the
computational domain. I i +

At the outer boundary and within or next to a H- + K, +

media other than free space, a first-order ABC is

used, since the fields may not be continuous across --H -
3

/
2 i + K.

the material interfaces. This program was intended Y H 2 2+
for use with infinite perfectly conducting planes, AT--A I

where the tangential electric or magnetic fields are + T H[.+112 i + -K -
discontinuous. The presence of dielectric or mag- Ar + A 2 2)

netic materials at the outer boundary may not be
adequately treated with the use of this first-order + Hn-312

ABC. The first-order ABC is characterized by the

following equation, + 2A +---1/2 i + 'K +

AT~; + A2 2

where fi is the normal direction. In order to simplify Ar 2

the implementation of the first-order absorbing + 2A(Ar + A) (62)

boundary, Equation (59) is differentiated with re-
spect to time, yielding X [H.'-1/2 ( i + ', +

(~~+ -)iv= (60) -H7/(+.K ~(ana ar- 2Hn*-l /2 i + K, +

Equation (60) is equal to Equation (58) without i
the tangential components. + K,"-11' i - I +"'l 2 2 2

At the corners of the computational domain, the
second-order ABC cannot be used, since the normal 3( + -

and tangential directions are not defined. In treating + H7-- i + , K 2
the corners, an average of the two limiting cases for
the normal direction is used with a first-order ABC, - 2H'-/•2( i + K2 '

2[ ( a l + a ) + ( a 2 + a ) ] w = 0 ( 6 1 ) + 1/2

Y- 2 2

where fi, and fi2 are the two limiting cases for the

normal direction at the corner. This equation is also The difference equations satisfying the ABC for the
differentiated with respect to time so that the equa- other three edges of the computational domain have

tion has the same form as the second-order ABC. the same form, and hence, are not shown here.

The ABC at the comers is not as important as at The difference equation satisfying the ABC
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[Equation (61)1 at the +x, +z corner ++ +•, +

2 i=K+ ++2A A2(i 2)
+ /rk + As +2

H11+ I+(+ 2 + +H7112 i+ )2

:I J_ H -3/2(i+ +! K+- The absorbing boundary is not required to absorb
2 the incident plane wave, because the scattered fields,

AT - A [H+,,2 /+ +1I K+ from which the incident plane wave has been ana-
+ A + H, A Y lytically removed, are calculated outside the inner

region. With infinite ground planes, the reflected

+ H (I +1 K+ +2 plane wave is also analytically removed from the
2 2J scattered field region and need not be absorbed by

2A r 12 1 the absorbing boundary. Since the scattered field
+ -- [H, + + 2+ K + radiates from the scatterer, the outgoing scattered

AT + A L - 2) fields will not be incident on the absorbing boundary

/ 1 K+- )] at grazing angles, which allows the ABC to absorb
VH"2 I* + •, (63) a large percentage of the outgoing scattered fields.

nH-3/2 1 + 1 2K + 2.7. Limitations

Ar - A While the FD-TD technique can provide very ac-
Ar + A curate predictions and solutions to various electro-

magnetic phenomena, there are a number of ap-
x H-` 12 (1- , K+ + 1 proximations inherent to the technique. The center

\ 2 21) difference approximations applied to Maxwell's
H ( 3 ! Kl •)]equations are accurate to the second order [i.e., the

+ h 1I+ + K, + error term is proportional to the square of the grid
size (A2 )]. This error can be kept to a minimum

2A [H-,' /2(I++1 + K+ 2 by choosing the grid size to be less than a tenth of
T+ A A[ 2 K 2 the shortest wavelength of interest. Some dispersion

is introduced by the discretization of Maxwell's
+ HI-f1 2 1+ -!K+ + equations (i.e., different frequency components

2 2IJ 1 travel at slightly different velocities). Geometries are
discretized on a rectangular grid. Hence, the di-

Again, the difference equations at the other three mensions of any scatterer are restricted to integer
corners have the same form and are not shown, multiples of the grid size, and curved surfaces must

A be approximated with staircases. In general, as long
Afirst-order ABC applied at the + edge -= as the grid size is small compared to the dimensions

K' +of the scatterer, the scatterer can be adequately
K÷ + near a media which extends beyond the modeled on rectangular grids. In order to obtain

absolute field quantities when line current sourcesare used, the sources must be calibrated. When a
line source is too close to a boundary, inaccuracies

H;',- (i + -•, K4 + may occur in the field quantities due to the inade-S 2 K ) +Iquate modeling of the reactive fields. At the outer

( ! K+ _14 boundary some reflections will occur because the
S-H.-3  i + K' - (64) absorbing boundary condition is an approximate

condition. These reflections can be kept tolerable
+Ar -A [H.2(i +I K -2) by locating the outerboundary at least halfa wave-
+ Ar + A - 2' 2 length away from the scatterer [8].
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3. CALCULATION OF RADIATION/ ] f
SCATTERING PATTERNS X t'' (koli - 1)1,

(71)
The calculation of the radiation or scattering pat- + k, f' { (
terns requires the use of Huygens' principle. Huy- + )'--,d:' -?oH:(P')
gens' principle states that the field solution in a re-
gion is completely determined by the tangential x Ho"'(ko Ip- '- i - x')
fields on a surface which completely surrounds the 10 - P'1
region [13]. The mathematical formulation of
Huygens' principle for free space in two dimensions, X E,.(•') 1

1(,')(kol-- -11

assuming an e-"' time dependcnce, has the follow-
in g fo r m s : - r o H k( • ') H .o1)( k o j P - '1 )

E(P ) = Js dS'{i)[og(XR')[•14(X')
(65) --_ E.(l

+ V X g ( p, I ')[ r X E ( , ')]} X H I,1)(K oI• - P °)}l }

]( ) = f dS'{ -iwfog(p , P- )[ X ( ')]
S ~~(66) whrs,+ 7 X g(ý, V )[fi X H(• ')] (66 where

where: 77o= \ (72)
i H(I)H• -Hi)'

g(o. ý ') = -o I)(koj - 1') (67) H-H (') = H ) (73)
4

P = X +z (68) HJ.)(t)=J,,,( ) + f},,,( ) (74)

V' = XX' + Z_' (69) The zeroth- and first-order Bessel and Neumann

ko = wvtopo (70) functions are approximated by the following equa-
tions [14]:

and fi is the normal to the surface S', and Ho") is 7 2

the zeroth-order Hankel function of the first kind. JAM-) = ao(n)/-1
Equations (65) and (66) are duals, so that by ,,M, \/ (75)

solving one, the other can be found by duality. As-
suming that the integration surface is a rectangular for -3 < " < 3
box of dimensions 2a in the x direction and 2b in 2 (l)
the zdirection, Fouation (65) becomes the following YO(M') - In " )Jo( m)
equation: 7

+ X bo(n) - (76)
f (P- LO f"- . dx' [WHx(• ')M

4 a for 0 •< 3

(z - z')
0 (koj• - P ') - - ' where:

x E,.( ')H,')(k0 jP - ,i)] ao(i) = 1.0, ao(2) = -2.2499997,

i 1:,--b ao(3) = 1.2656208, ao(4) = -0.3163866,

- [7o-l.(ý')Ho')(kojý - ý 'I) ao(5) = 0.0444479, ao(6) = -0.0039444,

(z - z') ao(7) = 0.0002100

ibo(l) = 0.36746691, bo(2) = 0.60559366,
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bo(3) = -0.743200384, b,(3) = 2.1682709,

bo(4) = 0.25300117, bo(5) =-0.04261214, bl(4) = -1.3164827, b,(5) = 0.3123951,

bo(6) = 0.00427916, bi(6) = -0.0400976, bl(7) = 0.0027873

bo(7) = -0.00024846 J7(•') = 3-/2[ f(m

r /=

7o ( 3•pn<1 
7'~=rI[~f)

3

JoY ) = rI/2[Z fo(m)(-)1 Z ± (8

X t + 0+(n) ((77) for 3•1< oo

for ¢ ()0.9845,f2)00001

f1( 2 (30.16"']7

for 35 1•) < •oo Y,(97846.fo )=f(M)0-07
Yom,= f0 1 

` ]

t 

0 
7 /30t 

- 0

f()=- .0055274,)f 1(6) [ 0.0163 f1 7)8200)20
X sin 009 1 0o(n8)( for 3 00 37< o

f((1)=0.79788456, f-(2)0=00.00000156,for 3_ :5 < or,

fO(3) = 0.01659667,

fo( 1 ) = 0.7859788416, fo(2) = -0.04060397,

(f(4) = 0.00017105, fs(5) = -0.00249511,
fio(3) = -0.00552740, f, (6) = 0.00 113653, f, (7) = -0.00020033

fi ,( 4 ) = - 0 .0 0 0 0 9 5 1 2 , f o( 5 ) = 0 .0 0 1 3 7 2 3 7 ,0 1 ) = -2 3 6 9 4 , 0 2 ) = .1 4 9 1 ,

f ,,(6) = - 0.00072805, fo(7) = 0.0001447601 3 = 0 . 0 56 ,
0o( 1 -0.78539816, 00(2) = -0.04166397,

j 01(4) = -0.00637879, 01(5) = 0.00074348,
0o(3) = -0.00003954,

01(6) = 0.00079824, 01(7) = -0.00029166
00(4) = 0.00262572, 00(5) = -0.00054125.

0o(6) = -0.00029333, 00(7) = 0.00013558 In the finite difference-time domain scheme, it is
relatively simple to obtain the fields over a closed

7 i: \a] n -) ) surface. For a finite geometry, the scattered fields
J1 (•') = 1 a 3(n) 3) (79) can be sampled on a rectangular box which encloses

the entire geometry (Figure 6). For an infinite
for -3 t " 5 3 ground plane geometry, the scattered fields are sam-

pled on three sides of a box which encloses any dis-
Y,( In " JI) continuities in oi above the infinite ground plane

(Figure 7). Image theory allows the replacement of
I 7 It\2(I-') the infinite ground plane with image sources. The

+ - 2 b,(n)l3l (80) appropriate image fields are shown for infinite per-
M~ fect electric and magnetic conducting planes in Fig-

for 0 < " < 3 ure 9. From Figure 9, it is apparent that the tangen-
tial fields have been obtained on a closed surface.

al(I) = 0.5, a1(2) = -0.56249985, Note that the field solution obtained using the image
a,(3) = 0.21093573, a,(4) = -0.03954289, sources is not valid in the image half space.

Sinusoidal and Gaussian pulse time-dependent
al(5) = 0.00443319, a, (6) = -0.00031761, excitations are treated differently in order to obtain

a1 (7) = 0.00001109 the necessary time harmonic complex amplitudes
of the fields on a closed surface. For sinusoidal time

b1( 1) = -0.6366198, b,(2) = 0.2212091, dependent excitations, it is relatively simple to ob-
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IZ

Integration Surface I Integration Surface I

0 Real HalfReal Half H .E H, F_.e Hp.aE Fy _y 4tHzSpace jEY Eye-, Space
4- -0ý X - - -- - I a-

Image Half .H 1:0-, _E -E.O4-H, Image Half ESpace !Space H" tEY Y,

H1  -H.-

(a) (b)

Figure 9 Image Sources for the E-Field Polarization With an Infinite Ground Plane. (a) Electric
Conductor. (b) Magnetic Conductor.

tain the complex amplitudes of the fields by sam- source, and interaction of multiple line current

pling the fields after steady state has been reached. sources. In each of the surface plots, shown in Fig-
The amplitudes can be obtained by recording the ures 10-16, the outlines of the scatterers and the

maximum values of the fields. The relative phases line sources will be represented by a uniform small
can be obtained by recording and comparing the positive height. The size of the computational do-
time of the maximum values of the fields. For main used to perform these simulations was 200
Gaussian pulse time-dependent excitations, Fourier nodes x 200 nodes. The physical size of the corn-

transformation of the excitation source and the fields putational domain was chosen to be 10 meters

is performed. At a particular frequency, by dividing X 10 meters. Hence, Ax = 0.05 m and Az
the complex Fourier amplitudes of the fields by the = 0.05 m.
Fourier amplitude of the excitation, the complex The scatterer in the first two cases is a thin perfect
amplitudes of the fields can be obtained for an ex- electric conducting strip which is in the center of
citation source with unity amplitude. For sinusoidal the computational domain. The strip is 3.5 meters
time-dependent excitations, fields and, hence, ra- wide and 0.1 meters thick. The excitation source is
diation patterns can only be obtained for a single a Gaussian pulse plane wave which is incident at 7
frequency. However. for Gaussian pulse time-de- degrees above the plane of the strip. The pulse width
pendent excitations, fields and radiation patterns can is 0.354 meters and is defined to be equal to two

be obtained for multiple frequencies. Some limita- standard deviations ofthe Gaussian pulse. The shape
tions to the range of frequencies that can be analyzed
are that the grid must be fine enough to adequately
model the frequency of interest and that the Gauss- Incident Plane Wave
ian pulse must contain a significant amount of en-
ergy at that frequency.

4. NUMERICAL RESULTS AND
DISCUSSION

Various electromagnetic phenomena were examined

and animated utilizing the FD-TD code. A few of
the electromagnetic phenomena which are exam-
ined using this code include: leading and trailing

edge diffractions from a conducting strip and their Leading Edge

dependence on polarization, creeping waves around Perfectly Conducting Diffraction

a conducting cylinder, slit diffraction with plane- Strip

wave excitation, propagation through dielectric and Figure 10 Leading Edge Diffraction from a Perfectly
lossy media, excitation of a waveguide by a line Conducting Strip for E-Field Polarization.
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of the Gaussian pulse is given b\ the following [ licidci I'hcfl \\ie
equation equation Ky..~ Creeping Wave

f( X) =(84) M T /

where xO 0.177 m. The first case involves the E-
field polarization and is illustrated in Figure 10. For Itl.'J ....

Figure 10, the electric field, E,., which is in the uni- ., i .1
form and infinite direction, is plotted. The Gaussian
pulse plane wave appears as a fairly uniform hill
which stretches across the entire computational do-
main. The pulse is moving from left to right on the
figure. The surface plot was recorded when the
Gaussian pulse plane wave had already propagated PeeclSpecular Reflection
near the end of the strip. The ring, which is centered Cylinder
at one edge of the strip, is the leading edge diffraction
from the edge of the strip which was illuminated Figure 12 Creeping Waves Around a Perfectl. Con-
first by the plane wave. The diffraction from the ductingC~linder tbr/l-Field Polarization.
leading edge, in this case, is strong because there is
a strong discontinuity in the electric field when the
pulse is incident on the leading edge. The perfect weak. and there will be little diffraction at the trailing
electric conductor requires the tangential electric edge. The second case, which is illustrated in Figure
field at the surface to be zero. Hence. when the in- II. involves the /t-field polarization. In this case.
cident electric field, which is parallel to the strip the magnetic field, II,, is plotted. The Gaussian pulse
surface, impinges on the strip, a strong reflected wave plane wave has propagated past the strip, and now
is generated in order to satisfy the boundary con- two circular rings can be seen. The larger ring is the
ditions. At the trailing edge. the boundary condition leading edge diffraction, which is weaker than the
states that the current must be continuous. The sur- previous case because the electric field of the incident
face current. K. is defined to be plane wave points nearly perpendicularly to the

strip, and causes a less severe discontinuity in the
K = x × H (85) tangential electric field at the strip surface. The

smaller ring represents the trailing edge diffraction.
Since the magnetic field is almost perpendicular to In this case. the surface currents will be particularly
the strip, the tangential magnetic fields at the surface strong, because the magnetic field is al'vays parallel
\%iII be weak. Thus. the surface currents will also be to the strip's surface. The strong trailing edge dif-

fraction is due to the large discontinuity in the sur-
face current at the trailing edge of the strip.

Incident Plane The third scatterer involves a perfectl\ conduct-
S Wave ing cylinder. The excitation source is again a Gauss-

ian pulse plane wave which is incident at 90 degrees
Leadion Edge for the /-field polarization. The cylinder has a di-

ameter of 2.5 meters, and the pulse width is again
I 0.354 meters. Figure 12 illustrates the magnetic field.

",11 If,, as the plane wave scatters off the cylinder. Again.
N the incident plane wave can be seen after it has

propagated past the cylinder. The circular arc is
traveling outward away from the cylinder and is the
specular reflection from the cylinder. In the vicinity
of the shadow region, where the cylinder blocks the

P Trailing Edge incident plane wave, the circular arc is still attached
Str iDiffraction to the conducting cylinder and travels around the

back of the cylinder. This phenomenon corresponds
Figure II Trailing Edge Diffraction From a Perfectly to a creeping wave. Creeping wvaves occur much
Conducting Strip for H-Field Polarization. more strongly for the II-field polarization, because
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tends to bend the electromagnetic waves toward the
Reflected Plane bisector of the cylinder which is parallel to the in-

Wave ~cident wave vector, which focuses the fields to some
extent. The reflection coefficient at a planar bound-

Slit ary between free space and a dielectric with relative
permittivity greater than I for the H-field polariza-
tion is always greater than zero. Hence, the trans-

T, ; ' - mission coefficient will always be greater than I,
'. and the magnetic fields transmitted through the di-"!;!Ii•1:electric will be greater than the incident magnetic

.. fields. Treating each point of the dielectric cylinder
locally as a planar interface, it is clear that the mag-
netic fields within the cylinder will be greater than
the incident fields outside the cylinder.

I' Slit Diffraction The next case examines the excitation of the per-Plane .•fectly conducting parallel plate waveguide by a line

Figure 13 Diffraction of a Plane Wave Through a Slit current source. The waveguide is 0.55 meters tall
in an Infinite Perfectly Conducting Ground Plane for 11- and assumed to be infinite in length, and the thick-
Field Polarization. ness of the walls is 0.1 meters. The line source is

vertically centered within the cavity and is located
in the middle of the section of the waveguide shown.

stronger surface currents are generated, which es- The H-field polarization is examined and magnetic

sentially allow the fields to remain attached to the field, H-,., is plotted in Figure 15. The line current
cylinder, source radiates at a frequency of 200 MHz. The

The fourth case illustrates diffraction of a plane wavelength in free space is 1.5 meters. The line cur-
wave through a slit in an infinite perfect electric rent source excites the TEM mode within the wave-

conducting ground plane. The infinite ground plane guide. Two waves, which travel in opposite direc-
is 0.1 meters thick and the slit is 0.3 meters wide. lions, are launched by the line source. There is also
The plane wave is normally incident upon the a lossy dielectric material which spans the height of

ground plane from the upper half space and has a the waveguide and is 0.9 meters wide. The lossy

Gaussian pulse time dependence with a pulse width material has e, = pt, = 1, a = 0.1, and a, = 0. The
of 0.4 meters. In this case, the H-field polarization fields are attenuated as they propagate through the
is examined, and Figure 13 shows the magnetic field, dielectric and it is apparent that the fields that have
-.- The reflected plane wave is evident and has only passed through lossy dielectric are smaller than the

been slightly perturbed by the presence of the slit. fields which have not.
The fields that pass through the slit radiate cylin- The last case illustrates the interference pattern
drically from the aperture, thus illustrating slit dif- generated by four line sources. Figure 16 plots the
fraction.

Figure 14 illustrates the propagation of a Gauss-
ian pulse plane wave through a dielectric cylinder Incident Plane Transmitted Wave

for the H-field polarization. The cylinder has a di- We
ameter of 2.5 meters, and the pulse width is again
0.354 meters. The dielectric cylinder has e, = 2, u,
= I, and a = a,, = 0. Figure 14 shows the magnetic
field, H,. The specular reflection off the cylinder is
not as strong as the specular reflection for the per-
fectly conducting cylinder because some of the fields
are reflected and some are transmitted. The fields
within the dielectric cylinder lag behind the fields /
in free space because they propagate at a slower ve- Specular Dielectric CylinderReflection
locity in the dielectric than in free space. The mag-
netic fields within the cylinder have higher intensities Figure 14 Propagation Through a Dielectric Cylinder
for the following reasons. First, the phase matching With e, = 2, 1, - I, and a = a,,, 0 for H-Field Polar-
condition on the surface of the dielectric cylinder ization.
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TEM Mode be largest in these two directions. There will also be
additional nulls and maxima as the four line sources
add constructively and destructively for different

Parallel Plate directions.
Line Current Waveguide Due to the limitations of the surface plots and

the inability to include color plots, it was not possible
to show all the capabilities of the code in this study.

One extremely useful aspect of this code is the ca-
pability to calculate and successively display the
fields in color in order to visually produce the prop-
agation of electromagnetic waves in real time. The

,Lossy Dielectric typical computational time for animation consisting
Region of 500 time steps and 100 color plots is less than I

hour on a 33-MHz IBM 386 compatible personal

Figure 15 Excitation of a Parallel Plate Waveguide by computer. After the FD-TD computation has been

a Line Current Source, and Propagation Through a Lossy completed, the actual animation can be played back
Dielectric With f, = = I. a = 0.1, and a,,, 0 for H- at about five frames per second.
Field Polarization. In addition to the capability to visualize the fields,

the computer code can generate radiation and scat-
tering patterns. Figures 17-20 illustrate radiation

electric field, E,, for the E-field polarization. The from a linear array, and scattering from a perfectly
line sources are excited at a frequency of 333.3 MHz. conducting strip and a large slit in an infinite ground
In free space, the wavelength is 0.9 meters. The line plane. In each of these polar plots, the field ampli-
current sources are separated by 0.45 meters, or half tude is represented in dB for a radius of 50 meters.
a wavelength. The line sources are in phase and have For E-field polarization cases, E. is plotted, and a
equal magnitudes or, in other words, have the exact complex amplitude of I V/m is assumed for the
same time dependence. On the line on which the excitation source. For H-field polarization cases, H,
line sources lie, the radiation is ver' small since the is plotted, and a complex amplitude of I A/m is
radiation from each line source almost exactly can- assumed for the excitation source.
cels the radiation from the adjacent line sources. On The radiation pattern of the four-element array
this line, the radiation from each line source will be previously examined in Figure 16 is illustrated in
180' out of phase with the next line source, because Figure 17. Four line current sources for the E-field
they are each spatially separated by halfa wavelength polarization are excited at a frequency of 333.3
in this direction. On the line perpendicular to the
line connecting the four line sources. the radiation
from the line sources will add constructively. The
waves reinforce each other because they are in phase
since every point on this line is almost equidistant
to the four line sources. Hence. the radiation will . •

.. .... .. ..

Four Line Current
SourcesRadiation Pattern

'-40 -30,-20 -10 0dB

Nulls in "• . / .. " .:
Radiation Pattern . \"1V j .

Figure 16 Interference Pattern Produced by Four Line Figure 17 Radiation Pattern of a Four-Element Array
Sources for E-Field Polarization. of Line Sources for E-Field Polarization
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MHz, and the sources are separated by 0.45 meters

or halfa wavelength. The line sources have the same
phase and magnitude. The radiation pattern has
four-fold symmetry since the problem has four-fold
symmetry. The radiation pattern has nulls in the
+x, -x directions, 600 and 120° above and below
the x-axis. The main lobes are in the +Z and -z
directions. The main lobes correspond to a electric
field of 0.3096 V /m. Recall that the line sources are
uncalibrated, so that the absolute numbers will be
dependent on the grid size. The radiation pattern 30 ..0 -10 0B x
obtained here is consistent with the radiation pattern
that would be obtained using linear array theory.

Figure 18 shows the scattering pattern of perfect
electric conducting strip. The strip is illuminated by . --

a 300-MHz sinusoidal plane wave at an angle of 45"
above the x-axis for the E-field polarization. The
dimensions of the strip are 3.1 m X 0.1 m. As ex-
pected, the main lobes of the scattering pattern occur Figure 19 Diffraction Pattern of a Slit in an Infinite

in the specular direction ( 1350 above the x-axis) Ground Plane Illuminated at Normal Incidence at 300

and the forward scatter direction ( 1350 below the MHz for H-Field Polarization.

x-axis). The maximum scattered electric field is
0.268 V/m. sponding wavelengths are I m and 0.75 m. The

Figures 19 and 20 show the radiation patterns maximum peaks in the radiation pattern occur in
for a large slit illuminated by a Gaussian pulse plane +z direction and are 0.650 A / m at 300 MHz and
wave at normal incidence from the lower half space 0.809 A/m at 400 MHz. Fraunhofer diffraction
for the H-field polarization. The slit is 4.9 m wide states that the fields in an aperture are related to the
and the infinite perfect electric conducting plane is far-field pattern by a Fourier transform [ 13 ]. In these
0.1 m thick. Since a Gaussian pulse time dependence cases. the field distribution is essentially uniform
is used, multiple frequencies can be analyzed. The over the aperture, so the far-field patterns should
frequencies examined in Figures 19 and 20 are 300 have a sin xhav a dependence. At the higher frequency.
MHz and 400 MHz, respectively, and the corre- x

f*

-. 40 -30 -20 -10 .dB . -30 -20 -10 "dB

Figure 18 Scattering Pattern of a Perfcctly Conducting Figure 20 Diffraction Pattern of a Slit in an Infinite
Strip Illuminated at a 450 Grazing Angle for E-Field Po- Ground Plane Illuminated at Normal Incidence at 400
larization. MHz for H-Field Polarization.
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Time Domain Modeling of Impedance Boundary nique is discussed and the overall scheme is verified numerically
Condition for a one-dimensional configuration.

C. F. Lee, R. T. Shin. and J. A. Kong
1I. TIME DOMAIN DESCRIPTION OF THE IMPEDANCE BOUNDARY

CONDITION

Abstract-A methodologys developed to handle dispersive materials in
the time domain is extended to model the dispersive characteristics of The impedance boundary condition of the coated conductor can
the impedance houndar% condition used for a thin layer coating over
perfect conductors. The impedance boundary condition is first approx- be derived based on a two-layer configuration (Fig. 1). By ignoring

imated as a rational function of frequency. This rational function is the variation along the tangential directions, the tangential electric

then transformed to a time domain equation, resulting in a partial field can be related to its nG.-mal derivative by the following equa-
differential equation in space and time. Discretization of the time do- tion:
main model to efficiently handle the thin layer coating is presented in
the context of the finite-difference time-domain (FD-TD) technique. The Yl, r E
methodology is verified by solving a one-dimensional problem using the E tan (k A. (I)
FD-TD technique and comparing -Aith the analytical results.

where k is the free space wavenumber. It, and e, are the relative

permeability and relative permittivity. respectively, and 17, =
I. INTRODUCTION •fJ7,1" , is the relative impedance (impedance normalized to 710).

Electrically fine structures often appear in practical applications. Inverse Fourier transformation may be used to convert the above

To resolve the electromagnetic behavior of these structures, very equation to the time domain. However. it is relatively complicated

fine grids are needed in numerical techniques (e.g.. the finite-dif- and the result may not be suitable for numerical analysis. Instead.

ference time-domain technique). Alternatively, one may incorpo- following the procedure outlined in [51. the above equation is ap-

rate the localized physical behavior, such as the impedance bound- proximated using a rational function of the frequency. With the

ary condition [I] and thin wire formulations [2], [3]. of these fine substitution of -iw by a/at, the time domain description of the

structures into discretization schemes. impedance boundary condition is obtained.

Thin surface coatings on metallic bodies appear in many scatter- The rational function approximated of (1) can be obtained by

ing problems. In principle, these thin surface coatings can be mod- expressing the tangent function as the ratio of sine and cosine. Next,

eled numerically and geometrically by very fine grids with appro- the Taylor series expansions of these to functions are used to
priate discretization schemes. The disadvantage associated with obtain the rational function form. By keeping the first two terms in

such an approach is the large computer memory requirement. Fur- the Taylor series expansions of the sine and cosine functions. the

thermore, in the finite-difference time-domain (FD-TD) technique. first-order rational function approximation is obtained.

the time increment is usually determined by the smallest grid size

in the entire computational domain to satisfy the stability condi- I - I k' -

tion. 6 aE
In modeling a thin layer coating in the frequency domain, the I = , ' I a- (2)

concept of impedance boundary condition can be used to avoid the I - 2 k A _r#r
fine layers of grids. The impedance boundary condition relates the

tangential fields on the coating to their normal derivatives, which Similarly. by keeping the first three terms of Taylor series expan-

is derived using the configuration of a half-space conductor with sion. the second-order approximation can be obtained:

thin layer coating. The resulting impedance boundary condition is I A2I1 k4 .. 4,A I

frequenc) dependent. and this dispersive nature of the impedance I - kA's,f, + -- k A fa
6 120 aE (3boundary condition causes difficulty in the time domain modeling. E = (3 A I k)

In this paper, a time domain technique used to treat dispersive ma- I - - k- A'A,(, + - k' . "

terials is employed to conver1 the impedance boundary condition 2 24
to the time domain 14]. Following the idea in [51. the impedance In general. both the relative pemittivity and permeability in (2)

Inndr condition bot aproihte reatv aemtt ratona functionit in (2)
boundary condition is approximated by a rational function of the and (3) can be complex to account for electric and magnetic losses.
frequency. Then. the tangential fields are related to their normal However. in this paper. we % ill consider only the loss due to elec-

derivatives by a partial differential equation in space and time. A trical conductivity.

numerical discretization scheme in the context of the FD-TD tech- The time domain expressions corresponding to (2) and (3) can

be obtained by substituting -iw by a ,'Ar. or equivalently. -iL b%
a/la. where T = ct is the normalized time. Assuming electrical

Manu,.cript receie% d September 9. 1991: re% ied Fehruan I0. 1992. This conduction loss only. we obtain
%%ork %%as supporied in pan b) ONR Coniract N\00014-90-t-1002 and the
Joint Sen ice, Electronics Program under the Contract DAAL03-89-C- , .
0001, k,=€ i- 4

C. F. Lee v; sithI•i WaseTraeer. Inc.. Acton. MA 01720.
R. T. Shin and J A Konv are %kith the Depanmenl of Electrical and where ', a and T•o are dielectric constant. electric conductivity and

Engineering and Computer Science. and Research Laborator, of Electron-
ics. Massachusetts Institute of Technology. Cambridge. MA 02139. free space impedance. respectively. The first-order time domain

IEEE Log Number 9201728 description of the impedance boundary condition corresponding to

0018-9480/92S03.00 '.ý 1992 IEEE
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Incident pulse ,

Imaginary _Wýnods -----

E- =0 Ell E 2

Fig. 2. Discretization nodes for normal derivative.

A dielectric I magnetic material coating
I -i.... '• In the above equation a represents the ratio of the layer thickness

conuin plto the grid size, A/A,. It turns out that a better approximation of
conductingplaznez the normal derivative can be obtained by including the effect of the

Fig. 1. Two-layer configuration, dielectric constant of the coating. Because the wave velocity in the
coating is slower than that in the free space where discretization
applied, the effective thickness of the coating should be A x/'.

(2) is given by Therefore, the following equation is used:
I a I ,, a- 21-

[I + + E~p 'RJ
2 r 2 dr'J a =-
+ I 2 a + a2, -1A E A,.

6i+ A a o + A A T I Y d (5) The temporal derivatives in (5) and (6) may also be discretized in

many forms. A simple second-order center-differencing is used in
Applying the same transformation to (3), the second-order time this paper.
domain description of the impedance boundary condition is given
by IV. NUMERICAL RESULTS

[ I 0 /l ! 422~a-2

,A 2) Equatibns (5) and (6) describe the time domain modeling of theI A-ao ar + A2\A + 24 a o aT/ impedance boundary condition given by (1). Equation (7) and cen-

I I a 1 ter-differencing in time provide a possible discretization scheme.
+ - - + - -] E To validate the approach outlined in this paper, a one-dimensional

12.. dT 24 aT reflection problem is simulated using these models together with
a2 the finite-difference time-domain method [3]. The reflected wave

= A I I +-6A-qo + (6 +-- 120 d r is calculated in the time domain and Fourier transformed to obtain

Sa 1the reflection coefficient as a function of frequency. The results are
° I- compared with the exact solution obtained directly in the frequency

+ - A4
('a'70 -o +-A' (6)60 TT, 120 T7-4 ay domain.

The above time domain descriptions of the impedance boundary Fig. I shows the configuration of the problem. The layer has

condition are partial differential equations in space and time. In thickness of 0.2 cm. The coating material is assumed to have di-

fact, these equations may be derived directly in the time domain electric constant of 5 and conductivity of 0.2 mho/meter. The

with a finite difference approximation and a simple averaging computation domain contains 500 nodes with grid size being 0.2

scheme [4] (see Appendix). The impedance boundary condition ac- cm. The normalized time increment A. is 0.2 cm to satisfy the

counts for the interaction between air-dielectric interface and con- stability criterion and to minimize numerical dispersion. At the first

ducting surface. In the time domain there is a time delay associated node of the computational domain, an incident Gaussian pulse

with this interaction. This delay is partially modeled by (5) and modulated by a carrier at 8 GHz is imposed. This Gaussian pulse

(6). has a half-power pulse width of 0.0625 nano-second. which cor-
responds to a bandwidth of 6 GHz. The last node of the computa-
tional domain is placed at the free space/dielectric interface where

III. DtSCR~ii~r•~tO, the first-order or the second-order approximation to the impedance
There are many discretization schemes one can use to discretize boundary condition (IBC) is applied to simulate the thin layer coat-

(5) and (6) for the finite-difference time-domain technique. The ing.
discretization of the normal derivative is quite important in the im- The exact solution for the reflection coefficient is given by
plementation of the impedance boundary condition. In order to have i,, tan(kA1,,) + I
an accurate approximation, the vanishing tangential electric field R(k) = (8)
on the conducting surface is used. This leads to interpolation of the ih7, tan (kA4•i•) -A
electric field in three or more locations. Employing the Lagrange
interpolation formula for three electric fields (Fig. 2), the normal where 17, and e, is complex. For the assumed parameters, the mag-

derivative is discretized as follows: nitude and the phase of this reflection coefficient are plotted in Fig.
3(a) and (b) (solid curves), respectively, from 2 GHz to 16 GHz.

aE 2 a a I El (7) The results obtained by using the FD-TD simulation are also shown
ay - A, (I + a) E a"2 in Fig. 3(a) and (b). The " 0" and "+" curves represent results
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(a) Fig. 4. Percentage error for second-order IBC versus coating thickness.

0.8
V. SUMMARY

0 . OIn this paper, a time domain modeling of the impedance bound-0.0 1ST ORDER IBC ry condition is derived and expressed in terms of partial differ-

ential equations in space and time. A possible discretization scheme

, -which incorporates the effective thickness of the layer is presented.
+J. + Numerical results indicate the validity of the modeling as well as

o the suggested discretization scheme. Although this model is only
-1.6 ++++ verified for a one-dimensional problem, the generalization to higher

a.* spatial dimensions is possible since the equation is applied only at

-2.4 2ND ORDER IBC the interface. However, tangential variations may need to be con-
sidered in those cases. Furthermore, the concept of using the ra-
tional functions to approximate the frequency domain response and

-3.2 •converting to the time domain may be used to characterize other
2 4 6 8 10 12 14 16 fine structures.

FREQUENCY (GHz)
(b) APPENDIX

Fig. 3. (a) Magnitude of reflection coefficient versus frequency. (b) Phase For simplicity, the relative permittivity and permeability are as-

of reflection coefficient versus frequency. sumed real. For a plane wave normally incident with waveform g.

E, = g(7 + y), i7oH = -g(T + y). (Al)
obtained using (5) and (6), respectively. Both the first- and the
second-order approximations yield good agreement with the exact the reflected and transmitted waves are

solution in the phase of the reflection coefficient. However. the E, = f(r - Y). 170H, = (- V); (A2)
advantage of using the second-order approximation. (6). is clearly
shown in the magnitude of the reflection coefficient. The results E, = p(r + 4 7 ' + I A)
obtained using the first-order approximation match the exact solu-
tion at low frequencies with increasing discrepancy at higher fre- - p0r - ' y - • A); (A3a)
quencies. 1

Fig. 4 shows the percent error of the reflection coefficient mag- 7noH5 = - -- pr + 4 y + I A)
nitude as a function of the coating thickness. These errors are for 17r

the FD-TD results with the second-order approximation of the IBC
using the same grid size and the same material parameters while - 7p(r - -y - A); (A3b)'1,
varying the coating thickness. The three curves represent errors at
three different frequencies. The errors for the half-power frequen- In (A2) and (A3), the subscripts r and s denote the reflected wave

cies, 5 GHz and II GHz, are shown by ". + " and "x." respec- and the wave inside the coating, respectively. Note that the bound-

tively. The errors at the carrier frequency are shown by "'.," ary condition on the surface of the conductor has been satisfied.

These errors are all well within 1.0 percent, and they increase with Imposing the boundary conditions of continuous tangential electric

increasing thickness, as expected. It should be noted that the errors and magnetic fields at the interface,
are relatively small even when the thickness of the coating is up to E = g(r) + f(7) = p(7 + • A) - P(, - , A),
1/5 of the wavelength inside the layer as in the case of II GHz at
the thickness of 0.25 cm. (A4a)
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,10H = g(r) + f(T) = --- p(r + ) Comments on "Criteria for the Onset of Oscillation
7,~ In Microwave Circuits" j

- -- p(r -T A). (A4b) Robert W. Jackson
71,

In addition, the total tangential electric and magnetic fields are re- The paper listed above' notes that the device reflection coeffi-

lated by: cient, rd(S), in the expression.

E = 2g(T) + '71H. (A5) V rd (S)
I- rFd(s) r,(s)

Applying the center-differencing and averaging approximations:
represents the port reflection coefficient of a device which may re-

p(T + f A) - p(T - A ,.f ) suit in an unstable circuit only after connecting it with a resonator

3 _P + (T) (A6a) having a reflection coefficient. 17(s). This is an important condi-
2aAr E, P'(7) + X(,)i"p ( Aa tion and is somewhat vague as worded. In order to use the Nyquist

p(r + IA7 A) + p(T - f A) criterion to determine the stability of the device-circuit combina-
tion, rd must have no right half plane poles. This amounts to in-

2p(T) + ArjE,p'(r), (A6b) suring that the device does not oscillate into the reference imped-

where ..... denotes derivative with respect to the argument. Sub- ance (50 ohms for example). If 7,1 has been determined from

stituting these back into (A4). measurements, presumably the device is not oscillating during the
measurement and therefore there are no right half plane poles.

2g(7r) = 2 p(T) + In CAD simulations of possibly unstable circuits, the location of
-7, prd poles is not always so clear. For a simple amplifier circuit such

A 2  'as the one described in the above referenced paper, one can assume

+ - MA,,p"(r) + (.,e,) 1 l-p- (r) (A7) no right half plane poles in 1"d if the S,1 and/or $S_ coefficients of
7, "3 the FET have magnitudes less than one. To see this, consider the

partial circuit formed by a 50 ohm termination on port 2 and any
r70 H -- [2 p(r) + A2ME,p"(I)]. (A8) passive termination on port 1. If ISI < 1, the input termination

77, sees a passive impedance and therefore the partial circuit is stable.
Substituting (A7) and (A8) to (A5), E is related to the first and Since the partial circuit is stable, i'5 (50 ohm reference) seen look-
third derivatives ofp(-r). Again. using (A8) and ignoring the terms ing in at port 2 has no poles in the right half plane. If, as in the
involving derivatives higher than third order by assuming slowly amplifier example'. rd, has a magnitude greater than I. the Nyquist
varying field in the time scale of A,: criterion as described can then be applied to study the stability ef-

H A 3p$, 8%0 H fects of various port 2 terminations. In simulations using devices
E + 3 (A9) with extra feedback, oscillators for example. often the magnitudes

E a + 3 3 - (A of S, t and S,2 are both greater than one and this approach breaks

Using Maxwell's equations: down.
A more generally applicable use of the Nyquist stability criterion

aE A,4r a3E has been known for years, but the current widespread use of mi-E = A A,
ay 3 6172 1Y crowave CAD makes it must easier to apply. As discussed in the

literature [11], 12] the admittance between any two nodes in an ac-This is what one expects if one expands, in Tay lor series. the tan- tive circuit cannot have right half plane zeros if the circuit is to be
gent function in (I) and converts the expanded equation to the time stable. If one were to apply the Nyquist lest to such an admittance.
domain using the procedure described earlier. the resulting Nyquist locus of points cannot encircle zero in a

clockwise sense if the circuit is stable. It is trivial for modem mi-
REFERENCES crowave CAD programs to calculate the necessary admittances vs

frequency. Polar plotting of admittances is not always available but

class of generalized boundary conditions." IEEE Trans. Antennas a quick sketch is easy to do. It should be noted that the number of

Propagat.. vol. 37. pp. 1566-1572. Dec. 1989. Nyquist encirclements only gives the difference between the num-
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ence time-domain techniques to dispersive media." Progress in Elec-
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To understand the physical meaning of rational reflection coefficients in inverse-scattering theory for optical
waveguide design [J. Opt. Soc. Am. A 6, 1206 (1989)], we studied the relationship between the poles of the
transverse reflection coefficient and the modes in inhomogeneous dielectrics. By using a s'ratified-medium
foi mulation we showed that these poles of the spectral reflection coefficient satisfy the same equation as the
guidance condition in inhomogeneous waveguides. Therefore, in terms of wave numbers, the poles are the same
as the discrete modes in the waveguide. The radiation modes have continuous real values of transverse wave
numbers and are represented by the branch cut on the complex plane. Based on these results, applications of
the Gel'fand-Levitan-Marchenko theory to optical waveguide synthesis with the rational function representa-
tion of the transverse reflection coefficient are discussed.

1. INTRODUCTION is to solve the index profile directly from the modal re-
quirements without constructing a reflection coefficient.

The electromagnetic inverse problem is to find unknown That is not discussed in this paper. The motivation for
parameters of an object from its responses to given elec- using a reflection coefficient here is to utilize the previ-
tromagnetic signals. The electromagnetic inversion ous results in inverse scattering, especially the rational
method is an emerging technique in many fields, such as function representation of the reflection coefficient for
geophysical media and ionosphere probing, medical imag- closed-form solutions. The purpose of this paper is to in-
ing, nondestructive material characterization, and remote vestigate the feasibility of designing optical waveguides by
sensing. These applications belong to the identification constructing a transverse reflection coefficient as a start-
problem, which is to determine the unknown parameters ing point.
from measured data. Recently, inversion theory has been There are two types of measurement in one-dimensional
applied to synthesis (or design) problems in which the re- frequency-domain problems, frequency diversity and angle
sponse of the object is not measured but prescribed from diversity. These correspond to the two independent vari-
design criteria. One important application is the design ables, the angular frequency a) and a component of the
of dielectric optical waveguides.'- This design problem wave vector. If a layered model is used to describe the
is to determine the refractive-index profile of a graded- inhomogeneous medium, owing to the phase-matching
refractive-index guided wave device for given require- condition on the boundaries between layers, k. will be in-
ments of modal structure. One of the advantages of using dependent of x, i.e., all the layers have the same k,. Since
a graded-refractive-index optical waveguide is that the k, = 0, there are only two components in the wave vector
core region can be made wider relative to the homoge- k, k, and k.. The components of a wave vector satisfy the
neous guide. Therefore it is easier to fabricate the guide dispersion relation in each layer. Therefore only one
at optical wavelengths, component is independpnt. In region ei in Fig. 1 we

For a one-dimensional planar problem, as shown in choose k1, as the independent variable. The transverse
Fig. 1, the dielectric profile e(x) can be obtained from the reflection coefficient is written as a function ofk,, amd (a,
reflection coefficients r measured at the surface x = 0. i.e., r(k,_a)), which is consistent with the notation in pre-
This is a well-known inverse-scattering problem. In the vious work,' where r(kl,) is written as r(k). In optical-
spectral inverse-scattering theory [Gel'fand-Levitan- waveguide-design problems, since the operating frequency
Marchenko (G-L-M)], closed-form solutions of e(x) may is usually fixed, r(k1 ,, w) reduces to r(k1 ,). This is differ-
be obtained if the reflection coefficient r is represented by ent from the profile identification problem in Refs. 5 and
a rational function.4 7  In the design problem, for given 7, where, for fixed normal incidence, k1, = k = w/c, r(w) is
requirements of possible guided modes in the waveguide, actually considered. In this paper we discuss only r(kl,)
the first step is to determine the transverse reflection co- for the waveguide-design problem. Furthermore, the ra-
efficient on which the spectral inverse-scattering theory tional function representation of r(k1 ,), where the poles
(G-L-M) can be applied. This reflection coefficient of the reflection coefficient are related to the electro-
should contain all the modal information required in the magnetic modes supported by the waveguide, is consid-
slab. The second step is to apply the inverse theory to ered. The correspondence between the poles and the
solve the index profile. This step has been discussed at modes is studied.
great length in the literature, while the first step has re- An integral formulation known as the Sommerfeld inte-
ceived little discussion. An alternative design procedure gral"-0 is usually used in calculating the fields of a dipole
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Xia et at. Vol. 9, No. 5/May 1992/J. Opt. Soc. Am. A 741

Z reflection coefficient. The solutions of the guidance con-

dition give both the guided and the leaky modes. Radia-TE wave C tion modes are not poles of the reflection coefficient. The
results on the pole-mode relation are used to interpret the
poles of the rational reflection coefficient in the inverse-

r tkl,. w) El elks scattering problem applied to optical waveguide design.

0 x

2. HOMOGENEOUS DIELECTRIC
WAVEGUIDE

El ei k. z,,, To find the relationship between the modal structure and
the transverse reflection coefficient, we first analyze the
homogeneous dielectric waveguide shown in Fig. 2. Al-

Fig. 1. One-dimensional inverse-scattering problem. though this is the simplest case of general dielectric wave-
guides and has been discussed extensively, it serves the

in layered media. It is a well-known result that the poles purpose of illustrating the results in an analytic form.
of the Sommerfeld integrand correspond to the modes in The propagation direction is +z in Fig. 2. The x direc-
the media. This result can be obtained from the residue tion is called the transverse direction. The reflection
theorem in the theory of complex variables. For instance, coefficient r(k1 ,, w) is obtained by solving the airect scat-
the Green's function in a layered medium can be writ- tering problem for an incident plane wave,'
ten as

R-10 + Rol exp(i2kd)

G(r,r') = dk,[A(k,) + r(k)B(k,)] 1 + R-1 oRol exp(i2k,d)

where k, is the wave number along the z direction, w is the
angular frequency, d is the thickness of the slab, and R,, is

where r, = Sy + iz, dk, = dkydk., and k, = Sk, + ihk, is the Fresnel reflection coefficient for a plane wave incident

the wave vector in the plane of the layers (Fig. 1). k, re- from medium (i) to medium (j). Since

duces to ik, since k, = 0. A(k,) and B(k,) are functions
related to the medium. Surface-wave modes are the poles = -Ro 1 , (3)
of the Green's function, which are from the poles of the the poles are determined by
transverse reflection coefficient r(k,); here k. is chosen as
the independent wave number. Studying the Green's Rol2 exp(i2kd) = 1 (4)
function in the Sommerfeld integral is one way to obtain
the relation between the poles of r and the modes in the for the transverse-electric (TE) wave case, where
medium. In constructing a rational reflection coefficient k. k
in the design problem, it is critical to relate the guidance Rol - (5)
condition to the pole condition of the reflection coeffi- k. + k1.
cient. To underttand the pole condition of r in terms of
the field distribution, in this paper we propose another ap-
proach, which is based on the analysis of the electromag- kI. + k ,2 = k 2, (6)
netic reflection coefficient and the guidance condition of
a layered medium. where kl, = k., and

For a given inhomogeneous medium, the reflection coef-
ficient is derived in recursive form by using the layered- k, 2 + k, 2 = k 2  (7)
medium model. The pole condition for the reflection
coefficient can then be obtained. A mode is a possible need to be used in solving Eq. (4); k, is the same in all

field structure in certain physical systems; electromag- media owing to the phase-matching condition. It is easy

netic modes are the possible solutions of Maxwell's equa-
tions with certain boundary conditions. In a layered Z
medium the guidance condition is a necessary condition (-1) (0) (1)

for the existence of guided modes derived from the bound-
ary conditions. We show that the pole equation for the /
reflection coefficient is the same as the guidance condi- A ei k,x+i kz
tion in the medium. Thus the poles of the reflection coef-
ficient are indeed the modes of the guiding structure. E-e-ikjx+ik'z E\ E 1 eiklx+ik~z
The starting point of this study is a single-layer medium B e-i k, xi k,z
that is a homogeneous dielectric slab waveguide. In this
simple case the possible solutions for the pole equation can 0 d x
be fully analyzed. For a general N-layer medium, a proof
is given that the guidance conditions in all the layers are
equivalent. Furthermore, this guidance condition is
fhown to be equivalent to the pole equation of the total Fig. 2. Mode diagram for discrete modes in slab waveguide.
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to prove that k1
2 < 0, el < e, and ký2 = k1

2 + k 2 - k 2 is real. Thus, if
= 0) = -1, (8) k1, is complex, k11 has to be purely imaginary. In this

case lexp(i2kd)f = 1, 1R011 = 1, so that it is possible for
which is the normalization condition of the rational re- the guidance condition [Eq. (12)] to have a finite number
flection coefficient. of solutions with discrete k, values. k 2 = k1 2 + k-

The poles of r(kl,) are those values of ki, that satisfy k, 2 < k2 - k 1
2. The proper kl, values are on the positive

Eq. (4). At the poles r --, -, which indicates a self- imaginary axis on the complex k1 , plane. Since kl, is
resonant structure. When a plane wave is incident upon positive imaginary, the wave is decaying along the x direc-
the slab with real ki., owing to conservation of energy tion outside the slab. There are improper k,, solutions on
Irl <5 1. This is because, for real values of kl, and k., the negative imaginary axis of the k11 plane. The solution
1R011 -S 1, the pole condition will not be satisfied. The of Eq. (12) in the present case also includes the trivial
poles of r(kl,) are complex. root k. = 0, which gives a zero field everywhere. From

In Fig. 2 the guided modes are defined as the waves Eq. (10), if k, = 0, Rol = -1 and then A = -B. From
propagating along the +z direction and exponentially de- Eq. (9), Efo = 0. Since E, is continuous at the boundaries,
caying along the transverse direction outside the slab. E_ = 0 and E1 = 0.
The modes in the dielectric waveguide are determined
from the boundary conditions. For a TE wave, the E, Case 2. k, is Purely Imaginary
fields in the three regions can be expressed as This implies that k 2 > k2 and kz is real.

(a) e > e1,k > k1, so that
-1 = E-1 exp(ikz)exp(-ik.,x) kix2 = k1

2 
- (k2 - k1

2) < k 2 < 0, (13)

for region (-1),x < 0, (9a) and k1 , is also an imaginary number. Let k, = ia and

= exp(ik,z)[A exp(ikxx) + B exp(-ik,x)] kl, = iaI for decaying waves outside the slab, and aI > 0
and Ja I > jal.

for region (0),0 < x < d, (9b) (i) a > 0, JR01i < 1, and exp(-2ad) < 1, which is not a

I = E1 exp(ik~z)exp(iklxx) for region (1),x > d. possible solution to Eq. (12).
(ii) a < 0, IR011 > 1, and exp(-2ad) > 1, which is also(9c) not a possible solution to Eq. (12).

At x = 0 in region (0), the right-going wave is due to the (b) L < el, k < kl.

reflection of the left-going wave at the boundary, which (i) kl, is real, k, > k,. 1Roll = 1, and [exp(-2ad)I > 1

yields A = BRo,-i,. With Ro,-0 , = -R- 1 0 and using or < 1. This is not a possible solution for Eq. (12).

Eq. (3), we have (ii) k1, is imaginary, k1 < k,, the same as in case 2(a).
From case 2 it can be concluded that purely imaginary

A = BRo0 . (10) kx cannot be the poles of the reflection coefficient.

At x = d in region (0), the left-going wave is due to the Case 3. k. Has Both Real and Imaginary Parts
reflection of the right-going wave at this boundary; thus Since k, 2 

= - k,2 , k, is also complex, and k2 = k,' +

B exp(-ik,d) = A exp(ikd)R0 1 , (11) ik,: Since the propagation direction is +z, k,' > 0 and
k," > 0. Defining k. = k,' + ik," and from k, 2 = k 2 

-

and combining Eqs. (10) and (11) yields k 2 = k 2 
- k,' 2 + k,"' - i2k,'k", we get k,'k," = -k•k,"

For the same reason, ki, = k, 1 ' + ikl,' and ki, 2 = k, 2 -

exp(2ikxd)Ro1
2 

= 1. (12) k 2 = k 2 - k, ' 2 + k,- 2 - i2k,'k," and kl,'kl," = -k,'k,"

Equation (12) is a transverse resonance condition satisfied Since k,'k," > 0 and k,'k," < 0, k 1,'k1 ," < 0. Outgoing
by any field distribution of Fig. 2 (as we see in matching waves require that kI,' > 0 in regions (-1) and (1); hence

boundary conditions) and is known as the guidance condi- kl," < 0.
tion.'•° This equation is the same as Eq. (4). Thus the There are two equivalent cases for k,, k,' > 0 and k,' < 0.
guidance condition is equivalent to the pole condition for We choose k.' > 0 and k," < 0. This means that
the reflection coefficient. Equation (12) can also be ob- Wexp(-2kc'os) > 1. IfEq. (12) is satisfied, mRoe < 1. Since
tained by using the boundary conditions at x = 0 and
x = d for both the E and the H fields from Eq. (9). (k.' - k11 ')2 + (k," - k1,")2 112

For a fixed real angular frequency co there is only one Roil = (k' + k•')' + (M + k ,")2 (14)

unknown in Eq. (12). This unknown can either be k, or
k,. The possible solutinns that satisfy the guidance condi- gives lRol• < 1, this is a possible solution. These solutions
tion [Eq. (12)] can be discussed in the following three are called the leaky modes since the power leaks away
cases of k,: from the surface. As is illustrated in Fig. 3(b), outside

the slab the wave is growing away from the waveguide
Case 1. k, is Real along the x direction but decaying along the +z direction.
(a) ki, is also real. This gives lexpui2k,d)l = 1 and In this mode diagram, the total wave is propagating along
IMRod < 1. This case cannot satisfy guidance-condition the real part of the wave vector, kIR, and decaying along
equation (12). We assume that e > el. For el > E, since the imaginary part of the wave vector, k 11 .
kI.' = k,' + k,' - k2 , k, and kI, will both be real, as in the In conclusion, the possible solutions to the guidance
present case. Thus there is no discrete mode for el > F. condition [Eq. (12)] are discrete. These solutions can be

(b) ki, is purely imaginary. Here k 1
2

- k 2 = k 1 ,2 - classified into two cases:
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Z (0) waveguide. Leaky modes lie on the improper Riemann

£ - sheet [which is separated from the proper Riemann sheet

ki kR k by the cut of Im(k1 .) = 0] of the complex k, plane. Most
of them will not be excited. A finite number of leaky
modes may contribute to the total field when the excita-

-i kD- tion condition is satisfied (Ref. 8, p. 326). In this case the
kk leaky-mode amplitudes will not diverge.

The cutoff frequency of a guided mode is determined by
No the condition k.2 k> - k '2. At cutoff, k, = (k 2 

- k1
2 )1 2,

0x kd = 0, and R0, = 1. From the guidance condition
[Eq. (12)], k, = miT/d for m = 0, -1, ±2 ..... Hence

(a) guided modes mnm 1
d (E,- Ei,) 1 2

The cutoff frequencies for the TE, [also true for

z transverse-magnetic (TM,)j modes are

F - E (0) E (1) f. =cm 1

ki k kR 2d (e, - e,)"

kjR Ia \ kIR As the frequency decreases, when f < f_, the mth guided

k, mode will be cut off. As a solution to Eq. (12) this mode
kR •becomes a leaky mode that has both real and imaginary

parts in k.. The leaky mode is different from a radia-
tion --,ode.

o d x The radiation modes are defined as possible field distri-
butions in the slab with real k1 , in regions (-1) and (1).
These modes carry energy infinitely far away and are not

(b) leaky modes guided locally. In terms of the spectral parameters k1 ,,

the difference between radiation modes and leaky modes
is that leaky modes have an imaginary part kj." < 0 and
radiation modes have a continuous real kl,.

z As discussed above, it is impossible to have fields of
El (-1) (0) (1) Eqs. (9) with real ki.; hence the radiation modes are not

k 1R\ kIpossible with the field structures of Fig. 2. The radiation
AkR- k IR modes are not poles of the reflection coefficient r(ki.,,w).

kIR/ I R kjR Another possible field structure is shown in Fig. 4, where

k 1 1\ E<-t = E- 1 exp(ik~z)exp(iklx) + r(kl,)E-l exp(ikz)

kiR kR L kIR X exp(-ikix)
kilt.4 . k•ik for region (-1),x < 0, (15a)

kiR kiR E0 = exp(ik~z)[A exp(ikx) + B exp(-ikx)]

for region (0),0 < x < d, (15b)odx
f, = El exp(ik~z)exp(ikl,x) for region (1),x > d,

(c) radiation modes (15c)
Fig. 3. Wave vectors in slab waveguide for (a) guided modes,
(b) leaky modes, and (c) radiation modes.

z
(1) Guided modes. k, is real, k. 2 < kV - k 1

2, and kl 1is (1) (0) (1)

purely imaginary with a positive imaginary part. £
These are also called the surface-wave modes because

the wave is guided inside the two surfaces. Outside the E
surfaces the wave decays exponentially. This surface r(kI) E. cikX~ikZ B e-ik.x÷ikz /
wave is associated with the total internal reflection at the/ V ,/ El ei ki, x+i k, z
surface boundaries. A ei k. x .i kz

(2) Leaky modes. k, is complex, and kj,' > 0, E. 1 eiki,x ik, e
kI," < 0. 0 d x

There are an infinite number of leaky modes that are
also discrete. They usually do not contribute to the com-
plete eigenfunction set of field solutions of the open Fig. 4. Mode diagram for radiation modes in slab waveguide.
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Note that Re(k1 .) > 0, and the field in region (-1) has 3. GENERAL INHOMOGENEOUS
an incident term that is different from the one in Fig. 2. WAVEGUIDE
With this field distribution, at x = d, B exp(-ikd) = In this section we analyze a general inhomogeneous wave-
A exp(ikd)RO, is still valid. However, at x = 0, A = guis sin a lay ze a genesult s wareBRo, + ToE-1 , which is different from Eq. (10). This can guide, using a layered model. The results of Section 2 are
also be checked by matching the boundary conditions on E generalized from the one-layer slab to an N-layer medium
and H at x = 0. Equation (12) does not hold in this case, shown in Fig. 6. Assuming that a TE wave is incident in
and tHat kx can 0. rEation (12)mb oers; nthere d this cadi n region (-1) from the left, the reflection coefficient can beso that k, can be real numbers; therefore the radiation obtained in a recursive form (Ref. 8, p. 130, Sec. 3.3; note
modes exist. The modal structure of Fig. 4 is equivalent that here we use the coordinate system as in Sec. 3.5) as
to putting a source in region (-1) so that the wave is inci-
dent from x = - o. Now the k,1 value can change continu-
ously. Radiation modes form the continuous spectrum of r(k,, wo) = (16)
eigenfunctions of a dielectric waveguide. Continuous ra- A-,
diation modes along with the discrete guided modes, in
general, form a complete eigenfunction set in which the where A-, and B- 1 are the wave amplitudes shown in
field from an arbitrary source can be expanded.9 The Fig. 6:
continuous spectrum also includes the radiation modes
that are due to incident waves from the right-hand region 1 (1 - 1/RLo 2

)

(1). The analogy in quantum mechanics is that the un- r(ki.,w) = -L + (1R- 10 (17)
bound states are relevant to scattering problems; such R-lo 1/R-lo + Bo/Ao
problems characteristically involve a wave that is incident
from the exterior region." Here k,12 = k12 - k, 2 

> 0, The poles are the zeros of the pole equation
and there are two cases to be considered:

B0  1.
Bo ... 

(18)
Case (1) k, is real. k, < k,, and k I < kI. A 0  R-l0
This corresponds to the case in which the power is inci-

dent from the exterior regions, (-1) or (1) in Fig. 4. Matching the boundary conditions of E and H at x = di
Case (2) k, is purely imaginary. This means that gives

k1. > ki.
This case is sometimes referred as the evanescent

mode3"' 9 since the wave is exponentially decaying along Bo = exp(i2k~di) + (1 - 1/Ro, 2)exp[i2(ki, + k.)dl] (19)
the propagation direction +z. A, Rol 1/Ro, exp(i2k,,dl) + B,/A,

The radiation modes lie on the Sommerfeld branch cut. Here the poles of Bo/Ao are not the poles of r(ki,, co) be-
The same results are derived from the Green's-function
approach. These radiation modes are illustrated in
Fig. 3(c). Note that k, is always orthogonal to kR, which
can be proved by calculating k, kR and using k,'k," =
-kk,: so that k," kR = 0. k2-

In summary, the modal structure of a dielectric slab 0 x

(Fig. 5) shows the pole positions in the complex plane cor- X
responding to the modes for a fixed real wa. In Fig. 5, only x x
half of the complex planes are shown, owing to the defini- 0: guided mode

tion of Re(k,) - 0, Re(k,) ;- 0, and Re(k,1) a 0. Note that x: leaky mode
the radiation modes lie on the Sommerfeld branch cut and m: radiation mode
that the leaky modes are on the improper Riemann sheet. (a)

For numerical examples, the guided and the leaky modes
are calculated in the slab waveguide for two different fre- kk "
quencies. The first one is at microwave frequency f =-

12 GHz, d = I cm, e, = 10, ande e, = 1. Here ko-= Nk-
251 m- and (k2 - k12)•'2 = 754 m'-. For the TE polariza-
tion, by calculating the cutoff frequencies, f• = 5.Om GHz,
we find three guided modes. These are TE,,, TEI, and X kX k kk k
TE 2. Table 1 shows the calculated wave numbers, k., kI, 0p 0
and k,, for the guided modes and some leaky modes. kX

Another example is for the optical frequency, f =

2.255639 x 1014 Hz, corresponding to Ao = 1.33 jAm. The
parameters are d = 2.5 jim, e, = 12.96 (n = 3.6),
ei, = 12.6025 (n, = 3.55), ko = 4.7242 x 106 M-1,
(kW - k, 2)V2 = 2.8267 x 106 m 1 , k, = 16.78 x 10 m-', (b) (c)
and k = 17.02 × 106 m'-. The cutoff frequencies are Fig. 5. Discrete and continuous modes shown in complex (a) k,,

1.0 x 10"4m Hz. The results are shown in Table 2. (b) k,, and (c) k,, planes.
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Table 1. Modes of Slab Waveguide at 12 GHz

Modes k(m-') ki.(m-1 ) k,(m-')

Guided
TEo 247.36 i712.81 755.87
TE1  487.74 i575.66 628.20
TE 2  702.79 i274.51 372.30

Leaky (examples)
1 892.53 - i130.58 511.96 - i227.64 253.53 + i459.69
2 1530.85 - i271.30 1340.39 - i309.85 315.16 + i1317.84
3 3745.05 - i458.58 3669.45 - i468.02 469.11 + i3660.96

Table 2. Modes of Optical Slab Waveguide

Modes k,(10' m-) k1,(10 6 m-') k,(106 m-')

Guided
TEo 0.9749 i2.6532 16.9909
TE, 1.9170 i2.0772 16.9106
TE 2  2.7267 iO.7450 16.7990

Leaky (examples)
1 3.5616 - iO.6090 2.2858 - iO.9489 16.6537 + iO.1302
2 4.8427 - iO.9323 3.9845 - il.1331 16.3443 + iO.2762
3 6.1177 - il.1450 5.4565 - il.2837 15.9286 + iO.4398
4 7.3889 - il.3077 6.8474 - il.4111 15.3997 + iO.6274
5 8.6573 - il.4406 8.1975 - il.5214 14.7474 + iO.8457

cause at these values r is finite. For an arbitrary layer 1, The Ey fields in different regions can be written as

E-1 = B-1 exp(ikz)exp(-ik_.1 x)
BA exp(i2k,.d,,0) for region (-1), x < 0, (24a)
A, Rl(+,)

+ (1 - 1/Rj,, Jexpji2(k(j,,. + k~jd,1 } (20) E0 = exp(ikzz) [Ao exp(ikxx) + B0 exp(-ikzx)

+1R,,1 1• exp[i2k,,ixd,,1 ] + B1. 1/A,+1 (20) for region (0),0 < x < dI, (24b)

A, _ exp(-i2kjd,) El = exp(ikz) [A, exp(iklx) + B, exp(-iklxx)

B, RII-1, for region (1),d 1 < x < d 2, (24c)

+ [1 - 1/R,,,.i,2]exp{-i2[ka(,i, + khj.d(}1/Ri, .-1 , exp[- i2k,.-,,d,] + A,.-,/B,. 1- (1 +E = exp(ik~z)[A. exp(ik.,x) + B, exp(-ik,,x)

For the last layer n = t - 1, for region (n), d. < x < d,, (24d)

E, = A, exp(ikz)exp(ik,,x)

- = R., exp(i2k,,dj). (22) for region (t), x > d,. (24e)A.

Z eikzz wave

A direct result from Eq. (17) with R-10 = -1 is the nor- (-1) (0) (1) (n) (t)
malization condition for general inhomogeneous media, C

r(ki, i 0) = -1. (23) B.ie-ik.inx Boe.ikonx Ble.ikix

The modes in the medium are studied by assuming a // / eik.x

TEwavewithA- =OinFig.6. Aguided wave hasa real A.jeik-2,x Aoeiko~x Aleiki.x
k, and decays exponentially in regions (0) and (t) away 0 d, d2  d, d, x
from the waveguide; its energy is confined in the layered
region, with the thickness of the inhomogeneous region d,
assumed to be finite. If the e(x) approaches a constant as
x -- a, an infinitely extended medium can be reduced to
an equivalent finite-thickness medium. Fig. 6. Mode diagram in inhomogeneous medium.
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The necessary condition for the existence of any field that the poles represent the modes in the inhomogeneous
distribution in Fig. 6 is the guidance condition in each core region of the waveguide.
layer. For layer (1), Equations (29) and (30) are the conditions that any field

distribution of Fig. 6 must satisfy. Possible solutions of
R..'R_ = 1, (25) Eq. (18) can be studied in detail as in the single-slab case.

where R. = B,/A, and RJ = A,/B, are in recursive forms The results can be summarized into two cases: (1) guided
[Eqs. (20) and (21)]. modes, with purely imaginary k-1 . and k, and (2) leaky

For I = 0, the guidance condition is modes, with kl and k,, having both real and imaginary
parts. The guided and the leaky modes are discrete.

R.°R_° = 1. (26) Again, the radiation modes do not satisfy the pole equa-
tion [Eq. (18)], so that radiation modes are not poles of the

Matching the boundary conditions for the E and H at the reflection coefficient r(k1 ,,o). Radiation modes require
boundaries gives that there be a wave incident from region (-1) or region

(t), where k-,, and k,• are real numbers that can vary con-
R~ Bo _exp(i2k~d 1 ) tinuously from 0 to k 1 and 0 to k,, respectively. Since the
Ao Rol fields in one layer are dependent on the fields in all the

(1 - 1/Ro0 1 )exp[i2(k1, + ký)dl] other layers, the waves are considered to be guided in all
+ 1RR1 exp(i2kl~d,) + BILA, (27) the layers rather than in a single layer. For a continu-

ously varying e(x), the layered model can also be used by
R-0 An R-o0 . (28) making each layer sufficiently thin. All the above results

B0  are valid for continuous inhomogeneous media.

It is easy to see that the guidance condition for layer (0) is
the same as the pole equations (18) and (19). 4. IMPLICATIONS FOR INVERSE PROBLEMS

Next we show that all the other layers have the same Inverse-scattering problems are concerned with the recon-
guidance condition or, equivalently, that for any layers I struction of the physical properties of unknown objects
and I - 1 the guidance conditions are the same. The from information contained in their scattering data. In

contrast, direct-scattering problems are concerned with
Bi (exp(-i2k1,d) determining the scattered fields from known physical
A, - R1,,_1 properties. In inverse problems, the scattering data

r(kI, wo) are basically a set of measurements that relate r to
-[11/R1,1_, p{-i2[k,=,, + k,)]d,} (29) k1, or &w. To apply the G-L-M inverse-scattering theory,

1/Ru.,,, exp[-i2k,-,,d] + A-../RB, I] we approximate r(ki,,w) as a closed-form function. One
example is that the reflection coefficient r(k .,a)) is repre-and the guidance condition for layer (U - 1) is sented by a rational function of k,, or w, and r(k ,,o) is

exp[i2k.1_,.d] prescribed to have a finite number of poles and zeros;
typically for a good approximation many poles and zeros
may be needed, similar to circuit network synthesis."

+ [1 - 1/R,11,2 ]exp{i2[k,1 + k,-ld A, 1  (30) Closed-form solutions of the G-L-M integral equation of
1/P,1_,1 exp(i2k,,dl) + BIIA, / BI-, inverse-scattering theory can be obtained for some rational

functions of r(co).7 These closed-form solutions are impor-
Although Eq. (30) appears different from the condition tant not only in providing a benchmark for other numeri-

in layer (1), Eq. (29), it can be shown that Eqs. (29) and cal methods but in solving synthesis problems.
(30) are equivalent. They both can be reduced to an iden- As was discussed in Section 1, there are two kinds
tical equation. Equation (30) can be rewritten as of inverse profile problem, the identification and the syn-
Bi [ -/R,..,, 2 ]exp~i2[k,. + k,,,]d,} thesis problems. In practical profile identification prob-
BA-• \--lems it may be difficult to determine from the measured
A,( -exp[i2k,, _,..d,]R,, -1,1 + B,/A,., data the functional form of r(k,,w) that is determined

1__ _ -_ by the unknown permittivity profile. Although the poles
-R.,,• exp(i2kd,)) = 1, (31) and the zeros of r(ki,,w) can be obtained by using Bodediagram techniques together with analytic function ex-

which can be further simplified as tension methods, the rational function approach is more

Bi ((B,-,A,,)R,.,._. exp{-i2[k,, + k.,,,]d,} + exp(-i2k,,d,) 1. (32)
Al (Bu B,-1/A,, exp[-i2k,,-,,dt + R,,,_,,)

Through algebraic simplification, Eq. (29) can also be appropriate for synthesis problems. The synthesis prob-
written in the same form as Eq. (32). Thus Eqs. (29) and lem is to determine the permittivity profile needed to
(30) are equivalent. We have just shown that for all layers produce a prescribed reflection coefficient r(k,,,o). In
1 the guidance conditions are the same. This guidance the optical-waveguide-synthesis problem, the relevant pa-
condition is the same as the pole equation [Eq. (18)], so rameters are modeled by continuous functions"3 ; in the
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present example we use the transverse reflection coeffi- Again, this equation has an infinite number of solutions.
cient r(k1 ). Since r(kl,) will be in general combinations Note that zero-condition equation (36) can be obtained by
of transcendental functions, which is evident from our multiplying the right-hand side of pole-condition equa-
discussion of direct scattering, we rely on standard elec- tion (18) by Rol2. This implies that the zero condition and
trical engineering practice' 2 and approximate r(k 1 .) by a the pole condition are related.
rational function of the complex variables kl,. This func- As we saw in Section 3, r(k ,) in Eq. (17) is not a rational
tion can be specified by its pole-zero configuration. The function. In other words, r(ki.) is not exactly a rational
synthesis procedure is summarized as follows: (1) The function with a finite number N of zeros and a finite
possible modes that are needed in the waveguide are number M of poles:
specified. These determine the guided wave poles of the N

transverse reflection coefficient r(kx). A rational func- f- (k, - k,,)

tion r(kl,) is constructed from the pole-zero information. r(kl,) = ro L , (37M
(2) The G-L-M integral equation is solved to obtain the H (kx - k,,)
permittivity profile E(x). The modal information is used
to verify the answer. where r0 is a constant, k,,'s are zeros, k,p's are poles, and H1

The study of the correspondence between the poles of denotes multiplication. Since an exponential function is
the transverse reflection coefficient and the modes in an involved in both the numerator and the denominator, r(k 1,)
inhomogeneous medium can be applied to interpret the has an infinite number of poles and zeros. If a poly-
existing results in inverse scattering. Previous results`-7  nomial expansion (e.g., a Taylor expansion) is used in both
are from solving the inverse problem for r(w) data, which the numerator and the denominator, the number of terms
is an identification problem. In Ref. 5 a two-pole, no-zero used in the expansion determines the number of zeros of
rational function is used. These examples can illustrate the expanding function. Thus the representation with a
the analytical technique but cannot be used directly for finite number of poles and zeros of r(ki.) is only an ap-
optical waveguide design, since r(kl,) rather than r(wo) proximation. It is impossible to include the infinite num-
should be used in the optical-waveguide-design problems. ber of leaky poles in r(k i).
The wave equation in a dielectric medium (Fig. 1) at a The inverse-scattering method gives a profile of E(x) ex-
certain frequency w is tending from x = 0 to x -* +o. Finite width d of the

02E(k ., x) waveguide will require a truncation of the profile." This

+ kx 2E(ki,, x) = 0 for x > 0, (33) is another approximation.
The following implications can be drawn from the above

which is discussions. Rational function representations of the

'2Eikx,,,,xtransverse reflection coefficient r(kix,w) are used to ob-

+xi tam closed-form solutions of the G-L-M integral equa-
tion. Since it may be difficult to extract the pole-zero

for x Ž- 0. (34) configuration of the measured reflection coefficient, the
With q(xj = k0

2[el - ex)] the wave equation can be writ- rational function approach is more appropriate for the
ten in the same form as the one for r(w) data. The inverse- synthesis problem. In the application to optical waveguide
scattering theory of G-L-M5 '7 can then be applied directly design, r(k1 x) data need to be prescribed for a required
to r(kl,) data. operating frequency and certain modal information. The

The procedure using the inverse method to design an possible modes in the waveguide determine the poles of
inhomogeneous optical waveguide can be discussed fur- r(kl,). Rational function r(kl,) is an approximation of the
ther. If the guided modes are specified in the waveguide true reflection coefficient, and the corresponding inverse
and if the width d and the operating frequency w are pre- problem can be solved in a closed form.
scribed, the problem is to determine e(x). In general, this
problem can be solved only by numerical methods. If the
closed-form results obtained by applying the G-L-M theory 5. SUMMARY
are to be used, the first step in constructing a transverse The feasibility of applying the inverse-scattering method
reflection coefficient r(k,,) from the modal requirements with a rational reflection coefficient to optical waveguide
is critical. This is also the main concern in this paper. design has been studied. The pole-mode relation in the
So far we have discussed only part of this construction, rational reflection coefficient was derived by using a
i.e., determining the poles from the discrete modes. How stratified-medium model. It was shown that the pole con-
to determine the zeros has not been discussed. For the dition for the transverse reflection coefficient is the same
homogeneous slab waveguide in Section 2, the zeros of as the guidance condition for the modes in a general inho-
r(ki,) are found from Eq. (2), which gives mogeneous waveguide. All the poles of the reflection co-

R-,(, + Rol exp(i2k,d) = 0. (35) efficient correspond to the discrete modes, which are the

With Eq. (3) this gives exp(i2k,d) = 1, so that k, = nir/d guided and the leaky modes. The radiation modes are
for n = 0, :t1, - 2 ..... There are an infinite number of continuous; they do not appear as poles in the reflection
zeros of r-kl,-. For a general inhomogeneous waveguide coefficient but are represented by the Sommerfeld branch
inSection3,thezeros of r(k Foraageneral inhomogeeous wcut on the complex k. plane. In the application of the ra-
in Section 3, the zeros of rykl,) are found from Eq. (17), tional function approach to optical waveguide synthesis.
which yields poles in the rational reflection coefficient r(k,,) deter-

B0 = -R1  = Rol. (36) mine the possible guided and leaky modes in the wave-
Ao guide. To design the waveguide accurately requires a largt,
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number of poles and zeros in the rational function repre- 4. I. Kay, "The inverse scattering problem," Res Rep. EM-74

sentation of the transverse reflection coefficient. (New York University, New York, 1955).
5. A. K. Jordan and H. N. Kritikos, "An application of one-

dimensional inverse scattering theory for inhomogeneous
regions," IEEE Trans. Antennas Propag. AP-22, 909-911
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