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1. INTRODUCTION

To determine the accuracy of artillery fire one measures the coordinates of the
shell's burst point in repeated firings and calculates an average burst point and its
scatter from these measurements. The task amounts to the computation of an average
vector in e?. The accuracy of each observed vector is known from an analysis of the
actual measurements and depends mainly on the geometry of the setup and properties of
the measuring instruments (theodolites in general). We characterize this accuracy by an
estimated variance-covariance matrix of the vector components. If the cannon would
fire every time exactly alike (i.e., if the event scatter would be zero) then the burst-point
coordinates could be obtained from these data by a weighted averaging where the
weights are the inverses of the variance-covariance matrices. However, in real life the
event scatter can be of the same order or even larger than the measurement scatters.
Also, in general the principal directions of the event distribution are different from the
principal directions of the measurement-error distributions. Therefore, a weighted
averaging in R3 can produce unacceptable results. On the other hand an unweighted
averaging would not take into account the estimates of measurement errors that can be
quite different for different observations. In this paper we present a new algorithm for
the computation of an average vector that does not have the disadvantages of
unweighted or observation-weighted averages. The algorithm provides in addition to
the average vector, also an estimate of the event variance that is consistent with the
observations and their estimated variances.

In Section 2 we define a problem of vector averaging in JR" that corresponds to the
outlined artillery problem and propose a solution. Section 3 contains some examples
and Section 4 is a summary.

2. ESTIMATION OF AN AVERAGE VECTOR

Let the observed vectors be zi E B", i - l,...,s and let the estimated variance-
covariance n X n matrices of the observations be Qj, i = 1,...,s. Let the unknown
average vector be a . R" and the variance-covariance matrix of the event be P. The
model equation of the event is

f(x,a) = x -= a ()

We define the least-squares value of a as the solution of the following constrained
optimization problem.



Minimize W =ý ,( cTQJlc, + birP-'b) (2)

subject to (3)f(xi +ci, a +bi) = xi + ci- a -bi = 0O, iffl..s

where ci is the correction of the i-th observation and bi is the deviation of the i-th event
from the average a.

To solve the minimization problem we introduce a modified objective function IW
using Lagrange multiplier vectors ki:

8$rv=IE(ciTQi-lci + birP-'bi ) lkiT (x. + ci_- a -- bi) .(4)

2 i-I I SI

We obtain a system of normal equations by setting equal to zero the partial derivatives
of W with respect to ci, bi, a and ki. The result is

Qi-lci - ki --0, i-= 1,...,e ,

P-bi0, i ,...,

a (5)
Zk, =0,

xi+ci-a-bi -0, i-1,..., .

Eliminating the ki we obtain the following simpler equation system

a = [(Qi +Pri1 ~(Qi + PYz 1i
bi = P(Q+P )- (i a) , i-1,...,s , (6)

ci= -Qi( Qi+P)-1 (x -a) , i = I,..... .

We also obtain

8 a

W,= .biQP-b, = EI (xi - a)T( Q, + P )P Qi + P )-1 (xi - a) , (7)

I-iI S8wc=, cTrQ. c, -- El (--, - a)'( Qi + P)- Q, Q, + P )-, (x, - a), (8)

W= W 4 + WC f (xi - a)' (Q, + P)-' (x - a) (9)

and the variance of weight one
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Vo W w . (10)Vo-n(s--1)

Let the total variance-covariance matrix including both the measurement scatter
and the event scatter of the observed zi be R3,. Then the variance-covariance matrix of
ais

4, (Q + P )-11 (Q, + P)R 2 (Q+P)-1 I [ (Q+ P )-'J- (
i-i i-I

If we estimate as usual
R•fiUo (Qi,+ P) S ~ ,., (12)

then it follows from eq. (11)

R -=o [,. (Q, + P )-1] Rn ]1 (13)

The formulas (6) through (13) provide the general least-squares solution of the averaging
problem if the Q, and P are known. In practice such a situation is an exception, because
ip general P is not known. Therefore, commonly used are two special cases of the
solution that are based on the assumption that either the Q, or P can be neglected. We
now outline these special cases.

In the first special case we assume that P =-0, that is, we assume that either the
event scatter is negligible or that the estimated Q, already contain the matrix P. With
this assumption we obtain from eqs. (6) and (13) the usual observation-weighted least-
squares averaging formulas:

a I Q,-]1I Q-'T (14)
bi= i i I

b,=ia , i I= ,...,s ,

R,-av-[ ,i .,1 ,(16)

Usually the Qj are jositive definite matrices but in some applications they may be only
semi-definite. Also, the sum of their inverses in eqs. (14) and (16) is not necessarily
positive definite. The formulas are, however, generally valid if Moore-Penrose
generalized inverses are used in both formul

In the second case we assume that the measurement errors are negligible, that is,
Q-= 0 for all i = ,...,. (or that all Qj are equal and included in P). In that case
eqs. (6) and (13) provide the formulas

-3-



1 8
a =-- I , (17)

8 t-
bj~i-- -a , i--,., ,

Re = VO ±p (19)

Equations (17) through (19) are the formulas for simple unweighted averaging. To
complete the calculation we also need an estimate for F. The usual estimate is

5'

PfiPf=& b bT, (20)
i--1

where the factor a is determined such that vo equals unity. To that end we compute

#(x, - a)' - (x, - a) ,(21)
i--1

a=n (s-i) (22)

and obtain for the variance-covariance matrix of the average

SPP (23)

As in the first case, we use the Moore-Penrose generalized inverse in eq. (21) if the
matrix P is not positive definite.

In real life, estimates of the Q, usually are available but P is not known so that
the general formulas cannot be used. If also neither of the two special cases apply one
needs a method that provides an estimate of P concurrently with the average vector a.
We propose for this purpose the following iterative algorithm. It produces an estimate
of P and solves the general problem, eqs. (2) and (3), using this estimate. Because the
solution takes into account the distribution of the observed vectors zi we call the
resulting a the distribution-weighted average.

We initialize the iteration with an unweighted averaging

1 8
a. = X , (24)

bo=i -- a, i= 1,..., , (25)

and obtain an initial estimate of P

-4-



T

-boj b ' ,(26)

Uo=-b.. lb", (27)

p= U (28)
n - 1)

Next, we update the initial estimates of a and bi and obtain an initial estimate for the
scaling factor a.

a - , [- ( P)-'] (Qi + P)- z , (29)

bj,j--P,(Q + Pj)-1 (zi -a,), i--l,...s , (30)

a
P,= - b1 ' bT , (31)

U - T, P1b. 1 (32)

e= (33)

n(s-I)

In subsequent iteration steps we do update P but keep the value of of unchanged. The
iteration formulas for k = 1,2,... are

P+ --= Pk ,(34)

=,- [ ,l (Q, + P,,)- ]- ,l, (Qi, + Y' ,, (35)

bk+l,i Pk+1 (Q, + Pk+,)-1 (zi - ak+i) , i = 1,...,s , (36)

S= ,-1 b T+1 , " (37)

The variance-covariance estimate R. of the average is computed with eqs. (9), (10) and
(13). Iteration end conditions can be expressed, for instance, in terms of changes of the
elements of a and Ra. Experience shows that the average vector a becomes stationary
after a few iteration steps whereas the elements of R. need more steps to meet such
convergence criteria. Convergence enhancement techniques were found unnecessary in
numerical experiments with this algorithm.

The result of the iterations depends on the scaling factor a that was initially
estimated by eq. (33). We want to determine its value such that the variance of weight

-5-



one vo, defined by eqs. (9) and (10), equals unity. We achieve this by embedding the
iteration eqs. (34) through (37) in a regula falsi algorithm for the solution of the
equation v(ac) = 1. In general, a solution with positive a exists if vo(0) > 1, because v.
decreases with increasing a. If v%(0) < 1 then the estimated observational errors (the
matrices Qj) are so large that a solution with a = 0, i.e., with neglected P suffices to
explain the data.

The final result of the calculations is a solution of the general minimization
problem, eqs. (2) and (3), whereby the event variance matrix satisfies eq. (20) and
Vo = 1.

3. EXAMPLES

We present two examples. The first example is chosen to illustrate the main
characteristics of the three types of averaging. In the second example we use actual
data.

In the first example we compute the average of three points on a straight line in a
plane. The coordinates of the points are (0.5, 2.0), (1.5, 2.1) and (8.5, 2.8). We assume
that the observational errors are equal for all three points and given by the following
estimate of their variance-covariance matrix

2.0 2.0Q- 2.0 2.0 •

The matrix Q is not positive definite which means that the observational errors are
distributed in a subspace of R 2 , that is, along a straight line. In other words, the
observational-error ellipses are degenerated into error bars. Figure 1 shows the data
and the result of a weighted average. The coordinates of the average are (3.5, 2.3) and
the variance-covariance matrix of the average is

R ( 0.95792 0.957921
0.95792 0.95792 "

The corresponding standard-deviation ellipse is again degenerated and shown in Figure 1
as a dashed line. The location of the average point is reasonable but its estimated
variance is not because the structure of the variance-covariance matrix that is computed
with eq. (16) is independent of the observations and does not reflect the event scatter.

Next we use the same data and compute their unweighted average by eqs. (17)
through (23). The average vector is the same as in the previous calculation but its
variance-covariance matrix is

R r4.75 0.475
- 0.475 0.0475 "

The result is shown in Figure 2. The image of the one-standard-error ellipse of the

--6--
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0 2.
z // /

1. /

-2. 2. 6. 10.
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Figure 1. Observation-weighted average.

average is an error bar in the direction of the scatter of the observations, because in this
case R. is independent of the observational-error variances.

5.

4./

- /
L_ 2. -_"
0
z

0. //
-2. 2. 6. 10.

East, m

Figure 2. Unweighted average.

Finally, we compute the distribution-weighted average by iteration, eqs. (24)

through (37). The average vector again is the same as before. Its variance-covariance
matrix is
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R 4.12682 1.13567.1.13567 0.73027 "

Figure 3 shows the corresponding one-standard-error ellipse. The figure also contains
the correction vý-tors bi plotted as rays from the average point. The end points of the
bi are indicated by dots. In this example, all vectors bi are parallel so that their end
points are located on a straight line and the matrix P, eq. (34), is only positive semi-
definite. The image of the ellipse representing P is a segment of a straight line in the
direction of the bi. The differences between the dots and the corresponding observations
(inverted triangles) are the corrections ci. We observe that all corrections ci and bi are
in the direction of the corresponding error bars, as they should be. In this example the
iteration with eqs. (34) through (37) became stationary after two steps. The initial
scaling factor and the variance of weight one were, respectively, a =0.250 and
Vo =-1.008. After three regula falsi steps, we had the values a =0.252006 and
V. = 1.00006.

5.

4. _

- *

"0 2. _ __ _

0 .
-2. 2. 6. 10.

East, m

Figure 3. Distribution-weighted average.

In our second example we use actual observations of artillery burst-point
coordinates. The observations are three-dimensional vectors consisting of range,
deflection and height of the burst. The coordinates of each vector were obtained from
simultaneous measurements of directional angles of the burst points from four
observation towers. An analysis of these measurements provided the components of
each burst location vector and estimates of the accuracies of the burst points in form of
the variance-covariance matrices Qj. The estimated accuracies of the observations vary
widely and are in this example smaller than the scatter between the burst points, but
are not negligible. The observation set in our example consists of eight observed burst

-8-



points from the same howitzer. Figures 4, 5 and 6 show the observed points as inverted
triangles and their distribution-weighted (iteratively determined) average as a diamond.
The figures also contain the projections of the corresponding one-standard-error
ellipsoids. The standard-error ellipsoid of the average, defined by Ra, is plotted with a
dashed line. The standard-deviation ellipsoid of a single shot is represented by the
matrix P and plotted with a dotted line. We note that contrary to the appearance in
the plots P is not proportional to R.: the relation between P and R. is given by
eq. (13). The correction vectors bi are plotted as rays from the average point, as in
Figure 3. We observe that these corrections are in general not in the direction towards
the observations, but towards other points such that the corrections bi and ci are in
directions of large error estimates thus minimizing W, eq. (2). The initial value of the
scaling factor was -=-0.143 for a variance of weight one of vo =1.137. After four
regula falsi steps, the results were a = 0.176998 and vo = 1.00004. The iteration for a
and bi, eqs. (34) through (37), required eight steps at the beginning and three steps at
the end of the calculations.

30.

20. X2\

- 0.

' -10.

-20.

2400. 2500. 2600.
Firing range, m

Figure 4. Burst-point range and deflection.

To illustrate the advantage of the distribution-weighted average we show in
Figures 7, 8 and 9 the usual observation-weighted average [eqs. (14) through (16) 1 of the
same observations. We notice that in this example the result is completely unrealistic
because the observation-weighted average burst point is shifted far outside the cloud of
observations. From an inspection of the figures, we conclude that this shift is caused by
the high sensitivity of the location of the average to the estimated principal directions of
observational errors. The variance of weight one was in this case vo = 5996 indicating
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Figure 5. Burst-point range and height.

1000.
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E 700.

.. 600.

500.

400.

300. •
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Figure 6. Burst-point deflection and height.

that measurement errors alone are not sufficient to explain the data scatter.

4. SUMMARY

We have considered least-squares computations of vector averages. We assume
that the observations in an n-dimensional space contain inaccuracies from two sources:
observational errors and variations of the observable itself, that is, event scatter.
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1600. 2000. 2400. 2800.
Firing range, m

Figure 7. Observation-weighted range and deflection.
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E 700.

.: 600.

o- ( -®500.

400. -• -

300. 7__ -_
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1600. 2000. 2400. 2800.

Firing range, rn

Figure 8. Observation-weighted range and height.

Usually one of these error sources is neglected. If a simple unweighted average is
computed then one assumes implicitly that the observational errors are negligible. If a
weighted average is computed then the implicit assumption is that the event scatter can
be neglected. Most often the event variation is not known and one has no grounds for
using one of these special algorithms. If event scatter is known to exist we propose to
use the distribution-weighted average that is computed by an iterative algorithm. The
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Figure 9. Observation-weighted deflection and height.

algorithm provides in addition to the average of the observed vectors with its variance,
also an estimate of the variance-covariance matrix of the event.
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