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UNSTEADY FLOW DISTORTION PAST BLADES: OBJECTFIVES

GENERAL

"• DETERMINE FLOW STRUCTURE AT LEADING- AND TRAILING-EDGES
OF BLADING IN TERMS OF VELOCITY GRADIENTS REPRESENTING
PRESSURE SOURCES.

"• EMPLOY ACTIVE AND PASSIVE CONTROL TECHNIQUES TO
MANIPULATE CRUCIAL PHASE SHIFTS OF VORTICITY FIELDS PAST
BLADING.

DESIGN AND IMPLEMENTATION OF EXPERIMENTAL SYSTEMS

"* GENERIC, CONTROLLED SYSTEMS FOR STUDY OF BASIC CLASSES OF
LEADING- AND TRAILING-EDGE INTERACTIONS.

"* UNIQUE RADIAL FLOW MACHINE FOR SIMULTANEOUS ACTIVE
CONTROL AND FLOW VISUALIZATION.

DEVELOPMENT OF EXPERIMENTAL TECHNIQUES

"* TECHNIQUES FOR QUANTITATIVE BUBBLE AND PARTICLE TRACKING
VIA LASER DIAGNOSTICS.

"* METHODS OF EVALUATION OF IMAGES VIA LASER INTERROGATION.

"* APPROACHES TO TWO- AND THREE-DIMENSIONAL IMAGE
CONSTRUCTION.
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UNSTEADY FLOW DISTORTION PAST BLADES: RESEARCH PLAN

PHASE I

• DESIGN, CONSTRUCTION AND DEVELOPMENT OF:

•/ UNIQUE ROTATING MACHINE FOR VISUAL ACCESS AND
ACTIVE CONTROL

V CONTROLLER SYSTEMS FOR ROTATING MACHINE

•/ LASER DIAGNOSTIC TECHNIQUES FOR QUANTITATIVE FLOW
VISUALIZATION AND INTERPRETATION

EXPERIMENTAL STUDY OF GENERIC CLASSES OF LEADING-
/TRAILING-EDGE INTERACTIONS

PHASE H

"• PRELIMINARY STUDIES OF FLOW STRUCTURE IN ROTATING
MACHINE VIA LASER DIAGNOSTICS

"* ACTIVE/PASSIVE CONTROL CONCEPTS OF GENERIC EDGE
INTERACTIONS

PHASE HI

"* ACTIVE CONTROL STUDIES OF FLOW IN ROTATING MACHINE

"* CONTROL OF GENERIC EDGE INTERACTIONS
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PRINCIPAL MECHANISMS OF FLOW DISTORTION

RELATED TO NOISE GENERATION: CONCEPTS

INTERPRETATIONS OF PRESSURE SOURCE TERMS

V2p 2p IN8u8 0 Uz8V 1Di

-P V j A V) + V2(AV2 )}

I 2 vi T
-- &wi- I Tij -2Povivj

II. FAR-FIELD ACOUSTIC PRESSURE DUE TO FLOW DISTORTION IN FREE

SPACE

Expressions of (I) serve as source terms in inhomogeneous

wave equations. Solve for far-field density or pressure.

MI. FAR-FIELD ACOUSTIC PRESSURE DUE TO FLOW DISTORTION

ADJACENT TO SURFACE/BODY

(a) p(x,t) via Lighthill's Tij using deductive theory of surface effects.

(b) p~x~t) - XiaF

(b) p(,t) -- 4Fi (Curle, 1955)

Fi= Jpo,2Xi(y) - (i A V)(y, t - -U) d3y (Howe, 1989)

E - fr (• A w)d 3 x (Lighthill, 1986)
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PARTICLE IMAGE VELOCDM'RY (Ply)
VIA LASER DIAGNOSTIC METHODS

GOALS

"* INSTANTANEOUS VELOCTY FIELD ACROSS PLANE OF FLOW AT
ARBITRARY PHASE OF ROTATING BLADE SYSTEM

"* HIGH RESOLUTION MEASUREMENTS VIA SMALL PARTICLE
DISPLACEMENTS (~ 102 pm) AND MINIMAL INTERPOLATION.

"• CHARACTERIZATION OF VELOCITY GRADIENTS REQUIRED FOR
CALCULATION OF VORTICITY AND PRESSURE SOURCES

SYSTEM DEVELOPMENT

"• MINIMIZATION OF PARTICLE SIZE AND OPTIMIZATION OF IMAGE
FOCUSING VIA PROPER COMBINATION OF LASER SOURCE, CAMERA,
LENS SYSTEM

" IMAGE SHIFTING VIA OSCILLATING BIAS MIRROR

/ PRECLUDE DIRECTIONAL AMBIGUITY

V OPTIMIZE PARTICLE DISPLACEMENT AND FRINGE SPACING

" GENERATION OF HIGH-INTENSITY PULSED- AND SCANNED-LASER

SHEETS

V DUAL-PULSED YAG SYSTEM WITH BEAM COMBINER OPTICS

•/ SINGLE CW SCANNED ARGON-ION SYSTEMS (ACOUSTO-OPTIC
AND MIRROR SCANNER)

"• OPTICAL SYSTEMS FOR TRANSLATION AND ROTATION OF LASER
SHEETS

" INTEGRATED COMPUTER CONTROL OF

V LASER FIRING V IMAGE SHIFTING

V PUMP IMPELLER ROTATION V CAMERA TRIGGERING

V PUMP INLET FLOW V EXTERNAL SHUTTERS

* HARDWARE INTERFACING AND SOFTWARE DEVELOPMENT
RELATED TO FOREGOING
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GENERIC EDGE/SURFACE INTERACTIONS

TRAILING-EDGE INTERACTIONS

Z-- N/-

WAKE FROM TRAILING-EDGE UNDER- WAKE FROM STATIONARY TRAILING-
GOING SINUSOIDAL PERTURBATIONS EDGE WITH BOUNDARY-UeAYER SUCTION

WAKE FROM D-CYLINDER UNDERGOING WAKE FROM MILDLY NONUNIFORM
DUAL MODE EXCITATION CYLINDER PERTURBED SINUSOIDALLY

WAKE FROM CYLINDER UNDERGOING WAKE FROM STATIONARY TRAILING-
AMPLITUDE- AND FREQUENCY- EDGE WITH BASE BLOWING
MODULATED EXCITATION
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GENERIC EDGE/SURFACE INTERACTIONS

TRAILING-EDGE INTERACTIONS

m__ e
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GENERIC EDGE/SURFACE INTERACTIONS

LEADING-EDGE INTERACTIONS

WAKE ASYMMETRICALLY INCIDENT
UPON LEADING-EDGE WAKE FROM GENERATOR

PAST LEADING-EDGE

WAKE-GAP INTERACTONS IN
SYSTEM OF OSCILLATING CYLINDERS
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SIMULATED BLADE-BLADE INTERACTION:

DEVELOPMENT OF VORTEX AND PRESSURE FIELDS

V/U = 1.43 JI I l
U V Regime III

0.94 j
0.57

0.38 

•Regime 
11

Regime I
0.19

PV

f CYLINDER TO FREE-STREAM VELOCITY RATIO

II V/U DETERMINES RATE OF DEVELOPMENT OF
P I V LARGE-SCALE STRUCTURES IN GAP BETWEEN

I CYLINDER AND ELLIPTICAL LEADING-EDGE.

RELATIVE AMPLITUDES OF P1 (INVISCID) AND

I PV (VORTICITY) PRESSURE PEAKS AND

PHASE OF OCCURRENCE OF PEAKS (AT Ta

A , IAND Tb) ARE FUNCTIONS OF VELOCITY RATIO

V T + . V/U AND DISTANCE ALONG LEADING-EDGE.

44 T1 Tb
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EXPERIMENTAL SYSTEMS 16

CONTROLLED PUMP:
RADIAL FLOW IMPELLER-
DIFFUSER SYSTEM

Diffuser

Impel ler

U(t)

Unsteady inflow
generator

CONTROLLED WAKE-BLADE INTERACTION SYSTEM (PROJECTED)

y(t) -f R A

Side End
views Views

'An

CONTROLLED AXIAL FLOW
PROPELLER SYSTEM (PROJECTED)

U(t) D T- -O L

dl



ACTIVELY-CONTROLLED 17

PISTON COMPUMOTOR PUMPING SYSTEM

COUPLING

"TABLE

RAIL BEARING

PISTON SHAFT

LEAD SCREW

GUIDE RAILS

PISTON

0 - RINGS

INLET DUCT

CONTRACTION

IMPELLER DRIVE

_____ _' 'IMPELLER INLET DUCT

IMPELLER
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EXPERIMENTAL SYSTEMS

PLAN VIEW OF
IMPELLER-VANELESS
DIFFUSER SYSTEM

0 20 mm
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EXPERIMENTAL SYSTEMS

CROSS-SECTIONAL VIEW OF
IMPELLER-DIFFUSER SYSTEM

bs

DIFFUSER BLADE

DIFFUSER DISCS

b2 ,

IMPELLER

E qp in,!

0 1 I 2 I 3 I
0 10 20 30m m
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EXPERIMENTAL SYSTEMS

PLAN VIEW OF
IMPELLER-DIFFUSER
BLADE SYSTEM

DIFFUSER BLADE

IMPELLER

0 10 20 30 mm-.
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EXPERIMENTAL SYSTEMS: INTEGRATED ACTIVE CONTROL -

FLOW VISUALIZATION SYSTEM

CENTRAL

COMPUTER

INLETCHAMBER "' 1 FQ

INLET
DUCTING

N 1Id DUAL uIG

oI LASER SYSTEM

DIFFUSER
BLADE

IMPELLER

WJ+W
L FN I E R O IMAGE

SHIFTER

IMAGE •

INTERROGATION
SYSTEM

J NLET FLOW Q AND IMPELLER ROTATION N HAVE ARBITRARY
FUNCTIONAL FORMS AND PHASE SHIFTS.

-CENTRAL COMPUTER CONTROLS FLOW Q, ROTATION, AND
MULTIPLE FIRING OF YAG LASER SYSTEM AND CAMERA SYSTEM.

.CAMERA-IMAGE INTERROGATION SYSTEM GIVES INSTANTANEOUS
VELOCITY AND VORTICITY FIELDS.
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OVERALL RESPONSE TO CONTROLLED EXCITATION:
GENERATION OF MODULATED SPECTRAL COMPONENTS AND FLOW

STRUCTURE--HYPOTHESIZED MECHANISMS

.. L\ 4 . /fbpIF fp= 0

lfp

(a) IN ABSENCE OF INFLOW PULSATIONS AT fp, FLOW STRUCTURE TENDS

TO REPEAT WITH PERIOD l/fbp.

(b) IN PRESENCE OF INFLOW PULSATIONS AT fp, FLOW STRUCTURE

TENDS TO REPEAT AT DIFFERENCE FREQUENCY fp - fbp AND ITS

NONLINEAR HARMONICS.

(c) REINFORCEMENT OF THESE COMPONENTS AND GENERATION OF

ADDITIONAL DISCRETE COMPONENTS CAN ARISE FROM NONLINEAR

INTERACTION BETWEEN fp AND fbp IN BOUNDARY LAYER OR

SEPARATING SHEAR LAYER TO GIVE nfp ± mfbp.

(d) IF INFLOW FORCING HAS AMPLITUDE- OR FREQUENCY-MODULATED

FORM, THEN LARGE NUMBER OF SUM AND DIFFERENCE

COMPONENTS IS EXPECTED DUE TO MULTIPLE SIDEBAND

INTERACTIONS.

(e) FOREGOING PROCESSES CAN INFLUENCE RATE AT WHICH SPECTRAL

BROADENING OCCURS.

() SPECTRAL BROADENING SHOULD BE ENHANCED BY EXISTENCE OF

ADVERSE PRESSURE GRADIENT (VANELESS DIFFUSER) OR

SEPARATION ZONES (DIFFUSER OR CUTOFF BLADES).
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OVERALL RESPONSE TO CONTROLLED EXCITATION: GENERATION OF
NONLINEAR INTERACTION COMPONENTS

100

V. fBP 2fep 3 fBP@

10- 4fBP

ft/fBp-- 0

10-2

10-3

0 5 10 15 20 25 30 35 40
f D/V

0 fF 2 9
V" J 2fep

fF /faplO.196 02 Yap

.i
10-3 +io

" 0.

IC C 4i(
4 1

10- 
, _

0 5 10 15 20 251 30f fD/V Is

f 2f
* I

SfBP fBp

V

10-1

f F/fp"-0.39 02 . 3. f-

10- -

10-4
0 5 10 15 20 25 30

f D/V

The power spectral deumity of the velocity fluctuation V* is measured at the indicated () location at

the exit of the impeller. At a relatively low value of the inflow perturbation frequency fg. relative to

the blade paining frequency, (Bp, L~e, fF/fDp = 0.196, only the first harmonic UpF as well as nonlinear

interaction component. with 2fBp are pimt. Increauing the dimensionlem inflow perturbation

frequency to fF/fBp = 0.39 produce. pronounced mum and difference components between aF and fBP.



25

OVERALL RESPONSE TO CONTROLLED EXCITATION: ATTENUATION OF
FORCING COMPONENT AND GENERATION OF NONLINEAR INTERACTIONS

100f

V sP f

o-i

0-2

10- ' "-" T+

I C, I.10- j1 0 . +10. +0! •-

5 C4(14 .. ' ' '-

0 5 :10 15 1 20 251 30II1 fID/V,
1 1

0I
1 0fI I* I I

* S I

V BP I100 2f6 p 1
* fBOPS

V I

I W +

(d)," M,° M- M
10-15 C14 ,'•

0 5 10 15 20 25 30
f D/V

The power spectral density V* of the velocity component measured at the indicated (*) location at the
impeller discharge exhibits a large number of nonlinear interaction components between the inflow
forcing frequency fF and the blade passing frequency fBp. However, at these relatively high values of
dimensionless forcing frequency fF/fBp = 0.78 and 0.88, the spectral peak at the inflow forcing
frequency fF is completely attenuated.
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OVERALL RESPONSE TO CONTROLLED EXCITATION: 27
ALTERATION OF FORCING COMPONENT

100

V faP

10- 2fep Y Bp

f fF i4fBP

V f P ý 0 . 91 0 -2 2 f~ f

* . + I. + iI

+ a. a. . a.* m * o, • .,. I ,,- .4- ,*,.-

.3

V "

10-1

fF/fp-- 0.39

'*p=7T/4 0-2 :i :!
102

(c)
. 3 .*

I "
VI

10- _

fF/fBP=0.39 - '

1b 1p=7r/2 10.2

(d) 10-

0 5 10 15 20 25 30 35 40
f D/V

The power spectral density V* of the velocity fluctuation is measured at the indicated (*) location at
the impeller discharge. Excitation of the inflow only at a dimensionless frequency fF/f'p = 0.39,
where fF is the forcing frequency and fBp is the blade passing frequency, is represented by the top plot.
In the middle and bottom plots, there is simultaneous excitation of the inflow velocity and the impeller
tangential velocity, with the phase angle Oip between them.



OVERALL RESPONSE TO CONTROLLED EXCITATION: 28
ALTERATION OF FORCING COMPONENT

100

V fBP

10-1 • 2fBp 3fWP

fr 4fBP

VfF/fa=0.39 10- 2f

.a.

V 10-(b)=37/ 10 : :.L
ILI

: I

V"
10-

fFfBp=0"39 l"

:1':=• . I '

0 5 10 15 20 25 30 35 40

The power spectral density V* of the velocity fluctuation is measured at the indicated (*) location at
the impeller discharge. Excitation of the inflow only at a dimensionless frequency fF/fBp - 0.39 is
shown in the top plot. In the middle and bottom plots, there is simultaneous excitation 3oT the inflow
velocity and the impeller tangential velocity, with the phase angle Oip between them. The amplitudes
of the spectral peaks in the lower frequency range are strongly influen~ed by the value of Oip"
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OVERALL RESPONSE TO CONTROLLED EXCITATION: DECAY OF

DISCRETE SPECTRAL COMPONENTS IN VANELESS DIFFUSER

010

V 0-1 "

10- F

fF p BP--0039 f BP

e/r,"0.04 o2

-3

(o) ..
• . '4CL M

0 a 1110 15 20 25 30
a fD/V.

10o-
V* fF

lo- - _ _ BP

fF /Bp=0"39 10-2 -2f
e/r,=0.1 1

10-• J .

S~I
I

(b) -

10-4 =,

0 5 10 15 20 25 30
f D/Vi

The power spectral density V* of the velocity component is measured at the indicated (,) location
within the vaneless diffuser. Excitation of the inflow is at a dimensionless frequency fF/fnp = 0.39.
As the distance e, relative to the radius r. of the impeller, increases, the amplitudes of tile discrete
spectral components are altered. At large Aistances, the discrete spectral components are immersed in
the broadband level.
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DISCRETE SPECTRAL COMPONENTS IN VANELESS DIFFUSER

V 1001

fF /f 8 p--0-39 f

10-2
e/r.=O. 19

10.3

-4

0 : 5 10 15 20 25 30
fD/VI

10 0

f /f
10-I

e/r,=0.44

I0-3

(d)

10-4
0 5 10 15 20 25 30

f D/Vl



EFFECTS OF CONTROLLED EXCITATION IN PRESENCE OF DIFFUSER 31
BLADE: EFFECTS OF INFLOW AND IMPELLER PERTURBATIONS

100
f BP

V
2fep

10-1

fF/fBp=O 3fap

10 I l

(a) 10- . , 'II

* i

VI
10-1 fF

f1/fBP 1 0-2
, , I I I

/i. =L 0.

I I

PI

3 1 6 L

V I
1-1I

2f I

fF/fP =0.39 F F
C *

in C I L go
(b) % 4 M M *

10 4 .. I - I % - -4

10- 5 15

The~~~~ ~ ~ amltd othpoespcrldniyVoftevlcyfutaio n is mesrda+niae

BP B * /!B = 0.3 n t a
10-0

0 5 10 15 20 25 30

fD/V

The amplitude of the power spectral density V* of the velocity fluctuation is measured at indicated (.)
location between dischar~ge of impeller and leading-edge of stationary diffuser blade. In the top plot, no
external forcing i* imposed. In the middle plot, there is forcing only of tbe inlet flow at an excitation
frequency fF relative to the blade passing frequency fep, i*e. fF /fBP = 0.39 and at an amplitude of

the inflow Alocity V p relative to the mean inflow velocity off V p/Vp = 0.1. Finally, in the
bottom plot, the same excitation conditions were applied for the inflow, but in presence of a
perturbation of the tangential velocity of the impeller at a phase angle O#. = r relative to the inflow
perturbation. Very substantial manipulation of the discrete spectral components is attainable,
especially in the presence of simultaneous inflow and impeller perturbations.



EFFECTS OF CONTROLLED EXCITATION IN PRESENCE OF DIFFUSER 32
BLADE: EFFECTS OF INFLOW AND IMPELLER PERTURBATIONS

100

2fBP
10-1

fF/fBp=O 3fp.

V°

10-

fS

F /qpý----0.39 2f
* S

3f~

10F : :

l/fep=0"39

+ 04

(b) 10- C . I L +
CD a . . i I o

1 0 5 10 *5 20 25 3

10

VfD/.p p 10-

f 0.39.

/VPfD/V

The amplitude of the power spectral density V* of velocity fluctuation is measured at the indicated (*)
location between the discharge of the impeller and the leading-edge of the stationary diffuser blade. In
the top plot, no external forcing is imposed. In the middle plot, there is forcing only of the inlet flow
at an excitation frequency fF relative to the blade passing frequency fnP, i.e. ~ft-/ = 0.39 and at
an amplitude of the inflow Ivelocity VQp relative to the mean inflow v•elocity oPD •, Vp/V 1, = 0.3.
Finally, in the bottom plot, the same excitation conditions were applied for the inflow, but in presence
of a perturbation of the tangential velocity of the impeller at a phase angle Bi = ar relative to the
inflow perturbation. Very substantial manipulation of the discrete spectral comp)onents is attainable,
especially in the presence of simultaneous inflow and impeller perturbations.
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EFFECTS OF CONTROLLED EXCITATION IN PRESENCE OF DIFFUSER

BLADE: EFFECTS OF INFLOW AND IMPELLER PERTURBATIONS
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0.1. In the middle plot, both the Jd% and impeller we perturbed with serop'.

them, and in the bottom plot both the inflow and impeller are perturbed with a phase shift %6. -- r
between them. Theme results show that at this relatively low value of excitation frequency fF j3p-
0.1, it is necessary to perturb both the inflow and impeller in order to generate a large number of

nonlinear interaction components.
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The power spectral density V* of the velocity fluctuation is mea-red at the indicated (*) location

between the discharge of the impeller and the leading-edge of the diffuser blade for an off-design flow
coefficient 0 -- 0.188. In the top plot, no perturbations are applied. In the middle plot, there is
excitation only of the inflow at frequency fF relative to the blade paining frequency fB 'of fF, /fBp =0.67. In the bottom plot, there is simultneous excit+tion of the inflow velocity aulthe ihg-tia]

velocity of the impeller at a dimensionless frequency fF/fBp =0.67, and with the phase angle between
the perturbations of the Oip = ir.
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The power spectral density V* of the velocity fluctuation is measured at the indicated (,) location
between the discharge of the impeller and the leading-edge of the diffuser blade for an off-design flow
coefficient 0 = 0.071. In the top plot, no perturbations are applied. In the middle plot, there is
excitation only of the inflow at frequency fF% relative to the blade passing frequency fBP of
fF /fBP = 0.25. In the bottom plot, there Vsasimultaneous excitation of the inflow velocity and
taRgential velocity of the impeller at a dimensionless frequency fF/fBp = 0.67, with a phase angle
between the perturbations of 0ip = Ir.
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BLADE: EFFECTS OF INFLOW AND IMPELLER PERTURBATIONS
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The power spectral density V* of velocity fluctuation is measured at the exit of the diffuser in presence

of a stationary diffuser blade. In the top plot, perturbations of the inflow at frequency f relative to
the blade passing frequency f p of fF /fBp = 0.39 are applied. In the bottom pFOR, the same

excitation condition holds for &th the iflow and tangential velocity of the impeller, with the phase

angle tip = r between them. Note the large amplitude of the low frequency fluctuations generated in

both cases. Different discrete components are evident at this location, depending upon the condition of
excitation with or without perturbation of the impeller.
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OVERALL RESPONSE TO CONTROLLED EXCITATION: SUMMARY

POSSIBLE TYPES OF RESPONSE DUE TO OSCILLATIONS OF INFLOW
AT FREQUENCY fF

"* GENERATION OF LARGE NUMBER OF DISCRETE COMPONENTS AT

nfF k MfBP

"* ATTENUATION OF DISCRETE COMPONENTS AT fF AND fBP

"* ALTERATION OF LOW FREQUENCY, BROADBAND CONTRIBUTIONS

II. POSSIBLE TYPES OF RESPONSE DUE TO SIMULTANEOUS
OSCILLATIONS OF INFLOW AND IMPELLER AT FREQUENCY fF

* GENERATION OF LARGE NUMBER OF DISCRETE COMPONENTS AT
nfF ± mfBP EVEN AT LOW fF

* ENHANCEMENT OR ATTENUATION OF COMPONENT fF;
ATTENUATION OF COMPONENT AT fBP

I1I. POSSIBLE IMPLICATIONS OF FOREGOING DISCRETE RESPONSE FOR
LOW FREQUENCY, BROADBAND RESPONSE

" LOCAL ALTERATIONS OF LOW FREQUENCY BROADBAND
RESPONSE

" INITIAL CONDITIONS FOR SPATIAL DELAY OF DISCRETE
COMPONENTS TO BROADBAND FLUCTUATIONS IN VANELESS
DIFFUSER

"• INITIAL CONDITIONS FOR LOW FREQUENCY STALL
FLUCTUATIONS ALONG DIFFUSER BLADE
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UNSTEADY FLOW DISTORTION PAST BLADES

"* OBJECTIVES

"* RESEARCH PLAN

"* PRINCIPAL PHYSICAL AND THEORETICAL
CONCEPTS

"* EXPERIMENTAL TECHNIQUES

"* GENERIC CLASSES OF EDGE/SURFACE INTERACTION

V LEADING-EDGE

V TRAILING-EDGE

V LEADING-/TRAILING-EDGE

"* EXPER]MENTAL SYSTEMS

J/ GENERIC SYSTEMS FOR LEADING- AND
TRAILING-EDGE INTERACTIONS

V ACTIVELY-CONTROLLED PUMPING SYSTEM

"* FLOW STRUCTURE IN ACTIVELY-CONTROLLED

RADIAL-FLOW MACHINE

V OVERALL SYSTEM RESPONSE

OFLOW STRUCTURE AND PRESSURE SOURCES
IN VANELESS DIFFUSER

V FLOW STRUCTURE AND PRESSURE SOURCES
ALONG DIFFUSER BLADE OR CUTOFF

V FLOW STRUCTURE AND PRESSURE SOURCES
AT TRAILING-EDGE OF IMPELLER BLADE

v THREE-DIMENSIONAL NATURE OF FLOW
STRUCTURE
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FLOW STRUCTURE AND PRESSURE SOURCES

IN VANELESS DIFFUSER
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IN VANELESS DIFFUSER
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IN VANELESS DIFFUSER
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IN VANELESS DIFFUSER
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UNSTEADY FLOW DISTORTION PAST BLADES

"* OBJECTIVES

"* RESEARCH PLAN

"* PRINCIPAL PHYSICAL AND THEORETICAL
CONCEPTS

* EXPERIMENTAL TECHNIQUES

"* GENERIC CLASSES OF EDGE/SURFACE INTERACTION

V LEADING-EDGE

V TRAILING-EDGE

V LEADING-/TRAILING-EDGE

"* EXPERIMENTAL SYSTEMS

V GENERIC SYSTEMS FOR LEADING- AND
TRAILING-EDGE INTERACTIONS

V ACTIVELY-CONTROLLED PUMPING SYSTEM

" FLOW STRUCTURE IN ACTIVELY-CONTROLLED

RADIAL-FLOW MACHINE

V OVERALL SYSTEM RESPONSE

J FLOW STRUCTURE AND PRESSURE SOURCES
IN VANELESS DIFFUSER

(7 FLOW STRUCTURE AND PRESSURE SOURCES
ALONG DIFFUSER BLADE OR CUTOFF

V FLOW STRUCTURE AND PRESSURE SOURCES
AT TRAILING-EDGE OF IMPELLER BLADE

V THREE-DIMENSIONAL NATURE OF FLOW
STRUCTURE
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ALONG A DIFFUSER BLADE
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FLOW STRUCTURE AND PRESSURE SOURCES

ALONG A DIFFUSER BLADE
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ALONG A DIFFUSER BLADE
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ALONG A DIFFUSER BLADE
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UNSTEADY FLOW DISTORTION PAST BLADES

OBJECTIVES

* RESEARCH PLAN

* PRINCIPAL PHYSICAL AND THEORETICAL
CONCEPTS

EXPERIMENTAL TECHNIQUES

• GENERIC CLASSES OF EDGE/SURFACE INTERACTION

V LEADING-EDGE

V TRAILING-EDGE

V LEADING-/TRAILING-EDGE

EXPERIMENTAL SYSTEMS

V GENERIC SYSTEMS FOR LEADING- AND
TRAILING-EDGE INTERACTIONS

V ACTIVELY-CONTROLLED PUMPING SYSTEM

FLOW STRUCTURE IN ACTIVELY-CONTROLLED

RADIAL-FLOW MACHINE

V OVERALL SYSTEM RESPONSE

j/ FLOW STRUCTURE AND PRESSURE SOURCES
IN VANELESS DIFFUSER

V FLOW STRUCTURE AND PRESSURE SOURCES
ALONG DIFFUSER BLADE OR CUTOFF

V FLOW STRUCTURE AND PRESSURE SOURCES
AT TRAILING-EDGE OF IMPELLER BLADE

( THREE-DIMENSIONAL NATURE OF FLOW
STRUCTURE
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UNSTEADY FLOW DISTORTION PAST BLADES

" OBJECTIVES

"* RESEARCH PLAN

"* PRINCIPAL PHYSICAL AND THEORETICAL
CONCEPTS

"* EXPERIMENTAL TECHNIQUES

"* GENERIC CLASSES OF EDGE/SURFACE INTERACTION

V LEADING-EDGE

V TRAILING-EDGE

V LEADING-/TRAILING-EDGE

"* EXPERIMENTAL SYSTEMS

V GENERIC SYSTEMS FOR LEADING- AND
TRAILING-EDGE INTERACTIONS

J ACTIVELY-CONTROLLED PUMPING SYSTEM

* FLOW STRUCTURE IN ACTIVELY-CONTROLLED

RADIAL-FLOW MACHINE

V OVERALL SYSTEM RESPONSE

V FLOW STRUCTURE AND PRESSURE SOURCES
IN VANELESS DIFFUSER

V FLOW STRUCTURE AND PRESSURE SOURCES
ALONG DIFFUSER BLADE OR CUTOFF

V FLOW STRUCTURE AND PRESSURE SOURCES
AT TRAILING-EDGE OF IMPELLER BLADE

V THREE-DIMENSIONAL NATURE OF FLOW
STRUCTURE
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FLOW THROUGH IMPELLER DIFFUSER SYSTEM:
INSTANTANEOUS STRUCTURE IN CROSSFLOW PLANE
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FLOW THROUGH IMPELLER DIFFUSER SYSTEM:

INSTANTANEOUS STRUCTURE IN CROSSFLOW PLANE
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