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INTRODUCTION

During the past four years, under the support of Office of Naval Research, a

research effort has been underway on the following two topics :

(a) Numerical simulation of supersonic shear layer mixing phenomena.

(b) Development of efficient methods for 3-D unsteady incompressible viscous flow

simulations.

Substantial progress was made in the above areas, and the computer codes

developed as part of these efforts were transferred for further use to Virginia Polytechnic

Institute (Dr. Saad Ragab) and to David Taylor Research and Development Center (Dr. Wei

Tang).

The progress made has been documented in a number of conference proceedings,

two journal articles and a Ph. D. dissertation ( in progress). The Appendix contains all the

published work done to date.

This research led to a number of significant new findings. Some of the major

accomplishments are as follows :

(a) A highly accurate method for simulating compressible mixing layers was developed.

This method is suitable for direct numerical simulation (DNS) and large eddy simulation

(LES) of compressible turbulence, and is used in this context by other researchers.

(b) An iterative time marching method for 3-D incompressible flows was developed. This

method is robust, and can handle internal and external flows. It employs a multigrid

iterative strategy for satisfying the discretized form of the governing equations of 3-D

viscous flows to great accuracy.



It is hoped that these efforts will serve as useful stepping stones for future research

in these areas.
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NUMERICAL SIMULATION OF VORTICITY-ACOUSTICS INTERACTIONS
WITHIN DUMP COMBUSTORS

W. Tang , L. N. Sankar , and W. C. Strahle

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

ABSTRACT significant role that the external boundary
conditions and the related acoustics play on the

The behavior of free shear layers within behavior of the free shear layer. As a first step
ramjet dump comnbustors is studied through the towards such a study, the flow field within a 2-D
numerical solution of unsteady compressible dump combustor is studied through the numerical
Navier-Stokes equations. Three configurations are solution of the unsteady, compressible Navier-
considered: a) a short combustor with an open Stokes equations. The acoustics characteristics of
downstream boundary, b) a long combustor with an the inlet-combustor system is altered by changing
open downstream boundary, and c) a short combustor either the length of the combustor, or altering
with a partially blocked downstream boundary. the downstream boundary condition, by partially
Vorticity contours of the computed flow fields in blocking the downstream boundary. The length of
all the three cases reveal oscillations of the the inlet, and the flow Reynolds number are held
shear layer, roll up and shedding of organized fixed in order to avoid significant changes of the
vortices. A Fourier analysis of the computed flow thickness of the shear layer, and its natural
fields indicates that the natural acoustic fre- instability characteristics.
quency of the system, and the natural shear layer
instability frequency are the two dominant fre- The computed flow fields are analyzed using
quencies of the flow field. It is also observed iso-vorticity plots at selected time levels. The
that the boundary conditions play a crucial role flow properties at selected locations within the
in the behavior of the combustor flow field, shear layer are also analyzed using Fourier

transform techniques to identify the dominant
INTRODUCTION frequencies. The shear layer downstream of the

step is analyzed using classical, linear instabi-
The flow field within ramjet combustors is lity analyses to identify the natural frequency of

characterized by a variety of phenomena such as the shear layer. It is found that the boundary
thin boundary layers along the walls of the inlet conditions play a crucial role in the behavior of
and combustor, recirculating flow zones, reacting the unsteady flow within the combustor.
flow and free shear layers. The free shear layer
is unstable by nature, and can undergo large NUMERICAL FORMULATION
spatial and temporal oscillations when subjected
to disturbances. In many cases, the shear layer In Fig. 1, the three configurations being
may roll up and form vortices, which are shed at analyzed are shown. The typical dimensions of the
periodic intervals resulting in a highly unsteady, configurations are also indicated, normalized with
and undesirable flow environment within the respect to the step height. The unsteady flow
combustor. There is a need to understand the within the combustor is governed by 2-0 compress-
response of the shear layer to externally imposed ible Navier-Stokes equations, and is likely to be
acoustic disturbances, and device passive and turbulent. Because existing algebraic and two
active control techniques for controlling the equation models are not suitable for unsteady
behavior of this flow field. Both theoretical and flows, and because these models can smear out
experimental studies are being carried out to features such as shear layer instability and
understand the behavior of the free shear layer vortex roll up, in the present work no explicit

within dump combustors.1-3 A number of investi- turbulence model was used. An algebraically
gators have also studied numerically the flow generated, stretched Cartesian coordinate system
fields within the dump combustors, using explicit was used. The governing equations, which aretime marching techniques, with and without viscous parabolic with respect to time, were integrated
tiemarci using an implicit time marching procedure, origi-
terms.'4-7 nally devised by Beam and Warming. 8 This procedure

is second order accurate in space, and may beThe experimental studies reported s n Ref. I designed to be either first or second ordershow that the behavior of the free shear layer is accurate with respect to time. In the presentsensitive to perdodtc e coustd c disturbances work, the first order time accuracy option wasimposed at the downstream boundary. In some cases, used. This procedure has been previously appliedit has been shown possible to drastically alter to unsteady external flow problems with good
the size of the recirculation zone using disturb- t
ances. There is a need to systematically study the success. 9  In the Appendix, the mathematical

formulation is briefly described.

' Researc:i Engineer. Member, AIAA. Since numerical solutions are sensitive to
** Associae Professor. :i~ber; AIAA. grid spac'ng, a variety of grid sizes were exper-
• Regents: Professor. Fellow, AIAA. imented with, ranging from a coarse 61 x 41 grid
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system, to a fine 151 x 121 grid system. As computational domain to be reflected back at the
expected, increased grid refinement leads to inlet and the outflow boundary. In a real world
improved resolution of features such as the shear situation, say in a wind tunnel, no such reflec-
layer roll up. The basic characteristics of the tions occur although there may be other sources of
flow such as the length of the recirculation zone disturbances such as background noise. In other
at a given time, and the thickness of the shear cases, say within a ramjet combustor, the inlet
layer are, however, insensitive to grid spacing. and exit may be choked. Thus the above boundary
Based on these exploratory studies, in the calcu- conditions are a poor substitute for what takes
lations to be reported here it was decided to use place near the boundaries of a wind tunnel or a
the 151 x 121 grid system. Because excessive grid ramjet combustor. As mentioned earlier, removal of
stretching can reduce the formal spatial accuracy false reflections from the boundaries would
of the solution from second order to first order, require prescription of velocity and temperature
and lead to a loss of resolution of the flow at all boundaries at all time levels.
features, a uniform grid spacing was used in the
studies reported here. For the short combustor The reflecting boundary conditions described
configuration shown, this is equivalent to grid above serve one very useful purpose, however. They
spacings of 0.15 and 0.025 along the x- and z- provide a continuous, small supply of acoustic
directions respectively, energy at a frequency which is characteristic of

the dimensions of the configuration. These waves
Numerical viscosity is introduced into the can interact with the shear layer, and lead to

solution procedure through a set of artificial amplification of shear layer instability, shear
viscosity terms as explained in the appendix. In layer roll up and other interesting phenomena. For
order to assess the effects of artificial viscos- the situation where the pressure is fixed at the
ity on the solution, calculations were performed downstream boundary, and has zero gradient at the
for values of the artificial viscosity coefficient upstream boundary, the acoustic mode imposed by
between 1 and 5. The flow features were insensi- the reflecting boundaries corresponds to the
tive to this coefficient, within this range. quarter wave acoustic mode. Since the frequency
Subsequently, a value of unity was used for the of this mode may be changed by changing the length
artifical viscosity coefficient, in the calcula- of the configuration, it is possible to study the
tions to be reported. response of the shear layer to a particular

frequency, simply by choosing a suitable length of
BOUNDARY CONDITIONS the configuration. For the short combustor configu-

ration shown in Fig. 1, the quarter wave frequency
Because the governing equations are parabolic happens to be 160 Hertz.

with respect to time, the proper boundary condi-
tion for this problem is the specification of RESULTS AND DISCUSSION
velocity, and temperature at all time levels at
all the boundaries. Unfortunately, such a complete Calculations have been carried out for the
specification of the boundary conditions is seldom three configurations shown in Fig. 1. In all the
feasible, and rarely available from experiments, cases, the flow was started impulsively, assuming
Therefore, the following set of approximate the air to be stationary within the configuration
boundary conditions have been used. at time t = 0 , except at the inflow boundary. At

subsequent time levels, the flow velocity within
At all the solid walls, the no slip boundary the combustor steadily increases as the stationary

condition was imposed. Furthermore, the normal mass of air is replaced by the high speed air-
derivative of pressure was set to zero. The stream. At later time levels, a periodic pattern
temperature at the solid walls was evaluated using is established, in which the shear layer oscil-
adiabatic assumptions. The density at the wall was lates in resonance with a frequency that is
subsequently extracted from the equation of state. characteristic of the combustor length for config-

urations 1 and 2, and the cavity length for
At the inlet, the flow was assumed to be configuration 3. During a given cycle a part of

parallel to the x- axis, and the velocity profile the shear layer rolls up into a vortex, and is
was assumed to be a "plug" profile (uniform shed. Depending on the case studied, this vortex
everywhere except at the walls). The Mach number may merge with previously shed vortices downstream
at the inlet was chosen to be 0.2, and the inflow at a subsequent time.
density was assumed to be unity. Furthermore, the
derivative of pressure along the x- axis was To verify the observation that the present
assumed to be zero at the inlet, boundary conditions lead to the presence of

quarter wave acoustic modes for configurations 1
At the outflow boundary, two different and 2, a large number of calculations were done on

treatments are needed depending on whether the a somewhat coarser grid, for a number of config-
downstream boundary is partially blocked, or is urations. The length of the combustor was paramet-
completely open. Configurations 1 and 2 shown in rically changed. In Fig. 2, the frequency of
Fig. 1 have open downstream boundaries. On the flapping of the shear layer is plotted as a
open boundary the pressure was prescribed, while function of the length of the configuration. The
the other three flow variables (density, u and v quarter wave acoustic frequency associated with
components of velocity) were extrapolated from the the configuration, given by 4a/L where a is the
interior. The portion of the downstream boundary speed of sound, is also plotted. It is. seen that
that is blocked was treated like any other solid these two quantities match well for the entire
wall. range of combustor lengths. Similar studies have

been done with configuration 3, which indicate
The above biindary conditions are considered that the shar layer oscillates at the natural

"reflecting" boundary conditions. That is, they frequency of the cavity.
allow part of the signals attempting to leave the
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Configuration 1: For a detailed discussion of the quarter wave acoustic frequency. Secondary oscil-
shear layer dynamics, we concentrate on configura- lations also occur within the shear layer at
tion 1. In Fig. 3, the vorticity contours within frequency close to the natural frequency of roll
the dump combustor after a large period of time up of the shear layer. Some of the higher frequen-
are shown, at regular time levels. It is seen that cies observed may be seen to be combinations of
the vorticity contours at time t = 210 (normalized the above two fundamental frequencies of the flow.
with respect to step height and inlet speed of
sound) are identical to those at t = 300. The Configuration 2: This configuration differs from
other time levels (t = 220, t = 310), (t = 230, t configuration I only in the length of the com-
- 320) etc. also match. That is,the shear layer bustor. The increased length of the combustor
pattern repeats itself once every 90 non-dimen- leads to a somewhat lower quarter wave acoustic
slonal units of time. This exactly equals the frequency, equal to 48 Hz. In Fig. 7, the vorti-
quarter wave acoustic frequency of configuration city contours are plotted at selected time inter-
1, which has a length equal to 22.5. vals for the period 200 < t < 300 . The natural

frequency of roll up of the shear layer, computed
In Fig. 3, it is seen that the shear layer using velocity profiles just downstream of the

undergoes considerable lateral oscillations called step was found to be 270 hz. In this case the
flapping. It is also seen that the shear layer shear layer still locks onto the quarter wave
periodically rolls up and sheds a vortex, for acoustic frequency of the system and tends to
example between time levels 220 and 290. During oscillate very slowly.
the time interval 250 < t < 290, this vortex pairs
into two smaller vortices which are convected out In Fig. 8, the Fourier transform of the
of the flow domain. pressure at two locations within the shear layer

is shown. It is seen that two distinct peaks, one
In Fig. 4, the pressure variation at a point at the system acoustic frequency of 90 Hz, and the

one step height downstream, and in the middle of other near the shear layer roll up frequency of
the shear layer is plotted as a function of time. 270 Hz . Because the time step was chosen to be
It is seen that the pressure values oscillate at a large to reduce the computer time requirements,
distinct frequency, but the amplitude varies from higher harmonics or combinations of these fre-
cycle to cycle. The calculations were carried out quencies could not be resolved by the calcula-
for approximately 12 cycles of oscillation (approx- tions.
imately 1200 units of time, 24000 time steps) to
ensure that the phenomena being discussed repeat Configuration 3: This configuration differs from
themselves, the previous two in that a cavity forms between

the step and the partially blocked downstream
In order to understand why the amplitude of boundary. The cavity has a distinct acoustic

pressure oscillations vary from cycle to cycle, frequency of its own, which differs from the
the pressure distribution shown within 4 was quarter wave acoustic frequency of the system
analyzed using Fast Fourier transform techniques. based on the length of the configuration.
In Fig. 5, the Fourier transform of the pressure
signals at six different locations is plotted. Calculations for this configuration were
Note that the distances indicated are measured done, and results analyzed using techniques
from the corner of the step. It is seen that the identical to those employed for configurations 1
Fourier transform shows pressure peaks at four and 2. In Fig. 9, the u- component of velocity and
distinct frequencies, equal to 160, 304, 416 and pressure at selected locations within the shear
592 Hz. The fourth frequency appears to be combi- layer is plotted as a function of time. A visual
nations of the first and third frequency (160 + examination of this near sinusoidal variation
416 - 592). The 160 Hz peak occurs as a result of indicates that it occurs at a frequency equal to
the quarter wave acoustic mode. the natural acoustic frequency of the cavity. In

this case, the velocity profile downstream of the
To assess the reason for the existence of the step tended to vary rapidly from one time level to

304 Hz peak, the shear layer velocity distribution the other, so that a single shear layer roll up
just downstream of the boundary was analyzed using frequency could not be found. A Fourier analysis
classical inviscid shear layer stability analysis. of the velocity and pressure variations showed
The amplitude of the streamwise growth of disturb- only one significant peak, corresponding to the
ances within the shear layer was studied as a natural acoustic frequency of the cavity.
function of user input sinusoidal temporal varia-
tion. In Fig. 6, the real part of the growth rate CONCLUSIONS
is plotted as a function of the input frequency,
for a velocity profile 1.5 steps downstream of the The behavior of free shear layers within 2-0
step. It is seen that at a frequency of 300, the dump combustors has been analyzed using numerical
most rapid spatial growth of the linear instabill- solution of time-dependent Navier-Stokes equa-
ty waves occur. We have repeated these stability tions. The computed flow fields have been analyzed
calculations at a number of stations in the using vorticity contour plots, Fast Fourier
immediate vicinity of the step, using velocity transform of the pressure fluctuations, and
profiles selected at random time levels. In all linear, inviscid stability analysis of the shear
cases, the analysis Indicated that at 300 Hz the layer. The following conclusions may be drawn,
shear layer is most prone to instabilities, based on the present study.

From the above discussions one may conclude 1) Boundary conditions play a crucial role in the
that the shear layer within the configuration 1 behavior of the fliw within the combustor. For
locks onto the quarter wave acoustic frequency of example, when the *ovimstream boundary is blocked
the shear layer, and oscillates. Shear layer roll the shear layer tends to oscillate at the cavity
up and shedding of vortices also occur at the frequency, rather than the system frequency.
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Changing the length of the configuration leads to according to the following one-to-one relation-
large variations in the system response, when ship:
monitored as a function of time.

&=&(x) ; nzn(y) ; rt (1)
2) The shear layer tends to lock onto the natural
acoustic frequency of the system (or of the The Jacobian of transformation J is given by
cavity). The flapping motion of the shear layer
was accompanied by vortex shedding, and pairing in J =xqy (2)
the cases studied.

and the metrics of transformation are given by
3) Fourier spectra of the pressure fluctuations
within the system show a second, somewhat weaker Cx = JY r ny= Jx (3)
peak, at the shear layer instability frequency. n y
Some of the higher frequencies found in the Standard central differences were used to
Fourier spectra appear to be combinations or compute quantities such as x x etc. which in
multiples of these two basic frequencies, return were used to compute q&ant1ties such as &x

& etc. At the solid surface and the inflow-
ACKNOWLEDGEMENTS /outaflow boundaries, three-point one-sided dif-

ferences were used to compute the metrics.
This work was supported by the Office of

Naval Research under Contract No. N0014-84-K-0293. In the ({,rt) coordinate system, the two-
Computer time for the calculations was provided by dimensional, unsteady Navier-Stokes equations may
the University of Pittsburgh Supercomputer Center. be written as
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which is linked to the physical coordinate system tions. The viscous terms were explicitly evaluated

using information available at earlier steps.

4



Since the mathematical and numerical formulation order to keep the flow solver simple, the boundary
of the Beam-Warming algorithm are well known, only conditions on all the boundaries were explicitly
a brief description of the solution scheme is updated after the interior points had been updated
given here. using Equation (13).

The governing equations are written at a TREATMENT OF THE EXPLICIT
computational node (ij) in the following finite DISSIPATION TERMS
difference form:

In the earlier Euler and Navier-Stokes
. 6 EFn l 6 n G = & R + 6 n S CE Dn (8) equations, researchers used the following form of

6 Cq + + + 6the artificial dissipation term:

where for example, the term 6 Fn+l is the stand- 0n =, j 1r 6  + 6 ] (Jq)n (14)
ard two pointn central differenie formula given by Ln nnnn

-F 1 1 F. ) /2n The quantity D is the artifi- This term is formally of the order of the fourth
section. power of the grid spacing in the physical plane,and is not expected to reduce the overall accuracy.

The highly nonlinear terms F and G at the of the solution technique. This form was found totime level (ny1) were expanded by a Taylor series give nonphysical overshoots in the vicinity ofabout a previous time level n as shown below: rapid flow gradients such as shocks. It was found
that second order artificial dissipation terms did

+ n (n+1 n not exhibit a similar overshoot, but led to highly
Fn+l Fn +[DF/Dq]n (q q inaccurate solutions.

Gn+1 : Gn + [DG/Dq, n (qn+1 _ n) (9) A solution to the problem of overshoots was

Here the quantities DF/Dq and DG/Dq are 4x4 proposed by Jameson. In his approach, the dissi-

matrices which are the Jacobians of the flux pation term was written as a combination of second

vectors F and G with respect to q. and fourth order dissipation terms. A sensor,
based on the second derivative of pressure turned

In order to allow large values of the expli- on the second order dissipation in the vicinity of

cit dissipation coefficient c to be used with out shocks, and suppressed the fourth order dissi-

instability, and to allow thl viscous terms to be pation term. Away from the rapid gradients, the
treated explicitly, the following implicit dissi- fourth order dissipation form was used. Jameson's

pation terms were added to the left side of the approach was implemented in the following study as

difference equation (8): follows.

.IJ- 1(6& +6 1) J (q n+l - qn) (10) The term D was written as

The coefficient E was taken to be three D:AtJ l[6 n{A(1.C1)6nnn- AC16q +

times the explicit dissipation coefficient c A 6 {B(I-C2 -B C26}](j,)n (15)
range of c values between 3 and 5 were usid'in & C2)6&&E 2  (
the calcul atlons reported here. The coefficients C and C1 are proportional to

Equation (8) may be written after the addi- the second derivativeA of pressure, and are

tion of the artificial implicit dissipation terms defined such that it will of significant value (of

given by Equation (10), in the following operator the order of unity) only near rapid gradients such

form: as shock waves. Elsewhere, these coefficients are
of the order zero, and the expression given in

rI+4t6 sDF/Dq)+4t6 (OG/Oq) equation (15) leads to a fourth order error in the
C n solution. The coefficients A and B are propor-

-CJ- (6 +6 )j)(qn+l-qn)= Rn (11) tional to the wave speed in the x- and y- direc-
I CE nn tions and provide an upwind flavor to the present

where, scheme.

Rn = it(6&F + 6nG))n +lt(6CR

+ 6nS)n -itEE Dn (12)

The left-hand side operator of Equation (11)
was approximately factored into two smaller
operators, leading to the following final form:

[l+At6 E{DF/Dq}-c IAti-'16 &&J]

[l+4t6 n{OG/Dq}

-C lt- 1anna](qn+1 n n (13)

Equation (13) may be solved through the
inversion of two block tridlagonal matrix
equations, one corresponding to the C- direction
and the other corresponding the n- direction. In
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AIAA 89-0981
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ABSTRACT

The Issue of enhancing mbdng between Therefore, there is some Interest in the use of active
parallel, supersonic streams Is numerically and passive control techniques which will promote
investigated. An explicit time marching scheme that mixing.
Is second order accurate In time and fourth order
accurate in space is used to study this problem. PREVIOUS WORK
Small amplitude velocity disturbances at selected
frequencies are Imposed over an otherwise steady A comprehensive discussion of recent
flow at the juncture of the two streams to promote experimental, numerical and analytical studies on
mixing. It is found that disturbances are selectively the behavior of subsonic and supersonic shear
amplified at certain frequencies, while disturbances layers has been done by Dimotakis [Ref. 41. Here,
at other frequencies are rapidly damped out. In only a small subset of existing work, closely related
studies where the relative Mach number of the to the present numerical studies, is reviewed.
disturbances relative to one of the streams is high,
shocidets were found to form on one or both sides Experimental Studies: Chinzel et al. [Ref.1] have
of the shear layers. In such a situation, the relative experimentally studied the growth rate of planar
Mach numbers of the eddies were different in shear layers, using Schlieren techniques, and total
coordinate systems attached to the upper and the pressure probes. They found organized vortical
lower streams. structures to exist in such flows, in a manner similar

to subsonic shear layers. Perhaps the best known
INTRODUCTION experimental work on supersonic planar shear

layers is that done by Papamoschou and Roshko
Aircraft engine and missile manufacturers [ref. 2,31, for a variety of gases and flow conditions

are presently Interested in a class of propulsion on either side of the shear layer. They showed that
systems called SCRAMJET engines. In these the convective Mach number of the eddies is a
systems the supersonic airstream captured at the significant parameter governing the growth rate of
inlet is slowed down to modest supersonic speeds supersonic shear layers. Papamoschou also
through a series of shock waves prior to entering performed stability analyses of infinitely thin shear
the combustion chamber. Here the airstream is layers (vortex sheets) to link the growth rate of the
allowed to mix and react with a parallel stream of shear layer (compared to that of an incompressible
fuel or partially burnt fuel/air mixture. For efficient shear layer) to the convective Mach number, and
performance of these systems, it is necessary that derived dosed form expressions for the convective
the fuel and air streams mix with each other as Mach number as a function of flow conditions on
rapidly as possible, over a fairly short distance. either side. The idea of convective Mach number

itself is, of course, not new, and has been
Unfortunately, supersonic free shear layers previously derived by Bogdanoff [Ref. 51. In a later

which form at the juncture of the air and fuel study [Ref. 61, Papamoschou found that the
streams tends to grow very slowly [Ref. 1-31 measured convective Mach number of the eddies
compared to their subsonic counterparts. Alternate matches the analytical predictions only when the
mechanisms such as normal Injection of fuel Into convective Mach number is low and subsonic. He
the airstream will likely Increase mixing, but at the attributed this discrepancy to the fact that the

expense of significant total pressure losses. traditional derivations for the convective Mach
number assume the total pressure on either side of

1. Research Engineer, Member AIAA. the shear layer to be equal. In cases where the
2. Associate Professor, Member AIAA. convective Mach number is high, shocddets can
3. Asslstat Professor, Member AIAA. form and lead to different amounts of total pressure
CopyrIg C1989 by L N. Sankar. Published by the losses on either side of the shear layer.
American Institute of Aeronautics and Astronautics, Papamoschou also studied modifications to the
Inc. with Permission. trailing edge of the splitter plate which initially
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In order to understand the behavior of In this work the above equation was solved
supersonic free shear layers at low convective using a splitting approach. That is, the solution was
Mach numbers, we Investigate its response to advanced from one time level n' to the next (n +Z)
arbitrary, user-specified acoustic disturbances over through the following sequence of operations:
a broad range of frequencies. Sinusoidally varying n+2
velocity disturbances at a number of frequencies q Lx Ly Ixv Lyv L~yv xv Ly x qn
are introduced at the initial, laminar mixing region of
the shear layer. These disturbances grow with time where, for example, the Lx operator
as they are convected downstream and eventually involves solution of the following 1 -D equation:
lead to well organized vortical structures. The

objective of this work is then to study how the qt + Fx = 0
disturbances over the entire spectrum of
frequencies behave as they are convected This 1-D equation was solved through the
downstream, and to speculate on mechanisms by following predictor-corrector sequence,
which energy is transferred from high frequencies recommended by Bayliss et al [Ref.221:
to low frequencies and vice versa.

To study behavior of the shear layer at very Predictor Step:
high convective Mach numbers, we use vorticity
and pressure contour plots at a number of time n
levels to track the velocity of the dominant eddies qi"= qi -at/(63x) [7 Fi - 8 Fi. 1 + Fi. 2 ]n

and compute the relative Mach number of these
eddies in a coordinate system attached to either the
faster stream or the slower stream. If supercritical
Mach numbers arise relative to either stream, then
the resultant pressure field is examined for the Corrector Step:
occurrence of shock waves, expansion waves and
their effects on the shear layer growth. qin + 1- (q* +qin)/2+at/(12&x)[7Fi-8Fi+1 +Fi+2]

The 2-0 compressible Navier-Stokes
equations In a strong conservation form are In the above equations, the j- index has
numerically solved, using a modified MacCormack been suppressed for clarity.
scheme that is second order accurate in time, and
fourth order accurate in space. This scheme is When the above equation Is applied at
suitable for studying phenomena such as nodes close to the left and right side boundary, a
propagation of acoustic waves, boundary layer fourth order accurate extrapolation procedure wag
Instability, and shear layer Instability and has been used to extrapolate the flux vectors F and F
previously used by several authors [Ref. 22-24). The needed at nodes outside the computational
flow field is assumed to be laminar, domain.

NUMERICAL FORMULATION The Ly operator requires solution of the
equation

The 2-0, lamInar, unsteady, compressible
flow is governed by the Navier-Stokes equations qt + Gy = 0
which may be formally written as:

C!F+y +yusing a slmilar approach.

The operators Lxv and Lv correspond to numerical
where F and G are Inviscid flux terms, while R and S solution of 1-D equationd such as
are the viscous stress terms.

q -Rx-O
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equivalent to applying a slip boundary condition at vorticity field at the Immediate downstream
these walls. In the case of free, unconfined shear boundary Is rich In structure showing large
layers, non-reflective boundary conditions are gradients in the streamwise as well as normal
needed at these lateral boundaries. In the present directions. At large distances downstream,

work, setting the derivative of the normal however, only a single row of eddies at well defined
component of velocity to zero, rather than the distances are seen.
velocity itself to zero was found to minimize
reflections. Because the formation and motion of

vortices (or eddies) give rise to a rapidly varying
The flow properties at the inflow were pressure field which moves with the eddies some

specified everywhere In the flow field as the initial useful information about the energy content at the
conditions for the problem. The Navier-Stokes shear layer distributed over the various frequencies
solver was then advanced for several non- may be obtained by computing the Fourier
dimensional units of time, until a fully developed transform of the pressure field at a number of points
shear layer with a modest streamwise growth was within the shear layer. In figure 3, the Fourier
established, spectrum of the pressure field Is plotted at 6 x-

locations within the computational field, at y/S - 0.
Once a steady state shear flow was The following trend is seen. Near the inflow

achieved, forced excitation of the shear layer boundary, the Fourier spectrum hows a near
began. This was achieved by prescribing the uniform distribution over the entire frequency range.
normal (v-) component of velocity over the entire At downstream locations, the higher frequency
inflow boundary to behave as follows: content begins to gradually decrease. The low

frequency components at non-dimensional
v(y,x-0,t) -E Anf(y)sin(nt+e.n) frequencies 10 and 20 show a rapid increase

Initially, but reaches asymptotically constant values.
Here the summation shown is over all the Figure 4 contains the same information as figure 3.

excitation frequencies; An is the amplitude of except it shows the changes In energy content as a
disturbance, w n Is the frequency of disturbance and function of downstream distance. It is seen that
9 n is the associated phase angle. The function f(y) Fourier coefficient associated with non-dimensional
determines the variation of the perturbation velocity frequency 60 reduces to 30% of Initial value 100 6
across the shear layer. Both a Gaussian distribution downstream, whereas the low frequency
and a constant magnitude distribution were component triples In magnitude and reaches its
attempted. The results to be presented here limit value 128 units downstream. An examination
correspond to f(y) equal to unity. of the vorticity contour plot (figure 2) shows a

number of small eddies at the Inflow boundary,
In the present work 6 frequencies were which rapidly merge into a single, large vortex. This

used, with zero phase difference between the merging appears to be the mechanism responsible
Individual components. The quantity An was 2% of for the decrease In the energy content at high
the reference velocity U1. The non-dimenslonal frequencies, and the corresponding increase at the
frequencies w were 10, 20, 30, 40, 50 and 60 lower frequencies. It is interesting to note that the
respectively. Obviously, a linear stability analysis two lowest frequency components (corresponding
could have been used to pick the frequencies that to non-dimensional frequencies 10 and 20) maintain
are related to the most unstable frequency. But the their energy levels once they reach their limit
Intent here was to Impose excitation at several values, with no further transfer of energy from the

frequencies on the shear layer, at the Inflow W =20Wavestothe n- 10waves. This may be
boundary and determine which frequencies are due to the fact that the phase difference In the
selectively amplified, and to determine what forcing function corresponding to these two waves
happens to the energy content at the higher was zero.frequencies at subsequent time levels.

Figure 2 shows the vorticity contours at a

randomly selected time level. It is seen that the

5
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In figures 7 and 8, the pressure and velocity exciting the shear layer at the upstream boundary
contours are plotted at a randomly chosen time with small amplitude normal velocity disturbances.
level. In this case, from an inspection of the vorticity The following observations were made:
profiles at adjacent time levels, the eddies appear to
travel at substantially lower speed than the upper a) In the case of shear layers at subsonic
stream. During the early stages of eddy formation and supersonic convective Mach numbers, the
and motion, shocklets occur both on the upper and imposition of acoustic disturbances over a large
lower sides of the shear layer. As the eddies range of frequencies lead to the transfer of this
accelerate and reach low subsonic Mach numbers energy from the high frequencies to the low
relative to the upper stream, the shockdets on the frequencies, as the flow progressed from the
upper side of the shear layer disappear. The upstream boundary to the downstream boundary.
shocklets on the lower side continue to travel with The energy content at the lowermost frequencies
the eddies, with no reduction in their strength. rapidly reached asymptotic values following which

eddies In the shear layer were convected
Case 3 Case 1 was repeated, by artificially downstream with no further alteration in their
reducing the shear layer vorticity thickness by a structure.
factor of 15. keeping all other dimensions such as
the grid size, domain length and width constant. In b) In the case of shear layers at a
figures 9 and 10, the pressure and vorticity supersonic convective Mach number, situations
contours are plotted. Again, in figure 10, the solid were found where the convective Mach number
and dotted contours correspond to low and high relative to the faster stream is low. This leads to a
pressure levels respectively. Shocklets are evident situation where shocldets arose only on the lower
on either side of the shear layer, although they are side of the shear layer. Conditions were also found
weak because the reduced shear layer thickness where the convective Mach number relative to both
leads to small and thin eddies, compared to case 1. the streams is high, leading to shocklets on either

side. These calculations demonstrate the same
Case 4: As a final exercise, Case 1 was repeated, features experimentally observed by Papamoschou
with forced excitation of the normal velocity at the [Ref. 31 and discussed based on total pressure
inflow boundary over multiple frequencies, ranging arguments by Dimotakis [Ref 41.
from 10 to 60. The amplitude of the individual
components was 0.02 times the upperstream ACKNOWLEDGEMENTS
velocity. In figure 11 the Fourier spectrum of the
pressure field at several x- locations are plotted. A This work was supported by the Office of
gradual migration of energy levels from the higher Naval Research under Grant No. N00014-89-J-
frequency to the lower frequencies is evident, as in 1319. Computer time for the numerical simulations
the case of the subsonic convective Mach number was provided by the Pittsburgh Supercomputing
case. Figure 12 shows how the two high frequency Center.The authors are thankful to Prof. S. A. Ragab
components decay following a brief initial growth as of Virginia Polytechnic Institute & State University
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Numerical Simulation of the Growth of Instabilities in
Supersonic Free Shear Layers

W. Tang,* N. M. Komerath,t and L. N. Sankart
Georgia Institute of Technology, Atlanta, Georgia

The behavior of the Initial region of a supersonic plane shear layer Is analyzed through numerical solution of
the two-dilmenslioal Navier-Stokes equations, as well as the three-dlmeasional equations under the fnilte-sp..
assumption. A modified MacCormak scheme that is fourth-order accurate in space and second-order in time
is employed. Small amplitude oscillations In the normal velocity are found to grow as they coavect downstream,
and eventually lead to organized vertical structures. Normal velocity disturbances ae found to be more efficient
than streamwlae or spanwise disturbances. The growth rate of these disturbances, as well as the intensity of
velocity fluctuations, are found to decrease as the convective Mach number of the shear layer increases. The
Mach number of the vortical structures with respect to the faster stream is found to be considerably less than
the theoretical value of the convective Mach number.

Nomenclature to grow much more slowly than corresponding subsonic shear
a, = upper stream speed of sound layers.
a2  = lower stream speed of sound One long-term objective of supersonic shear layer research,
F, G = flux vectors therefore, is to devise methods of increasing the mixing be-
Mv•,. -convective Mach number of present result tween supersonic streams by enhancing the shear layer growth
M, -convective Mach number rate. Recent success in greatly modifying subsonic shear layers
q - vector of conserved variables has resulted in the advancement of a variety of schemes for
R,S -diffusion vectors achieving similar increases in supersonic shear layers. The
Q4 = convection speed of vortices variety of such possibilities far exceeds the resources available
U, = upper stream inflow velocity for experimental exploration of each. Instead, a better ap-
U2  = lower stream inflow velocity proach appears to be to develop reliable numerical models and
x = coordinate in streamwise direction solution methods that can then be used to perform the explo-
y = coordinate in normal direction ration, and to identify promising approaches and the appro-

priate values of parameters required. This is the motivation
behind the research described in this paper.

Introduction
IR-BREATHING engines designed for high-flight Mach Previou Work
numbers require supersonic combustion for efficient op- Chinzei et al.' conducted experiments on planar shear layer

eration. The shock losses associated with deceleration to low configurations and studied the growth rate. Papamosch'ou2

Mach numbers require that the mixing of fuel and air, and the conducted similar experiments, using a variety of gases and
heat release, must occur. in supersonic flows. For the same flow conditions, and showed that the results could be scaled
reason, it is desirable to mix the fuel and air using coflowing using the convective Mach number of the dominant eddies in
streams. In such configurations, the mixing must occur across the shear layer. These results showed that the growth rate of
the shear layer formed between the streams. The length ard supersonic shear layers is typically less than one-third the
weight of the engine, and the efficiency of heat release, depend growth rate of incompressible shear layers for convective
on the rapidity of this mixing process. Most current concepts Mach numbers greater than unity.
for supersonic-combustion ramjets thus employ mixing-lim. Passive and active control techniques have been studied by
ited heat release. The mixing across a shear layer between two ott r researchers. These techniques are generally based on the
streams depends on the rate of mass and momentum transfer principle that if vorticity is introduced into the shear layer, it
across the layer, and, hence, can be described using the will increase the level of fluctuation and, therefore, promote
"growth" or "spreading" rate of the shear layer. Unfortu- mixing and growth. Guirguis3 and Drummond and Mukunda4

nately, shear layers separating supersonic streams are known studied the effect of a bluff body placed in the middle of the
shear layer. Kumar et al.s considered the effects of vorticity
produced by a pulsating shock wave on the growth character-
istics of the shear layer. Ragab and Wu6 have developed

Received Dec. 2, 1938; presented as Paper 89-0376 at the 27th Aero- calculations based on stability theory to predict the response
space Sciences Meeting, Reno, NV, Jan. 9-12, 1989 revision received of supersonic shear layers. Recently,' they have also developed
June 3, 1989. Copyright @ 1939 American Institute of Aeronautics computations of the response of planar wakes and shear layers
and Astronautics, Inc. All rights reserved, similar to those in experimental splitter plate configurations.

"*Research Engineer 1i, School of Aerospace Engineering. Member
AIAA.

tAssistant Professor, School of Aerospace Engineerini. Member Scope of Present Paper
AIAA. In the work presented here, the behavior of'a planar free

Associate Professor, School of Aerospace Engineering. Member shear layer is studied, using two numerical techniques for
AIAA. solution of the Navier-Stokes equations. The effects of active
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control strategies are investigated. Sinusoidal variations in the Here, F and G are the inviscid flux terms and account for
velocity are introduced at the upstream boundary. The subse. the transport of mass, moment, and energy and for the influ-
quent response of the shear layer to these disturbances is ence of pressure. The terms R and S are the viscous stress
studied. Streamwise, normal, and spanwise disturbances are terms. The above equation is parabolic with respect to time,
considered as suitable candidates for promoting mixing. and may be solved using a variety of stable time marching

At present, the problem is assumed to be nominally two-di- schemes. For two-dimensional flows, there are four equations.
mensional. Some calculations have been performed with In the case of three-dimensional flows subject to infinite-
"three-dimensional layers under the infinite sweep assumption, sweep assumption, there are five equations, the additional
It is recognized that the later development of the shear layer equation corresponding to the conservation of spanwise
may be strongly influenced by three-dimensional effects, momentum.
However, there is no reason to believe that the initial region In this work, the above equation was solved using a splitting
should be anything other than two-dimensional. The available approach; that is, the solution was advanced from one time
experimental flow visualizations, performed with spanwise-in- level 'n' to the next 'n + 2', through the following sequence of
tegrating techniques such as schlieren and shadowgraphy, operations:
clearly show structures that would have been totally smeared
out if the flowfields had been significantly three-dimensional. qm+2= (L.LL,.,,LLLLL)q M  (2)

The present calculations are for laminar _-hear layers, and
no turbulence model is used. Turbulence models inherently where, for example, the L, operator involves solution of the
bring additional uncertainty into the physical interpretation of following equation:
the observed behavior of the flowfield, though they are cer-
tainly necessary to obtain quantitative accuracy. The lack of q, + F, = 0 (3)
such a model restricts the applicability of these results to the
initial region of the shear layer. This one-dimensional equation was solved through the fol-

The initial velocity profile used is a step change in velocity lowing predictor-corrector sequence, recommended by Bayliss
at the slip line between the two streams. Thus, the results et al.':
obtained will not correspond to experimental results from
splitter-plate configurations, since there is no boundary layer Predictor Step:
and no embedded region of initially subsonic flow.

Within the above limitations, the present work aims to At
study the behavior of the initial region of a shear layer, and to q,j. q --- 7F,-8F,_j+F,- (4)
explore the effects of various forms of excitation. 6Ax

Problem Statement Corrector Step:

The shear layer configuration is shown in Fig. 1. Two
uniform, parallel supersonic streams of different Mach nurn- I ( + ) A [7 - , F
bers are released at the left-hand boundary. All properties are q n+ 2 qu +qj" +" 7Fij-8F÷ j +F-21
known at this boundary. The upper and lower boundaries of
the computational domain are assumed to be hard walls across (5)
which no disturbances can escape. There is no boundary layer
at these walls, and slip conditions are used. At the downstream When the above equations are applied at nodes close to the
boundary, the flow and all disturbances are allowed to escape, left- and right-side boundary, a fourth-order accurate extrapo-
and no disturbances are allowed to propagate back. lation procedure was used to extrapolate the flux vectors F and

To study shear layer behavior, the static pressures are equal- F" needed at nodes outside the computational domain.
ized across the splitter plate, so that there are no strong shocks The L, operator requires solution of the equation
in the flow. Some waves and their reflections from the wall do
occur, but these are quite weak. q, + G, = 0 (6)

The flow is assumed to be nonreacting, and the ratio of
specific heats was assumed to be constant for both streams. using a similar approach.
The species above and below the shear layer were assumed to The operators L,, and L,, correspond to numerical solution
have the same molecular weight. of one-dimensional equations such as

Mathematical Formulation: Fourth Order MacCormack Scheme q, - = 0 (7)

The above equation was solved through the following two-step
q, + F. + G= R. + Sy (1) sequence:

A,[ lll,
qj"*= q1./ +At-- Rs + I j - R, -• 1 4 (8)

py =Uy=py = T = 0, v =0 A 2 (

[x = 0 --0I
0 M~~q~jR + qAJ

00 pl, I p Iu x= 0

M'P T P Px =0 Rj+i l-R, J (9)

Tx - 0 The viscous terms are thus updated only to second-order

p =u = p = T = 0, v = 0 accuracy in space. It may be shown that the above scheme has
very little artificial dissipation inherent in it, and is fourth-or-

Fit. I Boundary condltions for supersonic free shear layer. der accurate in space, as far as the inviscid part is concerned.
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Boundary Conditions Formation of Vortical Structures

As stated above, all flow properties are prescribed at the Figure 2a shows the contours of vorticity in the shear layer,
upstream boundary for both streams, including any imposed calculated for case I, with no disturbance superposed. It is
perturbations. At the downstream boundary, the flow is as- seen that the shear layer grows quickly at the very beginning,

sumed to remain fully supersonic for the small-amplitude and then takes on a smooth profile which grows very little
perturbations encountered in this work, so that the properties thereafter. It should be remembered that in this calculation
may be extrapolated from the interior. Alternatively, the gov- there is no imposed turbulence model. Figure 2b shows the
erning equations themselves may be applied if the streamwise effect of imposing a sinusoidal 207 normal velocity distur-
diffusion terms R, are suppressed at the downstream nodes. bance at the inflow boundary. Distinct centers of vorticity are

At the lateral boundaries, the flow is assumed to be con- seen to develop and be convected downstream. The shear layer
fined by smooth, parallel walls. Slip boundary conditions were edge now penetrates considerably further into both streams.
used to avoid the compression effects that would be caused by Careful examination of the contours shows considerable
boundary layers. The walls were considered adiabatic, and the asymmetry and distortion as the structures proceed down-
normal derivatives of density and pressure were set to zero. stream. The computational domain in this calculation does

not extend far enough for these disturbances to grow into the
Results and Discussion nonlinear regime, and hence no "roll-up" can be expected

Normalization here. The effects of six cycles of the imposed disturbance can

Velocities were normalized using the speed of sound in the be seen, with the sixth just leaving the computational domain.

upper stream, which thus became unity. The Reynolds number Figures 3a and 3b show the corresponding vorticity con-

based on the speed of sound was chosen to be 1000. A 221 x 61 tours for case 2, where the theoretical value of convective

uniform grid was used, with spacing of 0.01 in each direction. Mach number is nearly twice that of case 1. The growth rate

Thus, the length of the domain L was 2.2. The time step was .3 r

taken as 0.001 (0.0005 for each half-step). The calculations .2 (a)
were started with step velocity profiles at the upstream

boundary, and allowed to proceed until a steady state was .1
reached asymptotically. This usually took 600 time steps. The
results at this stage were stored, and the code was restarted • 0.
with an imposed sinusoidal velocity disturbance of amplitude -. 1
2%0 of the velocity of the upper stream. The calculations were
then run until several cycles of the disturbance had been -. 2

completed, and the initial effects had been convected away -. 3 .
through the downstream boundary. .3

Convective Maich Number .2 (b)
The cases run have been summarized in Table 1. Because the .1

supersonic shear flow problem involves several parameters (at h assrnaebensmmrzd-nTbl .Beas-te.
least five on either side of the shear layer), nondimensional ". 0.
groupings are sought to express observed effects. Following
the practice of Papamoschou, 2 the convective Mach number
was used here. For the problem studied here, the convective -.2
Mach number reduces to

-.3. 
. . . . . . . . . .M~c=i(Ul- Uc)/al 0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

x/H
where FIg. 2 Vortldty contours for cae 1, M, = 4.0, Af2 = 2.3, Me- 0.2.;

a) without disturbance, b) with disturbance In the normal direction.

Uc = (a, U2 + a 2U 1)/(a+ 4-a2) .3

The values of M, calculated by this formula are tabulated. A .2(

physical interpretation of the convective Mach number is that .1
it is the Mach number of the dominant large-scale vortical 0.
structures with respect to either stream. According to the 0.
formula given above, this Mach number is the same with -.1
respect to either of the streams. An attempt was made, as
discussed later, to determine the convection speed of the vorti- - .2
cal structures seen in the computational flowfield, and to -.3_.. .... ....
determine relative Mach numbers from them. The Mach num-
bers so determined, with respect to the upper, high-speed .3.

stream, are also tabulated. It is seen that there is a consider- . (b)
able discrepancy. This is not surprising, and, in fact, even in .2
subsequent experiments by Papamoschou, 9 similar effects ap- .1
pear to have been observed. o.--

"0.1

Table I Came prested-.

Case M1 M2 UZ U"2 Mc M,,n2 -.2
1 4.0 2.3 4.00 3.51 0.20 0.2 -.3 1 . . . . . . . . .
2 4.0 2.0 4.00 3.05 0.38 0.2 0. .2. .4 .6 .9 1.0 1.2 1.4 1.6 1.8 2.0 2.2

3 4.0 1.3 4.00 1.98 0.80 0.2 x/H
4 5.0 1.3 5.00 1.98 1.20 0.6 Fig. 3 Vorti'ity costoors for cow 2, M- 4.0. M, - 2.0, M, - 0.38;

at) without disturbance, b) with disturbance In the normal direction.
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.3 .3

.2- a) .2

-. 0-.0

2-.2

-.3 -.3
0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

x/H

Fig. 6 Effect of streamwise disturbances for case 1.
.2-b .3

.1 .2

-.2 -.1

= .31 - - - -~.20

0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
x/H 3"0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

FIg. 4 Vorticity contours for case 3, MI = 4.0, M2- 1.3, Me= 0.8; 0 / .

a) without disturbance, b) with disturbance in the normal direction. x/H
Fig. 7 Effect of spanwise disturbances for case 1.

.3-

.2 
)

0.-

-.

-.3 ' 'S

.23

.1

-. 1 y/H 0.

-. 2 -

0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0. .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
xlH xIH

Fig. S Vorticity contours for case 4, MI - 5.0. MA - 1.3, M, - 1.2; Fig. a Computation of convective speed based on the temporal evo-
a) without disturbance, b) with disturbance In the normal direction. lutlom of vorticity contours for case 2.

Convective Speed Based on Evolution of Vorticity Contours

appears to be less, as expected from the experimental observa- One common way of calculating the convective Mach num-

tions of the effect of M,. This effect is seen further in Figs. 4 ber is to track the downstrekm convection of the vorticity

and 5, where the convective Mach number, according to the contours as a function of time. The results of this effort are

formula, is 0.8 and 1.2, respectively, shown in Fig. 8 for case 2. Similar computations were per-

formed for all of the cases, and the results are shown in Table

Disturbance Type 1. It is seen that as the theoretical value of the convective

Other kinds of disturbance were tried; specifically, distur- Mach number rises, the measured convective Mach number of

bances in velocity along the streamwise direction for the two- the structures with respect to the upper stream vary much less.

dimensional shear layer and disturbances along the spanwise Of course, this means that the convective Mach number is no

direction using a three-dimensional model with the infinite longer the same when compared to the two streams. The

sweep assumption. The results are shown in Figs. 6 and 7, structures appear to move at a speed that is close to that of the

respectively, for the case where the convective Mach number is upper, high-speed stream. This is similar to the more recent

predicted to be 0.2. In each case, the disturbance amplitude is observations of Papamoschou,9 where the structures were

the same. It is seen that these types of disturbances are less found, for many cases, to move at speeds close to that of one

efficient than the normal velocity disturbance. or the other stream.
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Growth Rate Enhancement The intensity of fluctuation in the shear layer is plotted as a
The thickness of the shear layer was computed from the function of downstream distance for three cases with different

velocity profiles across the shear layer. These profiles are theoretical convective Mach numbers in Figs. 10a-10c. The
shown later in the paper, where they are used to examine the quantity measured was the root-mean-squared fluctuation of
numerical accuracy of the results. Figure 9 shows the shear the U-component of velocity about the mean, normalized by
layer thickness for unperturbed and perturbed cases for case 1. the mean velocity. It is to be noted that this is not the turbu-
The disturbed case shows a significantly greater rate of lence intensity, since no attempt has been made to model thegrowth, except near the downstream boundary. However, the turbulence. The fluctuations have their origin in the imposed
increase in growth rate is only on the order of 10-15%. disturbance, though they may have been selectively amplified

The frequency of the imposed fluctuations was chosen such by energy exchange with the shear layer. It is seen that the
that about six vortical structures could be seen in the computa- intensity of fluctuations decreases rapidly with increasing con-
tional domain at one time. Thus, the actual frequency used vective Mach number. It also appears that the intensity
was higher than the frequency of maximum amplification quickly reaches an asymptotic value and does not increase
predicted by linear stability analysis. Use of the preferred further. In fact, for the higher values of convective Mach
frequency would have required a much larger computational number, the intensity appears to peak and then decrease grad-
domain in the x direction to capture an adequate number of ually thereafter. This decay in the intensity with high values of
vortices, and would have increased the computational effort M, has been predicted by other researchers using linear stabil-
required by an order of magnitude. ity analysis.

3 Studies of Diseretization Error

All the above results were generated using the fourth-order

MacCormack scheme. The influence of the accuracy of the

computation scheme was studied by comparing results ob-
tained using a second-order MacCormack scheme to those

.W obtained with the fourth-order scheme. Velocity profiles
across the shear layer were used to examine the results. Figure
11 shows the comparison for case 1, however, with a 111 x 31
grid. The profile was obtained at the station 10% of the
domain length downstream of the origin. The results are seen

a to be quite similar. The agreement is close for profiles at 25

"Steady and 50% downstream. However, at x/L = 0.75, differences
i can be clearly seen. The fourth-order scheme is seen to resolve

0 spatial details better, as expected. The difference decreased

0.0 0.2 0.4 0.6 0.8 1.0 2

XAL 4th Order

Fig. 9 Shear layer thickness. o0.
4 .0 . 2

vi -.0.3

I. "0.2"0.4 0.6 0'.8"1.0 1.2 1.4 1'.6 1.8 2'.0 2.2 0.30.2•3 "0.1

z
3.11" xAL0.10 /l, .0.2S

S( ) 0 .3
3.43 0.3"

0.2 0.4 0.6 0*.8 1*.0 1.2'1.4 1.6'1.8 2.0 2.23 .1 0.2 "
" 3.1 . -0.1

Wi 0.0"

A
"-0.2 xAL O.JO x/L u 0.75

Mc=

" 3 .0 9 ( ) M .
v (-0.3

6 .3... .4...0. .4..2 . 043.
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 U2.56- 0.2".

2..52
S2.52- -0.1

:_4- , -0.2- xA .80 ,/. 0."

v2.46- (c) Mc 0.8 .0.3 , -......--
3.6 3.8 4.0 4.2 3.6 3.8 4.0 4.2

2..4I . . . . . . . .. . .. . . U U
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

x/H Fig. II Velocity profiles across the shear layer: comparison of see-
Fig. 10 Effect of convective Much number on fluctuation in the end- mnd fourth-order MacCormack schemes for case I with Il l x 31
shear layer, a) Me - 0.2; b) Me - 0.38; and c) M, - 0.80. grid.
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2nd Order 2) A perturbation of 2% of the mean flow velocity, imposed
- Oer at the upstream boundary in the normal direction, produces a

0.3 larger growth of the shear layer than an equal amount of

oil perturbation imposed in the streamnwise or spanwise direc-
tions.

0.1 3) Imposed sinusoidal disturbances in the normal velocity

0.0 upstream lead to the formation and growth of vortical struc.
tures. The shear layer thickness grows rapidly at first and then

3.1 .the growth rate decreases asymptotically.
-0.2 ' .10 X4 =0. 4) The root-mean-square fluctuation level in the streamwise

- velocity and the shear layer growth rate decrease with increas-
-0.3 .ing values of the theoretical convective Mach number of the

0.3 shear layer.

0.2 5) The vortical structures are found to move at different
Mach numbers relative to the upper and lower stream, and the

0.1 relative Mach number appears to be smaller relative to the
S0.0 stream with the higher Mach number.

-0.1
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Numerical Simulation of Three-Dimensional Supersonic
Free Shear Layers
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Abstract The L, Ly, and L, operators involve solutions of the one-di-

T HE temporal stability and growth characteristics of three- mensional equation such as
dimensional supersonic shear layers are numerically in- q, + F, = 0 (3)

vestigated. An explicit time-marching scheme that is second-
order accurate in time and fourth-order accurate in space is This one-dimensional equation is solved through the following
used to study this problem. The shear layer is excited by predictor-corrector sequence, recommended by Bayliss and

instability waves computed from a linear stability analysis and Maestrelio.6
random initial disturbances. At low convective Mach num- Predictor step:
ben, organized vortical structures develop both for the ran-
dom disturbance and the modal disturbance cases. At super- q- "- [17F1 - 8Fj I + F, 21n (4)
sonic convective Mach numbers, vortical structures develop

initially but are not sustained in time. Temporal growth of Corrector step:
disturbances is found to be a strong function of the convective (q7+q') D 7
Mach number. -q+ = +. + D-i-7Fj - WF,÷I+F1 ,2" (5)

Contents The viscous operators L. L... and L.. are integrated simi-
An improved understanding of factors that contribute to larly with the exception that the viscous stress terms are differ-

supersonic shear-layer growth is necessary for design of active enced in space with the second-order-accurate central differ-
and passive control techniques to enhance the mixing of ence scheme. The overall numerical scheme is fourth-order

airstreams and fuel streams, and for the design of efficient, accurate in space and second-order accurate in time as far as

compact SCRAMJET engines. It has been observedl-3 that, in the inviscid part is concerned.

supersonic shear layers, organized vortical structures exist in a Since the temporal development mixing layers are studied,

manner similar to subsonic shear layers. However, as the periodic boundary conditions in the streamwise and spanwise
convective Mach number increases, the streamwise shear-layer directions and slip boundary conditions in the cross-stream

growth rate is found to drop to about 30% of that of an direction are applied.
incompressible flow.' The computational domain is a rectangular channel that

In the past, Tang et al.5 used a fourth-order MacCormack extends in stream- and spanwise directions over one wave-

scheme to study temporal and spatial growth of two-dimen- length of the longest disturbance wave predicted by linear
sional thin shear layers at very early stages of laminar mixing, stability analysis for a given convective Mach number. In the
and studied the effects of convective Mach number as well as cross-stream direction, it extends from - 7.5 to 7.5 times the
streamwise, spanwise, and cross-stream velocity disturbances vorticity thickness. The computational domain is discretized
on the shear layer growth. It was demonstrated that the with a 66 x 34 x 121 uniformly spaced grid along the stream-
growth rate of the shear layer decreased with increasing con- wise, spanwise, and cross-stream directions, respectively. The
vective Mach number. In this work, three-dimensional, tem- Reynolds number is based on the vorticity thickness and -
porarily growing mixing layers have been studied. The study
focuses on the effects of instability waves computed using a -

linear stability analysis and random initial disturbances on a t
temporarily evolving shear layer. tThe three-dimensional, laminar, unsteady, compressible /

flow is governed by the Navier-Stokes equations, which may -

be formally written in a strong conservation form .
0 M.1JO

0, + F + o, + = R, + S, + T, (1)

where F, G.and Hare inviscid flux terms, and R, S,and Tare - -- - -

the viscous stress terms. Equation (1) was solved using an
operator splitting approach and a MacCormack-type finite
difference scheme:

q'i +I L-LLZ LLLM L,,,,LyL ,LL q 4  (2)
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ranges between 3 x 102 and 6 x 102. The mean velocity across ___

the cross-stream direction is given by a hyperbolic tangent
profile. The convective Mach number is defined as M, - - a M 0o.20
(U 3 - U2)/(C1 + C2), where U is the magnitude of the mean a u = 040• U 0.10
velocity, c is the speed of sound, and subscripts I and 2 refer uM81.2o
to the upper and lower streams, respectively.

The modal kinetic energy content of the flowfield is de-
fined as

EmtI) [uu"" + vv" + ww cdz (6)

where v, v, and w are the two-dimensional Fourier transforms
of the velocity field on the plane that spans in the streamwise
and spanwise directions. The integration is in the cross-stream , ..
direction. The superscript * denotes the complex conjugate. Fe. 3 Avrage prbation ktic energy growth in randomly die-

Iniahlky Waves Supmepe em Mean Flow UAW slher layers.

We have first superposed three-dimensional waves onto the velocity components, density, and temperature in the follow-
mean flow and monitored temporal evolution of the flowfield ing form:
and the modal energy growth. These disturbance waves are the d(xyz) - AD(z) exp i(ax + Oy) (7)
most unstable waves predicted by the linear stability analysis 3

at a given convective Mach number and are given for the where D(z) is the eigenfunction, a and 0 are the wave num-
bers, and A is the magnitude, which is set to O.0lSM,.

We have studied the flowfields for convective Mach num-
. ________________4____0_ bers of 0.2, 0.7, and 1.2. The corresponding wavelengths of

the most unstable waves, which are predicted by the linear
stability analysis code, are a - 0.41 and 0 - 0 for M, = 0.2,
a=O.3and0=0.3 forMc - 7, and a = 0.14 and 0 = 0.07 for
M, - 1.2. The temporal growth of modal kinetic energy asso-
ciated with the most unstable modes is shown in Fig. I.

Random Distwubances Superposed em Mean Flow

0815 Max aO.869 Next, we superposed a random initial disturbance field onto
the mean flowfield. The random disturbance field was gener-

0.000 ated using a random number generator, and its magnitude at
TIM____________8.0____ any point in the flowfield was restricted to be less than

0.03M,. These disturbances were confined to regions of signif-
icant vorticity in the shear layer, where lu(y)l sO.25M,.
Computations were performed for convective Mach numbei..
of 0.2, 0.4, 0.6, and 1.2.

In all flow cases, random organized vortical structures were
observed in the perturbation velocity field. However, at a
higher convective Mach number of 1.2, organized structures
tended to die out in time (Fig. 2). The temporal growth of

Mina -0.497 Max U0.057 average perturbation kinetic energy for the cases studied is
__ __ __,_ _ Thgiven in Fig. 3.

I) The temporal growth rate in perturbation kinetic energy
decreases with increasing convective Mach numbers for both
modal and random disturbances.

2) At supersonic convective Mach numbers (M, = 1.2), the
growth of three-dimensional structures were also found to be
unsustainable in both the random and modal disturbance__m=cases.

Mi -034 Ma 0.440emces
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U ~AN rTERAT1WE TME MAROIING PROCEDURE FOR COMPUTATON OF
UNSTEADY VI[SCOUS FLOWS

I L N. Sankar, Professor
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ABS7A~rcontroli laws can not be perfected until a capability for accurate
ABS~hA~rand efficient prediction of unsteady incompressible flows isU Icompressil vious flows is described. Thide procedure allows

fourthor ~ *t re cua- in spice, and secon order accraey A SURVEY OF EJUSMh4 SOLUTION PROCEDURES
in time, and is general enough to be used to study external andItestnte eeom tof uerclouioI internal flow problems. Algorithmic details of the procedure arehesti e4womn of uerclouin
described. A sa tl aplication of this algorithm to 3-D steady procedures for the prediction of two- and three-dimensional
viscous flow over a boyo eoution is given. The final paper unteaidy Navier-Stokes equatIrcolions, aoein the mid sixties andI Will give additional numerical results for external flow st a body early seventies with the availability of high speed digital cin-
of revolution at an angle of attack, and flow ovr arfi puters of the 1DM 370 and the CDC 6600 class. During the past-oems two decades, evolution of these techniques has been fueled by the

"aviability of faster and cheaper scalar/vector computer
BMTRDUcrION architectures, the availability of effcient solutIon algorithms, and

* the development of automated grid generation techniques
* The problem of accurately computing unsteady three aable of dividing complex flow regions into smoothly vazrng

-damensinal InComrssibe flows is one of great interest to els.A the preen time, this fedof computa-tional f luid dy-
researchers working in the fields of bioeunen and aerospace nantics is a weldveloped scecdocuimmentedd in text books
Industry. The florw within bifrcted cbnesflow inboo (Ret 1-3], conference proceedings and journals.I Vessels With compliant walls, flow over cmlex submarine

Shae.fo past underwater propellers,*an flows, within Although solution tecnimie for both compressible and
Wr~oomachinery, ducts and j r al ihr noty be. ncmpessfble fIows have evle, ehiu efoths
dimensional and unsteady. 1= cnFlrations can no e two class of flo wsae necessarily different. vipr s cous
* popely nalzedunless a coputioa Jt ta flows are soverned by a set of parabolic partial differential

* coplements experimental methods exists to analyz suchflows. equations. As first pointed out by Crocco [Ret 41 marching in
time from an arbiviray set of initial conditions is indeed the most

Technque for efficient and accurate prediction of 3-D, efficient wI Of soling unsteady compressible viscous flows.
* Incomressdble Bntayfows are als necessary for th firs Inopesne viscous flows on the other hand are gvrebyAM
* priciplebased peicln of incompressible turbulent a mixted se of elliptic and parabolic differential eutos
-hmi q~directnumerical simulations or large eftddysmulation s. oniterative time mnarching approaches difficult, eUxcept i

The of uchSuc isone of the principa reasons that first cu
blwpeito fturbulent flows past and through - o3 ~ ~ m pz shveno beenextenivel atteptedble hand 5ib flowi, enough commonalties

bewentee w floas to en-mageadpatonoI ~ ~Find, thee has been a significant interest within the algorithms developed for Incompressible fosto cmrsil
research community during the past several years in the use of flows And vice versa. For example, theiaaolcpr of the
active and passive control techniaues to improve flow qualimyressible flow equations (e4th vorticitytrnpt
reduce undesirable phnmn.Teeis coinsiderable interest In eVUAti) may be integrated usigscee such as the
the use of control JevcesT0 "promote mixng in air/fuel streams, iwcacomac scheme, or implicit approximate factorization
or bot/cold stresams to ensure uniform inflow at the schemes which are the traditional tools used in compressible flowface an to flw searaion ithn difusrs, n'! solvers. Grid jneration schemes, and graphics pro- and post

* mmd ducta ialso interest in the use of control devices to processing to are all quite similaer whether one solves the
reduce noise vibration and flutter. These control devices and @MqF-9Re~ile__flw equatNion or ie incompressibe flow



I
equatons. Nonetheless. compressible flow solvers have evolved to pressure derivative drops out in the steady state, and physically
a point where they may be routinely used to study a variety of correct solutions are achieved. If the aim is to achieve time-
problems ranging from 1-D subsonic flow to 3-D unsteady. accurate calculations, either the artificial pressure derivative
hypersonic flow. incompressible flow solvers, on the other hand, should be kept very small (which makes the equations extremelyhv shown only a limited level of success in mpredi 1 ..3-. stiA• and forces very small time steps) or an inner iterative loopI ntdy viscous flows. All evidence to date points the eIiptic within each time step should be used.

o ntion of the incompressible flow equations to be one of the
fficulties. The traditional, iterative solution of the elliptic A number of other approaches for solving incompressible

portion of the governing equations (where the unknown may be viscous flows exist, and have been demonstrated to work well for
pressure, or the scalar components of a vector stream function) a limited number of test cases. A direct inversion of the Poisson
mverges very slowly, and the convergence rae usually equation for pressure at each time step was employed by Osswald
dee=oaes at high Reynolds number and Ghia [Ref. 17]. This requires large amounts memory, because

the sparse coefcient matrix, that arises when the Elliptic
One of the commonly used approaches for solving 2-D equation for pressure is discretized, gives rise to a full matrix

kncom•pessible flows is the vorticity-velocity or the vorticity- when inverted. Thus, even a very sparse grid containing 1,000
stream function formulation. Mehta [Ref. 5), Wu (Ref, 6], Thames nodes will require one million words of storage to store the
pRaL 7l and others have used this approach. In Melbta's work, inverted matrix. Furthermore, a direct solution to the elliptic

nmsteady viscous flow past stationary and oscillating airfoils were equation alone does not necessarily guarantee stable, accurate
s tudied. He used an approximate factorization scheme to solutions of the entire equation set. Hafez et al. (Ref 181 have
i integrate the parabolic portion of the governing equations, and a looked at the decomposition of the velocity field into a rotational
"drect fast Poisson solver to invert the elliptic equation for the part and an irrotational part. This approach shares many of the
steam function. He experienced difficulties in obtaining accurate drawbacks of the traditional velocity-voricity form previously
solutions at Reynolds numbers as low as 5,000. Some researchers discussed. Higher order projection methods for solving in-

Wu) have circumvented the need to iteratively solve the compressible vs=ous flows have been documented by Bell eL. a.
Leso~n equation for velocity or stream function, by recasting the (ReE 191 and have been applied to low Reynolds number flows
differential equation as an integral relation. The operations count (Re < 5000).
for this approach dramatically increases with Reynolds number.
"* ia proach requires costly, numerical evaluation of volume The methods for solving incompressible viscous flows

integrafs in three-dimensions. Thompson (Ref, 8] studied the 3-D discussed above have several drawbacks:
jet-in-cross wind problem. As in the previous cases, the analyses
were restricted to relatively low Reynolds numbers. a) Most of them are only second order accurate in space, and

rst or second order accurate in time. Before these schemes can
A different approach for solving the incompressible be applied to phenomena such as direct numerical simulation of

*Navier-Stokes equations is to solve them in the primitive variables turbulence, it will be necessary to raise the spatial and temporal
form (pressure-velocity). Again, a variety of approaches for accuracy to fourth or higher order.
solvin these equations are possible. In some studies [e.g. Goda,
R 9,the iu-, v- and w- momentum equations are integrated in b) The iterative convergence of the elliptic portion of the
ume using an implicit or an explicit tine marchin;g scheme. The solvers deteriorates at high Reynolds numbers.pre~ssw e field which apýpears in these equations is evaluated at

each time step by soving a Poisson's equation for pressure, c) In some instances (e.g. method of pseudo-compressibility)
usually using an iterative scheme. By using a staggered storage a trade off exists between temporal accuracy and convergence
scheme where the pressure field is stored at cell centers, while te speed.
velocity fields are stored at face centers, it is possible to avoid use

.p nonphysical, extraneous boundary conditions for pressure at d) These methods do not take advantage of the vast progre
the solid surface. Brandt (Ref. 101, Ta'asan [Ref. II have shown that has been achieved in the solution of steady viscous flows. For
ta it is possible to accelerate the iterative solution of the example, with rare exceptions, multigrid acceleration of the
pressure field using classical multigrid techniques. Poisson solvers has not been attempted. Acceleration of the

iterative solution of the pressure field to convergence using
An alternative to solving a Poisson equation for pressure is spatially varying time steps and grid sequencing have also not

the Marker and Cell (MAC) algorithm developed at Ios Alamos been extensively used. Although these techniques are primarily
ýy Welch et. al. [Ref. 12]. At each time step, the velocity field is intended for steady state solutions in compressible flows, there is
first updated using an explicit time marching scheme, using the no reason why these strategies can not be used to solve the elliptic
pressure field from the previous time step. Next, the correction to partial differential equation governing the pressure (or a vector
the pressure at the center of each cell is evaluated by sunint up stream function).
the mass flux through the six faces of the cell. If a cc is
accumulating mass, then the pressure value is increased to repel e) There has been a growing interest in the use of massively
fluid away from the cell. If a cell is losing mass, then the pressure parallel computer architectures such as the Connection Machine
vague is lowered. Any change in the pressure fieldproduces a to solve unsteady viscous flows. Many of the compressible flow

corresponding change inthe velocity field, which may be algorithms have already been adapted for use on these machines
ted simply by evaluatin. the changes in the pressure [Ref. 20-22]. There is a need to develop new procedures and
t. Thus the velocity field is iteratively updated alon with modifY existing algorithms for incompressible fows, on parallel

hepressure field at each time step. Hirt and Cook [Ref. 13 have machines.
xtended the MAC method to 3-D fows, and to ear

arifatus, MATHEMAT1CAL AND NUMERICAL FORMULATION

Building upon the earlier works by Chrin [Ref. 14] and Tbe objective of the present research is to develop

Steger and Kutler (Ref 15], Kwak et. al. Ref. 161 have developed efficient, and accurate solution techniques for the analysis of 3-D,
an implicit time marching scheme for solving incompressible unsteady, incompressible flows. The algorithms to be described
flows. In their scheme, known as the method of pseudo- meet the following requirements:
m.mpressibility, an artificial pressure derivative with respect to
time is appended to the continuity equation. The entire system of a) The schemes should be fourth or higher order accurate

tions is solved by a time marchmng scheme, as in a compress- in space, and second or higher order accurate in time.

•1flow. If only a steady state is of interest, e• the added b) The solution techniques should be capable of handlin



complex internal and external flows. That is, the equations and An coupled system of equations for these delta variables
the iolution procedures should be cast in a curvilinear, time. may now be written. For example, consider the u- momentum
deformi coordinate system. equation (with density assumed to be unity):

c) Tbe solution procedures should work for a wide range ut + (U2)z + (uv)y + ap/ax = (u+ ul7 )
of Reynolds numbers, with no appreciable loss in solution
efiency. For the sake of illustration, let us assume that a second

order accuracy in time is acceptable. Then, the time derivative

d) The solution procedures should be tailored for efficient au/at will be approximated as
tion on the current generation of vector and massively au/at (u'÷•-um)/at

parallel computer architectures. a

With the above goals in mind, a solution procedure for The other term in the above equation will be evaluated at
solving 3-D unsteady incompressible flows has been developed, the 'n+ 1/2' time level:
7be key features of the present scheme are listed below. iR+ /U = (uS.A + u2)/2

) "r variables (puvw) are the primary
unknowns id the present formulation. Depending on the ux'+/ 2 'U - (ux•kl + u")/2
tubulence models to be used, additional unknowns such as the
turbulence kinetic energy k, dissipation rate e, the Reynolds stress The spatial discretizations may be carried out using either
components uv' may need to be evaluated. In three-dimensional a second order accurate central/upwind difference form or a
flows, It is believed that solving for the primitive variables higher order form. The higher order spatial accuracy may be
(p~u~vw) will be more convenient than use of vor.city-vector achieved on uniform grids using Pade' approximations to the
stream function. derivatives; on highly stretched grids, higher order afcracy may

be achieved T _ga grangeant to the variablesu uv, p etc.
b) The present scheme is iterative in nature. That is, at each In high Reynolds number flows, the Lagrangean fit need not bei step, the flow properties are updated in an iterative fashion. equal weighted about the node, but may be biased in the
Such an iterative procedure is necessary, because one of the direction of the flow. For example, when. te flow is from left to
unkowns, namelythe pressure is governed by an elliptic PDE. In right, if the Lag~angean interpolation of ui is done using nodes
some approaches, such as the pseudo-compressibliy approach, a only to the left of, and including, the current node then an upwind
noniterative marching scheme has been used. owever, such formulation results. The details of how the spatial discretization is
schemes trade temporal accuracy for the ability to achieve a done do not change the iterative solution process being described.
convergent steady state olution. If the quantities such as u2 , uv and p appearing in the

) "The parabolic portion of the governing equations employ a above difry .ation are linearized about known information u3

high order (second or fourth order in time) implicit time and u *', then a difference equation linking &u , av and ap
marching scheme. Since there is at least one flow variable results. Such an equation is given for the u- momentum equation
(pressure) that must be iteratively solved for, there is no reason below:
not to update the rest of the flow variables (uv,w) during each
pressure iteration. The use of implicit schemes removes the
necessity so choose small time steps required by stability au/At÷[•(2u)
considerations. +a1 (Ap)] /2

P Scheme .42 (5+Iy)A - - [(ua':4 -_ 3)/At + (,, (u2) + (uv) +

For the sake of convenience, the details of the present
scheme are described in a Cartesian coordinate system, and for 2- -(6U+jnU))s+1/2A-']

I D flows. Since the governing equations may be cast in a-curviline, non-orthogonal, time-deorming coordinate system in Here 1,,, 6 1 ' etc. stand for suitable, high order upwind

a form very simila to the Cartesian form, application of the or central apprtosations to the spatial derivatives.present adlgorithm on a curvilinear grid is straghtforward.
e aNote that the right side of the above equation is simply the

The goal of the present scheme is to advance the flow Crank-Nicholson approximation to the u- momentum equation. If
properties ( ,uv) from a known time step_'n' to the next timestep the right side is driven to zero, then the unsteady u- momentum
'n+-l, Let l be an iteration counter. Then a quantity such as equation will be fully satisfied at the current time level n+ 1.
uif 4 denotes the variable u at the time level 'n + 1 anditeration
Wvelle. A good starting guess for the flow variables at time level A similar equation may be writen for the v- momentum
In+ I' at the sua of the iteration process is these variables at the equation. U nkinthe quantities A u, v andA . In the case of
previous time level. That is, continuity equation, one can draw upon the Marker and Cell

approach, to link the iterative changes in pressure to changes in
J e+_._ - To" 4oq, and write
1, 1 ap - -

We also define delta quantities'Au,av and ap such that Here p is a free parameter, that may even vary from node
An 7P+ uak . j [-u t, ato node.

It sbould be noted that the addition of # Ap to the left side
AV =+•-'• vk'+U of the above equation is not equivalent to a pseudo-
A MI*J.Pcompressibility approach. As long as ap is driven to zero, the

,discretized for of the continuity equation is exactly satisfied at
Tbu9 , the goal of the iterav process at cad time step is time

ID drive these delta quantitiesu ,Auv and Ap to zero. Applying the above discretizations in time and space at all

I- -.o . .. . .
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I . CHAPTER I

INTRODUCTION

The accurate computation of three-dimensional unsteady incompressible flow

problem is one of great interest to researchers working in fields of aerodynamics,

hydrodynamics and biofluid mechanics. The flow over complex submarine shapes, flow

I past underwater propeller, flow within turbomachinery, and flow in blood vessels with

compliant walls are examples of such flows. Accurate and efficient computation of such

I flows at high Reynolds numbers is presently not possible due to the mixed (elliptic-

parabolic) nature of the governing equations. Indeed, methods for three-dimensional
incompressible flows lag behind three-dimensional compressible flows by several years.

Until accurate and efficient methods for three-dimensional incompressible, unsteady flows

become available, it will not be possible to attempt challenging problems such as the first

principles based on direct simulation or large eddy simulation of turbulent flows over
complex geometries. The lack of such tools is one of the principal reasons that the first

principles based prediction of turbulent flows past and through complex configurations has
not been extensively attempted to date.

As Gresho and Sani (ref.1) pointed out, the pressure is a somewhat mysterious

quantity in incompressible flows. It is not a thermodynamic variable since there is no
'equation of state' for an incompressible fluid. It is in one sense a mathematical artefact - a

Lagrange multiplier that constrains the velocity field to remain divergence-free ; i.e.

incompressible - yet its gradient is a relevant physical quantity ; a force per unit volume. It
propagates at infinite speed in order to keep the flow always and everywhere
incompressible ; i.e. it is always in equilibrium with a time-varying divergence-free velocity

field.

One might have the idea that the compressible Navier-Stokes equation solvers can

compute incompressible flows using compressible flow methods, and setting the Mach



I
* 2

number to be very low. But this idea becomes impractical at very low Mach numbers

because the compressible Navier-Stokes equation solvers have a singular behavior as the

Mach number approaches zero. This leads to an ill-conditioned stiff system of equations

and consequently very slow convergence, or even divergence of the solution with time.

-This stiffness can be explained as a time step limitation (ref.2). We note that all explicit
-methods for solving the compressible Navier-Stokes equations are limited to a time step
which is less than that given by the CFL condition. For example, in two-dimensions

iAt < 1
(lul/ Ax) + (Ivl / Ay) + a[(1 / &)2 + (1/&Ay) 2] (1.1)

where a is the speed of sound. From this condition, we observe that At approaches zero

as the speed of sound approaches infinity. As a result, an "infinite" amount of computer

Stime would be required to compute a truly incompressible flow in this manner. Implicit

methods will permit a larger At, but the maximum value is normally less than 100 times

3 that given by Eq.(1.1) because of truncation errors, approximate factorization errors, and
so on. Thus, even if an implicit scheme is used, it is not practical to compute a truly

incompressible Navier-Stokes solution using compressible flow methods.

The significant difficulty in solving incompressible Navier-Stokes equations is that

the governing equations are a mixed elliptic-parabolic type of partial differential equations:

The continuity equation does not have a time derivative term and is given in the form of a

3 divergence-free constraint. This is another major difference between the incompressible and

compressible Navier-Stokes equations. The absence of a time derivative term in the3 continuity equation prohibits time integration of continuity equation by a time marching

scheme. The compressible Navier-Stokes equations, on the other hand,are efficiently
integrated by time marching schemes because they are a set of parabolic partial differential

equations.

3 One of the commonly used approaches for solving two-dimensional incompressible

flow is the vorticity-velocity or vorticity-stream function formulation (ref. 3,4,5). This is

Svery efficient for two-dimensional problems, but this approach can not be extended

straightforwardly to three dimensions. Consequently, the incompressible Navier-Stokes

equations for three-dimenrional problem are normally solved in their primitive variable

form (p,u,v,w). Most methods using primitive variables may be classified into three

groups. The first approach is the pressure Poisson method or Marker-and-Cell (MAC)

I
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method which was first introduced by Harlow and Welch (ref.6). In the pressure Poisson
method, the velocity field is advanced in time by solving the momentum equations with a

stable explicit or implicit time marching scheme. Then the pressure field is evaluated at each

time step by solving a Poisson equation for pressure directly (ref.7) or iteratively
I.(ref.8,9,10). The continuity equation is thus satisfied when the pressure field is computed
-implicitly. This Poisson equation for pressure is obtained by taking the divergence of the

I -unsteady momentum equations. The main idea of the MAC method (ref.11,12), an

alternative to solving a pressure Poisson equation, is that the pressure field is updated at
each time step by adjusting the pressure by an amount proportional to the negative of the

velocity divergence :

k k-IV)k-
Pij (V.V l (1.2)

Here the superscripts 'k' and 'k-l' denote the iteration level, and D3 is a relaxation factor.

Usually, a staggered grid system (ref.6) is used for the MAC method, because such a grid
does not require the specification of pressure on the boundaries and does not produce

unphysical oscillations in the pressure and velocity fields due to the central differencing of
the pressure gradient term. The second approach is a projection method (or, fractional step

method ) which was first introduced by Chorin (ref. 13). At the first step, an intermediate
velocity is computed from the momentum equation without the pressure gradient term.

Then a pressure field is computed which will make the velocity field obtained from the first

fractional step divergence free. Finally, a second fractional step is performed using the

pressure field just computed. The third group is the pseudocompressibility method

(ref.14,15) which was also first introduced by Chorin (ref.16) primarily for obtaining

steady state solutions. In this method, an artificial pressure derivative with respect to time is

appended to the continuity equation. The entire system of equation is solved by a time
marching scheme developed for compressible flows, such as the approximate factorization

scheme (ref.17). If only a steady state is of interest, then the added pressure derivative
drops out in the steady state, and physically correct solutions are achieved. If the aim is to

achieve time-accurate calculations, either the artificial pressure derivative should be kept
very small (which makes the equations extremely stiff, and forces very small time steps) or3 an inner iterative loop within each time step should be used (ref.18,19). A concept similar
to the pseudocompressibility method, known as the penalty function method (ref.20) is

widely used in the finite-element based incompressible flow solvers, which solves for p to

satisfy:

I
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I •p+V.V=O (1.3)

I" In this method, the pressure gradient term of momentum equation is eliminated by

substituting Eq.(l.3) into the momentum equation, and then solving the momentum

equations with X -*0.

The methods for solving incompressible viscous flow discussed above have several

drawbacks :

a) Most of them are only second order accurate in space, and first or second order accurate

in time. Before these schemes can be applied to phenomena such as direct numerical

simulation of turbulence, it will be necessary to raise the spatial and temporal accuracy to

3 fourth or higher order.

b) The iterative convergence of the pressure Poisson solvers deteriorates at high Reynolds

numbers.

c) In some instance (e.g. in the pseudocompressibility method), a trade off exists between

temporal accuracy and convergence speed.

d) These methods do not take advantage of the vast progress that has been achieved in the

solution of steady, viscous flows. For example, with rare exceptions, multigrid

acceleration of Poisson solvers has not been attempted. Acceleration of the iterative solution

of the pressure field to convergence using spatially varying time steps and grid sequencing3 have also not been extensively used.
e) There has been a growing interest in the use of massively parallel computer architectures3 such as the Connection Machine to solve unsteady viscous flows. Many of the

compressible flow algorithms have already been adapted for use on these machines. There

3 is a need to develop new procedures and modify existing algorithms for Unmpresible

fl2& on parallel machines.

I The objective of this study is to develop an efficient and accurate solution

technique for the analysis of two- and three-dimensional, unsteady, incompressible,

viscous flows. The key features of the present scheme are listed below:

a) The primitive variables (p,u,v,w) are the primary unknowns in the present formulation.

b) The equations and the solution procedures are cast into a curvilinear, time-deforming

coordinate system to handle complex internal and external flows.

c) An iterative time-marching scheme is used.

d) The present scheme is semi-implicit at each iteration and is suitable for efficient

i execution on the current generation of vector or massively parallel computer architectures.

I
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e) The solution procedure works for a wide range of Reynolds numbers, with no

appreciable loss in solution efficiency.

f) The present scheme is first order accurate in time and second order accurate in space, but

higher order accuracy in space and time is easily achievable.

Only laminar flow is considered in the results to be discussed because the goal of

-this study is to develop an efficient and accurate incompressible Navier-Stokes solver. This3 method is however capable of handling turbulent flows provided a suitable turbulence
model is used, and there are no inherent limitations in this method that will restrict it to

3 laminar flows.

I
I
I
I
1
I
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3 CHAPTER H

MATHEMATICAL FORMULATION

In this chapter, the governing equation for three-dimensional, unsteady,

incompressible, viscous flow are presented in terms of the primitive variables (p,u,v,w) in
both the Cartesian coordinate system and a curvilinear non-orthogonal, time deforming3- coordinate system.

1 2.1 Governing Equations in the Physical Domain
The motion of an incompressible viscous flow is governed by the conservation of

mass and momentum, so called the continuity equation and the Navier-Stokes equation.

Three-dimensional unsteady, incompressible, laminar, Navier-Stokes equations in an
inertial Cartesian coordinate system may be written in a non-dimensional form as follows :

--q + (E - E,,) + -- (F - (G - G,,) = 0 (2.1)

I where

uu 2 + p uv uw
q= ; E= ;v F= v2 + G= v

W 2(2.2)

Ii01+ 1 °1
I' F '0

Rev IZ "~ . G-- = T
1e T FY Re 1 I Re-

e stess LvJ

The stress terms are given by
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T ,,= (20_. u a wI +- - '-y), (2<.3)
3 ay v

TU• = ! (2a -a-a

i In Eq.(2.2) and Eq.(2.3), u, v and w are the normalized Cartesian components of velocity,

_ p is the normalized pressure, and Re is the Reynolds number defined as:

Re=TY.F (2.4)

where p, V.., L and 1± are fluid density, freestream velocity, reference length and

II 7

coefficient of viscosity (dynamic viscosity), respectively.
The governing equation (2.1) is a mixed set of elliptic-parabolic partial differentialSequations. As mentioned before, the absence of a tize derivative in continuity equation and

the absence of an explicit relationship between pressure and divergence-free condition on
the velocity prohibit time integration in a straightforward manner by a stable time marching
scheme. In this study, the continuity equation is modified to directly link the iterative

I changes in pressure to changes in velocity, as done in the Marker-and-Cell method.

2.2 Governing Equations in the Computational DomainIaIf the above equations are directly used on a Cartesian system to flow past complex
geometries, the imposition of boundary conditions will require a complicated interpolation
of the data on local grid line in ce the computational boundaries of complex geometries
do not coincide with coordntinies.This leads to a local loss of accuracy in the computed
solution and leads to a complex program. To avoid these difficulties, a transformation from
the physical domain (Cartesian coordinates(txyz)) to computational domain (generalized5curvilinear coordinates(xTaoi)) is used. After transformation from the physical domain to

the computational domain, the governing equations can be written as:



(F'*-V)+!(-dV)8aM (2.5)

where

vU-4, J vVpi. V W+Pt

LwU +p A-JLwV +pi [1- wW + Pr,

and01

3L~ (V4. - Q4+(4 7),+(4-VU
[ e(V4t. VQ)w + (V4 . Vii)Wq + (V4 -VQ)wV

i Vii )u, + (V71. V11)u. + (VTI V)u

J Re (VII V~)vt + (VTii ViivO+ V i

* [ 0
(V V4U +IV nu +(t-VU (2.7)

G I Re (Vý VQ)V4 + (Vý Vii)v', + (Vt -. V

L(VM V~)w, + (Mt. VTI)w,, + NVt. V~)w,

I ~with the contravariant velocities U, V and W:

IU = 4t+ U4 + v~ + 4
V = ?It + U11 +VT"Y + WTI (2.8)

Here J is the Jacobian of transformation
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a(x.y,z) xt xn x;
y4 y- y; (2.9)

z4 zq z;

bThe quantities 71, 12 and ý, are presented if the grid is in motion (as in the case of flow

_past an oscillating airfoil or a spinning propeller). These quantities are given in terms of the

velocity of the grid (xt, yt, z.) with reference to a stationary observers:

4t= - C4x- YZ 4Y- Z.T 4z

flt = - Xt TlR - Yr Tly - z7 11z (2.10)3t = - X - Yr ýy -Zz ý

I
i
I
S
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. CHAPTER III

*o
NUMERICAL FORMULATION

The numerical procedure for solving the governing equation is an iterative time

marching scheme which attempts to solve the discretized form of equations to a user-

specified accuracy at any time step. Details of the iterative process are given in this chapter.

3.1 Grid Generation
The present method is a finite difference scheme which solves the discretized form

of the partial differential equations at a set of discrete points in the flow field. Therefore, a

set of grid points within the domain, including its boundaries, must be specified before

solving the governing equations. Such a body-fitted grid system may be generated by

conformal mapping, by algebraic method, or by partial differential equation techniques. In

this study, body-fitted C-grid (Fig.l) and H-O grid system (Fig.5) are generated by an

algebraic method for two-dimensional flow around NACA 0012 airfoil and three-

dimensional flow around the ellipsoid of revolution, respectively. For the three-

dimensional curved duct problem, a sheared/rotated Cartesian grid is used.

3.2 Grid Motion
In unsteady state computations, it is convenient to use a moving grid to account for

the body motion. The grid is attached to the body and it rotates or translate with the body.

The grid coordinates can be advanced explicitly by a first order time marching scheme:

I ~x2+1 =f xO + xn At

yx÷+ = ya + yx At (3.1)

I z0+1 = za + z; At
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However, if only a pure rotational motion is considered (say in a two-dimensional flow

problem), new coordinates of grid at any instance in time can be simply obtained by using

the following relations:

I[xJ=[COsO -sine [x]2

where (x, z) is the instantaneous x, z values of the node and (x',z') is the x, z values of the

node prior to rotation, and 0 is the clockwise rotation angle. In such a case x. and z., may

be found by analytical differentiation of (3.2) with respect to time or from (3.1).

3.3 Iterative Time Marching Procedure
The goal of the present procedure is to advance the flow properties (p,u,v,w) from

a known time level 'n' to the next time level 'n+l'. First of all, let us consider the

momentum equation. Since the momentum equation is a parabolic type of partial differential

equation, it can be solved using a time marching scheme as follows:

l(n1 ._n~lI (q~ -_,n) + En +÷" + 8 n•"' + 8 n ÷n•

6 rn +M + 8 r A÷m + r U+÷ (3.3)

where • is e of Eq.(2.6) excluding the first row element, i.e.,

qfi4Ei (3.4)

Similarly, E,F, G , ,F,,and GU can be also defined. For example,

uU + pt1

SvU+p4 (3.5)

LwU + pt"
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The above discretization of Eq(3.3) is first order accurate in time if 'm' is zero or one, and

second order accurate if 'm' is set to 1/2. The operators, 80,8n and 8; represent second

order accurate or higher order accurate spatial differences. The higher order spatial accuracy

may be achieved on uniform grids using Pade approximations to the derivatives; on highly

-stretched grids, higher order accuracy may be achieved using a Lagrangean fit to the flow

"variables. In high Reynolds number flows, the Lagrangean fit need not be equally weighted
"about the node, but may be biased in the direction of flow. For example, when the flow is
from left. to right, if the Lagrangean interpolation of flow variables is done using nodes

only to the left of, and including, the current node, then an upwind formulation results.

If the Newton iteration method is applied to solve this unsteady flow problem,
Eq.(3.3) is rewritten as follows :

1q--n+l. k+1 -_ n) + q n+m. k+1 + fn+mn k+1 + 8 n+m, k+I

8 n+m , k+ 1 Tf n+m. k+I + "n+ l, k+ l

4,•v +8"1 v -UVj'

Following a local linearization of E, F, G, Ev, F and Gv about the 'n+m' time level and

at the 'k' iteration level, one may have

(I +kA +-a>B + aC ) A Rq Rn+m, k (3.7)

where 0) is a relaxation factor and A, B and C are the Jacobian matrices of the flux vectors

f - Ev, F - Fv and U - U., respectively:

3 A =(EEV) B= a(FFv) = (3.8)

and •n+,. k is the residual vector, defined as:

Kn+m. k -q _K nm k + -4nm k + Gn+m.
AT€

+(8,fn+m. k + jpn+m. k + s -n+m. k) (3.9)

I 8v G
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Note that when Rn+m, k goes to zero, the momentum equations in their discretized form are

exactly satisfied, and the solution is independent of co, and any approximations made in the

construction of A, B and C.

Next, let's consider the continuity equation. As mentioned in Chapter I, in order to

-solve incompressible viscous flow problems efficiently, we need a relationship coupling

"changes in the velocity field with changes in the pressure field while satisfying the
"divergence-free constraint. In the present study, the Marker-and-Cell (MAC) approach is
used to link the iterative changes between them, and can be written:

A=P- (V. V)n+l 'k (3.10)

where Ap , pn+l, k+I - pn+1. k

and 0 is a relaxation factorthat may even vary from node to node using local time concept.

Again, when Ap goes to zero, the continuity equation is exactly satisfied at each time step,

even in unsteady flows.
In curvilinear coordinate system, Eq.(3.10) can be rewritten as:

44. T4 )=0I ±(Xzfi ac0U 4+L -)+A{_W )Jn+Ik (3.11)

The contravariant velocities, U, V and W are already defined in Eq.(2.8).

Eq.(3. 10) states that if a cell is accumulating mass, then the pressure value at next

iteration is increased to repel fluid away from the cell. If a cell is losing mass, then the

pressure value is lowered to draw fluid. Thus the pressure field is iteratively updated along

with the velocity field until the conservation of mass is satisfied.

Combining the momentum equation, Eq.(3.7) and the continuity equation,
Eq.(3.1 1) , and applying the numerical discretization in time and space at all nodes in the

flow field, a system of simultaneous equation results for the quantity A& equal to

p A v1 A ).L This system maybe forally written as:

[M]{A4} = {R} (3.12)
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Here, since the right hand side is the discretized form of the unsteady governing

equations, as long as {AJ4} is driven to zero, the discretized form of unsteady Navier-

Stokes equations are exactly satisfied at physical time level 'n+1'.
Although the matrix (M] is a sparse, banded matrix, direct inversion of this matrix

-requires a huge number of arithmetic operations. A common strategy in iterative solutions

-of elliptic equations is to approximate the matrix [M] by another, easily inverted matrix

""[ N]. The closer the matrix [ N] is to [MW, the faster the iterative convergence of the

solution at any time step. In this study, matrix [N] contains only the diagonal
contributions of matrix [M , and Eq.(3.12) becomes an explicit form which is easier to be
tailored for efficient execution on the current generation of vector or massively parallel

computer architectures than an implicit form. This simplicity comes at the expense of the

iterative speed. Acceleration of the iterative process above is a major contribution of this

work to the state of the art.

The spatial derivatives of convective flux terms are differenced by using third order

accurate upwind QUICK (Quadratic Upstream Interpolation for Convective Kinematics,
ref.21) scheme to reduce unphysical oscillations or false diffusion for high Reynolds

number flows, and the spatial derivatives of viscous terms are differenced using half-point

central differencing. The spatial derivatives of continuity equation is differenced with
central differencing and a fourth order artificial damping term is added to the continuity
equation to stabilize the present procedure. The QUICK scheme is constructed that, instead
of such a linear interpolation for the convective terms as used in standard one-sided
differencing schemes, a three-point upstream weighted quadratic interpolation is used. For

example, let's consider the convective term in 4-direction which may be approximated as
follows:

2 2
where

whee = (U) + {ui+ u,) g2 CURV+1+i
S(3.14)

(uU) = (U) J•{(ui-1+ui)_A 2 CURV }

2 2 8

The curvature terms (CURV) depend on the direction of the contravariant velocity U:



* 1574T = u~ -+ 2ui + ujj if U ° 0
2 (Ui+2-2ui+lu+U) if U 1 (0 (3.15)

- 1 (ui- 2ui-1 + ui-2) if U. ) 0

CURV'.. I if+ . 2 (3.16)

(Ui+l --2Ui + UjifU. (0

I,.

U= i-2 i-0 W+1

(a)

Si-4 +1 i+2

(b)
Fig. 3.1. Quadratic upstream interpolation

(a) For U > 0
(b) For U < 0

3.4 Initial and Boundary Conditions

The governing equation (2.1) and (2.5) is a mixed elliptic-parabdlic type of partial
differential equation, and requires initial conditions to start the calcuiation as well as

IU
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boundary condition at every time step. The parabolic nature of the flow ensures that the

flows will be independent of initial conditions, after large number of time step.
In the present work, the quantities Ap, Au, Av and Aw are set to zero at all solid

and fluid boundaries. The boundary conditions are updated after every interior points

.updated during each iteration. Thus the boundary values as well as interior values are

iteratively advanced from a time level 'n' to 'n+l'.

Initial Conditions :

In the case of external flows, we assume that the object is impulsively started from

rest. Therefore, the uniform freestream conditions are used as initial conditions. In the case

of internal flows, parallel flow solutions (e.g. Poiseulle flow in a square duct) are used to

start the calculations.

Farfield Boundary Conditions
For external flow applications, the farfield boundary is placed far away from the

solid surface. Thus, it is natural to specify the freestream values at the farfield boundaries

except along the outflow boundary where the extrapolation for velocities in combination
with P = P is used, to account for the removal of vorticity from the flow domain by

convective process.

Boundary Conditions on the Solid Surface:
On the solid surface, the no slip condition is imposed for velocity components. The

surface pressure distribution is determined by solving the normal gradient of pressure to be
zero:
zer0 

(3.17)

I Some researchers (ref.22, 23) obtain the boundary conditions for pressure from the normal
component of momentum equation at the wall

S=1 a2un (3.18)

an R e -n

where u. is the normal component of velocity. In high Reynolds number flows, the

viscous stress contribution to the normal momentum equation can be neglected at the wall

and the grid point adjacent to the surface will be sufficiently fine so that constant pressureInormal to the surface can be assumed. Thus Eq.(3.17) is an acceptable boundary condition.
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Boundary Conditions on the Cut and Singular Line :

Since the C-grid and the H-O grid which are used for two-dimensional airfoil
problem and three-dimensional body of revolution have a cut and singularlines,
respectively, special treatment is needed (see Fig. 3.2 and 3.3). Across the cut of the C-
grid system, flow quantities should be continuous. The flow quantities on the cut can be -3 -obtained by averaging the flow properties from above and below the cut. On the singular
lines that occur in a H-O grid system, the flow quantities are obtained by extrapolating from
two adjacent interior points and then averaging them azimuthally to ensure that the flow

quantities are singe-valued.

S~Cut

Fig.3.2 Cut of the C-grid system

I

3 Singularline

3 FSingularline

Fig.3.3. Singularline of the H-O grid system
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1 3.5 Acceleration by Multigrid Technique
Since the matrix [NI (which is an approximate to matrix [M] of Eq.(3.12)) is a

simple diagonal-matrix, it leads to slow convergence of the pressure and velocity fields at
every time step. Use of such a simple diagonal matrix simplifies the inversion, and makes3 the flow solver 100% vectorizable and parallelizable. To accelerate the present procedure, a
multigrid technique (Coarse Grid Correction method) is applied in this study.

I The principles behind the present multigrid technique are as follows. The quantities
(Au, Av, Aw, Ap) may be viewed as Fourier series-like sums made of components of

different wave lengths. An extremely coarse grid linking a point to a node several units

away is effective in computing the long wave length components. A very fine grid is
effective in computing the short wave length components, and is very inefficient for
computing the long wave length components. The multigrid technique attempts to compute
these individual components of Aq on grids of several levels efficiently. When the process

Sconverges, of course, the discretized equations (i.e. RHS of Eq.(3.7) and (3.11)) are

exactly satisfied on the finest grid.

The coarse grid correction algorithm presently used (given here for 2-grid sequence

for simplicity) is as follows:

i) Compute the residual {R} appearing on the right hand side of Eq.(3.12) on the fine grid

using qn÷1A.k
ii) Transfer the residual from the fine grid to the coarse grid using the injection operation,

I• R. An injection operation is given at any node (ij) in two-dimensional case by

I2h R.=R.+ R +R +R

h i 3j ( .= iR.j i j'1 ) (3.19)

+ !(Ri+l.j- 1 + Ri-,,j+l + Si-l.j-1 + Ri+,j+l)

and in three-dimensional case:

12h Rj.k = R~ik + !(Rij-lk + Ri+l.j.k + Ri.j+lk + Ri-l.jk

+ Ri~j,k-1 + Ri.j,k+l) + 1 (Ri-IJ-Lk + Ri+l.j-l.k

+ Ri+l~j+l.k + Ri-I.j+Ik + Rijfl,k-l + Ri~j~l~k-l

+ Ri.j+l,k+l + Ri.j-l.k+l + Ri-lk-I + Ri+Lj.k-I (3.20)
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+Ri+l..k+1 + R-.j, +R

S+ Ri+l.j+Lk-. + Ri-l.j+l.k-I + Ri-1,j-1,k+1 + Ri+l.j-l.k+l

== ÷ Ri-l~j+l.k+1 + Ri+l~j+Lk+l )

5
iii) Compute the quantity Aq at every point on the coarse grid by solving the system of5 equation : [N]{Aq / J} = 112hR(

iv) Interpolate the Aq values computed in step (iii) back on to the fine grid by using the

bilinear interpolation.

v) Compute the updated values of the flow properties q,÷1,=+ as q.. + Aq.

Repeat step (i) - (v) till Aq is driven to zero.

The present 2-D solver accepts grids upto 3 levels.
To the writer's knowledge, the multigrid technique in unsteady incompressible

flows has been applied only to pressure-Poisson equation. The u-, v- and w- momentum

equations are usually solved only on a single grid. The present work fully exploits the
benefits of the multigrid method for all the equations, while keeping the form of the matrix
[N] extremely simple. This allows use of larger time steps and improved convergence as

discussed on Chapter IV. The present investigator applied a conjugate gradient like scheme,
called the GMRES (Generalized Minimal Residuals) to solve Eq.(3.12). The matrix [N]
was used as the preconditioner. The success of the GMRES scheme crucially depends on

the closeness of [N] to [M] That is the eigenvalues of the matrix [I - N-1M] must be

small and closely packed. The use of GMRES with [N] as a preconditioner was not

successful.

IC
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I
3-CHAPTER IV

RESULTS AND DISCUSSION

In this chapter, the work done to date is presented. To validate the present

I procedure, three cases were tested. The first test case is two-dimensional unsteady viscous

flow over an oscillating airfoil. The-second is three-dimensional steady flow over an

ellipsoid of revolution. The third is the flow through a curved duct. Numerical results are

presented in the form of instantaneous streamlines, velocity profiles, vorticity contours,

surface pressure distribution, and aerodynamic loads. Streamlines and surface pressure

distributions are compared with flow visualization and the other available numerical data.

4.1 Dynamic Stall of an Oscillating Airfoil

The computations were carried out for a sinusoidally pitching NACA 0012 airfoil,

at Re = 5,000 and Kc = 0.5, where x is reduced frequency of oscillation,defined byI fc (4.1)•: = "2" -c
2 V..

where Q is the radians of rotation per second and c is chord of airfoil. The physical

interpretation of reduced frequency is the number of radians of oscillation per semi-chord

length of travel. This case has been previously studied by Mehta (ref.3) at NASA Ames

Research Center using a velocity-vorticity formulation and its flow visualization was

carried out by Werle (ref. 24) in ONERA.

After the flow is fully developed at zero angle of attack, the airfoil is allowed to

oscillate in pitch through an angle of attack range from 0 degree to 20 degree given by3 = 10"(l - cos t). Fig.l shows the body-fitted grid around the airfoil used in this study.

Fig.2 shows the instantaneous streamlines (actually, called particle tracers in PLOT3D
software), velocity profiles and vorticity contours at selected angle of attack. Fig.3 shows
the surface pressure distribution. In general, the streamline patterns and surface pressure

distributions are in very good agreement with flow visualization and Mehta's numerical
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U results except that the present procedure predicts a little earlier generation of vortex than
Mehta's method. The flow visualizations were carried out with air bubble in the water

tunnel. Here, we should note that photographs showing air bubble trajectories were taken

at an exposure time of 1/10 seconds. Therefore, in unsteady flow the air bubble trajectories

at near the surface of airfoil represent neither streamlines nor streaklines because the pictures
contain many paths over the exposure time. On the orther hand, the instantaneous3 -streamline is a streamline at any instant of time, i.e. we assume the flowfield is frozen at

any instant of time and draw the streamline. In other words, the instantaneous streamline is3 equivalent to the bubble trajectories with an infinitesimal exposure time. Thus, the flow

visualization with air bubble is different from the instantaneous streamline, and should be
used only for qualitative comparison. Fig.4 shows the lift, drag and moment hysteresis

loops. The main feature of dynamic stall which is significantly different from static stall is
due to the generation of a vortex near the leading edge. This vortex passes over the upper
surface of airfoil, creating large variations in the aerodynamic forces and moment. From

these figures, it is seen that the growth of lift during the upstroke is slow and gradual, well
past the static-stall angle. The separation region, which is present over a small region near

the trailing edge at first, moves upstream as the angle of attack increases. The pitching

moment does not change much during the upstroke. The surface pressure distribution at an

angle of attack of 18.6 degree shown in Fig.3 shows another pressure peak near the quarter

chord. This indicates the leading-edge vortex is already generated, and this can be identified

in Fig.2 (c). As the leading-edge vortex moves downstream, the chordwise surface
pressure distribution and aerodynamic forces are significantly varied, especially during the

downstroke. This variation may depend on the Reynolds number, airfoil shapes and
reduced frequency. The moment stall, associated with an increase of negative moment,

begins at about 18.5 degree in the downstroke.

4.2 3-D Steady Flow over an Ellipsoid of Revolution

To validate the capability of the present method to handle three-dimensional viscous

flows, the present procedure was tested by computing the flow past a 6:1 ellipsoid of

revolution at 10 degree angle of attack, at a Reynolds number of 5,000. Fig.5 shows the
body-fitted grid system. Fig.6 shows streamlines over the body surface. There is a limited

amount of experimental data (ref.25, 26) available for this particular configuration, at high

Reynolds number (Re=7.2 x 1f0 ). Fig.7 shows the surface pressure distribution on the
windward and leeward sides of the symmetry plane. along with the experimental data.
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Good agreement is evident everywhere except in the last 10% of the body, where the
present laminar simulation predicts flow separation, and a flattening out of the pressure
distribution.

4.3 3-D Steady Flow through a 90' Bended Square Duct

To validate the capability to handle three-dimensional internal flow problems, the
flow within a square duct with a 90-deg bend was tested. The radius of curvature of the
inner wall in the curved section is 1.8 times of the side length of square cross-section. This
particular configuration (Fig.8) was experimented by Humphrey et al. (ref.27) and

numericallycalculated by Kwak et al.(ref.19) at a Reynolds number of 790 based on the
average inflow velocity and hydraulic diameter. The inflow and outflow velocity profile are

I obtained by solving the equation of fully developed duct flow (ref.28):

u + 0 1 = dp = const. (4.2)

dx

This equation is a standard form of Poisson equation and can be solved by ADI scheme.

I Fig.9 shows the streamwise velocity profiles compared with the experimental data of
Humphrey et al.and numerical data of Kwak et al. The results are in general good3 agreement with experiments and the other numerical solution.The present grid system is
75x41x41. In Fig. 10, the cross-sectional velocity profiles are plotted at 0 = 30, 60 and 90
deg. The top side and bottom side of cross-section are the inside wall and outside wall,

respectively. In this figure, the pair of vortices and the secondary flow are shownm.These
vortices ane generated due to the pressure difference between the higher pressure on the
outside wall and lower pressure on the inside wall. Fig.1 1 and 12 show the velocity
magnitude contours and the vorticity magnitude contours at the three selected streainwise
stations, respectively. The plot on the left side of Fig.13 is a sideview of streamwise
velocity profiles at y/y1/2 0.5, which is midway between the left side wall and the
symmetry plane of square duct and the right side plot is at Y/Yin - 0, which is on the

symmetry plane. The inside and outside wall are corresponding to z - 0 and z = 1,
respectively. Fig.14 shows streamwise velocity profiles from a viewpoint which is located

at upper 450 in the xz-plane. The plot at z = 0.25 is corresponding to the midway plane
between the inside wall and the plane of symmetry. The plots at z - 0.5 and 0.75 are on
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the plane of symmetry and the midway between the outside wall and the symmetry plane,

respectively. Fig.15 is the streamlines viewing from the three different viewpoints, i.e.,
front, oblique, and side view. We can see the vortex pair which is originating from about 0

=00. Fig.16 is the pressure contours in the curved section and shows the higher pressure

on the outer wall due to the centrifugal forces.

4.4 Acceleration of Flow Solver by Multigrid Technique

The multigrid technique was implemented to the two- and three-dimensional solver.

In two-dimensional case, the fine grid system has (81x41) grid points and the coarse grid

system has the half of the fine grid points, i.e. (41x21) grid points, and the coarsest grid

system has (21xl 1) grid points. The two grid system consists of the fine and coarse grid
system (Fig. 4.1.(a)) and the three grid system consists of all of them as shown in
Fig.4.1.(b). Especially, three grid system such as Fig. 4.1.(b) is called V-cycle.

Fine Grid

Coarse Grid

Coarsest Grid (b
(a) (b)

Fig. 4.1 Structure of muhigrid cycle

(a) Two-grid system

(b) Three-grid system

Fig.17 shows the convergence history of the global residual (12 -norm of RHS of Eq

(3.12)) reduction in CPU time for 2-D steady flow over NACA 0012 airfoil at zero angle of

attack. Upto 40% and 60% acceleration was obtained.using two- and three-grid system,
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3= respectively. The CPU time is based on 25 iterations at each time step on an IBM
RISC/6000 workstation. Fig. 18 shows the history of global residual of 2-D unsteady state3 for sinusoidally oscillating airfoil (50 iterations/time step), where the three-grid system is
used for multigrid. The residual by the multigrid technique maintains lower level than that
of single grid iteration procedure indicating that the discretized equations are solved to
much high levels of accuracy using the multigrid technique. The surface pressure
distribution and dynamic stall hysteresis is nearly the same as those of single grid system
and are not plotted here. In three-dimensional case, the multigrid technique was
implemented to the flow solver for 900 bended square duct problem. The three level of grid
system consists of (65x21x21), (33x1 lx11), and (17x6x6). Fig.19 shows the comparison

of convergence history with and without multigrid method. Here we got much better
quality of solutions with multigrid technique than were without multigrid technique.
Furthermore, The grid system (65x21x21) is so coarse that it can not detect the sufficiently

strong vortex core and the residual of solution without multigrid technique remains of the

order of 100. Thus the solution with single grid/non-multigrid version is not accurate. The
comparison of solutions with multigrid and without multigrid is shown in Fig.20. The
solutions of fine grid(75x41x41) system with single grid are also plotted to compare the
intensity of vortex. From this figure, it is clear that the multigrid analysis is adequately
resolving the counter-rotating vortex pair.

4.5 3-D Steady Flow around a Marine Propeller

The flow around a marine propeller is a challenging problem because the geometry
is much more complex than the aircraft wing and helicopter blades. The high twist, low
aspect ratio, close proximity of other blades and high rotational speed make the flow
around a propeller highly three-dimensional and complex, featuring centrifugal forces,
formation of curved tip vortices and leading edge vortices.

Technique for efficient and accurate prediction of 3-D incompressible viscous flow

around a marine propeller are necessary for accurate prediction of performance. Moreover,
the lack of such tools is a major obstacles to the accurate calculation of cavitation and
propeller noise.

Numerical methods to solve flow around propellers range from Goldstein's strip
theory (1929) to Navier-Stokes equation solvers. The Goldstein's strip theory models the

propeller by a lifting line vortex in a potential flow and assumes that the wake is a rigid
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helical vortek sheet. This theory can handle only a straight blade without a nacelle. Sullivan
(1977) and Egolf (1979) improved this theory to account for blade sweep and nacelle by
using the curved lifting line concept and vortex filaments. A review of potential flow
method applicable to propellers is well described by Kerwin (1986). Jou (1982) has

applied the full potential equation with a finite volume approach to solve propfans but his
method can not catch the strong rotational flow effects near the leading edge. Euler
equations have been applied by many researchers such as Chaussee (1979, 1983), Bober
(1985, 1986) and Whitfield (1987). For a more accurate prediction, Srivastava and Sankar

(1990) developed an iterative method which couples the Euler equation solver and
NASTRAN to model structural deformation due to aerodynamic forces and centrifugal
forces. Full Navier-Stokes equations have recently been applied to advanced propfans by
Matsuo (1988) and Hall (1991). Lim and Sankar (1993) extended the Euler equation solver

of Srivastava and Sankar to full Navire-Stokes equations using the Roe upwind scheme.
These Navier-Stokes equation solvers are based on the compressible Navier-Stokes
equations and can not accurately predict incompressible flow solutions. Kim (1989) applied
incompressible Navier-Stokes equations in the cylinderical coordinate to an infinite-pitch

marine propeller with rectangular blades by using the SIMPLER algorithm. Although their
work can simulate marine-propeller flow fields, including propeller loading and complex
blade-to-blade flow, the infinite pitch propeller with rectangilar blade shape is not realistic
and no experimental data is availble for comparison.

The above procedure for solving 3-D unsteady incompressible viscous flows
without cavitation has been applied to the flow around a 2-bladed SR7L propeller as
shown in Fig. 1. The present scheme is time accurate and the steady state solutions
are obtained as asymptotic solution of the time marching process. Fig.2 shows the
H-O grid for a 2-bladed SR7L propeller. Fig.3 shows the pressure coefficient
distribution at some selected spanwisw location at a nondimensional time of 0.3 in a
single grid system (without accleration by multigrid technique), compared with
experimental data by Bushnell (1988) and compressible Navier-Stokes equation
solutions by Lim and Sankar. A fairly good agreement with experimental and other
numerical data was achieved except near the leading edge region. These

discrepancies are because at the nondimensional time = 0.3, the flow has not
evolved enough to generate leading edge vortices. At later time levels, it is
anticipated that the suction peak near the leading edge will be higher.
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g CHAPTER V

3 CONCLUDING REMARKS

U
An accurate and efficient iterative time marching procedure for two- and three-dimensional

unsteady, incompressible, viscous flow has been developed. It has been applied to the following

cases with success:

(a) Massively separated flow over oscillating airfoil,
(b) Three-dimensional flow past an ellipsoid of revolution,

(c) Three dimensional flow through a square duct with a 90-deg. bend
(d) Three-dimensional flow around a marine propeller.

Good agreement with published experimental and numerical data has been obtained. After

the validation of the present procedure, techniques for acceleration were explored. It was found

that the multigrid technique was efficient in reducing the CPU time needed for the simulation and
improved the solution quality because of the lower residuals achieved.

This report is a draft copy of the Ph. D. dissertation of Mr. Warn-Gyu Park, and will in its
Scompleted form include changes suggested by the thesis committee. A copy of the finished form of

the thesis will be mailed to the sponsor around March 1993.I
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