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PREFACE

The work described in this report on the Structural and Vibrational
Analysis of a Plastic Annular Wind Tunnel Parachute Model was
undertaken during the period May 1991 to September 1991. The
funding was Program Element 62786D, Project No. 1L162786D283, Task
No. AJ, and Work Unit Accession No. HOO. This work was performed by
the Engineering Technology Division (ETD) of the Aero-Mechanical
Engineering Directorate (AMED).

The author wishes to express his appreciation to Mr. Keith Stein of
ETD for his help in this effort.
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STRUCTURAL AND VIBRATIONAL ANALYSIS OF A
PLASTIC ANNULAR WIND TUNNEL PARACHUTE MODEL

INTRODUCTION

A plastic annular parachute model will be tested in the U.S. Army
Aviation Systems Command Aeroflightdynamics Directorate
(AVSCOM/AFDD) wind tunnel at NASA Ames Research Center in Moffett
Field, California. AFDD has a closed circuit, single return,
continuous flow wind tunnel. The wind tunnel test section consists
of a 7-by 10-foot test area which is 15 feet long. The air speed of
the tunnel can be varied from 0 to 380 ft/s. The plastic parachute
model testing will be conducted at various speeds up to a maximum
of 150 ft/s. The wind tunnel test results will be compared to the
flow characteristics that have been predicted from the mathematical
model using the Computational Fluid Dynamics (CFD) code "“SALE"
(Simplified Arbitrary Lagrangian-Eulerian). SALE is being modified
by the Engineering Technology Division (ETD) of the Aero-Mechanical
Engineering Directorate (AMED) at Natick to predict flow fields
around parachutes (ref. 1). The wind tunnel test will determine the
experimental pressure field on and around the parachute model,
along with the velocity field and the drag. The test results will
provide a measure of the accuracy of the SALE code at this stage of
its modifications.

The rigid plastic parachute model is used instead of a flexible
fabric model to simplify the test set up and allow for downstream
supports which are discussed further below. The plastic parachute
model was fabricated from Acrylonitrile Butadiene-Styrene (A.B.S.)
and is axisymmetric in geometry to the flow direction. The model
dimensions and material properties are given in Figure 1. The model
test set up (Figure 2) was analyzed to predict the response of the
model system during the wind tunnel test. The test set up consists
of three "beam™ supports attached at one end to the rigid parachute
model. The farthest downstream end of each beam is attached to a
load cell which is mounted to a strut in the center of the tunnel
test section. These "downstream" supports are used to minimize the
distortion of the flow field around the parachute model and
therefore more closely represent the model used in SALE.

While the downstream supports may introduce an instability to the
model, minimizing the obstruction of the flow field upstream from
the model is considered critical for this wind tunnel test.
Upstream supports would of course provide stability. However, they
would also disturb the incoming flow field. Seven pressure sensors




are attached to the model along a meridional line. The pressure
sensors were inserted into predrilled holes on the model and
epoxied into position. The sensors have the same thickness as the
model in order to minimize the disturbance to the flow. The
required wires for the sensors were epoxied into small grooves that
were cut out of the model. The wires surface at the beam supports
and follow the beams downstream to the test stand. The analysis of
the final design does not incorporate the pressure sensor
attachments or the wire grooves. The parachute shell is considered
to be a homogeneous, isotropic structure. The three beams used for
the downstream support are considered to be simple Euler beams. The
ultimate goal of the analysis is to confirm that the plastic
parachute model with the three beam support will withstand the
loading caused by the wind tunnel.




Analysis

The analysis of the plastic parachute model was performed in stages
of increasing complexity. Each stage is a more accurate
representation of the model and provided the author increased
confidence in the results. The pressure distribution on the model
during the wind tunnel test was predicted using SALE, and the
maximum pressure was found to be approximately 0.27 psi. The
pressure distribution considered for the various models is taken as
a constant 0.5 psi to represent a "worst case" pressure. A brief
description of each of the major stages taken during the analysis
is listed below.

*The problem was first modelled by considering a flat circular
plate which was determined to represent a worst case for
deflection. The flat circular plate has a clamped inside diameter
and a free outside diameter with a constant "worst case" pressure
applied on one face. The exact solution from simple plate theory
was determined. The solution was also determined with the finite
element package NISA "Numerically Integrated Elements for System
Analysis" (ref. 2) using axisymmetric solid elements. This was the
first time NISA had been used by the author. The results of the two
analyses are compared.

*The second model considered is an axisymmetric model with boundary
conditions which restrict axial deflection of the farthest
downstream location on the model. A constant "worst case" pressure
is applied on the inside surface of the shell structure. Five
separate NISA runs were made using different NISA elements and the
results compared.

eThe third model considered incorporates the axisymmetric shell but
has nonaxisymmetric boundary conditions. Three of the farthest
downstream nodal points located at 120 degree intervals around the
axis of symmetry are constrained in the flow direction. A constant
"worst case" pressure is applied on the inside surface of the shell
structure. Two runs are made with different NISA elements and the
results compared.

eThe fourth model considered is the final design for the wind
tunnel test. The axisymmetric shell is coupled with nonaxisymmetric
boundary conditions. The shell is supported by three 3/8 inch
diameter beams. The beams are attac’~=d to the shell at one end as
described in the above case. The . .ner ends are attached to a
"sting" (supplied by ETD) which incorporates the load cell
(supplied by AFDD). The sting is considered to be a rigid support.
The beams are fixed to the sting at 120 degree intervals at a
radial distance of 3/4 inch from the axis of symmetry. Two sets of
beams have been fabricated for the wind tunnel test. The "long
beams" have an assembled length of 20 inches and the "short beams"
length is 15 inches. Both models are run using NISA and the results
tabulated.



As the above short descriptions indicate, a number of different
NISA elements and element combinations were used for the analysis.
The multiple runs on NISA served many purposes including a build up
in confidence of the finite element results, a comparison of
different NISA elements and an introduction to NISA and its
capabilities. The remainder of this report details the progression
of the analysis of the physical model.

FLAT CIRCULAR PLATE MODEL

The first model used to find an upper bound for the deflections of
the plastic annular parachute was a flat circular plate. This plate
model represents a worst case for deflection because the actual
model would be considerably stiffer due to its shell type
structure. The analysis of this simplified model of the parachute
also served as an introduction to two of the NISA capabilities
which are used throughout the rest of the analysis (1. static
analysis to determine deflections, stresses, and strains and 2.
eigenvalue analysis to determine natural frequencies and mode
shapes). A 0.25 inch thick plate with an inside radius of 5 inches
and an outside radius of 10 inches was analyzed. The plate is
clamped around its inside diameter, free around its outside
diameter and has a constant pressure of 0.5 psi applied along the
top surface. The pressure applied is a worst case pressure based on
the prediction from SALE and checked by a simple analysis of the
drag expected on the model at the wind tunnel test air speed
(150ft/s) . The governing differential equation (ref. 3) for the
plate with this symmetric loading is

ratalratals @

Et3 . (2)

where D=
12 (1-v?)

The four boundary conditions for the plate, two at the inside
diameter and two at the outside diameter, are
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The solution to the governing differential equation with these
boundary conditions and the parameters listed in Figure 1 is

4
w(r) =p[7771.r,7__3—0.291r21nr—11.43lnr+0.825r2+9.26] . (4)

The maximum calculated deflection of the centerline of the plate is
0.3 inches at the plate’s outside diameter. As discussed above,
this deflection represents a worst case for the actual model. The
stresses in the plate were also calculated and are

32928

G,(r)=P[-20.16r2+31201nr- 32928 _487¢.8) (5)
r
and
G (r) =P[-11.52r2+31201nr+ 32928 ¢556.57 . (6)
r

The plate model was also analyzed using NISA. The NISA model
consisted of eight axisymmetric solid elements (NISA element
NKTP=3) . The node and element numbering are shown in Figure 3. This
node and element configuration was used because it has already been
generated in a sample problem supplied with the NISA software. The
maximum plate deflections, radial stresses and the first three mode
shapes predicted by NISA are shown in Figures 4,5 and 6,
respectively. Note that all of these figures represent a cross
section of the plate from r=5 to r=10 inches. The mode shapes in
Figure 6 are as expected for the boundary conditions given by
equation 3 and the axisymmetric elements used. Table 1 below
summarizes the results of the analysis from theory and NISA.

The values of the first two natural frequencies predicted from
theory were obtained from reference 4. The values calculated from
theory are determined in ref. 4 by assuming a harmonic solution for
the governing differential plate equations including inertia terms.
This technique separates the time and space variables. Next, a
Fourier series solution is assumed to yield a set of differential
equations in terms of the Fourier coefficients. This eliminates the
theta dependence. The solution of these equations is in the form of
Bessel functions. The frequencies are determined by setting up the
appropriate equations in terms of the Bessel function solutions and
finding the roots of the equation generated by setting the
determinant equal to zero. The eigenvalues were calculated by NISA
using the "conventional subspace iteration method." This algorithm
(the simplest of four available methods in NISA) uses "simultaneous
inverse iterations with a set of vectors until the eigenvalues"
have reached a given tolerance. A "lumped mass" formulation
technique was used for all NISA runs.




TARLE 1 Theory vs. NISA Results for Flat Plate Model

TYPE OF ANALYSIS THEORY NISA

DEFLECTION AT r=10 (inches) 0.3006 0.2929
0.(5) at top surface (psi) 834 827
o, first natural frequency (HZ) 51.9 52.3
®, second natural frequency (HZ) 338 335
®W, third natural frequency (HZ) -—- 936

The results between NISA and theory are in very close agreement,
especially when considering the coarse finite element mesh that was
used. These results provide confidence in the NISA computer code.
The maximum predicted stresses are also well below the yield
strength of the model material (O, ,s=2,400psi).

AXISYMMETRIC MODEL USING NISA

The plastic parachute model was analyzed at this stage of the
analysis as an axisymmetric solid with axisymmetric loading of 0.5
psi pressure acting along the inside surface of the model. The
boundary condition used for this analysis is the vanishing of axial
deflection at the nodes on the model that are located farthest
downstream (positive y-axis). Five different cases were run using
four different NISA element types. The first three cases consisted
of axisymmetric elements for which the above boundary conditions
are sufficient. The last two cases used thin and general shell
elements, respectively, and required added constraints to restrict
rigid body motion in the y=constant plane. These added constraints
are described later. The final design for the test setup had not
been confirmed at this point in the analysis. Therefore various
node/element layouts were constructed of the parachute shell
structure which could be reused later with the final test setup
boundary conditions. These 1layouts were run and the results
compared for the present boundary conditions. The node points for
the first two cases were generated from the same Fortran program
(written by Keith Stein) used to generate nodes for the SALE
program. The Fortran program generates coordinates of points
located on the parachute model which is a portion of an ellipse. A
short description of each case is given below. A summary of all
five cases and the results of each case are located in Table 2.




TABLE 2 Axisymmetric Model with Axisymmetric Boundary Conditions
CASE # DESCRIPTION OF ELEMENT

1 Axisymmetric Shell Elements
2 Axisymmetric Shell Elements
3 Axisymmetric Solid Elements
4 Thin Shell Elements
5 3-D General Shell Element
CASE # 1 2 3 4 | ) |
L—-—-—————-—————!_——
NKTP= 36 36 3 40 20
# of Elements 16 50 100 384 384
# of Nodes/Elem 2 2 4 4 4
DOF /Node 3 3 2 6 6
Max UX (inches) 0.00343 ]| 0.00346 | -0.00369 | 0.00334 | -0.00338
Node # 9 26 112 9 213
Max UY (inches) 0.0174 0.0195 0.0171 0.0166 0.017
Node # 9 26 29 213 213
Prin. Stress 1 35.86 37.75 63.0 36.19 36.64
psi /Node # 9 26 120 298 230
Prin. Stress 3 -37.05 | -43.68 -84.5 -39.4 | -40.54
psi /Node # 4 9 18 259 225
®, Hz 92.17 89.84 101.7 38.84 37.58
W, Hz 302.4 315.5 481.8 39.1 37.76
w, Hz 363.6 374.4 547.3 68.01 66.89
W, Hz - - - 68.01 66.89
W, Hz - - —_——— 75.54 72.2
®, Hz - —_——— 75.54 72.2
®, Hz - -—- 101.5% | 101.0%

irs xisymmetric Mode

CASE 1l and 2

The first two cases used "axisymmetric shell elements" (NKTP=36).
Case # 1 consisted of 17 nodes (16 elements). The 17 nodes were
generated by the default output of the Fortran program mentioned
above. Case # 2 consisted of 51 nodes (50 elements). These nodes
were generated by a simple modification of the above mentioned
Fortran program. Figure 7 shows the node layout for Case # 1.
Figure 8 is a superposition of the undeformed and deformed shapes.
The layout for Case # 2 is similar.
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CASE # 3

The third case uses "axisymmetric solid elements" (NKTP=3). The
model has 153 nodes (100 elements). Figure 9 shows a portion of the
eleme¢t and nodal point numbering. The nodes for this case were
generated from a Fortran program which used the nodes of Case # 2
as input. The nodes from Case # 2 were used as the middle surface
nodes of the model and the program generated the inside and outside
surface nodes needed for the elements used in this case. The
Fortran program used a simple finite difference approximation to
determine the normal direction at each middle surface node and then
generated inside and outside surface nodal coordinates by adding
half the shell thickness in each direction. Figure 10 is a
superposition of the undeformed and deformed geometry for this
case.

CASE 4 and # 5

These cases use the "thin shell elements"™ (NKTP=40) and the "3-D
general shell elements" (NKTP=20), respectively. The difference
between these two elements is that the general shell elements
include the effect of transverse shear while the thin shell
elements do not. The finite element mesh is the same for both
cases. The model is made up of 408 nodes (384 elements). The node
point coordinates were generated in a Fortran program which used
the coordinates of the nodes from Case # 1 as input. The program
generates nodal coordinates at fifteen degree intervals about the
axis of symmetry (y axis). A view of a portion of the element/node
configuration is shown in Figure 11. The boundary conditions for
these cases had to be modified to eliminate rigid body translation.
This was accomplished by restricting "z" direction translation for
two nodes located on the x-axis and restricting "x" direction
translation for two nodes located on the z-axis. Figure 12 shows
the resultant deflections of the model for Case # 4. The figures
for Case # 5 are virtually identical to Case # 4, as can be seen by
examination of the results in Table 2. Also, notice (Table 2) that
these cases have six degrees of freedom (DOF) at each node so that
the first axisymmetric mode shape doesn’t appear until mode number
seven. The actual mode shapes are not shown for these models but
were visualized by the author while running NISA. The value of ®,
for Cases 1,2, and 3 in Table 2 are reasonably close to the values
of ®;, for Cases 4 and 5. The lower mode shapes for Cases 4 and 5
include twisting and bulging about planes of symmetry.

SUMMARY OF AXISYMMETRIC MODEL

The results of the five cases are very close (see Table 2). The
coordinates of the node numbers given along with the maximum
deflections and stresses are close to each other for all five cases
except Case # 3. The difference is due to the different elements
used. The third case has node points on both inside, middle, and
outside surfaces of the shell. The nodal principal stresses are
greater in magnitude on the inside and outside surfaces. The values

8




for the principal stresses on the middle surface are much closer to
the values given for the other cases. Note also that the natural
frequencies for Case # 3 are much higher than for Cases 1 and 2.
This is because the elements used in Case # 3 have only two DOF
(versus three DOF for Case 1 and 2) which significantly affects the
eigenvalue analysis. Any of these cases would be adequate to
represent the model if the boundary conditions were to remain
axisymmetric. In the perfect model the pressure distribution
produced by the flow field will be axisymmetric. However, during
actual testing, there will be disturbances which will cause
perturbations in the flow field. Therefore the fourth and fifth
case represent the plastic parachute model more accurately than
Cases 1,2, and 3. Vortex shedding will be present during the test
and the ability to excite the first six modes of Cases 4 and 5 are
possible. The first three cases can not predict these modes.

AXISYMMETRIC SHELL WITH NONAXISYMMETRIC BOUNDARY CONDITIONS

The best information available at this time indicates that the
actual plastic parachute test model will be supported at three
points. These points will be located at 120 degree intervals, at
the same radial distance, and at the farthest downstream axial
distance on the shell. These points are shown in Figures 13 through
16 as small black circles on the restricted nodes. These figures
will be discussed further below. The deflections for this model are
expected to be greater than the results in the last five cases but
still less than the flat circular plate deflections. The
axisymmetric elements of Cases 1,2 and 3 above are unable to
include this type of support boundary condition. Therefore only the
"thin shell elements" and "3-D general shell elements" are used to
model the parachute shell for this analysis.

The final design of the test setup had not been determined at this
time. Therefore, the next step was to be sure that the shell
supported at three points would withstand the pressure loading of
the wind tunnel test. The boundary conditions for NISA Cases 4 and
5 were changed to model the three point support. The three support
points were restricted from deflections in the axial (y axis)
direction only. Also, three weak springs were included to restrict
the rigid body translation of the shell without inducing any
significant stresses. Each of the three restricted nodes has one
spring attached to it and the other end of each spring is attached
to a fixed point on the y axis. Two other nodes are constrained to
restrict rigid body rotation. This was accomplished by restricting
two nodes on the x-axis of the shell from motion in the z-
direction. This restriction does not affect the static solution
because the loading is axisymmetric. However, these restrictions do
introduce some unexpected mode shapes. The results of the NISA runs
for the two models are listed in Table 3.

9




TABLE 3 Axisymmetric Shell, Threé Point Constraint

NISA ELEMENT TYPE NKTP 40 THIN SHELL 20 3-D GEN.SHELL
MAX RESULTANT DISPLACE- 0.04216 0.0407
MENT (INCHES) NODE # 83 83

PRIN. STRESS 1 (mid 260.5 259.1

surface) psi NODE # 1 1

PRIN. STRESS 3 (mid -132.7 -127.5

surface) psi NODE # 276 276
o, Hz 0.598 0.598
, Hz 24.74 23.8
, Hz 24.97 24.0
w, Hz 50.3 50.0
o, Hz 52.9 52.7
W Hz 72.75 70.3
W, Hz 74.83 71.4
Wy Hz 78.86 78.5
®, Hz 115.9 114.5
w,, Hz 137.6 130.7

The tabulated results show that the principal stresses are well
below the yield stress of A.B.S. Therefore the shell portion of the
model will not fail under the acticn of the worst case loading with
a three point constraint. The boundary conditions used are
equivalent to applying three point loads at the support connection.
Figure 13 shows the resultant displacements for the NKTP=40 model.
Figures 14,15, and 16 are the three principal stresses in the model
along the middle surface (NKTP=40).

The results from NISA around the three restricted nodes is a
critical area. The mesh was very coarse and consequently the
results near these restricted nodes is not expected to be accurate.
Therefore, a simple "handbook" calculation was performed as a rough
check on the principal stress near one of the three restricted
nodes. The resultant load in the y-direction (calculated by NISA)
for each of the three restricted nodes is 34.17 1lb. The formula
used (ref. 5) yields the principal stress in a spherical cap which
is loaded with a constant pressure about a small area with a given
radius. The radius was taken as 3/16 inch which corresponds to a
support shaft of 3/8 inch diameter. A value of 20 inches was used
for the sphere radius which represents a worst case for the model.
This calculation yields a maximum principal stress of 875 psi which

10




is still well below the yield point of A.B.S.

The first ten natural frequencies were calculated using NISA and
are also listed in Table 3. Eight of the mode shapes corresponding
to these eigenvalues will reappear and be discussed in the next
section. Mode numbers one and nine are particular to the set of
boundary conditions used for this model. Mode number one is due to
the three springs in the model. The model simply oscillates up and
down the axis of symmetry (y—-axis) due to the three springs which
are fixed to the y-axis. Mode number nine is related to the
artificial constraints that were added to the model to restrict
rigid body rotation about the axis of symmetry. Neither of these
mode shapes will be possible in the final model.

FINAL DESIGN OF MODEL WITH THREE BEAM SUPPORT

The model design was finalized through discussions with personnel
at AFDD by Keith Stein of ETD. The existing wind tunnel support
structures at AMES, including a load cell, were examined. The
existing equipment was determined to be well-suited for the
proposed test. The loads from the plastic parachute model on the
existing support structure at AMES will be well below any of the
upper limits of the equipment. AFDD is also equipped with some flow
visualization <capabilities. Therefore, ETD’s only physical
requirements for the test are to supply the plastic parachute
shell, the three beam supports and a "sting" which fits over the
existing load cell at AFDD. ETD will also provide the pressure
sensors and some related electronic equipment which 1is not
considered in the present analysis. The "sting" which fits over the
load cell is made from a cylindrical piece of steel which has a two
inch outside diameter. The sting is considered "fixed"™ for this
analysis. The three beams slide into predrilled holes in the sting.
Each beam is held in place by two set screws which thread through
the sting. The beams are fixed at a radial distance of 3/4 inch
from the y-axis, which runs through the central axis of the
cylindrically shaped sting. The diameter and length of the beam
supports were chosen after considering buckling possibilities for
the beams. A single beam was considered with a compressive load
applied in the axial direction. A simple Euler column with one
boundary fixed and one pinned was used to model the beam. The
equation representing this model is given below.

n?EI

| UL (7)
critical W W

where I=

Optimal beam lengths of 15 inches and 20 inches and a diameter of
3/8 inch were determined for minimal flow obstruction. Having the
option of two different beam lengths for the testing is important.
The possibility of vortex shedding from the model for a given wind
tunnel speed at or around the same rate as the first few eigenmodes
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may lead to "noise" in the data being collected. The ability to run
the test at these wind speeds with a different set of beam lengths
will permit the collection of more usable data. The critical load
for a 3/8 inch diameter beam with a length of 20 inches is 180 1b.
The largest expected axial force in one beam is between 10 and 20
lb, therefore the model will not fail due to buckling.

Final Design NISA Runs

The final design was analyzed with both the short beams (15 inches)
and the 1long beams (20 inches). The 3-D General Shell Element
(NKTP=20) is used to model the plastic shell with the same element
mesh used in the previous runs. The beam supports are modelled with
the NISA 3-D General Beam Element (NKTP=39). Each beam support is
modelled with one element. The elements are fixed to the shell at
one end and fixed in space at the other end where the beams are
attached to the sting. This model requires no springs or added
constraints because the fixed ends of the beams at the sting
restrict all rigid body motion. The beam elements are given a
circular cross section with a diameter of 3/8 inch. The actual
beams will be made of steel and the properties used for the runs
are listed below.

Youngs Modulus (Beams) = 30E+06 psi
Density (Beams) = 7.342E-04 lbfsec?/in®

The results of the runs with the short and long beams are
summarized in table 4 below.

Table 4 Final Design Short & Long Beam Supports

TYPE OF ANALYSIS SHORT BEAMS LONG BEAMS SHAKE TEST
SHORT/LONG
MAX RESULTANT DISPLACE- 0.0504 0.051¢ | -————-
MENT (INCHES) NODE # 83 219
PRIN. STRESS1 (top 344.3 353.5 | —-—e--
surface) psi NODE # 1 1
PRIN. STRESS3 (bottom -505.4 -496.2 | —-—=--
surface) psi NODE # 140 140
W, Hz 9.134 5.92 | —=m——-
®W, Hz 10.79 7.286 8.6 / 6.2
®, Hz 10.79 7.286 8.6 / 6.2
®, Hz 25.48 25.19 | —e=m——-
0, Hz 25.48 25.19 | —-m——-
w, Hz 58.08 53.5 | =—==--
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o, Hz 58.08 53.5 | —-==-=-
Wg Hz 68.72 68.08 | ~-———--
W, Hz 71.48 71.48 | —————-
W,, Hz 73.61 73.22 | ---—--
w,, Hz 130.7 130.7 | —e-—-—-
W, Hz 130.7 130.7 | ——-——-—

The results for the principal stresses are similar to the results
from the last section for most of the shell except near the three
support locations. This is because the boundary conditions are
different at these supports. The beams are considered fixed to the
shell at these three points and the contact area is increased from
the previous cases. The principal stresses are well below the yield
strength of the A.B.S. plastic. The deformations are larger for
these runs compared to the last case because NISA is giving the
resultant deflection of each node. The nodes on the plastic shell
are experiencing more axial deflection due to the three beam
support. Figures of the deformation contours and stress contours
are not shown. They are very similar to the contours given in
Figures 13-16. The first twelve eigenvalues are also given for each
run. The mode shapes for each eigenvalue will be discussed next.

Mode Shapes
The first three mode shapes are shown in Figure 17. These include

the expected torsional and cantilever modes due to the presence of
the three beam supports. Note that the influence of the beams on
each mode shape can be seen by observing the difference in
magnitude between the eigenvalues of each run. A "rap test" was
conducted by AVSCOM/AFDD and ETD personnel at NASA Ames Research
Center to experimentally determine the natural frequencies of the
assembled model. Two accelerometers were attached to the model and
the model was set in motion by displacing or tapping it at various
locations. The cantilever motion was the least damped and the only
mode visible to observers. The frequencies are given in Table 4
above. The only other dominant frequency found during the rap tests
was in the 42 to 48 hertz range. The corresponding mode shapes were
not determined. These frequencies may be related to the support
structure to which the model was mounted.

The fourth and fifth mode shapes are shown in Figure 18. This
figure and the rest of the mode shape figures are a superposition
of the undeformed model and the scaled deformed mode shape of the
model. Mode shapes that are similar to each other are not shown
separately. The fourth and fifth mode shapes are a double bulging
in the plastic shell with the largest amplitudes appearing at the
farthest upstream locations on the shell. The fourth mode is shown
in the figure. The fifth mode can be visualized by simply rotating
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the x,z plane about the y-axis by 45 degrees. These shapes are
expected because the plastic shell is considerably stiffer at its
downstream end than its upstream end. Also, the fourth and fifth
mode shapes are almost identical to the second and third mode
shapes of the last section. The slight difference in the magnitude
of the eigenvalues is due to the different boundary conditions for
each model. Modes six and seven are shown in Figure 19. These
involve a twisting in and out of the x,z plane. These modes also
appear as modes four and five from the last case. The similarity of
the shapes and the similar eigenvalues for these runs show that the
three beam support has little effect on these modes. The eighth,
ninth and tenth mode shapes are also similar to each other and are
shown in Figure 20. They involve a triple bulge in the shell
structure. Mode shapes eight and ten bulge radially about the three
beam supports. Mode nine can be visualized by rotating the x,:z
plane by 22.5 degrees about the y-axis. These mode shapes are also
viewed in the previous three point boundary condition cases as
modes 6,7, and 8, respectively. Mode shapes eleven and twelve are
shown in Figure 21. They involve a four-way bulging effect. Mode
shape eleven is shown and mode shape twelve can be visualized by
rotating the x,z plane by 22.5 degrees about the y-axis. Mode
eleven also appears in the previous cases as mode number ten. The
eigenvalues for these <cases are nearly identical. Higher
eigenvalues and the corresponding mode shapes are not expected to

significantly affect the wind tunnel test of the plastic parachute
model.
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CONCLUSIONS

The major purpose of this report was to evaluate the structural and
vibrational characteristics of a plastic parachute model which will
be stressed during a test at the U.S Army AVSCOM/AFDD wind tunnel
at NASA Ames Research Center. The results of the wind tunnel test
will be compared to the theoretical results which have been
determined by Keith Stein at ETD by modifying the computational
fluid dynamics code SALE. The paper examines various models of the
plastic parachute. The model is analyzed in stages of increasing
complexity which helped lead to the final design. The intermediate
steps taken during the analysis towards the final design were
carefully checked and compared to each previous step. Each step
therefore has yielded a greater confidence in the final results.
The parameters used are either real measurements or heavily scaled
values to insure a high safety factor for the wind tunnel test.

The analysis of the various models revealed no major problem areas.
The largest calculated stress at any step of the analysis is still
significantly less than the yield strength of the A.B.S. plastic
used to construct the plastic parachute shell. The eigenvalues and
mode shape calculations helped to visualize the various types of
shapes and deformations that could occur during the test. The major
conclusions of this analysis are:

(1) The expected deflections in the model during the wind tunnel
test will be insignificant.

(2) The stresses in the model during the test will be well below
the yield strength of the model material.

(3) The model supports will not buckle during the test.

(4) The vibrational characteristics of the model may introduce
noise in the data but will not cause failure of the model.

(5) The model will not fail during the wind tunnel test.
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Figure 4. Plate Deflections
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Fiqure 7. Node Numbers for case 1
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Figure 8. Superposition of deformed and undeformed cross section
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Figure 9. Node and Element numbering for case 3
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Superposition of deformed and undeformed model case 3
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Figure 11. Node and Element Numbering for Case 4 & 5
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Figure 12. Resultant displacements case 4
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Figure 13. Resultant Displacement Three Point Constraint

Stress Contour Lines on F.E. Grid

Stress (psi)
Max

Figure 14. Middle Surface Principal Stress O,
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Stress Contour Lings on F.E. Grid

Figure 15. Middle Surface Principal Stress O,
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Figqure 16. Middle Surface Principal Stress O;
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Figure 21. Mode Shapes 11 and 12
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