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way to self calibrate for sensor orientation errors.

An important theme throughout the report is that knowledge of the strategy the
hand uses to acquire an object provides a very important recognition constraint. While
a dexterous hand has a very large configuration space, the number of unique grasps that
correspond to a given strategy are limited. Knowledge of the grasp acquisition strategy
makes pose determination easier.
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Introduction

Chapter 1

We are certainly very good at performing manipulation with our hands. Along with a

set of tools, we can make our hands perform an enormous variety of tasks. What makes

them so versatile? A combination of factors are probably at play. Our fingers can move

quickly and accurately. They can perform both delicate operations or exert powerful

grasping forces. Our touch sensors provide a wealth of information that undoubtedly

helps make them so useful.

Dexterous robot hands will ultimately give machines some of the capabilities that

our own hands have, helping to make them more useful. A hand is most appropriate for

performing manipulations in unstructured environments, particularly where it is unde-

sirable for humans to work. An example of such a task is the cleanup of hazardous sites.

The work required to contain the tragic accident at Chernobyl needlessly exposed thou-

sands of people to deadly radiation. Potentially, mobile robots equipped with dexterous

hands could be used in similar situations.

This report addresses a small part of the overall problem of giving a robotic hand

human level dexterity, the problem of determining the pose of a grasped object.
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coarse pose object pose
detemiination refimmennt

Figure 1.1: Pose determination. The relationship between recognition, determination, and

refinement.

1.1 Pose Determination

The class of problems studied in this report can be stated simply: Given a hand grasping

an object, and given models of a small number of objects, determine the object, its

position, and its orientation (see Figure 1.1). These problems are often referred to as

small set recognition and pose determination. Recognition and determination are related

problems, and it is sensible to study them together. For convenience, in this report the

term pose determination often refers to these problems collectively.

1.1.1 Relevance of the Studied Problem

Why is the pose determination problem interesting? A hand is used to grasp an object

in order to manipulate the object. The manipulation can be simple, such as moving

the object from one location to another, or it can be complex, such as grasping a tool

for performing an assembly operation. In either case, knowledge of the location of the

object within the hand is useful for insuring that the manipulation is performed correctly.

While certain manipulation strategies might not require pose information, it is not hard

to imagine that the information would be beneficial.

The problem is hard because of the large space of grasp configurations and the large
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Figure 1.2: Object and its grasp. The object, shown on the left, is grasped by a hand, shown
on the right. For pose determination, only the hand shape is known. The one or more positions
of the object that are consistent with that hand shape are desired.

amount of uncertainly inherent in dexterous hand control. By studying limited sensing

approaches, the problem's inherent constraints can be better understood. This under-

standing helps to show how additional sensor data can be used to make determination

methods more effective and robust.

1.1.2 Example of the Studied Problem

This section describes a typical pose determination problem. The inputs to the

problem include a model of the robotic hand, a model of the object, and the hand's joint

angle positions after the object has been grasped. The object is shown in Figure 1.2, on

the left. A grasp of the object is shown on the right. For pose determination, the hand

shape is known, while the object position is unknown, and is to be found. Figure 1.3

shows the hand shape, along with the poses that are consistent with the shape. The only

sensor information used for this determination is the set of joint angle readings from the

hand. No additional sensor data is required to obtain the set of solutions that are shown

in the figure. In this case, since the solution set contains the object's actual pose along

with several other consistent candidates, additional sensor data would be required for

unambiguous determination. The first row of candidate poses, for example, could be

ruled out if information about the joint torque readings were available. If the joints are

known to be curled as far forward as possible, the links must make the necessary contacts
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Figure 1.3: Hand shape and potential poses. The object poses shown here are consistent with
the hand's shape.

with the object to constrain the finger motion. The second row of poses shown in the

figure are entirely consistent with both the geometric constraints and the joint torque

data. Additional sensor information would be needed to distinguish between them.

1.1.3 Potential Information Sources

The information available for pose determination can be grouped into that from the con-

straints inherent in the problem and that from sensors. An understanding of a problem's

constraints often leads to powerful techniques for its solution. An understanding of how
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the constraints can be used to solve a problem helps to interpret sensor data. With this

in mind, this report explores the pose determination problem by relying heavily on the

problem's constraints, and using little external sensor data. This section explores the

potential information sources available, and explains why the ones that are used in this

report were selected.

Geometric Constraints

Geometric constraints provide a powerful inherent source of information for determina-

tion. The methods described in this report exploit both the geometry of the objects and

the shape of the hand.

Another inherent constraint is provided by the grasping strategy. A particular grasp-

ing strategy limits the possible hand shan-es that can occur. As will be seen, this par-

ticular constraint can be directly exploited for determination.

Contact Sensors

A variety of sensors can be used to provide the raw data for pose determination. Perhaps

the most basic is kinesthetic (joint position) sensing. This type of information is readily

available on dexterous hands, as joint position sensing is usually required for their low

level servo control. Cutaneous (tactile) sensing is more advanced, from a hardware

standpoint. The term haptics is often used to refer to these hand-based senses. Visual

sensing can also be used, but as will be seen, it is less desirable than haptics for many

applications.

Tactile sensors give a small window of information at their contact point, which

provides data suitable for local methods. Curvature detection is an example of a local

problem that can use tactile sensor data. Kinesthetic sensing can be used to obtain the

hand's shape, which provides data suitable for global methods. Pose determination is

an example of a global problem that can use hand shape data.
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Vision Sensors

Unlike tactile sensors, vision can give a large window of information. With a camera in

the proper location, one view can provide far more information than could be obtained

even by multiple probes with tactile sensor. Thus, vision potentially provides an easy

way to acquire global features.

There are a number of reasons why vision is not a particularly good source of infor-

mation for pose determination. The most significant problem is the potential occlusion

of the grasped object by the hand. For relatively small objects the hand can obscure

many, perhaps all, of the object's visible features. In addition, discrimination between

features of the hand and features of the object becomes difficult as more of the object

is occluded.

Typically, the pose of an object with respect to the position of the hand is required.

Cutaneous and kinesthetic sensing take readings in the hand frame, which is desirable.

Readings from a vision system would usually be made from a different frame, requiring

additional calibration.

The resolution of vision systems may not be adequate for tasks that require extremely

accurate pose determination. The advantage that vision offers, that of being a global

sense, works against the requirement for precision. Since haptic information sources take

readings at the site of contact between the hand and the object, they can potentially

give better readings than a remote vision system could.

Vision is a useful sense for determining an object's position prior to being grasped.

Unfortunately, when the object is touched, it usually moves in a hard to predict way.

Because of this, the pre-grasp position does not always give a good indication of the

object's final pose.
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Information Used by the Studied Approaches

The pose determination algorithms presented in this report use only the inherent prob-

lem's constraints, along with the addition information provided by joint angle and joint

torque sensors. As explained above, the motivation for this limited information approach

is twofold. A full exploitation of the basic constraints inherent in the problem leads to a

better understanding of the problem. Methods that can work on kinesthetic information

will facilitate this understanding. From a practical standpoint, kinesthetic information

is the most readily available data source today. This makes it even more desirable to

develop methods that work with this type of data.

It is important to note that while the techniques explored in this report rely only on

minimal sensor data, they can easily incorporate, and will benefit from, the additional

information that tactile sensors provide. The constraints that are exploited are useful

independent of the external sensor data available. For example, more data can be used

to reduce ambiguity and to provide redundancy that would make the methods more

robust.

I. 1.4 Approaches

This report introduces three approaches for pose determination, as diagrammed in Fig-

ure 1.4. The first approach is constraint-based, and uses an interpretation tree repre-

sentation of possible object feature placements on finger segments. The tree is built in

real-time based on the hand's configuration and an object model. The method is highly

efficient as it only explores consistent paths through the tree.

The second approach is memory-based, and uses past experiences for determination.

Determination becomes a fast lookup operation. Possible grasps can be kept sparse

by exploiting a grasp acquisition strategy constraint. The memory can be compacted

using interpolation schemes. Various approaches for organizing, filling, and using the

determination memory are investigated.
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object library

hand grasping
shape constint-bae grasp memory-based strategy

object on-line simulator off-line joint
model angles

Pose

estimate

objec sensor-based fingertip
model refinement sensors

object pose

Figure 1.4: Algorithms and their relationship. The algorithms studied in this report , and
their relationship, are diagrammed in this figure.

The third approach is sensor-based, and explores how additional information can be

used for determination. Fingertip force sensors are used to find contact surface normals.

An object's pose can be refined by fitting these normals to a model of the object. Since

contact sensors produce local readings, and since the fitting process requires global

information, calibration becomes an important issue. The method explored provides a

way to self calibrate for sensor orientation errors.

As will be seen, the approaches studied are straightforward yet powerful. This work

shows that simple methods, using basic constraints and limited sensor data can solve a

wide class of pose determination problems. Showing this to be true is the motivation

for this work.
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1.2 Grasp Planning and Object Acquisition

In this report , a distinction is made between objects that have been grasped using a

plan, and objects that have been acquired without a plan. Typically, a grasp planner

is given as input the position of the object to be grasped. The plan generated has a

certain tolerance to error in object placement, though undoubtedly the grasp will fail

if the object's actual position is far from the modeled position. The error tolerance

of a particular grasp is often a factor that is considered in the planning process. A

grasp acquirer works without knowledge of an object's position. Instead, a generic hand

motion, perhaps modified by sensor feedback, is used to acquire the object.

There are many examples of problems that are suitable for planned grasps. In par-

ticular, when the world is well known, or when external sensors like vision can identify

the location of objects, the use of a planner is appropriate. Since planning can be a slow

process, it is helpful if the world is relatively static. Certainly, if it is changing faster

than a planner can plan, there will be problems. As uncertainty in the world increases,

planning becomes more difficult. Planners can be designed to handle uncertainty up to

a point (see Mason [70]). In the limiting case, where nothing specific is known about

the world, there is little reason to plan.

Grasp acquisition is useful for problems where planning is inappropriate. This include

when using a planner may be difficult, because there is too much uncertainty, or when

it may be impossible, because there is no information at all. Haptic exploration is an

important class of motions where planning is not appropriate. Reaching into a bin,

identifying a particular item, and grasping it, is an example of such a motion. A more

practical example includes tool retrieval. NASA is interested in a device to capture

free-floating tools and other small objects from space. An astronaut might accidentally

release a tool during a space walk, creating a flying obstacle that could collide with a

spacecraft. It is unlikely that planning a grasp to retrieve the floating object would be

appropriate. Using an acquisition strategy designed to capture the class of objects that
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can potentially be released seems more reasonable.

The pose determination strategies studied in this report are useful for finding the

position of an object that as been acquired, where no a priori knowledge of the object's

position is available. The methods are also suitable for distinguishing among a small set

of objects that are being acquired. An easy way to do this is to simply invoke the pose

determination strategy once for each object in the set. Ideally, the strategy will find a

pose only for the correct object. Finding multiple objects implies that the information

being used for pose determination is just not enough to distinguish among the objects.

Pose determination is also useful for verifying that a planned grasp has been executed

correctly. Because of errors, a planned grasp is never executed exactly as intended.

Verification of the plan to insure that it has completed satisfactorily is a useful step to

perform before proceeding to the next manipulation. Ideally, the planned grasp would be

executed in a closed loop, where errors are detected in real-time, and recovery strategies

are part of the plan. Post-execution verification is useful, though not necessarily the

best approach.

1.3 Hand Design and Shape Information

The design of a hand directly affects its haptic information content. For example,

hands with more links can better conform to the shape of an object, providing more

clues as to the object's shape. Double jointed hands provide more shape information

than a single jointed hand, as shown in Figure 1.5. Some of these issues will be examined

in subsequent chapters of this report.

1.4 Assumptions

The work in this report makes certain assumptions about the world. The methods that

are described are not, in all cases, limited by these assumptions. Rather, the methods

have been tailored to best fit the natural constraints that these assumptions provide.



§14 Assumptions 11

Figure 1.5: Double joint grasps. This figure compares grasps using a double joint hand with
a single jointed hand. The double jointed grasps are shown on the right.

As each method is presented, its limitations and its best applications are discussed.

The objects in the world are assumed to be polyhedral. This permits simpler models

and algorithms to be used compared to objects represented with a more general scheme.

In many cases, the ideas presented can be extended to a fully general representation. In

some cases they cannot. Each chapter discusses this issue in some detail.

By assuming that objects are resting on a table-top before they are grasped, it is
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possible to use two dimensional methods to solve certain three dimensional problems.

This table-top constraint reduces the possible configuration space of the object from

three dimensions to n spaces in two dimensions, where n is the number of object faces.

This assumes that an object can only rest on one of its stable faces. For an uncluttered

workspace, this is probably a reasonable assumption. The pose determination methods

described in this report are implemented in two dimensions, and can be directly used

for three dimensional problems using this added constraint. It is important to note that

full three dimensional extensions to the methods are possible, and are explored in some

detail.

One additional assumption made is that the world contains invariants that can be

exploited by determination schemes. Object models are, of course, invariant. Their

shape, compared with a hand's shape, provides important clues that can be used for

pose determination. Chapter 5 exploits the invariant of gravity. Gravity provides a

force that can be used to relate different coordinate systems together, and is used to

refine an initial estimate of an object's pose to a more precise estimate.

1.5 Contributions

The most important contributions of this work can be summarized as follows:

* It is ihown that a hand's shape often provides enough information to uniquely

determine the pose of a grasped object.

e It is shown that knowledge of the grasp acquisition strategy provides a useful

recognition constraint.

e An efficient algorithm for finding object poses based on tree pruning is presented.

e A fast algorithm for finding object poses based on experiences stored in a memory

is presented.
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"* Minimal sensing that determines the links that are in contact with an object is

shown to be very effective for reducing ambiguity in the results.

"* Experimental results explore the tradeoff in recognition power obtained by adding

links or sensors to a hand.

"* A method for refining contact surface normals from fingertip sensors is presented.

These contact normals can be used for pose determination.

"* Experiments indicate that it is hard to extract global information from the local

measurements obtained from fingertip sensors.

The methods that are explored in this report are not complex. In fact, their simplicity

can be considered an important contribution in itself. This report will show that pose

determination can be accomplished with simple methods and minimal sensing. While

this does not imply that more complex methods are unnecessary, it does indicate that the

constraints that are used lend themselves to straightforward determination algorithms.

1.6 Overview of the Report

Before describing the pose determination and refinement algorithms, Chapter 2 overviews

hands, sensing, grasping, and recognition. The chapter provides a general review of re-

search related to pose determination. Each subsequent chapter mentions work more

directly related to the particular algorithms being presented. Following the review, the

next three chapters are organized around the diagram shown in Figure 1.4. Chapter 3 de-

scribes a constraint-based determination method. Chapter 4 describes a memory-based

determination method. The constraint-based method can be used as the grasp simulator

that is required for populating the memory used by the approach in this chapter. These

two chapters present methods for finding a pose estimate. Chapter 5 describes a tech-

nique for refining pose estimates by using additional sensor data. Finally, conclusions

and directions for future research are discussed in Chapter 6.
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Hands, Sensors, Grasping and,

Recognition

Chapter 2

2.1 Introduction

This chapter reviews relevant research in hands, sensing, grasping and recognition. The

topics reviewed cover such a broad area because of their unavoidable interrelationships.

As this report attempts to show, it is improper to consider one of these aspects without

considering them all. To build a hand for recognition - mechanical design, sensor design,

and grasping strategies must all be considered. In each of the next sections, relevant

work from these areas is described, with special attention given to the interrelations

between them. Specific discussion of how these methods directly relate to the work

described in this report is deferred to the related work sections in each of the subsequent

chapters.

2.2 Dexterous Hands

Dexterous robotic hands have been studied at least since the early 1960's. Some of the

earliest work is by Tomovic [104] and Okada [79]. Other hands have been developed

15
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Figure 2.1: The Salisbury-JPL hand, from Salisbury [90].

by Salisbury [90], Jacobsen et al. [57], Bologni et at. [14], Abramowitz et at. [1], and

Caporali and Shahinpoor [17]. This section discusses a number of these hands in more

detail. The section is loosely organized around the motivating design principles used by

the researchers.
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2.2.1 Mobility Design

A three-fingered hand was designed by Salisbury [90]. In his work, a mobility analysis of

various kinematic configurations was performed. The actual design he selected optimized

certain criterion according to this consideration. Thus, Salisbury's primary goal was to

achieve a mechanical design that was well suited for grasping. The hand is actuated by a

servo-motor pack connected to the joints using bicycle-style cables. Figure 2.1 diagrams

the configuration that Salisbury selected.

2.2.2 Anthropomorphic Design

Jacobsen et al. [57] developed the Utah-MIT hand based on a belief that an anthro-

pomorphic design has certain inherently desirable traits. The versatility of the human

hand is proof that its design is a good one. Using this principle, the four fingered, four

jointed hand shown in Figure 2.2 was developed. Special attention was given to the

tendon and actuator design. A Kevlar material was used for the tendons, giving them

both strength and flexibility. Jacobsen believes that the actuator component is at least

as crucial as the mechanics. In the case of the Utah-MIT hand, the pneumatic actua-

tors provide a very human-like natural compliance. Their performance is well suited for

grasp acquisition routines, as will be discussed later in this report

2.2.3 Behavioral Design

While both the Salisbury-JPL and the Utah-MIT hands were designed to have a rea-

sonable kinematic configuration for grasping, their performance was more optimized for

mobility, or said another way, dexterity. As an alternative, Greiner's [40] Prehensile Ac-

quisition Linkage Mechanism (PALM) is specifically designed for grasping (Figure 2.3).

Mobility is not considered as important. The device has one active and two passive

degrees of freedom. The actively controlled tendon can be used to close the hand. The

same mechanism will passively curl the hand around objects that are pushed into its
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O

Figure 2.2: The Utah-MIT hand, from Jacobsen et al. [571.

links. In essence, the hand implements a grasping strategy in its hardware. As will be

seen, the methods described in this report are very suitable for giving a device like the

PALM recognition capabilities. The fixed grasping strategy that this hand uses could

be exploited by the recognition algorithms.

2.2.4 Other Design Considerations

There are other reasons given for particular hand designs. Hirose and Umetani [49] de-

veloped a soft, snake-like grasper. The University of Bologna hand (Bologni et al. [14])
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Figure 2.3: The Greiner PALM, from Greiner [40].

was designed to be "at least as useful" as a conventional robotic end-effector, while also

having "micro-manipulation" capabilities. Abramowitz et al. [1] cited the recent devel-

opment of tactile sensors as a primary reason for building the Pennsylvania Articulated

Mechanical Hand. Sensor equipped hands, he reasoned, are good for three dimensional

perception. Rather, it seems likely that hands will be most useful as manipulation de-

vices, where the recognition that they perform is directly related to their manipulation

needs. Sensor designs have been motivated by hand designs, not the other way around.

Nonetheless, Abramowitz made the good point that hands have an important role in

sensing, or haptics. This issue will be explored more later in this section.

Another aspect of hand design that has been considered are the properties of the

fingertips themselves. Brockett [16] argued that rheological surfaces are good for grasp-

ing. Cutkosky et al. [26] analyzed a number of materials to find their suitability for

fingertip surface coverings. The design of a covering becomes more complex when the
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fingers are equipped with tactile sensors. Their surface must protect the sensors while

not interfering with the transduction process.

From a mechanical standpoint, robotic hands are advanced and are highly dexterous.

However, their actuation system are much too bulky. The Utah-MIT hand uses a pneu-

matic actuation system with flexible Kevlar tendons. While the actuators themselves

are fairly compact, a large external air source is required for power. The entire actuator

pack is also too bulky for mounting on most robots. Chiarelli and De Rossi [20, 21] and

others are studying muscle-like fibers that may be the basis for a far more advanced and

compact actuation system of the future.

2.3 Touch Sensors

Touch sensors are thought to be important for many aspects of dexterous hand manip-

ulation. Certainly, an accurate measurement of contact forces is helpful when grasping

delicate objects. Feature detection can provide useful information for object recognition

and pose determination. Slip detection is helpful for monitoring a grasp to insure that

it is being properly maintained. This section reviews tactile sensing, briefly exploring

human sensors, the mechanics of sensing, and a variety of robotic devices.

2.3.1 Human Sensors

A goal of tactile sensor designers has always been to duplicate the capabilities of the

human sensing system. Human touch sensors have many very desirable properties. Per-

haps the most important one of all is that they are compact and reliable. There are

thousands of mechanoreceptors in the small confines of the fingers. Humans have four

types of touch sensors, each which is specialized for a particular response (Figure 2.4).

The Merkel and Ruffini receptors have some static touch response, while the Meissner

and Pacinian respond better to a changing stimulation. Human touch sensors can de-

tected pressure, shear, and slip (Johansson et al. [59, 60, 61]). Measurements of the
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Figure 2.4: Cross section of human skin.

performance of the human tactile system made by Vallbo and Johansson [106] indicate

that static two point discrimination between 1.5 and 2.2 mm is possible. The sensations

that we are so capable of feeling have not yet been entirely duplicated by robotic devices.

although recent advances are starting to close the performance gap.

2.3.2 Mtechanics of Transduction

All tactile sensors have the common task of detecting some mechanical phenomenon and

transducing it to a measurable signal. Ultimately, the signal is converted to digital data

for processing by a computer. The earliest tactile sensors used various phenomenon to

generate an analog electrical signal. Later devices translated mechanical phenomenon

to an optical signal. More recent devices directly convert the sensed phenomenon to

a digital signal, bypassing the analog signal stage. See Usher [1051 for an overview of

sensing, including the physical effects that are available for use in transduction.
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The most common property that sensor designers have attempted to detect is pres-

sure. An array of pressure sensors are frequently used to find the contact profiles of

objects pushed into them. This would be useful for determining, for example, if an

object vertex, edge, or face is making contact with the sensor. Pressure sensors of this

type have proven to be the easiest to build.

Other phenomenon that are interesting to detect include shear and torque at the

contact point. Measurement of these properties is helpful for determining if slippage

is likely to occur. Unlike pressure. shear and torque sensors have been hard to build.

There are only a few examples of - isors of this type in the literature.

Another interesting sensor has been used to detect the thermal properties of a mate-

rial. By applying heat and measuring the resulting temperature gradients, the cotact

material can often be identified. In addition, slip can be detected by measuring temper-

ature changes. As warmer material slides past the sensor, the cooler material that has

not yet been heated can be detected.

2.3.3 Robotic Touch Sensors

A review of tactile devices starts with the early work of Inoue and Binford. In 1972,

Inoue [54, 55] used an array of switches made using a foam rubber separator and con-

ductive paper. Hill [45] also performed early research with a sensor that used a simple

array of switches. Binford [12] pursued several approaches, including semiconductor

strain gauges and various pressure sensitive paints and rubber polymers. Since then, a

wide variety of technologies have been employed to reduce sensor size, to make them

conform to curved mounting surfaces, and to improve their reliability and sensitivity.

The technologies that have been tested include:

1. Resistive: pressure is detected from a change in a material's resistance (Pur-

brick [84], Hillis [47], Grotenhuis and Moore [43], Snyder and St. Clair [98], and

Bastuscheck [7]).
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2. Capacitive: pressure is detected from a change in the thickness of a capacitor's

dielectric (Boie [13], Siegel et al. [94], Fearing [33], and Jacobsen et al. [56]).

3. Magnetic: compression, rotation, and shear are detected from the change in orien-

tation of magnetic dipoles (Hackwood et al. [44], Checinski and Agrawal [19], and

Kinoshita [65]).

4. Optical: compression is detected from a change in intensity of light (Schneiter and

Sheridan [92], and Begej [8]).

5. Semiconductor: pressure is transduced using resistive, capacitive, or optical sensor

elements integrated onto a chip (Raibert [85], Raibert and Tanner [86], Chun and

Wise [22], and Tise [102]).

6. Polyvinyledene Fluoride: pressure is detected from an electric response generated

when a Polyvinyledene Fluoride material is disturbed (Kinoshita et al. [66], and

Dario et al. [28]).

7. Ultrasonic: pressure is detected by using an ultrasonic pulse to measure the change

in thickness of a material (Grahn and Astle [39]).

8. Thermal: material is identified based on its thermal conduction properties (Siegel

and Simmons [96], and Russell [88]).

Other interesting recent devices include a slip detector by Howe and Cutkosky [51]. and

a shear sensor by Novak [78]. As can be seen, the list of tactile sensing technologies is

large and varied. Nonetheless, major problems which prevent the use of tactile sensors

for all but a few specialized applications still remain.

Today, robotic hands such as those designed by Salisbury [90] and Jacobsen [57]

are increasingly being equipped with contact sensors. Jacobsen [56] described a sensing

system suitable for covering most surfaces of the Utah-MIT hand with binary contact

detectors. Dario et al. [271 has mounted his sensor on a robotic finger. Fearing [34, 35] has
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mounted a capacitive-based fingertip sensor on the Salisbury hand. Brock and Chiu [15]

also developed a fingertip sensor that has been mounted on the Salisbury hand. Their

sensor is the one that is used for the experiments conducted in Chapter 5.

Based on the experiences of tactile sensor developers, it is reasonable to conclude that

human-like sensor performance is not yet achievable. The cost of building the sensor

systems is also unknown, and is likely to be large.

2. Grasp Planning and Analysis

Grasping and pose determination have an important relationship to each other. Grasping

is the acquisition of an object while determination identifies its final resting position.

Grasping without determination is incomplete, as the lack of knowledge in how the

object is positioned in the hand may preclude subsequent useful manipulations.

Typically, a grasp planner is given as inputs a model of an object, its position, a

kinematic model of the robot, and perhaps some task level information. Planners make

a number of assumptions to make their task tractable, including simplified models of

the fingertip contacts, frictional effects, and the object itself. Only then does planning

a grasp become tractable.

Even with simplifications, the planner's task is a hard one. To begin, it must find a set

of finger contacts that stably acquire the object. If the object is to be manipulated rather

than just constrained, the planner must take this into account. This can be thought of as

a task-level constraint. The question of reachability must also be considered. The robot

must have a clear path from its starting position to the final grasp position. Collisions

between the hand and the grasped object, and the hand and workspace obstacles must

be considered. To date, n grasp planners have been able to address all these issues at

once.

To make the problem tractable, the grasping task is usually divided into easier sub-

problems. Typically, the problem is decomposed into an analysis of stability, feasibility,
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and reachability, each which is solved separately. Stability considers whether a partic-

ular set of fingertip to face assignments grasp an object stably. Feasibility considers

whether the hand's kinematics can achieve the finger positions that the set of contact

points requires. Reachability considers whether the robot's arm can position the hand's

wrist at the required location. Solving each of these steps separately greatly simplifies

matters, though it often leads to generate and test style algorithms. This approach can

be wasteful if the workspace is very cluttered, where most stable and feasible grasps will

not be reachable.

2.4.1 Stability Analysis

The problem of analyzing and optimizing a given fingertip grasp has been extensively

studied. Many criteria have been proposed for a good grasp. Good grasps should be

stable. They should resist outside perturbation. A force closure grasp, one where the

object is totally constrained by the contacts independent of the magnitude of the contact

forces, is often considered ideal (Nguyen [77]).

Many researchers have analyzed grasp stability. Kerr and Roth [63] examined the

problem of selecting the internal grasping forces given three contact points. For a three

fingered hand grasping an object with just its fingertips, only six of the nine finger-

tip force unknowns are constrained by the basic Newton-Euler force and torque balance

equations. The remaining three force components form the null space of internal grasping

forces. Though these forces can be assigned arbitrarily, they suggested various optimiza-

tion techniques for choosing them, based on a set of constraints. Barber et al. [5] used

a quality measure based on the amount of friction necessary to keep the grasp from

slipping. Jameson and Leifer [58] predicted the stability of fingertip grasping with both

point contact and soft finger contact models. Li and Sastry [68] proposed a task oriented

quality measure for evaluating a grasp. Park and Starr [80] proposed two indices for

measuring the quality of a grasp. The uncertainty grasp index indicates how stability is
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effected by position uncertainty. The task compatibility index represents how well suited

the grasp is for the intended task.

Static stability of a grasp is, of course, not the only issue that must be considered. A

good grasp is one that firmly grips the object, and that can resists disturbing forces. This

type of grasp, however, might preclude subsequent object motions that are necessary for

completing the manipulation. This observation leads to grasp classification schemes such

as that proposed by Iberall and Lyons [53]. For example, grasps can be coarsely grouped

into power grasps and manipulatory grasps. A person's normal grip of a hammer can be

considered a power grip, while the grip used for holding a pencil is a manipulatory one.

2.4.2 Grasp Synthesis

Unlike much previous work, Nguyen [76] developed an analytical technique for synthesiz-

ing force closure grasps, rather than just analyzing given grasps. Essentially, he found

regions of contacts for the fingertips that constrain the object according to the force

closure criterion.

Jones and Lozano-P6rez [62] studied the problem of grasp selection as a collision

avoidance problem. Hence, their work concentrated on the question of reachability. An

efficient representation of configuration-space was used. Likewise, Pertin-Troccaz [82]

studied this problem using a configuration-space approach. Both groups only examined

the case of two fingered grasps.

Pollard [83] developed an entire system to plan a grasp, given an initial approach

direction and a desired set of contact faces. Her system efficiently solved the stability,

feasibility, and reachability problems using a combination of algorithms and heuristics.

2.4.3 Pre-Shapes and Hand Primitives

With a pre-shape, the basic form of the hand is limited to a small number of predefined

configurations. Each pre-shape has a small number of parameters that are used to vary
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the configuration. For example, a curl pre-shape with one parameter could be used wrap

the hand around an object. In essence, pre-shapes are used to limit the configuration

space of the hand. By using pre-shapes, the grasp planning process can be simplified.

A pre-shape provides an initial configuration of the hand that is considered likely

to result in a good grasp. This gives a starting point for choosing the fingertip to face

assignments. Alternatively, pre-shapes can be used to define an acquisition strategy.

The curl pre-shape can be used as a starting hand form. A grasping strategy could

simply reduce the curl parameter until contact with the object has been made.

An assumption made by many grasp planners is that only fingertip contacts are

considered. Certain types of grasps fall, at least partially, into this category. Writing

with a pencil is an example, though even here the palm provides important support for

the implement. Certainly, a good power grasp would have far more object-hand contacts

than just with the fingertips. The fingertip grasp simplification is often made because

it makes stability analysis more tractable.

Iberall et al. [52] and Stansfield [100] used knowledge based approaches for grasp

planning and pre-shape selection. This type of approach has the potential advantage

of being able to incorporate task-level specifications into the knowledge base. Tomovic

et al. [103] synthesized grasps by matching the object to a small number of geometric

primitives, and selecting a pre-shape based on the primitive.

2.4.4 Acquisition Behaviors

The problem discussed until now has been one of planning and analyzing a grasp of a

known object at a known location. An important alternative scenario is one where the

object to be grasped is not known, or is known but not at a pre-determined position.

or both. This can be called object acquisition, to distinguish it from planned object

grasping. We acquire objects as part of our daily repertoire of manipulations. Reach-

ing into our pockets to pull out their contents is an example of such a manipulation.
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Chammas [18), for example, addressed this problem. He found the geometric conditions

necessary for form closure grasps of cylindrical objects. With his analysis, capture zones

can be computed, where in a computed region a particular strategy is guaranteed to

grasp the object.

Robots are needed to perform acquisition tasks. NASA is interested in a tool retrieval

system that can acquire free floating lost tools. For another space application, NASA is

studying reliable systems for grasping beams. In some sense, the role of a parts feeder is

to acquire object and to determine their position and orientations. Typically. a feeder is

hard to design, and is specific to a particular part. They are built using various tricks,

including vibratory bowls. A more general part alignment system might consist of a

simple hand-like gripper along with a pose determination system. Not only would this

approach give a more flexible system, but a single pose determination algorithm could

work for many parts.

Unlike grasp planning, object acquisition has mostly been studied using whole hand

grasps. Contacts between the objects and the hand are not simply limited to the finger-

tips. The hand is treated as a capture device, where its pre-shape and closing strategy

are designed to maximize the chances of capturing the object.

With both planned grasps and acquired grasps, there is always uncertainty as to

where the object has finally rested on the fingers. Because of uncertainty, even the best

planned grasp will not be executed as expected. By definition, acquired grasps have no

knowledge of the object pose. This report address the problem of recovering an object's

pose after it has been grasped or acquired.

2.5 Recognition

There are a number of recognition problems that are studied in conjunction with hands.

Lower level recognition includes the measurement of local contact properties, such as

curvature and texture. Higher level recognition includes object identification and pose
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determination. For completeness, this section overviews a variety of the recognition and

determination problems, briefly discussing the sensing strategies and the algorithms that

have been used to solve them.

The distinction between low level (local) recognition and high level (global) recogni-

tion is not only a distinction between the types of problems studied. Rather, it contrasts

how the sensor data itself is viewed. One approach treats tactile sensors as miniature

vision systems that can give an image of a small object that is being manipulated. Here,

tactile sensors are thought best for recovering local object features, such as surface cur-

vature. As an alternative, tactile and kinesthetic sensors can be thought of as providing

global information, which is useful for global recognition problems. In both cases, the

tactile sensors extract a small piece of information at the contact point. What differs is

how the information is used. A local strategy, such as one for curvature detection, might

require multiple sensor readings from a small region. The finger would perform a series

of motions to obtain this information. A global strategy would combine simultaneous

readings from many sensors, and use the information to detect a global property, such

as the object's pose.

It is important to note that while low level recognition is almost always studied as

the problem of interpreting tactile sensor data, high level recognition can be studied

without such data. In particular, this report explores how pose determination can be

performed using just kinesthetic sensors, along with the geometric constraints inherent in

the problem. Methods which fully exploit kinesthetic sensing are desirable, as they take

full advantage of the available data. The addition of tactile sensor data to these methods

is certainly desirable, and could be used to improve their reliability and accuracy.

2.5.1 Low Level Recognition

Low level recognition measures local properties at the sensor contact point. A represen-

tative set of work in this area is examined here, including the measurement of curvature,
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texture, forces, and small features.

Fearing [36] analyzed how a tactile sensor could be used to accurately measure local

contact curvature from a set of strain measurements. The problem of combining together

a number of contacts to estimate curvature was studied by Brock and Chiu [15] and

Montana [721. Driels [29] found the orientation of a line on a flat contact array. Ellis [30]

examined the texture classification problem. He extracted features from a tactile image,

much in the same way that a vision system would extract features from an optical image.

He created a feature vector which could be used for recognition. Howe and Cutkosky [51]

designed and studied a sensor for detecting slip. Bicchi [11] studied the problem of

force-based sensing. Russell [88] and Siegel et al. [95] developed thermal sensors that

can measure heat conduction properties. This is useful for material identification and

slip detection. In one of the earliest active sensing systems, Hillis [47] used his sensor to

distinguish a set of nuts and bolts. These parts were all small compared to the size of

his sensor. Each part was classified according to three parameters: shape, bumps, and

stability. A sensor equipped finger actively probed a part to ascertain its parameters.

2.5.2 High Level Recognition

High level recognition finds global properties of an object. A representative set of work

in this area is examined here, including finding surface maps of object, model-based pose

determination, and the scheduling of sensor motions.

Kinoshita [64] recognized objects using a hand covered with simple binary sensors,

using a pattern classification scheme. Likewise, Okada and Tsuchiya [79] recognized

object using patterns from tactile sensors and the joint angles from a hand. Allen [2]

built a surface map of an object from multiple local measurements. Gaston and Lozano-

P6rez [38] and Grimon and Lozano-P6rez [42] studied model-based pose determination.

They assumed sensors that return contact positions and normals, and performed an effi-

cient search of an object pose interpretation tree using constraint propagation methods.
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Snyder and St. Clair [98] used a similar approach in their recognition system. Similarly,

Schneiter [91] studied an active sensing approach, and developed a method for schedul-

ing sensor motions based on the recognition scheme of Grimson and Lozano-Pdrez [42].

Using their notion of an interpretation tree, Schneiter developed a scheme for schedul-

ing sensor moves to remove ambiguities in pose interpretations. Ellis [31] studied the

problem of how a robot should proceed when acquired sensory data is insufficient to

recognize an object and to determine its pose. Luo and Tsai [69] developed a object

recognition system that used a tactile array and a vision system. They found features

such as contact moments, and used a decision tree to match object feature vectors.

Tactile recognition of objects, from a theoretical standpoint, can be though of as a

geometric probing operation. Skiena [97] studied this problem and extended the earlier

work by Cole and Yap [23]. Cole and Yap defined a finger probe to be the first intersection

point p between a line I and an object P. The line specifies the path that the finger takes

when moving toward the object. In their work, it is assumed that absolute determination

of object P is desired. That is, given a model of object P, bounds on the number of

probing operations necessary to determine if the unknown object is P are developed.

They found that 2n finger probes are necessary and sufficient to verify a convex n-gon.

Intuitively this is true because probing each vertex and edge in the object will determine

its position.
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Constraint-Based

Pose Determination

Chapter 3

3.1 Introduction

This chapter examines a pose determination strategy based on searching an interpreta-

tion tree of potential contact assignments. An exhaustive search is avoided by exploiting

geometric constraints from the object and the hand, and by knowledge of the grasping

strategy. The experiments described in this chapter suggest that an object usually fits

into a hand shape only a small number of ways. Adding additional information, such

as joint torques, further reduces the number of potential poses, often to just one. The

algorithm is on-line, where the computations are done after the hand has completed its

grasping operation. By carefully pruning the pose interpretation tree, search time is kept

small. This work also suggests that tactile sensors may not be necessary for certain pose

determination tasks. Dextrous hands should be able to perform certain useful sensing

tasks with just basic joint position information.

This research assumes that the type of grasps being attempted are whole hand grasps.

These grasps are the one that humans commonly use, where many surfaces of the fingers

33
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touch the object. Even in cases of fine motion manipulation, fingertip grasps alone are

uncommon. As an example, take writing with a pencil. While motion of the fingertips

that are in contact with the implement is a crucial part of the manipulation, other

surfaces of the hand provide necessary support. Most hand control research to date has

used fingertip grasps, where only fingertip surfaces touch the grasped object. As will

be seen, whole hand grasps have far more information content than fingertip grasps.

They provide a large number of geometric constraints that can be exploited by object

recognition systems.

3.1.1 Relevance of this Problem

Pose determination is helpful for verifying that a planned grasp has been executed cor-

rectly. An exploratory robot might use small set recognition and pose determination

to gather information about its environment. The constraint-based pose determination

method examined in this chapter helps understand how much additional sensor data is

really required for this type of problem.

3.1.2 Why Use Geometric Constraints?

The recognition method studied in this chapter relies heavily on the geometric con-

straints that are obtained from models of the hand and objects. There are several

reasons why so much emphasis is placed on these geometric constraints:

1. They are essentially free, since the kinematics of the hand and models of the objects

are known.

2. They are powerful and will greatly reduce the space of possible poses (see Grim-

son [41]).

3. They play a complementary role to sensor data, helping to confirm possible inter-

pretations and resolve ambiguities, which results in a more robust system.



§3.1 Introduction 35

The shape of the hand provides many global clues as to how an object might be

oriented. Imagine grasping an object that is much larger in one dimension than in the

other. The separation distance between the fingers and an opposing thumb will probably

rule out certain orientations of the object. For example, if two particular finger links

are involved with a grasp, a simple distance constraint will determine which parts of the

object can be placed between them.

3.1.3 Why Use Just Joint Angle and Torque Data?

Many potential haptic data sources can be used for input to a localization algorithm.

including joint angles, joint torques, wrist forces, tactile data and visual data. When

deciding if a data source should be employed in a recognition algorithm, one must

consider the cost and difficulty of obtaining the data, among other factors. Importantly.

minimal sensing recognition approaches allow a better understanding of the problem's

inherent constraints. A strategy that works well with limited data will only benefit from

additional information if it is available.

The methods described in this chapter utilize just joint angle and joint torque data.

It is important to explore the full power of these particular data sources since they are

so readily available. Almost all robots provide joint angle and joint torque sensors as

part of their normal control system. A primary goal of this chapter is to investigate how

much haptic information content is present in this data, since it is available essentially

for free.

3.1.4 Chapter Overview

The following sections show how constraints are used for object pose determination.

Section 3.2 provides an overview of previous work. Section 3.3 outlines the assumptions

required for the solution given. The approach is discussed in Section 3.4. Section 3.5

presents a number of simulations of the algorithm. Section 3.6 discusses the experimen-
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tal setup and the results. Potential extensions of the approach for problems in three

dimensions are presented in Section 3.7. Section 3.8 presents conclusions.

3.2 Related Work

The recognition strategies used in this chapter are most closely based on the work of

Gaston and Lozano-P~rez [38] and Grimson and Lozano-P~rez [42]. They decompose

recognition into an efficient search of an object pose interpretation tree using constraint

propagation methods. A set of feasible object poses are generated, and then tested for

validity using an additional set of verification constraints. While the approach described

in this chapter uses a similar notion of an interpretation tree, it uses a different set

of data sources. Their method relies on knowledge of contact locations and normals.

This work assumes a much weaker set of sensor inputs. Importantly, no explicit contact

sensor information is used.

3.3 Assumptions

The following assumptions are made in this chapter:

* The hand has been modeled.

o The objects have been modeled using polyhedra.

o The grasped object is assumed to be in static equilibrium.

e Hand joint angle sensor data is available.

3.4 Approach

This section describes the method used for determining the pose of a grasped object. The

algorithm uses a generate and test paradigm, where candidate poses are hypothesized

and then tested for validity. Thus, this description is broken into two components, the

generator and the tester.
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ps
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Figure 3.1: Overview of the constraint-based recognition method. Pose candidates are gen-
erated from the hand shape. A tester removes the candidates that are inconsistent.

The algorithm described is for planar hands and planar, polyhedral objects. As will

be seen, the algorithm can also be used for three-dimensional polyhedral objects that

are resting on a table on one of their faces. A full three-dimensional extension of this

method should also be possible, and is discussed in Section 3.7.

For a generate and test method to be useful, the generator must come up with

a reasonably small set of candidates for testing. The generator must perform its job

efficiently, as there is a large space of possible solutions for it to traverse. A useful

generator must also be complete, in that it should never prune the correct solution from

the interpretation space (Grimson and Lozano-P~rez [42]). The most important criterion

for the tester is for it to incorporate all additional available constraints into its tests.

It need not be particularly efficient, since it should have relatively few candidates to

evaluate.

A brief overview of the algorithm is presented here, giving a road map for the re-

mainder of this section. The algorithm is present as two distinct modules, the generator

and the tester:
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1. Pose Generation:

(a) Find consistent object vertex pairs that can be placed on finger link pairs,

using a distance constraint.

(b) Find consistent object vertex triplets that can be placed on finger links, using

the vertex pairs.

(c) Determine the orientation of the object vertex triplet triangle. It will be

shown that each vertex triangle can have only a finite number of placements

on the finger links.

(d) Find the orientation of the entire object, based on the orientation of the

vertex triplet triangle.

2. Pose Testing:

(a) Verify that the generated object pose and hand are free of intersections.

(b) Verify that the generated object pose is consistent with the joint torque sensor

data.

Figure 3.1 diagrams the method, and shows the flow of information, from inputs to

outputs.

3.4.1 Constraining an Object's Position

The problem of geometrically fixing the position of an object in a hand can be decom-

posed into the problem of assigning object vertices to finger segments. There are two

types of assignments that must be considered (see Figure 3.2):

1. Three object vertices can be placed on three finger segments (Figure 3.2 A).

2. Two object vertices can be placed on one finger segment, and another vertex placed

on a second segment (Figure 3.2 B).
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A B

Figure 3.2: Two types of grasping constraints. Object A is grasped with three vertices on
three finger segments. Object B is grasped with two vertices on one finger segment and another
vertex on a second segment. The object vertex triangle is shown for each grasp.

In both these cases, the position of the object vertex triangle, as drawn in Figure 3.2. is

fixed with respect to the fingers. That is, specifying either of the two classes of contacts

fixes the position of the object. Note that this method does not just place an object that

is triangular in shape. Rather, the triangle formed by any three of an object's vertices

is placed, which constrains the position of the object as a whole. This placement cannot

be made when any two of the finger segments are parallel, as the vertex triangle is not

fully constrained.

The object initially has three degrees of freedom, one rotational and two translational.

By placing an object vertex on a finger edge, one degree is constrained. Thus. assuming

vertex contacts, at least three vertices must be placed to fully constrain the object.

Placing an edge of the object on an edge of the finger results in two degrees of constraint.

Thus, placing one edge and one vertex, or two edges, fully constrains the object's position

to a discrete set, unless the case is degenerate (e.g. parallel edges).

Note that the constraints discussed are different from grasping constraints. That

is, just because an object's position is specified by its finger contacts, it may or may

not be stably grasped. To determine if a grasp is possible, one must consider other

factors, including the type of contact. In the case of a point contact, one must consider



40 Chapter 3 Constraint-Based Pose Determination

if it is with or without friction. For the purposes of this recognition strategy, these

considerations are ignored. Instead, the geometric constraints necessary to specify an

object's location are considered, not the contact conditions necessary for the grasp to

be stable.

3.4.2 Pose Generation

The pose generation process is based on an interpretation tree, as developed by Gaston

and Lozano-P~rez [38]. The interpretation tree represents all possible assignments of

object vertices to finger edges. Nodes in the tree represent fingers segments and links

represent object vertices. Thus, a node and a link together represent an object vertex

to finger segment assignment. The depth of the tree is equal to the number of object

vertices. Each node has one child for each finger link segment, plus a special no-contact

node, as used by Grimson and Lozano-P~rez [42]. A fully expanded interpretation tree

represents all possible assignments of object vertices to finger edges, without regard to

the feasibility of the assignments. Only certain branches of the tree correspond to feasible

assignments. The trick to using an interpretation tree efficiently is to generate only its

feasible nodes. The gist of this method is how to selectively perform this expansion.

An object grasped by a hand, and the corresponding interpretation tree, is shown

in Figure 3.3. The hand has three links, and the object has three vertices. Only the

feasible portions of the tree are diagrammed, where feasible means assignments that

satisfy a particular set of constraints. Branches representing placements that are not

feasible have been omitted from the drawing. Later in this section, the methods used

for determining the branches that should be pruned are discussed. For now, just assume

that such pruning methods exists.

The actual contact assignment between the fingers and the object, as diagrammed in

Figure 3.3, corresponds to the left most branch in the interpretation tree. This path is

highlighted. Reading from the root to the final leaf, the contacts are V, -- F1, V2 --+ F3 ,
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V2  F3

V, ........................ ......................................

F, c F

F3 ncFiF nF, nF3 ncj nF, cF,O ncFFnF c~Fn

Figure 3.3: A pose interpretation tree for a grasped object. The object is composed of three

vertices. The hand has three finger segments (two fingers and a palm). A branch from a parent
node (object vertex) labeled with a finger indicates a placement of that vertex on that finger.

This tree only contains assignments of one vertex to each finger segment.
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and V3 --* F2. Other branches in tree represent other feasible contact assignments. For

example, the second to left most branch represents the contact assignment V1 -+ F2,

and V2 -+ F3 . In this case, V3 is not in contact with any of the finger links.

In general, a connection from a link to a node indicates an assignment of an object

vertex (the link) to a finger segment (the node). A connection from a node to a no-

contact node indicates that the object vertex is not in contact with that finger segment.

A path from the root of a tree to any intermediate non-terminal node represents a partial

assignment of an object's vertices to finger segments. A path from the root of a tree

to a leaf indicates a full assignment of all object vertices to finger segments. Thus, any

node in the tree represents a potential contact assignment. The path from the root to

that node specifies the particular assignment.

Any node that has at least three vertex-finger assignments constrains the position of

the object, in a geometrical sense. The role of the pose generator is to efficiently build

this interpretation tree and find such candidates, and to pass them to the verifier. The

next sections discuss the constraints that are used to prune inconsistent paths from this

tree.

Finding Consistent Vertex Pairs

The first of the two tree pruning constraints used is called the vertex pair constraint.

A pair of object vertices can be placed on a pair of finger edges when there is at least

one place where the length of a line drawn between each finger is equal to the distance

between the vertices. Figure 3.4 shows where such a line can be drawn between two

particular edges. All vertex-finger assignment pairs in a path in an interpretation tree

must satisfy this criterion. If an assignment fails this test, the path in the tree is pruned.

An efficient way to compute the ranges of position on each finger where such an fixed-

length line can be drawn is now presented.

Let r, be the ray of finger edge F, and r2 by the ray of finger edge F2 , as shown in
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Figure 3.4: Possible placements of a vertex pair on finger edges. This diagram shows the
family of positions where a pair of object vertices (shown as a fixed length line) can be positioned
between two finger edges.

r2

/ eo
9' % 0 .00,

/ o

Figure 3.5: Distance constraint coordinate system. A complex coordinate scheme, shown
here, is used to compute the distance constraint.
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Figure 3.5. The range of values of r, such that a line of fixed length D can be drawn

from rI to r2 is desired. To begin, note the equations for the endpoints of the edges and

the fixed length line:

Po = roe'°o (3.1)

P1 = Po + rieiOI (3.2)

P2 = P, + Deie (3.3)

P3 = r3ei . (3.4)

P2 can also be written as

P2 = P3 + r 2 eio2. (3.5)

By substitution using the above equations, r 2 can be obtained in terms of r,

r 2 = roei(°-2) + rie(01-2) + De'(0- 0 2) - r 3e'( 63-2). (3.6)

Expanding, and setting the complex part of the solution to 0 gives

0 = r 0 sin (00 -02) + r, sin (01 - 02) + D sin (0 - 02) - r 3 sin (03 -02). (3.7)

Solving for 0,

0=sin- (r 3 sin(9 3 -0 2)-rsin(01 -0 2 )-rosin(0o-0 2 )) +02 (:3.8)

and noting that sin- 1 x is defined only for -I < x < 1 we obtain:

< r 3 sin (03 - 02 ) - r, sin (01 - 02) - rosin (0o - 02 ) <1. (3.9)
-1< D

Thus we conclude that r, can take on values in the range:

D-K -D-KD K > ri > -D-K(3.10)
sin (01 - 02) - - sin (01 - 92)

where,

K = ro sin (0o - 02 ) - r3 sin (03 - 02 ). (3.11)
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Figure 3.6: Consistent vertex pairs. Three object vertices placed on three finger edge segments
are shown. Vertex V1 from both pairs shares a common edge, and overlap.

Equation 3.10 gives the range of positions along finger edge FI where a line of length

D can be drawn to finger edge F2. For convenience, this equation can be represented by

a function R:

R(Fi,F2,D) = F', (3.12)

where F, is the portion of FI where the line of length D can be placed. If IIFflI = 0,

then the placement is not possible. Thus, when given a pair of vertex-finger assignments,

Equation 3.12 provides a fast check for distance consistency. From the viewpoint of the

interpretation tree, this test validates the consistency of a link.

Finding Consistent Vertex Triplets

Two pairs of vertex-finger assignments are considered consistent if one of the vertex-

finger assignments from each pair is the same, and if they overlap in placement on the

common finger. This can occur between two adjacent links in a path in an interpretation
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tree. The diagram of a hand and potential object vertex placements shown in Figure 3.6

helps explain this.

Two vertex pairs are shown, {IV1 , V2 } and {V,, V3}, where V1 is on finger F1 , V2 is on

finger F5 and V3 is on finger F4. The lines E 12 and E1 3 are the equal length distances

between each pair of object vertices, where E12 = IIV1 ,2II and E13 = IIt-t311. In this

case, the vertex triplet condition is met because for both pairs, vertex V1 is on finger F1,

and there is an overlap of the placement range of the shared vertex, V1.

More formally, the overlap range can be computed using the vertex-pair constraint, as

defined in Equation 3.12. First, the placement range for each pair of edges is computed:

Fla = R(F1 ,F5 , E1 2 ) (3.13)

Fb' = R(F1 ,F4 ,E13 ), (3.14)

where Fla and Fib are the subranges of F1 where each placement can be made. The

overlap range can be found be computing their intersection,

F1 = F;a n Fb, (3.15)

where F, is the desired part of edge F, where the common placement can be made.

Finally, the subranges of F.5 and F4 that are compatible with this placement are

easily computed using function R:

F5 = R(F•,F5 , E12 ) (3.16)

F4 = R(F1,F 4 ,E1 3). (3.17)

Thus, this test, when given two vertex-finger pairs that share a common placement,

provides a fast consistency check. While the previous constraint tested the consistency

of a single link in an interpretation tree, this test is used to verify the consistency of

a pair of links. The next section will describe in more detail how the vertex pair and

vertex triplet constraints can be used to efficiently build an interpretation tree.
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Efficiently Building the Interpretation Tree

At this point we describe how to efficiently build an interpretation tree using the vertex

pair and vertex triplet constraints. To build the tree, each node is expanded, starting

from the root, in a breadth first search. A node will have one child for each of the finger

segments in the hand, along with an additional child for the no-contact case. Each

child will be tested for consistency using the constraints developed in the previous two

sections, and is pruned if it does not pass the tests.

The vertex pair represented by the link from the new node to its parent is considered.

Pair elements on different finger segments are tested using the vertex pair constraint. If

the pair elements are on the same segment, the distance between the vertices must simply

be less than or equal to the length of the segment. If the pair elements are consistent.

the placement ranges are noted, and the link is added to the tree. If the new node is

inconsistent, the tree is pruned at that node. The vertex triplet test is then applied to

any groups of three or more vertex-finger assignments in the path. This process finds

the new subranges of each finger segment that are consistent with the placements on

the path. If any of the subranges are null, the new node is pruned. If the tests are all

successful, any three vertex-finger assignments on the path can be used to compute an

object pose.

To better understand how this process works, consider a path from an interpretation

tree that contains three assignments: F, -* V1, F2 -- V2, and F3 -- V3. The next few

paragraphs will detail how these assignments are added to the tree.

The first assignment of F1 - V1 is arbitrarily made. Assume that a new leaf is

being evaluated that assigns F2 --- *V. Thus, the path from that leaf to the root assigns

F1 -- V, and F2 -- V2. To test the new assignment, the placement subrange of F2 is

computed:

F2 = R(F1, F2, IV, V2II). (3.18)

If IIF II > 0, the node is added to the tree. The subrange F2 is stored at the node for
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future use.

Assuming that the assignment of F2 --* V2 was validated, let us evaluate a new

assignment of F3 --+ V3. First, a vertex pair test between the new leaf and its parent is

performed, using the parent's current subrange:

F3 = R(F2, F3, 1V---'-311). (3.19)

If this test passes, the vertex triple constraint can be applied between the three edges in

the path, where the assignment of F 2 --+ V2 is common between them. Essentially, the

range intersection on F2 between the assignment of F1 -+ V1 and F3 -- V3 is computed.

If the length of this intersection is greater than zero, the triple is accepted. This process

continues until all nodes have been expanded or pruned.

By using these pruning tests, only a small portion of the full interpretation tree is

usually generated. For objects that lack symmetry most vertex-finger assignments are

not consistent with the tests. It is important to note that this pruning operation will

never remove a valid solution that has the types of contacts that are being considered.

An actual object placement must be consistent with the tests, and will be found in this

generation stage.

Computing the Orientation of the Object

The tree generation from the previous section found two types of vertex-segment assign-

ments. In the first case, three vertices were placed on three different edges. In the second

case, two vertices were placed on one edge, and the third was placed on a different edge.

This section explains how the pose of the object is recovered from these assignments.

First, consider the case of triplets of vertex to finger segment assignments. The

triangle formed by each vertex triplet is fully constrained by the finger edge segments.

Thus, the position and orientation of the triangle, and hence the object, can be directly

computed. As will be shown, there are potentially four solution classes, and each can

have two solutions.
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Figure 3.7: Solution classes for vertex triplets placed on finger segments. The finger seg-
ments are extended into the dotted lines. Each of the labeled classes can potentially contain a
placement for the object vertex triangle.

Figure 3.7 diagrams the solution classes. The three finger edge segments being con-

sidered are extended to form the dotted lines. The four classes that are created by the

intersection of the lines are labeled. The goal of this section is to determine the orien-

tation of a triangle where each of its vertices are constrained to be on one of the three

lines. Different solutions for the triangle orientation can be found for each of the labeled

classes. Since the triangle is actually being placed on the finger edge segments, and not

on an infinite line, solutions need be computed only for the classes where the actual

finger segments are present on all three of its boundaries. In addition, after a potential

solution has been found, the triangle vertices must be tested to insure that they fall on

portions of the finger edges.

An example of a grasped objects and the corresponding solution classes for three

different sets of triplets of links is shown in Figure 3.8. The object is shown at the top

of the figure. Three possible sets of constraint edges and the corresponding solution

classes are shown below the object. In the first set, the three finger segments that

are extended with dotted lines are being considered. The extended lines form the four

solution classes. Class one, three, and four do not have any portion of the actual finger
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Figure 3.8: An object vertex triangle and its potential solution classes. The upper figure
shows a sample object gripped by a two fingered hand. The lower figures shows the triangle
formed by three of the object vertices and the classes formed by the finger edges.
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Figure 3.9: The notation used for computing the orientation of a three-edged triangle. The
inner triangle is formed between the three object vertices. The outer lines are formed by the
finger edges. The highlighted portion of the lines indicate the location of the finger segments.

segments extending into them, so the object cannot be positioned in them. Class two

has portions of the finger segments extending onto all three of the lines, and thus can

potentially contain the object (and in fact, it does).

For clarity, a brief recap may be helpful. At this point a potential assignment of

object vertices to finger edge segments has been hypothesized. The pose of the object

that would result from this assignment is what is being computed. There are two

possible object poses for each of the four potential solution classes. A solution class

must be considered if part of each finger segment extends into the edges that bound the

class. What remains to be shown is the actual computation necessary to recover the

object's pose in a particular solution class.
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First, consider the case where three object vertices are placed on three finger edges.

Assume that the three finger edges are joined as shown in Figure 3.9. The orientation of

the object triangle enclosed by the edges must be found. Note that while the notation

used is defined for solution class one (see Figure 3.7), the analysis is the same for the

other three solution classes. As shown in Figure 3.9, 01, 03, and 7173 are givens. A

solution for a, and x, is desired. By inspection we obtain

tan 01 = sin a(3.20)
x1 - 11 cos al

13 sin ar3
tan0 3 = , (3.21)

X3 - 13 COS a3

where xi, x3 , a1 , and a 3 are unknown. In addition, we note that

O1+ a3+71 = 7r (3.22)

X1 + X3 = V1V3 , (3.23)

where -fl, and V1 V3 are known. Solutions for a 1 and x, can now be found. Solving

Equations 3.20 and 3.21, we obtain

Acos a, + Bsin0`t = C (3.24)

where,

A = 1, tan03 +1 3 cos(rr --yi) tan03 +/ 3 sin(r -y) (3.25)

B = 1 -t 13 tan 03 sin (r - -l ) - 13 COS ( ) - Y1 (3.26)
tan 01

C = (xI + x3 ) tan 03. (3.27)

Let

= arctan(B,A) (3.28)

r =ViA2 +B2. (3.29)

Using the relationships

tan-' a = sin-1  a COS 1  1
SI+oa s /-T(3.30)
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Figure 3.10: The notion used for computing the orientation of a two-edged triangle. The
two finger edges are joined at vertex 0. The object triangle is placed between them as shown.

we note that Equation 3.24 can be written as

rcos (a, - )= C, (3.31)

which gives

a, = cos-0 ()+. (3.32)

Finally, x, can be obtained from Equations 3.20 and 3.32:

t=an-/ + Cos -Y (3.33)

Next, consider the case of two vertices assigned to one edge, and the third assigned to

a different edge. Again, the position of the triangle formed by the three object vertices

is fully constrained by the two finger edges. Finding the object position is much simpler

in this case because the line formed by connecting two of the vertices is known to fall

on one of the finger segments.

If one object vertex is assigned to one finger edge. and an object edge to another

finger edge, the orientation of the resulting triangle is easily obtained. Assume that the
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two finger edges are extended to lines that intersect at point 0, as shown in Figure 3.10.

The position of the triangle can be computed from the following equation:

(si, )
d = x 2 - X1 = 13  ain cosy1  • (3.34)

3.4.3 Pose Testing

The previous section described how to generate possible pose candidates. This sec-

tion describes how to verify that the postulated candidates are reasonable. Verification

is necessary because the constraint-based procedure for generating poses does not uti-

lize all information available. Rather, the generator uses the constraints that are both

computationally inexpensive and that have adequate pruning power. The verifier uses

the additional information available from geometric and from grasp acquisition strategy

constraints for further pruning of the candidates.

Any candidate poses that pass the verification tests are accepted. All others are

rejected. Hopefully, only the candidate that corresponds to the object's true position

will remain. Experiments conducted in subsequent sections of this chapter will show

how well this method performs. The next two sections describe the verification tests in

more detail.

Geometric Intersection Test

The object candidates can potentially intersect the hand, as shown in Figure 3.11. The

generator simply places triangles on finger segments. From the triangle, the placement

of the entire object is computed. Nothing prevents parts of the object from intersecting

the hand. The pose tester computes the intersection of the object and the hand, and

will reject the candidate if the space is not null. From an implementation standpoint, a

threshold is used to select the intersection tolerance that is acceptable.
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Figure 3.11: Geometric verification constraint. The object triangle was placed by the algo-
rithm, resulting in the object pose shown. Since the object intersects the hand, it is rejected.

1 3 1 J3

A B

Figure 3.12: Joint torque verification constraint. Grasp A cannot occur because all joints

were programmed to move to a torque limit. Joint 4 would not be at a limit for this grasp.

Rather, the hand shape that would result is shown in grasp B.

Grasp Acquisition Strategy Test

A grasp acquisition strategy can be selected that provides additional information for pose

determination. For example, the move-until-contact strategy curls each joint forward,

until motion of the joint is no longer possible. A joint torque sensor on the robot may

be required for implementing such a strategy. As an alternative, the strategy can be

designed into the mechanics of the robot, as Greiner [40] has done with her device.

The diagram shown in Figure 3.12 is used to help understand how this strategy
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can verify pose candidates. The move-until-contact strategy provides a guarantee that

all joints are constrained from further motion. In this figure, grasp A violates this

constraint, as joint 4 is capable of motion. The distal link is free to move until it has

collided with the object as shown in grasp B. Thus, if the pose shown in grasp A was

generated, and if a move-until-contact grasping strategy was used, the pose would be

rejected.

In general, the grasp acquisition strategy test is implemented by simulating the

actual grasping strategy. For each candidate pose generated, the grasping strategy is

simulated. If the resulting hand shape matches the actual hand shape, the pose is

accepted. Otherwise, it is rejected. It is important to note that to use this constraint

successfully, a good grasp simulator must exist. If the simulator produces erroneous

results, the test could reject the correct pose, or accept incorrect poses.

In general it is hard to create a good grasp simulator. For certain strategies, including

move-until-contact, the simulation process is easier. To further reduce the chances of

incorrect simulations, the following procedure was used. Rather than to perform a

full simulation of a move-until-contact grasp, the resulting grasp and pose were simply

analyzed. Each joint, from distal to proximal, was moved forward a small amount. The

joint's link was then tested for collision with the object. If a collision did not occur, the

pose was considered to be in invalid. The process was repeated for all joints.

3.5 Simulations

This section examines the performance of the pose determination algorithm on simulated

grasps. The grasp simulator uses a move until contact grasping strategy. The joints on

a finger, from proximal to distal, are moved forward, until the joint's link makes contact

with the object, or until it reaches a limit. The number of joints, and their length, can be

varied. The simulator supports single or double jointed fingers. For these runs, double

jointed fingers were used. Actual robotic hands come in both flavors. The Salisbury
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hand, for example, is double jointed. The Utah-MIT hand is not.

By using simulations, a large number of trials can be performed in a systematic

manner. The problems caused by poor kinematic models of the robot are also avoided,

which is helpful for initial testing. Though the simulations are useful, they cannot

substitute for experiments using actual hardware. Such experiments are described in

the next chapter.

For each of the simulations, a table summarizing the computations performed is

presented. The terms used in the table are described here:

* Vertices are the number of vertices in the object.

* Finger segments are the number of finger segments (links), including the palm.

* Expanded nodes are the number of nodes in the interpretation tree that were ex-

amined.

e Expanded paths are the number of paths in the interpretation tree that were ex-

amined.

* Placement paths are the number of paths in the tree that were generated.

* Full tree paths are the number of paths in a fully expanded interpretation tree.

* Generated poses are the number of poses generated, both those verified and those

rejected.

* Verified poses are the number of poses that passed both verification tests.

Simulation 1: For this simulation, a two-jointed hand was used. This is the minimal

case, where only two numbers are being provided to the pose generation module. The

object has five vertices, and is small enough to be enclosed by the hand. Table 3.1

summarizes the simulation results. Due to the rather small size of the problem, a sig-

nificant percentage of the interpretation tree's paths were expanded. Only one of the

generated poses was verified, as shown in Figure 3.13. This pose corresponds to the
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vertices 5

finger segments 3

expanded nodes 833

expanded paths 584

placement paths 258

full tree paths 1,365

generated poses 16

verified poses 1

Table 3.1: Simulation 1: Summary of the interpretation tree.

Figure 3.13: Simulation 1: generated and verified pose. This pose corresponds to the correct
grasp of the object.

object's grasped position. The entire set of generated and rejected poses are shown in

Figure 3.14. All these poses were rejected because they are have geometrical inconsis-

tencies. Note that the middle pose on the second row is a fairly good fit, and with a

larger "slop" factor, would have been accepted.

Simulation 2: As with the previous simulation, a two-jointed hand was used for this

trial. In this case, a more complex object, with eight vertices, was grasped. The object

is larger in size than the object from previous trial. Table 3.2 summarizes the simulation

results. As the table indicates, the larger number of vertices results in an increase in

the potential vertex placements, though the consistent placements remain rather small.
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Figure 3.14: Simulation 1: generated and rejected poses. The entire set of generated and
rejected poses are shown here.

Three of the generated poses were verified, two of which are shown in Figure 3.15. The

first pose corresponds to the object's actual position. A small selection from the 105

generated and rejected poses are shown in Figure 3.16. The first pose, in the upper-left

corner, was accepted by the geometric consistency check, but rejected by the joint torque

constraint check.
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vertices 8

finger segments 3

expanded nodes 17,643

expanded paths 11,776

placement paths 1,664

full tree paths 87,381

generated poses 108

verified poses 3

Table 3.2: Simulation 2: Summary of the interpretation tree.

Figure 3.15: Simulation 2: generated and verified poses. The first pose corresponds to the
object's position. One other consistent pose was also found.

Simulation 3: For this simulation, a two-jointed hand was used again. This object had

four vertices. Table 3.3 summarizes the simulation results. As in a previous example,

because the object is rather small, a significant percentage of the tree paths were exam-

ined. Later examples will better show the power of the pruning operations. Figure 3.17

shows the two poses that were generated and accepted. Figure 3.18 shows the poses that

were generated and rejected. All rejected poses relied on the joint torque test, as their

geometry is consistent with the hand shape.
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Figure 3.16: Simulation 2: generated and rejected poses. A selection of poses from the 105
rejected ones are shown here. Note that the upper-left pose was rejected by application of the
"joint torque constraint.
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vertices 4

finger segments 3

expanded nodes 211

expanded paths 146

placement paths 46

full tree paths 341

generated poses 4

verified poses 2

Table 3.3: Simulation 3: Summary of the interpretation tree.

Figure 3.17: Simulation 3: generated and verified poses. The left pose corresponds to the

object's position. The right pose is also totally consistent with the data.

Figure 3.18: Simulation 3: generated and rejected poses. The entire set of generated and

rejected poses are shown. All these poses were rejected by applying the joint torque constraint.
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vertices 8

finger segments 3

expanded nodes 9,121

expanded paths 5,776

placement paths 1,066

full tree paths 87,381

generated poses 58

verified poses 2

Table 3.4: Simulation 4: Summary of the interpretation tree.

Figure 3.19: Simulation 4: generated and verified poses. The right pose corresponds to the
object's position. The left pose is also totally consistent with the data.

Simulation 4: For this simulation, a two-jointed hand was again used. This object

had eight vertices. Table 3.4 summarizes the simulation results. Two object poses were

consistent with the data, and were accepted by both verification tests, as shown in

"['igure 3.19. Figure 3.20 shows the two poses that were generated but rejected.

Simulation 5: For this simulation, a four-jointed hand was used. The object had five

vertices. Table 3.5 summarizes the experiment's results. The object's pose was correctly

recovered by the algorithm, as shown in Figure 3.21. Some of the verified but rejected

poses are shown in Figure 3.22.
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Figure 3.20: Simulation 4: generated and rejected poses. A sample of the 56 rejected poses
are shown.
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vertices 5

finger segments 5

expanded nodes 1,381

expanded paths 972

placement paths 360

full tree paths 9,331

generated poses 5

verified poses 1

Table 3.5: Simulation 5: Summary of the interpretation tree.

Figure 3.21: Simulation 5: generated and verified pose. The correct object pose was recovered

by the algorithm.

vertices 6

finger segments 7

expanded nodes 7,791

expanded paths 5,432

placement paths 1,858

full tree paths 299,593

generated poses 32

verified poses 1

Table 3.6: Simulation 6: Summary of the interpretation tree.
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Figure 3.22: Simulation 5: generated and rejected poses. Some of the rejected poses are
shown here.

Figure 3.23: Simulation 6: generated and verified pose.

Simulation 6: For this simulation, a six-jointed hand was used. The object had six

vertices. Table 3.6 summarizes the results. In this case, the larger number of joints and

vertices resulted in a potentially large tree size. Nonetheless, only a small number of

the full tree's paths were examined. In addition, the number of generated poses was

small. This trial provides a good example of how effective this method is for reducing

the expensive computations required for finding potential pose candidates. Just one
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Figure 3.24: Simulation 6: generated and rejected poses. A sample of some of the 31 rejected
poses are shown.
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vertices 9

finger segments 9

expanded nodes 84,844

expanded paths 48,406

placement paths 8,746

full tree paths 1,111,111,111

generated poses 158

verified poses 2

Table 3.7: Simulation 7: Summary of the interpretation tree.

Figure 3.25: Simulation 7: generated and verified poses. The pose on the left corresponds
to the object's actual position.

pose was generated and verified, as shown in Figure 3.23. Figure 3.24 shows a few of

the rejected poses.

Simulation 7: For this simulation, an eight-jointed hand was used. The object had

nine vertices. Notice, from Table 3.7, that while the full interpretation tree is huge,

the number of consistent paths that were found remained small. Two of the generated

poses were verified, as shown in Figure 3.25. The first of those poses corresponds to

the object's grasped position. A sample from the 156 generated and rejected poses are

shown in Figure 3.26.
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`71

Figure 3.26: Simulation 7: generated and rejected poses. A sample of some of the rejected
candidates.
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vertices 9

finger segments 9

expanded nodes 137,871

expanded paths 84,717

placement paths 10,485

full tree paths 1,111,111,111

generated poses 250

verified poses 5

Table 3.8: Simulation 8: Summary of the interpretation tree.

Figure 3.27: Simulation 8: generated and verified poses. The pose in the upper left corre-
sponds to the object's actual position. The other poses are close verification matches.
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Figure 3.28: Simulation 8: generated and rejected poses. A sample of some of the 245
rejected poses are shown.
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Figure 3.29: Photograph of the Utah-MIT hand.

Simulation 8: For this simulation, an eight-jointed hand was used. The object had

nine vertices. Notice, from Table 3.8, that the number of consistent paths that were

found remains small. In this run, more tolerance was allowed in the verification stage,

resulting in a few additional matches. The upper-left pose corresponds to the object's

position when it was grasped. Figure 3.28 shows some of the rejected poses. A total of

250 poses candidates were generated in this run.
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3.6 Experiments

The pose determination method described in this chapter was tested on the Utah-MIT

hand (Jacobsen et al. '17]), using polyhedral objects. A photograph of the hand is

shown in Figure 3.29. In general, the experiments confirmed the results obtained from

the simulations. The constraint-based pose determination algorithm usually found the

object's pose, or at worst found a small set of consistent poses which included the correct

pose. This chapter describes the experimental procedures used, and presents a few of

the trials.

Since the two dimensional recognition algorithm was used, the test objects were sym-

metric along the grasping axis. The illustrations that follow are cross sections through

this axis. For simplicity, the objects were oriented in a manner to facilitate easy grasp-

ing. The three dimension case, using the added constraint that the object were resting

on a table-top, was not performed due to limitations in the experimental hardware.

To facilitate the joint torque constraint, the hand was programmed to close on the

objects by applying a fixed torque to all its joints. This commanded the hand to wrap

around the object with all joints moving forward until contacts were made, or until a joint

limit was reached. When the grasp completed, the joint angles were obtained and passed

to the recognition module. See Appendix A for a detailed description of the Utah-MIT

hand setup, its computational architecture, and its interface to the recognition system.

Trial 1: An object grasped by the Utah-MIT hand is shown in Figure 3.30, along with

the position of the hand's fingers that resulted from a grasp of that object. The view

of the hand is a cross-section of its xy plane, where the thumb is to the left and the

middle finger is on the right (see Narasimhan [74]). Note that joint one of the thumb,

the proximal joint, is elevated above the palm plane. Both the thumb and fingers have

three joints that move in the xy plane.

For this grasp, a total of 17 possible placements of the object were found prior to the
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Figure 3.30: Trial 1: grasped object. The object and the hand shape.

Figure 3.31: Trial 1: generated and verified pose. Only the actual grasp of the object was
generated and verified by the algorithm.

verification stage. When the verifier applied the intersection and torque constraints, all

of the incorrect poses were eliminated, leaving just the correct pose. Figure 3.31 shows

the correct pose, as found by the algorithm, while Figure 3.32 shows the object poses

that were eliminated by the verifier.

Trial 2: A second object grasped by the Utah-MIT hand is shown in Figure 3.33. Again,

the system obtained the correct pc -e of the object, as shown in Figure 3.34. In this case,

however, the verifier accepted two poses that were not correct, as shown in Figure 3.35.

As can be seen in the figures, the verified but incorrect poses have symmetries that

allowed the object to fit into the hand and still meet all required constraints. Six
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Figure 3.32: Trial 1: generated and rejected poses. These poses were found by the generator.
and rejected by the verifier using either the joint torque of intersection constraints.

Figure 3.33: Trial 2: grasped object. The object and. the hand shape.



76 Chapter 3 Constraint-Based Pose Determination

Figure 3.34: Trial 2: generated and verified pose. The actual pose of the object was found
by the algorithm. Note that two other poses that were entirely consistent with the constraints
were also found.

Figure 3.35: Trial 2: other generated and verified poses. These poses were also found by
the algorithm. Though they are consistent with all constraints, they do not correspond to the
actual pose of the object.

additional poses were also found, shown in Figure 3.36. These, however, were eliminated

by the verifier.

3.7 Simulations in Three Dimensions

While the method presented in this chapter was described and implemented in two

dimensions, extensions to three dimensions are possible. The basic approach would

remain the same: assign object features to finger edges, using an interpretation tree

to guide the search. For two dimensions, edge-edge and edge-vertex placements are

considered when building the tree. When a set of assignments provide three independent
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Figure 3.36: Trial 2: generated and rejected poses. These poses were found by the generator.
and rejected by the verifier using either the joint torque of intersection constraints.

constraints, it is possible to solve for the object's position. For three dimensions, face-

face, face-edge, face-vertex, and edge-edge placements can be considered. When a set

of assignments provides six independent constraints, the position of the object can be

found.

An important question to ask is if the constraints that are used, the hand shape and

grasp acquisition strategy, are enough for problems in three dimensions. To gain insight

on this, a set of simulations were performed. The hand's fingers are assumed to be

modeled as single edge segments. Objects were modeled as a set of edge segments. With

this model, edge-edge contacts between the hand and an object are the most common

to occur. Grasps of objects were simulated, giving a set of finger edges, some of which

are in contact with the object.

A three-dimensional version of the distance constraint was used to expand an inter-

pretation tree. The tree is organized around hypothesized assignments of object edges

to finger edges. A new assignment is tested to insure that its parent finger-object edge



78 Chapter 3 Constraint-Based Pose Determination

assignment is compatible with the new finger-object edge assignment. If it is not, the

assignment is pruned. Note that only the most basic distance compatibility test was

performed. Range propagation between assignments in the path was not implemented.

This makes the constraint significantly less powerful than it would otherwise be in a

complete implementation.

Initial results from the simulations indicated that using the basic distance constraint

alone was inadequate. The portion of the interpretation tree that was expanded was

too large, and the number of consistent candidates that were generated was prohibitive.

Perhaps this is not surprising, as the combinatorics for three dimensions is significantly

larger than for two dimensions. While an implementation of range propagation tech-

niques was not performed, it is thought that it would help significantly. Nonetheless,

additional pruning of the tree is clearly necessary.

In previous sections, the grasp acquisition strategy was used simply as a verification

test. Instead, it is possible to use the grasping strategy in the pose generation stage.

For example, by using a move-until-contact strategy one can determine the links of the

hand that are in contact with the grasped object. Here is how such a procedure would

work. Each finger is rolled forward, from distal to proximal, one joint at a time. When

contact is detected by monitoring the joint torque sensors, the next joint in the chain

is rolled forward. If that joint can move, the contact was made on the previous link. If

the joint cannot move, the contact is somewhere up the chain, and will be found latter.

This process is repeated for all joints in the finger.

With knowledge of the finger segments that are in contact with the grasped object, a

substantial search reduction is possible. In particular, there are two benefits. First, the

number of finger segments that are considered in the tree is greatly reduced. Second,

the no-contact link from the tree is eliminated. The simulations described below use

this additional source of information, and as will be seen, the results are promising.

For each of the simulations, a table summarizing the computations performed is
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Figure 3.37: Three dimensions trial 1: object and grasp.

presented. The terms used in these tables are slightly different from those used in the

previous simulations section, and are described here:

* Object edges are the number of edges in the object.

e Finger edges are the number of finger edges (links), including the palm.

e Ezpanded nodes are the number of nodes in the interpretation tree that were ex-

amined and that had at least one expanded child.

* Pruned nodes are the number of nodes in the interpretation tree that were exam-

ined and that had no children expanded.

* Placement paths are the number of paths in the tree that were generated.
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object edges 18

finger edges 6

full tree pathsH 34,012,224

finger length

100% _80% 60%

expanded nodes 28,318 14,208 3,657

pruned nodes 250,071 149,193 47,834

placement paths 8,361 2,575 67

Table 3.9: Three dimensions trial 1: summary of the interpretation tree.

Trial 1: The grasped object is shown in Figure 3.37. Note that the highlighted finger

edges are the ones that are in contact with the object. The results for this simulation

are summarized in Table 3.9. Here, the columns indicate the percent of the full length

of each finger segment that was used when generating the tree. The column labeled

100% gives the results for the full finger segments, as shown in Figure 3.37. For lower

percentages, the finger segments are reduced in length by the given amount. Essentially,

the endpoints of the segment are adjusted along the line to reduce the segment length,

while preserving the contact point between the finger and object edge. By reducing the

finger segment length, the distance constraint becomes more powerful. This helps, for

example, investigate how much additional recognition power would be present in a hand

of similar total finger length, but with more finger links.

For this trial, the simulation results are quite promising. The portion of the tree

expanded is manageable, and the total number of poses that need to be generated is

small enough to be feasible. Note that by reducing the finger segment length, a significant

reduction in tree size was achieved. The results shown here are among the best that
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Figure 3.38: Three dimensions trial 2: object and grasp.

were achieved during a number of simulations.

Trial 2: Not all simulations produced results as good as those shown in the previous

example. An object similar to the one used in that example was grasped, as shown

in Figure 3.38. The object had slightly different dimensions and a different orientation

from the previous object. The simulation results are summarized in Table 3.10.

For this trial, a rather large number of nodes in the tree were explored for the case of

100% edge length. In addition, a large number of consistent paths of length 6 were found.

As the edge length was reduced in size, as previously described, the results became more

promising. For a 60% reduction, a manageable 6,740 candidates were generated.
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object edges 18

finger edges 6

full tree paths 34,012,224

finger length

100% 80%_ 60%

expanded nodes 196,960 133,103 24,536

pruned nodes 1,014,083 733,765 212,130

placement paths 1 104,798 67,279 6,740

Table 3.10: Three dimensions trial 2: summary of the interpretation tree.

3.8 Summary and Discussion

This chapter described a constraint-based method for localizing objects grasped by a

hand. The class of recognition problems discussed are important for utilizing robotic

hands in manipulation tasks. In general, the experiments and simulations confirm that

it is usually possible to unambiguously identify the pose of an object grasped by a

hand using just joint angle and torque data. An unambiguous recognition is most

likely when the object has many vertices that are different distances apart from each

other. For objects with a great degree of symmetry, like a square, it is impossible to

distinguish certain orientations. In the case of the square, of course, there is nothing

that distinguishes 90 degree rotations, so any localization scheme would suffer from the

same failing.

The results obtained are very promising. Data gathered from actual objects grasped

by the Utah-MIT hand indicate that pose determination and small set object recognition

are feasible using joint sensor values obtained from just two fingers. The experiments

utilized only 6 of 16 joint angle readings available from the hand. The performance of
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the recognizer on this data was limited by the lack of a good model of the hand, and

apparently not by the limited data. The surfaces of the hand are all different sizes and

shapes, necessitating a complex model. At the current time we do not have such a model

available.

Simulations of the tree pruning portion of the algorithm in three dimensions were

presented. The results again indicate that hand shape and the grasp acquisition strategy

have considerable recognition power. The combinatorics in three dimensions, however.

are of concern. The added pruning power that reducing the finger link length has on

the problem indicates that addition contact location information, perhaps from tactile

sensors or additional finger links, may be necessary to make the method's performance

acceptable.
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Memory-Based

Pose Recognition

Chapter 4

4.1 Introduction

This chapter presents a pose determination strategy based on a table-lookup operation

from a memory. The memory is filled with hand shapes that result from grasping

particular objects. Estimates of an object pose are obtained by matching a hand's

shape to the experiences that have been stored in the memory. Because the lookup

operation is fast, determination of poses that have been encountered before is fast.

The determination method uses what is called the grasp acquisition strategy con-

straint. This constraint is simply the information inherent in the knowledge of how the

hand was programmed to acquire objects. The pose determination memory is filled using

this constraint. An interesting result from this chapter is that by using the grasp acqui-

sition strategy as a constraint, the memory size is reduced and the number of ambiguous

pcses in each memory entry is reduced. Intuitively, a particular grasp acquisition strat-

egy limits the hand shapes that can occur, which limits the number of ways an object

can be grasped. This helps makes the use of a memory feasible.

85
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Some compromises are made. The use of memory essentially trades off time for

space. Because configuration space is tessellated, pose accuracy is proportional to the

tessellation granularity. Techniques for improving the accuracy by using interpolation

are discussed. Additional sensor information can also be used to improve pose estimates.

Chapter 5 discusses such a technique, based on data obtained from fingertip force sensors.

The term hand shape is used throughout this chapter. A hand's shape is obtained

froni it'i kinematic model, and from its joint positions. In this chapter, the term joint

angles is used interchangeably with the term hand shape.

4.1.1 Relevance of this Problem

The previous chapter developed a constraint-based method for obtaining object pose

estimates. While the method avoids the potential combinatorial explosion of searching

the entire pose interpretation space, it is not fast enough to qualify as being real-time.

This chapter examines the use of a memory to speed the determination process. Faster

pose determination is desirable in all cases. When a real-time pose determination is

required, the faster the method, the better.

4.1.2 Why Use Grasp Acquisition Strategy Constraints?

The power behind this method lies in the observation that while, from a mechanical

standpoint, a hand has a large configuration space, its high level control and planning

strategies usually limit the space's size. Consider the configuration space for the Utah-

MIT hand. The hand has four fingers, each with four degrees of freedom. Thus, the

space of possible hand positions has 16 dimensions. The less complex Salisbu1., iiand,

with three fingers, each with three degrees of freedom, has a smaller space of possible

grasps, though the space is still huge. A grasp acquisition strategy provides a way to

limit the number of shapes of the hand that can occur.

Whenever a strategy is used to limit the number of potential hand shapes, it is
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possible that useful shapes will be omitted. A useful hand shape is one that is required

for grasping an object in a particular configuration. Thus, while a grasp acquisition

strategy is useful for reducing the combinatorics of the hand configurations, it may

provide sub-optimal grasping performance. One way to overcome this is by using a set

of grasping strategies, each designed for a particular situation.

The observation that a grasp acquisition strategy greatly limits possible grasps can

be exploited for determination. For each particular position of an object in a hand's

workspace, a simulator for the grasp acquisition strategy can be run to determine the

grasp that will result if the strategy worked. The hand shapes found in this process

are the entire set of shapes that occur when grasping the object. As will be seen, the

determination method described in this chapter is based on this principle.

4.1.3 Chapter Overview

The following sections will show how memory-lookup operations can be used for pose

determination. Section 4.2 provides an overview of previous work. Section 4.3 outlines

the assumptions required for the solution given. The approach is discussed in Sec-

tion 4.4. Section 4.5 discusses the experimental setup and results. Section 4.6 presents

conclusions.

4.2 Related Work

The work in this chapter is related to memory-based schemes for learning and modeling.

Two approaches can be considered, those that store experiences directly, and those that

represent experiences by a set of parameters. Atkeson and Reinkensmeyer [4] provide a

good recent review of this field.

When experiences are stored directly, nearest neighbor approaches are used to find

similar experiences to a new event. Interpolation from limited examples is also possible.

Methods for this are reviewed by Barnhill [6] and Sabin [89]. Local models can be
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formed between the nearest neighbors for each access into the memory. See Watson [107],

Cover [24], and Shepard [93] for examples of this approach. McLain [71], Stone [101],

Franke and Nielson [37] and others use a distance weighted regression to fit polynomial

surfaces to data.

Though memory searches can be performed on serial computers, parallel machines

make the searches much faster. Stanfill and Waltz [99] learn pronunciation by searching

for related experiences using the massively parallel Connection Machine (Hillis [46]).

Connectionist networks, or neural networks, provide an alternative way for represent-

ing past experiences. See Rumelhart and McClelland [87] and Hinton [481 for overviews

of the field. Essentially, a set of nodes and links are constructed to approximate a

function that maps inputs to outputs. The use of the network permits both generaliza-

tion over the training experiences, and more compact storage of past experiences in a

memory.

4.3 Assumptions

The following assumptions are made in this chapter:

"* The hand has been modeled.

"* The objects have been modeled.

"* Either a grasp simulator, or an object pose determine-, is available.

"* The grasped object is assumed to be in static equilibrium.

"* Hand joint angle sensor data is available.

4.4 Approach

This section describes the memory based pose determination approach in detail. The

only sensor inputs to the recognizer is the set of hand joint angles. The output from the
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inputs lookup table outputs

hand joint angles
coarse
object pose

object model

Figure 4.1: Overview of memory-based pose determination.

recognizer is a coarse estimate of the object's position in the hand. Figure 4.1 diagrams

the method, showing the flow of information from inputs to outputs.

4.4.1 Overview

There are a variety of approaches for organizing, filling, and using the determination

memory. The matrix in Figure 4.2 outlines the possibilities that are considered. The

memory can be organized around a tessellated object configuration space or around a

tessellated hand configuration space. The memory can be filled by pre-computation,

prior to determination, or on-demand, during determination. The memory can be used

by extracting the best pose match, or by interpolating between a set of close pose

matches. Note that one of the approaches, on-demand tessellated object space, is not

possible. This will be explained later in this chapter.

More formally, a determination memory is used to approximate a function R that
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tessellate object tessellate hand

compuc o c >o' I ct go 0e tihu >neplto

on- interpolation

demand > c(object)is small
son without interpolation

or OPD

c(hand) configurations of the hand
c(object) configurations of the object

GAS grasp acquisition simulator
OPD object pose determiner

Figure 4.2: Possible memory organizations. A variety of approaches for organizing, filling,
and using determination memories are possible. This table illustrates eight potential methods.

maps hand configurations (shapes) to pose entries:

R(CH) = {P 1,P 2 ,...P,}, (4.1)

where CH is the configuration of hand H. and P, is a pose. It is possible for R(CH) =

A pose entry Pi contains:

1. A pointer to the object model.

2. A transform from the object model 0 to an instance of the object 0(±) at position

3. The hand configuration, CH.

The next sections will examine how this function is approximated using a memory.
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4.4.2 Organizing the Memory

The determination memory can be organized around a tessellated object configuration

space or a tessellated hand configuration space. For tessellated object configuration

organizations, memory locations are computed by finding the hand shape that result

from grasping the object at a particular location. For tessellated hand configuration

organizations, memory locations are computed by finding the object poses that result

from a particular hand shape.

The choice of organization to use is in part a function of the relative size of the

tessellated spaces. For two-dimensional problems, a tessellated object space has three

dimensions. For three-dimensional problems, the space has six dimensions. For tessel-

lated hand configurations, the dimensionality of the space is equal to the number of

degrees of freedom of the hand.

Potentially, the space of possible hand configurations will be much larger than the

space of object positions. However, the grasp acquisition strategy constraint can dra-

matically reduce the effective size of the hand configuration space. Potentially, it can be

reduced to one degree of freedom, even for problems in three dimensions. A hand being

used like a parallel jaw gripper is an example of this.

Tessellated Object Space

A grasp simulator is used to compute memory locations for a tessellated object space.

The grasp simulator G, when given an instance of an object 0, finds the hand configu-

ration CH that would result from the grasp:

G(H,S,O(±)) = Ct-, (4.2)

where O(t) is an instance of object 0 at location i, and S is the grasping strategy being

used.
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Tessellated Hand Space

An object pose determiner is used to compute memory locations for a tessellated hand

space. When given a hand configuration Cu, a pose determiner finds the set of object

poses that are consistent with the hand shape. This can be thought of as the inverse of

Equation 4.2:

G`(CH) = {O(i),0(f2)... O(fn)}. (4.3)

The constraint-based pose determination approach described in Chapter 3 provides

an algorithm for computing Equation 4.3. The method finds all object poses that are

consistent with a particular hand shape, assuming certain types of contacts and ter-

mination predicates. Unlike with grasp simulators, object pose determiners make fewer

assumptions about the world. For example no assumptions need be made about whether

the object was stationary during the grasping operation. This advantage makes it easier

to fill the memory accurately.

Simulation Issues

What are the requirements for a good grasp simulator? Most importantly, the simulated

gripping process should correspond to how the hand would behave when actually grasp-

ing the object. If the simulator's output differs from reality significantly, the resulting

memory entry would be mean. ngless. One of the most difficult factors to consider is mo-

tion of the object during the grasping process. It is hard for a simulator to predict such

motion correctly. As will be seen, an advantage of tessellating the hand configuration

space is that it does not require a grasp acquisition simulator.

It is interesting to note the relationship between this type of grasp simulator and

a grasp planner. Grasp planners, like grasp simulators, must also consider the factors

listed above. The actual grasp and finger motions that a planner generates are assumed

to be executable by the hand. Thus, the planner must have some of the same knowledge

that a simulator contains, in order to plan realizable motions.
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Figure 4.3: Marginal grasp. A small change in the object's position will cause a large change
in the hand's shape. Likewise, grasps are possible where a small change in the hand's shape
will cause a large change in the object's pose.

The grasp acquisition simulator, when applied to an object in a particular Jose, must

find the resulting hand shape. If the object is out of reach, no grasp will be found. For

an object in reach, the resulting grasp can be categorized as follows:

1. A small change in the object's position will cause a small change in the hand's

shape, and vice versa.

2. A small change in the Tbject's position will cause a large change in the hand's

shape.

3. A small change in the hand's shape will cause a large change in the object's posi-

tion.

In the first case, the pose is considered to be a good one, and the hand shape is a good

indication of the object's pose. For the second two cases, the mapping between hand

shape and object pose is not as well defined (see Figure 4.3). Two problems occur with

these marginal grasps. Coarse tessellations of a space could miss particular configura-

tions, and sensitivity may be poor in the regions around the marginal configurations,

depending on the space that was tessellated.

To examine the issue of marginal grasps in more detail, refer to Figure 4.4. Each axis

represents the level of tessellation of the labeled space. The plots in the figure can be used
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object object object

o____ ____ /

position positioni positioni

hand shape hand shape hand shape

good lookup best lookup poor lookup
sensitivity sensitivity sensitivity

Figure 4.4: Memory sensitivity. When mapping hand shapes to object poses, three classes of
conditioning can be considered. Poor conditioning occurs in the third case, when a small range
of hand shapes maps to a large range of object positions.

to understand when the problem is poorly conditioned. In the first case, the conditioning

is good, independent of which space is tessellated. In the second case, the conditioning

is excellent when hand space is tessellated. If the object space is tessellated, a sparse

sample of hand shapes would result. In the third case, conditioning is unavoidably poor,

independent of tessellation considerations. Since a wide range of object positions map

to a small range of hand shapes, using joint position sensing for determination cannot

work well. Thus, the only case that is of concern is the second case. By tessellating the

hand space this conditioning problem is avoided.

4.4.3 Filling the Memory

Both pre-computation and on-demand approaches are considered for deciding when to

perform the computations required for filling the memory. If the tessellated space is

small enough, it is feasible to pre-compute the memory. This is desirable, as on-line

determination becomes a fast, constant-time lookup. If the space is too large, this pre-

computation becomes impractical. As an alternative, portions of the memory that are

encountered can be computed on-demand. This scheme reduces performance when a
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new hand shape is encountered, though the results are then committed to the memory,

which speeds future determinations.

A benefit of the on-demand computation is that only the portions of the space that

actually occur are computed. This reduces the size of the memory. The use of an on-

demand approach can also reduce dependence on the grasp acquisition strategy. If the

memory is organized around hand configurations, pre-computation requires knowledge

of the hand shapes that are possible, as provided by the grasp acquisition strategy. By

performing on-demand computations, this knowledge is no longer needed.

In certain situations, the configurations that an object can assume are limited. The

pre-computation approach is especially desirable in this case. For example, in a factory

environment a robot may be acquiring a part from an assembly line. The part might

have a nominal position, though vibrations and other sources of motion may introduce

a certain amount of placement error.

Note that on-demand tessellated object position space is not a possible approach for

pose determination. If a new hand shape is encountered, the on-demand approach would

require simulating all possible object positions to find the ones that are compatible with

the hand's shape. This, in essence, would be a pre-computation of the entire space.

4.4.4 Using the Memory

From an implementation standpoint, various approaches can be used for approximating

the mapping function R, including hash tables, content addressable memories, and neural

networks. An approach based on hash tables is used for the experiments conducted in

this chapter.

Hand configurations are entered into the determination memory using an index, or

key. The index is generated from the hand's finger joint angle array. A particular bucket

size is used to cluster adjacent joint angles together. The bucket size is selected based

on several considerations, including the actual accuracy expected from the joint angle
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Figure 4.5: Determination memory entries. The contents of four different determination
memory locations are shown here. The upper locations each contain one object pose, and thus
uniquely identify the object's location. The lower locations have multiple entries, and thus
cannot uniquely identify where the object is position.

sensors on the hand. Multiple scale indices can be generated, using different bucket

sizes.

Figure 4.5 shows the contents of four entries in a typical determination memory. The

hand drawn in dark lines is the shape of the entry key. The hands drawn in lighter lines

correspond to the objects in the particular entry. The memory entries represented by

the upper figures contain just one object pose, and thus uniquely identify the object's

pose. The memory entries represented by the lower figures contain multiple entries, and

thus do not uniquely identify where the object is positioned.

Thus, a determination memory provides a direct mapping from a set of hand joint
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angles to objects and their positions. Determination is achieved simply by generating a

key from a hand shape and hashing into the memory. The entry will contain the one or

more poses of the object that are consistent with the hand shape.

4.4.5 Memory Interpolation

Determination memories, as previously described, suffer from two related problems. The

first problem concerns the lack of a limit on memory size. Finer tessellations result in

more memory usage. While it has been argued that useful tessellations have a manage-

able memory size for certain classes of problems, more efficient use of memory is always

desirable. The second problem concerns close, but imperfect, matches. Essentially, a

hand shape is indexed into the memory, and close matches are extracted. The pose that

corresponds to the best match is selected as the candidate. It is possible to better esti-

mate the pose by interpolating between related memory entries. This section explores

both these ideas.

Object grasps are considered to be in related configurations if the object vertex to

finger segment assignments are the same. In these related configurations, continuous

changes in the object position result in continuous changes in the hand shape. In fact,

a particular function exists that maps hand shapes to object poses, for each vertex-

segment configuration. Obtaining this function, and a closed form solution for it, is

hard. It is also dependent on the particular hand's kinematics. Because of this, a

general second order function is assumed, and regression analysis is used to identify the

function's coefficients. As an example, consider a two jointed, two fingered hand. There

exists a set of functions of the form:

c(01,02, 03,04) = a I + a201 + a30 2 + a403 + a5 04 + a60? + a7 02 + sa2 + ag90 +

a1 o0 1 02 + a1 1 01 03 + a 12 010 4 + a 13 0 2 03 + a 14 020 4 + a 1 50 3 04

fc(01,,02,03,04) = bi + b2 0 + b3 02 + b403 + b504 +b6 0• +&1.O +b8 3+b 9 • +

b1 O0 102 + b11010 3 + b12019 4 + b130203 + b140204 + bI50304 (4.4)
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fee(01,2, 03,04) = C1 + c2 01 + c302 + c403 + c504 + C601 + C702 + c89 + +

C1 0 0 1 0 2 + C1 1 0 1 0 3 + C1 2 0 1 0 4 + C1 3 0 2 0 3 + C1 4 020 4 + C1 5 0 3 04

where c is the configuration number, 8i are the hand's joint angles, and {a,, bi, Ci} are

the coefficients to be identified. In general, there will be 3(n 2 - 1) coefficients, where

n is the number of joints in the hand. Note that there is one function for each of the

unknown parameters required to position the object.

Equation 4.4 can be used to both solve the problem of large memory size and to

allow interpolation between existing memory entries. All entries in a configuration can

be summarized by the a coefficients from the equation, eliminating the need for storing

each joint angle to object pose mapping entry separately. This greatly reduces the size

of the memory, making it proportional to the number of contact configurations, rather

than the size of the tessellated space. The equation, when given a set of joint angles,

will return the best estimate of the object's pose that is consistent with the data used

to find the a coefficients. This provides the desired interpolation capability.

Each instance of the set of functions shown in Equation 4.4 is valid for a particular

set of object vertex to finger segment assignments. For determination, only the hand's

joint angles are available. There is no knowledge of the particular contact configuration

that has occurred. The question then remains as to which particular equation, from the

set of c equations, should be applied. Put another way, a mapping from joint angles to

contact configurations is required.

One approach that can be used is to try all c sets of functions. Each set of equa-

tions will return a particular object position. For all but one of the sets of equations,

the contact configurations will be incorrect, and hence the computed object position is

incorrect. To determine which function was the appropriate one to use, the computed

object position is simply verified against that hand's shape. If the position gives the

contacts between the hand and object that were required for the set of functions, then

the pose is accepted. Otherwise, it is rejected.
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Joint 1

~1~J 2  1&2

Figure 4.6: Contact configuration memory. This figure diagrams the coarse memory that
maps joint angles to contact configurations, for a hand with two joints. In this example, two
contact configurations occur. Each entry contains the one or more contact configurations that
occur for the entry's range of joint angle v'alues.

A more efficient approach that can be used is to build a coarse memory that maps

hand shapes to contact configurations, and hence directly to the determination functions

(see Figure 4.6). Thus, a memory is built that is indexed by joint angles, and returns sets

of determi~nation equation coefficients. This memory plays a role similar to the initial

scheme described, where the memory maps joint angles directly to an object position.

However, a memory that maps joint angles to contact configuration information can be

made more coarse, since it is not used to directly obtain the object's position. Rather,

it is used to map to interpolation functions, which then compute the position.
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Figure 4.7: Distribution of pose configurations. The number of poses in each configuration,
sorted by size, is shown here.

Thus, the use of this interpolation approach can be summarized as follows:

1. Sort the memory by configuration.

2. Perform a regression on each configuration to identify the a coefficients.

3. Build a coarse memory (one with relatively large buckets) to map hand shapes to

contact configurations.

Note that to perform the regression analysis for obtaining the a coefficients, at least

as many equations as coefficients are required. If a particular configuration lacks the

required number of entries, additional ones can be obtained by sampling the space more

finely in the deficient area.

To demonstrate the interpolation ability of this technique, a number of tests were

performed on a sample memory generated using objects grasped by a two fingered, two
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jointed hand. The following paragraphs describe these tests and present their findings.

First, an examination of the number and distribution of configurations found in a

memory was performed. Figure 4.7 shows the distribution for an object with three

vertices. A uniform tessellation of the object position space was performed, with 8000

total positions sampled. Note that the first 15 or so configurations account for the bulk

of the sampled grasps. Several of the configurations lack the required minimum number

of poses for identifying the regression coefficients. Finer tessellation in those areas would

be required.

For each of the configurations that had at least the minimal number of required poses.

a regression was performed. The Levenberg-Marquardt algorithm, as implemented by

the Minpack [73] library, was used. The algorithm obtained the set of coefficients that

accurately recovered the joint angle to pose mapping for the data that was used in the

regression. In all cases, a stable set of coefficients that satisfied the minimization could be

found. The coefficients, if based on a sufficient sampling of the configuration space, were

found to allow a reasonably accurate interpolation between entries. The experiments

suggest that the number of pose samples required for obtaining a good estimate of the

coefficients varied widely. As one would expect, for hand shapes that covered a large

range of positions, a relatively large number of pose samples were required. For smaller

ranges of hand shapes, as few as 25 samples were required for obtaining reasonable

position estimates. This supports the claim that a second order function is appropriate

for mapping joint angles to an object pose.

The following procedure was used to examine the interpolation capabilities in more

detail. The memory entries for an exemplar contact configuration were randomly or-

dered. The first n of these entries, where n is varied from the minimum required samples

for interpolation, to the maximum number of entries in the configuration, were used in

the regression. The remaining entries from the configuration, the ones not used in the

regression, were then predicted using the computed coefficients. The error between the
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x y 0
desired actual error desired actual error desired actual error

-0.200 -0.188 1.1 0.600 0.626 2.9 0.400 0.380 3.3
-0.300 -0.262 3.5 0.200 0.267 7.4 0.500 0.448 8.6
0.000 -0.148 13.4 0.200 0.585 42.8 0.600 0.366 39.1
0.200 0.190 0.9 0.800 0.773 3.0 0.400 0.400 0.1

-0.500 -0.501 0.1 0.100 0.165 7.3 0.400 0.352 8.1
-0.600 -0.620 1.8 0.300 0.404 11.5 0.300 0.243 9.4
0.100 0.121 2.0 0.900 0.759 15.6 0.300 0.380 13.3

-0.200 -0.195 0.5 0.800 0.627 19.2 0.100 0.202 17.0
0.200 0.172 2.5 0.500 0.727 25.2 0.300 0.173 21.2
0.300 0.303 0.2 0.800 0.798 0.2 0.300 0.304 0.7

-0.400 -0.371 2.6 0.000 0.020 2.3 0.500 0.476 4.1
0.100 0.079 1.9 0.600 0.617 1.9 0.100 0.082 3.0

-0.300 -0.264 3.2 0.200 0.197 0.4 0.400 0.398 0.4
0.300 0.308 0.8 0.600 0.741 15.6 0.300 0.217 13.9
0.400 0.440 3.6 0.600 0.756 17.3 0.300 0.204 16.1

-0.300 -0.278 2.0 0.600 0.539 6.8 0.200 0.241 6.9
0.100 0.082 1.6 0.500 0.637 15.2 0.200 0.122 13.1
0.500 0.504 0.4 0.800 0.813 1.5 0.M00 0.128 4.7
0.300 0.317 1.6 0.700 0.671 3.3 0.100 0.111 1.8
0.000 -0.043 3.9 0.500 0.674 19.4 0.400 0.298 17.0

-0.200 -0.172 2.5 0.200 0.076 13.7 0.300 0.365 10.8
0.500 0.478 2.0 0.800 0.875 8.3 0.300 0.257 7.2

Table 4.1: Interpolated poses. This table shows the desired position parameter, the actual
parameter computed by the estimation function, and the percent error of that value.

predicted and actual values were then found. A percent error was also computed, based

on the total range in values for that parameter.

Table 4.1 presents a number of pose location parameters that were computed using

the estimation function. Notice that in most cases, the percent error in position is small,

usually only a few percent. The error in 0 is slightly larger in general, though this is

probably because of the larger tessellation that was performed in that dimension.

Two configurations were compared, one that covered a larger range of object positions

than the other. The first had 107 entries, and covered the smaller range. Figure 4.8
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Figure 4.8: Typical interpolation error. The error in interpolation, for object z. y, and 0, is
plotted against the number of configurations used in the regression. This plot is representatire
of the performance of the method under most tested configurations.

plots the error in x, y, and 0 for a randomly selected position, as additional poses are

used in the regression. The performance here is quite good. Figure 4.9 p1 - the same

parameters for a larger configuration, one with 252 entries. In this case, performance is

somewhat degraded.

The stability of the estimation function's coefficients was examined. Figure 4.10

shows a plot of three coefficients against the number of samples used in the regression.

Notice that as the number of samples increases, the coefficients approach a constant

value, as would be expected. For he trial plotted in the figure, approximately 125 poses

were required before a stable set of coefficients were found. This particular configuration

covered a rather wide range of hand shapes, and needed a large number of poses to obtain

a stable set of coefficients. For configurations that occurred over a smaller range of hand

shapes, fewer coefficients were usually required. For some cases, as few as 25 poses
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Figure 4.9: Large interpolation error. The error in interpolation, for object x, y, and 0.
is plotted against the number of configurations used in the regression. Initially, the error in
predicted position parameters is larger, due to the larger range of positions that are in this
con figu ration.

produced reasonable results.

4.4.6 Execution Algorithms

In the next sections, two of the potential memory determination strategies are examined

in more depth. The first method considered is for tessellated object space with pre-

computation of the memory. The second considered is for tessellated hand space with

on-demand computation of the memory.

Pre-Computed Tessellated Object Space

Pre-computed tessellated object space is appropriate when the number of object config-

urations is smaller than the number of hand configurations, and either the number of
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Figure 4.10: Estimation function coefficients. Three of the function's coefficients are plotted
against the number of samples used in the regression.

hand configurations is small, or a good grasp simulator exists. The algorithm has two

stages, the pre-computation stage to fill the memory, and the run-time determination

stage.

The determination algorithm, using interpolation, proceeds as follows (see also Fig-

ure 4.11):

1. Pre-computation stage:

(a) Build the determination memory by sampling object configurations and sim-

ulating grasps.

2. Determination stage:

(a) Obtain the determination memory key from the set of hand joint angles.

(b) Index into the determination memory using the key.
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Figure 4.11: Pre-computed tessellated object space. This figure show~s a flowchart for the
determination algorithm.

(c) Order candidates from memory entry based on the closest matches to the

actual joint angles. Interpolate object pose.

If interpolation is not to be used, only the best match to the key is extracted, and is

used for the pose estimate.

On-Demand Tessellated Hand Space

On-demand tessellated hand space is appropriate when the number of hand configu-

rations is smaller than the number of object configurations, and either the number of

object configurations is small, or a good pose finder exists. The algorithm has just one
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Figure 4.12: On-demand tessellated hand space. This figure shows a flowchart for the
determination algorithm.

stage, the run-time determination stage.

The determination algorithm, using interpolation, proceeds as follows (see also Fig-

ure 4.12):

1. Determination stage:

(a) Obtain the determination memory key from the hand's joint angles.

(b) Index into the determination memory using the key.

(c) If there are no matches, find poses for the hand shape. Add poses to the

memory.

(d) Order candidates from memory entry based on the closest matches to the

actual joint angles. Interpolate object pose.
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Figure 4.13: Photograph of the planar hand.

If interpolation is not to be used, only the best match to the key is extracted, and is

used for the pose estimate.

4.5 Experiments

To test the ideas presented in this chapter, both simulations and trials using an actual

robotic hand were performed. The simulations examined the characteristics of the de-

termination memories as certain parameters were varied. Experiments on a two-linked,

two-fingered planar hand were also performed, which is described in Appendix A. A pho-

tograph of the hand is shown in Figure 4.13. Unless otherwise noted, the experiments

were conducted using this planar hand with planar objects.

For simplicity, the experiments conducted in this chapter were done using a move-

until-contact acquisition strategy. Here, the hand's joints are rolled forward, closing onto

an object, until a joint torque limit is exceeded. The joints are closed from proximal to

distal. When the most proximal joint can no longer move, the next joint in sequence is

then servoed.
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Figure 4.14: Ezperimental objects.

4.5.1 Pose Determination

For these experiments, a library of two objects was used, as shown in Figure 4.14. The

pre-computation tessellated object space method was used. By building the memory

with two objects, these tests perform both small set recognition and pose determination.

For the recognition experiments performed here, different bucket sizes where used, where

a determination memory is generated at each bucket size. The memory lookup operation

is performed first with the smallest bucket size. If no matches are found, the memory

with the next largest sized bucket is then consulted. The process repeats until matches

have been found.

Figure 4.15 examines the number of buckets in each memory. The x-axis indicates

the relative bucket size. The y-axis indicates the total number of memory entries that

were found in that bucket. In the following results, the memories from only the first two

buckets are consulted. The larger bucket sizes proved to be unnecessary as they grouped

too many entries together.

Trial 1: For this hand shape, there were essentially two poses found, as the two right-

most entries are slight variations of the same pose, as shown in Figure 4.16. In this

figure, and the subsequent ones, the actual hand shape is drawn in a dark line, while

the hand shape from the bucket key is drawn in a light line. The actual object grasped

is shown in the right poses. Note that they form a closer fit to the actual hand shape.
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Figure 4.15: Buckets per determination memory.

Figure 4.16: Trial 1: three memory entries.
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All these poses were found from the memory with the finest bucket size.

Trial 2: In this trial, shown in Figure 4.17, the upper two poses were found from the

most fine bucket size. The left most of these corresponds to the actual pose of the

object. The right pose is from the same family of poses, as well. Note that no poses

from the other object in the library were consistent with this hand shape, as is desired.

For reference, the lower nine poses are from the memory with the next larger scale. Note

that there still are no poses from the other library object in this set.

Dial 3: For the trial shown in Figure 4.18, only one pose was found. This pose corre-

sponds to the grasped object's position.

Trial 4: For the trial shown in Figure 4.19, far more poses were found in the memory

entry. The poses shown in the top row of the figure corresponds to the object's position.

Note that a large number of poses for the other library object were also found. in two

totally distinct configurations. All these poses are from the most fine memory.

Trial 5: For the final trial, shown in Figure 4.20, the top most pose was the only pose

that corresponded to the hand shape data, from the most fine determination memory.

It correctly corresponds with the pose of the grasped object. The remaining poses were

found from the next larger scaled memory entry.

4.5.2 Haptic Information Content of Hand Shape

As more links are added to a hand, its haptic information content should increase. In

the lin-&ing case, an infinite jointed hand would totally conform to the shape of the

object that it was enclosing, as if it were a rope tied around the object.

One way to investigate the haptic information contained in hand shape is to examine

determination memories. An experiment was conducted for this purpose. For a fixed
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Figure 4.17: Trial 2: eleven memory entries.
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Figure 4.18: Trial 3: one memory entry.

object, the number of links on ; simulated two fingered hand was varied. The sum of the

link lengths was kept constant. For each hand, determination memories were built by

tessellating the object configuration space. The recognition power of a hand is defined

to be inversely proportional to the ambiguities in the determination memory. An entry

is defined to be ambiguous if there are more than a certain low number of poses in an

entry bucket.

Figure 4.21 presents the results of this experiment using a bar chart. The x-axis

indicates the number of entries in a bucket for that bucket to be considered unambiguous.

The y-axis indicates the percent of entries in the entire memory that are unambiguous.

Each bar is divided into four categories, which indicate the number of links in each

finger. From left to right, two, three, four, and five link fingers are considered. From

the plot it can be seen that even in the worst case, with a two link hand, 68 percent

of all memory entries are unambiguous. Adding three links dramatically increases the

performance making 84 percent of the entries unique. If up to three entries in a bucket

are considered unique, 94 percent of the memory entries are acceptable for a four linked

finger.

There is an interaction between the number of finger links, the bucket size used to

group entries, and the percent of memory entries that are unique. As the entry key's
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Figure 4.19: Trial 4: ten memory entries.
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Figure 4.20: Trial 5: nine memory entries.
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Figure 4.21: Number of links vs. memory ambiguity. Each cluster contains four bars, one
for a two, three, four and five link finger. Each cluster denotes the maximum number of entries
in a bucket that is considered to be unique, ranging from one to three. The y-axis of the plot
indicates the percent of all entries that are unique.

bucket size is increased, more entries will be assigned to the same bucket, as there are

fewer buckets. The plot in Figure 4.22 shows this effect. The x-axis indicates the relative

bucket size. The larger x values indicate larger buckets. The y-axis indicates the percent

of memory entries that are unique. The results for two, three, and four link fingers are

plotted. Note that as the bucket size increases, fewer entries are unique. Adding more

links (which also increase the number of buckets) increases the percent of unique entries

for all bucket sizes. It is interesting to note that the reduction in ambiguity as finger

links are added is not as dramatic as might be thought.

To consider how sensing might help improve the performance of this determination

approach, the following experiment was performed. A memory was generated for a test

object. The memory was sorted by number of poses in a bucket, where a bucket holds a

set of similar hand shapes. In addition, another memory was built using the same hand

and object, but with the additional information that would be provided by sensors that

indicate if contact with a link has been made. The sensor information provides a way
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Figure 4.22: Effect of hand fingers on memory ambiguity. This plot shows that larger number
of finger links increases the recognition power of a hand, but not as dramatically as might be
expected.

to disambiguate among multiple poses that map to the same hand shape. If the poses

result in a different set of link contacts, they can be distinguished.

In Figure 4.23, the solid line plots the total number of poses that are found in each

bucket size. Thus, an xy point indicates the total number of poses (the y value) that

are in buckets that have x poses in them. Any bucket that has more than one pose in it

is considered ambiguous. The dotted line plots the same numbers for a hand equipped

with sensors. To eliminate the effect of related families of similar poses, a family of poses

was considered as a single pose when computing these results.

In the plots, notice that the number of poses in the larger buckets drops off signifi-

cantly when using the contact sensing information. All buckets now have just one or two



118 Chapter 4 Memory-Based Pose Recognition

3M4• •4MSSlw-I

Sao. Sao.
O 01W

1, 2.... 1 2
number of poses in bucket number of posee in bucket

two joints thfi joints

350 350e

-S 25W
150 S

Sa soo
a 30 1 2 a

number of poses In bucket number of poses in bucket

four joints five joints

Figure 4.23: Effect of sensing on memory ambiguity. The numbers plotted with a solid line
are for a hand without sensing. The dotted line is for a hand with sensing.

poses in them. Notice as well that by adding more links to the hand an improvement

also results, though not as large. This result suggests that adding contact sensors to a

hand improves its recognition power more than would adding a small number of extra

finger links.

4.6 Summary and Discussion

This chapter described a memory-based method for localizing objects grasped by a

hand. Various approaches for organizing, filling, and using the determination memory

were explored. Experiments were performed using both simulations and a planar hand

with two fingers, each with two links.
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The results show that memory-based determination can be used to localize an ob-

ject's pose. The use of the grasp acquisition strategy constraint makes the memory size

manageable. Memory can be further compacted by using regression-based curve fitting.

Regression also provides a way to interpolate between entries to obtain a more precise

pose estimate.

For problems in full three dimensions, memories are still useful, though certain factors

must be considered. Tessellations of the object space may be practical only under certain

restricted conditions. For the full three dimensions, six parameters must be varied. For

all but very coarse spacing, it would be too time consuming to perform such a tessellation.

However, if objects are resting on a stable face on a table, and if the hand approaches

the object from a fixed direction, such tessellations may be possible. In this case, n

tessellations in two dimensions would be required, where n is the number of object

faces. For tessellated hand configurations, three dimensions can be handled as long as

the grasp acquisition strategy restricts the dimensions of the hand space adequately.
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Sensor-Based

Pose Refinement

Chapter 5

5.1 Introduction

When manipulating a grasped object, especially with a robot hand, it is helpful to have

an estimate of the object's orientation within the grasp. The object's orientation can

be extracted from knowledge of the surface normals at the various points of contact

with the object, but these surface normals must first be transformed into a common

coordinate system. Successful execution of these transformations requires a prohibitive

amount of accuracy in calibration of the arm and hand. This chapter presents an on-

line method to improve these transformations in spite of calibration errors. The method

requires collecting contact force readings as the object is manipulated, and computing

transform corrections that minimize the variation in the sum of the contact forces. Both

experimental and simulated results are presented, and the implications of the results are

discussed.

121
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5.1.1 Relevance of this Problem

When an object is grasped by a robot hand, the eventual position and orientation, or

pose, of the object is difficult to accurately predict. When performing even the most

rudimentary manipulation of the object (for example, placing it somewhere else), it

is helpful to have some additional knowledge of the object's pose relative to a fixed

coordinate frame.

Previous chapters of this report developed techniques for coarse pose estimation

relative to the reference frame of the hand. In some cases, more precise estimates are

required. In addition, since the previous techniques used just hand shape and grasping

strategy information, solution ambiguities could occur. Additional sensor information

can be used to overcome these problems.

Sensor-based refinement techniques must combine local sensor readings into a global

pose estimate. This requires accurate transforms from local coordinate frames to a global

coordinate frame. This chapter shows that the calibration and sensing requirements for

obtaining accurate global data are severe. In fact, simple operations such as adding the

contact forces together to find the object's weight gave meaningless results. Techniques

for self-calibration are presented in this chapter, as they can reduce this problem.

5.1.2 Source of Information

There are various sources of information available for finding the pose of an object

relative to a fixed world coordinate frame. One source of global information is the set

of joint position sensors. The locations of the intended contact points can be calculated

using the robot's forward kinematics. For fingertip grasps, for example, the contact

points will be at the locations of the fingertips themselves. This information aids in

determining the pose of the object, but only within the limits of calibration and model

errors.

Another source of information is force and surface normal measurements at the points
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Figure 5.1: Overview of pose refinement.

of contact. Fingertip sensors, such as those designed by Brock and Chiu [15], can provide

this type of information. Surface normals, in particular, can be fit to an object model

to solve for the object's orientation. Since the surface normal measurements are local

measurements, however, they must be transformed into a fixed frame before they can

be of any use. One way to do this is simply to use the robot's inverse kinematics. Of

course, this is susceptible to the same calibration and model errors as the first method.

In principle, the object's orientation estimate can be improved by assuming that there

are calibration errors, and by attempting to solve for corrections to the transforms from

the contact points to a fixed coordinate frame. This can be done by taking a number of

force readings at different object orientations and finding the correction transforms that

best fit the requirement that the sum of the contact forces must equal the object weight

at every object orientation. Here, contact forces are used as an independent information

source to augment the information we have on the configuration of the robot. Figure 5.1

diagrams the process used to refine an object's pose.

Calibration problems are compounded by the object grasping forces. When the

fingers constrain an object, they exert an internal force. This force can be quite large,

depending on the grip's firmness. The signal being extracted from the fingertip sensors

is the total external force applied to the object due to gravity. The noise that must be
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overcome is the internal grasping force. It is typical for an object to be grasped with

an internal force several times that of its weight. This problem can only be solved by

having a good calibration.

From another standpoint, this work provides a method for continuously calibrating

the fingertip sensors. As an object grasped by a hand is moved by an arm, continuous

sensor readings can be obtained and used to refine the system's estimate of the object and

fingertip orientations. The relatively small amount of computation required is suitable

for real-time applications.

5.1.3 Using World Invariants

The first part of the pose refinement method uses the constraint that the sum of the in-

ternal grasping forces must equal the object weight, or simply a constant vector oriented

in the direction of gravity. Sensor readings are taken in the fingertip or sensor frame.

Errors are introduced when these readings are transformed to the common world frame.

The method then attempts to find a correction to each fingertip's orientation to make

the constraint on the sum of the forces hold true, after the tip forces are transformed to

a common coordinate frame.

5.1.4 Chapter Overview

The following sections will show how contact force and surface normal information can

aid in determining the orientation of a grasped object. In particular, multiple samples

of contact force information are used to help correct for robot calibration and model

errors. Section 5.2 provides an overview of previous work. Section 5.3 outlines the

assumptions required for the solution given. The approach is discussed in Section 5.4.

Section 5.4.1 covers the process of finding an object's orientation with perfect kinematics

and sensors, using a set of three linearly independent surface normal measurements.

Section 5.4.2 shows how this estimate can be improved by taking force readings with



§5.2 Related Work 125

the object in various orientations and grounding the resultant of the forces to the object

weight. Section 5.4.3 shows an alternative approach for refinement based on a small-

angle approximation. Section 5.5 discusses the experimental setup and their results.

Section 5.6 develops a simulator used for predicting fingertip sensor readings. The

simulations are used to examine the performance of the refinement algorithms, and

to better understand the observed experimental results. Finally, Section 5.7 presents

conclusions.

5.2 Related Work

Related work falls into the categories of haptic object recognition and kinematic cali-

bration. Haptic object recognition is the problem of using the sensors on a robot hand

to recognize an object. This problem is often examined from a model-based feature

matching framework, such as in Gaston and Lozano-P~rez [381 and Ellis [31]. Object

properties such as face normal directions and contact point distances are measured and

matched against a model. In contrast, Lederman and Klatzky [67] examine how hand

motions can be used to recognize objects. Allen and Bajcsy [3] and Allen [21 propose a

method for building surface maps using tactile sensors and vision. The surface features

can be matched against an object database to identify the object and its pose. These

works make no particular mention of the issue of calibration of the hand's kinematics.

Hollerbach [50] provides a recent review of the field of kinematic calibration. Cal-

ibration of hands has been studied as a problem of closed-linked kinematic chains by

Everett and Lin [32], and Bennett and Hollerbach (10, 9].

This chapter contributes to the work mentioned above by presenting an active cali-

bration process that can be used while the hand is performing its normal manipulations.

Multiple sensor readings obtained in the course of the motion are used to refine the

sensor orientation estimates. This is made possible because we only need to correct

fingertip orientation in order to extract object orientation. Locally correct estimates of
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object orientation are acceptable, as long as they are kept up to date. This means that

complete calibration of the configuration of the arm and hand is not required.

5.3 Assumptions

The following assumptions are made in this chapter:

* Contact forces and estimated surface normals can be obtained at all points of

contact with the object.

* Known changes in object orientation can be generated (this may correspond to

having accurate arm kinematics and inaccurate hand kinematics).

e The grasped object is polyhedral, and the faces containing each of the contact

points are known.

* The grasped object is assumed to be in static equilibrium.

e The error in the contact force and surface normal measurements (the sensor read-

ings) is negligible in comparison to the error in the position and orientation of the

sensor frame.

5.4 Approach

The pose refinement process is described in two stages. First, a method is presented for

refining fingertip contact normals and finding the weight of the grasped object. This

method relies only on fingertip sensor data. Next, the added constraints provided by the

object's model and the fingertip to object face assignments is used to refine the object's

orientation.

Several reference frames that are used in the subsequent sections are first defined:

ti fingertip i frame

wi world frame seen by fingertip i

w world frame
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The fingertip world frames are obtained from the robot's forward kinematics and the set

of joint position sensors. They are inaccurate due to calibration errors. Essentially, the

method described here will find a correction to take wi to w for each fingertip.

5.4.1 Recovering an Object's Pose

If the transforms obtained from the inverse kinematics of the robot are accurate, finding

the object orientation is easy. To perform an unambiguous fit, contact information must

be available on three surfaces of the object with linearly independent normals. The

object orientation desired is the best rotation of the modeled object to bring the surface

normals Mi" into alignment with the measured surface normals N?'. The measured

surface normals Nivy are transformed from the local sensor frames to the world frame by

IV = TNt'. (5.1)

The object model normals must then be aligned with the set of world coordinate normals.

Niw. One error function that could be used to perform the alignment is given by

3

E (
i=l

where Mi is the angle between the measured and model normals in the proposed object

orientation. The object orientation that minimizes the error term is the most consistent

guess available for the given normal measurements.

5.4.2 Refining Inaccurate Contact Normals

In reality, the inverse transforms from the contact sensors local frame to a world frame are

not particularly accurate. For a setup using a Salisbury [90] hand and a Puma arm (see

Appendix A), the contact forces obtained are so inaccurate that a simple experiment

to weigh an object gives meaningless results. Thus, before performing the procedure

described in the previous section, corrections to the fingertip transforms T,7 must be
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found. This section details a method to find these transforms by combining multiple

sensor readings using the direction of gravity (or the direction of the object weight) as

an invariant.

If the inaccurate world frame for tip i is denoted w., then an accurate surface normal

Nw is found from

N;w = T T,u , Ni', (5.3)

where Tw' is the correction transform that must be fnund. The constraint used here is

that the sum of the fingertip forces must equal the object weight:

3

ZFw=mJ. (5.4)

And of course, the contact forces are transformed to the world frame in the same manner

as the surface normals:

F1 = Tw,' T1' Fi'". (5.5)

If we put the gravity vector along the z-axis, we get:

3

E l.,= 0
t=1

3
= 0 (=5.6)

t=1
3

Fw. = mg.
i=1

The correction transforms TZ must be such that they satisfy Equations 5.5 and 5.6. If

the fingertip sensors are sampled in multiple object orientations, an error function can

be defined as:

E,= {(F•w)2 + (Fi) + (F., - mg) . (5.7)

If p force samples are collected, the values of Tw that best satisfy

E E,2 - 0, (5.8)
s---
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give refined sensor to world transforms that can be used to update the contact force and

surface normal measurements.

One added problem that must be considered is the weight of the tip itself, which

is a significant 0.16N. The force output F will only be accurate when the tip is in its

calibration orientation. To correct for this, the tip is calibrated with its z-axis parallel to

the gravity vector in world coordinates. A good assumption is that in this configuration,

the tip weight acts directly through its origin. Thus, the force that was erroneously

subtracted out during calibration can be restored by adding the tip weight to the z-

component of all calibrated sensor force readings. These can then be corrected for the

effect of the weight in the current configuration by projecting the weight into the current

tip frame and subtracting this from the result. The accuracy of this correction, of course,

depends on the accuracy of the transform from the world coordinate system to that of

the tip. More formally, if F,"' are the raw tip force readings, the corrected readings, F',",

can be obtained from

F," = F,' - T" (5.9)

where Wi' is the weight vector of fingertip i, in world coordinates. Thus, Equation 5.5

can be written in terms of the raw forces as

F, = T:,Tt, (F." T 10)

The error term in Equation 5.7 is computed using the forces obtained from this equation.

The three correction transforms have a total of nine unknown rotation parameters.

but the optimization method can only be used to solve for eight of these. The method is

useful for making the tip world coordinate frames internally consistent, and for aligning

the z-axes of these frames with the actual world z-axis (or with the direction of gravity),

but it cannot align the tip world x and y axes with those of the actual world coordinate

system. While the z-axis is in the direction of gravity, there is no natural phenomenon to

distinguish x from y. Because of this, a zyz Euler angle representation for the correction



130 Chapter 5 Sensor-Based Pose Refinement

rotations is used (Craig [25]),

cac3 cas/IsY - sac-Y cas/3cy + sas

sac# sasis-y + cactY sasocy - casi (5.11)

and the last rotation about the z-axis in the correction vector of one of the tips is

arbitrarily set to zero. After a solution is found, a rotation about z is applied to all of

the tip rotation corrections to minimize the sum of the squares of the angles of correction

from the initial guess, or the guess obtained from the robot inverse kinematics. The

initial guess may not be very good, but it is the best independent estimate available.

Note that the magnitude of the object weight, m, can be supplied as an additional

parameter in the minimization if it is not known.

Once the correction transforms have been found, they can be used in Equation 5.3

to transform the measured surface normals, which can then be used to find the object

orientation as shown in the previous section.

5.4.3 Refinement Using Small Angle Approximation

One problem with using the minimization numerical technique for finding the tip ori-

entation corrections is its susceptibility to local minima. As with any minimization, if

the function being solved contains local minima, false solutions may be obtained. Given

a good initial guess, local minima will hopefully be avoided. However, non-numerical

techniques are certainly better. This section develops an alternative approach based

on a small angle approximations of the rotation matrix that represents a tip correction.

This approach has the advantage of linearizing the problem, giving a system of equations

that can be solved using a matrix inversion.

The zyz Euler angle representation for a rotation given by Equation 5.11 can be
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linearized (Paul [81]) to

1 -Ct
S1 (5.12)

Using this linearized form of a rotation, and from Equations 5.5 and 5.6,

3' 1 -cki fwis 0

Z ca, 1 -Y f = (5.13)

-f, - 1mg

In this form, the desired correction angles are obtained by solving for the aOiy Euler

angles. The forces, f are obtained from the sensors, and transformed to the nominal

world coordinate system using the modeled kinematics. Rearranging Equation 5.13 into

the form

AX = B, (5.14)

and eliminating the equation for the final z rotation (which cannot be solved for). gives

0 fLZ -flt 0 f2. -fl 0 fl, CQ

-fh 0 fL -flz 0 f2z -fdz 0 31

f~ -fyAl 0 f 21 f 21 0 fly f 3, 7

0 f?2 -f1 0 fý -f? 0 f2.

-fy f 0 f 2
3 f2 -2, 0 f 2 -Tf 32 0 I32

1 .-1 3 0 f2 - f2 0 1 f -T
0 3.-1 0 f -14 3 0 3f3

f2? 02 14 -T 0 0-3
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mg - A.- B.- fB.

-fz- f22f23. (5.15)

mg - - 2- A

-fA. f- f33

All force readings, fis, are assumed to be in frame wi. The superscript s refers to the

sample number. As before, IM cannot be found. Equation 5.14 has eight equations and

eight unknown, and thus A` is easily obtained. Additional equations can be obtained

by using more than the required minimum of three samples. In this case, A-` could be

obtained by a pseudo-inverse. If the object weight was unknown, Equation 5.15 could

be augmented with the equation from the third sample that was omitted.

5.5 Experiments and Results

These experiments test the ideas presented in the previous sections. As outlined above,

the direction of gravity is used as an invariant in finding sensor frame correction trans-

forms. The first experiment attempts to weigh objects. While measuring an object's

weight is not a particularly interesting experiment in itself, it provides an easy test of

the refinement technique. It is much easier to verify an object's weight than its global

orientation. The next experiment examines the refinement of contact normals. Again, to

avoid the issue of global workspace calibration, objects with parallel faces are grasped,

where the fingertip normals are known to oppose each other. Before describing the

experiments, the setup and procedure are detailed.



§5.5 Experiments and Results 133

Figure 5.2: Photograph of the Puma arm with Salisbury Hand.
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Figure 5.3: Diagram of the force sensing fingertip.
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5.5.1 Experimental Setup

The experiments described in the next section were conducted using a Salisbury [901

hand mounted on a Puma 500 arm. A photograph of the robot is shown in Figure 5.2.

In this setup, contact forces and surface normals are obtained from Brock and Chiu's [151

force sensing fingertip sensors (Figure 5.3). Each sensor has a six axis load-cell, built

with eight strain gauges arranged in a Maltese cross configuration. The gauges are

paired off with each other, one on each side of the beams that form the cross. The

sensor surface is polished aluminum. See Appendix A for a detailed description of the

robot and its computational architecture.

The sensors are calibrated using a specially designed apparatus that can apply forces

and torques in known directions. The calibration process involves probing the sensor

and recording the strain gauge outputs. This data gives a forward calibration matrix.

A Morse-Penrose pseudo inverse is computed to obtain a conversion matrix from sensor

readings to force values. If C is the experimentally determined calibration data, and S

is the 8 x 1 strain gauge reading vector, then

F = C'S. (5-16)

This approach, however, does not take into account the effect of the weight of the

fingertip on its own sensor readings. As previously discussed, the orientation of the tip

must be known, and an appropriate weight correction must be applied.

Most of the error in estimating the position and orientation of the sensor frames comes

from the hand. The Salisbury hand lacks both joint angle sensors on the finger joints

and encoder absolute zero marks. Instead, motor positions are used to estimate joint

positions. Due to compliance in the tendon system, this estimate is not very accurate.

To further compound the problem, the hand must be manually zeroed at startup.

Experimentally, it was found that refinement using the small angle approximation

(Section 5.4.3) did not work well. This can be explained by the rather large correc-

tion angles that were found to occur. This would cause the small angle assumption to
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fail, giving erroneous results. Because of this, the minimization method for finding the

corrections was used instead.

The correction transforms were obtained using the Minpack [73] package. This pack-

age of Fortran subroutines is used to solve numerical minimizations of systems of equa-

tions. In particular, the LMDIF subroutine was used, which implements a modification

of the Levenberg-Marquardt nonlinear least squares algorithm. The minimization solved

by LMDIF is given by

min { fi(x) 2 :xR'} (5.17)

where fi(x) is obtained from Equation .5.7, and p is the number of sensor samples.

LMDIF computes the required Jacobian matrix using a forward-difference approxima-

tion.

5.5.2 Weighing an Object

This section shows the results from a few representative attempts to weigh an object.

A more general discussion of the results is then presented in Section 5.7 below.

Figure 5.4 shows the measured force sums for all samples of one run along the world

x, y, and z-axes. These sums are shown before the correction transforms have been

applied. The object's actual weight, as shown in the figure, is 1.56N. Note that all the

trials in this section used 15 sensor samples for the minimization. As will be discussed in

the next section, this turned out to be inadequate. A larger number of samples should

have worked much better.

Figure 5.5 shows force sums from the same run after the correction transforms have

been applied. The object weight was supplied as a variable (with a guess of 1.ON). Note

that the force sums in the x and y directions are now nearly zero, as they should be,

and the force in the z-direction is nearer to the actual object weight.

Table 5.1 shows the rotation correction Euler angles (in radians) returned from three

runs executed at different points in the workspace. The object weights returned from
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Figure 5.4: This plot shows the sum of the x, y, and z forces, before the tip orientation
corrections have been applied.
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Figure 5.5: This plot shows the sum of the z, y, and z forces, after the tip orientation
corrections have been applied.
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o Tip 1 Tip2 Tip3 0 Tip 1 Tip2 Tip3

a -0.067 -0.074 0.187 a 0.267 0.694 0.764

/3 0.105 0.012 0.355 /3 -0.221 -0.121 0.321

7 0.312 0.218 0.019 -1 0.138 -0.441 -0.099

0 Tip1 Tip2 Tip3

a -0.028 -0.219 0.061

A3 -0.428 -0.201 0.284

-0 -0.129 -0.669 -0.098

Table 5.1: Tip rotation corrections. The rotation corrections in radians, for each tip, for
three trials at different points in the workspace are shown.

Weight Optimized I Average

1 1.50 1.86

2 2.02 2.18

3 2.17 2.58

Table 5.2: Optimized and average object weights. The optimized and average object weights
(in Newtons) obtained for the same three trials are shown. The actual object weight was 1.56N.

the same three runs are shown in Table 5.2. The optimized weight is the weight returned

by the minimization process, and the average weight is the average over all samples of

the magnitude of the corrected force sum. These runs were also done with an initial

guess at object weight of 1.ON. The actual object weight is 1.56N. The error terms for

the three runs, by sample, are shown in Figure 5.6.

Figure 5.7 shows the effect of supplying different guesses of the object weight on the

optimized weight returned. The actual weight of the object grasped in these trials is
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Figure 5.6: Plot of error term, by sample. This plot shows the error terms, by sample,
returned by the minimization for the three trials shown above.

2.2N.

5.5.3 Improving Contact Normals

The accuracy of the results obtained can be further verified by examining the corrected

surface normals. The grasp used in the experiments had two fingers (tips 1 and 2)

opposing the thumb (tip 3). The corrected surface normals should reflect this, and

oppose each other. Table 5.3 shows the average surface normal measurements obtained

before and after tip orientation correction. There is again a noticeable improvement in

the results. If the angle between vectors is used as a measure, then tips 1 and 2, which

should be parallel, show a difference of 0.23 radians before correction and 0.19 radians

after correction. Tips 1 and 3, which should oppose each other, show a difference of 2.61

radians before correction and 2.93 radians after, and tips 2 and 3, which also oppose
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Figure 5.7: Variation based on initial guess. This plot demonstrates the variation in final
weight convergence value, based on the initial weight guess.

0 Tip Tip 2 1Tip 3 0 Tip II Tip 2 1Tip 3

x 0.54 0.70 -0.21 x 0.64 0.73 -0.47

y 0.54 0.51 -0.29 y 0.28 0.34 -0.36

z 0.64 0.50 -0.93 z 0.71 0.59 -0.81

Table 5.3: Tip normal directions before and after corrections. The average normal directions
for the first of the trials is shown both before (left) and after (right) the rotation corrections
have been applied.

each other, show a difference of 2.43 radians before correction and 2.80 radians after.
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5.6 Simulations

Simulations were conducted to gain some insight into this somewhat disappointing ex-

perimental performance. A model that predicts the forces felt by the fingertip sensors is

used to generate synthetic data. By using this model, a more rigorous investigation of

the refinement process is possible. Various controlled simulations will examine the con-

vergence properties of the numerical methods under differing conditions. The accuracy

of the small angle linearization method will also be examined.

An important question that has not yet been answered is whether pose refinement is

possible at all. Both the numerical minimization method and the small angle lineariza-

tion method make the assumption that by reorienting a grasped object an independent

set of sensor readings can be obtained. Some lurking dependencies in the measurement

might make it impossible to solve for the orientation corrections. Through intuition, it

has already been mentioned that a world rotation around the z axis cannot be recovered.

Perhaps there are other parameters of the correction that also cannot be found? An ar-

gument can be made that shows by reorienting the hand it is possible to find the point

where each fingertip is aligned with the gravity vector. This gives hope that fingertip

corrections can be found by using more general motions of the hand. The simulations

in this section will show that, aside from the world z rotation, all fingertip orientation

parameters are deducible from multiple readings of the sensor data.

5.6.1 Simulator Design

Before discussing the simulation experiments, a model for predicting fingertip grasp-

ing forces is presented. This model is used to obtain the synthetic data used in the

simulations. Refer to Figure 5.8 for the notation used in the subsequent derivation.

The grasped object is assumed to be in static equilibrium, with gravity as the only

external force. Without loss of generality, the coordinate system is assumed to be at the
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C2

r.

Figure 5.8: Grasping force model. The grasping forces, f,, can be found using torque and
force balance equations, along with a set of internal forces ci.

object's center of mass. The force and torque balance equations are written as

3

m9 = Afi (5.18)

3

0 = ri x fi, (5.19)
t=1

where mg is the object's weight, ri is the vector to the fingertip contact point, and fi

is the fingertip contact force. For simulation purposes, the object weight and contact

points are specified. The contact forces are desired. Since Equations 5.18 and 5.19

can each be written as x, y, and z component equations, there are six equations and

nine unknowns. The three additional parameters that must be specified are commonly

referred to as the internal forces, and can be defined as follows:

c = = r 12 "(f- f 2 )

c2 = r 23 (f2 - f 3 ) (5.20)

C3 = r31 (h - fl).

Note that these internal force equations are arbitrary. Any three independent equations

that relate the fingertip forces can be used. These particular equations capture the

notion that the internal forces are the amount of squeezing force between each of the

fingers.
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Equations 5.18, 5.19, and 5.20 can be written in matrix form as,

1 0 0 1 0 0 1 0 0 fl

0 1 0 0 1 0 0 1 0 fiv

0 0 1 0 0 1 0 0 1 fl,

0 -- rz rly 0 -r2Z r2y 0 -3z r r3 f2z

-rl, 0 ri, -r2z 0 r2- -r3, 0 r3 f =

-rl,, ri, 0 -- r 2, r 2 - 0 -- r 3 y r3- 0 f2z

rl2, r12, r12z -r12z -rl2y -r12z 0 0 0 f3z

0 0 0 r23z r 2 3 y r23, - r23z - r 2 3 , - r 2 3 , f3y

-r3lz -r 31 y -r 3 1z 0 0 0 r3lX r 3 1y r3lz f3z

0

0

mg

0

0 .(5.21)

0

Cl

C2

C3

This set of linear equations can be easily solved to find the fingertip forces.

To obtain a set of simulated sensor readings as an object is rotated, the object weight

mg, the internal forces ci, and the contact vectors ri, are specified. To rotate the object,

the ri vectors are subjected to a rigid rotation. The new ri vectors are then used to

compute the next set of fingertip force readings. This process is repeated to obtain the

desired number of force samples. This simulation gives forces that would correspond to

those generated by motion of a robotic arm with the hand's finger positions fixed.

This scheme assumes that the internal forces ci are constant throughout the rotation.

In reality, these forces are a function of the control law used to servo the fingers. It can
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Figure 5.9: Spherical coordinate system. By varying q5 and 0, a rotational error of magnitude
p can be generated in a particular direction.

be shown that the constant force assumption holds if a proportional controller is used

to drive each fingertip to a set point somewhere inside the object. This corresponds to

how the hand used in the experiments was controlled.

In the final step for obtaining simulated data for the refinement process, the synthe-

sized force readings for each fingertip are rotated by a fixed amount. This rotation is

the error that the refinement process must recover. For some of the simulations, ran-

dom noise and bias offsets are also added to the readings. This helps investigate the

robustness of the numerical method.

5.6.2 Orientation Error Direction

To determine if the orientation of the fingertip error had an effect on the performance

of the correction method, the following experiment was performed. A sampling of all

possible error orientations was applied to a set of synthetic data. For each error orienta-

tion, a correction was computed using the minimization algorithm. The error between
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the actual correction and the computed correction was then computed. Error is defined

to be the magnitude of the difference in 0 values of the equivalent axis rotations for the

actual and computed orientations. The space of possible error directions is computed

using a two parameter spherical coordinate system, as shown in Figure 5.9. If the mag-

nitude of the error is p, the parameters 0 and 0 can be sampled to obtain a set of error

vectors,

x = psinocosO

y = psinosinO (5.22)

z = pcosO

where [Xyz]T are the a, 3, -y error angles.

Using the spherical system defined in Figure 5.9 and Equation 5.22, the convergence

characteristics of a fixed single tip error directed in all possible orientations was exam-

ined. The plot in Figure 5.10 shows the results of this simulation. The x and y axes

represent values of 0 and 0 from 0 to 27r. The z axis represents the magnitude of the

ratio between the actual and recovered orientation corrections. Note that in almost all

directions, the method significantly improves the normal direction measurement. While

in this example certain directions did not show as impressive an improvement as other

directions, this was more a function of the particular samples, rather then a systematic

failure of the method in a particular direction.

The previous results were obtained from perfect data. In reality, at least two types of

problems with the sensor data can occur. The readings are subject to random noise and

to systematic calibration errors. A number of simulation experiments were performed to

investigate how well the method performs under these more realistic assumptions, and

are described in the next several section.
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Figure 5.10: Convergence error versus applied error direction. The magnitude of the plot
indicates the relative performance of the algorithm for the given phi and 9. The lower the
value, the better the algorithm performed.

5.6.3 Sensor Noise

Table 5.4 presents the eight actual and recovered fingertip correction angles for simulated

sensor data with varying noise levels. The angles, listed in order, are the zyx corrections

for each finger. The first column shows the actual error applied to the eight recoverable

fingertip orientation angles. Each subsequent column shows the correction recovered,

given the indicated noise level. Note that the method is able to recover the correction

accurately, even with levels of random noise exceeding 25 percent. To a certain extent

this is to be expected, since on average the noise cancels itself out. Nonetheless, it is
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actual percent noise
error 0 5 10 15 20 25 30 35 40 45 50

-0.1 -0.10 -0.10 -0.10 -0.11 -0.11 -0.11 -0.11 -0.12 -0.13 -0.14 -0.20
-0.2 -0.20 -0.18 -0.15 -0.12 -0.10 -0.09 -0.07 -0.03 -0.00 0.05 0.32
-0.1 -0.10 -0.10 -0.11 -0.13 -0.12 -0.14 -0.14 -0.13 -0.13 -0.13 -0.08
0.1 0.12 0.12 0.10 0.09 0.10 0.09 0.09 0.11 0.11 0.12 0.09
0.2 0.19 0.20 0.19 0.20 0.20 0.19 0.19 0.20 0.21 0.22 0.29

-0.2 -0.18 -0.18 -0.20 -0.22 -0.22 -0.24 -0.25 -0.23 -0.23 -0.21 -0.09
0.3 0.27 0.27 0.26 0.25 0.27 0.26 0.27 0.30 0.31 0.33 0.28

-0.2 -0.24 -0.21 -0.20 -0.16 -0.15 -0.14 -0.13 -0.09 -0.05 0.02 0.44

Table 5.4: Effect of noise on recovered angles. This table shows the recovered eight correction
angles, with varying amounts of noise added to the simulated data. The rows of the table show
the correction angles for each of the recovered corrections.

recovered percent noise
weight 0 5 10 15 20 25 30 35 40 45 50

optimized 100.0 100.0 99.8 99.9 99.3 98.4 97.9 98.0 98.0 99.4 114.2
average 100.0 99.8 99.1 98.8 98.0 97.0 96.4 96.0 95.7 96.2 107.3

Table 5.5: Effect of noise on object weight. This table shows the recovered object weight,
with varying amounts of noise added to the simulated data. The first row shows the optimized
weight, the second shows the average weight.

promising that the numerical minimization is able to converge to the correct solution

even when substantial sensor noise is present.

Table 5.5 presented the actual and recovered object weight for simulated sensor

data with varying noise levels. For these trials, the object weight was assumed to be

unknown, and was included in the minimization error term. An initial guess of zero was

used. In the table, the term optimized weight refers to the actual weight recovered by

the minimization error term. The average weight refers to an average over all samples

of the corrected weights. The optimized weight in general provides a more accurate

solution. Notice that for even a large 45 percent noise, the weight is reliably recovered.
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Figure 5.11: Recovered object weight by sample, without noise. The raw and corrected object
weights are plotted, by sample, in this diagram. The best fit line for each set of samples is also
shown.

Figure 5.11 and Figure 5.12 show plots of object weight (sum of the z forces) for each

sample from a particular trial. For these experiments, 50 samples were used. The object

weight was 100N. The raw z force is plotted in dots, the corrected z force is plotted

in stars. For each plot, the best fit line to the points is also shown. The plot shown

in Figure 5.11 shows the results for simulated data without noise. The plots shown

in Figure 5.12 shows the results for simulated data with 10, 20, and 30 percent added

random noise. Notice that in all cases the method can accurately recover the correct

weight.

5.6.4 Orientation Error Magnitude

Simulations were performed to investigate how the magnitude of the fingertip orientation

error effects the performance of the correction method. For error magnitudes ranging

from 0.1 to 1.4 radians, 625 trials were performed, where the error was varied across

all possible directions. In addition, random noise ranging from 10 to 50 percent of the

signal was added. Figure 5.13 plots the results of this experiment. In the plots, the
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Figure 5.12: Recovered object weight by sample, with noise. The raw and corrected object

weights are plotted, by sample, in this diagram. The best fit line for each set of samples is also

shown. From top to bottom, noise of 10, 20, and 30 percent has been introduced into the data.
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Figure 5.13: Percent convergence with noise. A constant error magnitude is sampled in all
directions. For these samples, the percent that show a significant correction is computed. The
percentage is plotted against the error magnitude. The upper plot uses a correctness threshold
of 0.1 radians, the lower plot uses 0. 2 radians.
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percent of samples corrected are the percent of trials that are corrected to with 0.1 and

0.2 radians of the actual normal direction.

5.6.5 Sensor Calibration Bias

Simulations were performed to investigate how sensor biases affect the performance of

the correction method. Biases of 5, 10, and 15 percent was added to the sensor readings.

In addition, random noise of 10 and 20 percent was added. Figure 5.14 plots the results

of the experiment with 10 percent noise, while Figure 5.15 plots the results with 20

percent noise. Notice that even small biases dramatically reduce the performance of the

method. As will be discussed later, this problem was partly responsible for degrading

the experimental performance that was observed.

5.6.6 Small Angle Approximation

Figure 5.16 examines the sensitivity of the linearized refinement algorithm to the small-

angle approximation that it uses. The figure plots the magnitude of the correction error

against the percent deviation of the correction. Percent deviation is defined to be the

ratio of the correction error to the applied error. Each data point is computed from a

number of trials each at the given error magnitude, in different directions. An acceptable

correction deviation is obtained for errors under I x 10' radians. Above that, the small

angle approximation used to linearize the problem fails, and the corrections obtained

are no longer accurate.

5.7 Summary and Discussion

This chapter presented a method for continuously calibrating the orientations of the

fingertips of a hand to obtain more accurate measurements of contact normals and forces.

The methods are needed because calibration errors in the robot's kinematics significantly
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Figure 5.14: Percent convergence with 20 percent noise and bias. A constant error magnitude
is sampled in all directions, with a fjied sensor bias added to the simulated readings. For these
samples, the percent that show a significant correction is computed. The percentage is plotted
against the error magnitude. The upper plot uses a correctness threshold of 0.1 radians, the
lower plot uses 0.2 radians.
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Figure 5.15: Percent convergence with 30 percent noise and bias. A constant error magnitude
is sampled in all directions, with a fixed sensor bias added to the simulated readings. For these
samples, the percent that show a significant correction is computed. The percentage is plotted
against the error magnitude. The upper plot uses a correctness threshold of 0.1 radians, the
lower plot uses 0.2 radians.
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Figure 5.16: Percent deviation of linearized correction. The x-azis denotes the applied
error magnitude, plotted in a logarithmic scale. The y-azis shows the percent deviation of the
correction for the given error.

reduce the utility of the fingertip sensors. Without good global knowledge of forces and

normals, certain recognition and manipulation tasks are very hard to perform.

The calibration method discussed uses multiple sensor readings obtained while the

robotic arm is moving a hand holding a grasped object. The fingertip to world coordinate

frame transform is refined according to the constraint that the sum of the fingertip forces

must always equal the object's weight.

The simulations and experiments conducted gave mixed results. In general, they

indicated that the method works well for certain types of errors. For large random noise

the method was able to recover the correct fingertip orientations. On the other hand,

for relatively small sensor bias errors, the performance deteriorated rapidly.

The experimental results were not particularly good. While some of the trials pro-

duced good results, with an accuracy close to 5 percent, others trials had much worse
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performance. Using the results of the simulations, three potential causes for the rela-

tively poor experimental performance were identified. The next sections discuss them,

and propose potential solutions.

5.7.1 Poor Sensor Calibration

The simulations indicated that while the method is relatively immune to noise, it is

susceptible to calibration and other bias problems. Upon further investigation, the actual

calibration of the fingertip sensors proved to be rather poor. The calibration process

requires mounting the sensor on a stand, and applying known forces at particular points

on the device. Unfortunately, the apparatus for applying these forces was rather crude.

At first it was hoped that a calibration accuracy of 5 percent would be possible. In

actually, the accuracy was probably no better than 15 percent.

5.7.2 Inadequate Sample Size

The simulations confirmed that the method's susceptiblity to noise is greatly reduced as

the number of samples is increased. For the noise levels introduced in the simulations, 50

samples proved to be necessary. Due to limitations in the experimental procedure, only

15 samples were used, apparently too few to mitigate the effects of the noise levels that

were present. This alone would greatly degrade the convergence characteristics even at

moderate noise levels.

5.7.3 Incorrect Assumptions

Finally, poor experimental performance could be a result of incorrect assumptions. The

most critical assumption that was made is that all the error in sensor orientation was a

result of calibration errors in the hand. Motion of the arm was assumed to be accurate.

While all indications are that this assumption was valid, further investigation on this

point is warranted.
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Thus, while from a theoretical standpoint the refinement method presented showed

promise, various experimental limitation reduced its performance. Future work should

be conducted to better understand these problems, and to help identity improvements,

as previously suggested.
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Discussion

Chapter 6

This report examined the problem of finding the pose of an object grasped by a hand.

The methods that were studied can successfully determine an object's pose using a

minimum of information. The use of kinesthetic sensing, along with knowledge of the

grasp acquisition strategy employed by the hand, usually provided sufficient data for

the task. In the case of the pose determination problems conducted with the Utah-MIT

hand, just 16 numbers were used as input to the recognizer. The power of these methods

can be attributed to their careful exploitation of the constraints inherent in the problem.

Pose determination was argued to be an important problem for several reasons. For

almost all manipulations, at least a certain amount of information on the location of

objects both relative to the robot and relative to the world is required. Performing

an accurate calibration is not enough, as error and uncertainty is unavoidable. Even

strategies that are guaranteed to work usually have a bound on the error in object

position tha. they can tolerate. The reality of robotics is that uncertainty is unavoidable.

Pose determination provides a way to compensate for this uncertainly.

Some typical problems that are suitable for the pose determination methods studied
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in this report include parts alignment, grasp verification, and haptic exploration:

"* Parts alignment: A simplified multi-linked gripper operating on an assembly line

could grasp a part, verify its pose, and then direct another robot to the part in

the now known location. Thus, the gripper serves both as a position sensor and a

clamp, much the same role as a conventional parts feeder. An advantage with this

approach is that the system is not particular to the part. Retooling for new parts

is simplified.

" Grasp verification: When a dextrous hand has completed a grasp, position uncer-

tainty in the system usually causes in a wide variation in the object's final pose.

Pose determination could be used to find the position, and then used to plan sub-

sequent manipulations around the true object pose, rather than the inaccurate

planned pose.

" Haptic exploration: Hands, both human and robotic, can be thought of as sensory

organs. It is possible for a hand to provide the sensory information ne, essary for

a wide variety of recognition tasks. These exploratory motions are used for tasks

such as reaching into a bag and pulling out a particular object and groping in the

dark for a telephone receiver. The pose determination methods studied provide

certain insight to the information sources that human haptics must utilize.

The methods presented in this report show that hand shape and knowledge of the grasp

acquisition strategy can provide useful information for solving these types of problems.

6.1 Review of the Report

The first algorithm, presented in Chapter 3, studied a method to find object poses

that were consistent with a hand shape. Assignments of object vertices to finger edge

segments were examined in a systematic manner, using an interpretation tree to guide

the search. By carefully pruning inconsistent vertex-edge pairs, the portion of the tree
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that was examined was minimized. This method found all potential placements of the

object that were consistent with the hand shape, given certain contact assumptions.

Generated poses were then verified according to several criterion. Most importantly, the

pose and hand shape were checked to insure compatibility with the grasp acquisition

strategy that was used.

Next, Chapter 4 showed how a memory could be used to speed pose determination.

By storing past experience in the memory, the on-line determination process can be

reduced to a simple lookup operation. To improve accuracy, regression analysis was

used on similar poses, providing a way to interpolation between memory entries. The

use of regression also allowed the memory to be compacted. The interpolation methods

were general, and did not depend on solutions that are particular to specific objects or

hands.

Finally, Chapter 5 examined how additional information provided by contact sensors

could be used to refine a pose estimate. The pose of an object model can be fit to

measured fingertip surface normals. The fitting process is only as accurate as the surface

normals are themselves. Since sensors measure contact in a local coordinate frame, and

since the fitting requires global data, accurate kinematic models and kinesthetic data is

also required. In practice, calibration errors were found to greatly degrade the potential

performance of this type of method. The chapter explored a refinement process that

attempted to correct for calibration errors using world invariants.

6.2 Hand Design for Haptics

It is interesting to explore how the findings of this report could be of use to hand

designers. This section briefly addresses this problem, in particular by exploring the

notion that a hand should be designed as much for recognition as for manipulation.

The role of hand shape for recognition, as used in this report , is twofold. It is used

for both pose generation and for pose verification.
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Pose generation relies on the existence of a minimum number of contacts between the

object and the hand. By searching the space of possible contact assignments, potential

object poses are found. Because a certain minimum number of contacts are necessary,

the hand must have enough fingers and links to usually achieve the necessary number

of contacts in a grasp.

Pose verification relies heavily on the shape of the hand. The enclosure formed by the

hand around the grasped object is tested for intersection against the postulated object

position. A hand that forms a better enclosure will usually permit fewer collision free

object placements.

Both the generator and verifier stages of the algorithm benefit from hands with

more fingers and links. However, additional links increase the contact assignment search

space. The simulations in Section 3.7 suggest that for three-dimensional problems the

combinatorics are rather large without some contact information. Those results indicate

that the search time is greatly reduced simply by sensing if contact has been made with

a particular link, without knowledge of the contact location. Further search reductions

can be obtained either by reducing the link lengths, or by using more precise contact

sensing.

Experiments performed in Section 4.5.2 suggest that the the mapping from hand

shape to object pose benefits from the addition of simple contact sensor information.

Without any contact sensing, hand shapes frequently map to more than one object pose.

For the cases where a unique mapping does not exist, unambiguous pose determination

cannot be performed. If the hand links that are in contact with an object are known,

the results from that section suggest that the mapping ambiguity is greatly reduced.

The additional sensing power obtained by adding this type of sensing is larger than that

obtained by adding a small number of additional links to each finger. This suggests to

designers that adding minimal contact sensing, rather than just more finger segments,

may be the best way to improve the recognition power of a hand.
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While it is clear that additional sensor information will always be helpful for pose

determination, these results indicate that very little additional sensor information can

be put to good use. In particular, the type of sensing information that has been shown

to be useful is easy to obtain. Devices that can determine if contact with a link has been*

made can be reliably fabricated using existing sensor technology (see Section 2.3).

Using the methods developed in this report , pose determination without these basic

sensors suffers from both a search combinatoric explosion, and from ambiguity in the

results. Adding minimal amounts of additional sensors is likely to correct this.

6.3 Future Work

The work presented in this report provides a promising approach for solving the pose

determination problem. Nonetheless, much work remains. A few of the more interesting

problems that deserve attention are listed here:

"* Three dimensions: The pose determination method presented in Chapter 3 was

implemented in two dimensions. By examining the first stages of a full three-

dimensional implementation, it was argued that this extension could be performed.

The extension should be completed, and experiments conducted on data from

dextrous hands.

"* Sensitivity: A better understanding of the sensitivity to sensor noise is warranted.

In particular, for the methods in both Chapters 3 and 4. bounds on the performance

based on joint angle sensor performance should be developed. If the sensors are

too noisy, potential poses would certainly be missed.

"* Sensor fusion: A better investigation of how tactile contact sensors can be used

with these methods would be worthwhile. For example, binary contact informa-

tion, which would be easy to obtain, could be used to guide the tree search used in

Chapter 3. The additional sensor information could be used to make the methods
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more robust, and less sensitive to noise.

With additional work, the approaches studied in this report will not only give an under-

standing of the information content in a hand's shape and its grasp acquisition strategy,

but they will lead to practical and robust methods for solving for the pose determination

problem.



Experimental

Apparatus

Appendix A

This appendix provides a detailed description of the hardware and software used by

the experiments described in this report . Special attention is given to the compo-

nents which the author helped design and implement. Section A.1 describes the setup

for the constraint-based localization experiments from Chapter 3, Section A.2 describes

the setup used for the memory-based recognition experiments from Chapter 4, and Sec-

tion A.3 describes the setup for the sensor-based refinement experiments from Chapter 5.

A.1 The Utah-MIT Hand

A.I.I Vechanical Design

The Utah-MIT hand [571 (Figure 2.2) was used for the constraint-based pose localization

experiments that were described in Chapter 3. This hand has four fingers, each with

four degrees of freedom. An anthropomorphic design was used, giving it much the

same size and shape as a human hand. Each joint is connected to two tendons, one for

extension and one for flexsion, giving the hand a total of 32 actuators. Specially designed
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Utah-MIT hand anlog VMEbus
and 1 interface 1 microprocessor
cartesian arm electronics controller

Condor
System

Lisp Machine Sun
recognition RPC interface front end
system

Figure A.: Block diagram of the Utah-MIT hand system, as used for the constraint based
recognition experiments.

pneumatic actuators are used for power, and are housed in an external actuator pack.

The 32 tendons are routed from the actuator pack to the hand using a remotizer. This

arrangement permits off loading the weight of the actuators from the hand itself, making

mounting on existing robots easier.

The hand is mounted on a cartesian robot that provides three degree of freedom

xyz motions. The hand itself is mounted on a gantry which provided xz motion. The

remaining motions are provided by an xy positioning table. This setup gives a redundant

motion in the x axis. The cartesian robot is actuated using stepper motors.

A.1.2 Control Architecture

The Condor [75] system is used to control the hand and cartesian robot. Condor is a

real-time software environment designed for multiprocessor-based robotic control. The

system provides interprocessor communication primitives, an efficient scheduler, and

host computer support. A Sun workstation front-end, linked to the VMEbus multipro-

cessor backplane using a memory mapped connection, provides development support.

The development tools include a symbolic debugger, a virtual terminal system based on
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Planar IBM PC NSrecognition
hn controller Aýsystem

Figure A.2: Block diagram of the MIT planar hand system, as used for the memory based
recognition experiments.

the X Window System, and a fileserver. Six Motorola 68020 processors are used in the

system. The first processor is the system supervisor. The next four run the low level

servo code, one processor for each finger. An additional processor is used to control the

cartesian robot. The system achieves finger joint servo rates of up to 300 hertz.

A remote procedure call (RPC) interface to the hand-arm control system is also

provided. The localization system is coded in Lisp and runs on a Symbolic Lisp Machine.

The Lisp Machine communicates with the Condor using the RPC interface. Some of

the operations that are supported by the RPC interface include commands to control

the servo system, to enqueue trajectories, and to query joint positions and torques.

Figure A.1 diagrams the system.

A.2 The MIT Planar Hand

A.2.1 Mechanical Design

This hand has two fingers, each with two joints. A belt pulley system connects the servo

motors to the joints. Position sensing is provided by shaft encoders mounted on each

motor. The finger surfaces are flat, providing a good surfaces for whole hand grasping.

The hand is designed to allow reconfiguration of the separation distance between the

fingers.
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A.2.2 Control Architecture

The hand is interfaced to an IBM PC computer running PC/NFS, and uses a controller

board based on the Hewlett-Packard HCTL- 1000 servo processor. This chip provides low

level servo control, along with the interface logic necessary to process the optical position

encoder output from each joint. A control system was implemented that executed the

grasping strategies used for building recognition memories. After executing a grasp, the

resulting joint positions (the only sensory information required for recognition by the

memory-based method) is written to a file on an NFS mounted disk. The recognition

software is written in Lisp and runs on a Symbolics Lisp Machine. The Lisp Machine

reads the joint data from the NFS mounted filesystem and finds consistent poses in

real-time. Figure A.2 diagrams the system.

A.3 The Salisbury Hand

A.3.1 Mechanical Design

A Salisbury [90] hand, mounted to a Puma 500 robotic arm, was used for the refinement

experiments described in Chapter 5. The hand has three fingers, each with three joints,

as diagrammed in Figure 2.1. The actuator system uses n + 1 motors for n joints. Thus,

there are four motors for each finger, or twelve for the entire hand. Tendons connect the

actuators to the joints.

The hand is equipped with Brock and Chiu [15] force sensing fingertips. Each of the

fingertips has eight strain gauge sensors that are used to detected the contact forces and

torques. The strain gauges are connected to analog amplifiers which are interfaced to

the controller computer.
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Figure A.3: Block diagram of the Salisbury hand system, as used for the pose refinement
experiments.

A.3.2 Control Architecture

The control architecture for the Puma-Hand system is based on the VxWorks [108]

real-time operating system running on Motorola 68030 processors. VxWorks provides

a low-level kernel with a fast scheduler, networking tools, and a standard Unix-style

library interface. The operating system provides NFS filesystem access to a host Sun

workstation that is used for program development. A VMEbus backplane is used to

interconnect three Motorola 68030 processors that each run VxWorks. Figure A.1 dia-

grams the system.

The Salisbury-JPL hand is interfaced to two Unimation servo controllers, which pro-

vide low level position control. The servo controllers are interfaced, via a parallel port,

to the VxWorks system. A software module on one 68030 processor feeds position com-

mands to the Unimation controllers. A higher level message-based trajectory controller.

for enqueuing a sequence of position setpoints, provides the external software interface

to the system.

The refinement code is written in C and runs on the VxWorks real-time system. The

code communicates with the Puma, the hand, and the fingertip sensors. The hand is

first commanded to close on an object until contact is detected by the fingertip sensors.

The Puma then sweeps out a motion while the sensors are sampled. The refinement
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process is then run on the collected data. Figure A.3 diagrams the system.
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