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INTRODUCTION

During the past four years, under the support of Office of Naval Research, a

research effort has been underway on the following two topics :

(a) Numerical simulation of supersonic shear layer mixing phenomena.

(b) Development of efficient methods for 3-D unsteady incompressible viscous flow
simulations. )

Substantial progress was made in the above areas, and the computer codes
developed as part of these efforts were transferred for further use to Virginia Polytechnic
Institute (Dr. Saad Ragab) and to David Taylor Research and Development Center (Dr. Wei
Tang).

The progress made has been documented in a number of conference proceedings,
two journal articles and a Ph. D. dissertation ( in progress). The Appendix contains all the
published work done to date.

This research led to a number of significant new findings. Some of the major
accomplishments are as follows :
(a) A highly accurate method for simulating compressible mixing layers was developed.
This method is suitable for direct numerical simulation (DNS) and large eddy simulation
(LES) of compressible turbulence, and is used in this context by other researchers.

(b) An iterative time marching method for 3-D incompressible flows was developed. This
method is robust, and can handle internal and external flows. It employs a multigrid
iterative strategy for satisfying the discretized form of the governing equations of 3-D

viscous flows to great accuracy.




It is hoped that these efforts will serve as useful stepping stones for future research

in these areas.
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NUMERICAL SIMULATION OF VORTICITY~ACOUSTICS INTERACTIONS
WITHIN DUMP COMBUSTORS
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W. Tang , L. N. Sankar , and W. C. Strahle

School of Aerospace Engineering
Georgia Institute of Technology
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ABSTRACT

The behavior of free shear layers within
ramjet dump commbustors i{s studied through the
numerical solution of unsteady compressible
Navier-Stokes equations. Three configurations are
considered: a) a short combustor with an open
downstream boundary, b) a long combustor with an
open downstream boundary, and c) a short combustor
with a partially blocked downstream boundary.
Vorticity contours of the computed flow fields in
all the three cases reveal oscillations of the
shear layer, roll up and shedding of organized
vortices. A Fourier analysis of the computed flow
fields indicates that the natural acoustic fre-
quency of the system, and the natural shear layer
instability frequency are the two dominant fre-
quencies of the flow field. It is also observed
that the boundary conditions play a crucial role
in the behavior of the combustor flow field.

INTRODUCTION

The flow field within ramjet combustors is
characterized by a variety of phenomena such as
thin boundary layers along the walls of the inlet
and combustor, recirculating flow zones, reacting
flow and free shear layers. The free shear layer
is unstable by nature, and can undergo large
spatial and temporal oscillations when subjected
to disturbances. In many cases, the shear layer
may roll up and form vortices, which are shed at
periodic intervals resulting in a highly unsteady,
and undesirable flow environment within the
combustor. There 1is a need to understand the
response of the shear layer to externally imposed
acoustic disturbances, and device passive and
active control techniques for controlling the
behavior of this flow field. Both theoretical and
experimental studies are being carried out to
understand the behavior of the free shear layer

within dump combustors.1 3 A number of investi-
gators have also studied numerically the flow
fields within the dump combustors, using explicit
time marching techniques, with and without viscous

terms. 47 '

The experimental studies reported in Ref. 1
show that the behavior of the free shear layer is
sensitive to periodic acoustic disturbances
imposed at the downstream boundary. In some cases,
it has been shown possible to drastically alter
the size of the recirculation zone using disturb-
ances. There is a need to systematically study the
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significant role that the external boundary
conditions and the related acoustics play on the
behavior of the free shear layer. As a first step
towards such a study, the flow field within a 2-D
dump combustor is studied through the numerical
solution of the unsteady, compressible Navier-
Stokes equations. The acoustics characteristics of
the inlet-combustor system is altered by changing
either the length of the combustor, or altering
the downstream boundary condition, by partially
blocking the downstream boundary. The length of
the inlet, and the flow Reynolds number are held
fixed in order to avoid significant changes of the
thickness of the shear layer, and its natural
instability characteristics.

The computed flow fields are analyzed using
iso-vorticity plots at selected time. levels. The
flow properties at selected locations within the

shear layer are also analyzed using Fourier
transform techniques to identify the dominant
frequencies. The shear layer downstream of the

step is analyzed using classical, linear instabi-
Tity analyses to identify the natural frequency of
the shear layer. It is found that the boundary
conditions play a crucial role in the behavior of
the unsteady flow within the combustor.

NUMERICAL FORMULATION

In Fig. 1, the three configurations being
analyzed are shown. The typical dimensions of the
configurations are also indicated, normalized with
respect to the step height. The unsteady flow
within the combustor is governed by 2-0 compress-
ible Navier-Stokes equations, and is likely to be
turbulent. Because existing algebraic and two
equation models are not suitable for unsteady
flows, and because these models can smear out
features such as shear layer instability and
vortex roll up, in the present work no explicit
turbulence mode! was wused. An algebraically
generated, stretched Cartesian coordinate system
was used. The governing equations, which are
parabolic with respect to time, were integrated
using an impiicit time marching procedure, origi-

This procedure
and may be

nally devised by Beam and Harming.a
is second order accurate in space,
designed to be either first or second order
accurate with respect to time. In the present
work, the first order time accuracy option was
used. This procedure has been previously applied
to unsteady external flow problems with good

success.9 In the Appendix, the mathematical
formulation is briefly described. ’

Since numerical solutions are sensitive to
grid spacing, a varjety of grid sizes were exper-
imented with, ranging from a coarse 61 x 41 grid




system, to a fine 151 x 121 grid system. As
expected, increased grid refinement leads to
improved resolution of features such as the shear
layer roll up. The basic characteristics of the
flow such ac the length of the recirculation zone
at a given time, and the thickness of the shear
layer are, however, insensitive to grid spacing.
Based on these exploratory studies, in the calcu-
lations to be reported here it was decided to use
the 151 x 121 grid system. Because excessive grid
stretching can reduce the formal spatial accuracy
of the solution from second order to first order,
and lead to a loss of resolution of the flow
features, a uniform grid spacing was used in the
studies reported here. For the short combustor
configuration shown, this is equivalent to grid
spacings of 0.15 and 0.025 along the x- and 2-
directions respectively.

Numerical viscosity is introduced into the
solution procedure through a set of artificial
viscosity terms as explained in the appendix. In
order to assess the effects of artificial viscos-
ity on the solution, calculations were performed
for values of the artificial viscosity coefficient
between 1 and 5. The flow features were insensi-
tive to this coefficient, within this range.
Subsequently, a value of unity was used for the
artifical viscosity coefficient, in the calcula-
tions to be reported.

BOUNDARY CONDITIONS

Because the governing equations are parabolic
with respect to time, the proper boundary condi-
tion for this problem is the specification of
velocity, and temperature at all time levels at
all the boundaries. Unfortunately, such a complete
specification of the boundary conditions is seldom
feasible, and rarely available from experiments.
Therefore, the following set of approximate
boundary conditions have been used.

At all the solid walls, the no slip boundary
condition was imposed. Furthermore, the normal
derivative of pressure was set to zero. The
temperature at the solid walls was evaluated using
adiabatic assumptions. The density at the wall was
subsequently extracted from the equation of state.

At the inlet, the flow was assumed to be
parallel to the x- axis, and the velocity profile
was assumed to be a "plug" profile (uniform
everywhere except at the walls). The Mach number
at the inlet was chosen to be 0.2, and the inflow
density was assumed to be unity. Furthermore, the
derivative of pressure along the x- axis was
assumed to be zero at the inlet.

At the outflow boundary, two different
treatments are needed depending on whether the
downstream boundary is partially blocked, or is
completely open. Configurations 1 and 2 shown in
Fig. 1 have open downstream boundaries. On the
open boundary the pressure was prescribed, while
the other three flow variables (density, u and v
components of velocity) were extrapolated from the
interior. The portion of the downstream boundary
th:: is blocked was treated like any other solid
wall.

The above buundary conditions are considered
“reflecting” boundary conditions. That is, they
allow part of the signals attempting to leave the

computational domain to be reflected back at the
inlet and the outflow boundary. In a real world
situation, say in a wind tunnel, no such reflec-
tions occur although there may be other sources of
disturbances such as background noise. In other
cases, say within a ramjet combustor, the inlet
and exit may be choked. Thus the above boundary
conditions are a poor substitute for what takes
place near the boundaries of a wind tunnel or a
ramjet combustor. As mentioned earlier, removal of
false reflections from the boundaries would
require prescription of velocity and temperature
at all boundaries at all time levels.

The reflecting boundary conditions described
above serve one very useful purpose, however. They
provide a continuous, small supply of acoustic
energy at a frequency which is characteristic of
the dimensions of the configuration. These waves
can interact with the shear layer, and lead to
amplification of shear layer instability, shear
layer roll up and other interesting phenomena. For
the situation where the pressure is fixed at the
downstream boundary, and has zero gradient at the
upstream boundary, the acoustic mode imposed by
the reflecting boundaries corresponds to the
quarter wave acoustic mode. Since the frequency
of this mode may be changed by changing the length
of the configuration, it is possible to study the
response of the shear layer to a particular
frequency, simply by choosing a suitable length of
the configuration. For the short combustor configu-
ration shown in Fig. 1, the quarter wave frequency
happens to be 160 Hertz.

RESULTS AND DISCUSSION

Calculations have been carried out for the
three configurations shown in Fig. 1. In al) the
cases, the flow was started impulsively, assuming
the air to be stationary within the configuration
at time t = 0 , except at the inflow boundary. At
subsequent time levels, the flow velocity within
the combustor steadily increases as the stationary
mass of air is replaced by the high speed air-
stream. At later time levels, a periodic pattern
is established, in which the shear layer oscil-
lates in resonance with a frequency that is
characteristic of the combustor length for config-
urations 1 and 2, and the cavity length for
configuration 3. During a given cycle a part of
the shear layer rolls up into a vortex, and is
shed. Depending on the case studied, this vortex
may merge with previously shed vortices downstream
at a subsequent time.

To verify the observation that the present
boundary conditions lead to the presence of
quarter wave acoustic modes for configurations 1
and 2, a large number of calculations were done on
a somewhat coarser grid, for a number of config-
urations. The length of the combustor was paramet-
rically changed. In Fig. 2, the frequency of
flapping of the shear layer is plotted as a
function of the length of the configuration. The
quarter wave acoustic frequency associated with
the configuration, given by 4a/L where a is the
speed of sound, is also plotted. It is seen that
these two quantities match well for the entire
range of combustor lengths. Similar studies have
been done with configuration 3, which indicate
that the shiar layer oscillates at the natural
frequency of the cavity.




Configuration 1: For a detailed discussion of the
shear layer dynamics, we concentrate on configura-
tion 1. In Fig. 3, the vorticity contours within
the dump combustor after a large period of time
are shown, at regular time levels. It is seen that
the vorticity contours at time t = 210 (normalized
with respect to step height and inlet speed of
sound) are identical to those at t = 300. The
other time levels (t = 220, t = 310), (t = 230, t
= 320) etc. also match. That is,the shear layer
pattern repeats itself once every 90 non-dimen-
sional units of time. This exactly equals the
quarter wave acoustic frequency of configuration
1, which has a length equal to 22.5.

In Fig. 3, it is seen that the shear layer
undergoes considerable lateral oscillations called
flapping. It is also seen that the shear layer
periodically rolls up and sheds a vortex, for
example between time levels 220 and 290. During
the time interval 250 < t < 290, this vortex pairs
into two smaller vortices which are convected out
of the flow domain.

_ In Fig. 4, the pressure variation at a point
one step height downstream, and in the middle of
the shear layer is plotted as a function of time.
It is seen that the pressure values oscillate at a
distinct frequency, but the amplitude varies from
cycle to cycle. The calculations were carried out
for approximately 12 cycles of oscillation (approx-
imately 1200 units of time, 24000 time steps) to
ensure that the phenomena being discussed repeat
themselves.

In order to understand why the amplitude of
pressure oscillations vary from cycle to cycle,
the pressure distribution shown within 4 was
analyzed using Fast Fourier transform techniques.
In Fig. 5, the Fourier transform of the pressure
signals at six different locations is plotted.
Note that the distances indicated are measured
from the corner of the step. It is seen that the
Fourier transform shows pressure peaks at four
distinct frequencies, equal to 160, 304, 416 and
592 Hz. The fourth frequency appears to be combi-
nations of the first and third frequency (160 +
416 ~ 592). The 160 Hz peak occurs as a result of
the quarter wave acoustic mode.

To assess the reason for the existence of the
304 Hz peak, the shear layer velocity distribution
just downstream of the boundary was analyzed using
classical inviscid shear layer stability analysis.
The amplitude of the streamwise growth of disturb-
ances within the shear layer was studied as a
function of user input sinusoidal temporal varja-
tion. In Fig. 6, the real part of the growth rate
is plotted as a function of the input frequency,
for a velocity profile 1.5 steps downstream of the
step. It is seen that at a frequency of 300, the
most rapid spatial growth of the linear instabili-
ty waves occur. We have repeated these stability
calculations at a number of stations in the
immediate vicinity of the step, using velocity
profiles selected at random time levels. In all
cases, the analysis indicated that at 300 Hz the
shear layer is most prone to instabilities.

From the above discussions one may conclude
that the shear layer within the configuration 1
locks onto the quarter wave acoustic frequency of
the shear layer, and oscillates. Shear layer roll
up and shedding of vortices also occur at the

quarter wave acoustic frequency. Secondary oscil-
lations also occur within the shear layer at
frequency close to the natural frequency of roll
up of the shear layer. Some of the higher frequen-
cies observed may be seen to be combinations of
the above two fundamental frequencies of the flow.

Configuration 2: This configuration differs from
configuration 1 only in the length ot the com-
bustor. The increased length of the combustor
leads to a somewhat lower gquarter wave acoustic
frequency, equal to 48 Hz. In Fig. 7, the vorti-
city contours are plotted at selected time inter-
vals for the period 200 < t < 300 . The natural
frequency of roll up of the shear layer, computed
using velocity profiles just downstream of the
step was found to be 270 hz. In this case the
shear layer still 1locks onto the quarter wave
acoustic frequency of the system and tends to
oscillate very slowly.

In Fig. 8, the Fourier transform of the
pressure at two locations within the shear layer
is shown. It is seen that two distinct peaks, one
at the system acoustic frequency of 90 Hz, and the
other near the shear layer roll up frequency of
270 Hz Because the time step was chosen to be
large to reduce the computer time requirements,
higher harmonics or combinations of these fre-
quencies could not be resolved by the calcula-
tions.

Configuration 3: This configuration differs from
the previous two in that a cavity forms between
the step and the partially blocked downstream
boundary. The cavity has a distinct acoustic
frequency of its own, which differs from the
quarter wave acoustic frequency of the system
based on the length of the configuration.

Calculations for this configuration were
done, and results analyzed using techniques
jdentical to those employed for configurations 1
and 2. In Fig. 9, the u- component of velocity and
pressure at selected locations within the shear
layer is plotted as a function of time. A visual
examination of this near sinusoidal variation
indicates that it occurs at a frequency egual to
the natural acoustic frequency of the cavity. In
this case, the velocity profile downstream of the
step tended to vary rapidly from one time level to
the other, so that a single shear layer roll up
frequency could not be found. A Fourier analysis
of the velocity and pressure variations showed
only one significant peak, corresponding to the
natural acoustic frequency of the cavity.

CONCLUSIONS

The behavior of free shear layers within 2-D
dump combustors has been analyzed using numerical
solution of time-dependent Navier-Stokes equa-
tions. The computed flow fields have been analyzed
using vorticity contour plots, Fast Fourier
transform of the pressure fluctuations, and
linear, inviscid stability amalysis of the shear
layer. The following conclusions may be drawn,
based on the present study.

1) Boundary conditions play a crucial role in the
behavior of the fliaw within the combustor. For
example, when the dcwnstream boundary is blocked
the shear layer tends to oscillate at the cavity
frequency, rather than the system frequency.




Changing the length of the configuration leads to
large variations in the system response, when
monitored as a function of time.

2) The shear layer tends to lock onto the natural
acoustic frequency of the system (or of the
cavity). The flapping motion of the shear layer
was accompanied by vortex shedding, and pairing in
the cases studied.

3) Fourier spectra of the pressure fluctuations
within the system show a second, somewhat weaker
peak, at the shear layer instability frequency.
Some of the higher frequencies found in the
Fourier spectra appear to be combinations or
multiples of these two basic frequencies.
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APPENDIX
A1l the calculations were performed in a

stretched Cartesian coordinate system (£,n,1)
which is linked to the physical coordinate system

according to the following one-to-one relation-
ship:

£2£(x) ; n=n(y) ; =t (1)

The Jacobian of transformation J is given by

J = Exny (2)
and the metrics of transformation are given by
€ = Jy, 5 ny = dx, (3)

Standard central differences were used to
compute quantities such as x x_ etc. which in
return were used to compute qﬁantfiwes such as Ex

etc. At the solid surface and the inflow=
/ou9#1ow boundaries, three-point one-sided dif-
ferences were used to compute the metrics.

In the (£,n,T1) coordinate system, the two-
dimensional, unsteady Navier-Stokes equations may
be written as

= 4
q + Et + Gn RE + Sn (4)
where

= 3" o, 0u,0v,e} (5)

The quantities F, G, R and S are given by

F= (Ex FY/J
= G J
6 (ny )/
,R = (Ex RY /7 J
$= (ny S)/d (6)
and
'puz [ ov
F=|pu +p G=| pu
puv pvV +p
| u{e+p) | v(e+p)
0 [ o
R= Tex S= xy
R:y S.Vy n
L
The quantities R and S represent the

dissipation of energy due to work done by the
viscous stresses, and heat conduction along the x-
and y- d1rect1ons respect1vely The viscous
stresses T were related to the
velocity gﬁg%ien§¥ througxyStokes hypothesis. As
mentioned earlier the objective of the present
work is to determine the onset of laminar shear
layer 1instability, and no explicit turbulence
mode! has been used in the computations to be
presented here.

OISCRETIZATION AND
APPROXIMATE FACTORIZATION

Since the governing equations are coupled to

each other and are highly nonlinear, a stable,
efficient solution procedure is required for
solving them. In the present work, the Beam-

Warming algorithm was used with some modifica-
tions. The viscous terms were explicitly evaluated
using information available at earlier steps.




Since the mathematical and numerical formulation
of the Beam-Warming algorithm are well known, only
a brief description of the solution scheme is
given here.

The governing equations are written at a
computational node (i,j) in the following finite
difference form:

9, 5 ! n+l _ n, n _
3 6E . 6nG GER GnS €

n (8)
£ D

where for example, the term § Fn+1 is the stand-
ard two pointncentral differente formula given by
(Fipq = F5_q) /2. The quantity D is the artifi-
cilT disdigation term discussed in the next
section.

The highly nonlinear terms F and & at the
time level (n+l) were expanded by a Taylor series
about a previous time level n as shown below:

™= B v of/0a)” (a™ - ")

6™ = " + [06/0q)" (q"*! - ") (9)

Here the quantities DF/Dq and DG/Dq are 4x4
matrices which are the Jacobians of the flux
vectors F and G with respect to q.

In order to allow large values of the expli-
cit dissipation coefficient ¢. to be used with out
instability, and to allow thé viscous terms to be
treated explicitly, the following implicit dissi-
pation terms were added to the left side of the
difference equation (8):

- g1 n+l _ n

epd (655+6nn) J (q q) (10)

The coefficient ¢, was taken to be three
times the explicit diss‘pation coefficient ¢. . A
range of ¢. values between 3 and 5 were usEd in
the ca'lculat.Eions reported here.

Equation (8) may be written after the addi-
tion of the artificial implicit dissipation terms
given by Equation (10), in the following operator

orm:

[l+4t6E {DF/Dq}*dtén{DG/Dq}

-6 (86, 193(a™ T -q")= R" (11)

EE "nn
where,
n n
= <4
R t(sEF + 6nG) +4t(6ER
n n

+ énS) At:E D (12)

The left-hand side operator of Equation (11)
was approximately factored into two smaller
operators, leading to the following final form:

- -1
[l+lt65{DF/Dq} cIAtJ GEEJ]

[l+4tsn{DG/Dq}

- -1 A+l _ n,_ .n

clltJ annJ](q qQ)=R (13)
Equation (13) may be solved through the

inversion of two block tridiagonal matrix
equations, one corresponding to the £- direction
and the other corresponding the n- direction. In

order to keep the flow solver simple, the boundary
conditions on all the boundaries were explicitly
updated after the interior points had been updated
using Equation (13).

TREATMENT OF THE EXPLICIT
DISSIPATION TERMS

In the earlier Euler and Navier-Stokes
equations, researchers used the following form of
the artificial dissipation term:

n
geee * Sannnd (99 (14)
This term is formally of the order of the fourth
power of the grid spacing in the physical plane,
and is not expected to reduce the overall accuracy.
of the solution technique. This form was found to
give nonphysical overshoots in the vicinity of
rapid flow gradients such as shocks. It was found
that second order artificial dissipation terms did
not exhibit a similar overshoot, but led to highly
tnaccurate solutions.

0" =4t 3716

A solution to the problem of overshoots was
proposed by Jameson. In his approach, the dissi-
pation term was written as a combination of second
and fourth order dissipation terms. A sensor,
based on the second derivative of pressure turned
on the second order dissipation in the vicinity of
shocks, and suppressed the fourth order dissi-
pation term. Away from the rapid gradients, the
fourth order dissipation form was used. Jameson's
approach was implemented in the following study as
follows.

The term D was written as

D=4td7 1[5 - AC14,+

n{A(1-C1)é&nnn

6¢{B(1-C,)8, -8 czai}](aq)" (15)

£EE

The coefficients C,and C1 are proportional to
the second derivativéé of © pressure, and are
defined such that it will of significant value (of
the order of unity) only near rapid gradients such
as shock waves. Elsewhere, these coefficients are
of the order zero, and the expression given in
equation (15) leads to a fourth order error in the
solution. The coefficients A and B are propor-
tional to the wave speed in the x- and y- direc-
tions and provide an upwind flavor to the present
scheme.
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MIXING ENHANCEMENT IN SUPERSONIC FREE SHEAR LAYERS
W. Tang', L N. Sankar? and N. Komerath
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ABSTRACT

The issue of enhancing mixing between
parallel, supersonic streams is numerically
investigated. An explicit time marching scheme that
is second order accurate in time and fourth order
accurate in space is used to study this problem.
Small amplitude velocity disturbances at selected
frequencies are imposed over an otherwise steady
flow at the juncture of the two streams to promote
mixing. It is found that disturbances are selectively
amplified at certain frequencies, while disturbances
at other frequencies are rapidly damped out. In
studies where the relative Mach number of the
disturbances relative to one of the streams is high,
shocklets were found to form on one or both sides
of the shear layers. In such a situation, the relative
Mach numbers of the eddies were different in
coordinate systems attached to the upper and the
lower streams.

INTRODUCTION

Aircraft engine and missile manufacturers
are presently interested in a class of propulsion
systems called SCRAMJET engines. In these
systems the supersonic airstream captured at the
inlet is slowed down to modest supersonic speeds
through a series of shock waves prior to entering
the combustion chamber. Here the airstream is
allowed to mix and react with a parallel stream of
fuel or partially bumt fuel/air mixture. For efficient
performance of these systems, it is necessary that
the fuel and air streams mix with each other as
rapidly as possible, over a fairly short distance.

Unfortunately, supersonic free shear layers
which form at the juncture of the air and fuel
streams tends to grow very slowly [Ref. 1-3]
compared to their subsonic counterparts. Alternate
mechanisms such as normal injection of fuel into
the airstream will likely increase mixing, but at the

expense of significant total pressure losses.
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Therefore, there is some interest in the use of active
and passive control techniques which will promote

mixing.
PREVIOUS WORK

A comprehensive discussion of recent

, numerical and analytical studies on

the behavior of subsonic and supersonic shear

layers has been done by Dimotakis [Ref. 4]. Here,

only a small subset of existing work, closely related
to the present numerical studies, is reviewed.

Experimental Studies: Chinzel et al. [Ref.1] have
experimentally studied the growth rate of planar
shear layers, using Schiieren techniques, and total
pressure probes. They found organized vortical
structures to exist in such flows, in a manner similar
to subsonic shear layers. Perhaps the best known
experimental work on supersonic planar shear
layers is that done by Papamoschou and Roshko
[ref. 2,3], for a variety of gases and flow conditions
on either side of the shear layer. They showed that
the convective Mach number of the eddies is a
significant parameter govemning the growth rate of
supersonic shear layers. Papamoschou also
performed stability analyses of infinitely thin shear
layers (vortex sheets) to link the growth rate of the
shear layer (compared to that of an incompressible
shear layer) to the convective Mach number, and
derived closed form expressions for the convective
Mach number as a function of flow conditions on-
either side. The idea of convective Mach number
itself is, of course, not new, and has been
previously derived by Bogdanoff [Ref. 5]. In a later
study [Ref. 6], Papamoschou found that the
measured convective Mach number of the eddies
matches the analytical predictions only when the
convective Mach number is low and subsonic. He
attributed this discrepancy to the fact that the
traditional derivations for the convective Mach
number assume the total pressure on either side of
the shear layer t0 be equal. In cases where the
convectiva Mach number is high, shockiets can
form and lead to different amounts of total pressure
losses on either side of the shear layer.
Papamoschou aiso studied modifications to the
trafling edge of the spiitter plate which initially
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in order to understand the behavior of
supersonic free shear layers at low convective
Mach numbers, we investigate its response to
arbitrary, user-specified acoustic disturbances over
a broad range of frequencies. Sinusoidally varying
velocity disturbances at a number of frequencies
are introduced at the initial, laminar mixing region of
the shear layer. These disturbances grow with time
as they are convected downstream and eventually
lead to well organized vortical structures. The
objective of this work is then to study how the
disturbances over the entire spectrum of
frequencies behave as they are convected
downstream, and to speculate on mechanisms by
which energy is transferred from high frequencies
to low frequencies and vice versa.

To study behavior of the shear layer at very
high convective Mach numbers, we use vorticity
and pressure contour plots at a number of time
levels to track the velocity of the dominant eddies
and compute the relative Mach number of these
eddies in a coordinate system attached to either the
faster stream or the slower stream. if supercritical
Mach numbers arise relative to either stream, then
the resultant pressure fleld is examined for the
occurrence of shock waves, expansion waves and
their effects on the shear layer growth.

The 2-D compressible Navier-Stokes
equations in a strong conservation form are
numerically solved, using a modified MacCormack
scheme that is second order accurate in time, and
fourth order accurate in space. This scheme is
suitable for studying phenomena such as
propagation of acoustic waves, boundary layer
instability, and shear layer instability and has been
previously used by several authors [Ref. 22-24]. The
flow field is assumed to be laminar.

NUMERICAL FORMULATION

The 2-D, laminar, unsteady, compressible
flow is governed by the Navier-Stokes equations
which may be formally written as:

(1‘-H'-'x+»Gy-R’(4»Sy

where F and G are inviscid flux terms, while R and S
are the viscous stress terms.

In this work the above equation was solved
using a splitting approach. That is, the solution was
advanced from one time level 'n’ to the next (n+2)
through the following sequence of operations:

2 = Ly b by by b by

where, for example, the Lx operator
involves solution of the following 1-D equation:

g +Fy=0
This 1-D equation was solved through the

following predictor-corrector sequence,
recommended by Bayliss et al [Ref.22]:

Predictor Step:

g = g At/(6ax) [TF;-8F;y + Fol"

Corrector Step:

- -
gt (q +qM/2+8t/(128X)(7F8F | +Fi, 0l

in the above equations, the j- index has
been suppressed for clarity.

When the above equation is applied at
nodes close to the left and right side boundary, a
fourth order accurate extrapolation procedure wag
used to extrapolate the flux vectors F and F
needed at nodes outside the computational
domain.

The Ly operator requires soiution of the
equation

G + Gy =0
using a similar approach.

The operators L, and correspond to numerical
solution of 1-D equa such as

&R =0
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equivalent to applying a slip boundary condition at
these walls. In the case of free, unconfined shear
layers, non-reflective boundary conditions are
needed at these lateral boundaries. In the present
work, setting the derivative of the normal
component of velocity to zero, rather than the
velocity itself to zero was found to minimize
reflections.

The flow properties at the inflow were
specified everywhere in the flow field as the initial
conditions for the problem. The Navier-Stokes
soiver was then advanced for several non-
dimensional units of time, until a fully developed
shear layer with a modest streamwise growth was
estabilished.

Once a steady state shear flow was
achieved, forced excitation of the shear layer
began. This was achieved by prescribing the
normal (v-) component of velocity over the entire
inflow boundary to behave as follows:

V(y.x=0t) = Z A f(y) sinept+4 )

Here the summation shown is over all the
excitation frequencies; A, is the ampliitude of
disturbance, w, is the frequency of disturbance and
4 , is the associated phase angie. The function f(y)
determines the variation of the perturbation velocity
across the shear layer. Both a Gaussian distribution
and a constant magnitude distribution were
attempted. The resuits to be presented here
correspond to f(y) equal to unity.

In the present work 6 frequencies were
used, with zero phase difference between the
individual components. The quantity A, was 2% of
the reference velocity U;. The non-dimensional
frequencies w. were 10, 20, 30, 40, 50 and 60
respectively. Obviously, a linear stabillty analysis
could have been used to pick the frequencies that
are related to the most unstable frequency. But the
intent here was to impose excitation at several
frequencies on the shear layer, at the Inflow
boundary and determine which frequencies are
selectively amplified, and to determine what
happens to the energy content at the higher
frequencies at subsequent time levels.

Figure 2 shows the vorticity contours at a
randomly selected time level. It is seen that the

vorticity field at the immediate downstream
boundary is rich in structure showing large
gradients in the streamwise as well as normal
directions. At large distances downstream,
however, only a single row of eddies at well defined
distances are seen.

Because the formation and motion of
vortices (or eddies) give rise to a rapidly varying
pressure field which moves with the eddies some
useful information about the energy content at the
shear layer distributed over the various frequencies
may be obtained by computing the Fourier
transform of the pressure field at a number of points
within the shear layer. In figure 3, the Fourier
spectrum of the pressure field is plotted at 6 x-
locations within the computational fieid, at y/6 = 0.
The following trend is seen. Near the inflow
boundary, the Fourier spectrum: shows a near
uniform distribution over the entire frequency range.
At downstream locations, the higher frequency
content begins to gradually decrease. The low
frequency components at non-dimensional
frequencies 10 and 20 show a rapid increase
initiaily, but reaches asymptoticaily constant values.
Figure 4 contains the same information as figure 3,
except it shows the changes in energy content as a
function of downstream distance. It is seen that
Fourier cosfficient assoclated with non-dimensional
frequency 60 reduces to 30% of initial value 100 §
downstream, whereas the Ilow frequency
component triples in magnitude and reaches its
limit value 125 units downstream. An examination
of the vorticity contour plot (figure 2) shows a
number of small eddies at the inflow boundary,
which rapidly merge into a single, large vortex. This
merging appears to be the mechanism responsible
for the decrease in the energy content at high
frequencies, and the comresponding increase at the
lower frequencies. It is interesting to note that the
two lowest frequency components (cofresponding
to non-dimensional frequencies 10 and 20) maintain
their energy levels once they reach their limit
values, with no further transfer of energy from the
wp = 20 waves to thew,= 10 waves. This may be
due to the fact that the phase difference in the
forcing function corresponding to these two waves
was zero.
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In figures 7 and 8, the pressure and velocity
contours are plotted at a randomly chosen time
level. In this case, from an inspection of the vorticity
profiles at adjacent time levels, the eddies appear to
travel at substantially lower speed than the upper
stream. During the early stages of eddy formation
and motion, shocidets occur both on the upper and
lower sides of the shear layer. As the eddies
accelerate and reach low subsonic Mach numbers
relative to the upper stream, the shockiets on the
upper side of the shear layer disappear. The
shocklets on the lower side continue to travel with
the eddies, with no reduction in their strength.

Case 3: Case 1 was repeated, by artificially
reducing the shear layer vorticity thickness by a
factor of 15, keeping all other dimensions such as
the grid size, domain length and width constant. in
figures 9 and 10, the pressure and vorticity
contours are plotted. Again, in figure 10, the solid
and dotted contours correspond to low and high
pressure levels respectively. Shockiets are evident
on either side of the shear layer, although they are
weak because the reduced shear layer thickness
leads to small and thin eddies, compared to case 1.

Case 4: As a final exercise, Case 1 was repeated,
with forced excitation of the normal velocity at the
inflow boundary over multiple frequencies, ranging
from 10 to 60. The amplitude of the individual
components was 0.02 times the upperstream
velocity. In figure 11 the Fourier spectrum of the
pressure field at several x- locations are plotted. A
gradual migration of energy leveis from the higher
frequency to the lower frequencies is evident, as in
the case of the subsonic convective Mach number
case. Figure 12 shows how the two high frequency
components decay following a brief initial growth as
eddies are convected downstream. The low
frequency components at frequencies 10 , 20 and
30 initially grow rapidly, but reach asymptotic
values.

The response of the shear layer to multiple
frequencies is strikingly similar to that in the earlier
study for subsonic convective Mach numbers,
shown in figures 3 and 4.

CONCLUDING REMARKS

The stability and growth characteristics of
supersonic free shear layers were studied by

exciting the shear layer at the upstream boundary
with small amplitude normal velocity disturbances
The following observations were made:

a) in the case of shear layers at subsonic
and supersonic convective Mach numbers, the
imposition of acoustic disturbances over a large
range of frequencies lead to the transfer of this
energy from the high frequencies to the low
frequencies, as the flow progressed from the
upstream boundary to the downstream boundary.
The energy content at the lowermost frequencies
rapidly reached asymptotic values following which
eddies in the shear layer were convected
downstream with no further alteration in their
structure.

b) In the case of shear layers at a
supersonic convective Mach number, situations
were found where the convective Mach number
relative to the faster stream is low. This leads to a
situation where shocklets arose only on the lower
side of the shear layer. Conditions were also found
where the convective Mach number relative to both
the streams is high, leading to shocklets on either
side. These calculations demonstrate the same
features experimentally observed by Papamoschou
[Ref. 3] and discussed based on total pressure
arguments by Dimotakis [Ref 4].
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Numerical Simulation of the Growth of Instabilities in
Supersonic Free Shear Layers

W. Tang,* N. M. Komerath,t and L. N. Sankar}
Georgia Institute of Technology, Atlanta, Georgia

The behavior of the initial region of s supersonic plsne shear Iayer is analyzed through numerical solution of
the two-dimensional Navier-Stokes equations, as well as the three-dimensional equations usder the finite-span
sssumption. A modified MacCormack scheme that is fourth-order accurate in space aud second-order in time
is employed. Small amplitude oscillatious in the normal velocity are found to grow as they convect dowastream,
and eventually lead to organized vortical structures. Normal velocity disturbances are found to be more efficient
than streamwise or spanwise disturbances. The growth rate of these disturbances, as well as the intensity of
velocity fluctustions, are found to decrease as the copvective Mach sumber of the shear Isyer increases. The
Mach sumber of the vortical structures with respect (0 the faster siream is found to be considerably less than

the theoretical value of the convective Mach aumber.

Nomenclature
a = upper stream speed of sound
a, =]ower stream speed of sound

F.G = flux vectors
M nex  =convective Mach number of present result

M, =convective Mach number

q = vector of conserved variables

RS =diffusion vectors

U, =convection speed of vortices

U, = upper stream inflow velocity

U, = lower stream inflow velocity

x = coordinate in streamwise direction

y = coordinate in normal direction
Introduction

IR-BREATHING engines designed for high-flight Mach

numbers require supersonic combustion for efficient op-
eration. The shock losses associated with deceleration to low
Mach numbers require that the mixing of fuel and air, and the
heat release, must occur. in supersonic flows. For the same
reason, it is desirable to mix the fuel and air using coflowing
streams. In such configurations, the mixing must occur across
the shear layer formed between the streams. The length ard
weight of the engine, and the efficiency of heat release, depend
on the rapidity of this mixing process. Most curren: concepts
for supersonic-combustion ramjets thus employ mixing-lim-
ited heat release. The mixing across a shear layer between two
streams depends on the rate of mass and momentum transfer
across the layer, and, hence, can be described using the
“‘growth’” or ‘“‘spreading’’ rate of the shear layer. Unfortu-
nately, shear layers separating supersonic streams are known
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space Sciences Meetit_:g. Reno, NV, Jan. 9-12, 1989 revision received
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to grow much more slowly than corresponding subsonic shear
layers.

One long-term objective of supersonic shear layer research,
therefore, is to devise methods of increasing the mixing be-
tween supersonic streams by enhancing the shear layer growth
rate. Recent success in greatly modifying subsonic shear layers
has resulted in the advancement of a variety of schemes for
achieving similar increases in supersonic shear layers. The
variety of such possibilities far exceeds the resources available
for experimental exploration of each. Instead, a better ap-
proach appears to be to develop reliable numerical models and
solution methods that can then be used to perform the explo-
ration, and to identify promising approaches and the appro-
priate values of parameters required. This is the motivation
behind the research described in this paper.

Previous Work

Chinzei et al.! conducted experiments on planar shear layer
configurations and studied the growth rate. Papamoschou?
conducted similar experiments, using a variety of gases and
flow conditions, and showed that the results could be scaled
using the convective Mach number of the dominant eddies in
the shear layer. These results showed that the growth rate of
supersonic shear layers is typically less than one-third the
growth rate of incompressible shear layers for convective
Mach numbers greater than unity.

Passive and active control techniques have been studied by
ot! rresearchers. These techniques are generally based on the
priuciple that if vorticity is introduced into the shear layer, it
will increase the level of fluctuation and, therefore, promote
mixing and growth. Guirguis® and Drummond and Mukunda*
studied the effect of a bluff body placed in the middle of the
shear layer. Kumar et al.’ considered the effects of vorticity
produced by a pulsating shock wave on the growth character-
istics of the shear layer. Ragab and Wu® have developed
calculations based on stability theory to predict the response
of supersonic shear layers. Recently,’ they have also developed
computations of the response of planar wakes and shear layers
similar to those in experimental splitter plate configurations.

Scope of Presest Paper

In the work presented here, the behavior of ‘a planar free
shear layer is studied, using two numerical techniques for
solution of the Navier-Stokes equations. The effects of active
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control strategies are investigated. Sinusoidal variations in the
velocity are introduced at the upstream boundary. The subse-
quent response of the shear layer to these disturbances is
studied. Streamwise, normal, and spanwise disturbances are
considered as suitable candidates for promoting mixing.

At present, the problem is assumed to be nominally two-di-
mensional. Some calculations have been performed with
‘three-dimensional layers under the infinite sweep assumption.
It is recognized that the later development of the shear layer
may be strongly influenced by three-dimensional effects.
However, there is no reason to believe that the initial region
should be anything other than two-dimensional. The available
experimental flow visualizations, performed with spanwise-in-
tegrating techniques such as schlieren and shadowgraphy,
clearly show structures that would have been totally smeared
out if the flowfields had been significantly three-dimensional.

The present calculations are for laminar zhear layers, and
no turbulence model is used. Turbulence models inherently
bring additional uncertainty into the physical interpretation of
the observed behavior of the flowfield, though they are cer-
tainly necessary to obtain quantitative accuracy. The lack of
such a model restricts the applicability of these results to the
initial region of the shear layer.

The initial velocity profile used is a step change in velocity
at the slip line between the two streams. Thus, the results
obtained will not correspond to experimental results from
splitter-plate configurations, since there is no boundary layer
and no embedded region of initially subsonic flow.

Within the above limitations, the present work aims to
study the behavior of the initial region of a shear layer, and to
explore the effects of various forms of excitation.

Problem Statement

The shear layer configuration is shown in Fig. 1. Two
uniform, parallel supersonic streams of different Mach num-
bers are released at the left-hand boundary. All properties are
known at this boundary. The upper and lower boundaries of
the computational domain are assumed to be hard walls across
which no disturbances can escape. There is no boundary layer
at these walls, and slip conditions are used. At the downstream
boundary, the flow and all disturbances are allowed to escape,
and no disturbances are allowed to propagate back.

To study shear layer behavior, the static pressures are equal-
ized across the splitter plate, so that there are no strong shocks
in the flow. Some waves and their reflections from the wall do
occur, but these are quite weak.

The flow is assumed to be nonreacting, and the ratio of
specific heats was assumed to be constant for both streams.
The species above and below the shear layer were assumed to
have the same molecular weight.

Mathematical Formulation: Fourth Order MacCormack Scheme

g +F,+G, =R, +S, (¢))
py-uy=py—Ty=0, v=_0

Py=0
Mg P T Py uy=0

 —— Vx:
‘ =0

g My Py Ty 0,y Px

T, =0

Py =8y =Py =Ty =0, v=0

Fig. 1 Boundary conditions for supersonic free shear layer.
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Here, F and G are the inviscid flux terms and account for
the transport of mass, moment, and energy and for the influ-
ence of pressure. The terms R and § are the viscous stress
terms. The above equation is parabolic with respect to time,
and may be solved using a variety of stable time marching
schemes. For two-dimensional flows, there are four equations.
In the case of three-dimensional flows subject to infinite-
sweep assumption, there are five equations, the additional
equation corresponding to the conservation of spanwise
momentum.

In this work, the above equation was solved using a splitting
approach; that is, the solution was advanced from one time
level ‘n’ to the next ‘n +2’, through the following sequence of
operations:

g™ = WLy Lok Lyl ol L)g" )

where, for example, the L, operator involves solution of the
following equation:

q:+F, =0 3)

This one-dimensional equation was solved through the fol-
lowing predictor-corrector sequence, recommended by Bayliss
et al.%:

Predictor Step:

At
q"j'=qi""~6T_Ax [71",.,—8"':-1,' '4'17:-1,} 4)

Corrector Step:

1 At .
9" =3 (0u"+qu-> +T—23{7fi.j-8fn~u +Fi°2.i]
&)

When the above equations are applied at nodes close to the
left- and right-side boundary, a fourth-order accurate extrapo-
lation procedure was used to extrapolate the flux vectors F and
F’ needed at nodes outside the computational domain.

The L, operator requires solution of the equation

q:+G,=0 6)

using a similar approach.
The operators L,, and L,, correspond to numerical solution
of one-dimensional equations such as

¢ —R,=0 @)
The above equation was solved through the following two-step
sequence:

. ar 1 i ],

1
ql.]'” 1 +E (‘hi"*‘h/ °>

At 1 1
+E [RI+EJ-RI-E J]‘ )

The viscous terms are thus updated only to second-order
accuracy in space. It may be shown that the above scheme has

very little artificial dissipation inherent in it, and is fourth-or-
der accurate in space, as far as the inviscid part is concerned.
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Boundary Conditions

As stated above, all flow properties are prescribed at the
upstream boundary for both streams, including any imposed
perturbations. At the downstream boundary, the flow is as-
sumed to remain fully supersonic for the small-amplitude
perturbations encountered in this work, so that the properties
may be extrapolated from the interior. Alternatively, the gov-
erning equations themselves may be applied if the streamwise
diffusion terms R, are suppressed at the downstream nodes.

At the lateral boundaries, the flow is assumed to be con-
fined by smooth, parallel walls. Slip boundary conditions were
used to avoid the compression effects that would be caused by
boundary layers. The walls were considered adiabatic, and the
normal derivatives of density and pressure were set to zero.

Results and Discussion
Normalization

Velocities were normalized using the speed of sound in the
upper stream, which thus became unity. The Reynolds number
based on the speed of sound was chosen to be 1000. A 221 x 61
uniform grid was used, with spacing of 0.0] in each direction.
Thus, the length of the domain L was 2.2. The time step was
taken as 0.001 (0.0005 for each half-step). The calculations
were started with step velocity profiles at the upstream
boundary, and allowed to proceed until a steady state was
reached asymptotically. This usually took 600 time steps. The
results at this stage were stored, and the code was restarted
with an imposed sinusoidal velocity disturbance of amplitude
2% of the velocity of the upper stream. The calculations were
then run until several cycles of the disturbance had been
completed, and the initial effects had been convected away
through the downstream boundary.

Convective Mach Number

The cases run have been summarized in Table 1. Because the
supersonic shear flow problem involves several parameters (at
least five on either side of the shear layer), nondimensional
groupings are sought to express observed effects. Following
the practice of Papamoschou,? the convective Mach number
was used here. For the problem studied here, the convective
Mach number reduces to

M. =(U-U.)/a
where
Ue.=(@aUy+aU))/(a) +ay)

The values of M, calculated by this formula are tabulated. A
physical interpretation of the convective Mach number is that
it is the Mach number of the dominant large-scale vortical
structures with respect to either stream. According to the
formula given above, this Mach number is the same with
respect to either of the streams. An attempt was made, as
discussed later, to determine the convection speed of the vorti-
cal structures seen in the computational flowfield, and to
determine relative Mach numbers from them. The Mach num-
bers so determined, with respect to the upper, high-speed
stream, are also tabulated. It is seen that there is a consider-
able discrepancy. This is not surprising, and, in fact, even in
subsequent experiments by Papamoschou,’ similar effects ap-
pear to have been observed.

Table 1 Cases presented
Case M M; U Uz M. Myonex

1 4.0 23 4.00 3.51 0.20 0.2
2 4.0 2.0 4.00 3.08 0.38 0.2
3 4.0 1.3 4.00 1.98 0.80 0.2
4 5.0 1.3 5.00 1.98 1.20 0.6
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Formation of Vortical Structures

Figure 2a shows the contours of vorticity in the shear layer,
calculated for case 1, with no disturbance superposed. It is
seen that the shear layer grows quickly at the very beginning,
and then takes on a smooth profile which grows very little
thereafter. It should be remembered that in this calculation
there is no imposed turbulence model. Figure 2b shows the
effect of imposing a sinusoidal 2% normal velocity distur-
bance at the inflow boundary. Distinct centers of vorticity are
seen to develop and be convected downstream. The shear layer
edge now penetrates considerably further into both streams.
Careful examination of the contours shows considerable
asymmetry and distortion as the structures proceed down-
stream. The computational domain in this calculation does
not extend far enough for these disturbances to grow into the
nonlinear regime, and hence no “‘roll-up’ can be expected
here. The effects of six cycles of the imposed disturbance can
be seen, with the sixth just leaving the computational domain.

Figures 3a and 3b show the corresponding vorticity con-
tours for case 2, where the theoretical value of convective
Mach number is nearly twice that of case 1. The growth rate
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Fig. 2 Vorticity contours for case 1, My=4.0, M;=2.3, M. =0.2.;

8) without disturbance, b) with disturbance in the normal direction.
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Fig. 3 Vorticity contours for case 2, M= 4.0, M;=2.0, M. =0.38;

a) without disturbance, b) with disturbance in the sormal direction.
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Fig. 4 Vorticity contours for case 3, M1 =4.0, My=1.3, M:=0.8;

) without disturbance, b) with disturbance in the normal direction.
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Fig. 5 Vorticity contours for case 4, M) =50, My=13, M.=1.2;

a) without disturbance, b) with disturbance in the normal direction.

appears to be less, as expected from the experimental observa-
tions of the effect of M. This effect is seen further in Figs. 4
and §, where the convective Mach number, according to the
formula, is 0.8 and 1.2, respectively.

Disturbance Type

Other kinds of disturbance were tried; specifically, distur-
bances in velocity along the streamwise direction for the two-
dimensional shear layer and disturbances along the spanwise
direction using a three-dimensional model with the infinite
sweep assumption. The results are shown in Figs. 6 and 7,
respectively, for the case where the convective Mach number is
predicted to be 0.2. In each case, the disturbance amplitude is
the same. It is seen that these types of disturbances are less
efficient than the normal velocity disturbance.
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Fig. 6 Effect of streamwise disturbances for case 1.
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Fig. 7 Effect of spanwise disturbances for case 1.
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Fig. 8 Computation of convective speed based os the temporsl evo-

lution of vorticity contours for case 2.

Convective Speed Based on Evolution of Vorticity Contours

One common way of calculating the convective Mach num-
ber is to track the downstream convection of the vorticity
contours as a function of time. The results of this effort are
shown in Fig. 8 for case 2. Similar computations were per-
formed for all of the cases, and the results are shown in Table
1. It is seen that as the theoretical value of the convective
Mach number rises, the measured convective Mach number of
the structures with respect to the upper stream vary much less.
Of course, this means that the convective Mach number is no
longer the same when compared to the two streams. The
structures appear to move at a speed that is close to that of the
upper, high-speed stream. This is similar to the more recent
observations of Papamoschou,® where the structures were
found, for many cases, to move at speeds close to that of one
or the other stream.
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Growth Rate Enbancement

The thickness of the shear layer was computed from the
velocity profiles across the shear layer. These profiles are
shown later in the paper, where they are used to examine the
numerical accuracy of the results. Figure 9 shows the shear
layer thickness for unperturbed and perturbed cases for case 1.
The disturbed case shows a significantly greater rate of
growth, except near the downstream boundary. However, the
increase in growth rate is only on the order of 10-15%.

The frequency of the imposed fluctuations was chosen such
that about six vortical structures could be seen in the computa-
tional domain at one time. Thus, the actual frequency used
was higher than the frequency of maximum amplification
predicted by linear stability analysis. Use of the preferred
frequency would have required a much larger computational
domain in the x direction to capture an adequate number of
vortices, and would have increased the computational effort
required by an order of magnitude.
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The intensity of fluctuation in the shear layer is plotted as a
function of downstream distance for three cases with different
theoretical convective Mach numbers in Figs. 10a-10c. The
quantity measured was the root-mean-squared fluctuation of
the U-component of velocity about the mean, normalized by
the mean velocity. It is to be noted that this is not the turbu-
lence intensity, since no attempt has been made to model the
turbulence. The fluctuations have their origin in the imposed
disturbance, though they may have been selectively amplified
by energy exchange with the shear layer. It is seen that the
intensity of fluctuations decreases rapidly with increasing con-
vective Mach number. It also appears that the intensity
quickly reaches an asymptotic value and does not increase
further. In fact, for the higher values of convective Mach
number, the intensity appears to peak and then decrease grad-
ually thereafter. This decay in the intensity with high values of
M, has been predicted by other researchers using linear stabil-
ity analysis.

Studies of Discretization Error

All the above results were generated using the fourth-order
MacCormack scheme. The influence of the accuracy of the
computation scheme was studied by comparing results ob-
tained using a second-order MacCormack scheme to those
obtained with the fourth-order scheme. Velocity profiles
across the shear layer were used to examine the results. Figure
11 shows the comparison for case 1, however, with a 111 x 31
grid. The profile was obtained at the station 10% of the
domain length downstream of the origin. The results are seen
to be quite similar. The agreement is close for profiles at 25
and 50% downstream. However, at x/L =0.75, differences
can be clearly seen. The fourth-order scheme is seen to resolve
spatial details better, as expected. The difference decreased

——g— 2nd Order
—— 4th Order

x/L =0.10

03
0.2 7
0.1 9 )
-
3 001 1
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_0.3 - T T T \] T———r
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0.1 7
= 4
S 007 y
0.1 b
0.2+ WL = 0.80 )
0.3 h

3; 3t8 4?0 4.2 36 3.8 40 4.2
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Fig. 11 Velocity profiles across the shear layer: comparison of sec-
ond- and fourth-order MacCormack schemes for case 1 with 111 x 31
grid.
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Fig. 12 Velocity profiles across the shear layer: comparison of sec-
on':~ and fourth-order MacCormack schemes for case 1 with 221 x 61
grid.

further downstream. It is concluded from these that the
second-order scheme already shows reasonable accuracy, and
that the fourth-order results are quite accurate.

The effect of grid size was checked by comparing the above
results with those obtained with the 221 x 61 grid, as shown in
Fig. 12. In this case, the difference between the second- and
fourth-order codes is negligible for all stations. Thus, it is
concluded that with the 221 x61 grid, the results are not
sensitive to grid size.

Computational Resources

All calculations reported here were performed on the Cray
X-MP at the Pittsburgh Supercomputing Center. The CPU
time per time step per grid node was 10 us for the fourth-order
MacCormack scheme, using the 221 x 61 grid.

Conclusions

A numerical study of the behavior of planar supersonic
shear layers has been performed. Different numerical schemes
have been tested. Techniques for enhancing the growth rate of
the shear layer have been investigated. The following are
noted from the results:

1) The fourth-order MacCormack scheme accurately simu-
lates the evolution of the imposed disturbances. The results
are essentially independent of the spatial order of the scheme,
with a 221 x 61 grid with the grid parameters used.
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2) A perturbation of 2% of the mean flow velocity, imposed
at the upstream boundary in the normal direction, produces a
larger growth of the shear layer than an equal amount of
perturbation imposed in the streamwise or spanwise direc-
tions,

3) Imposed sinusoidal disturbances in the normal velocity
upstream lead to the formation and growth of vortical struc-
tures. The shear layer thickness grows rapidly at first and then
the growth rate decreases asymptotically.

4) The root-mean-square fluctuation level in the streamwise
velocity and the shear layer growth rate decrease with increas-
ing values of the theoretical convective Mach number of the
shear layer.

5) The vortical structures are found to move at different
Mach numbers relative to the upper and lower stream, and the
relative Mach number appears to be smaller relative to the
stream with the higher Mach number.
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Abstract

HE temporal stability and growth characteristics of three-

dimensional supersonic shear layers are numerically in-
vestigated. An explicit time-marching scheme that is second-
order accurate in time and fourth-order accurate in space is
used to study this problem. The shear layer is excited by
instability waves computed from a linear stability analysis and
random initial disturbances. At low convective Mach num-
bers, organized vortical structures develop both for the ran-
dom disturbance and the modal disturbance cases. At super-
sonic convective Mach numbers, vortical structures develop
initially but are not sustained in time. Temporal growth of
disturbances is found to be a strong function of the convective
Mach number.

Contents

An improved understanding of factors that contribute to
supersonic shear-layer growth is necessary for design of active
and passive control techniques to enhance the mixing of
airstreams and fuel streams, and for the design of efficient,
compact SCRAMIJET engines. It has been observed!-? that, in
supersonic shear layers, organized vortical structures exist in a
manner similar to subsonic shear layers. However, as the
convective Mach number increases, the streamwise shear-layer
growth rate is found to drop to about 30% of that of an
incompressible flow.*

In the past, Tang et al.’ used a fourth-order MacCormack
scheme to study temporal and spatial growth of two-dimen-
sional thin shear layers at very carly stages of laminar mixing,
and studied the effects of convective Mach number as well as
streamwise, spanwise, and cross-stream velocity disturbances
on the shear layer growth. It was demonstrated that the
growth rate of the shear layer decreased with increasing con-
vective Mach number. In this work, three-dimensional, tem-
porarily growing mixing layers have been studied. The study
focuses on the effects of instability waves computed using a
linear stability analysis and random initia! disturbances on a
temporarily evolving shear layer.

The three-dimensional, laminar, unsteady, compressible
flow is governed by the Navier-Stokes equations, which may
be formally written in a strong conservation form

@ +F,+G, +H, =R, +S,+ T, m

where F, G, and H are inviscid flux terms, and R, S, and T are
the viscous stress terms. Equation (1) was solved using an
operator splitting approach and a MacCormack-type finite
difference scheme:

q"* = Ll L lnlplololpl ol d,Lg" @
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The L, L,, and L, operators involve solutions of the one-di-
mensional equation such as

G +F, =0 3)
This one-dimensional equation is solved through the following

predictor-corrector sequence, recommended by Bayliss and
Maestrello.¢

Predictor step:
R Dt
a 'qf-m["ﬁ-md'*ﬂ-zl' O]
Corrector step:
. n
gret =@ 2D, D! op spvFud ®

2 12 Dx

The viscous operators Ly, L,, and L,, are integrated simi-
larly with the exception that the viscous stress terms are differ-
enced in space with the second-order-accurate central differ-
ence scheme. The overall numerical scheme is fourth-order
accurate in space and second-order accurate in time as far as
the inviscid part is concerned.

Since the temporal development mixing layers are studied,
periodic boundary conditions in the streamwise and spanwise
directions and slip boundary conditions in the cross-stream
direction are applied.

The computational domain is a rectangular channel that
extends in stream- and spanwise directions over one wave-
length of the longest disturbance wave predicted by linear
stability analysis for a given convective Mach number. In the
cross-stream direction, it extends from —7.5 to 7.5 times the
vorticity thickness. The computational domain is discretized
with a 66 x 34 x 121 uniformly spaced grid along the stream-
wise, spanwise, and cross-stream directions, respectively. The
Reynolds number is based on the vorticity thickness and -
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Fig. 1 Modal energy growth of the most unstable modes ia shesr
fayers disturbed by instability waves.
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ranges between 3 x 107 and 6 x 10%. The mean velocity across
the cross-stream direction is given by a hyperbolic tangent
profile. The convective Mach number is defined as M, =
(U, = Up)/(c) + ¢3), where U is the magnitude of the mean
velocity, ¢ is the speed of sound, and subscripts 1 and 2 refer
to the upper and lower streams, respectively.

The modal kinetic energy content of the flowfield is de-
fined as

Epa(t) = s[uu‘ +w'+ww']dz ©)

where u, v, and w are the two-dimensional Fourier transforms
of the velocity field on the plane that spans in the streamwise
and spanwise directions. The integration is in the cross-stream
direction. The superscript * denotes the complex conjugate.

Instability Waves Superposed on Mean Flow

We have first superposed three-dimensional waves onto the
mean flocw and monitored temporal evolution of the flowfield
and the modal energy growth. These disturbance waves are the
‘most unstable waves predicted by the linear stability analysis’
at a given convective Mach number and are given for the
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Fig.2 Spenwise verticity contours st midspen in 2 randomly dis-
turbed shear layer, M, = 1.2,
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Fig.3 Average perturbation kinetic energy growth ie randomly dis-
turbed shear layers.

velocity components, density, and temperature in the follow-
ing form:

d(x,y,z) = AD(z) exp i(ax + By) )]

where D(z) is the eigenfunction, « and 8 are the wave num-
bers, and A is the magnitude, which is set to 0.015M,.

We have studied the flowfields for convective Mach num-
bers of 0.2, 0.7, and 1.2. The corresponding wavelengths of
the most unstable waves, which are predicted by the linear
stability analysis code, are o = 0.41 and 8 =0 for M, = 0.2,
a=03andB8=0.3forM, =7, and a =0.14 and 8 = 0.07 for
M, = 1.2, The temporal growth of modal kinetic energy asso-
ciated with the most unstable modes is shown in Fig. 1.

Random Disturbances Superposed on Mean Flow

Next, we superposed a random initial disturbance field onto
the mean flowfield. The random disturbance field was gener-
ated using a random number generator, and its magnitude at
any point in the flowfield was restricted to be less than
0.03M.. These disturbances were confined to regions of signif-
icant vorticity in the shear layer, where lu(y)l < 0.25M..
Computations were performed for convective Mach number:
of 0.2, 0.4, 0.6, and 1.2.

In all flow cases, random organized vortical structures were
observed in the perturbation velocity field. However, at a
higher convective Mach number of 1.2, organized structures
tended to die out in time (Fig. 2). The temporal growth of
average perturbation kinetic energy for the cases studied is-
given in Fig. 3.

The following is concluded:

1) The temporal growth rate in perturbation kinetic energy
decreases with increasing convective Mach numbers for both
modal and random disturbances.

2) At supersonic convective Mach numbers (M, = 1.2), the
growth of three-dimensional structures were also found to be
unsustainable in both the random and modal disturbance
cases.
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tions. Nonetheless, compressible flow solvers have evolved to
a point where they may be routinely used to smdl a variety of
lems ranging from 1-D subsonic flow to 3-D unsteady,
rsonic flow. Incompressible flow solvers, on the other hand,
bave shown only a limited level of success in predictinshS-p
viscous flows. All evidence to date points the elliptic
ﬁu‘on of the incompressible flow equations to be one of the
ifficulties. The traditional, iterative solution of the elliptic
portion of the governing equations (where the unknown may be
pressure, or the scalar components of a vector stream function)
coaverges very slowly, and the convergence rate usually
deteriorates at high Reynolds numbers.

One of the commonly used approaches for solving 2-D
incompressible flows is_the vomciz-veloci or the vorticity-
stream function formulation. Mehta [Ref. 5], Wu [Ref. 6], Thames
[Ref. 7] and others have used this approach. In Mehta’s work,
unsteady viscous flow past stationary and oscillating airfoils were
studied. He used an approximate factorization scheme to
integrate the bolic portion of the governing equations, and a
direct fast Poisson solver to invert the elliptic equation for the
stream function. He experienced difficulties in obtaining accurate
solutions at Reynolds numbers as low as 5,000. Some researchers
eg Wu) bave circumvented the need to iteratively solve the

15500 ﬁuaﬁon for velocity or stream function, by recasting the
differential equation as an integral relation. The operations count
for this approach dramatically increases with Reynolds number.
This approach requires costly, numerical evaluation of volume
integrals in three-dimensions. Thompson [Ref. 8] studied the 3-D
jet-in-cross wind problem. As in the previous cases, the analyses
were restricted to relatively low Reynolds numbers.

A different approach for solving the incompressible
Navier-Stokes equations is to solve them in the primitive variables
form (pressure-velocity). Again, 8 variety of approaches for
solving these equations are possible. In some studies [e.g. Goda,
Ref 91 the u-, v- and w- momentum equations are integrated in
time using an implicit or an explicit time marching scheme. The
pressure field which appears in these equations is evaluated at
each time step by solving a Poisson's equation for pressure,
usually using an iterative scheme. By using a staggered storage
scheme where the pressure field is stored at cell centers, while the
velocity fields are stored at face centers, it is possible to avoid use
of nonphysical, extraneous boundary conditions for pressure at
the solid surface. Brandt [Ref. 10], Ta'asan [Ref. 11] have shown
that it is possible to accelerate the iterative solution of the
pressure field using classical multigrid techniques.

An alternative to solving a Poisson equation for pressure is
the Marker and Cell (MAC) algorithm developed at Los Alamos
Z“Welch et. al. [Ref. 12]. At each time step, the velocity field is

updated using an explicit time marching scheme, using the
pressure field from the previous time step. Next, the correction to
the ¢ at the center of each cell is evaluated by summmﬁ up
the mass flux through the six faces of the cell. If a cell 15
sccumulating mass, then the pressure value is increased to repel
fluid away from the cell. If a cell is losing mass, then the pressure
value is lowered. Any change in the pressure field produces a
corresponding change in the velocity field, which may be
ted simply by evaluating the changes in the pressure
Fﬁ Thus the velocity field is iteratively updated along with
pressure field at each time step. Hirt and Cook [Ref. 13] have

extended the MAC method to 3-D flows, and to ear

Bundina upon the earlier works by Chorin [Ref. 14] and
Steger and Kutler [Ref. 15], Kwak et. al. [Ref. 16] bave developed
an implicit time marching scheme for solving incompressible
flows. In their scheme, known as the method of pseudo-
compressibility, an artificial pressure derivative with respect to
time is appended to the continuity equation. The entire system of

tions is solved by a time marching scheme, as in a compress-

Jow. I oanly a steady state is of interest, then the added

pressure derivative drops out in the steady state, and physically
correct solutions are achieved. If the aim is to achieve time-
accurate calculations, either the artificial pressure derivative
should be kept very small (which makes the equations extremely
stiff, and forces very small time ste:s) or an inner iterative loop
within each time step should be use

. A oumber of other npg:oacbes for solving incompressible
viscous flows exist, and bhave been demonstrated to work well for
a !imtnited fmm:!m of test aies: A direct inversic;n of the Poisson
equation for pressure at each time step was employed by Osswald
and Ghia [Ref. lg. This requires large amounts gzmo‘r,yy. because
the coefficient matrix, that arises when the Elliptic

tion for xressure is discretized, gives rise to a full matrix
when inverted. Thus, even a very sparse grid containing 1,000
nodes will require one million words of storage to store the
inverted matrix. Furthermore, a direct solution to the elliptic
ecsua’uon alone does pot necessarily guarantee stable, accurate
solutions of the entire equation set. Hafez et al. [Ref. 18] have
looked at the decomposition of the velocity field into a rotational
part and an irrotational part. This approach sbares many of the
drawbacks of the traditional velocity-vorticity form previously
discussed. Higher order gro;ection methods for solving in-
compressible viscous flows have been documented by Bell et. al.
Eﬁe 159, u;d have been applied to low Reynolds aumber flows

e< X

The methods for solving incompressible viscous flows
discussed above have several dravgvbacks: P

a Most of them are only second order accurate in space, and

t or second order accurate in time. Before these schemes can
be apf»hed to phenomena such as direct numerical simulation of
turbulence, it will be necessary to raise the spatial and temporal
accuracy to fourth or higher order.

b)  The iterative convergence of the elliptic portion of the
solvers deteriorates at high Reynolds pumbers.

c) In some instances (e.g. method of pseudo-compressibility)
a mge off exists between temporal accuracy and convergence
spee

d)  These methods do not take advantage of the vast progress
that bas been achieved in the solution of steady viscous flows. For

ample, with rare excege'ons, multigrid acceleration of the
Poisson solvers has not been attempted. Acceleration of the
nera_%; solution of the pressdure geld to oonv;;gencjso using
spatially varying time steps and grid sequenci ve oot
been extensively used. Alpthou.gh these tgghnicciﬁgs are primarily
intended for steady state solutions in compressible flows, there is
B0 reason why these strategies can not be used to solve the elliptic
partial differential equation governing the pressure (or a vector
stream function).

e)  There has been a growing interest in the use of massively
parallel computer architectures such as the Connection Machine
to solve unsteady viscous flows. Many of the compressible flow
algorithms have already been adapted for use on these machines

ef. 20-22). There is a need to develop new procedures and
modify existing algorithms for incompressible flows, on parallel
machines.

MATHEMATICAL AND NUMERICAL FORMULATION

The objective of the present research is to_ develo
efficient, and accurate solution techniques for the analysis of 3-D,
unsteady, incompressible flows. The algorithms to be described
meet the following requirements:

a) The schemes should be fourth or higher order accurate
in space, and second or higher order accurate in time.

b) The solution techniques should be capable of bandling




complex internal and external flows. That is, the
the solution procedures should be cast in a
deforming coordinate system.

tions and
ilinear, time-

<) The solution procedures should work for a wide range
:fﬁ Reynolds numbers, with Do appreciable loss in solution
ciency.

d) The solution procedures should be tailored for efficient
execution on the current generation of vector and massively
parallel computer architectures.

With the above goals in mind, a solution procedure for
solving 3-D unsteld& incompressible flows has been developed.
The key features of the present scheme are listed below.

) The primitive variables (puv,w) are the primary
uz:knwns in the present formtffation. Depending on the
turbulence models to be used, additional unknowns such as the
turbulence kinetic energy k, dissipation rate ¢, the Reynolds stress
components uV' may need to be evaluated. In three-dimensional
flows, it is believed that solving for tbe primitive variables
(p,u,v,w) will be more convenient than use of vorticity-vector
stream on.

b)  The present scheme is iterative in nature. That is, at each
time step, the flow properties are updated in an iterative fashion.
Such an iterative &rocedure is mecessary, because one of the
unknowns, namely the pressure is governed by an elliptic PDE. In
some approaches, such as the pseudo-compressiblity approach, a
noniterative marching scheme has been used. However, such
schemes trade temporal accuracy for the ability to achieve a
convergent steady state solution.

¢)  The parabolic portion of the governing equations employ a
high order (secondpgr fourth order in time) implicit time
marching scheme. Since there is at least one flow variable
(pressure) that must be iteratively solved for, there is no reason
not to update the rest of the flow variables (u,v,w) during each
pressure iteration. The use of implicit schemes removes the
pecessity to choose small time steps required by stability
considerations.

LPresent Scheme;

For the sake of convenience, the details of the present
scheme are described in a Cartesian coordinate system, and for 2-
D flows. Since the governing equations may be cast in a
curvilinear, non-orthogonal, time-deforming coordinate system in

a form very similar to the Cartesian form, application of the
present algorithm on a curvilinear grid is straightforward.

Thegoalofthegsemschemeistoadvance the flow

Eopem‘es L,v) from a known time step o’ to the next time step

+ h Let X' be an iteration counter. Then a quantig' such as

u®* L% denotes the variable u at the time level 'n+1' and iteration

level &', A good starting guess for the flow variables at time level

‘n+1’ at the start of the iteration process is these variables at the
time level That is,

wach
‘We also define ‘delts quantities'au ,av and ap such that
au = stk 2Lkl
avm aelk aslkd
sp mpttiE. preihl

Thus, the goal of the jterative process at each time step is
to drive these delta quantities Au ,av and ap to zero.

An coupled system of equations for these delta variables
may now be written. For example, consider the u- momentum
equation (with density assumed to be unity):

U + (nz),+ (uv)y +op/ox =» (u,«ru”)

For the sake of illustration, let us assume that a second
order accuracy in time is acceptable. Then, the time derivative
#u/at will be approximated as :

au/at = (ut*k.y%)/at

The other terms in the above equation will be evaluated at
the 'n+1/2' time level:

ot1/2k o (“lﬂ.k +u%)/2
otk (n.¢1,k~1 + u)/2

The spatial discretizations may be carried out using either

a8 second order accurate central/upwind difference form or a
l‘nger order form. The higher order spatial accuracy may be
jeved on uniform grids using Pade’ approximations to the
derivatives; on highly stretched grids, higher order agcuracy may
be achieved using a mg:angean t to the variables u®, uv, p etc.
In bhigh Reynolds number flows, the Lagrangean fit need not be
eguzﬁy weighted about the node, but may be biased in the
direction of the flow. For example, when-the flow is from left to
right, if the Lagrangean interpolation of u“ is done using nodes
only to the left of, and including, the current node then an upwind
formulation results. The details of how the spatial discretization is
done do not change the iterative solution process being described.

If the quantities such as u?, uv and p appearing in the
above difgfuution are linearized about known information u®
and u®* 1 then a difference equation linking au , av and ap
;eeslults. Such an equation is given for the u- momentum equation

ow:

2u+1/2k- B841/2k-1, o 4 y0+1/2k-
iu‘/:(:;)(g,/(zu lau)+5y(u av+ au))

;y/z(s,,n,,)au = (UL . uB)/at + {65 () + S yfuv) +
P

v (U +8yyu)) 2t 12

Hereiy,$y, 85 etc stand for suitable, high order upwind
or central :ppgoxiﬂun’gns to the spatial clerivative%.ll pui

Note that the right side of the above equation is simply the
Crank-Nicholson approximation to the u- momentum equation. If
the right side is driven to zero, then the unsteady u- momentum
equation will be fully satisfied at the current time level n+1.

A similar on may be written for the v- momentum
equation, linking the quantities au , av and ap. In the case of
continuity equation, one can draw upon the Marker and Cell
mmmeimﬁnchmgesinprmwchugesin

3 write

Bap = (ussv)titt
Here 8 is a free parameter, that may even vary from node
to node.

It should be noted that the addition of # ap to the left side
of the above equation is not equivalent to a pseudo-
eomprmibﬂitynggmch.»lon;uapisdﬁventozgm.me
discretized form of the continuity equation is exactly satisfied at
each time step.

Applying the above discretizations in time and space at all




the nodes in the flow field, a system of simultaneous”equations
results for the quantity aq equal to (au, Av, ap). This system may

‘be formally written as:

[A] {aq} = (R}

Here, the right hand side is the ming equation, with
the temporal and gaﬁﬂ derivative ap%%%mated as discussed
above. The right side also contains the time derivatives that
appear in the governing equation. In traditional jterative schemes
such as the pseudocompressibility scheme, the right side contains
only the spatial derivatives. Thus, in these schemes, only the
steady state solution is guaranteed. In the present :g'p_r the
time accurate solution at each time step is guaranteed, if the right
side can be driven to zero.

PRELIMINARY RESULTS

The above procedure for solving 2-D and 3-D
incorlnpressible viscous flows is lf:e&.lng testegm onf several 2-D
problems. A preliminary version of the procedure for computin
external ﬂow]; over three-dimensional p;eometn'es also e:nstss.
Figure 1 shows the computed surface pressure distribution over a
body of revolution tested in Germany, for which experimentally
measured data is available. It is clear that the proposed iterative
scheme gives numerical results that are in good agreement with
experiments.

The full paper will give the following additional results:

a) Incompressible flow past an airfoil at Reynolds numbers

Million.

5000 to 3.5 0
b) § 3-D separated flow past an ellipsoid of
revolution at an angle of attack.

These cases bave been chosen because of the availability
of good quality experimental data , and the simplicity of the grid

generation.
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CHAPTER 1

INTRODUCTION

The accurate computation of three-dimensional unsteady incompressible flow
problem is one of great interest to researchers working in fields of aerodynamics,
hydrodynamics and biofluid mechanics. The flow over complex submarine shapes, flow
past underwater propeller, flow within turbomachinery, and flow in blood vessels with
compliant walls are examples of such flows. Accurate and efficient computation of such
flows at high Reynolds numbers is presently not possible due to the mixed (elliptic-
parabolic) nature of the governing equations. Indeed, methods for three-dimensional
incompressible flows lag behind three-dimensional compressible flows by several years.
Until accurate and efficient methods for three-dimensional incompressible, unsteady flows
become available, it will not be possible to attempt challenging problems such as the first
principles based on direct simulation or large eddy simulation of turbulent flows over
complex geometries. The lack of such tools is one of the principal reasons that the first
principles based prediction of turbulent flows past and through complex configurations has
not been extensively attempted to date.

As Gresho and Sani (ref.1) pointed out, the pressure is a somewhat mysterious
quantity in incompressible flows. It is not a thermodynamic variable since there is no
‘equation of state' for an incompressible fluid. It is in one sense a mathematical artefact - a
Lagrange multiplier that constrains the velocity field to remain divergence-free ; i.c.
incompressible - yet its gradient is a relevant physical quantity ; a force per unit volume. It
propagates at infinite speed in order to keep the flow always and everywhere
incompressible ; i.e. it is always in equilibrium with a time-varying divergence-free velocity
field.

One might have the idea that the compressible Navier-Stokes equation solvers can
compute incompressible flows using compressible flow methods, and setting the Mach




number to be very low. But this idea becomes impractical at very low Mach numbers
because the compressible Navier-Stokes equation solvers have a singular behavior as the
Mach number approaches zero. This leads to an ill-conditioned stiff system of equations
and consequently very slow convergence, or even divergence of the solution with time.
- This stiffness can be explained as a time step limitation (ref.2). We note that all explicit
-methods for solving the compressible Navier-Stokes equations are limited to a time step
“which is less than that given by the CFL condition. For example, in two-dimensions :

1
(|UI/Ax)+(|v|/Ay)+a[(l / Ax? +(1/ Ay)2]1/2

At S (1.1)

where a is the speed of sound. From this condition, we observe that At approaches zero
as the speed of sound approaches infinity. As a result, an "infinite” amount of computer
time would be required to compute a truly incompressible flow in this manner. Implicit
methods will permit a larger At, but the maximum value is normally less than 100 times
that given by Eq.(1.1) because of truncation errors, approximate factorization errors, and
so on. Thus, even if an implicit scheme is used, it is not practical to compute a truly
incompressible Navier-Stokes solution using compressible flow methods.

The significant difficulty in solving incompressible Navier-Stokes equations is that
the governing equations are a mixed glliptic-parabolic type of partial differential equations,”
The continuity equation does not have a time derivative term and is given in the form of a
divergence-free constraint. This is another major difference between the incompressible and
compressible Navier-Stokes equations. The absence of a time derivative term in the
continuity equation prohibits time integration of continuity equation by a time marching
scheme. The compressible Navier-Stokes equations, on the other hand,are efficiently
integrated by time marching schemes because they are a set of parabolic partial differential
equations.

One of the commonly used approaches for solving two-dimensional incompressible
flow is the vorticity-velocity or vorticity-stream function formulation (ref. 3,4,5). This is
very efficient for two-dimensional problems, but this approach can not be extended
straightforwardly to three dimensions. Consequently, the incompressible Navier-Stokes
equations for three-dimensional problem are normally solved in their primitive variable
form (p,u,v,w). Most methods using primitive variables may be classified into three
groups. The first approach is the pressure Poisson method or Marker-and-Cell (MAC)
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method which was first introduced by Harlow and Welch (ref.6). In the pressure Poisson
method, the velocity field is advanced in time by solving the momentum equations with a
stable explicit or implicit time marching scheme. Then the pressure field is evaluated at each
time step by solving a Poisson equation for pressure directly (ref.7) or iteratively

.(ref.8,9,10). The continuity equation is thus satisfied when the pressure field is computed
4mplicitly. This Poisson equation for pressure is obtained by taking the divergence of the

-unsteady momentum equations. The main idea of the MAC method (ref.11,12), an
alternative to solving a pressure Poisson equation, is that the pressure field is updated at
each time step by adjusting the pressure by an amount proportional to the negative of the
velocity divergence :

pE;— P == B (V-V)x! (1.2)

Here the superscripts 'k’ and 'k-1' denote the iteration level, and B is a relaxation factor.
Usually, a staggered grid system (ref.6) is used for the MAC method, because such a grid
does not require the specification of pressure on the boundaries and does not produce
unphysical oscillations in the pressure and velocity fields due to the central differencing of
the pressure gradient term. The second approach is a projection method (or, fractional step
method ) which was first introduced by Chorin (ref.13). At the first step, an intermediate
velocity is computed from the momentum equation without the pressure gradient term.
Then a pressure field is computed which will make the velocity field obtained from the first
fractional step divergence free. Finally, a second fractional step is performed using the
pressure field just computed. The third group is the pseudocompressibility method
(ref.14,15) which was also first introduced by Chorin (ref.16) primarily for obtaining
steady state solutions. In this method, an artificial pressure derivative with respect 10 time is
appended to the continuity equation. The entire system of equation is solved by a time
marching scheme developed for compressible flows, such as the approximate factorization
scheme (ref.17). If only a steady state is of interest, then the added pressure derivative
drops out in the steady state, and physically correct solutions are achieved. If the aim is to
achieve time-accurate calculations, either the artificial pressure derivative should be kept
very small (which makes the equations extremely stiff, and forces very small time steps) or
an inner iterative loop within each time step should be used (ref.18,19). A concept similar
to the pseudocompressibility method, known as the penalty function method (ref.20) is
widely used in the finite-element based incompressible flow solvers, which solves for p to
satisfy :
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Ap+V.V=0 (1.3)

In this method, the pressure gradient term of momentum equation is eliminated by
substituting Eq.(1.3) into the momentum equation, and then solving the momentum

.equations with A = 0. :

- The methods for solving incompressible viscous flow discussed above have several
drawbacks :
a) Most of them are only second order accurate in space, and first or second order accurate
in time. Before these schemes can be applied to phenomena such as direct numerical
simulation of turbulence, it will be necessary to raise the spatial and temporal accuracy to
fourth or higher order.
b) The iterative convergence of the pressure Poisson solvers deteriorates at high Reynolds
numbers.
¢) In some instance (e.g. in the pseudocompressibility method), a trade off exists between
temporal accuracy and convergence speed. '
d) These methods do not take advantage of the vast progress that has been achieved in the
solution of steady, viscous flows. For example, with rare exceptions, multigrid
acceleration of Poisson solvers has not been attempted. Acceleration of the iterative solution
of the pressure field to convergence using spatially varying time steps and grid sequencing
have also not been extensively used.
¢) There has been a growing interest in the use of massively parallel computer architectures
such as the Connection Machine to solve unsteady viscous flows. Many of the
compressible flow algorithms have already been adapted for use on these machines. There
is a need to develop new procedures and modify existing algorithms for incompressible
flows, on parallel machines.

The objective of this study is to develop an efficient and accurate solution
technique for the analysis of two- and three-dimensional, unsteady, incompressible,
viscous flows. The key features of the present scheme are listed below :

a) The primitive variables (p,u,v,w) are the primary unknowns in the present formulation.
b) The equations and the solution procedures are cast into a curvilinear, time-deforming
coordinate system to handle complex internal and external flows.

¢) An iterative time-marching scheme is used.

d) The present scheme is semi-implicit at each iteration and is suitable for efficient
execution on the current generation of vector or massively parallel computer architectures.




¢) The solution procedure works for a wide range of Reynolds numbers, with no
appreciable loss in solution efficiency. .
f) The present scheme is first order accurate in time and second order accurate in space, but
higher order accuracy in space and time is easily achievable.
. Only laminar flow is considered in the results to be discussed because the goal of
-this study is to develop an efficient and accurate incompressible Navier-Stokes solver. This
“method is however capable of handling turbulent flows provided a suitable turbulence
model is used, and there are no inherent limitations in this method that will restrict it to

laminar flows.




CHAPTER II

MATHEMATICAL FORMULATION

In this chapter, the governing equation for three-dimensional, unsteady,
incompressible, viscous flow are presented in terms of the primitive variables (p,u,v,w) in
both the Cartesian coordinate system and a curvilinear non-orthogonal, time deforming
coordinate system.

2.1 Governing Equations in the Physical Domain

The motion of an incompressible viscous flow is governed by the conservation of
mass and momentum, so called the continuity equation and the Navier-Stokes equation.
Three-dimensional unsteady, incompressible, laminar, Navier-Stokes equations in an
inertial Cartesian coordinate system may be written in a non-dimensional form as follows :

d . 9
>+ o(E-E)+ £(F-F)+£(G-G)=0 1)
where
0 u v v
_|u u2+p uv _ uw
qQ=|,| E= av » F= viep| G=| yw
w uw vw w4 p (2.2)
0 0 0
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E.=qe Tyl ' Fo=txe Tyl ' G=Re Ta
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The stress terms are given by
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In Eq.(2.2) and Eq.(2.3), u, v and w are the normalized Cartesian components of velocity,
p is the normalized pressure, and Re is the Reynolds number defined as :
¢= pll (2.9)
M .
where P, V., L and U are fluid density, freestream velocity, reference length and
cocfficient of viscosity (dynamic viscosity), respectively.

The governing equation (2.1) is a mixed set of elliptic-parabolic partial differential
equations. As mentioned before, the absence of a time derivative in continuity equation and
the absence of an explicit relationship between pressure and divergence-free condition on
the velocity prohibit time integration in a straightforward manner by a stable time marching
scheme. In this study, the continuity equation is modified to directly link the iterative
changes in pressure to changes in velocity, as done in the Marker-and-Cell method.

2.2 Governing Equations in the Computational Domain

If the above equations are directly used on a Cartesian system to flow past complex
geometries, the imposition of boundary conditions will require a complicated interpolation
of the data on local grid lines, since the computational boundaries of complex geometries
do not coincide with coordinate lines.This leads to a local loss of accuracy in the computed
solution and leads to a complex program. To avoid these difficulties, a transformation from
the physical domain (Cartesian coordinates(t,x,y,z)) to computational domain (generalized
curvilinear coordinates(,&,M,8)) is used. After transformation from the physical domain to
the computational domain, the governing equations can be written as :
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with the contravariant velocities U, Vand W :

U=§ +ub +vE, +wg,
V=7 +un, +vn, +wn,
W= +ul+v, +wl

Here ] is the Jacobian of wransformation
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-The quantities §,, 1, and {; are presented if the grid is in motion (as in the case of flow

(2.9)

_.past an oscillating airfoil or a spinning propeller). These quantities are given in terms of the

velocity of the grid (x., y., z,) with reference to a stationary observers :

§r==Xc & - Y‘rgy_ % &,
M= XM=Y My— 2.7, (2.10)
Ci=—x: 8x— Y‘le- z. §,
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CHAPTER 11

NUMERICAL FORMULATION

The numerical procedure for solving the governing equation is an iterative time
marching scheme which attempts to solve the discretized form of equations to a user-
specified accuracy at any time step. Details of the iterative process are given in this chapter.

3.1 Grid Generation

The present method is a finite difference scheme which solves the discretized form
of the partial differential equations at a set of discrete points in the flow field. Therefore, a
set of grid points within the domain, including its boundaries, must be specified before
solving the governing equations. Such a body-fitted grid system may be generated by
conformal mapping, by algebraic method, or by partial differential equation techniques. In
this study, body-fitted C-grid (Fig.1) and H-O grid system (Fig.5) are generated by an
algebraic method for two-dimensional flow around NACA 0012 airfoil and three-
dimensional flow around the ellipsoid of revolution, respectively. For the three-
dimensional curved duct problem, a sheared/rotated Cartesian grid is used.

3.2 Grid Motion

In unsteady state computations, it is convenient to use a moving grid to account for
the body motion. The grid is attached to the body and it rotates or translate with the body.
The grid coordinates can be advanced explicitly by a first order time marching scheme :

x* = x"+ x2 At
yl#l - y! + y: At (3.1)
z2**'= 2" + 23 At
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However, if only a pure rotational motion is considered (say in a two-dimensional flow
problem), new coordinates of grid at any instance in time can be simply obtained by using
the following relations : )

R : x| _ cos® -sin®] [x’ :
- z| |sin@ cosB| |z G.2).

where (x, z) is the instantaneous x, z values of the node and (x’,z’) is the x, z values of the
node prior to rotation, and 6 is the clockwise rotation angle. In such a case x, and z, may
be found by analytical differentiation of (3.2) with respect to time or from (3.1).

3.3 Iterative Time Marching Procedure
The goal of the present procedure is to advance the flow properties (p,u,v,w) from

a known time level 'n' to the next time level 'n+1'. First of all, let us consider the

momentum equation. Since the momentum equation is a parabolic type of partal differential
equation, it can be solved using a time marching scheme as follows :

] fe=n+ -t n+m n+m n+m
—A-‘E-q'—q)+8§E +3,F +5;G =

n+m a+m n+m (33)
5E, +8,F, +33,

where § is § of Eq.(2.6) excluding the first row element, i.c.,

3.4

)

]
| o
€ < £

Similarly, E, F, G, E,, F,and G, can be also defined. For example,

uU + p&,
E= vU +p&, (3.5)
wU +pE,
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The above discretization of Eq(3.3) is first order accurate in time if 'm’ is zero or one, and
second order accurate if ‘'m' is set to 1/2. The operators, 8§,811 and & represent second

order accurate or higher order accurate spatial differences. The higher order spatial accuracy
may be achieved on uniform grids using Pade approximations to the derivatives; on highly

-stretched grids, higher order accuracy may be achieved using a Lagrangean fit to the flow )

“variables. In high Reynolds number flows, the Lagrangean fit need not be equally weighted

“about the node, but may be biased in the direction of flow. For example, when the flow is

from lef'. to right, if the Lagrangean interpolation of flow variables is done using nodes
only to the left of, and including, the current node, then an upwind formulation results.

If the Newton iteration method is applied to solve this unsteady flow problem,
Eq.(3.3) is rewritten as follows :

_I__(C—In-a-l. k+l _ -qn) + 8§§n+m, k+l snﬁmm. k+l 8§-G—n+m‘ k+1 _

At (3.6)

n+m, k+l FEn+m, k+1 —~n+l k+1
8§Ev + San + 5;Gv

Following a local linearization of E, F, G, E,,, F and G, about the 'n+m' time level and

at the 'k’ iteration level, one may have

d d d = _ . &n+m,k
I+—A+—B+—C|AQq=0R"™
[ XX ) ! G

where O is a relaxation factor and A, B and C are the Jacobian matrices of the flux vectors
E-E,, F-F, and G-G,, respectively:

acdE-E) . g AF-R) . _3G-Gy a8)
oq oq oq
and R™*™ K is the residual vector, defined as :
on+m, k ﬁ"+L k -ﬁ" ¥n+m, k ©on+m, k ~n+m, k
Rk = -l —(8E™*™ ¥ + 8 F™ ™k 4 §G™™ k)
(3.9)

+(5§§c+m. k Sn?‘:wm. k 5c63+m. k)
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Note that when R™*™ X goes to zero, the momentum equations in their discretized form are
exactly satisfied, and the solution is independent of ®, and any approximations made in the

construction of A, B and C.
Next, let's consider the continuity equation. As mentioned in Chapter I, in order to

-solve incompressible viscous flow problems efficiently, we need a relationship coupling

<changes in the velocity field with changes in the pressure field while satisfying the -

*divergence-free constraint. In the present study, the Marker-and-Cell (MAC) approach is
used to link the iterative changes between them, and can be written :

Ap=-B (V- V)hk (3.10)

n+l k+1 _ _n+l k

where Ap=p )4
and B is a relaxation factor,that may even vary from node to node using local time concept.
Again, when Ap goes to zero, the continuity equation is exactly satisfied at each time step,

even in unsteady flows.
In curvilinear coordinate system, Eq.(3.10) can be rewritten as :

QB ST on

The contravariant velocities, U, V and W are already defined in Eq.(2.8).

Eq.(3.10) states that if a cell is accumulating mass, then the pressure value at next
iteration is increased to repel fluid away from the cell. If a cell is losing mass, then the
pressure value is lowered to draw fluid. Thus the pressure field is iteratively updated along
with the velocity field until the conservation of mass is satisfied.

Combining the momentum equation, Eq.(3.7) and the continuity equation,
Eq.(3.11), and applying the numerical discretization in time and space at all nodes in the
flow field, a system of simultaneous equation results for the quantity A§ equal to

(A?, A%, A-}, A-‘;i) This system may be formally written as :

(MI{A4} = {R} (3.12)
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Here, since the right hand side is the discretized form of the unsteady governing
equations, as long as {A§} is driven to zero, the discretized form of unsteady Navier-
Stokes equations are exactly satisfied at physical time level 'n+1".

Although the matrix [M] is a sparse, banded matrix, direct inversion of this matrix

-requires a huge number of arithmetic operations. A common strategy in iterative solutions

-of elliptic equations is to approximate the matrix [M] by another, easily inverted matrix

" [N]. The closer the matrix [N] is to [M], the faster the iterative convergence of the
solution at any time step. In this study, matrix [N] contains only the diagonal
contributions of matrix [M] , and Eq.(3.12) becomes an explicit form which is easier to be
tailored for efficient execution on the current generation of vector or massively parallel
computer architectures than an implicit form. This simplicity comes at the expense of the
iterative speed. Acceleration of the iterative process above is a major contribution of this
work to the state of the art.

The spatial derivatives of convective flux terms are differenced by using third order
accurate upwind QUICK (Quadratic Upstream Interpolation for Convective Kinematics,
ref.21) scheme to reduce unphysical oscillations or false diffusion for high Reynolds
number flows, and the spatial derivatives of viscous terms are differenced using half-point
central differencing. The spatial derivatives of continuity equation is differenced with
central differencing and a fourth order artificial damping term is added to the continuity
equation to stabilize the present procedure. The QUICK scheme is constructed that, instead
of such a linear interpolation for the convective terms as used in standard one-sided
differencing schemes, a three-point upstream weighted quadratic interpolation is used. For
example, let's consider the convective term in §-direction which may be approximated as

2(9)-%|(=),,-),]

2
l+2 l'f-z

().=) 1{(ui'lz+ u). 4 CUR"i-%}
=3 -3

The curvature terms (CURV) depend on the direction of the contravariant velocity U :

follows :

where

Cau) AR
{(“'*‘; “')-AE CURVi+L}
’ (3.14)
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[ 1 .
v (0341 =2u;+ ;) if U“_x_ >0
2
CURV. ] =9
i+s 1 . (3.15)
2 _A.g_f (ui+2-2ui+l+ui) if U1+-1- < 0
{ 2
- 1 .
- Zg_z (lli -2ui_1+ui_2) lf U‘-l ) 0
] CURV, ; ={ , 2 (3.16)
2 .
—A-EI (um —2ui +ui_l) if Ui-l < 0
L

(a)
7
4
Uiz
i1 i i+1 i+2
(b)
Fig. 3.1. Quadratic upstream interpolation
(@ ForU>0
(b) ForU<0

3.4 Initial and Boundary Conditions

The governing equation (2.1) and (2.5) is a mixed elliptic-parabclic type of partial
differential equation, and requires initial conditions to start the calcwation as well as

[



boundary condition at every time step. The parabolic nature of the flow ensures that the
flows will be independent of initial conditions, after large number of time step.

In the present work, the quantities Ap, Au, Av and Aw are set to zero at all solid
and fluid boundaries. The boundary conditions are updated after every interior points
Jpdated during each iteration. Thus the boundary values as well as interior values are
iteratively advanced from a time level 'n’ to 'n+1".

Initial Conditions :

In the case of external flows, we assume that the object is impulsively started from
rest . Therefore, the uniform freestream conditions are used as initial conditions. In the case
of internal flows, parallel flow solutions (e.g. Poiseulle flow in a square duct) are used to
start the calculations.

Farfield Boundary Conditions :

For external flow applications, the farfield boundary is placed far away from the
solid surface. Thus, it is natural to specify the freestream values at the farfield boundaries
except along the outflow boundary where the extrapolation for velocities in combination
with P =P. is used, to account for the removal of vorticity from the flow domain by

convective process.

Boundary Conditions on the Solid Surface :

On the solid surface, the no slip condition is imposed for velocity components. The
surface pressure distribution is determined by solving the normal gradient of pressure to be
zero:

%P _
== =0 (3.17)

Some researchers (ref.22, 23) obtain the boundary conditions for pressure from the normal
component of momentumn equation at the wall

op 1 2%
snge-# (3.18)

where U, is the normal component of velocity. In high Reynolds number flows, the
viscous stress contribution to the normal momentum equation can be neglected at the wall
and the grid point adjacent to the surface will be sufficiently fine so that constant pressure
normal to the surface can be assumed. Thus Eq.(3.17) is an acceptable boundary condition.
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Boundary Conditions on the Cut and Singular Line :

Since the C-grid and the H-O grid which are used for two-dimensional airfoil
problem and three-dimensional body of revolution have a cut and singularlines,
respectively, special treatment is needed (see Fig. 3.2 and 3.3). Across the cut of the C-

grid system, flow quantities should be continuous. The flow quantities on the cut can be -

-obtained by averaging the flow properties from above and below the cut. On the singular
lines that occur in 2 H-O grid system, the flow quantities are obtained by extrapolating from
two adjacent interior points and then averaging them azimuthally to ensure that the flow

quantities are singe-valued.

Fig.3.2 Cut of the C-grid system

Singularline

Fig.3.3. Singularline of the H-O grid system

Singularline

Cut
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3.5 Acceleration by Multigrid Technique

Since the matrix [N] (which is an approximate to matrix [M] of Eq.(3.12)) is a
simple diagonal-matrix, it leads to slow convergence of the pressure and velocity fields at
every time step. Use of such a simple diagonal matrix simplifies the inversion, and makes
the flow solver 100% vectorizable and parallelizable. To accelerate the present procedure, a
multigrid technique (Coarse Grid Correction method) is applied in this study.

The principles behind the present multigrid technique are as follows. The quantities
(Au, Av, Aw, Ap) may be viewed as Fourier series-like sums made of components of
different wave lengths. An extremely coarse grid linking a point to a node several units
away is effective in computing the long wave length components. A very fine grid is
effective in computing the short wave length components, and is very inefficient for
computing the long wave length components. The multigrid technique attempts to compute
these individual components of Aq on grids of several levels efficiently. When the process
converges, of course, the discretized equations (i.e. RHS of Eq.(3.7) and (3.11)) are
exactly satisfied on the finest grid.

The coarse grid correction algorithm presently used (given here for 2-grid sequence
for simplicity) is as follows :
i) Compute the residual {R} appearing on the right hand side of Eq.(3.12) on the fine grid

using q",
ii) Transfer the residual from the fine grid to the coarse grid using the injection operation,

I:hR. An injection operation is given at any node (i,j) in two-dimensional case by

.+ R,

ij+l

+R .u._l)

i*lj i=1,j

1
I”R. =R..+ =(R.. +R.
R W 2( (3.19)

1
+ z(Rm. =1 FRicp 1 R Ry i )

and in three-dimensional case :
I?'R.., =R 1R R R R
h Rijk = Rijk ‘*‘3( i1k ¥ Rk TRk + Rk

1
+R; ;x-1+R;, j.k+1)+ Z(Ri-l. i1k ¥ Ripp i1k
+ R o1k T Ricy o1k + Ry jer k-1 + Ry jer k-1

+ R jerka1 + Ry jerke1 + Ricpjk-1 + Risp k-1 (3.20)
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+ Rt jerk-1 + Ricgjerk-1 +Ricyjerks1 + Ring jorx41

+Ri1je1ke1 T Rigy, j+1.k+l)

iii) Compute the quantity 49 at every point on the coarse grid by solving the system of
equation :

[N){aq/ 3} ={12"r} (3.21)

iv) Interpolate the Aq values computed in step (iii) back on to the fine grid by using the
bilinear interpolation.
n+l kel n+l .k

v) Compute the updated values of the flow properties q as q
Repeat step (i) - (v) till Aq is driven to zero.

+ Aq.

The present 2-D solver accepts grids upto 3 levels.
To the writer's knowledge, the multigrid technique in ypsteady incompressible
flows has been applied only to pressure-Poisson equation. The u-, v- and w- momentum

-equations are usually solved only on a single grid. The present work fully exploits the

benefits of the multigrid method for all the equations, while keeping the form of the matrix
[N] extremely simple. This allows use of larger time steps and improved convergence as
discussed on Chapter IV. The present investigator applied a conjugate gradient like scheme,
called the GMRES (Generalized Minimal Residuals) to solve Eq.(3.12). The matrix [N]
was used as the preconditioner. The success of the GMRES scheme crucially depends on

the closeness of [N] to [M] _ That is the eigenvalues of the matrix [I - N'IM] must be

small and closely packed. The use of GMRES with [N] as a preconditioner was not
successful.
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CHAPTER 1V

RESULTS AND DISCUSSION

In this chapter, the work done to date is presented. To validate the present
procedure, three cases were tested. The first test case is two-dimensional unsteady viscous
flow over an oscillating airfoil. The second is three-dimensional steady flow over an
ellipsoid of revolution. The third is the flow through a curved duct. Numerical results are
presented in the form of instantaneous streamlines, velocity profiles, vorticity contours,
surface pressure distribution, and aerodynamic loads. Streamlines and surface pressure
distributions are compared with flow visualization and the other available numerical data .

4.1 Dynamic Stall of an Oscillating Airfoil

The computations were carried out for a sinusoidally pitching NACA 0012 airfoil,
at Re =5,000 and x= 0.5, where x is reduced frequency of oscillation,defined by
=-fc

2V,
where Q is the radians of rotation per second and c is chord of airfoil. The physical
interpretation of reduced frequency is the number of radians of oscillation per semi-chord
length of travel. This case has been previously studied by Mehta (ref.3) at NASA Ames
Research Center using a velocity-vorticity formulation and its flow visualization was
carried out by Werl€ (ref. 24) in ONERA.

After the flow is fully developed at zero angle of attack, the airfoil is allowed to
oscillate in pitch through an angle of attack range from 0O degree to 20 degree given by

a = 10°(1 - cos t) . Fig.1 shows the body-fitted grid around the airfoil used in this study.
Fig.2 shows the instantaneous streamlines (actually, called particle tracers in PLOT3D
software), velocity profiles and vorticity contours at selected angle of attack. Fig.3 shows
the surface pressure distribution. In general, the streamline patterns and surface pressure
distributions are in very good agreement with flow visualization and Mehta's numerical

4.1)
X
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results except that the present procedure predicts a little earlier generation of vortex than
Mehta's method. The flow visualizations were carried out with air bubble in the water
tunnel. Here, we should note that photographs showing air bubble trajectories were taken
at an exposure time of 1/10 seconds. Therefore, in unsteady flow the air bubble trajectories
.near the surface of airfoil represent neither streamlines nor streaklines because the pictures

contain many paths over the exposure time. On the orther hand, the instantaneous -

-streamline is a streamline at any instant of time, i.e. we assume the flowfield is frozen at
any instant of time and draw the streamline. In other words, the instantaneous streamline is
equivalent to the bubble trajectories with an infinitesimal exposure time. Thus, the flow
visualization with air bubble is different from the instantaneous streamline, and should be
used only for qualitative comparison. Fig.4 shows the lift, drag and moment hysteresis
loops. The main feature of dynamic stall which is significantly different from statc stall is
due to the generation of a vortex near the leading edge. This vortex passes over the upper
surface of airfoil, creating large variations in the aerodynamic forces and moment. From
these figures, it is seen that the growth of lift during the upstroke is slow and gradual, well
past the static-stall angle. The separation region, which is present over a small region near
the trailing edge at first, moves upstream as the angle of attack increases. The pitching
moment does not change much during the upstroke. The surface pressure distribution at an
angle of attack of 18.6 degree shown in Fig.3 shows another pressure peak near the quarter
chord. This indicates the leading-edge vortex is already generated, and this can be identified
in Fig.2 (c). As the leading-edge vortex moves downstream, the chordwise surface
pressure distribution and aerodynamic forces are significantly varied, especially during the
downstroke. This variation may depend on the Reynolds number, airfoil shapes and
reduced frequency. The moment stall, associated with an increase of negative moment,
begins at about 18.5 degree in the downstroke.

4.2 3-D Steady Flow over an Ellipsoid of Revolution

To validate the capability of the present method to handle three-dimensional viscous
flows, the present procedure was tested by computing the flow past a 6:1 ellipsoid of
revolution at 10 degree angle of attack, at a Reynolds number of 5,000. Fig.5 shows the
body-fitted grid system. Fig.6 shows streamlines over the body surface. There is a limited
amount of experimental data (ref.25, 26) available for this particular configuration, at high
Reynolds number (Re=7.2 x 10¢ ). Fig.7 shows the surface pressure distribution on the
windward and leeward sides of the symmetry plane. along with the experimental data.
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Good agreement is evident everywhere except in the last 10% of the body, where the
present laminar simulation predicts flow separation, and a flattening out of the pressure
distribution.

4.3 3-D Steady Flow through a 90° Bended Square Duct

To validate the capability to handle three-dimensional internal flow problems, the
flow within a square duct with a 90-deg bend was tested. The radius of curvature of the
inner wall in the curved section is 1.8 times of the side length of square cross-section. This
particular configuration (Fig.8) was experimented by Humphrey et al. (ref.27) and
numerically calculated by Kwak et al.(ref.19) at a Reynolds number of 790 based on the
average inflow velocity and hydraulic diameter. The inflow and outflow velocity profile are
obtained by solving the equation of fully developed duct flow (ref.28) :

%u . % 1dp _
§I+¥-;dx = const. 4.2)

This equation is a standard form of Poisson equation and can be solved by ADI scheme.
Fig.9 shows the streamwise velocity profiles compared with the experimental data of
Humphrey et al.and numerical data of Kwak et al. The results are in general good
agreement with experiments and the other numerical solution.The present grid system is

' 75x41x41. In Fig.10, the cross-sectional velocity profiles are plotted at 8 = 30, 60 and 90

deg. The top side and bottom side of cross-section are the inside wall and outside wall,
respectively. In this figure, the pair of vortices and the secondary flow are shown.These
vortices are generated due to the pressure difference between the higher pressure on the
outside wall and lower pressure on the inside wall. Fig.11 and 12 show the velocity
magnitude contours and the vorticity magnitude contours at the three selected streamwise
stations, respectively. The plot on the left side of Fig.13 is a sideview of streamwise
velocity profiles at y/y,, = 0.5, which is midway between the left side wall and the
symmetry plane of square duct and the right side plot is at y/y;, = 0, which is on the
symmetry plané. The inside and outside wall are cotrespondingtoz =0 and z = 1,
respectively. Fig.14 shows streamwise velocity profiles from a viewpoint which is located
at upper 45° in the xz-plane. The plot at z = 0.25 is corresponding to the midway plane
between the inside wall and the plane of symmetry. The plots at z = 0.5 and 0.75 are on
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the plane of symmetry and the midway between the outside wall and the symmetry plane,
respectively. Fig.15 is the streamlines viewing from the three different viewpoints, i.e.,
front, oblique, and side view. We can see the vortex pair which is originating from about 6
=0°. Fig.16 is the pressure contours in the curved section and shows the higher pressure
on the outer wall due to the centrifugal forces.

4.4 Acceleration of Flow Solver by Multigrid Technique

The multigrid technique was implemented to the two- and three-dimensional solver.
In two-dimensional case, the fine grid system has (81x41) grid points and the coarse grid
system has the half of the fine grid points, i.e. (41x21) grid points, and the coarsest grid
system has (21x11) grid points. The two grid system consists of the fine and coarse grid
system (Fig. 4.1.(a)) and the three grid system consists of all of them as shown in
Fig.4.1.(b). Especially, three grid system such as Fig. 4.1.(b) is called V-cycle.

Fine Grid v
Coarse Grid
Coarsest Grid
(b) -

(a)

Fig. 4.1 Structure of multigrid cycle
(a) Two-grid system
(b) Three-grid system

Fig.17 shows the convergence history of the global residual (lz-norm of RHS of Eq

(3.12)) reduction in CPU time for 2-D steady flow over NACA 0012 airfoil at zero angle of
attack. Upto 40% and 60% acceleration was obtained.using two- and three-grid system,
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respectively. The CPU time is based on 25 iterations at each time step on an IBM
RISC/6000 workstation. Fig.18 shows the history of global residual of 2-D unsteady state
for sinusoidally oscillating airfoil (50 iterations/time step), where the three-grid system is
used for multigrid. The residual by the multigrid technique maintains lower level than that
of single grid iteration procedure indicating that the discretized equations are solved to
much high levels of accuracy using the multigrid technique. The surface pressure
distribution and dynamic stall hysteresis is nearly the same as those of single grid system
and are not plotted here. In three-dimensional case, the multigrid technique was
implemented to the flow solver for 90° bended square duct problem. The three level of grid
system consists of (65x21x21), (33x11x11), and (17x6x6). Fig.19 shows the comparison
of convergence history with and without multigrid method. Here we got much better
quality of solutions with multigrid technique than were without multigrid technique.
Furthermore, The grid system (65x21x21) is so coarse that it can not detect the sufficiently
strong vortex core and the residual of solution without multigrid technique remains of the
order of 10°. Thus the solution with single grid/non-multigrid version is not accurate. The
comparison of solutions with multigrid and without multigrid is shown in Fig.20. The
solutions of fine grid(75x41x41) system with single grid are also plotted to compare the
intensity of vortex. From this figure, it is clear that the multigrid analysis is adequately
resolving the counter-rotating vortex pair.

4.5 3-D Steady Flow around a Marine Propeller

The flow around a marine propeller is a challenging problem because the geometry
is much more complex than the aircraft wing and helicopter blades. The high twist, low
aspect ratio, close proximity of other blades and high rotational speed make the flow
around a propeller highly three-dimensional and complex, featuring centrifugal forces,
formation of curved tip vortices and leading edge vortices.

Technique for efficient and accurate prediction of 3-D incompressible viscous flow
around a marine propeller are necessary for accurate prediction of performance. Moreover,
the lack of such tools is a major obstacles to the accurate calculation of cavitation and
propeller noise.

Numerical methods to solve flow around propellers range from Goldstein's strip
theory (1929) to Navier-Stokes equation solvers. The Goldstein's strip theory models the
propeller by a lifting line vortex in a potential flow and assumes that the wake is a rigid
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helical vortex sheet. This theory can handle only a straight blade without a nacelle. Sullivan
(1977) and Egolf (1979) improved this theory to account for blade sweep and nacelle by
using the curved lifting line concept and vortex filaments. A review of potential flow
method applicable to propellers is well described by Kerwin (1986). Jou (1982) has
applied the full potential equation with a finite volume approach to solve propfans but his
method can not catch the strong rotational flow effects near the leading edge. Euler
equations have been applied by many researchers such as Chaussee (1979, 1983), Bober
(1985, 1986) and Whitfield (1987). For a more accurate prediction, Srivastava and Sankar
(1990) developed an iterative method which couples the Euler equation solver and
NASTRAN to model structural deformation due to aerodynamic forces and centrifugal
forces. Full Navier-Stokes equations have recently been applied to advanced propfans by
Matsuo (1988) and Hall (1991). Lim and Sankar (1993) extended the Euler equation solver
of Srivastava and Sankar to full Navire-Stokes equations using the Roe upwind scheme.
These Navier-Stokes equation solvers are based on the compressible Navier-Stokes
equations and can not accurately predict incompressible flow solutions. Kim (1989) applied
incompressible Navier-Stokes equations in the cylinderical coordinate to an infinite-pitch
marine propeller with rectangular blades by using the SIMPLER algorithm. Although their
work can simulate marine-propeller flow fields, including propeller loading and complex
blade-to-blade flow, the infinite pitch propeller with rectangilar blade shape is not realistic
and no experimental data is availble for comparison.

The above procedure for solving 3-D unsteady incompressible viscous flows
without cavitation has been applied to the flow around a 2-bladed SR7L propeller as
shown in Fig.1. The present scheme is time accurate and the steady state solutions
are obtained as asymptotic solution of the time marching process. Fig.2 shows the
H-O grid for a 2-bladed SR7L propeller. Fig.3 shows the pressure coefficient
distribution at some selected spanwisw location at a nondimensional time of 0.3 in a
single grid system (without accleration by multigrid technique), compared with
experimental data by Bushnell (1988) and compressible Navier-Stokes equation
solutions by Lim and Sankar. A fairly good agreement with experimental and other
numerical data was achieved except near the leading edge region. These
discrepancies are because at the nondimensional time = 0.3, the flow has not
evolved enough to generate leading edge vortices. At later time levels, it is
anticipated that the suction peak near the leading edge will be higher.
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CHAPTER V

CONCLUDING REMARKS

An accurate and efficient iterative time marching procedure for two- and three-dimensional
unsteady, incompressible, viscous flow has been developed. It has been applied to the following
cases with success :

(a) Massively separated flow over oscillating airfoil,

(b) Three-dimensional flow past an ellipsoid of revolution,

(c) Three dimensional flow through a square duct with a 90-deg. bend
(d) Three-dimensional flow around a marine propeller.

Good agreement with published experimental and numerical data has been obtained. After
the validation of the present procedure, techniques for acceleration were explored. It was found
that the multigrid technique was efficient in reducing the CPU time needed for the simulation and
improved the solution quality because of the lower residuals achieved.

This report is a draft copy of the Ph. D. dissertation of Mr. Warn-Gyu Park, and will in its
completed form include changes suggested by the thesis committee. A copy of the finished form of
the thesis will be mailed to the sponsor around March 1993.

26




LT
—r ) .7.
2
-t |
\\l\..\l\l I../ m
\.ll\_.‘.. 1!”![/ m
417 b~ <
l\l\_ll\.lx JII[/ m
ﬂl \\‘\l Inm / ~ N
= A1TT .I]]Jj < B
L \:\i\l 1171/ . w
] n N~
AXAJ\t T~ £
re \\‘ III :-l
\\\\\\ L TS M«
L~ T
7
. :
wﬂ




il

(a) a=0 (deg)

Figure 2. Instantaneous Streamlines, Velocity Profiles, and Vorticity
Contours at Selected Angle of Attack with Experimental Flow
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(b) x=14.6 (deg)

Figure 2. Continued..
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(c) a=18.8 (deg)

Figure 2. Continued.
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* Figure 2. Continued.




(e) x=19.8 (deg)
Figure 2. Continued.
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(f) a=11 (deg)

Figure 2. Continued.
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Figure 6. Streamlines over the Ellipsoid of Revolution
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streamwise stations in the curved section

Figure 11. Velocity magnitude contours at three
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Figure 15. Streamlines viewing from the three different view-points
(a) Front view
(b) Oblique view

(c) Side view




Figure 16. Pressure contours in the curved section
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Figure 22. Body-fitted H-O grid around a SR7L propeller
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