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AFIT/GSM/ENC/92S-9

Abstract

This research created a graphics-oriented computer program which was used as part of a
Visualization, Verbalization, Algorithmization and Mathematization (VVAM) learning protocol.
The curriculum for this research was the study of variance/covariance structures of bivariate and
multivariate normal populations. The program displays the geometric images corresponding to the
various possible covariance structures. These images facilitate and encourage experiment-based
self discovery learning. The program encourages the student to take an active role in their own
education. The program created is self contained, calculating all the statistical values it requires to
create the various geometric images. The student has complete control in choosing what scenario
they wish to study. The program was tested using four specific scenarios which represented a cross
section of all possible scenarios. Within each of these scenarios were several options which were
designed to encapsulate different aspects of the curriculum. The results of the research showed
that the program, under the aegis of the VVAM, does facilitate the visualization and verbalization
of the complex mathematical concepts associated with covariance structures. The learning envi-

ronment was found to promote the creation of new knowledge on three distinct levels.

vis




INTERACTIVE GRAPHICS SYSTEM FOR THE STUDY OF
VARIANCE/COVARIANCE STRUCTURES OF BIVARIATE AND
MULTIVARIATE NORMAL POPULATIONS

l. Introduction

1.1 General Issue

Is today's work force prepared to solve problems in a world characterized by increasing
complexity, rapid change, unprecedented challenges and opportunities? Looking at the nation’s
economic status, it seems the answer is no. This lack of preparation can be linked to this country’s
current state of education. According to a recent Newsweek article, “one international study after
another places U.S. school kids near the bottom of the heap in mathematical achievement”
(Newsweek, 1990:52-54).

These poor achievement scores are just a symptom of the real problem, which is an educational
system that promotes passive learning and rewards students solely on the basis of grades. This
passive learning environment creates students (who later become workers) who are complacent
and uncreative. What is needed is an educational process that promotes active learning. An
educational process based on active learning would provide an environment conducive to students
becoming creative and self-motivated.

The challenge, therefore, is to create a new pedagogy that will lead to continuous improvement
in the educational system and in the work force. Revamping the entire educational process in this
country is beyond the scope of this research. What can be done, however, is to change the statistical
pedagogy at AFIT into a more active learning process.

1.1-1 Typical Learning Process. In the mathematical learning environment there
are two contrasting approaches to teaching new concepts. Traditionally, the teacher gives a student
the concepts in a rigorous mathematics language in the form of formulas. The student is then guided
through an exercise of applying these formulas to standard well-defined situations or cases. The
teacher then discusses the implications of each case. This process should result in the student being
able to recite the formulas and concepts and being able to apply them to canned situations. Itis also
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supposed to lead the student toward learning the concepts in a meaningful way. This process is
characterized by four steps: Mathematization, Algorithmitization, Verbalization and Visualization
(MAVYV) (see Figure 1.1). This approach stresses the transmission of the teacher’s knowledge to

Mathemization ::Tg::::l

Algorithmization Case 1| [Case 2| [Case 3 ves |Casen
\ Discuss the
Verbalization implications
of each case

v

?

v

Students
Visualization ? understands

the concepts

Figure 1.1. Typical Mathematics Learning Process

the student and encourages passive and uncreative behavior. Such a learning system promotes

boredom and precludes stimulating the mind of the thoughtful student.

1.1-2 Contrasting Learning Process—VVAM. A conurasting process to the
typical passive MAVY approach is the Visualization, Verbalization, Algorithmitization, Mathe-
matization or VVAM Protocol (see Figure 1.2) developed by Stone W. Hansard (Hansard,
1990:24-30). In contrast to the MAVYV process, the VVAM protocol stresses a student’s active
involvement in the learning process from the beginning. In the first step: visualization, the student
must concentrate and experiment with dynamic images representing the concept the instructor is
attempting to motivate. Next, the student must articulate and verbalize what he sees. Then the
student, r.ot the teacher, is asked to create an algorithm which formalizes the mathematical activity
encompassed by the visualization. Finally, the student is asked to translate the algorithm into the
formal language of mathematics (see Figure 1.2). The VVAM demands that a student actively
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Figure 1.2. VVAM Learning Protocol

involve himself in the learning process and requires him to create knowledge he needs for himself
instead of suggesting the teacher transfer such knowledge directly to the student.

The MAVY process rewards a student for producing an appropriate response to an instructor’s
query, while the VVAM protocol rewards a student for being an active participant in a creative and
constructive learning process. The contrast between the MAVYV process and the VVAM process
is obvious (see Figure 1.3). The MAVY process rewards the student’s ability to accept the product

Learning Process

MAVV VVAM

v v

stresses transmission stresses creation of
of knowledge new knowledge

=PASSIVE= =ACTIVE=

Figure 1.3. Contrasting MAVV and VVAM

(new knowledge), while the VVAM process continually rewards the student by allowing him to be
creative and be involved in the learning process.

1.1-3 Schwab’s Commonplaces. In order to develop and implement a new learn-
ing process, it is important to identify the key elements of any educating event. According to
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Schwab, the learning process has four commonplaces: “the teacher, the student, the curriculum and
the milieu or governance” (Schwab, 1973:502). These commonplaces can be viewed as the nodes
of a multifaceted tetrahedral system comprised of the triad: student, teacher and curriculum on a
single plane, and the governance, hovering above, superior and setting the standards for total
system behavior. Figure 1.4 shows this interrelationship and how each element of the educating

Governance

»{ Curriculum

? )

Teacher

Figure 1.4. Schab’s Four Commonplaces

system interacts with all other parts of the system. “It is the teacher’s obligation to set the agenda,
and to decide what knowledge might be considered in what sequence” (Novak, 1990:6). The
student or the learner, suggests Novak,
Must choose to learn; learning is a responsibility that cannot be shared.... The
curriculum comprises the knowledge, skills, and values of the educational

experience that meet criteria of excellence that make them worthy of study.
(Novak, 1990:6)

Governance, or the milieu,

is the context in which the learning experience takes place, and it influences
how the teacher and student come to share the meaning of the curriculum.
(Novak, 1990:6)

In most schools, teachers are competent to teach their respective subjects and students will agree
that they need to take an active role in their education. And certainly, both students and teachers
realize their responsibility for maintaining an interactive relationship with the curriculum. If

governance is oppressive, it can hamper and even destroy the viability of such critical interde-
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pendencies. The fact is, governance, whether oppressive or libertarian, is typically outside the
domain of control of either student or teacher. Therefore, any pedagogy that is developed must be
constructed to function within current constraints of the operative governance. The other common-
places: the curmriculum, the teacher and the student, can then be internally restructured and
externally integrated to ensure that an effective learning environment manifests.

The three elements of the education event—the triad of the student, the teacher and the

curriculum (see Figure 1.5) should be the focus for any pedagogical innovation.

> Curriculum

A

Teacher

Figure 1.5, Triad of Key Elements

The teacher’s role under the VVAM protocol is to create, monitor, control and enhance the
learning process. The teacher should create an agenda, decide what concepts the students need to
learn and, generally, suggest in what order these should be studied. Additionally, the teacher should
gauge a student’s ability to construct new knowledge throughout the learning process. Knowledge
construction is facilitated by a teacher’s constant questioning of the student. The temptation to give
away answers, thus denying a student the opportunity for learning a concept on his own, should be

resisted.

For the purpose of this research, the student will be working to learn the concepts of multivariate
statistics and, in particular, the characteristic principles of covariance. The curriculum will be
captured in an interactive graphics system in which a student can visualize and verbalize covariance
structures. Once these covariance structures are comprehended, they can be used to creatively
generate algorithms and formulate mathematical models of the theoretical and empirical covari-
ance structures. This will create a rich two-way interaction between the student and the curriculum
(see Figure 1.7).

The purpose of this research was to determine if a meaningful learning process could be
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Figure 1.6. Computer Bridges Student and Curriculum

developed using a computer graphics program and the VVAM protocol created by Hansard
(Hansard, 1990:24-30).

1.2 Specific Problem

The problem has two facets:

1. How can a passive book/test centered learning activity, which is primarily a rote/reception
learning exercise, be transformed into an active and meaningful learning exercise where
discovery learning is fostered and encouraged?

2. What is the most efficacious way to use a computer to create an interactive and graphically-
based learning system?

Such questions imply the computer is the key to interaction between the student and the curriculum—

guided and facilitated by the teacher. (see Figure 1.6). This was, indeed, the major stimulus for the
research carried out during this thesis effort.

A /

Student )%

Figure 1.7. Student/Curriculum Interaction

1.3 Investigative Question

Given the problem, as stated above, it is now possible to formulate the main question posed by
this thesis, mainly:

16




Can a personal computer-based interactive graphics system be developed and employed under
the aegis of the VVAM protocol to create an imaginative, visually interactive, meaningful learning

environment for the study of covariance?

1.4 Research Hypotheses

Finding an adequate answer to this investigative question involved obtaining reasonable support

for the following three research hypotheses.

1. The VVAM learning protocol, developed by Hansard, can be used to orchestrate an experi-
ment-based environment for constructively learning and actively exploring variations of the
covariance structure associated with selected multivariate databases.

2. Computer-generated graphic images, embedded in an appropriately pictorialized vector
space, can be employed to enhance the identification and understanding of critical statistical
features traditionally used to characterize the covariance structure of bivariate and mult-
variate normal populations.

3. Exercising a graphics oriented program to assist the first two steps of the VVAM protocol,
visualization and verbalization, and relevant heuristics for constructive learning will enable
students to gain a profound and experiment-based mastery of the multivariate covariance

analysis concepts.

1.5 Justification for Research

Traditionally, classroom presentations of mathematics and statistics emphasize the transmission
of knowledge, formulae and techniques for conducting operations associated with descriptive and
inferential procedures. Symbols are introduced for such entities as the sample mean and the sample
variance as students are encouraged to rotely memorize and blindly apply formula without really
understanding, or being encouraged to understand, the rationale and fundamental theory motivat-
ing the application of said formula.

Thus, learning becomes a passive, rather casual affair an exercise in arithmetic for the sole
purpose of “being able to pass exams” routinely administered in the conventional math or stat
course to “assess what the student has learned.” After years of mastering the strategy and tactics
of rote learning, some students do very well, others demonstrate average mastery of the material,
while still others drop out in sheer terror or boredom sensing, somehow, such “learning exercises™
ought to be offered to those who cannot, or simply do not wish to exercise their reasoning faculties.
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Certainly, many teachers and many students are not content to remain under such a mindless
regime. The brighter and more attentive students usually try to ask questions, seeking at least some
insight into what they are being told to do to survive the course. Teachers, frustrated with such
“cookbook oriented activity,” make sincere efforts to explain the properties and importance of what
is being covered in the course. Some even attempt a socratic dialogue, hoping that something they
say will spark student enthusiasm. In such classrooms, where at least the motions of learning
behavior can be observed, conversations and dialogue begin to lift the pall of ennui. Some students
even begin to ask for more work than assigned or suggest they be allowed to take on “special
projects.” Alas, almost always, governance and the sheer magnitude of competing priorities (other
classes and concurrent rote learning exercises, exams, etc) defeat the best efforts of the most
aggressive and self-motivated student. After an initial sense of excitement, the learning system
soon settles down into an even more befogging process as those students and teachers, who at least
gave “the better way” a go, become discouraged and overwhelmed by conventional demands to
achieve “high test scores” and *superior performance on timed exams.”

The fact is mathematics is a language: words, terms, and symbols, and so forth that needs to be
used in a creative way if the abstract representations facilitated by the syntax and structures of the
language are to be meaningfully mapped to real world phenomena. Such employment of the
language must be an active and creative exercise on the part of both student and teacher. New
knowledge is constructed, as Ausubel, Gowin and Novak so eloquently suggest. Certainly, such
knowledge construction necessarily requires rote memorization of key terms, concepts, and the
ability to intelligently manipulate the entities that constitute the working elements of the language.
But, such activities, as important as they are, are not, and should not be, the central focus of a course
in statistics or any mathematically based curriculum. Students must be encouraged to actively use
the language of mathematics to model what they observe in the real world, or their mental world,
after they have a chance to see or visualize just what it is they need to model. The traditional
emphasis on the transmission of knowledge and presentation of formulae with the hope that
students will understand their significance at some later time should be reversed—180 degrees.
First, the significance of any concept, formulation, or principle needs to be mastered. This requires
an environment in which concepts and their significance can be visualized and discussed with
sufficient involvement of both student and teacher to ensure the student can articulate what any
concept really means: both in theory and in practice. Only then should a student be encouraged to
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algorithmitize a procedure competent to implement the concept and creatively formulate a mathe-
matical statement that symbolically captures the essence of what he now understands about the
concept under study.

Students need to know they can construct whatever tools they may require—especially in the
face of unprecedented problems which they will inevitably encounter during research activities and
upon graduation into the greater world of military and/or industrial management. This thesis effort
develops a graphically based learning environment in which students can gain such confidence and
competence. It fosters an intense visual encounter with mathematics and statistics from the start of
any learning exercise. Via the adoption of the VVAM heuristic it reverses the traditional practice
of formalistic presentation of mathematical symbology before demands are made for meaningful
comprehension of concepts. An example of such pedagogy may help the reader gain an apprecia-
tion of the emphasis and revolutionary implications of this thesis.

The concept of linear independence of vectors plays a major role in matrix algebra. Consider
the task of helping students acquire the notion of what linear independence implies. One can find
a multitude of math texts that give a formal and highly rigorous definition of linear independence.
Indeed, that is often the way students encounter the concept in the first place. After “burring a
theorem or two into their brains” (rote memorization par excellence) they are shown some
mathematical formulations and manipulations that suggest how 10 demonstrate linear inde-
pendence between two vectors. If asked at this point in time what independence means or what
utility the concept may have in the practice of matrix methods most students respond with a blank
bewildered look on their face. You may even hear “who cares” from some. As far as their
concerned they’ ve got the notion in memory and, if queried about it, can parrot back verbatim what
they’ve “learned.” If awarded an A for such effort—you can be assured they are already onto some
new topic—confident, based on instructor feedback, they have mastered the concept.

The system designed by this thesis would suggest first a picture, an image, of two inde-
pendent/dependent vectors be displayed for student observation. It would then suggest the student
be asked to verbalize what characteristics he can observe about the vectors that might suggest they
were independent/dependent however that might be mathematically formulated. Since geometric
vectors have both magnitude and direction the student can be asked to relate the images to real
world phenomena and asked to articulate what the direction and magnitude of the displayed vectors
might symbolize. Once the instructor is confident the articulation of the concept is competent and
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complete, then and only then should ihe task of constructing an algorithm to assess for inde-
pendence/dependence and a formal mathematical symbolization of the concept be introduced.
Why? Because once the concept is understood in a meaningful way, the symbols, the formula, and
the rigor captured by succinct mathematical symbolization will mean something to the student. He
will have constructed the meaning on his own, with the help of the instructor to be sure, and rather
than being requested to memorize a meaningless mass of strange and sometimes intimidating set
of characters (Greek or otherwise) he will value the compactness and conciseness of such linguistic
tools and find it a natural act to speak about what he sees quite clearly and can articulate in his
mother tongue, at will, in a more rigorous way. If not immediately, rather soon into such alearning
process, he will find it more convenient to speak with his instructor in the language an instructor
is rather anxious to speak—the language of his profession. And, with the recognition of his own
growing competency, now in full consciousness, the student will fire up with a joy and enthusiasm
for learning that simply never goes out. The flame of inspiration that drives all scholars relentlessly
in their pursuit of learning can be shared with the student in a dynamic creative dialogue about the

subject at hand.

1.6 Scope of Research

This thesis confines its focus 10 the domain of multivariate statistical pedagogy and in particular
to scenarios involving the generation or collection of a single data sample. Both bivariate and
multivariate covariance structures are evaluated under situations involving the estimation and/or

testing of the bivariate or multivariate population mean vector.
A generic pedagogy is developed that is computer based and geometrically motivated. The thesis

effort is confined to the construction of a graphically based system and a preliminary evaluation of
statistical neophytes’ ability to study selected concepts of covariance analysis in an interactive way
under the aegis of the VVAM learning heuristic evolved by Hansard (Hansard, 1990:24-30). No
formal evaluation of system performance is undertaken at this time. Therefore, any generalizations
made by thesis are tentative and confined to environments similar to that created by the product of

the thesis.
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Il. Background

2.1 Introduction
Preliminary to the development of an adequate learning system, this research effort had to
establish an adequate foundation for the methodology outlined in Chapter III by completing three
tasks:
1. The major elements of Ausubelian Learning Theory needed to be studied and tabulated.
2. The need for a learning system to study covariance had to be demonstrated to exist in the
statistical community.
And finally,
3. The accomplishments of AFIT students Stone Hansard and Steven Pearce, both whom
employed the VVAM during their AFIT thesis research, had to be reviewed.

2.2 Leaming Theory

One of the keys to developing and successfully implementing the learning process developed
by this thesis was obtaining a solid understanding of the basic principles of Ausubelian Learning
Theory. The core elements of this theory have been documented by Joseph D. Novak and D. Bob
Gowin who were students of David Ausubel. Certainly, the most relevant premise of Ausubel’s

theory of learning serving the purposes this thesis is the assertion that knowledge is constructed.
Knowledge is constructed. That people discover knowledge is a common
myth. Discovery may play a role in the production of new knowledge, but it

is never more than just one of the activities involved in creating new
knowledge. (Novak & Gowin, 1990:4)

In other words, “knowledge is not discovered like gold or oil, but rather constructed like cars or
pyramids” (Gowin & Novak, 1990:4) Novak and Gowin suggest “The construction of new knowledge

begins with our observations of events or objects through the concepts we already possess” (Novak &
* Gowin, 1990:4) This is exactly what occurs in the visualization and verbalization steps of the VVAM
protocol.

Gowin and Novak, following Ausubel’s lead, suggest any learning exercise can be represented
by a coordinate pair in a 2 dimensional plot where the horizontal axis represents a continuum of
learning activity from totally passive to utterly self-guided and the vertical axis represents mental
activity from rote-memorization to creative and dynamic thinking. Rote and meaningful learning
are contrasted in Table 2.1. Figure 2.1 suggests reception learning implies information to be learned
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TABLE 2.1. Contrasting Rote and Meaningful Learning
(Novak & Gowin,1990:167)

Arbitrary, verbatim, non-substantive incorporation
of new knowledge into cognitive structure.

incorporation of new knowledge into cognitive
structure.

* No effort to integrate new knowledge with existing | « Deliberate effort to link new knowledge with

concepts in cognitive structure. higher order, more inclusive concepts in cognitive

structure.
¢ Leaming not related to experience with events or | « Learning related to experiences with events or

objects. objects.
+ No affective commitment to relate new « Affective commitment to relate new knowledge to
knowledge to prior learning. prior lsaming.

is selected and transferred by the instructor while discovery learning requires that the student

identifies and chooses the relevant information to be learned. (Novak & Gowin, 1990.7)
Once the author of this thesis was confident that a theoretical basis to guide development of the

learning environment proposed by this thesis, statistical periodicals were reviewed in search for
suggestions and support for a computer-based graphical system designed to facilitate the study of

covariance.

2.3 Supporting Documentation for a Geometric Presentation of
Statistical Concepts

Marvin S. Margolis states in one of this papers,

MEANINGFUL Clarification Well designed Scientific research
LEARNING of relationships audio-tutorial New music
between concepts instruction or architecture
Lectures or Most routine
most textbook “research®
presentations or intellectual
production
School
laboratory
work
Multiplication Applying formulas Trial and error
ROTE 1e® soluti
LEARNING v< tables to solve problems *puzzie® solutions
RECEPTIVE GUIDED AUTONOMOUS
LEARNING DISCOVERY DISCOVERY
LEARNING LEARNING

Figure 2.1. Learning Continuums (Novak & Gowin, 1990:8)
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An understanding of the geometric aspects of elementary statistics may
sometimes assist a student of statistics more than elegantly derived formulas.
(Margolis, 1979:131)

Margolis sees “geometric thinking...as a means of visualizing and thereby improving a student’s
comprehension of basic statistics™ (Margolis, 1979:131). Margolis and the author of this thesis are
convinced that the geometric approach to teaching statistics is a powerful tool for conveying basic
statistical concepts to students (Margolis, 1979:135).

Saville and Wood point out that the main body of statistical concepts and methods are the
“simple application of the mathematics of Euclidean N-demensional space” (Saville & Wood,
1986:205). They suggest that a teaching method is needed to bridge the gap between rote style
methods (used in many basic statistical courses) and the extremely sophisticated derivation
methods (used in higher-level mathematical based courses). They feel the method of greatest
promise is the geometric approach (Saville & Wood, 1986:205). Also, Bryant, alluding to Au-
subel’s ideas of linking ideas within a cognitive structure, says, “Geometry seems to be the natural
way to emphasize the unity of the fundamental ideas [of statistics]” (Bryant, 1984:38).

Because the author of this thesis knew a geometric approach applied to the study of covariance
would require the development of a dynamic, computer-based interactive 2 and 3-dimensional
display environment, a review of the work of Stone Hansard and Steve Pearce, former AFIT
students who pursued such software design as part of their thesis research, was undertaken.

2.4 Previous Work with VWVAM

Hansard applied the VVAM protocol to matrix algebra. His particular study did not exercise the
VVAM protocol’s full potential and did not facilitate a geometric approach. Steve Pearce applied
the VVAM protocol to the teaching of the General Linear Model, an area of statistics that Bryant,
Saville and Margolis suggested would benefit from such an approach.

Pearce demonstrated it was possible to project vectors in a 3-dimensional space that could be
manipulated and viewed from various angles (Pearce, 1991:32-61) Pearce also created several
software procedures that, with minor modifications, can be used to input and display various sized
matrices on the computer screen. (Pearce, 1991:127-136) Unfortunately, Pearce was not able to
extend his system to encompass the study of covariance and covariance structures of bivariate and
multivariate normal distributions. Therefore, the author of this research decided to devote his
research activity to the design and implementation of a system for the geometric study of

covariance.
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The following chapter documents the methodology he used to accomplish this task and provides
a comprehensive review of the five major phases involved in designing, constructing and evaluat-

ing the software required to bring the system to an operational status.
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ll. Methodology

3.1 Introduction

Creating a meaningful learning environment for the study of variable dependencies involved the
computerization of a standard MAVYV driven curriculum into a VVAM governed interactive
graphics system for visualizing covariance structures. The methodology used to accomplish this
task is outlined by this chapter. Implementation of the research design required the completion of
two research activities:

1. finding an answer to the investigative question posed by the thesis and

2. evaluating the three research hypotheses posed by the thesis.

The sample data acquired to complete these two important tasks was obtained by generating
selected graphical displays during VVAM governed learning exercises in which the author of this
thesis served both as student and evaluator. Formal assessment of the learning system’s ability to
provide a meaningful learning environment for studying covariance was accomplished by applying
subjective criteria to a limited and carefully selected set of statistical scenarios. The following
sections present an overview of the paradigm employed to carry out the research effort and outline
the format of the graphical images produced by the graphics program. The final section documents
the evaluation criteria that were used to assess how effectively the images of covariance structure
produced by the program facilitated the student’s ability to master the concept of covariance.

3.2 The Overall Research Design

The research design employed by this thesis was developed to ensure a meaningful learning
environment could be constructed. The following process flow diagram provides a macro-level
image of the overall research design. Succeeding sections of the chapter document specific steps
undertaken to complete the following five phases of the research methodology (see Figure 3.1, page
3.2).

1. overall planning

2. reviewing and documenting the mathematical foundations of covariance

3. developing software to display covariance structures

4. selecting scenarios to demonstrate the ability of the software system to create a meaningful

learning environment for the study of covariance
5. establishing criteria to evaluate the learning system’s efficacy.
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Planning
Vision

Figure 3.1. Program Development Process

3.2-1 Phase 1—Overall Planning. This turned out to be the most important phase
of this thesis effort since it was at this point in the research process that the vision and goals of the
thesis were established. The vision involved determining precisely what images of covariance the
graphics program should produce and the steps, both pedagogic and programming, that would be
required to ensure successful development of the final product: a meaningful learning system. A
detailed list of program specifications was developed and ultimately consisted of the following
requirements:

1. The program should display geometric images which characterized the covariance structure
to the student.
2. An option to display 2-dimensjonal or 3-dimensional images should exist, in response to the

student’s choosing, to study data generated from either a bivariate or multivariate normal

population.

3. Images should be capable of being rotated around all axis in order to allow the student to view
any geometric image from all angles.

4. The student should be able to enlarge or shrink images, at will.

5. The screen should be organized into four subscreens. One section should be devoted to
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displaying key statistical values while the other three sections should contain different

graphical images.

6. The student should be able to request enlargement of any section of the three graphics screens

50 as to fill the entire screen with that one subscreen thus allowing a student to make a closer

examination of the particular image displayed by that subscreen.

7. The program should facilitate the inputting of data from both the keyboard and from data

stored on a disk.

8. The program should use different colors to highlight and distinguish critical items displayed

on the larger screen or subscreens.

9. The program should display a screen of summary statistical data prior to displaying graphs.

10. The program should have the ability to be restarted quickly so that new images can be

displayed before previous images are forgotten.

11. The program should calculate all required statistical values internally.

Once these requirements were delfneated, a comprehensive review of the mathematical concepts
involved in carrying out this covariance analysis was undertaken. The multivariate concepts
required to complete this thesis effort are documented in the following section.

3.2-2 Phase 2—Documentation of Mathematical Foundations of
Covariance Analysis. Real world complexity typically involves the simultaneous interac-
tion of many factors which, when measured and evaluated as a group, requires the assimilation of
a fixed number of observations on two or more variables.

Whenever the concern is with analyzing measurements made on several variables these meas-
urements (or data) are usually arranged and displayed in various ways. Multivariate covariance and
correlation analysis which are the main subject of this thesis require measurements to be recorded
in a matrix, a rectangular array, usually symbolized by an X matrix of p rows and n columns.

X11 X12 cce Xpj ooe X1y
X21 X33 o0 Xj o0 X2y

X= Xiy X2 oo Xjj o0 Xip M

Xot Xpy «s Apy <oe X,
R O PP




This array X contains the data consisting of n observations on p variables. In this thesis, analyses are
constrained to the bivariate (2 variable scenario) or trivariate (3 variable scenario) since graphical
displays beyond 3-dimensions are difficult, if not impossible, to display.

Descriptive statistical evaluation of such a data array attempts to summarize (graphically or
numerically) outstanding tendencies of the particular sample of daia: its central tendency, the
individual variances of single random variables, and most importantly, the synergetic association
of every pair of random variables. It is the role of the covariance matrix to succinctly represent
such synergy.

This research effort formulates three categories of multivariate graphical displays. Each pre-
sumes an underlying multivariate normial population drives the data generation process. These
categories of display are, respectively:

1. Theoretical/population distribution displays

2. Empirical/sample estimation displays

3. Empirical/sample testing displays.

To bring up each display one or more parametric and/or statistical entities need to be computed
and analyzed. The parameters or statistics utilized by each type of display are arrayed in the
following table by their domain of employment and archetypical statistical concept. Next, their
formulation and significance for this study are presented. The manner in which they are employed
within the computer based learning system and the more general implications of displays the
software system can generate are covered in methodological and analysis discussions found in
Chapters IIT and IV of this thesis.

3.2-2.1 Major Data Descriptors. To generate theoretical population displays or dis-
plays involving statistical inference three fundamental statistical entities must be computed via
algebraic formulae or the results from the calculus of probability. The rows in Table 3.1 on the
following page, list these entities by name. Column headings are employed to designate the display
domain (i.e. theoretical estimation or testing) in which an entity is being used. A specific formula
and a general description of each entity follow. The interested reader can review the full derivations
in Johnson and Wichern’s second edition of Applied Multivariate Statistical Analysis.
These entities serve as the critical building blocks and main input to software generating the
geometrical displays of covariance structures associated with a Multivariate Normally Distributed

Random Vector X: a vector whose elements are the random variables.
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Table 3.1. Summary Table of Statistical Descriptors
UWtilized During Covariance Analysis of a Single Sample of Multivariate Normal Distributed Data

- Domain _ . Testing
- (Dataset) .« (Sample)
Mean o, X
Covariance Matrix

5t 52 52
n n n
Corrslation Matrix p R R
Note: The same entities and domains are operative whether one is dealing with a bivanats or trivariate
(multivariate)} population and/or data sample.

In order to document the formula for each of the entities in the three domains of interest we need
to introduce an assumption that serves as the basis for all geometric displays and analyses

undertaken by this thesis, mainly that X the random vector of interest is distributed multivariate

normal with p random variables and covariance matrix X.
thatis,X “N,(p ,ZI)

1 )
= -Gk -w) T -
where f(X ) (ZH)"/’lZl"’e =BT -R )
It then follows under the theoretical domain that
B =EX) ©)
and
Z=E[X -p )X - )] @)

Methods of calculus can be used to obtained actual values for i and X when a specific N(p, X)is
presumed. Whenever the theoretical covariance matrix of the sample mean vector X is required, one
merely divides each element of the covariance matrix of X by n (the sample size).

The population correlation matrix p is computed by setting up what is known as the Standard

Deviation Matrix
[VSuo .0 ]
0 $2...0
D”: : : ...: (5)
[0 0 ..V

and executing the following matrix computation
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p=(D¥) -1 Z(D¥)"! (©)
As will be shown later in Chapter III, these theoretical entities can be used to generate a multivariate
normal deviate vector of values as many times as desired to simulate a random sample of n multivariate
normal deviates. Via eignvalues analysis (see below) the theoretical covariance structure represented
by the Z matrix can be obtained and graphed. Chapter IV reviews exactly how the software generated
by this thesis effort accomplishes this.

It is important to note at this point that the covariance structure which is captured by the
covariance matrix and which is associated with an elliptical display to be discussed directly, is the
key to understanding the type, depth, and strength of synergy fostered by a dependent set of random
variables.

During estimation exercises statistical estimates of these theoretical entities must be obtained.

The sample mean vector is easily computed as follows:

X = -'1;1 X where X is a p x n data matrix )]

The sample covariance of X presumes a data matrix of dimension p X n has been obtained and

is computed as follows:
S=;_l_—lx[l-%(117)]xfwherexisapxumatrix 8)
The sample covariance matrix of X is computed by dividing each element of the sample covariance
matrix of X by n.
Obtaining the sample correlation matrix requires computation of the p X p inverse of the sample
standard deviation matrix
1 0 O
¥ JS 11 1 0
D 0 Vim 1 ()]
0 0 3333
followed by the matrix computation of R as follows:
R=D%SD* (10)

A quick review of Table 3.1 will indicate that the only remaining entity to be defined is o, which

is simply the plausible value for the mean vector of the theoretical multivariate population assumed
to be operative under the null hypothesis when a test is conducted about a population mean vector.
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3.3 Geometric Evaluation of Multivariate Normal Populations

Geometric structures displayed by the software developed by this thesis are plotted in 2- and
3-dimensional vector spaces because geometric images visually and rigorously characterize the
extent and strength of relationships between a set of multivariate normally distributed random
variables. Since the rest of Chapter III will outline the use and value of such images this section
offers abbreviated mathematical formulations for any ellipsoid of p dimensions. Such ellipsoids
are employed to create

1. An image of the theoretical covariance structures associated with a given Np ( B, )

population (ref: Theoretical/Population Distribution Displays)

2. An image of the empirically derived covariance structures associated with a sampie from an
unknown Np (| , Z) population and associated confidence region for estimating the un-
known mean vector [] or testing the plausibility of a given mean vector [yo] (ref: empiri-
cal/sample estimation displays and empirical/sample testing displays.)

Contours of constant density of the p-dimensional normal distribution are ellipsoids defined by the
equation:

(x -p) Tx -p) =¢ amn
centered at || with axes+ c‘ff e;, where A, is the ith eignvalue and ¢, is the ith ortho-normal eignvector
(one of p orthogonal vectors, each of unit length). In this thesis the covariance matrix is used to obtain

eigenvalue/eigenvector pairs.
The software requests the user enter a value of ¢. To obtain the desired value the user must select

an o value to obtain a %2 percentile that can then be used in the following equation:

c= % p = degrees of freedom (12)
If this ¢ value is entered a contour is plotted that contains (1 — &) X 100% of the probability under the
relevant multivariate normal density.
When inferences about a mean vector are in order, whether for purposes of estimation or testing,

an ellipsoid representing a 100 (1 — a )% confidence region can be generated by noting that

sy = -1
P[n(:’_c- uysi(z- g)s%—_g)ﬂr,,,,_,] =l-a (13)
where the values of pand Zare unknown. Clearly,
nx @) $@ -p)se (14)

where
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c =‘r"7§"—fp—?- Fpa-)(00) (15)

The software asks for a ¢ value and will generate a confidence region that can be used to suggest an
upper bound on the range of the true population vector or to determine whether or not the presumed
mean vector [|,], employed in the testing scenario, is plausible or not.

For a fuller presentation of the mathematical rationale and inferential use of ellipsoids in various
typés of multivariate data analyses the reader is referred to the Johnson and Wichern text. The
remainder of Chapter I1I and IV demonstrate how such geometric structures can be employed to
create a meaningful learning environment for studying covariance. They provide examples of how
visualizations of covariance structure can stimulate questions about the synergy produced by a set

of dependent normal random variables.

3.3-1 Phase 3—Software Development. Software development of the covari-
ance structure display system involved completing two distinct activities. First, an organized and
logically nested set of computer algorithms had to be designed, logically evaluated for consistency
and completeness and nested together to form a complete programming system for generating
graphical images of covariance structures. The second step involved coding, debugging, and testing
the operational competency of the programming system to facilitate a meaningful learning system

under the aegis of the VVAM protocol.

3.3-1.1 Software Development: Activity 1—Algorithm Development. In order to
complete design specifications for the basic algorithms and supporting routines of the program-
ming system, a complete set of mathematical formulae had to be rigorously defined. A MathCAD
3.1 template was used to design and debug algebraic representations for all formulas that would be
needed to compute specific covariance statistics and graphs of related covariance structures in the
final coded program. (© 1991 Math Soft Inc.). MathCAD is a real-time personal computer-based
program for creating formulas, numbers and graphics as well as text for documentation and
explanations. MathCAD’s unique abilities are perfect for use as an algorithm development tool. It
has the ability to display formulas in the same exact mathematical representations found in
mathematical text books (see Figure 3.2 on the following page). MathCAD has a built-in symbolic
processor which can be used to solve equations and calculate derivatives and integrals. It also can
calculate eigenvalues and eigenvectors, which are two of the most vital statistical entities used by
the programming system produced by this research effort. MathCAD, itself, possesses graphics
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Figure 3.2 MathCAD Formulas

capabilities that facilitated graphical algorithm testing by producing rough sketches of graphs that
were ultimately generated by the final graphics package. MathCAD proved to be a very valuable
debugging tool. A copy of the MathCAD template created during the design and debugging of
systems software is included as Appendix H.

3.3-1.2 Software Development: Activity 2—Coding process. The coding process re-
quired three sub-activities: 1) selection of a programming language; 2) defining the hardware and
operating system requirements for the host computer; and 3) outlining the system flow and the
actual coding of the program.

The programming language needed to generate the graphical images required by program
specifications had to possess extensive built-in graphics capabilities as well as the ability to
expedite mathematically intense programming activities. The language chosen was Turbo PAS-
CAL 6.0 (©1987, 1990 Borland International Inc.).

Turbo PASCAL is a highly structured language that uses and links units(sub-programs),
functions, and procedures. Turbo PASCAL contains a built-in graphics unit with over SO graphics
routines and supports the following graphics drivers: CGA, MCGA, EGA, VGA, Hercules, AT&T
- 400 line, 3270 PC and IBM8514. It is a PC based l1anguage with an excellent editor and integrated
development environment (IDE).

To enhance PASCAL's already extensive graphics routines, the 3-D graphics library Acromol
was used. Acromole (version 1.0 © 1991 David B Parker) contains 38 subroutines that support
high speed, real-time 3-D graphics. This package facilitates the rotation and movement of graphics
images.

The hardware system targeted for this software development was an IBM or compatible
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personnel computer with a hard drive, at least an EGA graphics driver and running DOS 2.0 or
higher operating system.

The complete listings of program units developed for this effort are included as Appendices B-F.
The overall organization of the program units is shown in Figure 3.3.

L=

Get_Data |—» |RGraphma| | Math Stutt] | Acroimole

v

MathMat

Standard Pascal Units
CRT Graph

Figure 3.3. Program Organization

3.3-1.3 System Flow. The program flow can be divided into four subsystems (see
Figure 3.4). Subsystem 1: Welcome Display and Request for Inputs. Subsystem 2: Statistical
Entities Display Subsystem 3: Display of Images of Covariance Structure Subsystem 4: Monitor-

r A

introduction and
Student Inputs

v

Statistical Computstions

Y

Display of images

v

Monitor and React to
Student inputs >

ing and Responding to Inputs.

Figure 3.4. Overview of Program Flow
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3.3-1.3.1 Subsystem 1—Request for Inputs. The introduction and student input
section can be separated into three areas (see Figure 3.5). They are:

Explanation of
Program Interfacing

v

Determination of Area
of Study

v

lnputtln".m‘l:oqulrod

Figure 3.5. Introduction and Student Inputs

1. The explanation of program interfacing. This consists of the initial screen which explains to
the student how to interface with the program and how to activate some of the special functions
(see Figure 3.6 on the following page). This is accomplished by the main program unit.
2. The determination of the area of study. This is where the student answers two separate
questions which will determine the type of problem they want to view. The first (Figure 3.7, page
12) allows the student to choose between the bivariate or the multivariate normal distribution. This
is basically a choice between viewing a 2-D or 3-D vector space. The second question (Figure 3.8
page 13) gives the student five options which are combinations of dealing with theoretical or
empirical data and data being entered via keyboard or from a file on disk. These two questions give
the student 20 separate options to chose from. This is accomplished by the main program unit.
3. Inputting of required data. Depending on which of the five options the student selects they
will be required to input certain values.
a. For option 1, the strictly theoretical case they will be required to enter: B I, the ¢ value, the
sample size and the correlation matrix (see Figure 3.9, page 13).

b. For option 2, the empirical case where data comes from a file, the student will have to enter;
the ¢ values and the sample size (see Figure 3.10, page 14).

c. For option 3, the empirical case where data is inputted via the keyboard the student enters: a
¢ value, the sample size and the sample X matrix (see Figure 3.11, page 14).

d. For option 4, the empirical case that also performs a test of the mean vector, the student inputs
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interactive Graphics System for the
Study of Variance/Covariance Structures
of Bivariste and Multivariste Normal Populations
Written by Ronald G. Garlicki
Some Helpful Information

@ Selects current matrix or value

While Viewing Graphics Page
a Enlarges Screen #1

e Enlarges Screen #2

e Enlarges Screen #3

0 Restarts Program

@ Restarts Multiple Screen Graphics Page

Ends Program

Press to Continue

Figure 3.6. Opening Screen

the same values as for option 2, but also the null hypothesis o they want to test (see Figure

3.12, page 15).
e. The final option, the case that compares theoretical and sample data and performs a test of the

mean vector, requires input concerning: t , Z, p, po (the null), the ¢ value and sample size.
The sample data itself is read from a file on disk (see Figure 3.13, page 15).

Do you wish to deal with the Bivariate of Multivariate
Normal Distribution?

Input 2 for BVN (2-D or 3 for MVN (3-D)

Figure 3.7. 2D or 3-D
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This is the Case of Bivariate Normal Distribution:

(1) Theorstical

(2) Empirical (data from disk)

(3) Empirical (data from keyboard)
(4) Test of Mean (data from disk)

(5) Comparision of Theoretical and Empirical
(data from disk)

Figure 3.8. Theoretical Empirical Choices

All data are inputted and displayed in matrix form as it would appear in a mathematics text book.
The inputting of data is conducted by the program unit Get_Data. Once the student has inputted all
needed values the next phase, statistical computations section, of the program begins.

3.3-1.3.2 Statistical Entity Computation and Display. The statistical computations
section is divided into three parts (see Figure 3.14, page 16.).
1. calculation of summary ang statistical values; 2. calculation of eigenvalues and eigenvectors;
and 3. calculation of values needed to generate the graphical images.
Calculation of summary statistics is performed by the units Get_Data and MathMat (matrix

PRESS ENTFR FOR GRAPH

21.01 24 .69 Q.22 17 .81 1H .7
.14 16,42 24.73 12.40 (7.

Kbraar = 20 .00
20 .00

Corr 1.0000 . rho- 1. 0060 0. 000
O .0000 . 0. 000 1.000

N [l“ ] C \l,!]llQ‘,[ZA(] ]

¥ 140 .00 O . 000
O 000 10 .00

Figure 3.9. input Screen for Case 1 Option 1: independence
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D DO 910

Figure 3.10. Input Screen for Case 2 Option 1
algebra functions). Depending on what option is selected by the student, different values are
calculated. These values include calculations of 'f' S, % R and if theoretical information is given

then a sample of random deviates from the defined population is created. These summary statistics
are displayed on the input screen for the student to study prior to seeing the geometric images. As

PRESS ENTER FOR GRAPH

20.52 21.87 22.03 8
20

. 23.7
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Figure 3.11. Output for Case 2 Option 2A
3.14




PRESS ENTER FOR ORAPH

| [’i& 2.8 ‘128’1&’?98’!28‘&88‘!88'138‘1%]

N=E|.o ]
r[22:%8 ]' «or[E8 ]

: n-«m=[zs;25 6‘.’:58] Eisen “‘““*[82&3 ]

(B 50 4% 857 0.8 848 5.5 2.5 7.3 174
[ ]  erfua ] ro-[ 12:8 ]
corr=[3.9888 23888 | mo-[3.00 .88
w10 ] e RV

SEERE ) " ) s o)
(1038 1.8 b s [T NE )




Calculate Summary and
Descriptive Statistics etc.

v

Calculate Eigenvalues
and Eigenvectors

Y

Calculate Values Needed
for Generating
Geometric Images

Figure 3.14. Statistical Computations

Get_Data. The Jac procedure is based on the Jacobi algorithm explained in the book Numerical
Recipes in Pascal, the Art of Scientific Computing by Flannery Press, et al. The book contains a
version of the algorithm written in PASCAL which this writer was able to use with only minor
modifications (Press, 1989:387-388). It was critical to be able to calculate the eigenvalues and
eigenvectors internally since they encapsulate the needed information concerning statistical dis-
tances, which govern the appearance of the geometric images. See Appendix G for further
information in this area. The eigenvalues and eigenvectors are used to determine the length and
endpoints of the axis of the geometric images (ellipses if 2-D and Ellipsoids if 3-D).

Calculation of the values which are needed in order to produce the geometric images is
conducted in the Unit Get_Data. These values, as stated above, include determining the lengths of
the axis and their endpoints. Other values include determining the domains of the relationships
which define the ellipses displayed. At this point the geometric images are ready to be created and
displayed.

3.3-1.3.3 Display of Covariance Structures. Once statistical computations are

completed, the program begins the display phase. The display phase of the program is subdivided
into four sections (see Figure 3.15 on the following page).

1. setup of the major and minor axis of the ellipse or ellipsoid;

2. calculation of the individual points of the images;

3. setup of the screen layout and;

4. the actual display.

Setup of axis and coordinate system is performed by the procedure GenerateAxis in the main
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Setup axis and
Coordinate system

v

Creation of Geometric
images

v

s.tuB Screen for
isplay

v

Display Images

Figure 3.15. Display of Images

program unit. This procedure creates the major and minor axis of the ellipses and the x,, x,, and, if
3-D, the x; coordinate axis. This requires transforming, in some cases, 3-D information into a
format which can be displayed on &8 2-D computer screen without the loss of information. The
transformations from 3-D images to the 2-D computer screen are completed with the aide of the
Acromol@ routines.

Creation of the geometric images consists of creating the points which will be displayed. The
2-D and 3-D images are based on ellipses whose relationships are captured in the procedures
contained in the program unit MathStuf. There is no ellipse function in PASCAL which can be
used in conjunction with Acromole. Therefore, the ellipses are created by plotting a large number
of points based on the domain and characteristics of the ellipse as determined by the summary
statistics and the eigenvalues and eigenvectors. The ellipsoids are characterized by three ellipses.
There is one ellipse in each plane of the vector space. These planes are the
X, VS. X;, the x; and the x; vs. x;. If the case being studied contains a test of the mean vector then a
point is plotted at the location of the null hypotheses.

Setup of the screen is conducted in the main program. This consists of dividing the screen into
four sections. One section contains the summary statistics required by the student to construct new
knowledge. The other three section are reserved for different images. Each of the display screens
are labeled as to what they contain.

Display of the images is performed by the main unit and a modified Acromol2 unit called Utility.
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The images are displayed so that the centroid of the ellipse in each screen is the center of rotation.
When two or more ellipses are put in the same screen they are displayed in different colors for

Clarity.

3.3-1.3.4 Monitoring of Inputs. The final phase of the program is the monitoring and
reacting phase. This is were further inputs from the student are read and the appropriate action is
taken.
This phase of the program is a continual monitoring function with two major paths of action (see
Figure 3.16).

Screen Input Buffers

Calculate eigenvalues Calculate sigenvalues
and eigenvectors and eigenvectors

Figure 3.16. Monitoring and Updating

1. manipulation of current images and screens and
2. resetting and restarting of the program.
The monitoring consists of periodically checking the input buffer for student inputs. This is

accomplished by the unit Utility. The student has several options available in regards to the images.
All images have 6 degrees freedom of rotation. Rotation of the images is controlled by the arrow
keys and the page-up page-down keys. The images can also be move toward and away from the
student by use the minus or plus keys respectively. If the student wants to focus their attention on
one of the three image screens they can press the function key corresponding to that screen (e.g.,
if the student wants to focus on screen 2 they press <F2>). That screen will then be enlarged to fill
the entire computer screen (see Figure 3.17 on the following page). Pressing the <ESC> key will

return the student to the multiscreen display.
The other possibilities for the student are to restart or end the program. Pressing the <CNTRL>

and <BREAK> keys simultaneously will end the program. Pressing the <F9> key will signal the
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Figure 3.17. Sample Screen Focus on Screen 3

computer that the student wants to view another case. In this case the computer resets &l pointers
and clears the screen and restans the program. The sieductony screen 1s not shown when a restart

OCCUrs.

3.3-2 Scenario Selection. The scenanios selected 1o test the programs ability 1o facili-
tate a meaningtul learning experience represent only 4 tew of the total possible scenarios which
can be examined with this program. The cases which were selected were then divided into 4 or §
optons. These options demonstrate a cross-secton of the possible staustical vanatons which can
ovccur within the case. Table 3.2 ¢on the following page shows all the possible scenarios, the
scenaries selected for this research and the opuons examined within those scenarios. What should
be keptin mind when reviewing this table is that the study of covasiance nvolves the segregation
of the total or generahized variance of the distmbution nto its parts. The general varance can be
segregated into each vanables covanance with itself, also kngw as its variance, and into each of
the variables pairwise covariances. The options within the cases were chosen to demonstrate the
effect that each of these covariances has on the total variance and on the geometric images (ellipses
and cllipsoids) displaved.

When studving the tables describing the scenarios and options, keep in mind (e following
conventions which were used as to determine what constitutes “low.” “medium™ and “high”
correlagon. When a correlation 1s set at a “low™ value, this is a value between 0.0 and 04, A
“medium” value is one between 0.4 and 0.6. A “high” value is one between (0.6 and 0.9. Values
greater than 0.9 but less then 1.0 are considered “very high™
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TABLE 3.2. Possible Scenarios
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When a case calls for a test of the mean vector that test takes the following form:

Null hypotheses: |t = o (Where the student enters o)

The confidence region is defined by the ¢ value which is related to the F statistic (see Section
3.2). The null hypothesis is not rejected if the point representing the mean vector is within the
confidence region and rejected if it is outside the confidence region. This is a simple but powerful
visual test. The test of the mean vector will always be conducted with the normal distribution

(bivariate or trivariate) characterized by X and % (sample data).

Case 1 deals with the Bivariate normal distribution and deals only with theoretical data. The

options for case 1 are outlined in Table 3.3.

Do [ Do [ ||| [ ]S

Option 1: The total variance is the sum of the variances. Option 1 investigates the situation
where the covariance of each pair of variables is 0 and the variable means and variances are equal.
This means that knowing the value of x, yields no information concerning the value of x,. This

option is geometrically pictured as a perfect circle.
' Option 2: Compares the differences between a case of low covariance verses a case of high
covariance. The means and variances are equal in each case so that they have no effect on the
comparison.

Option 3: Compares two runs. The first run has 62 03 and the means and covariances equal. The
second run has 63 = 02, This option is intended to show how differences in variances effect the size
and shape of the geometric picture. It also initiates the students understanding of the interrelation-
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ship between variance and covariance. The student should notice the elongation of the ellipse in
the direction of the variable with the larger variance. Option 4 stresses how covariance effects the
orientation of the ellipse by comparing runs where the variance remains constant but the covariance
changes sign. The student should notice a 90 degree shift in orientation.

Option 4 This case demonstrates what occurs when the two variables are perfectly linearly
dependent. In this option the covariance is equal to -1 and the ellipse collapses into a line.

Case 2 is the case of the multivariate normal distribution where theoretical and empirical (from
disk) data are both displayed and a test of the mean vector is conducted. The options for this case
are the same as for case 1 (see Table 3.4). What is added is that the geometric images are now in

TABLE 3.4. Case 2 Options

P12=p13=p2a=0

p12=pia=pa=Low

P12#P13#p23

o8
of
] p12 = p13 = p23 = High
of
o

3 P12 =13 =p23 = High

P12# P13 # P23

pil2#pP13#p23

{>08 p=-1

3-D. A circle becomes a sphere and an ellipse becomes an ellipsoid. The student is also introduced
to the expanded concept of covariance which deals not only with a relationship between two
variable but of all the interrelationships between variable pairs. He is also shown the differences
in images produced from information about the population and from sample data. The test of the
mean demonstrates how easy it is to determine if a null hypothesis should be rejected or not. The
student needs only to determine if o is contained within the confidence ellipsoid created from

sample data.
Case 3 is the bivariate normal distribution case where empirical data is entered from the
keyboard. This case allows the student to experiment with different samples. The four options used
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for this case represent four possible situations which could arise from different samples (see Table
3.5).

TABLE 3.5. Case 3 Options

A= High
¥<<® |KecS | A=Medium
X << S« 83 | A=Light Positive

X 8% << S8 | R=High Negative
1=3 % << S8 | R=Medium Positive
1=X2 5% << 83 | R=High Positive

Option 1: This option is a situation where there is extreme collinearity. The student can see how
the ellipse begins to collapse into a line. They also can observe how the slope of the line is related
to the variance and covariance (which is captured by the eigenvalues and eigenvectors).

Option 2: The second option involves the use of a sample where the means are very different
and so are the variances. The student can see how this effects the shape of the images and seems
to have effects related to those from different covariances.

Option 3: The third option is similar to the second except that in this case the variances are
approximately equal. Therefore, any differences in the shape of the ellipse is do to the different
means and that even though the variances are equal they are not equally proportional to their
respective mean.

Option 4: The last option demonstrates the differences between three runs where the means are
equal, the variance of one variable is much greater than the other and three different covariances
are used. This option shows the user how covariance and variance interact.

The final case, Case 4, is the Multivariate normal distribution, where empirical data is entered
from the keyboard. The only differences between this case and the previous one is that the images
are 3-D and there are no images based on the theoretical population displayed. The options within
this case are shown in Table 3.6 on the following page.

3.3-3 Criteria. Once the program was developed and the scenarios chosen and run, there

needed to be a way to determine if the learning system was effective and if a positive answer could
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TABLE 3.6. Case 4 Options

A ==X | SHeBeS3 | Rz=Ria=FRn=VeryHigh
M X<Xec<X | S B S} | Arz# Ria # Az = Medium Values
Bl <h<m K<SHB<Sh Ri2 # A3 # Az = High Values
W lkheR=X |Sf<SB<S | Raz=HighNegative
o i3 = Low Positive

R = High Positive

be suggested to the investigative question posed by this thesis. The only meaningful criteria was
to determine if the learning system fostered the creation of new knowledge in the area of
covariance. In other words, did the computer program display the appropriate statistical values and
geometric images which when used in a VVAM governed environment would stimulate the student
to ask significant and relevant questions about the subject and then supply enough information to
answer those questions. If the answer is yes, then the student was able to link the knowledge they
brought to the learning experience with new knowledge they constructed through this question/an-
swer cycle. The question/answer cycle should continue until the subject is exhausted because, as
the student creates new knowledge it will allow them to ask new questions and get new answers

(create new knowledge). It should be possible for this cycle to repeat indefinitely.
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IV.Findings and Analysis

4.1 Introduction

Once the program itself was completed, tested and debugged it was then run using the cases
delineated in Chapter 3. This was done to determine if it provided the necessary information to the
student to stimulate meaningful and relevant questions and supply sufficient information to answer
those questions thereby encouraging the creation of new knowledge in the area of covariance. The
cases used are shown in Table 3.2 (see page 3.20) and summarized in Table 4.1

TABLE 4.1 Summary of Cases Run

Bivariate Normal Multivariate Normal Bivariate Normal Muttivariate Normal
BWN MVN BWN MVN
Theoretical Theoretical/Empirical Empirical Data manually | Empirical Data from disk
Data generated from entered
computer

Theoretical means that geometric images displayed to represent the population, either BVN or
MVN, were created using the populations characterizing parameters () and Z). When a case states

that it contains empirical data it means that the geometric images used to represent the population
from which the sample (empirical) data were taken are based on the estimators of the characterizing
parameters (x and S) of that population. Empirical data is supplied to the computer in one of three
manners. First it could be generated by the computer from the population parameters. How this is
done is explained in Appendix G. The second way empirical data can be supplied to the computer
is by the student or the teacher saving it in a file called EMPDATA.DAT in the same directory as
the program. The final method of supplying empirical data to the computer is by typing it in via
the keyboard while running the program.

There were several reasons why these four cases were chosen out of the 24 possible cases. First
of all the time frame available for this research was prohibitive not allowing all cases to be run.

The cases chosen were done so because they not only cover most of the computer programs
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capabilities, but they also cover nearly all the significant concepts of covariance which the student
is expected to be able to create. The full collection of screen captures (both inputs and outputs)
from the running of all four cases and their associated options is included as Appendix A. When
the selected cases were run valuable information was gathered which suggested a positive answer

to the research’s investigative question.

4.2 Study of Case 1

The first case run was the case involving the Bjvariate normal distribution and containing only
theoretical data. Table 3.4 (see page 3.22) contains the details on the five options associated with
this case. The output for Case 1 Option 1 is shown in Figure A.2 (see page A.2). The screen is
divided into four subsections. The top left section (not labeled in the output) contains statistical

values such as the mean vector, the variance/covariance matrix, the eigenvalues, eigenvectors and
the n matrix and its associated eigenvalues and eigenvectors. The top right section (1abeled screen

1) contains an image of the contours representing the normal distribution with the parameters jt and

f. The major and minor axis shown with this image are those for the distribution characterized by

the parameters p and X. This is done to give scale to the image so it can be compared with the image
in the bottom left section. This section (1abeled screen 2) contains the contours of the density

function characterized by the parameters pt and Z. The final section of the screen (labeled screen

3) is left blank for this case. This section of the screen is used in the other cases to display the test
of the mean vector.

What the student observes from this first option is that the ellipses in both image sections of the
screen are in fact perfect circles and the angles of rotation of these circles are both 0.0 degrees. He
can also see that the major and minor axis of the image in screen 1 is scaled by the factor n from
those in screen 2. It can be seen that in this option knowing one of the variables values yields no
information about the other. At this point the student has successfully created knowledge on what
it means for two variables to be independent. In other words, he has synthesized knowledge from
a single special case. This information supports the second hypothesis that computer generated
graphical images embedded in appropriately pictorialized vector spaces can be employed to
enhance the identification and understanding of critical statistical features traditionally used to
characterize the covariance structure of bivariate normal populations. It also provides support for
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the third hypothesis that the VVAM protocol can enable a student to gain a profound and
experimentally based mastery of the concepts of covariance.

The second option is divided into two separate runs for the student to compare and contrast. The
output for part A of this option is Figure A.4 (see page A.2) and the output for part B is Figure A.6
(see page A.3). When the student examines these two parts they see that in part A, where the
covariance is low, that the ellipses are slightly elongated and there is an equal angle of rotation for
the images in both screen 1 and screen 2. In part B, where the covariance is high, the ellipses are
much more elongated but the angle of rotation is the same as in part A. The student learns that the
covariance is responsible for the shape of the ellipse. They also are stimulated to ask why there is
now an angle and, since it remains constant when the covariance changes, what controls it. This is
an example of experimental based learning. This supports the first research hypothesis that the
VVAM can be used to orchestrate a experiment-based environment. The next option is in response
to those unanswered questions. '

The third option is also divided into two parts. In both these parts the covariance remains
constant at a high value while the variances of each variable are swapped from one part to the other.
The output for part A is Figure A.8 (see page A.4) and the output for part B is Figure A.10 (see
page A.5). When the student compares these two outputs he sees that the ellipses are all elongated
as they could have predicted from what they learned from the last option. They also see that the
angles of rotation for the ellipses are not the same for both parts. Since the only difference between
these runs is that the variance changes, the student can determine that it is the variances which
control the angle of rotation of each ellipse. Again the student has created new knowledge from a
self-discovery learning environment.

Using the information from options two and three, the student has synthesized knowledge from
information gained within a case. This demonstrates that the program has been able to stimulate
meaningful learning on a second level. The first being from a single special case as was demon-
strated with option one.

In option 4, the student is also guided through a comparison of two runs. In both parts the
relationship between the variances is the same while the covariance is high and negative for part
A (Figure A.12, page A.6) and is low and positive for part B (Figure A.14, page A.7). From
observing the output of part A, the student can determine that the negative covariance causes the
slope of the major axis to be negative. This is confirmed when he views the output from part B and
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sees that the slope is again positive which corresponds to the covariance. In both outputs the ellipses
are elongated as would be expected, now that the student knows that this is caused by the presence
of a non-zero covariance. There is also consistency in their observations because the greater
elongation occurs in part A, where the convariance is higher.

In the final option of this case, the user is shown the effect on the images when the covariance
is both negative and equal to 1. They can hypothesize that the slope of the major axis will be
negative from what they learned from the last option. What they also now see is that the ellipses
are no longér ellipses but have degenerated into lines. The student can determine that this is the
reverse of option 1 when covariance was zero. Now only one variable needs to be known in order
to find a point from the distribution. In this case of perfect (negative) covariance, one variable is
perfectly predictable from the other. Again the student has synthesized knowledge from two levels,
both a single special option, perfect covariance, and from the comparison of two options within a
single case, no versus perfect covariance.

With the knowledge the student has created from this first case, he can view the second case
with certain hypotheses going in. He is in fact creating an experiment by which he can test those
hypotheses. This is exactly the type of behavior which the three research hypotheses suggest would
occur if a graphics oriented program, like the one developed here, is used within the VVAM
protocol. This is strong support for the investigative question. '

4.3 Study of Case 2

Case 2 involves the Multivariate normal distribution where geometric images for both theoreti-
cal and empirical data are displayed. This case also contains a test of the mean vector for each of
the options which appears in screen 3. See chapter III for a review of the testing procedure. Table
3.4, see page 3.22, contains all the options which make up this case. Since the options will result
in displays of both the theoretical and empirical distributions the student will be able to readily
compare and contrast them.

The first option is the special case on independence as was seen in the first option of Case 1.
The student is able to recognize that the pairwise covariances are all zero and from this he can then
hypothesize that the images representing the distribution in any of the planes defined by two of the
three variables would be a circle. Therefore, the image representing the MVN, all three variables
simultaneously, would be a sphere. The output for option one is Figure A.9 (see page A.S). It
becomes readily apparent that the users hypothesis is correct, that the theoretical images are indeed
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spheres. However, he quickly realizes that the images for empirical data are not spheres but
ellipsoids. Using what was learned from the first case, he can see that this is not totally unexpected
since the data on the input screen of this option (Figure A.17, page A.9) shows that the pairwise
covariances for the sample data are not equal to zero. What the student learns from this is that
sample data from a population may not have the same exact characteristics as the population. This
is the first step in understanding the idea of estimators, a vital concept in statistics. Screen 3 contains
the test of the mean vector. If the student focuses his attention on this screen (Figure A.21, page
A.11) he can see that the point representing the mean vector is within the region defined by the
ellipsoid and therefore, the null hypothesis is not rejected. From this single option the student is
able to learn in an experimentally based manner that:
a) the only difference between the bivariate normal distribution (BVD) and the multivariate
normal distribution (MVN) is that the BVN is represented by the geometric image of a ellipse
(or circle) and the MVN is represented by an ellipsoid (or sphere);
b) that the parameters calculated from a sample are only estimators of the parameters repre-
senting the population that the sample is derived from; and
¢) that a test of the mean vector is simply a matter of determining if the mean vector purposed
as the null hypothesis is contained within a specified confidence region.

These results are even more support for the hypothesis that this type of computer program when used
with the VVAM protocol is a self discovery based learning environment which will foster the creation
of new knowledge in the area of covariance.

The second option is divided into three parts. All the parts use the same variances for each

variable. The first part (part A) uses the same low value for each pairwise covariance. Part B uses
the same high value for each pairwise covariance. The final part uses a different high value for each
of the pairwise covariances. This option parallels option 2 for Case 1. The output for part A is
Figure A.23 (see page A.12). The output for part B is Figure A.27 (see page A.14) and the output
for part C is Figure A.31 (see page A.16). The student hypothesizes correctly that the images from
the theoretical data will differ from those of the empirical data. The student also can observe that
the elongation of the ellipsoids is greater in part B then in part A, where the pairwise covariances
are greater. This is consistent with what was learned in the first Case. The student can see that in
all three parts the test of the mean vector results in the rejection of the null hypothesis (see Figure
A.25, page A.13, Figure A.29, page A.15, and Figure A.32, page A.16, respectively for the
individual tests). This option gives the user an opportunity to reaffirm what they have discovered
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in the other options. This reaffirmation strengthens the students understanding by acting as positive
feedback. For each assertion he makes the student can see that it is true. This gives him confidence
that the new knowledge he has constructed is valid. The validation of assertions is an important
component in experimental-based learning. The fact that this process is available to the learner
strongly implies that indeed a experimentally-based learning environment has been constructed.

With renewed confidence in what they have already learned the student can progress to option
3. In this option the pairwise covariances are all set to the same high value. However, for this option
the variances, each variables covariance with itself, are set at increasing values (i.e. 61 > 63> ;).
What the student can see from this option is how each pair of variables interact with each other and
how all of these interactions form the ellipsoids of the distributions they are representing. The
output for this option appears in Figure A.36 (see page A.18). This particular figure is a closeup
on screen 3. What the user will first notice is that the mean vector representing the null is not within
the region defined by the ellipsoid and therefore, the null hypothesis is rejected. He will also see,
and most likely have predicted, that the ellipses for each pairwise interrelationship are at various
angles to each other and to those displayed in the previous option. Looking at these more complex
interrelationships leads him to ask about what happens when none of the values, variances or
covariances, are kept constant. This question can be answered with option 4.

Option 4 contains two parts. Each of these parts contains a run where the variances are not equal
and the pairwise covariances are also not equal (either in sign or magnitude). The output for part
A of this option is Figure A.19 (see page A.10) and part B is Figure A.41 (see page A.21). By
viewing these two options the student is able to start generalizing what they have seen and learned.
This is an important step in the VVAM protocol because it represents the movement into the
algorithmization phase. This is solid evidence that the investigative question is being positively
answered. It shows that the VVAM protocol and the computer program are working together to
foster meaningful learning of this complex subject area. Figure A.39 (see page A.20) shows screen
3 from part A. The student can see that the null hypothesis is supported because the mean vector
is within the region defined by the confidence region. On the other hand, Figure A.42 (see page
A.21) shows that the null is rejected since the mean vector is outside the confidence region. Another
lesson the student will learn from this option is that they must be careful when conducting the test
of the mean. They must remember that they are in three space and that the image must be looked

at from several different angles to insure that the mean vector is outside the confidence region. In
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Figure A.41 (see page A.21) the student may look at screen 3 and assume that the null is true but
when he rotates the image as is done in Figure A .42 (see page A.21) he can see that the mean vector
was actually far behind the ellipsoid. This demonstrates the power of using computer graphics to
display geometric images. If the student saw the unrotated image on a blackboard he would have
difficulty in understanding why the test failed when the mean vector appears to be within the
ellipsoid. This apparent cuntradiction would disrupt the learning process. At this point, remember-
ing back to the first case, the user may ask what would happen if all the pairwise covariances where
equal to one. The fact that the student is prompted to ask this type of experimental question alone
shows that he is an active part of the learning process. That he is on a voyage of self discovery
learning and therefore will achieve some level of meaningful leaming. This type of question also
shows that the program has caused the synthesis of knowledge between cases which is learning on
a third level and is strong evidence that the program and the VVAM protocol are promoting

meaningful learning.

4.4 Study of Case 3.

This case involves the study of the BVN with empirical data supplied by the student from the
keyboard. Before going into detail about the options of this case it is important to discuss the
transition from theoretical to empirical data. In Case 1 all images were developed from purely
theoretical data. In Case 2 theoretical and empirical data were given together in order to show the
student how sample data is only representative of the population from which the sample came.
Figure 4.1 shows the relationship between theory and practice. When information about the
population is known it can be used to make deductions about a sample. When a sample is given it

can be used to make inferences about the population. In the last two Cases the student will be
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Figure 4.1. Relationship Between Theory and Practice
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supplying empirical (sample) data to the program. From this data he will be able to make inferences
about the population. He will also realize that these inferences take the form of estimates of the
true parameters of the population. He knows this because they were able to create this knowledge
while reviewing Case 2. The options for this case are described in Table 3.5, page 3.23. It should
be noted that for the first time the relationships of the individual variable means are stated. This
adds a new dimension to the problem. It will be the users job to determine how this information
and these interrelationships between the means effect the geometric images presented on the
screen.

The first option is the condition of extreme collinearity. The output for this option is Figure A.44
(see page A.22). As the student might expect when he sees that the covariance is near 1.0, the
ellipses are degenerating into lines. The knowledge created from this example deals with what the
characteristics of a sample are which cause extreme collinearity. He can hypothesize that since one
variable is predictable when the other is present, learned from Case 1, then the predicted variable
must be a scalar multiple of the predictor variable. When he reviews the input data (Figure A.43,
page A.22) he will see that a given value for x, is nearly the same as a given value of x,, or that
x, =k X x; where k= 1.0.

In the next option, The student supplies a sample where the means of those samples are very
different and so are the variances. Examining the output (Figure A.47, see page A.24) of this option
shows the student that the elongation of the ellipses is more than expected from the medium value
of the covariance. Since the individual means and the variances are different the student cannot
determine which caused the extra elongation. The student can expldin the rotation angle of nearly
90 degrees from the extreme difference in the variances. He already constructed the knowledge
that variance controls the angle of rotation form previous cases. To answer the question posed by
this option the student moves on to the next option.

In this option (option 3) the hypothesis is that it is the differences in the means which has caused
the extra elongation of the ellipses. When the output is studied (Figure A.51, see page A.26), the
student sees that the hypothesis is in fact rejected. The ellipse is not even as elongated as the
previous option and there is even a greater covariance in this option then the last. Therefore, the
new hypothesis is that the increased elongation is due to the extreme differences in the variances.
To test this hypothesis, option 4 is run.

The final option is used to test the new hypothesis. The means are relatively equal and the
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extreme differences in variances are tested at three levels of covariance. The outputs for parts A,
B and C are Figures A.53 (page A.27), A.56 (see page A.28) and A.59 (see page A.30). Close
examination of these outputs suggests that the new hypothesis is not rejected. The student has
modified his previous knowledge about the shaping of the ellipses with the new knowledge that
differences in the variances has some effect on their shapes. This effect must be to some lesser
degree than that of the convariance since it becomes apparent only at extreme differences in the
variances.

What case three has shown is that the student can use this computer-based, VVAM protocol
based learning environment as an experimental learning environment which is exactly what was

proposed by the research hypotheses.

4.5 Study of Case 4

The description of this case is shown in Table 3.6, page 3.24. This case is the same as Case 3
except that it deals with the MVN, This case was chosen to show how the same experimentation
can occur for the MVN case. The output screen for option 1 is Figure A.62 (see page A.31). This
option shows the student extreme collinearity in 3-dimensions answering the question posed at the
end of Case 2. The output for option 2 is Figure A.64 (see page A.32). With a closeup of screen 2
in Figure A.65 (see page A.33). The third option is displayed in Figure A.67 (see page A.34) and
the final option output is Figure A.69 (see page A.35).

4.6 Summary

The findings and analysis of the methodology run has yielded strong support for the research
hypotheses. The program has demonstrated its ability to facilitate the visualization and verbaliza-
tion steps of the VVAM protocol. It has stimulated the creation of new knowledge on three different
levels (see Figure 4.2). First it has synergized new knowledge from information, values and images,

Knowledge Creation From
Level 1—» Visualization of Special Situations
Level 2= Comparision of Options with a Case

Level 3= Comparision of Different Cases

Figure 4.2. Levels of Knowledge Creation
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from special statistical situations. Second it has stimulated the creation of knowledge from the
comparison of options within chosen cases of study. Finally the program was successful in

prompting meaningful learning from the comparison of two or more specific statistical cases.
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V. Conclusions and Recommendations

5.1 Conclusions

Previous chapters have documented the effort required to develop a learning system to display
geometric images characterizing the dependent relationship among two or three multivariate
normally distributed random variables. The computer program that was built to produce these
displays was exercised under the governance of the VVAM protocol to answer the investigative
question of this thesis, mainly: can a personal computer-based interactive graphics system be
developed and employed under the aegis of the VVAM protocol to create an imaginative, visually
interactive and meaningful learning environment for the study of covariance?

To answer this question, three research hypotheses had to be evaluated. This was accomplished
by exercising the learning system that was developed during the thesis effort to determine if the
three hypotheses could be confirmed.

Recall that the first hypothesis suggested that: the VVAM learning protocol, developed by
Hansard, can be used to orchestrate an experiment-based environment for constructively learning
and actively exploring variations of the covariance structures associated with selected multivariate
databases.

Results of experiments reported in Chapter 4 strongly suggest that the VVAM is effective in
orchestrating an experiment-based environment. Confirmation was obtained that the first two steps
of the VVAM: visualization and verbalization, can be meaningfully operationalized by generating
interactive displays of covariance structures. By observing and attempting to verbalize different
features of ellipsoids serving to model a specific state of covariance a student is able to formulate
statistical hypotheses and to design and to conduct experiments to test such hypotheses. It was also
demonstrated these results could be obtained for covariance structures representing bivariate
and/or multivariate distributions.

The second hypothesis suggested: computer-generated graphic images, embedded in an appro-
priately pictorialized vector space, can be employed to enhance the identification and under-
standing of critical statistical features traditionally used to characterize the covariance structure of
bivariate and multivariate normal populations.

Experiments conducted to evaluate this hypothesis provided solid evidence that the graphics
program produced by this thesis does, in fact, create and display images that efficaciously represent
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all types of covariance structures for bivariate and multivariate normal populations. Solid confir-
mation was also obtained suggesting such images can be presenied to the student in many
alternative ways allowing him to idiosyncratically identify and master the probabilistic and
statistical theory associated with particular covariance structures. More importantly, such pictures
encourage him to do this in an entirely intuitive manner under severe time constraints. This ensures
the learning system can find wide application in the conventional classroom.

Finally, note that the third hypothesis proposed:

Exercising a graphics oriented program which supports first two steps of the VVAM protocol:
visualization and verbalization and which implements relevant heuristics for constructive learning
will enable students to gain a profound and experiment-based mastery of the multivariate covari-
ance analysis concepts.

In fact, as soon as the program was run under the aegis of the VVAM it became obvious that
any student will be greatly assisted in his efforts to learn by discovery by such an image rich
environment. Interactive visual aids help foster an awareness of subtle connections among vari-
ables and facilitate competent articulation of the explicit and implicit principles of multivariate
statistics that are mirrored by the size, shape and orientation of an elliptical image of covariance.
Experiments run and reported in Chapter IV confirmed that a student, under competent instructor
guidance can, and will, use his personally constructed knowledge to link whatever he knows
coming into the learning experience to what he is able to actively learn in the environment
facilitated by the graphical display system of this thesis.

Students routinely formulated questions during the time they were verbalizing about what they
saw on the computer screen. Such spontancous behavior confirmed the graphics program produced
by this thesis does facilitate an environment that stimulates questioning and encourages a student
to attempt to answer his own questions. Immediate and continuous feedback guarantees the student
will maintain a lively interest in the subject under study as well as experience profound enthusiasm
for carrying out whatever Jearning activities he is requested to accomplish.

In summary, abundant evidence was obtained to suggest full and complete support exists for
each of the research hypotheses. Thus, a positive response to the investigative question can be
made; that is, that a personal computer-based interactive graphics system can be, and now has been,
developed and implemented under the aegis of the VVAM protocol to create an imaginative,

visually interactive and meaningful learning environment for the study of covariance.
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5.2 Recommendations for Future Research

Three suggestions for future research are

1. To enhance the current computer program.

2. To generate displays that display the evolution of Covariance Structures over some continuum
like time, space or the domain of one or more population parameters

3. To adapt the VVAM protocol for use in a qualitative context

5.2-1 Enhancing the Current Program. Several specific enhancements to the
current program could expand a student’s ability to construct new knowledge of covariance
structures. First, if the program were restructured to handle larger sample sizes more extensive
explorations could be made concerning the sensitivity of covariance structures to modifications in
population parameter values. This would enhance a student’s ability to explore the relationship
sample size has on attempts to estimate or test hypotheses about a populations characteristics.

Enhancements would also permit the study of a two samples scenario. This would require
creating and displaying images of two covariance structures simultaneously in order to permit the
comparison of two multivariate normal populations. Such an enhancement would allow a student
to explore concepts of two-sample inference as well as open up possibilities for studying additional
multivariate topics such as Multivariate Regression, Discriminate Analysis and Multidimensional
Scaling.

5.2-2 Generation of Evolving Displays of Covariance. Another recommen-
dation would be to take all the current and proposed capabilities of the program and create a new
computer program to facilitate the animated display of evolving ellipsoids - each subject to change
and variation through time. This new capability could be considered as an attempt to display the
evolution of covariance as it changes through time - which it surely does in the real world. It would
also require a very computationally intense environment and pose extraordinary demands on
internal memory. A Sun work station would support such fast computation needs as well as execute
Mathematica: software that already contains relevant mathematical and animation routines as part
of its menu of callable procedures.

Since the current program requires students to visualize ellipsoids portrayed by three defining
ellipses, sometimes it is difficult to maintain a full 3-D perspective, especially if two ellipsoids are
displayed at the same time. If each ellipsoid was presented as a hollow shell the student could easily
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distinguish between separate ellipsoi«s on the screen. Animation coupled with such a shell image
would facilitate dynamic and coherent displays of relevant ellipsoids.

When the current program is run and a student wants to change one or more of the values he
entered as input, he must restart the program and initiate a new run of the program. Full animation
would allow him to change values periodically (e.g., one or more of the parameters in the mean
vector or covariance matrix) and obtain instant feedback on how such modifications effect the
shape, size or orientation of the ellipsoid. This would heighten the level of active exploration and
experimentation and further enhance a student’s opportunity to discover his innate ability to
construct new knowledge at any level of abstraction.

5.2-3 Adaptation of the VVAM Protocol for Qualitative Contexts. This
final reccommendation promises to yield the most profound enhancements of all. For if the VVAM
protocol is applied in a non-mathematically based curriculum, construction of new knowledge can
occur in any conceivable learning environment. In fact, this research demonstrated again and again
that the most important steps of the VVAM protocol are the first two; visualization and verbaliza-
tion. These two steps should remain relatively unchanged in a qualitative environment. The
difficult part would be finding an appropriate way to logically algorithmitize and formally
articulate the new knowledge acquired. Visualizations could be facilitated, perhaps, by an active
involvement with computer based videos, and by orchestrating role playing exercises or computer
based simulations. It is important to emphasize that whenever the VVAM is exercised in a
qualitative context the student should always be allowed to maintain active control over what is
being visualized. He should also be able to experiment with self-selected situations and formulate
and test hypotheses he considers important. The use of heuristics rather than algorithms would
probably serve as step three of the VVAM protocol. In lieu of using the language of mathematics
for formalization at Step 4, a more ideographic language could be employed offering much richer
variety for expressing any given heuristic. This would surely be mandatory during the study oi
living systems,.

In short, the research performed to complete this thesis confirmed that the personal computer
can be used to orchestrate a Socratic dialogue among the three major components of the learning
triad:

Student-Curriculum-Teacher

within the constraints of conventional school governance. It also confirmed this can be done in
5‘4




a way that facilitates an environment for meaningful learning and stimulates self-discovery of the

concepts and propositions of multivariate covariance analysis.
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Appendix B

The main program contains the following procedures:

1. InitObject = prepares points, endpoints and lines so they are ready to be processed and displayed
in AcroMolé.

2. GenerateAxis = generates the coordinate system and the major and, if in 2-D case, the minor
axis of the ellipses is displayed.

3. Ellipses = generates the ellipses out of points.

4. DrawOutlines = generates the boarders of the main screen and displays the information needed
according to the case being used.

Program Ellpise;

{$F+}

(* This program is an example of some of the things that you can do with the *)

(* AcroMole subroutine library published by Acrobits, USA, (801)966-2580 or *)
(* toll-free in the US & Canada (800)ACROBITS (i.c. (800)227-6248).  *)

uses Overlay, Mathstuf,mathmat,rgraphma,graph,Get_data.crt;

{SL MOLES.0OB1} (* Include object code for AcroMole subroutines. *)

{$1 ACROMOLE.PAS} (* Include Pascal definitions for AcroMole subroutines. *)
{$1 UTILITY.PAS} (* Include Pascal wiility routines. *)

{$O Mathstwuf}

{$0 mathmat}

{$0O rgraphma}

{$0 Get_data}

Var
CalculateScaleFactorsVar:CalculateScaleFactorsRecord;
DrawLineVar:DrawLineRecord;
DrawRectangleVar:DrawRectangleRecord,
SetRight3DCamcraVar:Set3DCameraRecord;
SetLeft3ADCameraVar:Set3DCameraRecord,;
SetDrawingBuffer Var:SetDrawingBufferRecord;
SetLeftWindow Var:SetWindowRecord;
SetUpperWindow Var:SetWindowRecord;
SetLowerWindow Var:SetWindowRecord;
SetFullWindowVar:SetWindowRecord;
TempWorldPoint:WorldPointPointer;
Endpoint1,Endpoint2: WorldEndpointpointer;
TempWorldLine:WorldLinePointer;

LJ,K:Word;
Temp:Integer;
WindowWidth:Integer;
WindowHeight:Integer;
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WindowHorizontal:Integer;
WindowVertical:Integer;
NumberOfBuffers:Word;
Angle:Real;
TempReal:Real,
SinAngle,CosAngle,SinPositiveAngle:Real;
DeltaDistance:Real;
xdata,S,Sigma,cvalue,xbar,Rmatrix,eigenvalues,eigenvectors,SigmaByN,
evalstar,evecstar,Mu,SbyN, txbar:mathmat.matx;
xhigh,xlow:Real ArrayMPbyMP;
answer:real,
look,flagf1 flagf2 flagf3:boolean;
GD,Gm,Errcode:integer;
choice,P:string;
ordchoice,code,ordP:integer,
xx,change,xmax,ymax,zmax:real;
x 1bar,x2bar x3bar:string;
L1,L2L3:string;
sig2x1,sig2x2,sig2x3:string;
kolor:byte;

Label 888;

Const
WorldPointList:WorldPointPointer=Nil;
WorldEndpointList:WorldEndpointPointer=Nil;
WorldLineList:WorldLinePointer=Nil;
WorldPointListS1:WorldPointPointer=Nil;
WorldPointListS2:WorldPointPointer=Nil;
WorldPointListS3:WorldPointPointer=Nil,
Distance:Real=0.7,
Speed:Real=0.00003;
Matrix:Array[0..2,0..2] Of Real= (* Rotation matrix. *)

((32760.0.0.0.0.0).(0.0,32760.0.0.0),(0.0,0.0,32760.0));

(Rermmmememere s e *)
(* Initializes an object that has up to 255 endpoints, and  *)
(* 255 lines.  *)
Type
EndpointRecord=Record X,Y.Z:integer; End;
EndpointArrayType=Array(1..255] Of EndpointRecord;
EndpointArrayPointer="EndpointArrayType,
LineRecord=Record Endpoint1,Endpoint2,Color:Byte; End;
LineArrayType=Array[1..255] Of LineRecord,;
LineArrayPointer="LineArrayType;
Procedure InitObject(EndpointArray:EndpointArrayPointer,
LineArray:LineArrayPointer;
Endpoints,Lines:Byte;
ScaleFactor:Integer;

Var WorldEndpointList: WorldEndpointPointer;
Var WorldLineList:WorldLinePointer);
const
FreeWorldEndpointList: WorldEndpointPointer=Nil;
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FreeWorldLineList:WorldLinePointer=Nil;

Var
TempWorldEndpoint:WorldEndpointPointer;
TempWorldLine:WorldLinePointer;
TempEndpointPointers: Array([1..255] Of WorldEndpointPointer;
I:Byte;

Begin

For I:=1 To Endpoints Do Begin
If FreeWorldEndpointList=Nil Then New(TempWorldEndpoint)
Else Begin TempW orldEndpoint:=FreeWorldEndpointL ist;
FreeWorldEndpointList:=FreeWorldEndpointListA.Next; End;
TempWorldEndpoint”. Transform3DEndpointVar.WorldX:=
ScaleFactor*EndpointArray”(1].X;
TempWorldEndpoint”. Transform3DEndpointVar.WorldY :=
ScaleFactor*EndpointArray”[1].Y;
TempWorldEndpointA. Transform3DEndpointVar.WorldZ:=
ScaleFactor*EndpointArray*[1].Z;
TempWorldEndpoint*. Next:=WorldEndpointList;
TempEndpointPointers[1}:=TempWorldEndpoint;
WorldEndpointList:=TempWorldEndpoint; End;
For I:=1 To Lines Do Begin
If FreeWorldLineList=Nil Then New(TempWorldLine)
Else Begin TempWorldLine:=FreeWorldLineList;
FreeWorldLineList:=FreeWorldLineList*.Next; End;
TempWorldLine*.Endpoint 1:=TempEndpointPointers[LineArray*[1).Endpoint1];
TempWorldLine”.Endpoint2:=TempEndpointPointers{Line Array*{I]. Endpoint2];
If LineArray*[I].Color=MaximumColor Then
TempWorldLine”.Color:=LineArray*[1].Color
Else TempW orldLine”.Color:=((LineArray*[1].Color-1) Mod MaximumColor)+1;
TempWorldLine” Next:=WorldLineList;
WorldLineList:=TempWorldLine; End;
End;
(* __________ ———— *)

Procedure Generate Axis(xmax.ymax.zmax:real;var xBarstar:mathmat.matx;
var xhigh.xlow:realarraympbymp;
var variance:mathmat.matx;cvalue,eigenvalues:mathmat.matx);

Type
EndPointNames=
(dummy,
endl,
end2,
end3,
end4,
endS,
end6,
end?.
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ends,

end9,

end10,

endll,

endl2,

endl3,

endl4,

endl5,

end16 (* centroid *)
)

EndPtArrayType=Array[1..16,1..3] of integer;
CordLineRecord=Record Ep1,Ep2:EndpointNames; Color:Byte; End;
CordLineArrayType=Array[1..13) Of CordLineRecord;
const
CordLineArmray:CordLineAmrayType=

(
(EP1:end1:Ep2:end2;color:white),
(EP1:end1;Ep2:end3;color:white),
(EP1:end1;Ep2:end4;color:white),
(EP1:end1;Ep2:end5;color:white),
(EP1:end1;Ep2:end6;color:white),
(EP1:end1,Ep2:end7;color:white),
(EP1:end8;Ep2:end14;color:cyan),
(EP1:end9.Ep2:end14;color:cyan),
(EP1:end10;Ep2:end14;color:cyan),
(EP1:end11;Ep2:end14;color:cyan),
(EP1:end12;Ep2:end14;color:cyan),
(EP1:end13;Ep2:end14:color.cyan),
(EP1:end15;EP2:end16;color:cyan));

Const
Magnify:Real=150.1; {Indicates relative length of Axes to object)

var
CordEndPtArray:EndPtArrayType;
DX,DY,DZ,gd.gm: Integer; {Dummy Variables}
MX MY MZ: Real;
Center: Real; {Center of Label}
Leg: Real; {Label variable}
tempreal:real;

Begin

(* MX := Xmax*3.0; MY := Ymax*3.0; MZ := Zmax*3.0;
If Xmax<((MY+MZ)/3) then Xmax:=(MY+MZ)/3;

If Ymax<((MX+MZ)/3) then Ymax:=(MX+MZ)/3;

If Zmax<((MX+MY)/3) then Zmax:=(MX+MY)/3; *)
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Xmax:= Magnify*Xmax;

Ymax:= Magnify*Ymax; {We want the Axes to go past the object}
Zmax:= Magnify*Zmax;

IF xmax

IF ymax

CordEndPtArray[14,1]:=0;
CordEndPtArray(14,2]:=0; (* Centroid *)
CordEndPtArray(14,3]:=0;

CordEndPtArray[1,1]):=0-Round(100*xBarstar.data[1,1});
CordEndPtArray[1,2}:=0-Round(100*xBarstar.data{2,1]); (* origin *)
if ordp=3 then
CordEndPtArray[1,3):=0-Round(100*xBarstar.data{3,1])
else
CordEndPtArray(1,3]:=0;

CordEndPtArray(2,1]):=0-Round(100*xBarstar.dataf1,1]);
CordEndPtArray|2,2]):=0-(Round(100*xBarstar.data[2,1]+ymax));
If ordp=3 then
CordEndPtArray([2,3]:=0-Round(100*xBarstar.data[3,1])
else
CordEndPtArray(2.3]:=0);

CordEndPtArray(3,1):=0-Round(100*xBarstar.data[1,1]);
CordEndPtArray{3,2}:=0-Round(1{X}*xBarstar.data[2,1));
if ordp=3 then
CordEndPtArray[3,3]:=0-(Round(100*xBarstar.data[3,1}+zmax))
else
CordEndPtArray(3,3]:=0);

CordEndPtArray(4.1]:=0-(Round(1(X)*xBarstar.data[1,1]+xmax));
CordEndPtArray(4,2]:=0-Round(1(X*xBarstar.data[2,1]);
if ordp=3 then
CordEndPtArray(4,3]:=0-Round( 1()*xBarstar.data[3,1])
else
CordEndPtArray(4,3]):=0;

CordEndPtArray(5,1):=0-Round(100*xBarstar.data[1,1]);
CordEndPtArray(5,2):=0-(Round(100*xBarstar.data[2,1]-ymax));
if ordp=3 then
CordEndPtArray(5,3]:=0-Round(100*xBarstar.data[3,1])
else
CordEndPiArmray(5.3]:=0;

CordEndPtArray([6,1]:=0-Round(100*xBarstar.data{1,1});
CordEndPtArray(6.2):=0-Round(100*xBarstar.data[2,1});
if ordp=3 then
CordEndPtArray(6,3]:=0-(Round(100*xBarstar.dataf3,1]-zmax))
else

B5




CordEndPtArray|[6,3]:=0;

CordEndPtArray|7,1):=0-(Round(100*xBarstar.data[1,1])-xmax));
CordEndPtArray(7,2]):=0-Round(100*xBarstar.data[2,1]);
if ordp=3 then
CordEndPtArray[7,3):=0-Round(100*xBarstar.data[3,1])
else
CordEndPtArray{7,3]:=0;

(* Endpoints at the Ends of the Major and Minor Axis *)

If (xhigh{1,1}-xlow{1,1})>(xhigh{1,2}-xlow[1,2})
Then begin

ellipseX1X2bottom(xhigh{1,1],variance,cvalue xBarstar,answer);
CordEndPtArray(8,1]:=0-(Round(100*(xhigh[1,1]-xBarstar.data[1,1))));
CordEndPtArray(8,2]:=0-(Round(100*(answer-xBarstar.data{2,1])));
CordEndPiArmray(8.3]:=0;

ellipseX1X2top(xlow[1,1],variance.cvalue.xBarstar,answer);
CordEndPtArray|[9,1]:=0-(Round(100*(xlow{1,1]-xBarstar.data[1,1])));
CordEndPtArmray(9.2]:=0-(Round(100*(answer-xBarstar.data[2,1])));
CordEndPtArray[9.3]:=0,

If ordp=2 then begin
tempreal:=xBarstar.data[1,1]-
(eigenvalues.data[4,2]*cos(eigenvalues.data1,2]));

ellipseX 1X2top(tempreal.variance,cvalue.x Barstar,answer);
CordEndPtArray[15.11:=0-(round(100*(tempreal-xbarstar.data[ 1,1])));
CordEndPtArray[15,2]:=0-(Round(100*(answer-xBarstar.data[2,1])));
CordEndPiAmray([15.2):=0);

tempreal:=xBarstar.data[1,1]+
(eigenvalues.data[4.2)*cos(eigenvalues.data{1,2]));
ellipseX1X2bottom(xBarstar.data[1,1],variance,cvalue,xBarstar,answer);
CordEndPtArray(16,1]:=0-(round(100*(-xbarstar.data( 1, 1]+tempreal)));
CordEndPtAmray(16,2):=0-(Round(100*(answer-xBarstar.data[2,1])));
CordEndPtArmray[16,3]):=0;
end;end

else begin

ellipseX2X 1Bottom(xhigh[1.2],variance.cvalue,xBarstar.answer);
CordEndPtArray(8,1}:=0-(Round(100*(answer-xBarstar.data{1,1])));
CordEndPtArray(8,2]:=0-(Round( 100*(xhigh{1,2]-xBarstar.data[2,1])));
CordEndPtArray(8,3):=0;

ellipseX2X ltop(xlow[ 1,2],variance.cvalue,xBarstar,answer);
CordEndPtArray(9,1]):=0-(Round( 100*(answer-xBarstar.data[1,1])));
CordEndPtArray(9.2):=(0-(Round(100*(xlow[1,2]-xBarstar.data[2,1))));
CordEndPtArray[9.3]:=0);
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If ordp=2 then begin
tempreal:=xBarstar.data{2,1]-
(eigenvalues.data[4,2]*cos(eigenvalues.data[1,2]));
ellipseX2X ltop(tempreal,variance,cvalue,xBarstar,answer),
CordEndPtArray[15,1]:=0-(Round(100*(answer-xBarstar.data[ 1,1])));
CordEndPtArray(15,2]:=0-(Round(100*(tempreal-xbarstar.data[2,1])));
CordEndPtAmray({15,3]:=0;
tempreal:=xBarstar.dataf2,1]+
(eigenvalues.data[4,2)*cos(eigenvalues.data[1,2]));
ellipseX2X 1bottom(tempreal, variance,cvalue,xBarstar,answer);
CordEndPtArray|16,1]):=0-(Round(100*(answer-xBarstar.data[1,1])));
CordEndPtArray(16,2]):=0-(Round(100*(-xbarstar.data[2,1}+tempreal)));
CordEndPtArray[16,3]:=0;
end.end;

If ordp=3 then begin

If (xhigh[1.1]-xlow[1.1])>(xhigh[1.3]-xlow[1,3])
Then begin )

ellipseX1X3top(xhigh[1.1],variance.cvalue xBarstar,answer);
CordEndPtArray[10.1]:=0-(Round(100*(xhigh[ 1,1]-xBarstar.data[1,1])));
CordEndPtArray([10.2]):=0;
CordEndPtArray(10.3):=0-(Round(100*(answer-xBarstar.data[3.1})));

ellipseX1X3bottom(xlow[1,1].variance.cvalue,xBarstar,answer);
CordEndPtArray(11.1]:=0-(Round(100*(xlow[1.1]-xBarstar.data[1,1])));
CordEndPiArray([11,2]:=();

CordEndPtArray( 11,3):=0-(Round(10)*(answer-xBarstar.data[3.1])));

end else begin

ellipseX3X ltop(xhigh[1,3],variance,cvalue,xBarstar,answer),
CordEndPtArray{ 10,1):=0-(Round(100*(answer-xBarstar.data(1,1])));
CordEndP1Array[10.2]:=0;
CordEndPtArray(10,3):=0-(Round(100*(xhigh[1,3]-xBarstar.data[3,1])));

ellipseX 3X 1bottom(xlow(1,3],variance,cvalue xBarstar,answer),
CordEndPtArray(11.1]:=0-(Round(100*(answer-xBarstar.data[1,1])));
CordEndPtArray(11.2]:=0;
CordEndPiArray[11,3):=0-(Round(100*(xlow[1,3]-xBarstar.data[3,1])));
end; {endif x1 or x3 major axis }

If (xhigh[1.2]-xlow[1,2])>(xhigh[1,3]-xlow[1,3])
Then begin

ellipseX2X 3top(xhigh[1.2].variance.cvalue xBarstar,answer);
CordEndP1Array[12.1]:=0;
CordEndPtArray([12.2]:=0-(Round(100*(xhigh[1,2]-xBarstar.data(2,1})));
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CordEndPtArray([12,3):=0-(Round(100*(answer-xBarstar.data[3,1])));

ellipseX2X3bottom(xlow[1.2],variance,cvalue ,xBarstar,answer);
CordEndPtArray[13,1]:=0;
CordEndPtArray(13,2):=0-(Round(100*(xlow(1,2]-xBarstar.data[2,1])));
CordEndPtArray[13,3]:=0-(Round(100*(answer-xBarstar.data[3,1])));
end

else begin

ellipseX3X2top(xhigh[1,3],variance,cvalue,xBarstar,answer),
CordEndPtArray[12,1}:=0;
CordEndPtArray[12,2]:=0-(Round(100*(answer-xBarstar.data[2,1]))).
CordEndPtArray([12,3]:=0-(Round(100*(xhigh[1,3]-xBarstar.data[3,1])));

ellipseX3X2bottom(xlow(1,3],variance.cvalue xBarstar,answer);
CordEndPtArray{13,1]:=0;
CordEndPtArray[13,2]:=0-(Round(100*(answer-xBarstar.data[2.1])));
CordEndPtArray(13,3]:=0-(Round(100*(xlow[1,3]-xBarstar.data[3,1])));
end; { endif x2 or x3 major axis }

end

else begin
CordEndPtArray{10,1]:=();
CordEndPtArray{10.2]:=0);
CordEndPtArmray[10.3]:=0;

CordEndPtArray(11,11:=(0);
CordEndPtArray[11.2]:=(0;
CordEndPtArray[11.3):=0;

CordEndPtArray[12,1]:=(0);
CordEndPtArray[12.2]:=0);
CordEndPtArray{12.3]:=();

CordEndPtArray[13.1]:=();
CordEndPtArray(13.2]:=(0);
CordEndPiArray{13,3]:=();

end; (* ifordp=13*)

if ordp=2 then

InitObject(@CordEndP1Array, @CordLineArray, 16,13,1,
WorldEndPointList, WorldLineList)

else

InitObject( @CordEndP1Array, @ CordLineArray, 14,12,1,
WorldEndPointList, WorldLineL.ist);

end; {Procedure GenerateAxis}

Procedure ellipses(txbar:mathmat.matx;ordchoice,ordp:integer;var xlow,xhigh:realarraymp-
bymp;
var xBarstar,
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cvalue:mathmat.matx;var variance:mathmat. matx;
Var WorldPointList: WorldPointPointer;kolor:byte;whichHiLo,screen:Integer);
var
nop:integer; {number of points}
noprireal; {# of intervals}
Begin
if ordp=3 then begin
nopr:=150.0;
nop:=151;end
else begin
nopr:=275.0;
nop:=276;end;
if ordchoice=S then begin
nopr:=130.0;
nop:=131; end;
* *)
(* Calculate coordinates for points in the X1 vs X2 Ellipse. *)
(* ____________ *)
If (xhigh[WhichHiLo,1]-xlow[ WhichHiLo, 1])>(xhigh[ WhichHiLo,2]-xlow{WhichHilL.o,2])
Then begin
xx:=xlow[whichHiLo,1];
change:=(xhigh[WhichHiLo,1]-xlow[WhichHiLo,1])/nopr;end
else begin
xx:=xlow[whichHilLo.2];
change:=(xhigh[WhichHiLo.2]-xlow[WhichHiLo,2])/nopr;end;

For J:=1 to nop Do Begin

New(TempWorldPoint); TempWorldPoint* Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;

If (xhigh[WhichHiLo,1]-xlow[WhichHiLo,1])>(xhigh[ WhichHiLo,2]-xlow[WhichHiLo,2])
Then begin

ellipseX1X2Top(xx,Variance.Cvalue xBarstar.answer);

WorldPointListA. Transform3DPointVar.WorldX:= Round( 100* (xx-xBarstar.data[1,1]));
WorldPointListA. Transform3DPointVar.WorldY:= Round( 100* (answer-xBarstar.data[2,1]));
WorldPointList*. Transform3DPointVar.WorldZ:=0; {zbar} end

else begin

ellipseX2X1Top(xx,Variance.Cvalue xBarstar,answer),

WorldPointList?. Transform3DPointVar.WorldX:= Round( 100* (answer-xBarstar.data[1,11]));
WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (xx-xBarstar.data[2,1]));
WorldPointList*. Transform3DPointVar.WorldZ:=0; {zbar} end;

WorldPointList*.Color:=kolor;
xx:=xx+change;
End;

(* The Points for The Bottom of Ellipse 1*)
If (xhigh{WhichHiLo,1]-xlow[WhichHiLo,1])>(xhigh[WhichHiLo0,2]-xlow[WhichHiLo,2])
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Then begin
xx:=xlow[whichHiLo,1];
change:=(xhigh{ WhichHiLo,1]-xlow[WhichHiLo,1})/nopr;end
else begin
xx:=xlow[whichHilLo,2];
change:=(xhigh{ WhichHiL o,2}-xlow{WhichHiLo,2])/nopr;end;

for j:=1 to nop do Begin
New(TempW orldPoint), TempWorldPoint*.Next:=W orldpointlist;
WorldPointList:=TempWorldPoint;
(* This if looks to see which variable represents the major axis *)
(* Then graphs using it as xx *)

If (xhigh[ WhichHiLo, 1]-xlow[WhichHiLo,1])>(xhigh{ WhichHiLo,2]-xlow[WhichHiLo,2])
Then begin
ellipseX1X2Bottom(xx,Variance,Cvalue,xBarstar,answer);

WorldPointList*. Transform3DPointVar.WorldX:= Round( 100* (xx-xBarstar.data[1,1]));
WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (answer-xBarstar.data[2,1]));
WorldPointList*.Transform3DPointVar.WorldZ:=0; {zbar} end

else begin

ellipseX2X 1Bottom(xx,Variance,Cvalue ,xBarstar,answer);

WorldPointList*. Transform3DPointVar. WorldX:= Round( 100* (answer-xBarstar.data{1,1}));
WorldPointList*. Transform3DPointVar. WorldY := Round( 100* (xx-xBarstar.data[2,1]));
WorldPointList*. Transform3DPointVar.WorldZ:=(); {zbar} end;

WorldPointList”.Color:=kolor;
xx:=xx+change;
End;

If (ordp=3) then begin

(* Calculate the X1 vs X3 Ellipse *)
If (xhigh[WhichHiLo, 1]-xlow[WhichHiLo,1])>(xhigh{ WhichHiLo,3]-xlow{WhichHiLo,3])
Then begin
xx:=xlow[whichHiLo,1];
change:=(xhigh[whichHiLo,1]- xlow[whichHiLo,1])/nopr;end
else begin
xx:=xlow[whichHiLo,3];
change:=(xhigh[whichHiLo,3])-xlow[whichHiLo,3])/nopr;end;

For j:=1 to nop do begin
New(TempWorldPoint); TempWorldPoint* Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;
If (xhigh[WhichHiLo.1}-xlow[WhichHiLo,1])>(xhigh{ WhichHiLo,3]-xlow[Which-
HiLo.3))

Then begin
ellipseX 1X3top(xx, Variance Cvalue xBarstar.answer);
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WorldPointList*. Transform3DPointVar. WorldX:= Round( 100* (xx-xBar-
star.data[1,1]));
WorldPointList*. Transform3DPointVar. WorldY:= 0; {Ybar}

WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (answer-xBar-
star.data[3,1]));

end

else begin

ellipseX3X1top(xx,Variance,Cvalue,xBarstar,answer),

WorldPointList*. Transform3DPointVar. WorldX:= Round( 100* (answer-xBar-
star.data[1,1]));
WorldPointListA. Transform3DPointVar.WorldY:= O; {Ybar}

WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (xx-xBar-
star.data{3,11));
end;

WorldPointList*.Color:=kolor;
Xx:=xx+change;
End;

If (xhigh[WhichHiLo.1)-xlow[WhichHiLo,1])>(xhigh[ WhichHiLo, 3]-xlow[Which-
HilLo.3])
Then begin
xx:=xlow[whichHilL.o,1];
change:=(xhigh(whichHiLo,1]-xlow[whichHiLo.1])/nopr;end
else begin
xx:=xlow[whichHiLo 3};
change:=(xhigh{whichHiLo.3]-xlow| whichHiLo,3])/nopr;end;

For j:=1 to nop do begin

New(TempWorldPoint); TempWorldPoim» Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;

If (xhigh{WhichHiLo,1]}-xlow[WhichHiLo,1])>(xhigh[WhichHiLo,3])-xlow[Which-
HilLo,3])
Then begin
ellipseX 1X3bottom(xx,Variance,Cvalue xBarstar,answer);

WorldPointList*, Transform3DPointVar. WorldX:= Round( 100* (xx-xBar-

star.data[1,1]));
WorldPointListA, Transform3DPoimtVar. WorldY:= 0; {Ybar}

WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (answer-xBar-
star.data[3.1]));

end

else begin
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ellipseX3X 1bottom(xx, Variance,Cvalue,xBarstar.answer);

WorldPointList*. Transform3DPointVar. WorldX:= Round( 100* (answer-xBar-

star.data(1.1])):
WorldPoiniList*. Transform3DPointVar. WorldY:= 0; {Ybar}

WorldPointListA. Transform3DPointVar.WorldZ:= Round( 100* (xx-xBar-
star.dz2:af3,1]));
end;
WorldPointList*.Color:=kolor;
xx:=xx+change;
End;

(* This section calculates the points in the X2 vs X3 ellipse *)

If (xhigh[WhichHiLO.Z]-xlow[WhichHiLo.2])>(xhigh[WhichHiLoS]-xlow[WhichHiLo,B])
Then begin

xx:=xlow[whichHilLo.2};

change:=(xhigh{whichHiLo.2}-xlow{whichHiL.0.2])/nopr; end

else begin

xx:=xlow{whichHiLo,3];

change:=(xhigh{whichHil.o.3}-xlow[whichHiL.0,3])/nopr; end;

For J:=1 to nop do bhegin
New(TempWorldPoint); TempWorldPoint? Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;

If (xhigh[WhichHiL0.2]-x]ow[WhichHiLo,Z])>(xhigh[WhichHiLo.3]-xlow[W11ich-
HilLo,3])
Then begin
ellipseX2X 3top(xx, Variance,Cvalue,xBarstar,answer);
WorldPointList?. Transform3DPointVar. WorldX:= 0; {xBarstar}
WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (xx-xBarstar.dataf2,1]));
WorldPointList». Transform3DPointVar.WorldZ:= Round( 100* (answer-xBar-
star.data[3.1]));
end
else begin

ellipseX3X21op(xx, Variance Cvalue xBarstar.answer),

WorldPointListA. Transform3DPointVar.WorldX:= 0; {xBarstar}

WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (answer-xBar-
star.data[2,1])); '

WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (xx-xBarstar.data[3,1]));

end;

WorldPointListA.Color:=kolor;

xx:=xx+change,

End;

If (xmgh{WhichHiLo.Z]-x]ow[WhichHiLo.Z])>(xhigh[WhichHiLo.3]-xlow[WhichHiLo.3])
Then begin
xx:=xlow[whichHiLo0,2];
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change:=(xhigh[whichHiLo,2]-xlow[whichHiLo,2])/nopr; end
else begin

xx:=xlow{whichHiLo,3};
change:=(xhigh[whichHiLo,3]-xlow[whichHiLo,3])/nopr; end;

For J:=1 to nop do begin
New(TempW orldPoint); TempWorldPoint*.Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;

If (xhigh[WhichHiLo,2]-xlow[WhichHiL0,2])>(xhigh[WhichHil o,3]-xlow[Which-
HiLo,3))
Then begin
ellipseX2X3bottom(xx, Variance,Cvalue ,xBarstar,answer);
WorldPointList*. Transform3DPointVar. WorldX:= 0; {xBarstar}
WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (xx-xBarstar.data[2,1]));
WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (answer-xBar-
star.data[3,1]));
end
else begin

ellipseX3X2bottom(xx, Variance,Cvalue,xBarstar,answer);
WorldPointList*. Transform3DPointVar.WorldX:= (; {xBarstar}
WorldPointList*. Transform3DPointVar.WorldY:= Round( 100* (answer-xBar-
star.data[2.1]));
WorldPointList*. Transform3DPointVar.WorldZ:= Round( 100* (xx-xBarstar.data[3,1]));
end; :
WorldPointList*.Color:=kolor;
xx:=xx+change;
End;
end; (*if*)

New(TempW orldPoint); TempWorldPoint*.Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;
(* Plot Centroid *)
(* Note centroid is moved to origin so it is the point of rotation *)
WorldPointList*. Transform3DPoint Var. WorldX:=(0;

WorldPointList*. Transtorm3DPoimVar.WorldY :=0;

WorldPointList*. Transform3DPointVar.WorldZ:=0;
WorldPointList*.Color:=white;

If (ordchoice=4) and (screen=3) then begin

New(TempWorldPoint); TempW orldPoint*.Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;
WorldPointList*. Transform3DPointVar WorldX:=
Round( 100* (MU.data[1.1]-xBarstar.dataf1,1]));
WorldPointList*. Transform3DPointVar.WorldY =
Round( 100* (Mu.duta{2.1]-xBarstar.data[2.1]));
if ordp=3 then
WorldPointList*. Transform3DPointVar.WorldZ =
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Round( 100* (Mu.data[3,1]-xBarstar.data{3,1]))

else

WorldPointList*. Transform3DPointVar.WorldZ:=0;
WorldPointList*.Color:=white; end;

If (ordchoice=5) and (screen=3) then begin

New(TempWorldPoint); TempW orldPoint*.Next:=Worldpointlist;
WorldPointList:=TempWorldPoint;
WorldPointList*. Transform3DPointVar.WorldX:=
Round( 100* (txbar.data[1,1]-xBarstar.data[1,1]));
WorldPointList*. Transform3DPointVar.WorldY:=
Round( 100* (txbar.data{2,1]-xBarstar.data[2,1]));
if ordp=3 then
WorldPointListA. Transform3DPointVar.WorldZ:=
Round( 100* (txbar.data[3,1]-xBarstar.data[3,1]))
else
WorldPointList*. Transform3DPointVar.WorldZ:=0;
WorldPointList*.Color:=white; end;

End; (* Procedure Ellipses*)

Procedure DrawQutlines;
(* Draw lines for the boundaries around the windows. Make sure to draw the *)
(* lines in all of the buffers that we’ll be using (2 buffers at most).  *)
Begin
For I:'=MaximumBuffer Downto () Do Begin
SetDrawingBuffer Var.Buffer:=I;
(* This first section draws the lines and headings that
are common to all screens *)SetActivePage();
SetViewPor(1.1.WindowVertical, WindowHorizontal true);
ClearViewPort;
AcroMole.SetDrawingBuffer(SetDrawingBufferVar);
DrawLineVar.Color:=MaximumColor;
DrawlLineVar.ScreenX 1:=MinimumScreenX;
DrawLineVar.ScreenY 1:=MinimumScreenY
Drawi.ineVar.ScreenX2:=MinimumScreenX;
DrawLineVar.ScreenY2:=MaximumScreenY;
AcroMole.DrawLine(DrawLineVar);
DrawLineVar.ScreenX 1:=MaximumScreenX;
DrawLineVar.ScreenY 1:=MaximumScreenY;
AcroMole.DrawLine(DrawLineVar);
DrawLineVar.ScreenX2:=MaximumScreenX;
DrawLineVar.ScreenY2:=MinimumScreenY;
AcroMole.DrawLine(DrawLineVar);
DrawLineVar.ScreenX 1:=MinimumScreenX;
DrawLineVar.ScreenY 1:=MinimumScreenY;
AcroMole.DrawLine(DrawLineVar);
DrawLineVar.ScreenX 1:=WindowVertical;
DrawLineVar.ScreenX2:=WindowVertical;
DrawLineVar.ScreenY2:=MaximumScreenY;
AcroMole.DrawLine(DrawLineVar);
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DrawLineVar.ScreenY 1:=WindowHorizontal;
DrawLineVar.ScreenX2:=MaximumScreenX;
DrawLineVar.ScreenY2:=WindowHorizontal;
AcroMole.DrawLine(DrawLineVar);
DrawLineVar.ScreenX 1:=MinimumScreenX:
DrawLineVar.ScreenY 1:=WindowHorizontal;
DrawLineVar.ScreenX2:=WindowVertical;
DrawLineVar.ScreenY2:=WindowHorizontal;
AcroMole.DrawLine(DrawLine Var);

DrawLineVar.ScreenX 1:=MinimumScreenX;
DrawLineVar.ScreenY 1:=WindowHorizontal-12;
DrawLineVar.ScreenX2:=MaximumScreenX;
DrawLineVar.ScreenY2:=WindowHorizontal-12;
AcroMole.DrawLine(DrawLineVar);

DrawLineVar.ScreenX 1:=WindowVertical;
DrawLineVar.ScreenY l:=MaximumScreenY-12;
DrawLineVar.ScreenX2:=MaximumScreenX;
DrawLineVar.ScreenY2:=MaximumScreenY-12;
AcroMole.DrawLine(DrawLineVar);

End;

For I:=MaximumBuf{fer Downto () Do Begin

setactivepage(I);

SetTextJustify(0.1);

SetColor(white);
Case Ordchoice of
1: Begin

Gmatwrite(xbar,4,2#230.15.5,lightgray blue, white);

Gmatwrite(Sigma,5,2.#228,138.5.lightgray blue,white);
Gmatwrite(SigmabyN.5.2#228'/n’, 130,45 )ightgray,blue.white);
Gmatwrite(eigenvalues.5.2,"Lambda’ 30,85 lightgray blue white);
Gmatwrite(Eigenvectors.5.2,"EV’, 149,85 lightgray.blue.white);
GmatWrite(evalstar,5.2,"L.*’,20,125 lightgray blue,white);
GmatWrite(eveestar,5.2,"EV.*', 140,128 lightgray,blue,white);

SetTextJustify(2.1);

OutTextXy(635.(maximumscreeny div 2+170),"This Screen Intentionally Blank’);
OutTextXY(200,(maximumscreeny div 2495),’Screen 2 - "#230°, '#228);
OutTextXy(550.(maximumscreeny div 2495),'Screen 3°),
OutTextXY(550,7,’Screen 1 - "#23(), "#228°/N');

end; {choice 1}
2,3: Begin

Gmatwrite(xbar 4,2, Xbar’ 25,5.lightgray blue.white);
Gmatwrite(S.5.2.°S’,138.5 lightgray blue white);
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Gmatwrite(SbyN,5,2,’S/n’,130.45 lightgray,blue,white);
Gmatwrite(eigenvalues,5,2,'Lambda’, 30,85, lightgray,blue,white),
Gmatwrite(Eigenvectors.5,2,’EV’,149,85 lightgray blue,white);
GmatWrite(evalstar.5.2,’L.** 20,125 lightgray, blue,white);
GmatWrite(evecstar,5,2,"EV.*",140,125 lightgray.blue,white);
SetTextJustify(2,1);

OutTextXY(200,(maximumscreeny div 2+95),”Screen 2 - Xbar, S°);
OutTextXy(550,(maximumscreeny div 2+95),’Screen 3°);
OutTextXY(550,7,’Screen 1 - Xbar, S/N’); end;

4: Begin
Gmatwrite(xbar,4,2,"Xbar’ 25,5 lightgray,blue,white);
Gmatwrite(Mu,5,2,#230,138.5 lightgray,blue,white);
GmatWrite(sbyn,5,2,’S/n’, 140,45 lightgray blue,white);
Gmatwrite(eigenvalues,5,2,’"Lambda’ 30,85 lightgray blue,white);
Gmatwrite(Eigenvectors,5.2,’EV’, 149,85 lightgray blue,white);
GmatWrite(evalstar,5.2,’L.**,20,125 lightgray.blue.white);
GmatWrite(evecstar,5,2,’EV.*’,14(),125 lightgray,blue,white);
SetTextlustify(2,1);

OutTextXY(200,(maximumscreeny div 2495),"Screen 2 - S°);
OutTextXy(550.(maximumscreeny div 2+95).’Screen 3 - Test of Mean’);
OutTextXY(550,7,'Screen 1 - S/n’); end;

5: Begin
Gmatwrite(xbar,4.2 #23(°.* 25,5 lightgray blue.white);
Gmatwrite(Mu.5.2 #230,138.5 lightgray blue.white);
Gmatwrite(txbar,4.2 #23()°.0° .25 45 lightgray blue.white);
GmatWrite(Sigma.5.2,#228,143 .45 lighigray blue,white);
Gmatwrite(eigenvalues,5.2,’Lambda’ . 30.85.lightgray blue,white);
Gmatwrite(Eigenvectors,5.2.’EV’,149 85 lightgray,blue,white);
GmatWrite(evalstar,5.2,"L.**.2(),125 lightgray blue, white);
GmatWrite(S.5.2,’S°,140,125 lightgray blue.white);
SetTextlustify(2,1);

OutTextXY(200,(maximumscreeny div 2+95),’Screen 2 - "#228'(Red) & S');
OutTextXy(570.(maximumscreeny div 2+95),’Screen 3 - Test of Mean - S/n’),
OutTextXY(550.,7,"Screen 1 - *#228'/n’); end;
end; {case)

End;{for}

SetDrawingBufferVar.Buffer:==MaximumBufter,
AcroMole.SetDrawingBuffer(SetDrawingBufterVar),
end; {outlines)

(* BEGIN Main Program *)
Begin

Ovrlnit(’a3scrloo.OVR®);
OvrInitEMS;
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888:
StartAcroMole;
i=1;

Gd:=3; Gm:=EGAHi,
InitGraph(Gd.Gm,”");
errcode:=GraphResult;

If Graphresult <> grOK then begin
Writeln("Graphics Error °,GraphErrorMsg(graphresuit));
readln; Hali(1); end;

SetBkColor(1); {Background Blue}

TextColor(1);

(* set some flags *)

flagfl:=false;

flagf2:=false;

Flagf3:=false;

Repeat

OutTextXY(30.120," Do you wish to deal with the Bivariate Or MultiVariate Normal Distribu-
tion?’);

OutTextXY(35,145.’Input 2 for BVN (2-D) or 3 for MVN (3-D):'),

repeat

p:=ReadKey;

val(P,ordP,code);

until (ordp=2) or (ordp=3),

Clrscr;

val(P,ordP.code);

Case OrdP of
2: begin

OutTextXY (70,120, This is the Case of a Bivariate Normal Distribution:’);
OutTextXY(90.135.°(1) Study the Theoretical Graphs’);
OutTextXY(90,150.’(2) Study Graphs for Empirical Data Read from Disk (a:\empdata.dat)’);
OutTextX Y (90.165.’(3) Study Graphs from Empirical Data from Keyboard’);
OutTextXY(90.180),’(4) Read Data from a file on disk (Test of Mean Vector)');
OutTExtXY(90.195.’(5) Theoretical & Empirical Graphs + Test of Mean’);
OutTextXY(80.210,' Type the number of choice (1, 2, 3,4 or 5)");
Repeat
choice:=Readkey;
val(choice,ordchoice,code);
until (ordchoice=1) or (ordchoice=2) or (ordchoice=3) or

(ordchoice=4) or (ordchoice=5);

clrscr; End; {case 2}

3: begin

OutTextXY(70,120, This is the Case of a Multivariate Normal Distribution:’);
OutTextXY(90,135.’(1) Study the Theoretical Graphs');

OutTextXY(90.150,’(2) Study Graphs for Empirical Data Read from Disk (a:\empdata.dat)’);
OutTextXY(90.165,’(3) Study Graphs from Empirical Data from Keyboard');
OutTextXY(90.180,’(4) Read Data from a file on disk (Test of Mean Vector)’);
OutTExtXY(90.195.'(5) Theoretical & Empirical Graphs + Test of Mean');
OutTextXY(80.210," Type the number of choice (1. 2, 3,4 or 5)");

Repeat
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choice:=Readkey;

val(choice,ordchoice,code);

until (ordchoice=1) or (ordchoice=2) or (ordchoice=3) or
(ordchoice=4) or (ordchoice=5);

clrscr; End; {case 3}
end; {case ordp}

look:=false;
Case Ordchoice of

1: GenerateData(txbar,xdata,S.xhigh,xlow,cvalue,mu,xbar,look,
Eigenvalues,Eigenvectors.SigmabyN evalstar,evecstar,ordp,sigma,sbyn);

2: ReadDataEmpirical(xdata,S,xhigh,xlow,cvalue,mu,xbar,look,
Eigenvalues.Eigenvectors,SbyN evalstar,evecstar,ordp);

3: GetDataKeyboard(xdata,S,xhigh.xlow,cvalue,mu,xbar look,
Eigenvalues Eigenvectors,SbyN evalstar evecstar,ordp);

4: ReadDataTest(xdata.S,xhigh,xlow.cvalue,mu.xbar,look,
Eigenvalues.Eigenvectors,SbyN.evalstar,evecstar,ordp);

5: begin look:=true;

GenerateData(txbar.xdata,S.xhigh.xlow.cvalue,mu,xbar look,
Eigenvalues.Eigenvectors,SigmabyN evalstar evecstar,ordp,sigma.sbyn);
end; {begin}

Else

GenerateData(txbar,xdata,S . xhigh,xlow cvalue,mu.xbar,look,
Eigenvalues. Eigenvectors, SigmabyN evalstar evecstar.ordp,sigma,sbyn);

End; {Case)

(* This Section determines what MND is being looked at:
If Ordchoice = 1 then Theoretical
If OrdChoice = 2 or 3 then Empirical
If Ordchoice = 4 then Testing *)

Case Ordchoice of

I: Begin
WorldPointListS3:=nil;
ellipses(txbar,ordchoice.ordp.xlow xhigh,Mu,cvalue,Sigma,WorldPointLists2,2,1,2);
ellipses(txbar,ordchoice.ordp.xlow.xhigh,Mu,cvalue,SigmabyN,WorldPointLists1,3,2,1);
end;

2,3: Begin
ellipses(txbar.ordchoice.ordp.xlow,xhigh,Xbar,cvalue,SbyN,WorldPointLists1,3,2,1);
ellipses(txbar,ordchoice.ordp.xlow.xhigh.Xbar,cvalue,S,WorldPointLists2.2,1,2);
ellipses(txbar,ordchoice.ordp.xlow,xhigh. Xbar.cvalue, SbyN,WorldPointLists3,2,2 4);

end;
4: Begin

ellipses(txbar,ordchoice.ordp.xlow,xhigh. Xbar,cvalue SbyN,WorldPointLists1,3,2,1);
ellipses(txbar,ordchoice,ordp.xlow.xhigh,Xbar,cvalue,SbyN,WorldPointLists3,2,2,3);
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ellipses(txbar,ordchoice,ordp.xlow,xhigh, Xbar,cvalue,S,WorldPointLists2,2,1,2);
end;

5: Begin
ellipses(txbar,ordchoice.ordp.xlow,xhigh,Mu,cvalue.Sigma,WorldPointLists2,4,1,2);
ellipses(txbar,ordchoice,ordp.xlow,xhigh.Mu,cvalue,SigmabyN,WorldPointLists1,4,2,1);
ellipses(txbar,ordchoice,ordp,xlow,xhigh,Xbar,cvalue,S,WorldPointLists2,3,3,2);
ellipses(txbar,ordchoice,ordp.xlow,xhigh,Xbar,cvalue,Sbyn,WorldPointLists3,3,4,3);
end;

end; (*case*)

* *)
xmax:=xhigh[1,1]; ymax:=xhigh[1,2]; zmax:=xhigh[1,3];
if (ordchoice=1) OR (ordchoice=5) then
GenerateAxis(20.0,20.0.20.0,Mu,xhigh,xlow,Sigma,cvalue,eigenvalues)
else

GenerateAxis(2(.0,2(2.0.20.0.xbar xhigh.xlow.S cvalue eigenvalues);

(* This is the top of the main loop. *)

CalculateScaleFactorsVar.ResolutionX:=ResolutionX;
CalculateScaleFactorsVar.ResolutionY :=ResolutionY;
CalculateScaleFactorsVar.SizeX:=4,
CalculateScaleFactorsVar.SizeY:=3;
CalculateScaleFactorsVar.ScaleFactorLo:=0);
CalculateScaleFactorsVar.ScaleFactorHi:=550;
AcroMole.CalculateScateFactors(CalculateScaleFactorsVar);

SetRight3DCameraVar.ScaleFactorX:=CalculateScaleFactors Var.ScaleFactor X ;
SetRight3aDCameraVar.ScaleFactorY :=CalculateScaleFactorsVar.ScaleFactorY,;
SetRight3DCameraVar.Perspective:=1(XX);

CalculateScaleFactorsVar.ResolutionX:=ResolutionX;
CalculateScaleFactorsVar ResolutionY :=ResolutionY;
CalculateScaleFactorsVar.SizeX:=4,
CalculateScaleFactorsVar.SizeY:=3;
CalculateScaleFactorsVar.ScaleFactorLo:=0);
CalculateScaleFactorsVar.ScaleFactorHi:=550);
AcroMole.CalculateScaleFactors(CalculateScaleFactorsVar);

SetLeft3DCameraVar.ScaleFactorX:=CalculateScaleFactorsVar.ScaleFactorX;
SetLeft3DCameraVar.ScaleFactorY :=CalculateScaleFactorsVar.ScaleFactorY;
SetLeft3DCameraVar.Perspective:=1000;

WindowHorizontal:=(MaximumScreenY+MinimumScreenY) Div 2;
WindowVertical:=(MinimumScreenX+2*MaximumScreenX) Div 22;

(* Calculate the position of the left hand window. *)

WindowWidth:=WindowVertical-MinimumScreenX-1;
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WindowHeight:=MaximumScreenY-MinimumScreenY-1;

SetLeftiWindowVar MinimumFilmX :=-(WindowWidth Div 2);
SetLeftWindowVar.MaximumFilmX :=SetLeftWindow Var.MinimumFilmX+WindowWidth-1;
SetLeftWindowVar. MinimumFilmY:=-(WindowHeight Div 2)+80;

SetLeftWindowVar MaximumFilmY :=SetLeftWindowVar.MinimumFilmY+(WindowHeight
div 2)-13;

SetLeftWindowVar MinimumScreenX:=MinimumScreenX+1;
SetleftWindowVar.MinimumScreenY :=MinimumScreenY+1;

(* Calculate the position of the upper right window. *)

WindowWidth:=MaximumScreenX-WindowVertical-1;
WindowHeight:=MaximumScreenY-WindowHorizontal-1;

SetUpperWindowVar MinimumFilmX:=-(WindowWidth Div 2);

SetUpperWindow Var.MaximumFilmX:=SetUpper Window Var.MinimumFilmX+Window-
Width-1;

SetUpperWindow Var MinimumFilmY :=-(WindowHeight Div 2);

SetUpperWindow Var MaximumFilmY :=SetUpperWindowVar.MinimumFilmY+Window-
Height-13;

SetUpperWindow Var MinimumScreenX:=WindowVertical+1;
SetUpperWindowVar.MinimumScreenY :=WindowHorizontal+1;

(* Calculate the position of the lower right window. *)

WindowHeight:=WindowHorizontal-MinimumScreenY-1;
SetLowerWindowVar.MinimumFilmX:=-(WindowWidth Div 2);

SetLowerWindow Var MaximumFilmX:=SetLowerWindowVar. MinimumFilmX+Window-
Width-1;

SetLowerWindowVar.MinimumFilmY :=-(WindowHeight Div 2);

SetLowerWindowVar MaximumFilmY :=SetLowerWindowVar MinimumFilmY+Window-
Height-13;

SetLowerWindowVar MinimumScreenX:=WindowVertical+1;

SetLowerWindowVar MinimumScreenY :=MinimumScreenY+1;

SetFullWindowVar MinimumFilmX:=MinimumScreenX+1;
SetFullWindowVar MaximumFilmX :=MaximumscreenX-1;
SetFullWindowVar MinimumFilmY:=MinimumScreenY+1;
SetFullWindowVar MaximumFilmY :=MaximumScreenY-1;
SetFullWindowVar. MinimumScreenX :=MinimumScreenX+1;
SetFullWindowVar.MinimumScreenY :=MinimumScreenY+1;
DrawQutlines,
Repeat
(* Set the clipping window for the left hand window *)
AcroMole.SetWindow(SetLeftWindowVar);

(* Set the camera position for a front view, *)
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SetLeft3DCameraVar.WorldX:=-Round(Distance*Matrix[0,2]);
SetLeft3DCameraVar.WorldY :=-Round(Distance*Matrix[1,2});
SetLeft3DCameraVar.WorldZ:=-Round(Distance*Matrix(2,2]);
SetLeft3DCameraVar.DirectionX:=Round(Matrix[0,2]);
SetLeft3DCameraVar.DirectionY:=Round(Matrix[1,2]);
SetLeft3DCameraVar.DirectionZ:=Round(Matrix[2,2]);
SetLeft3DCameraVar.UpX:=Round(Matrix[0,1]);
SetLeft3DCameraVar.UpY:=Round(Matrix[1,1]);
SetLeft3DCameraVar.UpZ:=Round(Matrix{2,1]);
AcroMole.Set3DCamera(SetLeft3DCameraVar);

(* Transform and clip the points. *)
TransformAndClip(WorldPointLists2,WorldEndPointList,WorldLineList);
(* Set the clipping window for the upper right window. *)

AcroMole. SetWindow(SetUpperWindowVar);

(* Set the camera position for a top view. *)

(* Transform and clip the points. *)

TransformAndClip(WorldPointListS 1, WorldEndPointList, WorldLineList),
(* Set the clipping window for the lower right window. *)
AcroMole.SetWindow(SetLowerWindowVar);

(* Set the camera position for a right side view. *)

(* Transform and clip the points. *)

If ordchoice= 1 then

Transform AndClip(nil,nil.nil)

else

Transform AndClip(WorldPointLists3,WorldEndPointList, WorldLineList);
(* Draw the ransformed points on the screen. *)

UpdateScreen;

(* Get the keyboard status and the change in time. *)

GetStatus;

(* Based on the keys pressed down, and the change *)
(* in ime, update the angles and distance. *)

Angle:=Speed*DeltaTime; SinPositive Angle:=Sin(Angle); CosAngle:=Cos(Angle);
DeltaDistance:=0.5*Speed*DelaTime;
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If RightArrowFlag Xor LeftArrowFlag Then Begin
If RightArrowFlag Then SinAngle:=SinPositiveAngle
Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix[0,0];
Matrix[0,0}:=CosAngle*Matrix[0.0]-SinAngle*Matrix[0,2];
Matrix[0,2]:=SinAngle*TempReal+CosAngle*Matrix[0,2];
TempReal:=Matrix[1,0];
Matrix[ 1,0):=CosAngle*Matrix[1,0]-SinAngle*Matrix[1,2];
Matrix[1,2}:=SinAngle*TempReal+CosAngle*Matrix([1,2);
TempReal:=Matrix[2.0];
Matrix[2,0):=CosAngle*Matrix[2,0]-SinAngle*Matrix[2,2];

Matrix[2,2):=SinAngle*TempReal+CosAngle*Matrix[2,2]; End;

1f UpArrowFlag Xor DownArrowFlag Then Begin
If UpArrowFlag Then SinAngle:=SinPositiveAngle
Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix{0.1];
Matrix[(),1]:=CosAngle*Matrix[().1]-SinAngle*Matrix[0,2];
Matrix[0.2]):=SinAngle*TempReal+CosAngle*Matrix[0,2];
TempReal:=Matrix[1,1];
Matrix[1.1]:=CosAngle*Matrix[1,1]-SinAngle*Matrix[1,2]);
Matrix[1.2]:=SinAngle*TempReal+CosAngle*Matrix[1,2];
TempReal:=Matrix(2,1];
Matrix[2,1]:=CosAngle*Mairix[2,1]-SinAngle*Matrix[2,2];

Matrix[2.2):=SinAnglc*TempReal+CosAngle*Matrix[2.2]; End;

If PgUpFlag Xor PgDnFlag Then Begin
If PgUpFlag Then SinAngle:=SinPositiveAngle
Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix[().0];
Matrix[0,0):=CosAngle*Matrix[().0]-SinAngle*Matrix[0,1];
Matrix{0.1]:=SinAngle*TempReai+CosAngle*Matrix[0,1];
TempReal:=Matrix[1.0];
Matrix[1,0]:=CosAngle*Matrix[1.0]-SinAngle*Matrix[1,1];
Matrix[1.1]:=SinAngle*TempReal+CosAngle*Matrix[1,1];
TempReal:=Matrix{2.0];
Matrix[2,0}:=CosAngle*Matrix[2.0]-SinAngle*Matrix[2,1];

Matrix[2,1]:=SinAngle*TempReal+CosAngle*Matrix[2.1]; End;

(* This section checks to see if F1, F2 Or F3 has been pressed
If so screen 1, 2 or 3 is inlarged and displayed as the
only screen. ESC returns all previous screens *)

If F1Flag or F2Flag or FiFlag
Then begin (* display one large screen *)
Flagfl:=f1flag;
Flagf2:=12flag;
Flagf3:=f3flag;
(* First Clear Screen in hoth buffers *)
For I:=MaximumBuffer Downto (0 Do Begin
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SetDrawingBuffer Var.Buffer:=I;

AcroMole.SetDrawingBuffer(SetDrawingBufferVar),
DrawRectangleVar.ScreenX 1:=MinimumScreenX;
DrawRectangleVar.ScreenY 1 :=MinimumScreenY
DrawRectangleVar.ScreenX2:=MaximumScreenX;
DrawRectangleVar.ScreenY2:=MaximumScreenY;
DrawRectangle Var.color:=blue;AcroMole.DrawRectangle(DrawRectangle Var);
end;

(* Now display and rotate single screen *)

Repeat
(* Draw the transformed points on the screen. *)

AcroMole.SetWindow(SetFulilWindowVar),
(* Set the camera position for a Full view. *)

SetLeftaDCameraVar. WorldX:=-Round(Distance*Matrix[0.2]);
SetLeft3DCameraVar.WorldY :=-Round(Distance*Matrix[1,2]);
SetLeft3aDCameraVar.WorldZ:=-Round(Distance*Matrix[2,2]);
SetLeft3DCameraVar.DirectionX:=Round(Matrix[0,2]);
Setleft3DCameraVar.DirectionY :=Round(Matrix[1,2]);
SetLefi3DCameraVar.DirectionZ:=Round(Matrix[2.2]);
SetLeft3DCameraVar.UpX:=Round(Matrix{0.1]);
SetLeft3DCameraVar.UpY:=Round(Matrix[1,1]);
SetLeft3DCameraVar.UpZ:=Round(Matrix[2,1]);
AcroMole.Set3DCamera(SciLefi3aDCameraVar),

(* Transform and clip the points. *)
If flagfl then
Transform AndClip(WorldPointLists 1, WorldEndPointList, WorldLineList);

If FlagF2 then
Transform AndClip(WorldPointLists2, WorldEndPointList, WorldLineList),

If FlagF3 then

Transform AndClip(WorldPointLists3, WorldEndPointList, WorldLineList),
UpdateScreen;

(* Get the keyboard status and the change in time. *)

GetStatus;

(* Based on the keys pressed down, and the change *)
(* in ime, update the angles and distance.  *)

Angle:=Speed*DeltaTime; SinPositiveAngle:=Sin(Angle); CosAngle:=Cos(Angle),
DeltaDistance:=0.5*Speed*DeliaTime;

If RightArrowFlag Xor LeftArrowFlag Then Begin
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If RightArrowFlag Then SinAngle:=SinPositiveAngle

Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix[0,0];
Matrix{0,0]:=CosAngle*Matrix[0,0]-SinAngle*Matrix[0,2];
Matrix[0,2]:=SinAngle*TempReal+CosAngle*Matrix[0,2];
TempReal:=Matrix{1,0];
Matrix[1,0]:=CosAngle*Matrix[1,0]-SinAngle*Matrix[1,2];
Matrix[ 1,2]:=SinAngle*TempReal+CosAngle*Matrix[1,2);
TempReal:=Matrix[2,0];
Matrix[2,0]):=CosAngle*Matrix[2,0]-SinAngle*Matrix[2,2];
Matrix[2,2]):=SinAngle*TempReal+CosAngle*Matrix[2,2]; End;

If UpArrowFlag Xor DownArrowFlag Then Begin
If UpAmrowFlag Then SinAngle:=SinPositiveAngle
Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix[0,1];
Matrix[0,1]:=CosAngle*Matrix[(),1]-SinAngle*Matrix{0.2];
Matrix[0,2]):=SinAngle*TempReal+CosAngle*Matrix[0,2];
TempReal:=Matrix[1,1];
Matrix{1,1]:=CosAngle*Matrix[1.1]-SinAngle*Matrix[1,2];
Matrix{1.2]:=SinAngle*TempReal+CosAngle*Matrix[1,2];
TempReal:=Matrix[2,1];
Matrix[2,1]:=CosAngle*Matrix[2.1]-SinAngle*Matrix[2,2];
Matrix[2.2]:=SinAngle*TempReal+CosAngle*Matrix(2,2]; End;

If PgUpFlag Xor PgDnFlag Then Begin
If PgUpFlag Then SinAngle:=SinPositiveAngle
Else SinAngle:=-SinPositiveAngle;
TempReal:=Matrix{0.0];
Matrix[0,0]:=CosAngle*Matrix[().0]-SinAngle*Matrix[0,1];
Matrix[0,1]:=SinAngle*TempReal+CosAngle*Matrix[0,1];
TempReal:=Matrix{1.0];
Matrix[1,0):=CosAngle*Matrix[1,0]-SinAngle*Matrix[1,1];
Matrix[ 1,1}:=SinAngle*TempReal+CosAngle*Matrix[1,1];
TempReal:=Matrix[2.0];
Matrix[2,0]:=CosAngle*Matrix[2.0]-SinAngle*Matrix[2,1];
Matrix[2,1]):=SinAngle*TempReal+CosAngle*Matrix[2,1]; End,;

If MinusFlag Then Distance:=Distance-DeltaDistance;
If PlusFlag Then Distance:=Distance+DeltaDistance;
If Distance>1.0 Then Distance:=1.0
Else If Distance(.(X)1 Then Distance:=0.001;

If HomeFlag Then Begin Distance:=().7,
For 1:=0 To 2 Do For J:=0) To 2 Do
If I=] Then Matrix[1.J]:=32760.0 Else Matrix[1.J]:=0.0; End;
(* Keep looping till the user presses CTRL and BREAK, CTRL and C, or ESC. *)
Until ExitFlag;
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ExitFlag:=false; (* reset flag so program does not end *)
flagfl:=false;
flagf2:=false;
Flagf3:=false;
MaximumBuffer:=1;

(* clear screen again *)

For I:=MaximumBuffer Downto 0 Do Begin
SetDrawingBufferVar.Buffer:=I;
AcroMole.SetDrawingBuffer(SetDrawingBufferVar);

DrawRectangleVar.ScreenX 1:=MinimumScreenX;
DrawRectangleVar.ScreenY 1:=MinimumScreenY;
DrawRectangleVar.ScreenX2:=MaximumScreenX;
DrawRectangleVar.ScreenY2:=MaximumScreenY;
DrawRectangleVar.color:=blue;AcroMole.DrawRectangle(DrawRectangle Var);
end;
(* clear screen again *)
For I:=MaximumBufter Downto () Do Begin
SetDrawingBufferVar Buffer:=I;
AcroMole.SetDrawingButfer(SetDrawingBufferVar);

DrawRectangleVar.ScreenX 1:=MinimumScreenX;
DrawRectangleVar.ScreenY 1:=MinimumScreenY

DrawRectangle Var.ScreenX2:=MaximumScreenX;
DrawRectangleVar.ScreenY2:=MaximumScreenY;
DrawRectangleVar.color:=blue; AcroMole.DrawRectangle(DrawRectangle Var);
end;

DrawOutlines; (* Setup screen for original look *)
end; {if #flag}

If MinusFlag Then Distance:=Distance-DeltaDistance;
If PlusFlag Then Distance:=Distance+DeltaDistance;
If Distance>1.0 Then Distance:=1.0)

Else If Distance(.001 Then Distance:=0.001;

If HomeFlag Then Begin Distance:=(.7,
For I:=0 To 2 Do For I:'=0 To 2 Do
If I=] Then Matrix[1.11:=32760).0 Else Matrix[1.J}:=0.0; End;

If f12Flag then begin
(* clear screen again *)

For I:=MaximumBuffer Downto 0 Do Begin
SetDrawingBufferVar Buffer:=l;
AcroMole.SetDrawingBuffer(SetDrawingBufferVar);

DrawRectangleVar.ScreenX | :=MinimumScreenX;
DrawRectangleVar.ScreenY 1:=MinimumScreenY,;
DrawRectangle Var.ScreenX2:=MaximumScreenX;
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DrawRectangleVar.ScreenY2:=MaximumScreenY;
DrawRectangle Var.color:=blue; AcroMole.DrawRectangle(DrawRectangleVar);
end;

StopAcroMole;
CloseGraph;

Dispose(@WorldPointList);
Dispose(@ WorldEndPointList);
Dispose(@ WorldLineList);
Dispose(@ WorldPointListS1);
Dispose(@ WorldPointListS2);
Dispose(@WorldPoiitListS3);

worldpointlist:=nil,
worldendpointlist:=nil;
worldlinelist:=nil;
worldpointlists1:=nil;
worldpointlisis2:=nil;
worldpointlists3:=nil;

Release(HeapOrg);
Distance:=().7;
For 1:=0 To 2 Do For J:=0) To 2 Do
If I=] Then Matrix(1.11:=3276().0) Else Matrix'1.1]:=0.0;
goto 888; (* Restant Program *)
end; {if f12Flag }

(* Keep looping till the user presses CTRL and BREAK, CTRL and C, or ESC. *)
Until ExitFlag; (* {#Flag test Repeat *)

(* Shut down AcroMole before returning to DOS. *)
Until ExitFlag; (* Main Program Repeat *)
StopAcroMole;
CloseGraph;
Gd:=2; Gm:=VGAHi;

InitGraph(Gd.Gm."");

closegraph,
End.
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Appendix C

The first unit is MathStuff. This unit contains the following functions:

1. Ellipse x1x2 Top - Returns x2 on the bottom half of ellipse for a given x1.
2. Ellipse x1x2 Bottom - Returns x2 on the bottom half of ellipse for a given x1.
3. Ellipse x1x3 Top - Returns x3 on the bottom half of ellipse for a given x1.
4. Ellipse x1x3 Bottom - Returns x3 on the bottom half of ellipse for a given x1.
5. Ellipse x2x3 Top - Returns x2 on the bottom half of ellipse for a given x1.
6. Ellipse x2x3 Bottom - Returns x2 on the bottom half of ellipse for a given x1.

Unit MathStuf;

{$F+}

{$0+)

Interface

Uses Graph,Crt.Mathmat;

Procedure EllipseX 1X2Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X1 vs X2 Ellipse*)
Procedure EllipseX 1X2Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X1 vs X2 Ellipse*)

Procedure EllipseX 1X3Top(var xx:real; sigmaStar:mathmat.matx;

cvalue:mathmat.matx; xbarstar:mathmat.matx;

var answer:real); (* Creates Points for X1 vs X3 Ellipse*)
Procedure EllipseX 1X3Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X1 vs X3 Ellipse*)

Procedure ENipseX2X3Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X2 vs X3 Ellipse*)
Procedure EllipseX2X3Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matix;

var answer:real); (* Creates Points for X2 vs X3 Ellipse*)

Procedure EllipseX2X1Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X2 vs X1 Ellipse*)
Procedure EllipseX2X 1Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.maix;

var answer:real); (* Creates Points for X2 vs X1 Ellipse*)

Procedure EllipseX3X1Top(var xx:rcal;sigmaStar:mathmat.matx;
cvalue:mathmat.matx;xbarstar:mathmat.matx; _
var answer:real); (* Creates Points for X3 vs X1 Ellipse*)
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Procedure EllipseX3X 1Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;
var answer:real); (* Creates Points for X3 vs X1 Ellipse*)

Procedure EllipseX3X2Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X3 vs X2 Ellipse*)
Procedure EllipseX3X2Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;

var answer:real); (* Creates Points for X3 vs X2 Ellipse*)

Implementation

Procedure EllipseX1X2Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;
var answer:real);

Var
x2a,x2b.x2¢.A1,A2,A3,A4,A5.A6.A7:Real;
Begin

x2a:=(sigmaStar.data[ 1,2]*sigmaStar.data[1,2])-sigmaStar.data[1,1]*sigmaStar.data(2,2];
x2b:=2.0*sigmaStar.dataf 1.1}*sigmaSiar.daaf2.2)-2.0*(sigmaSiar.data[ 1,2)*sigmaS-
tar.data[1,2]);

x2c:=(sigmaStar.data[ 1.2]*sigmaStar.dataf 1,2])-sigmaStar.data[ 1,1]*sigmaStar.data[2,2];
Al:=-sigmaStar.data[ 1,1]*xbarstar.data[2,1];
A2:=x2a*(xbarstar.data[1,1]*xbarstar.data[1,1));

A3:=x2b*xx*xbarstar.data[1,1];

Ad:=x2¢c*(XxX*XX);

AS:=(cvalue.data[1,1]*cvalue.data[ 1,1])*(sigmaStar.data[ 1,1]*sigmaStar.data[ 1,1])*sigmaS-
tar.dataf2,2];

A6:=-sqr(cvalue.data[1,1])*sigmaStar.data[ 1,1]*sqr(sigmaStar.data[ 1,2]);
AT:=sigmaStar.data[1,2)*xbarstar.data[1,1]-sigmaStar.data[ 1,2]*xx;

answer:=-(A1+Sqri(A2+A3+A4+AS+A6)+AT)/sigmaStar.data[1,1];
End;
Procedure EllipseX 1X2Bottom(var xx:real;sigmaStar:mathmat.matx c value:mathmat. matx;xbar-

star:mathmat.matx;
var answer:real);

Var
x2a,x2b,x2c.A1,A2,A3,A4 A5,A6.A7:Real;

Begin
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x2a:=sqr(sigmaStar.data[1,2])-sigmaStar.data(1,1]*sigmaStar.data(2,2];
x2b:=2.0*sigmaStar.data[1,1}*sigmaStar.data[2,2]-(2.0*sqr(sigmaStar.data[1,2]));
x2c:=sqr(sigmaStar.data[1,2])-(sigmaStar.data[1,1]*sigmaStar.data[2,2]);
Al:=-sigmaStar.data[ 1,1]*xbarstar.data[2,1};

A2:=x2a*sqr(xbarstar.data[1,1));

A3:=x2b*xx*xbarstar.data[1.,1];

Ad:=x2c*sqr(xx);
AS5:=sqr(cvalue.datal1,1])*sqr(sigmaStar.data[1,1])*sigmaStar.data[2,2];
A6:=-1*sgr(cvalue.data[1,1])*sigmaStar.data[1,1}*sqr(sigmaStar.data[1,2]);
A7:=sigmaStar.data[1,2]*xbarstar.datu( 1,1)-(sigmaStar.data[1,2]*xx);

answer:=(-A1+Sqrti(A2+A3+A4+AS5+A6)-AT)/sigmaStar.dataf1,1];
End;

Procedure EllipseX 1X3Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-

star:mathmat.matx;
var answer:real);

Var
x3a,x3b.x3c,A1,A2,A3 A4 .AS5.AG AT Real;

Begin

x3a:=sqr(sigmaStar.data(1.3])-sigmaStar.data[ 1,1]*sigmaStar.dataf 3,3};
x3b:=2.0*sigmaStar.data[ 1,1]*sigmaStar.data(3,3]-2.0*sqr(sigmaStar.data[1,3)):
x3c:=sqr(sigmaStar.data[1,3])-sigmaStar.data[ 1,1]*sigmaStar.data[ 3,3];
Al:=-sigmaStar.data[1,1]*xbarstar.data[3.1];

A2:=x3a*sqr(xbarstar.dataf1,1]);

A3:=x3b*xx*xbarstar.data[1,1];

Ad:=x3c*sqr(xx);

AS:=sqr(cvalue.data[ 1,1])*sqr(sigmaStar.dataf 1.1})*sigmaStar.data[3,3];
A6:=-sqr(cvalue.data[1,1])*sigmaStar.data[1,1]*sqr(sigmaStar.data[1,3]);
AT7.=sigmaStar.data[ 1,3]*xbarstar.data[ 1.1]-sigmaStar.data[1,3]*xx;

answer:=-(A1+Sqri(A2+A3+A4+AS+AG6)+A7)/sigmaStar.data[1.1];
End;

Procedure EllipseX 1X3Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-

star:mathmat.matx;
var answer:real);
Var
x3a,x3b,x3c,A1,A2,A3.A4 AS5.A6,AT:Real;

Begin
x3a:=sqr(sigmaStar.data[ 1.3])-(sigmaStar.data[1,1]*sigmaStar.data[3,3]);
x3b:=(2.0*sigmaStar.data[ 1.1}*sigmaStar.data(3,3])-2.0*sqr(sigmaStar.data{1,3]);
x3c:=sqr(sigmaStar.dataf 1,3))-sigmaStar.data[ 1,1}*sigmaStar.data[ 3,3};
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Al:=-sigmaStar.dataf1,1])*xbarstar.data[3,1];
A2:=x3a*sqr(xbarstar.data[1,1]);

A3:=x3b*xx*xbarstar.data[1,1];

Ad:=x3c*sqr(xx);
AS:=sqr(cvalue.data[1,1])*sgr(sigmaStar.data[1,1])*sigmaStar.data(3.3);
A6:=-sqr(cvalue.data[1,1])*sigmaStar.data[1,1]*sqr(sigmaStar.data{1,3});
AT7:=sigmaStar.data[ 1,3}*xbarstar.data[ 1,1]-sigmaStar.data[1,3)*xx;

answer:=(-A1+Sqrt(A2+A3+A4+AS+A6)-AT)/sigmaStar.dataf1,1];
End;

Procedure EllipseX2X3Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-

star:mathmat.matx;
var answer:real);

Var
x3a,x3b.x3c.A1.A2,A3.A4,A5.A6.A7:Reul;

Begin

x3a:=sqr(sigmaStar.data[2,3])-sigmaStar.data[2.2]*sigmaStar.data[ 3,3];
x3b:=2.0*sigmaStar.data[2.2)*sigmaStar.data[3,3]-2.0*sqr(sigmaStar.data[2,3]);
x3c:=sqr(sigmaStar.data[2,3])-sigmaStar.data{2,2]*sigmaStar.data[ 3,3];
Al:=-sigmaStar.data[2.2)*xbarstar.data3,1];

A2:=x3a*sqr(xbarstar.data[2,1]);

A3:=x3b*xx*xbarstar.data[2.1];

Ad:=x3c*sqr(xx);

AS:=sqr(cvalue.data[ 1.1])*sqr(sigmaStar.data[2,2])*sigmaStar.data[ 3,3];
A6:=-sqr(cvalue.data[1.1])*sigmaStar.data[2.2]*sqr(sigmaStar.dataf2.3]);
AT:=sigmaStar.data[2,3}*xbarstar.data[2,1]-sigmaStar.data[2,3]*xx;

answer:=-(A1+Sqrt(A2+A3+A4+AS+A6)+AT)/sigmaStar.data[2.2];
End;

Procedure EllipseX2X3Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-

star:mathmat.matx;
var answer:real);

Var
x3a,x3b,x3c,A1,A2.A3,A4 A5, A6,A7:Real;

Begin

x3a:=sqr(sigmaStar.data(2,3])-sigmaStar.data[2,2] *sigmaStar.data(3,3];
x3b:=2.0*sigmaStar.data[2,2]*sigmaStar.data[3,3]-2.0*sqr(sigmaStar.data(2,3]);
x3c:=sqr(sigmaStar.data[2,3])-sigmaStar.data[2.2]*sigmaStar.data[ 3.3},
Al:=-sigmaStar.dataf2,2]*xbarstar.data[3.1};

A2:=x3a*sqr(xbarstar.data(2.1]);

A3:=x3b*xx*xbarstar.data{2.1];
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Ad:=x3c*sqr(xx);

AS:=sqr(cvalue.data[ 1,1])*sqr(sigmaStar.data[2,2])*sigmaStar.data[3,3];
A6:=-sqr(cvalue.data[1,1])*sigmaStar.data[2,2]*sqr(sigmaStar.data[2,3]);
AT.=sigmaStar.data[2,3}*xbarstar.data[2,1]-sigmaStar.data{2,3]*xx;

answer.=(-A1+Sqrt(A2+A3+A4+A5+A6)-AT7)/sigmaStar.data[2,2];
End;

Procedure EllipseX2X1Top(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;
var answer:real);

Var
x2a,x2b,x2c,A1,A2,A3,A4,A5,A6.A7:Real;

Begin

x2a:=(sigmaStar.data[1,2]*sigmaStar.data[ 1.2])-sigmaStar.data[2,2)*sigmaStar.data(1,1);
x2b:=2.0*sigmaStar.data[1,1]*sigmaStar.data(2,2]-2.0*(sigmaStar.data[ 1,2]*sigmaS-
tar.data[1,2]);

x2c:=(sigmaStar.data[ 1.2]*sigmaStar.data[ 1,2])-sigmaStar.data[ 1,1]*sigmaStar.data[2,2];
Al:=-sigmaStar.data[2,2]*xbarstar.dataf1,1];
A2:=x2a*(xbarstar.data[2,1]*xbarstar.data[2,1]);

A3:=x2b*xx*xbarstar.data[2.1];

Ad:=x2C*(Xx*xX);

AS:=(cvalue.data[1,1]*cvalue.data[ 1.1])*(sigmaStar.data[2,2] *sigmaStar.data[2,2])*sigmaS-
tar.data[1,1];

A6:=-sqr(cvalue.data[ 1,1])*sigmaStar.data[2,.2]*sqr(sigmaStar.data(1,2));
AT:=sigmaStar.data[1,2]*xbarstar.data[2,1]-sigmaStar.data[ 1,2] *xx;

answer:=-(A1+Sqri(A2+A3+A4+AS+A6)+AT7)/sigmaStar.data[2.2];
End;

Procedure EllipseX2X1Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;
var answer:real);

Var
x2a,x2b,x2c,A1,A2.A3,A4,A5.A6,A7:Real;

Begin

x2a:=sqr(sigmaStar.data[2,1])-sigmaStar.data[2,2)*sigmaStar.data[1,1];
x2b:=2.0*sigmaStar.data[ 1.1])*sigmaStar.data[2.2]-2.0*(sigmaStar.dataf2,1]*sigmaS-
tar.data[2,1]);

x2c:=(sigmaStar.dataf 1.2)*sigmaSiar.dataf 1,2))-sigmaStar.dataf 1,1 )*sigmaStar.data{2,2};
Al:=-sigmaStar.data[2,2]*xbarstar.dataf1,1];
A2:=x2a*(xbarstar.datal2,11*xbarstar.data[2,1)});
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A3:=x2b*xx*xbarstar.data[2.1];

Ad:=x2c*(xx*xx);
AS5:=(cvalue.data[1,1]*cvalue.data[1,1]))*(sigmaStar.data[2,2]*sigmaStar.data[ 2,2])*sigmaS-
tar.data[1,1];

A6:=-sqr(cvalue.data[1,1])*sigmaStar.dataf2,2}*sqr(sigmaStar.data[2,1]);
A7:=sigmaStar.data[2,1)*xbarstar.data[2,1}-sigmaStar.data[2,1]*xx;

answer:=(-A1+Sqri(A2+A3+A4+AS5+A6)-A7)/sigmaStar.dataf2,2};

End;

Procedure EllipseX3X 1 Top(var xx:real;sigmaStar:mathmat.matx;
cvalue:mathmat.matx; xbarstar:mathmat.matx;
var answer:real);

Var
x3a.x3b.x3c,A1.A2,A3 A4 A5 A6.AT:Real;

Begin

x3a:=sqr(sigmaStar.data[1.3])-sigmaStar.data[ 1,1]*sigmaStar.data[ 3,3];
x3b:=2.0*sigmaStar.dataf 1,1]*sigmaStar.data[ 3,3]-2.0*sqr(sigmaStar.data[1,3]);
x3c:=sqr(sigmaStar.data[1.3])-sigmaStar.data[ 1, 1]*sigmaStar.data[3.3];
Al:=-sigmaStar.data[3,3]*xbarstar.data[1.1];

A2:=x3a*sqr(xbarstar.data[3.1});

A3:=x3b*xx*xbarstar.data[3.1}];

Ad:=x3c*sqr(xx);

AS:=sgr(cvalue.data] 1,1])*sqr(sigmaStar.dataf3,3])*sigmaStar.data[1.1];
A6:=-sqr(cvalue.dataf 1.1])*sigmaStar.dataf3,3]*sqr(sigmaStar.data[ 1.3]);
A7:=sigmaStar.data[1,3]*xbarstar.data[ 3,1]-sigmaStar.data[1,3]*xx;

answer:=-(A1+Sqri(A2+A3+A4+AS+A6)+AT7)/sigmaStar.data[3,3];
End;

Procedure EllipseX 3X 1 Bottom(var xx:real;sigmaStar:mathmat.matx;cvalue:mathmat.matx;xbar-

star:mathmat.matx;
var answer:real);
Var
x3a.x3b.x3c,A1,A2,A3,A4.A5,A6.A7:Real;

Begin

x3a:=sqr(sigmaStar.data[1,3))-sigmaStar.data[1,1]*sigmaStar.data[3,3];
x3b:=2.0*sigmaStar.data[1,1]*sigmaStar.data[ 3,3]-2.0*sqr(sigmaStar.data[1,3]);
x3c:=sqr(sigmaStar.data[1,3])-sigmaStar.data[ 1,1)*sigmaStar.data[3,3};
Al:=-sigmaStar.dataf3,3]*xbarstar.data{1,1];

A2:=x3a*sqr(xbarstar.data[ 2.1]);

A3:=x3b*xx*xbarstar.data[3,1];

Ad:=x3c*sqr(xx);

AS:=sqr(cvalue.data[ 1.1])*sqr(sigmaStar.data{3.3])*sigmaStar.data{1,1];
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AG6:=-sqgr(cvalue.data[ 1,1])*sigmaStar.data[3,3)*sqr(sigmaStar.data(1,3});
AT:=sigmaStar.data[1,3]*xbarstar.data[3,1])-sigmaStar.data[1,3)*xx;

answer:=(-A1+Sqri(A2+A3+A4+A5+A6)-A7)/sigmaStar.data[ 3,3];
End;

Procedure EllipseX 3X2Top(var xx:real;sigmaStar:mathmat. matx;cvalue:mathmat.matx;xbar-
star:mathmat.matx;
var answer:real);

Var
x3a,x3b,x3c,A1,A2,A3,A4,A5,A6,AT:Real;

Begin

x3a:=sqr(sigmaStar.data[2.3])-sigmaStar.data[ 3,3} *sigmaStar.data{2,2];
x3b:=2.0*sigmaStar.dataf 3.3)*sigmaStar.dataf2,2]-2.0*sqr(sigmaStar.data{2,3));
x3c:=sqr(sigmaStar.data[2.3])-sigmaStar.data[ 3.3} *sigmaStar.data[2,2];
Al:=-sigmaStar.data[3,3]*xbarstar.data[2.1];

A2:=x3a*sqr(xbarstar.data] 3,1]);

A3:=x3b*xx*xbarstar.datal3.1];

Ad:=x3c*sqr(xx);

AS:=sqr(cvalue.data[ 1.1])*sqr(sigmaStar.data[ 3.3])*sigmaStar.data[2.2];
A6:=-sqr(cvalue.dataf 1,1})*sigmaStar.dataf3,3}*sqr(sigmaStar.dataf2,3));
AT:=sigmaStar.data[2.3]*xbarstar.data[ 3,1]-sigmaStar.data[2,3]*xx;

answer:=-(A1+Sqn(A2+A3+A4+A5+A6)+AT)/sigmaStar.data[3,3);
End;

Procedure EllipseX3X2Bottom(var xx:real;sigmaSiar:mathmat.matx;cvalue:mathmat.matx
;xbarstar:mathmat.matx;
var answer:real);

Var
x3a,x3b.x3c.A1.A2,A3,A4.A5.A6.A7:Real;

Begin

x3a:=sqr(sigmaStar.dataf2.3))-sigmaStar.data[ 3,3) *sigmaStar.data( 2,2},
x3b:=2.0*sigmaStar.data[3.3)*sigmaStar.data[2,2]-2.0*sqr(sigmaStar.data[2,3));
x3c:=sqr(sigmaStar.data{2.3])-sigmaStar.data[ 3,3)*sigmaStar.data[ 2,2},
Al:=-sigmaStar.dataf3.3)*xbarstar.datal2,1);

A2:=x3a*sqr(xbarstar.data[3,1]);

A3:=x3b*xx*xbarstar.data[3,1];

A4:=x3c*sqr(xx);

AS:=sgr(cvalue.data[ 1,1])*sqr(sigmaStar.data[3,3])*sigmaStar.data[2,2];
A6:=-sgr(cvalue.data[ 1,1])*sigmaStar.data[3,3)*sqgr(sigmaStar.data[2,3]);
A7:=sigmaStar.data[2,3]*xbarstar.data[ 3,1])-sigmaStar.data[2,3)*xx;

c7




answer:=(-Al+Sqn{A2+A3+A4+AS5+A6)-AT)/sigmaStar.data(3,3);
End,

End. {unit}
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Appendix D

The second unit, MathMat contain several procedures for performing matrix algebra.

1. Matlnvert - inverts a matrix.

2. MatMult - multiplies two matrices.

3. MatAdd - adds two matrices.

4. MatSub - subtracts two matrices.

5. MatMut_by_k - multiplies a matrix by a constant.

6. Zero_Matrix - creates a zero matrix.

7. Mat_Transpose - transposes a matrix.

8. Mat_Angment - combines two matrices or vectors into a single matrix.

unit MathMat;
{$F+)

{$0+)

interface

uses Crt,Dos.Graph;

Const
np=10;  {Matrix can be up 10 10 x 10, modify np for larger matrics}

Type

RealArrayNPbyNP = ARRAY([I..np.1..np] of real;

matx = Record Data: Real ArrayNPbyNP;

Rows,Cols: Integer; end;

Procedure Matlnvert (var b,y: matx); {y=invert of matrix b}
Procedure MatMult (var a,b.c: maix); {C=A*B}
Procedure MatAdd (var a,b.c: matx); {C=A+B}
Procedure MutSub (var a,b.c: matx); {C=A-B}

Procedure Mat_k_Mult (var a.c: matx; {C=k*A}
k: Real); {kis a scalar}

Procedure Mai_Zero (var a: matx),
Procedure Mat_Transpose (var a,b: matx); {b is transpose of a}
Procedure MatWrite (var a; matx); { Writes an rowxcol matrix}
Procedure MatInput(var matrx: matx;
cell_length: Integer; {Width of each cell}
dec_places: Integer, {Number of Decimal Places per Cell}
mat: String;  {Input Matrix Name}
x.y: Integer); {Location}
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Procedure MatAugment(var augmat,mat1,mat2: matx);

implementation

RealArrayNP = ARRAY [1..np] of real;
IntegerArrayNP = ARRAY [1..np] of integer;

var
i,j: integer;

Procedure ludcmp (var a:  RealArrayNPbyNP;
n: integer;
var indx: IntegerAmrayNP;
vard: real);

{Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pascal by William H. Press and others,
Published by the Press Syndicate of the University of Cambridge,
New York, 1989.

Pages 42-46}

Const
tiny = 1.0e-20;

Var
k.j.imax.i: integer;
sum.dum.big: real;
vv: AReal ArrayNP;

Begin
new(vv);
d:=1.0;
For i:=1 to n do begin
big := 0.0;
forj:=1tondo
if abs(ali.j]1)>big then big :=abs(a[i.j])
if big = 0.0 then begin
writeln ("pause in LUDCMP - singular matrix’);
readln
end;
vvAli] = 1.0/big
end,
for j := 1to ndo begin
fori:=1toj-1dobegin
sum :=a[i.j];
fork:=1toi-1do
sum := sum-afi.k]*alk.j];

afi,j] := sum
end;
big := 0.0;
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for i := j to n do begin
sum := afi,j];
fork :=11t0j-1do
sum := sum-a[i,k]*a[k,j);
a[i,j] := sum;
dum := vv/[i]*abs(sum);
if dum >= big then begin

big := dum,
imax :=i
end
end;

if j <> imax then begin
for k :=1 to n do begin
dum := afimax,k];
a[imax.k] := a[j.k];

a[j.k] := dum
end;
d:=-d;
vvAlimax] ;= dum
end;

indx[j} := imax;
if a[j.j] = 0.0 then a[j.j] := tiny;
if j<> n then begin
dum := 1.0/a[j.j];
fori:=j+ltondo
ali,j]:= ali.j}*dum
end
end;
dispose(vv)
end;

Procedure lubksb (var a: RealArrayNPbyNP;
n: integer,
var indx: IntegerArrayNP;
var b: RealArrayNP);

{Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pascal by William H. Press and others,
Published by the Press Syndicate of the University of Cambridge,
New York. 1989.

Pages 42-46)

var
jip.i.i: integer;
sum: real;
begin
ii:=0;
fori :=1 to n do begin
ip = indx[i];
sum := blip],
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blip] := bli];
if ii <> O then
forj:=iitoi-1do
sum := sum-afi,j]1*bj]
else if sum <> 0.0 then
i =i
bli] := sum;
end;
for i := n downto 1 do begin
sum := b[i];
for j:==i+1tondo
sum := sum-a[i,j]*b[j];
bli] := sum/a[i,i];
end;
end;

Procedure Matlnvert (var b.y: matx),

{Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pasca’ »y William H. Press and others,

Published by the Press Syncicate of the University of Cambridge,
New York, 1989.

Pages 42-46)

var

a: RealArrayNPbyNP;
ij: integer;

col: RealArrayNP;
indx: IntegerArrayNP;,

d: Real;
begin
a := b.data;

ludcmp(a.b.rows.indx.d);
for j:= 1 to b.rows do begin
for i:= 1 to b.rows do col(i] :=0.0;
colj] == 1.0;
lubksb(a,b.rows.indx.col);
for i := 1 to b.rows do y.datafi.j} := col[i]
end;
y.rows:=b.rows; y.cols:=b.cols;
end;

—-Pm MatMuli (var ab.c: matx);  {C=A*B}
var
row,col.i: Integer;
sum: Real,;
begin

if a.cols = b.rows then begin
for col := 1 to b.cols do begin
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for row := 1 to a.rows do begin
sum :=0;
fori:=1to b.rows do
sum = sum + a.data{row,i]*b.datafi,col];
c.data[row,col] := sum;
end;
end;
C.TOWS = a.TOWS;
c.cols := b.cols;
end
else begin
writeln (" The number of columns of the first matrix must equal the’);
writeln ('number of rows of the second matrix in order to multiply’);
writeln ("matrices.’)
end;
end;

Procedure MatWrite (var a: matx);

var
i,j: Integer,

begin
writeln;
fori = 1 to arows do begin
forj:=110a.colsdo
write (a.datafi,jl:5." ')
writeln (" *);
end;
end;

Procedure MatAdd (var a.b.c: matx); {C=A+B}

var
i,j: Integer;

begin
fori:=11to arows do begin
for j:= 110 a.cols do
c.datali,j) = a.datafi,j] + b.data[i,j);
end;
C.TOWS = 2.TOWS;
c.cols := a.cols;
end,

Procedure MatSub (var a,b.c: matx); {C=A-B}

var
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i,j: Integer,

begin
fori := 1 to a.rows do begin
forj:=1toa.cols do
c.datafi,j] := a.datali,j] - b.datali,j];
end,
C.IOWS := a.TOWS;
c.cols := a.cols;
end;

Procedure Mat_k_Mult (var a,c: matx; {C=k*A}
k: Real); ({kis ascalar}

var
i,j: Integer;

begin
fori := 1to arows do begin
for j := 1to a.cols do
c.datafi,j] = k*a.datali.j];
end,
C.IOWS = a.fOwWs;
c.cols = a.cols;
end;

Procedure Mat_Zero (var a: matx);

var
m,n: Integer;

begin
form := 110 arows do
for n ;=110 a.cols do
a.data[m.n] := O,
end;

Procedure Mat_Transpose (var a,b: matx);

var
i,j: Integer;

begin
fori:= 110 arows do begin
for j:= 110 a.colsdo
b.data(ji] := a.data[i j};
end; {foribegin}
b.rows = a.cols;
b.cols := arows;
end; {Mat_Transpose)
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Procedure Matlnput(var matrx; matx;
cell_length: Integer;
dec_places: Integer;
mat: String;  {Input Matrix Name}
x,y: Integer); {Location}

procedure cursor_to_cell(i,j: integer); {Move Cursor to Current Cell}

begin
case j of
0 : GotoXY(length(mat)+3,i+1);
1 : GotoXY(length(mat)+5,i+1);
else GotoXY(length(mat)+j*cell_length,i+1)
end; {case j}
end; {cursor_to_cell}

procedure brackets;

const
open_top_bracket = chr(218); {ASCII Codes)
open_bottom_bracket = chr(192);
vertical_bar = chr(179);
close_top_bracket = chr(191);
close_bottom_bracket = chr(217);

var
i,j: integer;

begin

GotoXY (1, trunc{(matrx.rows+3)/2));

Write (mat,’=");

for i := 0 to matrx.rows+1 do begin
j=0;
cursor_to_cell(i,j);
If i = O then write(open_top_bracket)
else If i = matrx.rows+1 then write(open_bottom_bracket)

else write(vertical_bar);

j = matrx.cols+1;

cursor_to_cell(i,j);

If i = 0 then write(close_top_bracket)

else If i = matrx.rows+1 then write(close_bottom_bracket)
else write(vertical_bar);

end; {loopi)

GotoXY(2,matrx.rows +4);

Write('Press F10 when finished');
end; {brackets}
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procedure SetUp(x,y:integer); {Location of window}

var
width: integer;

begin

If (y+matrx.rows +2)>24 then begin

writeln (’Sorry, cursor position is to near the bottom of the screen.’);

writeln Cx=",x," y=".y);

writeln ("Hit to Continue’);

readln;

end
else

If (x+cell_length*(matrx.cols+1)+3+length(mat))>80 then begin

writeln (’Sorry, cursor position is to near the right edge of the screen.’);

writeln 'x="x." y=".y);

writeln (CHit to Continue’);

readln;

end;
Width := cell_length*(matrx.cols+1)+length(mat)+3;
If Width < 28 then Width := 28;
Window(x.y.x+Width,y+matrx.rows +3);
TextBackground(Blue);
ClrScr;
brackets;

end; {Setup}

procedure cell_text; {Set Colors 10 Highlight Current Cell}
begin

TextBackground(LightGray);

TextColor(Black);

end; {cell_text}

procedure normal_text; {Reset Colors}

begin
TextBackground(Blue);
TextColor(LightGray);
end; {normal_text}

procedure input_number(var matrx: matx); {input matrix}
const
left_arrow = 75; {0 is returned first for arrow keys!}
right_arrow =77,
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up_arrow = 72;
down_arrow = 80,
backspace = 8;

return = 13;

escape = 27,

plus = 43;

minus = 45;

F10=68;

decimal = 46;
var

key.key? : char;
k,dec,exit_cell,exit_procedure.errorcode : Integer;
number : string;  {input string}

procedure cell_write(number:string),

var
k.errorcode: integer;
§: string;
x: real;

begin
val(number x,errorcode);
str(x:cell_length:dec_places.s);
write(s);

end; {cell_write}

procedure exec_return (var number_string: string;
var value: Real;
var exit_cell: integer);

var
k: integer;

begin
val(number,value.errorcode);
exit_cell :=1; {input is complete}

If errorcode <> () then writeln ("error in exec_return procedure’);
Cursor_to_Cell(i,j);
normal_text;
cell_write(number);
end; {exec_return})

procedure too_long,

var
h,m.s.s100.s_delay.s_count: Word;

begin
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GotoXY (2, matrx.rows +3);
Write(’Input Limited to *,Cell_Length,’ digits’);
GetTime(h,m,s,s100);
s_delay := s+3;
GotoXY(2,matrx.rows +3);
repeat
GetTime(h,m,s.s100);
until s >= s_delay;
TextBackground(Blue);
Write(’ "
end; {too_long}

procedure char_ok(key:char;
var number: string);
var
X,y.i: integer;

begin
write(key);
number := number + key;
If length(number) = 1 then begin
x := WhereX;
y := WhereY;
For i := 2 to Cell_Length do write(’ '),
GotoXY(x.y);
end; {if}
end; {char_ok}

function strg(x:real) : string;

var
s: string;

begin
str(x:cell_length:dec_places.s);
strg = §;

end; {strg}

procedure WrapAround;

begin
if i > matrx.rows theni:=1;
ifi < 1 theni ;= matrx.rows ;
if j > matrx.cols thenj:=1;
if j < 1 then j := matrx.cols ;
end; {WrapAround}

procedure ReWrit(i.j: Integer);
begin

Cursor_to_Cell(i.j);
normal_text;
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If length(number) = O then cell_write(strg(matrx.data[i.j]))
else cell_write(number);
end; {ReWrit}

procedure initialize;

var
ij: integer,;
number: string;

begin
number :="’;
fori := 1 to matrx.rows do begin
for j := 1 to matrx.cols do ReWrit(i,j);
end; {foribegin}
end; {Initialize}

(**********#****************************)

(**** Main Procedure Inpui_Number ****)
(R R AR AR OR Rk R )

begin
Initialize;
i=1
ji=1
exit_procedure := (J;
repeat
number :="’;
exit_cell :=();
dec :=();
cursor_to_cell(i.j):
cell_text;
cell_write(sirg(matrx.data(i.j]));
cursor_to_cell(i.j);

repeat
key .= readkey,

if Ord(key) = () then key2 := readkey;  {Read Extended Key Code}

case Ord(key) of

48.57 . I length(number) < Celi_Length then char_ok(key,number)

{ Numbers }  else too_long;

return  : If length(number) > () then begin

exec_return(number.matrx.datali,j],exit_cell);

If i = matrx.rows then begin
i=1, {was on bottom row}
j=j+l;
end {ifibegin}

elsei = i+l;

end {if length begin)

else begin
ReWrit(i.j);
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i=i+l;
exit_cell :=1;
end; {else begin}

decimal : Ifdec=0then
If length(number) < Cell_Length then begin
char_ok(key.number);
dec:=1;
end {begin}
else too_long;

0 : begin
case Ord(key2) of
left_arrow : begin
If length(number)>0 then
exec_return(number,matrx.datafi,j},exit_cell)
else ReWrit(i.j);
i=jL
end;
right_arrow : begin
If length(number)>0 then
exec_return(number,matrx.datali,jl.exit_cell)
else ReWrit(i.j);
ji=j+ls
end;
up_arrow : begin
If length(number)>Q then
exec_return(number,matrx.datali,jj.exit_cell)
else ReWrit(i.j),
i=i-l;
end;
down_arrow : begin
If length(number)>(Q) then
exec_return(number,matrx.data[i,j].exit_cell)
else ReWrit(i,j);
i=i+l;
end;
FI0 : begin
If length(number) > 0 then
exec_return(number,matrx.data[i,jj.exit_cell)
else ReWrit(i.j);
exit_procedure = 1,
GotoXY(2.matrx.rows +4);
Write(’ )
end;
end; {case Ord(key2)}
exit_cell :=1;
end; {begin)
backspace : begin
number := Copy (number,1,(Iength(number)-1)),
GotoXY(WhereX-1,WhereY);
write (° °);
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GotoXY(WhereX-1,WhereY);
end;

escape : begin
number :="";
Cursor_to_Cell(i,j);
for k := 1 to Cell_Length do write (" *);
Cursor_to_Cell(i.j);
end;

plus : If length(number) = 0 then char_ok(key,number);

minus  : If length(number) = 0 then char_ok(key,number);

else ;  {Do Nothing if other keys are pressed}

end; {case Ord(key))
WrapAround;
until exit_cell = 1;
normal_text;
until exit_procedure =1,
end; {input_number}

begin
Setup(x.y);
input_number(matrx);
Window(1,1.80.25);
end; {M_Input}

Procedure MatAugment(var augmat.matl.mat2: matx);

var
ij: Integer;

begin
for i := | to matl.rows do begin
for j := 1 to (matl.cols+mat2.cols) do
if j = matl.cols then augmat.datali.j} := mat1.data[i,j]
else augmat.data(i.j] ;= mat2.datafi.j-matl.cols];
end; {for i}
augmat.rows = matl.rows;
augmat.cols ;= matl.cols+mai2.cols;
end; {MatAugment}

end. {unit)
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Appendix E

The third, unit RGraphma uses procedures developed by Steve Pearce (cite thesis).

1. GMatInput - displays a matrix and gives the user ability the to change its values.
2. GMatWrite - displays a matrix without users ability to change its values.

. unit RGraphMa;
{$F+)
{$O+)

. interface

uses Crt,Dos,Graph.MathMat;

Procedure GMatlnput(var matrx: matx;
cell_length: Integer,
dec_places: Integer;
mat: String;  {Input Matrix Name}
x.y: Integer; {Location}
MatColor: Word;  {Color of Matrix}
MaiBackground: Word;  {Color of Matrix Background}
MatForeground: Word);  {Color of Characters)

Procedure GMatWrite(var matrx: matx;
cell_length: Integer;
dec_places: Integer;
mat: String;  {Input Matrix Name}
x.y: Integer;  {Location)
MatColor: Word;,  {Color of Matrix}
MatBackground: Word; {Color of Matrix Background}
MatForeground: Word);  {Color of Characters)

implementation
type
Intarray=array[1..6.1..6] of integer;
var
i,j: integer;
ViewPort: ViewPortType;

(**********************************#***********#*#*#*#**##****#*##***)

(*** The following routines are used in GMatInput and GMatWrite ***)
(####*******#*#******##******#*********###******##t#‘*#*#***#****#***)

procedure cursor_to_cell(i,j: integer;  {Move Cursor to Current Cell}
x,y: integer;  {Location of Entire Matrix )
W _H: integer; {Width & Height of Char Set)
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mat: string;  {Name of Matrix}
cell_length:integer); {# of digits per cell}

begin
case j of
0 : SetViewPort(X+(W-4)*length(mat),Y+H*i,
X+W+*(cell_length+length(mat)), Y +H*(1+i)-1,False);
1 : SetViewPort(Round(X+(W-4)*Length(mat)+15),Y+H*i,
Round(X+(W-4)*Length(mat)+25+cell_length*W),Y+H*(1+i)-1,False);
2 :SetViewPort(Round(X+(W-4)*Length(mat)+20+50),Y+H*i,
Round(X+(W-4)*Length(mat)+25+60+cell_length*W),
Y+H*(1+1)-1,False);
: SetViewPort(Round(X+(W-4)*Length(mat)+25+100),Y+H*i,
Round(X+(W-4)*Length(mat)+25+110+cell_length*W),
Y+H*(1+i)-1,False);

w

4 :SetViewPort(Round(X+(W-4)*Length(mat)+25+150),Y+H*i,
Round(X+(W-4)*Length(mat)+25+160+cell_length*W),
Y+H*(1+i)-1False);

5 :SetViewPort(Round(X+(W-4)*Length(mat)+25+200),Y+H*i,
Round(X+(W-4)*Length(mat)+25+210+cell_length*W),
Y+H*(1+1)-1 False);

6 :SetViewPort(Round(X+(W-4)*Length(mat)+25+250), Y+H*i,
Round(X+(W-4)*Length(mat)+25+260+cell_length*W),
Y+H*(1+i)-1 False);

7 :SetViewPort(Round(X+(W-4)*Length(mat)+25+300),Y+H*i,
Round(X+(W-4)*Length(mat)+25+310+cell_length*W),
Y+H*(1+1)-1,False);

8 :SetViewPort(Round(X+(W-4)*Length(mat)+25+350),Y+H*i,
Round(X+(W-4)*Length(mat)+25+36(+cell_length*W),
Y+H*(1+i)-1.False);

9 :SetViewPort(Round(X+(W-4)*Length(mat)+25+400).Y+H*i,
Round(X+(W-4)*Length(mat)+25+410+cell_length*W),
Y+H*(1+i)-1 False);

10 :SetViewPort(Round(X+(W-4)*Length(mat)+25+450),Y+H*i,
Round(X+(W-4)*Length(mat)+25+460+cell_length*W),
Y+H*(1+i)-1.False);

else Writeln(output.’Look at else in Cursor_Cell in GraphMat’);

end; {case j}

GetViewSettings(ViewPort);

end; {cursor_to_cell}

procedure brackets(x,y: integer;  {Location of Entire Matrix}
W H:integer; {Width & Height of Char Set}
mat: string;  {Name of Matrix}
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matrx: matx;  {Matrix containing data}
cell_length: integer; {# of digits per cell}
F10: Boolean; {Press F10 or Not}
BracketColor: Word;  {Color of Bracket}
MatBackground: Word); {Color of Background}
var
i,j: integer;
TLX,TLY BLX,BLY TRX, TRY ,BRX,BRY: integer;
UpperTitle,LowerTitle,mat2: string;
Upper: Boolean;
OldColor: Word;
OldStyle: TextSettingsType;

begin

mat2:="’;

GetTextSettings(O1dStyle);  {So we can set them back)
OldColor:=GetColor;

SetTextJustify(1,1); {Center Horizontally & Vertically}
SetColor(15);

{ The routine below looks for a decimal point and assumes that characters
following the decimal point will be placed as a subscript.
Only 1 level of subscripting is supported. }

Upper:=True; ({Title starts in normal Text}
UpperTitle:=""; LowerTitle:="";

fori:=1 10 Length(mat) do
If Copy(mat.i,1) = "." then Upper:=Not Upper
else Case Upper of
True : begin UpperTitle:=UpperTitle+Copy(mat,i,1);
LowerTitle:=LowerTitle+’ ’; end;
False : begin LowerTitle:=LowerTitle+Copy(mat,i,1);
UpperTitle:=UpperTille+’ °; end;
end;

If length(mat)>0 then begin mat2:=UpperTitle+’="; LowerTitle:=LowerTitle+’ ’; end;
TLX := Round(X+(W-4)*(Length(mat)+2)); TLY = Y;
TRX := TLX+W*(matrx.cols*Cell_Length+4+ord(matrx.cols>2)*1); TRY:=Y;
BLX := TLX; BLY:= Y+round(H*(matrx.rows+1.5));
BRX := TRX; BRY:=BLY;
OutTextX Y (x,y+Round(0.5*H*(matrx.rows+1.5)),mat2);
OutTextXY (x,y+Round(0.5*H*(matrx.rows+1.5))+4,LowerTitle);
SetLineStyle(0.0.3); {Solid. No Pattern, Thick}
SetColor(BracketColor);
MoveTo(TLX+W.,TLY); LineTo(TLX,TLY); LineTo(BLX,BLY); LineTo(BLX+W,BLY);
MoveTo(TRX-W.TRY); LineTo(TRX,TRY); LineTo(BRX,BRY); LineTo(BRX-W BRY);
SetColor(15);
If F10 then begin
SetFillStyle(1,MatBackground);
Bar((BLX+BRX) div 2-W*7, Round(BLY+2.5*H),(BLX+BRX) div 2+W*7,
Round(BLY+3.5*H));
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OutTextXY ((BLX+BRX) div 2, BLY+3*H, 'F10 to finish'); end
else begin

SetFillStyle(1,MatBackground);
Bar(TLX+2,TLY+2,BRX-2,BRY-2); end;

SetTextJustify(OldStyle. Horiz, OldStyle.Vert);
SetColor(O1dColor);
end; {brackets}

procedure SetUp(x,y:integer;
W,H: integer; {Width & Height of Char Set}
mat: string;  {Name of Matrix}
matrx: matx;  {Matrix containing data}
cell_length:integer;  {# of digits per cell}
F10: Boolean); {Press F10 or Not}

begin

SetViewPort(0.0.GetMaxX.GetMax Y . True);

If (y+(2+matrx.rows*H))>GetMaxY then begin
Writeln(output,’ Sorry, cursor position is to near the bottom of the screen.’);
Writeln(output, ’X="X," (W-4)="W-4." length(mat)="length(mat),” cell_length=",
cell_length,” matrx.cols=".matrx.cols);
Writeln(output,’Hit to Continue’);
readin;
closegraph; Halt;
end

else

If Round(X+(W-4)*(Length(mat)+2))+W *(matrx.cols*Cell_Length+2+
ord(matrx.cols>2)*2)>GetMaxX then begin
Writeln(output, ’Sorry, cursor position is to near the right edge of the screen.’);
Writeln(output, ’X="X," (W-4)="W-4 length(mat)="length(mat),” cell_length=",
cell_length.” matrx.cols=".matrx.cols);
Writeln(output, "Hit to Continue’);
readln;
closegraph; halt,
end;

end; {Setup}

procedure cell_write(number:string;
dec_places:integer;
cell_length:integer),

var
k.errorcode,dplaces: integer;
s: string;
x: real;
OldStyle: TextSettingsType;
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begin
GetTextSettings(O1dStyle);  {So we can set them back}
SetTextJustify(0,2); {Center Horizontally & Vertically}
dplaces:=dec_places;
val(number,x,errorcode);
repeat
str(x:cell_length:dplaces,s);
if length(s)>cell_length then Dec(dplaces);
until ((length(s)=cell_length) or (dplaces
OutTextXY(0,1,s);
SetTextJustify(OldStyle.Horiz, OldStyle.Vert);

end; {cell_write}

function strg(x:real;
cell_length:integer;
dec_places:integer) : string;

var
S: string;

begin
str(x:cell_length:dec_places.s);
strg = s;

end; {strg)

Procedure GMatlnput(var matrx: matx;
cell_length: Integer;
dec_places: Integer;
mat: String;  {Input Matrix Name}
x.y: Integer;  {Location}
MatColor: Word;  {Color of Matrix}
MaiBackground: Word;  {Color of Matrix Background}
MatForeground: Word);  {Color of Characters}

var
H: Integer; {Height in Pixels of 1 character}
W: Integer; {Width in Pixels of 1 character}
CM: Integer; {Center of Matrix (X-wise)}
ViewPort2: ViewPortType;
OldStyle2: TextSettingsType;

procedure Cursor_Cell(i.j: integer),
begin

cursor_to_cell(i.j.x.y.W.H.mat,cell_length);
end; {procedure Cursor_Cell}
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procedure Cell_Rite(number:string);

begin
Cell_Write(number,dec_places.cell_length);

end; {Procedure Cell_Rite)

procedure cell_text; {Set Colors to Highlight Current Cell}
begin

With ViewPort do begin
SetFillStyle(1, {Solid Pattern}
D; {Light Gray is Highlighted Cell Background}
Bar(0,0.X2-X1,Y2-Y1); end;
SetColor(15); {White is the Highlighted Cells’ Foreground}
end; {cell_text}

procedure normal_text(Cell_Color:Word); {Reset Colors}
begin

SetColor(Cell_Color); {Normal Cell Foreground}

With ViewPort do begin

SetFillStyle(1, {Solid Pattern}
MatBackground); {Blue is the cell background}
Bar(0,0,.X2-X1,Y2-Y1); end;
end; {normal_text)

procedure input_number(var matrx: matx); {input matrix}

const
left_arrow = 75; {0 is returned first for arrow keys!})
right_arrow = 77,
up_arrow = 72;
down_arrow = §();
backspace = §;

return = 13;

escape = 27,

plus = 43;

minus = 45;

F10 = 68;

decimal = 46;
var

key,key? : char;
k.decimals.exit_cell.exit_procedure.errorcode : Integer;
number : string;  {input string}

TLX, TRX,BLY: Integer;
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procedure exec_return (var number_siring: string;
var value: Real;
var exit_cell: integer);
var
k: integer,
begin
val(number,value,errorcode);
exit_cell ;= 1; {input is complete }
If errorcode <> O then OutText ("error in exec_return procedure’);
Cursor_Cell(i,j);
normal_text(7);
Cell_Rite(number);
end; {exec_return}

procedure too_long;

var
ViewOld: ViewPortType;
By,Rx.Lx: Integer;
msg,cs: String;
OldStyle: TextSettingsType;

begin
GetTextSettings(OldStyle);  {So we can set them back}
GetViewSettings(ViewOld);
SetViewPort(01.0.GetMax X GetMax Y, True),
By:= Y+round(H*(matrx.rows+1.5));
Lx := Round(X+(W-4)*(Length(mat)+2));
Rx := Round(Lx+W*(matrx.cols*Cell_Length+5));

SetFillStyle(1, {Solid Pattern}
MatBackground);
Bar(Round((Lx+Rx)/2-
12*W),Trunc(By+3.5*H).Round((Lx+Rx)/2+12*W),Round(By+2.5*H));
SetTextJustify(1.1);
Str(Cell_Length,cs);
msg:="to "+cs+' digits’;

OutTextXY ((Lx+Rx) div 2,By+H,’Input Limited’);
OutTextXY ((Lx+Rx) div 2,By+2*H.msg);

OutTextXY ((Lx+Rx) div 2, By+3*H.'(Press RETURN)’);
readin;

SetFillStyle(1, {Solid Pattern)}

MatBackground);
Bar(Round((Lx+Rx)/2-7*W).Trunc(By+0.5*H),Round((Lx+Rx)/2+7*W) Round(By+3.5*H));
OutTextXY ((LX+RX) div 2, BY+3*H, 'F10 10 finish’);

SetTextlustify(OldStyle Horiz, OldStyle.Ven);

With ViewOld do SetViewPori(X1.Y1.X2.Y2,False);
end; {too_long}
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procedure char_ok(key:char;
var number: string);
var
X,y.i: integer;
OldStyle: TextSettingsType;

begin
GetTextSettings(OldStyle);  {So we can set them back}
SetTextJustify(0,2); {Center Horizontally & Vertically}

number := number + key;
If length(number) = 1 then {Blank out old number}
With ViewPort do begin
SetFillStyle(1, {Solid Pattern}
MatBackground); {Highlighted Cell Background}
Bar(0,0.X2-X1,Y2-Y1); end;

OutTextXY(GetX.1.key); MoveRel(W ());
With OldStyle do {Reset TexiSettings)
begin
SetTextJustify(Horiz. Ven);
SetTexiStyle(Font, Direction, CharSize);
end;

end; {char_ok}
function strg(x:real) : string;

var
S string;

begin
str(x:cell_length:dec_places.s);
strg .= s;

end; {strg}

procedure WrapAround,

begin
if i > matrx.rows theni:= I,
if i < 1 theni = matrx.rows ;
if j > matrx.cols thenj = 1;
if j < 1 then j := matrx.cols ;
end; {WrapAround}

procedure ReWrit(i,j: Integer;
number: string);

begin
Cursor_Cell(i.j);
normal_text(7);
If length(number) = 0 then Cell_Rite(strg(matrx.data(i,j]))
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else Cell_Rite(number);
end; {ReWrit)

procedure initialize;

var
i,j. integer;
number: string;

begin
number :="*;
fori := 1 to matrx.rows do begin
for j := 1 to matrx.cols do rewrit(i.j,number);
end; {foribegin}
end; {Initialize}

(******************************:l:********)

(**** Main Procedure Input_Number ****)
(***************************************)

begin
Assign(output,’prn’);
Rewrite(output);
Initialize;
i=1
ji=1;
exit_procedure := (;
repeat

number ;= ;

exit_cell :=();

decimals := ();

Cursor_Cell(i,j);

cell_text;
Cell_Rite(strg(matrx.data(i.j]));
matrx.datali.jl:=matrx.datalj.i};

Cursor_Cell(i,j);

repeat
key := readkey;
if Ord(key) = O then key2 := readkey;  {Read Extended Key Code}
{ Writeln(output,’key 1="key." key2='key2); }
case Ord(key) of

48.57 : If length(number) < Cell_Length then char_ok(key,number)

{ Numbers } else too_long;

return  : If length(number) > O then begin
exec_return(number,matrx.datali,jl.exit_cell);
If i = matrx.rows then begin
i=1; {was on bottom row}
ji=j+l
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end {ifibegin}
elsei:=i+1;
end {if length begin}
else begin
rewrit(i,j,number);

i=i+l;
exit_cell :=1;
end; {else begin}

decimal : If decimals = 0 then
If length(number) < Cell_Length then begin
char_ok(key.number);
decimals :=1;
end {begin}
else too_long;

0 : begin
case Ord(key2) of
lefi_arrow : begin
If length(number)>() then
exec_return{number,matrx.data(i,j],exit_cell)
else rewrit(i.j.number);
j=i-h
end;
right_arrow : begin
If length(number)>() then
exec_return(number,matrx.datafi,j).exit_cell)
else rewrit(i.j.number);
j=l
end;
up_arrow : begin
If length(number)>() then
exec_return(number,matrx.datafi,j],exit_cell)
else rewril(i,j.number);
i=i-l;
end;
down_arrow : begin
If length(number)>0 then
exec_return(number,matrx.data[i,j].exit_cell)
else rewrit(i,j.number);
=i+l
end;
F10 : begin
If length(number) > 0 then
exec_return(number,matrx.datali,j}.exit_cell)
else rewrit(i,j.number);
exit_procedure := 1;
end,
end; {casc Ord(key2))
exit_cell ;= 15
end; {begin}
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backspace : If length(number)>( then begin
If number(length(number)]}="." then decimals:=0;
number := Copy (number,1,(length(number)-1));
SetFillStyle(1, {Solid Pattern}

)R {Light Gray is Highlighted Cell Background}
Bar(GetX-W,GetY+H-1,GetX,GetY);
MoveRel(-W.,0);

end;

escape : begin
number =",
With ViewPort do begin
SetFillStyle(1, {Solid Pattern}
7); {Light Gray is Highlighted Cell Background}
Bar(0,0.X2-X1.Y2-Y1); end;
Cursor_Cell(i,j);

end;
plus : If length(number) = O then char_ok(key,number);
minus : If length(number) = () then char_ok(key,number);
else v {Do Nothing if other keys are pressed)

end; {case Ord(key)}
WrapAround;
until exit_cell = I;
until exit_procedure =1,
SetViewPort(0,0.GetMax X .GetMaxY.True);
TLX = X-2*W; TRX = TLX+W*24;
BLY:= Y+round(H*(matrx.rows+1.5));
SetFillSiyle(1.1); {Solid, Blue}
Bar(Round((TLx+TRx)/2-
15*W), Trunc(BLy+3.5*H).Round((TLx+TRx)/2+10*W),Round(BLy+2.5*H));
close(output);
end; {input_number}

begin
H:= TextHeight("H’);
W:= TextWidth("W’);
CM:= X+(W*(Length(mat)+3)+W*(matrx.cols*Cell_Length+1) div 2);
GetTextSettings(OldStyle2);
GetViewSettings(ViewPor12);

SetUp(x.y.W .H.mat.matrx,cell_length.True);
brackets(x,y.W H.mat.matrx.cell_length, True. MatColor,MatBackground);
input_number(matrx);
With ViewPon2 do SetViewPon(X1,Y 1.X2,Y2,Clip);
With OldStyle2 do
begin
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SetTextJustity(Horiz, Ven),
SetTextStyle(Font, Direction, CharSize),
end;

end; {M_Input}

Procedure GMatWrite(var matrx: matx;
cell_length: Integer;
dec_places: Integer;
mat: String;  {Input Matrix Name}
x,y: Integer; {Location}
MatColor: Word;  {Color of Matrix}

MatBackground: Word;  {Color of Matrix Background}
MatForeground: Word);  {Color of Characters}

var
H: Integer; {Height in Pixels of 1 character}
W: Integer; {Width in Pixels of 1 character})
ViewPort: ViewPonType,
OldStyle: TextSeuingsType:

begin
GetTextSettings(OldStyle),
GetViewSettings(ViewPort);
W =TextWidth("W");
H:=TextHeight("H’);
SetUp(x,y.W H.mat.matrx.cell_length.False);

brackets(x.y.W.H.mat,matrx.cell_length.False.MatColor MaiBackground);

SetColor(MatForeGround);

for i:=1 to matrx.rows do for j:=1 to matrx.cols do begin

cursor_to_cell(i.j.x.y.W H.mat.cell_length);

Cell_Write (strg(matrx.datali.j}.celi_length,dec_places),

dec_places.cell_length);
end;
With ViewPort do SetViewPon(X1.Y1.X2,Y2,Clip);
With OldStyle do
begin
Se1TextJustify(Horiz, Ven);
SetTexiStyle(Font, Direction, CharSize);
end;

end; {procedure GMatWrite}

end. {unit)
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Appendix F

‘The final unit, Get_Data contains the program’s main input sections and performs all calculations other
than the points which make up the actual ellipses.

This unit contains the following procedures:

1. Jac - which is a version of the Jacobi algorithm for calculating eigenvalues and eigenvectors of
symmetric matrices.

2. Get_Data keyboard - receives the empirical sample data for the x matrix directly from the
keyboard and then performs all necessary calculations.

3. GenerateData - generates theoretical populations for a given yt and X.

4. ReadDataEmpirical - reads empirical sample data from disk.

5. ReadTestData - reads empirical sample data from disk and 7?? data from keyboard, and then
performs a test of the hypothesis Ho : po=x.

Unit Get_Data;
{$F+)
{$0+)

Interface

Uses mathmat,RGraphma,graph,crt;

Const
Mp=4;

nmat=1;
Increment=0.05; { Angle Change}

IntegerArray3 = Array [1..3) of integer;
Real ArrayMpbyMp=Array[1..MP,1..MP] of Real;
RealArrayMp=Array([1..Mp] OF Real;
Real3by12array=array(1..3,1..12] of real;
Procedure GetDataKeyboard(var xdata,S:Mathmat. matx;var xhigh,xlow:Real3by12array;
var cvalue,Mu,xbar:mathmat.matx;
var look:boolean; Var EigenValues,eigenvectors,SbyN,
evalstar,evecstar:mathmat.matx;var ordp:integer;var rmatrix:mathmat. matx);

Procedure GenerateData(var txbar,xdata,S:Mathmat. matx;var xhigh,xlow:Real3by12array;
var cvalue,Mu,xbar:mathmat.matx;
var look:boolean;Var EigenValues,eigenvectors,SigmabyN,
evalstar,evecstar:mathmat.matx;var ordp:integer;
var sigma,sbyn,rmatrix:mathmat.matx);

Procedure ReadDataEmpirical(var xdata,S:Mathmat. matx;var xhigh,xlow:Real3by12array;
var cvalue,Mu,xbar:mathmat.matx;
var look:boolean; Var EigenValues,eigenvectors,SbyN,

F1




evalstar,evecstar:mathmat.matx; Var ordp:integer;var rmatrix:mathmat.matx);

Procedure ReadDataTest(var xdata,S:Mathmat.matx;var xhigh,xlow:Real3by12array,
var cvalue,Mu,xbar:mathmat.matx;
var look:boolean; Var.EigenValues,eigenvectors,SbyN,
evalstar evecstar:mathmat.matx;var ordp:integer;var rmatrix:mathmat.matx);

Implementation

Var

i,j.k.kk,1 1L, nrot,ch:integer;
a,b,c,v,ad:Real ArrayMpbyMp;
d,r:-Real ArrayMp;

xdata_trans.identity,one,one_trans.onebyoneT,temp,
temp2,temp3,DMatrix,Dinverse,RMatrix,Z,
Eigenvalues.eigenvectors,Cov.DsqriEigenVals.N,Q:mathmat.matx;

grDriver.grMode ErrCode.gd.gm:integer,

oneovern,oneovernminusone:real;

choice:string;

ordchoice.code:integer,

Procedure Jac( n:integer;Var v.a:RealArrayMpbyMp;
Var nrot:integer; VAR d:RealArrayMp);

Label 99;

VAR
iq.ip:integer,;
tresh.theta.taut.sm.s.h.g.c:Real;
b.z:*RealArrayMp;

Begin

new(b);

new(z),

FOR ip:= 1 to n do begin
FOR iq:= 1 to ndo v[ip.ig]:=0.0;
v[ip.ip]:=1.0;

End;

For ip:= 1 to n DO BEGIN

b*ip):=alip.ip};

d[ip]:=b*[ip];

zM[ip):=0.0

End;

nrot:=0);

FOr i:= 1 to 50 Do Begin
sm:=0.0;

For ip:=1ton-1do
For iq:=ip+1 to n Do
sm:=sm+abs(a[ip.iq]);
If sm =0.0 then GOTO 99,
Ifi
Else tresh :=0.0;
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For ip:=1 10 n-1 Do Begin
For iq:=ip+1 to n Do Begin
£:=100.0 *abs(a[ip.iq));
IF (i>4) and (abs(d[ip))+g = abs(d[ip]))
and (abs(d[iq))+g = abs(d[iq])) then a[ip.iq) :=0
Else IF abs(a[ip.iq])> tresh Then begin
h:=d{iq}-d[ip);
If abs(h)+g = abs(h) Then
t:=a[ip.ig)/h
Else begin
theta:= 0.5*h/a[ip,iq);
t:=1.0/(abs(theta)+sqrt(1.0+sqr(theta)));
If theta < 0.0 then t:=-t
End;
c:=1.0/sqri(1+sqr(1));
S:=t*c;
tau:=s/(1.0+c);
h:=t*a[ip.iq];
z*(ip]:==z*{ip]-h;
2iq):=z[iq)+h;
dlip}:=d(ip]-h;
dliq):=d[ig}+h;
a[ip.iql:=0.0;
For j:=1 to ip-1 do Begin
g:=alj.ip);
h:=alj.iq}:
afj.ip):=g-s*(h+g*tan);
alj.iq):=h+s*(g-h*tau)
End;
For j:=ip+1 10 ig-1 Do begin
g:=alip.j);
h:=a[j.iql:
a[ip.j):=g-s*(h+g*tau);
a[j.iq):=h+s*(g-h*tau)
End;
For j:=ig+1 to n Do Begin
g:=alip,jl;
h:=aliq,j};
aip,jl:=g-s*(h+g*tau);
aliq.jl:=h+s*(g-h*tau)
End;
For j:=1 to n Do Begin
g:=v(j.ip):
h:=vlj.iq):
vij.ip}:=g-s*(h+g*tau);
v[j.iq}:=h+s*(g-h*tau)
end;
nrot:=nrot+1;
end
end
End;
For ip:=1 10 n do Begin
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bAip):=b*ipl+z*{ip};
dlip]:=b[ip];
zMip}:=0.0
End
End;
Writeln('pause in routine JACOBT');
Writeln(’ 50 iterations should not occur’);
readln;
99:
dispose(z);
dispose(b);
end; {Procedure jaboci}

Procedure GetDataKeyboard(var xdata,S:Mathmat.matx;var xhigh,xlow:Real3by12array;
var cvalue,Mu,xbar:mathmat.matx;
var look:boolean; Var EigenValues.eigenvectors,SbyN,
evalstar.evecstar:mathmat.matx;var ordp:integer;var rmatrix:mathmat. matx};

Begin

If ordp=3 then
Xdata.rows:=3

else Xdata.rows:=2;

cvalue.rows:=1; cvalue.cols:=1;
cvalue.data[1,1}:=1.0;
nrows:=1; n.cols:=1;
n.dataf{1.1}:=10.0;
GMatinput(n,2.0,’N".40.30.3.6.7);
Xdata.cols:=Round(n.data[ 1.1});

For j:=1 to ordp Do Begin

For k:=1 to Xdata.cols Do Begin
XData.data[j.k]:=1.(6);

end;

end;

GMatinput(cvalue.3.2,’c value’ .40,60,3,6,7);
If cvalue.data[1.1)
GMatinput(xdata.6,2,’x matrix’,36,120,3.6.,7),

Mat_Transpose(xdata.xdata_trans),

one.rows:=xdata.cols;one.cols:=1;
for j:=1 to one.rows Do Begin
for k:=1 10 one.cols do begin
one.data[j k]):=1.0;
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end,;
end;

Mat_Transpose(one,one_trans),

identity. rows:=xdata.cols;
identity.cols:=xdata.cols;

for j:=1 to xdata.cols do begin
for k:= 1 to xdata.cols do begin
identity.data[j.k):=0.0;
end; end,

for k:=1 to xdata.cols do begin
identity.datafk k}:=1.0;
end;

MatMult(one.one_trans.onebyonet);
oneovern:=1.0/xdata.cols;
oneOverNMinusOne:=1.0/(xdata.cols-1.0);
mat_k_mult(onebyonet.temp,oneovern);
Matsub(identity.temp.temp2);

(* calculate X bar*)
mat_k_mult(one temp3.oneovern);
matmult(xdata.temp3.xbar);

Mat_k_mult(xdata temp,oncovernminusone);
Matmuli(temp.temp2.temp3);

Matmult(temp3.xdata_trans.S);

for i:=1 10 s.rows do hegin
for j:=1 10 s.cols do begin
afi,j}i=s.datafi,jl;
end;end;
(* Initialize D matrix *)
DMatrix.rows:=S.rows; DMatrix.cols:=S.Cols;
for j:=1 to DMatrix.rows Do Begin
For k:=1 to DMatrix.cols Do Begin
DMatrix.data[j.k}:=0.0;
end;end;
(* Calculate D matrix from S matrix *)
For j:=1 to DMatrix.rows Do begin
DMatrix.data(j.j}:=sqr(S.data[j.jl);
end;
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Matlnvert(DMatrix.DInverse);

MatMult(DInverse,S temp);
MatMuit(temp,DInverse.RMatrix);
GMatwrite(RMatrix,5,4.’'rho’,50,285.3,6,7);

Jac(ordp,v,a,nrot.d);

EigenValues.rows:=ordp;Eigenvalues.Cols:=1;
eigenvectors.rows:=ordp;Eigenvectors.Cols:=ordp;
For j:=1 to ordp Do Begin
(* allow neg ev *)
Eigenvalues.data[j,1]):=d[j];
end,
FOr j:=1 10 eigenvectors.rows do begin
for k:=1 10 eigenvectors.cols do begin
eigenvectors.data[j.k]:=v[j.k],
end; end;

(* This section uses the Eigen values and vectors to find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Ist pt *)
xhigh[1,1]:=cvalue.dataf1,1]*(sqri(abs(eigenvalues.data[1,1]))*v[1,1])+xbar.data[1,1];
xhigh[2.1]:=cvalue.data[ 1.1]}*(sqn(abs(eigenvalues.data[1,1]))*v[2,1])+xbar.data[2,1];
(* 2nd Pt *)
xhigh[1,2]:=cvalue.dataf1,1)*(sqrt(abs(eigenvalues.data[2,1]))*v[1.2])+xbar.data[1,1];
xhigh{2.2]):=cvalue.data[1.1}*(sqri(abs(eigenvalues.data[2,1]))*v[2,2]))+xbar.data[2,1];

(* 4thpt *)
xlow[1,1]:=-cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[ 1,1]))*v{1,1])+xbar.data[1,1];
xlow[2,1]):=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[1,1]))*v([2,1])+xbar.data[2,1];
(*5thPt*)
xlow[1,2]):=-cvalue.data{1.1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xlow[2,2]:=-cvalue.data[1.1]*(sqri(abs(eigenvalues.data[2,1]))*v(2,2])+xbar.data(2,1];

If ordp=3 then begin
xhigh{3.1]:=cvalue.data[1.1]*(sqrt(abs(eigenvalues.data[1,1]))*v[3,1])+xbar.data[3,1];
xhigh[3.2]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];
(*3rdpt *)
xhigh{1.3]:=cvalue.data[1.1]*(sqrt(abs(cigenvalues.dataf3,1]))*v[1.3])+xbar.data[1,1];
xhigh(2.3]:=cvalue.data 1,1)*(sqri(abs(eigenvalues.data3,1]))*v[2,3]))+xbar.data[2,1];
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xhigh{3,3]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.dataf 3,1]))*v[3,3])+xbar.data[3,1];

xlow[3,1]):=-cvalue.data[1,1)*(sqrt(abs(eigenvalues.data[ 1,1]))*v([3,1])+xbar.data[3,1];
xlow(3,2]:=-cvalue.data[1,1]*(sqri(abs(¢eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];

(* 6th pt *)

xlow[1,3]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 3,1]))*v{1,3])+xbar.data[1,1];
xlow[2,3]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 3,1]))*v{2,3])+xbar.dataf2,1];
xlow]3,3]:=-cvalue.data[1,1])*(sqrt(abs(eigenvalues.data[ 3,1]))*v[3,3])+xbar.data[3,1];
end; {if}

(* Claculations for S/N *)

oneovern:=1.0/n.data[1,1];
Mat_k_mult(S,SbyN,oneovern);

for i:=1 to ordp do begin
for j:=1to ordp do begin
afi,j]:=SbhyN.datali,j];
end;end;

jac(ordp.v.a,nrot,d);

EValStar.rows:=ordp;EValStar.Cols:=1;

eVecStar.rows:=ordp:EVecStar.Cols:=ordp;

For j:=1 10 ordp Do Begin

(* allow neg ev *)
EValStar.data{j.1]):=d[j].
end;

For j:=1 to evecStar.rows do begin
for k:=1 to evecStar.cols do begin
evecStar.datafj.k]}:=v[j k]
end; end;

DsqrtEigenVals.rows:=Rmatrix.rows;DsqrtEigenVals.cols:=Rmatrix.cols;

For i:=1 to rmatrix.rows do begin
For k:=1 1o ordp do begin
DsqriEigenVals.datalik]:=0.0;
end;end;

For i:=1 to ordp do begin
DsqriEigenVals.data{i,i]:=sqri(abs(EValstar.data[i,1]));
end;

Mat_transpose(evecstar.temp),

MatMuli(DSqrtEigenVals.iemp.temp2);
Matmult(evecstar,temp2.Q);
Z.rows:=ordp;Z.cols:=round(n.data[1,1]);
For i:=1 to ordp do begin

for k:=1 to round(n.data[1.1]) do begin

z.datafi k]:=sqri(2.0*(In(1/random)))*cos(2.0*pi*random);

end;end;
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matmult(Q,Z.temp);
MatAdd(temp.mu.xdata);

(* This section uses the Eigen values and vectors to find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Ist pt *)
xhigh[1,4]:=cvalue.data[1,1)*(sqrt(abs(eigenvalues.data[1,1]))*v[1,1])+xbar.data[1,1];
xhigh(2,4):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[1,1]))*v[2,1])+xbar.data[2,1];
(*2nd Pt %)
xhigh[1,5]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xhigh[2,5]):=cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

(*4thpt )
xlow[1,4]:=-cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[ 1,1]))*v(1,1])+xbar.data[1,1];
xlow[2,4]:=-cvalue.data 1. 1]*(sqri(abs(eigenvalues.data{ 1,1]))*v[2,1])+xbar.dataf2,1];
(*SthPt*)
xlow[1.5]:=-cvalue.data[1.1]*(sqri(abs(eigenvalues.data[2.1]))*v[1,2])+xbar.data[1,1];
xlow[2.5]:=-cvalue.data] 1.1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

If ordp=3 then begin

xhigh[3,4):=cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[1,1]))*v[3,1])+xbar.data[3,1];
xhigh{3.5]:=cvalue.data[ 1.1)*(sqri(abs(eigenvalues.data[2,1]))*v([3,2])+xbar.data[3,1];
(* 3rdpt *)
xhigh[1,6]:=cvalue.data[1.1]*(sqri(abs(cigenvalues.data[3.1]))*v[1,3])+xbar.data[1,1];
xhigh([2,6]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.data[2,1];

xhigh{3.6]:=cvalue.dataf1,1)*(sqrt(abs(eigenvalues.data]3,1]))*v[3,3])+xbar.data[3,1];
xlow[3.4]):=-cvalue.data[1,1)*(sqri(abs(eigenvalues.data[ 1,1]))*v([3,1])+xbar.data[3,1];
xlow[3.5]:=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v([3.2])+xbar.data[3,1];

(*6thpi *)

xlow[ 1.6]):=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[1,3])+xbar.data{1.1];
xlow[2.6]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.data[2,1];
xlow[3,6]:=-cvalue.datal 1.1]*(sqri(abs(eigenvalues.data[ 3,1]))*v[3.3])+xbar.data[3,1];
end; {if}

(* OUTPUT %)

GMatwrite(Eigenvalues,6.5.’Eigen Values’,320,235,3,6.7);
GmatWrite(Eigenvectors,6.5,’E vectors’,320.285,3.6,7);
Gmatwrite(xbar,5,4,’X Bar’,320),190.3.6,7);

Gmatwrite(S,5.4,’S Matrix’,50,190,3,6.7);
Gmatwrite(Sbyn,5,4.’S/n’ 40,235.3.6,7);

OutTextXY(GetMaxX div 2-90.20."PRESS ENTER FOR GRAPH');
readin;clrscr;

end; {GetDataKeybourd})
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(* This Generates data for the theoretical case and mixed case *)

Procedure GenerateData(var txbar,xdata,S:Mathmat.matx;var xhigh,xlow:Real3by12array;
var cvalue Mu,xbar:mathmat.matx;
var look:boolean; Var EigenValues,eigenvectors,SigmabyN,
evalstar,evecstar:mathmat.matx;var ordp:integer;
var sigma,sbyn,rmatrix:mathmat.inatx);

Var
oneovern:real;

Begin
randomize;

Mu.rows:=ordp; Mu.cols:=1;N.rows:=1;N.cols:=1;
xbar.rows:=ordp;xbar.cols:=1txbar.rows:=ordp;txbar.cols:=1;
Cov.rows:=ordp; Cov.cols:=1;
Rmatrix.rows:=ordp; RMatrix.cols:=ordp;
N.data[1,1]:=10);
For i:=1 to Mu.rows do begin

Mu.data(i,1}:=1;

Cov.datali,1]:=1;

txbar.datalfi, 1]1:=0;

end;
For i:=1 to Cav.rows do begin

For k:=1 to Rmatrix.Cols do begin

Cov.datafi.k]:=1;

RMatrix.datafi.k]:=1;

End;end;
CValue.rows:=1;CValue.Cols:=1cvalue.datal 1,1]:=1;

GMatinput(Mu.6.2,#23().46.69.3.6.7);

if look=true then

Gmatinput(Txbar,6,2,#230".(7 ,420.69.3.6.7);
GMatlnput(Cov.6.5#229°12°.26(),24(),3,6.7);
GMatlnput(RMatrix,6.5,"Corr’,36,120,3,6,7);
GMatlnput(CValue,3,2,”C value’,390,180.3,6,7);
If cvalue.data[1,1]
Gmatlnput(N,3,1,’N’,260,180,3.6.7);

(* This section calculates the Sigma Matrix *)

sigma.rows:=ordp;sigma.cols:=ordp;

sigmabyn.rows:=ordp:sigmabyn.cols:=ordp;

s.rows:=ordp;s.cols:=ordp;

sbyn.rows:=ordp;sbyn.cols:=ordp;

For i:=1 to Rmatrix.rows do Begin
For k:=1 to Rmatrix.cols do begin
Sigma.data(i.k):=Rmatrix.data[i.k]*sqri(Cov.data[i,1])*sqrt(Cov.data[k,1]),
end;end;
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For i:=1 to ordp do begin
sigma.data[i.i]:=Cov.data(i,1];
end;

for i:=1 to ordp do begin
for j:=1 to ordp do begin
a[i,j]:=sigma.datafi,jl;
end.end;

jac(ordp,v,a,nrot,d);

EigenValues.rows:=ordp;Eigenvalues.Cols:=1;
eigenvectors.rows:=ordp;Eigenvectors.Cols:=ordp,
For j:=1 to ordp Do Begin
(* allow neg ev *)
Eigenvalues.datafj.1]:=d{j];
end;
For j:=1 to eigenvectors.rows do begin
for k:=1 10 eigenvectors.cols do begin
eigenvectors.data[j.k]:=v]j.k];
end; end;

DsqrtEigenVals.rows:=Rmatrix.rows;DsgrtEigenVals.cols:=Rmatrix.cols;
For i:=1 to rmatrix.rows do begin

For k:=1 to ordp do begin

DsqriEigenVals.data[i.k]:=().0);

end;end;

For i:=1 to ordp do begin
DsqriEigenVals.datali,i]:=sqnri(abs(Eigenvalues.data[i,1]));
end;

Mat_transpose(eigenvectors,temp);

MatMult(DSgrtEigenVals.temp.temp2);
Matmuli(eigenvectors,iemp2,Q):
Z rows:=ordp;Z.cols:=round(n.duatal 1,1]);
For i:=1 10 ordp do begin
for k:=1 to round(n.data(1,1]) do begin
z.data[i.k]):=sqri(2.0*(In(1/random)))*cos(2.0*pi*randomy),

end;end;
xbar.rows:=ordp;xbar.cols:=round(n.data[ 1,1]);

for i:=1 to round(n.data[1,1]) do begin
xbar.data[l.i]:=mu.data[1.1};
xbar.data[2.i]:=mu.data2.1];
If ordp= 3 then
xbar.data[3.i]:=Mu.data[3,1};
end;
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matmult(Q,Z.temp);
MatAdd(temp,xbar.xdata);
xbar.cols:=1;

(* This section uses the Eigen values and vectors to find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Istpt *)

xhigh[1,1}:=cvalue.data[1,1]*(sqrt(abs(eigenvalues..!ata[1,1]))*v[1,1]}+Mu.data[1,1];

?Pnzghcg%hl l:):cvalue.dala[l,l]"‘(sqrt(abs(eigenvalues‘daxa[1,l]))*v[2,l])+Mu.data[2,l];
n

xhigh[1,2]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[1,2])+Mu.data[1,1];

xhigh[2,2]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data{2,1]))*v(2,2])+Mu.data[2,1];

(* 4thpt *)
xlow[1.1]):=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[1,1]))*v[1.1])+Mu.data[1,1];
xlow[2,1]):=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v([2,1])+Mu.data[2,1];
(*5thPt *)
xlow[1,2]:=-cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data{2,1]))*v[1,2])+Mu.data[1,1];
xlow[2.2]:=-cvalue.data[ 1,11*(sqri(abs(eigenvalues.data[2,1]))*v(2,2])+Mu.data[2,1];

If ordp=3 then begin

xhigh(3.1]:=cvalue.data( 1,17*(sqri(abs(eigenvalues.data{1,1]))*v[3,1])}+Mu.dataf3,1];
xhigh[3.2]:=cvalue.data[ 1,1]*(sqn(abs(eigenvalues.data[2,1]))*v[3,2])+Mu.data[3,1];

(*3rdpt *)

xhigh[1.3]):=cvalue.data] 1,1]*(sqri(abs(cigenvalues.data[3,1]))*v[1,3])+Mu.data[1,1];
xhigh[2,3]):=cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+Mu.data[2,1];
xhigh{3.3]:=cvalue.data[1.1]*(sqri(abs(eigenvatues.data[3,1]))*v[3,3])+Mu.dataf3,1];
xlow([3,1]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 1,1]1))*v[3.1])+Mu.data[3,1];
xlow([3.2]):=-cvalue.data[ 1,1)*(sgri(abs(eigenvalues.data[2,1]))*v[3,2])+Mu.data[3,1];
(* 6thpt *)

xlow[ 1.3]:=-cvalue.dataf 1.11*(sqri(abs(eigenvalues.data[3,1]))*v[1,3])+Mu.data[1.1];
xlow[2,3):=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+Mu.data[2,1];
xlow[3.3]:=-cvalue.data[1.1)*(sqn(abs(eigenvalues.data[3.1]))*v[3.3])+Mu.data(3,1];

end; {if}
(* Claculations for Sigma/N  *)

oneovern:=1.0/n.dataf1.1];
Mat_k_muli(Sigma.SigmabyN.oneovern),

for i:=1 to ordp do begin
for j:=1 to ordp do begin
a[i,j):=SigmabyN.qata[i,jl;
end;end;
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jac(ordp,v.a,nrot.d);

EValStar.rows:=ordp;EValSiar.Cols:=1;

eVecStar.rows:=ordp;EVecStar.Cols:=ordp;

For j:=1 10 ordp Do Begin

(* allow neg ev *)

EValStar.data(j,1]):=d[j];

end;

For j:=1 to evecStar.rows do begin
for k:=1 to evecStar.cols do begin

evecStar.data[j,k}:=v(j.k]:
end; end;

DsqrtEigenVals.rows:=Rmatrix.rows;DsqrtEigenVals.cols:=Rmatrix.cols;

For i:=1 to rmatrix.rows do begin
For k:=1 to ordp do begin
DsqrtEigenVals.data[i.k]:=0.0;
end;end;

For i:=1 10 ordp do begin
DsgriEigenVals.datai.i}:=sqri(abs(EValstar.data[i,1]));
end;

Mat_transpose(evecstar.temp);

MatMuli(DSgriEigenVals.temp.temp2);
Matmuli(evecstar,temp2.Q);
Zrows:=ordp;Z.cols:=round(n.data[1.1]);
For i:=1 to ordp do begin
for k:=1 to round(n.data[ 1.1]) do begin
z.data[i.k]:=sqr1(2.0*(In(1/random)))*cos(2.0*pi*random);

end;end;

(* This section uses the Eigen values and vectors 1o find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Istpt *)

xhigh[1.4]:=cvalue.datal1,1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v[1,1])+Mu.data[1,1];
xhigh[2.4]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data{1,1]))*v(2,1])+Mu.data{2,1};
(*2nd Pt *)
xhigh[1.5]):=cvalue.data[1,1]*(sqrn(abs(eigenvalues.data[2,1]))*v[1,2])+Mu.data[1,1];
xhigh(2.5]):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data(2,1]))*v([2,2])+Mu.data[2,1];

(* 4th pt *)
xlow[1.4]):=-cvalue.data[1.1]*(sqrt(abs(eigenvalues.data[1,1]))*v[1,1])+Mu.data[1,1];
xlow[2,4):=-cvalue.dataf 1.1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[2,1])+Mu.data[2,1];
(*S5thPt*)
xlow[1,5]:=-cvalue.data[ 1,1]*(sqrt(abs(eigenvalues.data2,1]))*v[1.2])}+Mu.data[ 1,1];
xlow[2,5):=-cvalue.data[1,1]*(sqn(abs(eigenvalues.data[2,1]))*v[2,2])+Mu.data{2,1];

If ordp=3 then begin

Fi12




xhigh[3,4]:=cvalue.data[1.1]*(sqri(abs(eigenvalues.data[1,1]))*v([3,1])}+Mu.data[3,1];
xhigh[3,5]:=cvalue.data 1,1}*(sgrt(abs(eigenvalues.dataf2,1]))*v[3,2])+Mu.data[3,1];
(*3rdpt *)

xhigh[1,6]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[3,1]))*v[1,3])+Mu.data[1,1];
xhigh(2,6]):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[3,1]))*v[2,3])+Mu.data[2,1];

xhigh{3.6]:=cvalue.data[1,1}*(sqrt(abs(eigenvalues.data[3,1]))*v[3,3])+Mu.data[3,1];
xlow[3,4]):=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v(3,1])+Mu.data[3,1];
xlow{3,5]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data{2,1]))*v[3,2])+Mu.data[3,1];
(*6thpt*)

xlow[1,6]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 3,1]))*v([1,3])+Mu.data(1,1];
xlow[2,6]):=-cvalue.data[ 1,1]}*(sqri(abs(eigenvalues.data[3,1)))*v[2,3])+Mu.data[2,1];
xlow(3,6):=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 3,1]))*v([3,3])+Mu.data[3,1];
end; {if}

(* IF true then case #5 theory and empirical *)
If look=true then begin

xdata.rows:=ordp;xdata.cols:=Round(n.data[1.1]);

Mat_Transpose(xdata.xdata_trans);
one.rows:=xdata.cols;one.cols:=1;
for j:=1 10 one.rows Do Begin
for k:=1 1o one.cols do begin
one.data{jk}:=1.0;
end;
end;

Mat_Transpose(one,one_trans);
identity.rows:=xdata.cols;
identity.cols:=xdata.cols;

for j:=1 10 xdata.cols do begin
for k:= 1 to xdata.cols do begin
identity.data[j.k]:=0.0;
end; end;

for k:=1 to xdata.cols do begin
identity.data[k.k}:=1.0);
end;

MatMult(one.one_trans.onebyonet);
oneovern:=1.(/xdata.cols;
oneOverNMinusOne:=1.0/(xdata.cols-1.0);
mat_k_mult(onebyonet.iemp.oncovern);
Matsub(identity.temp,temp2);
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(* calculate X bar*)
mat_k_mult(one,temp3,oneovern);
matmult(xdata,temp3,xbar);

Mat_k_mult(xdata,lemp,oneovernminusone);
Matmult(temp,temp2,temp3);

Matmult(temp3,xdata_trans,S);

for i:=1 to s.rows do begin
for j:=1 to s.cols do begin

a[i,j}:=s.datafi,j];

end;end;

(* Initialize D matrix *)
DMatrix.rows:=S.rows; DMatrix.cols:=S.Cols;
for j:=1 to DMatrix.rows Do Begin
For k:=1 to DMutrix.cols Do Begin

DMatrix.datafj.k]:=0.0;

end;end;

(* Calculate D matrix from S matrix *)

For j:=1 1o DMatrix.rows Do begin
DMatrix.datafj.jl:=sqn(S.datalj.j)):
end;

Matlnvert(DMatrix.Dlnverse);

MatMult(DInverse.S.lemp);
MatMult(temp.DInverse RMatrix);

jac(ordp.v.a.nrotd); (* get eigenvalues and Evectors®*)

Evalstar.rows:=ordp;Evalstar.Cols:=1;
evecstar.-rows:=ordp;Evecstar.Cols:=ordp;
For j:=1 10 ordp Do Begin
(* allow neg ev *)
Evalstar.data[j,1]:=d[j];
end;
FOr j:=1 to evecstar.rows do begin
for k:=1 to evecstar.cols do begin
evecstar.datafj.k]:=v[j.k]
end; end,
(* This section uses the Eigen values and vectors to find *)
(* the endpoints of the major and minor axis of each ellipse *)
(* These are put into Xhigh and Xlow *)
(* endpoints of axis - each col is a coordinate for a point *)
(*Istpt*)
xhigh{1,7]:=cvalue.data[ 1,1 ]*(syri(abs(eigenvalues.datal 1,1]))*v[1,1])+xbar.data[1.1};
xhigh(2,7]:=cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[1.1]))*v([2,1])+xbar.data[2,1];
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*2ndP1 %)
xhigh(1,8].:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xhigh([2,8].:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1);

(*4thpt *)
xlow[1,7]:=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[1,1])+xbar.data[1,1];
xlow[2,7):=-cvalue.data[1,1])*(sqrt(abs(eigenvalues.data[1,1]))*v[2,1])+xbar.data[2,1];
(*5thPt*)
xlow[1,8]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xlow[2,8]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

If ordp=3 then begin
xhigh[3,7]):=cvalue.data[1,1]*(sqr(abs(eigenvalues.data[1,1]))*v[3,1])+xbar.data[3,1];
xhigh{3.8]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];
(*3rdpt *)
xhigh[1.9]:=cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[3,11))*v[1,3])+xbar.data[1,1];
xhigh[2.9]:=cvalue.data[ 1.1]*(sqnt(abs(eigenvalues.data[3,1]))*v{2,3])+xbar.data[2,1];
xhigh[3,9]:=cvalue.data[ 1,1]*(sqn(abs(eigenvalues.data[3,1]))*v[3,3])+xbar.data[3,1];
xlow[3,7]):=-cvalue.datal 1.1]*(sqri(abs(eigenvalues.dataf 1,1]))*v[3,1])+xbar.data[3,1];
xlow][3.8]:=-cvalue.dataf 1, 1]*(sqri(abs(eigenvalues.dataf2,1]))*v[3,2])+xbar.data[3,1];
(* 6thpt *)
xlow[1,9]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 3,1]))*v[1,3])+xbar.data[1,1];
xlow[2,9]):=-cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[ 3,1]))*v[2,3])+xbar.data[2,1};
xlow[3.9]:=-cvalue.dataf 1.1]*(sqrt(abs(eigenvalues.data[3,1]))*v[3,3])+xbar.data{3,1];
end; {if}

(* Claculations for S/N *)

oneovern:=1.0/n.data[1.1};
Mat_k_mult(S.SbyN.oncovern);

for i:=1 to ordp do begin
for j:=1 to rdp do begin
a[i.jl:=SbyN.datali j]:
end;end:

jac(ordp,v.a,nrotd);

EValStar.rows:=ordp;EValStar.Cols:=1;
eVecStar.rows:=ordp;EVecStar.Cols:=ordp;
For j:=1 to ordp Do Begin
(* allow negev *)
EValStar.data(j, 1]:=d(j];
end;
For j:=1 1o evecStar.rows do begin
for k:=1 to evecStar.cols do begin
evecStar.datalj.kl:=v[j.k];
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end; end;
DsqrtEigenVals.rows:=Rmatrix.rows;DsgrtEigenVals.cols:=Rmatrix.cols;
For i:=1 to rmatrix.rows do begin

For k:=1 to ordp do begin

DsqrtEigenVals.data[i,k}:=0.0;

end;end;
For i:=1 to ordp do begin

DsqrtEigenVals.data[i,i):=sqri(abs(E Valstar.data[i,1]));

end;
Mat_transpose(evecstar,temp);

MatMul(DSqrtEigenVals,temp,temp2);
Matmult(evecstar.temp2,Q);
Z.rows:=ordp;Z.cols:=round(n.data[1,1));
For i:=1 to ordp do begin
for k:=1 to round(n.data[1,1]) do begin
z.data[i.k]:=sqn(2.0*(In(1/random)))*cos(2.0*pi*random);

end;end;

(* This section uses the Eigen values and vectors to find *)
(* the endpoints of the major and minor axis of each ellipse *)
(* These are put into Xhigh and Xlow *)
(* endpoints of axis - each col is a coordinate for a point *)
(* Istpt *)
xhigh[1,10]:=cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[1,1])+xbar.data[1,1];
xhigh[2.10):=cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v([2,1])+xbar.data[2,1];
(*2nd Pt *)
xhigh[1,11]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar data[1,1];
xhigh[2,11}:=cvalue.data[ 1.1]*(sqri(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

(* 4th pt *)

xlow[1,10]:=-cvalue.data[1.1}*(sqri(abs(eigenvalues.data[1,1]))*v[ 1,1])+xbar.data{1,1};
xlow[2.10]):=-cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[ 1,11))*v[2,1])+xbar.data[2,1];
(* SthPt *)

xlow[1,11]):=-cvalue.dataf1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[ 1.2])+xbar.data[1,1];
xlow[2,11]:=-cvalue.data 1. 13*(sqri(abs(cigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

If ordp=3 then begin

xhigh{3,10]:=cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v[3,1])+xbar.data[3,1];
xhigh{3,11]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v(3,2])+xbar.data[3,1];
(*3rdpt *)

xhigh[1.12}:=cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 3,1]))*v[1,3])+xbar.data[1,1];
xhigh{2,12]:=cvalue.data{1,1]*(sqrt(abs(eigenvalues.data( 3,1]))*v(2,3])+xbar.data[2,1];
xhigh[3,12]:=cvalue.data[ 1,1]*(sqrt(abs(eigenvalues.data[3,1]))*v[3,3])+xbar.data[3,1];

xlow[3,10]:=-cvalue.data[ 1.1])*(sqrt(abs(eigenvalues.data[ 1,11))*v[3,1])+xbar.data[3,1];
xlow[3,11]:=-cvalue.data[1,1])*(sqri(abs(eigenvalues.data2,1]))*v[3,2])+xbar.data[3,1];
(* 6thpt *)

xlow{1,12]):=-cvalue.dataf 1,11*(syri(abs(eigenvalues.data[3,1]))*v[1,3])+xbar.data[1,1];
xlow[2,12]:=-cvalue.data1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[2.3))+xbar.data[2,1];
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xlow(3,12]:=-cvalue.data[ 1,1]}*(sqri(abs(eigenvalues.data[3,1]))*v[3,3])+xbar.data[3,1];
end; {if)

GMatWrite(S,5,4,’S’,390,210,3,6,7);
GMatWrite(SbyN.,5.4,’S/n’,390,270,3,6,7);

end; (*if option 5*)

(* OUTPUTS *)
GMATWRITE(xdata.6,2,"*,20,30,3,6.7);
GMatwrite(Xbar,6,2,’Xbar’,225.69,3.6,7);

GmatWrite(Sigma,5,3,#228,46,210,3,6,7);
GmatWrite(SigmabyN,5.3.#228'/N’,46,270,3.6,7);
OutTextXY(GetMaxX div 2-90,20,'PRESS ENTER FOR GRAPH");
GMatwrite(RMatrix,5.4,’rtho’,290,120,3,6,7);

readin; clrscr;
look:=false;

end;
{GeneratcData)

Procedure ReadDataEmpirical(var xdata.S:Mathmat.matx;var xhigh,xlow:Real3by12array;
var cvalue Mu.xbar:mathmat.matx;
var look:boolean; Var EigenValues.eigenvectors,SbyN,
evalstar.eveestar:mathmat.matx; var ordp:integer;var rmatrix:mathmat.matx);

Var
EmpData:text;

EmpDatal:array[1..3.1..15] of real;

begin

CValue.rows:=1;CValue.Cols:=];cvalue.dataf 1,1]:=1;
N.rows:=1;N.cols:=1;N.data[1,1]:=10;
GMatlnputi(CValue,3,2.°C Value’ 80,120.3,6.7);

If cvalue.data] 1.1]

Gmatlnput(n.2.1.’N’.GetMaxX DIV 2,120.5.4.7);

xdata.rows:=ordp;xdata.cols:=Round(n.data[1,1]);
Assign(EmpData,’ c:\Empdata.dar’);

Reset(EmpData);

fori:=1 to round(n.data{1,1]) do begin
read(EmpData. EmpDatal{1.i]); end;

for i:=1 to round(n.dataf1.1]) do begin
read(EmpData, EmpDatal(2.i});
end;

If ordp=3 then begin
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for i:=1 to Round(n.data[1,1]) do begin
read(EmpData,EmpDatal[3.i]);
end; {for}
end; {if}
for I:'=1 to ordp do begin
For J:=1 to round(n.data[1.1]) do begin
xdata.data[l.J}:=EmpDatal(l.J];
End;end;

GMATWRITE(xdata,6,2,”’,20,30,3,6.7);

Mat_Transpose(xdata,xdata_trans);
one.rows:=xdata.cols;one.cols:=1;
for j:=1 to one.rows Do Begin
for k:=1 to one.cols do begin
one.data(j.k]:=1.0;
endg;
end;

Mat_Transpose(one.one_trans),

identity.rows:=xdata.cols;
identity.cols:=xdata.cols;

for j:=1 10 xdata.cols do begin
for k:= 1 1o xdata.cols do begin
identity.datafj.k]:=0.0;
end; end;

for k:=1 10 xdata.cols do begin
identity.data[k.k]:=1.0;
end;

MatMult(one.one_trans,oncbyonet),
oneovern:=1.()/xdata.cols;
oneOverNMinusOne:=1.(/(xdata.cols-1.0);
mat_k_mult(onebyonet lemp.oncovern),
Matsub(identity temp.temp?2);

(* calculate X bar*)
mat_k_muli(one.iemp3.oneovern);
matmult(xdata,temp3.xbar),
Mat_k_mult(xdata,lemp,oneovernminusone);

Matmult(temp.temp2 temp3);

Matmuli(temp3,xdata_trans.S);
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for i:=1 to s.rows do begin
for j:=1 to s.cols do begin

afi,j}:=s.datali,j);

end;end;

(* Initialize D matrix *)
DMatrix.rows:=S.rows; DMatrix.cols:=S.Cols;
for j.=1 to DMatrix.rows Do Begin
For k:=1 to DMatrix.cols Do Begin

DMatrix.datafj,k):=0.0;

end;end;

(* Calculate D matrix from S matrix *)

For j:=1 to DMatrix.rows Do begin
DMatrix.data(j.j]:=sqn(S.datafj.j]);
end;

Matlnveri(DMatrix, DInverse);

MatMuli(DInverse.S.temp);
MatMult(temp.DInverse. RMairix);
GMatwrite(RMatrix,5.4.’rho’ 50,285.3.6,7);

jac(ordp.v.a.nrot.d);

EigenValues.rows:=ordp;Eigenvalues.Cols:=1;
eigenvectors.rows:=ordp;Eigenvectors.Cols:=ordp;
For j:=1 to ordp Do Begin
(* allow neg ev *)
Eigenvalues.datafj.1}:=d|j];
end;
FOr j:=1 to eigenvectors.rows do begin
for k:=1 to eigenvectors.cols do begin
eigenvectors.datalj.k]:=v[j.k];
end; end;
(*FIXED*)
(* This section uses the Eigen values and vectors to find *)
(* the endpoints of the major and minor axis of each ellipse *)
(* These are put into Xhigh and Xlow *)
(* endpoints of axis - each col is a coordinate for a point *)
(* Istpt *)
xhigh[1.1}:=cvalue.data[1.1]*(sqri(abs(eigenvalues.data[1,1]))*v([1,1])+xbar.data[1,1};
xhigh[2.1]:=cvalue.data] I.1]*(sqri(abs(eigenvalues.data[1,1]))*v[2,1])+xbar.dataf2,1];
(*2nd Pt *)
xhigh[1.2}:=cvalue.datal 1.1)*(sqn(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xhigh(2.2]:=cvalue.datal 1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

(*4hpt *)
xlow[1,1]):=-cvalue.data[1.1]*(sqri(abs(eigenvalues.data[1,1]))*v[1,1])+xbar.data[1,1];
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xlow([2.1]:=-cvalue.data[1.1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v[2,1])+xbar.data[2,1];
(*5thPt *)

xlow[ 1,2]:=-cvalue.data[1,1}*(sqrt(abs(eigenvalues.data{2,1]))*v[1,2])+xbar.data[1,1};
xlow[2,2]:=-cvalue.data]1,1]*(sqri(abs(eigenvalues.data[2,1]))*v([2,2])+xbar.data[2,1];

If ordp=3 then begin
xhigh([3,1]):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[1,1]))*v[3,1])+xbar.data[3,1];
xhigh{3,2]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1);
(*3rdpt *)
xhigh[1,3):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[3,1]))*v[1,3])+xbar.data[1,1];
xhigh[2,3]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.dataf2,1);
xhigh(3,3]:=cvalue.data[1,1}*(sqrt(abs(eigenvalues.data[3,1]))*v{3,3])+xbar.data{3,1];
xlow{3,1]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[1,1]))*v([3,1])+xbar.data[3,1];
xlow(3,2]:=-cvalue.data[1.1]*(sqrti(abs(eigenvalues.dataf2,1]))*v[3,2])+xbar.data[3,1];
(* 6th pt *)

xlow[1,3):=-cvalue.dataf 1. 1]*(sqri(abs(eigenvalues.data( 3.1]))*v{1.3])+xbar.data[1,1];
xlow([2,3]:=-cvalue.data] 1,1 }*(sqri(abs(eigenvalues.data[ 3,1]))*v[2.3])+xbar.data[2,1];
xlow([3,3]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.dataf 3,1]))*v[3,3])+xbar.data[3,1];
end; {if}

(* Claculations for SIN  #)

oneovern:=1.0/n.duaty[1.,1];
Mat_k_mult(S,.SbyN.oncovern);

for i:=1 to ordp do begin
for j:=1 10 ordp do begin
a[i,j:=SbyN.datal[i.j];
end;end;

jac(ordp.v.a.nrot.d),

EValStar.rows:=ordp;EValStar.Cols:=1;
eVecStar.rows:=ordp;EVecStar.Cols:=ordp;
For j:=1 1o ordp Do Begin
(* allow neg ev *)
EValStar.data(j.1]:=d[j];
end;
For j:=1 to evecStar.rows do begin
for k:=1 to evecStar.cols do begin
evecStar.data[j.k}:=v[j.k];
end; end;
DsqnEigenVals.rows:=Rmatrix.rows;DsqrtEigenVals.cols:=Rmatrix.cols;
For i:=1 to rmatrix.rows do begin
For k:=1 to ordp do begin
DsqriEigenVals.data[i.k]:=0.();
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end;end;

For i:=1 to ordp do begin
DsqniEigenVals.data[i,i]:=sqrt(abs(E Valstar.data[i,1]));
end;

Mat_transpose(evecstar,temp);

MatMult(DSqrtEigenVals,temp,temp2);
Matmult(evecstar,temp2,Q);
Z.rows:=ordp;Z.cols:=round(n.data[1,1]);
For i:=1 to ordp do begin
for k:=1 to round(n.data[1,1]) do begin
z.data[i,k}:=sqrt(2.0*(In(1/random)))*cos(2.0*pi*random);

end;end;

matmuli(Q.Z.temp);
MatAdd(temp,mu, xdata);

(* This section uses the Eigen values and vectors to find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Istpt *)
xhigh[1.4]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.dataf1,1]))*v[1,1])+xbar.data[1,1];
xhigh[2.4]:=cvalue.data[ 1,1 }*(sqri(abs(eigenvalues.data[1,1]))*v([2,1])+xbar.data[2,1];
(*2nd Pt *)

xhigh[1.5]:=cvalue.data] 1.1]*(sqri(abs(eigenvalues.data2,1]))*v[1.2])+xbar.data[1,1];
xhigh[2.5]:=cvalue.data| 1.1]*(sqri(abs(eigenvalues.data[2,1]))*v[2.2])+xbar.data[2,1];

(* 4th pt *)

xlow[1.4]:=-cvalue.data[ 1.1]*(sqri(abs(eigenvalues.dataf 1,1]))*v[1,1])+xbar.data[1,1};
xlow[2.4):=-cvalue.data[1.1]*(sqri(abs(eigenvalues.data[ 1,1]))*v({2,1])+xbar.data[2,1];
(*SthPt*)

xlow[1,5]):=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xlow[2,5]):=-cvalue.data 1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

If ordp=3 then begin

xhigh[3.4]:=cvalue.dataf 1.1)*(sqri(abs(eigenvalues.dataf1,1]))*v[3,1])+xbar.data[3,1];
xhigh[3,5]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];
(*3rd pt *)
xhigh[1.6]:=cvalue.data[1.1]*(sqrti(abs(eigenvalues.data[3,1]))*v[1,3])+xbar.data[1,1);
xhigh[2.6]:=cvalue.data[1.1]*(sqrt(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.data{2,1];
xhigh[3,6]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[3,1}))*v[3,3])+xbar.data[3,1];
xlow(3,4]:=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[3,1])+xbar.data[3,1];
xlow[3.5]:=-cvalue.data[ 1.1]*(sqrt(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];
(* 6thpt *)

xtow[1,6]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.dataf 3,11))*v[1,3])+xbar.data[1,1];
xlow[2,6):=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 3,1]))*v[2,3]))+xbar.data[2,1];
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xlow(3,6]):=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[3,3])+xbar.data[3,1];
end; {if}

close (Empdata);

(* OUTPUT *)

Gmatwrite(xbar,5,4,’X Bar’,200,190.3,6,7);

Gmatwrite(S,5,4,’S Matrix’,50,235,3.6,7);

OutTextXY(GetMaxX div 2-90,20,"PRESS ENTER FOR GRAPH’);
GMatwrite(Eigenvalues,6,5,’Eigen Values’,GetMaxX div 2,235,3,6,7);
GmatWrite(Eigenvectors,6,5,’E vectors’,GetMaxX div 2,285,3,6,7);
readin;

end; {ReadData)

Procedure ReadDataTest(var xdata,S:Mathmat.matx;var xhigh xlow:Real3by12array;
var cvalue, Mu.xbar:mathmat.maix;
var look:boolean; Var EigenValues.eigenvectors,SbyN,

evalstar.evecstar:mathmat.matx;var ordp:integer;var rmatrix:mathmat.matx);

Var
sampOne:text;

Samplel:array]1..3,1..15] of real;

begin
CValue.rows:=1;CValue.Cols:=1;cvalue.datal 1, 1}:=1;
N.rows:=1;N.cols:=1;N.data[1,1]:=1();
mu.rows:=ordp;Mu.cols:=1;

For I:=1 to ordp do

Mu.data[l1,1}:=0.0;

GMatlnput(CValue.3.2,°C Value’.80.120.3,6,7),
If cvalue.data[1,1]
GmatInput(Mu,5.2,#230.80,190.3.6,7).
GmatInput(n,2,1,’"N’ GetMaxX DIV 2,120.5.4,7),

xdata.rows:=ordp;xdata.cols:=Round(n.data[1,1]);
Assign(sampOne,’c:\Samp].dat’);

Reset(sampOne);
fori:=1to round(n.data(1.1]) do begin
read(sampOne.sample1[1.i]); end;
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for i:=1 to round(n.data[1,1]) do begin
read(sampOne,samplel[2.i]);
end;
If ordp=3 then begin
for i:=1 to Round(n.data[1,1]) do begin
read(sampOne,sample1(3.i]);
end;{for} end; {if}
for I:=1 to ordp do begin
For J:=1 to round(n.data(1,1]) do begin
xdata.data[l,J}:=Sample1[1,1];
End;end;

GMATWRITE(xdata,6.2,”’,20.30,3,6,7);

Mat_Transpose(xdata.xdata_trans);
one.rows:=xdata.cols;one.cols:=1];
for j:=1 to one.rows Do Begin
for k:=1 to one.cols do begin
one.datafj.k}:=1.0;
end;
end;

Mat_Transpose(one.,one_trans);

identity.rows:=xdata.cols;
identity.colsi=xdata.cols;

for j:=1 to xdata.cols do begin
for k:= 1 10 xdata.cols do begin
identity.duta[j,k]:=0.0;
end; end,

for k:=1 10 xdata.cols do begin
identity.datalk.k}:=1.0;
end,

MatMuli(one,one_trans.onebyonet);
oneovern:=].()/xduta.cols;
oneOverNMinusOne:=1.(¥(xdata.cols-1.0);
mat_k_mult(onebyonet temp.oneovern);
Matsub(identity,temp,temp2);

(* calculate X bhar*)
mat_k_mult(one.temp3.oneovern);
matmult(xdata,temp3.xbar);

Mat_k_mult(xdata.tlemp,or.covernminusone);

Matmult(temp,temp2.temp3);




Matmult(temp3,xdata_trans,S);
Gmatwrite(xbar,5,4,"X Bar’,260.190,3,6,7);
Gmatwrite(S.5,4,’S Matrix’,50,235.3,6,7);

OutTextXY(GetMaxX div 2-90,20,'PRESS ENTER FOR GRAPH’);
for i:=1 to s.rows do begin
for j:=1 to s.cols do begin
a[i,j):=s.datafi,j);
end;end;
(* Initialize D matrix *)
DMatrix.rows:=S.rows; DMatrix.cols:=S.Cols;
for j:=1 to DMatrix.rows Do Begin
For k:=1 to DMatrix.cols Do Begin
DMatrix.data[j.k]:=0.0;
end;end;
(* Calculate D matrix from S matrix *)
For j:=1 to DMatrix.rows Do begin
DMatrix.data[j.jl:=sqrt(S.data[j.jl);
end;
Matlnvert(DMatrix,DInverse);

MatMult(DInverse,S temp);
MatMult(temp.Dinverse, RMatrix);

jac(ordp.v.a.nrot.d);

EigenValues.rows:=ordp;Eigenvalues.Cols:=1;
eigenvectors.rows:=ordp;Eigenvectors.Cols:=ordp;
For j:=1 to ordp Do Begin
(* allow neg ev *)
Eigenvalues.data(j.1]):=d[j];
end;
FOr j:=1 10 eigenvectors.rows do begin
for k:=1 10 eigenvectors.cols do begin
eigenvectors.dataj.k]:=v[j.k]};
end; end,

(* This section uses the Eigen vatues and vectors to find *)

(* the endpoints of the major and minor axis of each ellipse *)

(* These are put into Xhigh and Xlow *)

(* endpoints of axis - each col is a coordinate for a point *)

(* Istpt *)
xhigh{1,1]:=cvalue.data{1,1]*(sqri(abs(eigenvalues.dataf1,1}))*v{1,1])+xbar.dataf1,1];
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xhigh{2,1]:=cvalue.dataf1.1}*(sqri(abs(eigenvalues.data{1,11))*v[2,1 )+xbar.data[2,1};
(*2nd Pt *)

xhigh[1,2]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xhigh[2,2]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

(*4thpt *)
xlow[1,1]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v[1,1])+xbar.data{1,1];
xlow([2,1]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.dataf 1,1]))*v([2,1]+xbar.data[2,1];
(*5th Pt *)
xlow[1,2]:=-cvalue.data[1,1)*(sqrt(abs(eigenvalues.data[2,1]))*v([1,2])+xbar.data[1,1];
xlow[2,2]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[2,2])+xbar.data[2,1];

If ordp=3 then begin

xhigh{3,1}:=cvalue.data{ 1,1]*(sqri(abs(eigenvalues.data{1,1}))*v[3,1])+xbar.data[3,1];

xhigh[3.2]:=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];

(*3rdpt ¥)

xhigh[1,3]:=cvalue.data[ 1,1]*(sqn(abs(eigenvalues.data[3,1]))*v[1,3])+xbar.data[1,1];

xhigh{2,3]):=cvalue.data]1.1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.data[2,1};
xhigh[3.3]:=cvalue.data[ 1,1]*(sqri(abs(eigenvalues.dataf 3,1]))*v{3,3])+xbar.data[3,1];

xlow[3,1]:=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[3.1])+xbar.data[3,1];
xlow[3.2]:=-cvalue.data[ 1,1])*(syri(abs(eigenvalues.dataf2,1]))*v([3,2])+xbar.data[3,1];

(* 6thpt *)

xlow[1,3]:=-cvalue.datu[ 1,1]*(sqriabs(eigenvalues.data[ 3,1]))*v([1.3])+xbar.data[1,1];
xlow[2,3}:=-cvalue.datal 1,1]*(sqrt(abs(eigenvalues.data[ 3,1]))*v[2.3])+xbar.data(2,1];
xlow(3.3]:=-cvalue.data[1,1]*(sqrt(abs(eigenvalues data[ 3,11))*v[3,3])+xbar.data{3,1};
end; {if} .

(* Calculations for S/IN  #)

oneovern:=1.0/n.dataf1.1];
Mat_k_nmult(S.SbyN.oneovern);

for i:=1 1o ordp do begin
for j:=1to ordp do begin
a[i.jl:=SbyN.datafi.j);
end;end;

jac(ordp.v.a.nrot.d);

EValStar.rows.=ordp;EValSiar.Cols:=1;
eVecStar.rows:=ordp;EVecStar.Cols:=ordp;
For j:=1 to ordp Do Begin
(* allow neg ev *)
EValStar.daa[j. 1]:=d(j);
end;
For j:=1 10 evecStar.rows do begin
for k:=1 10 evecStar.cols do begin
evecStar.datafj.k]:=v{j.k]
end; end,
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DsqriEigenVals.rows:=Rmatrix.rows;DsqriEigenVals.cols:=Rmatrix.cols;
For i:=1 to rmatrix.rows do begin
For k:=1 10 ordp do begin
DsgniEigenVals.data[i,k}:=0.0;
end;end; .
For i:=1 to ordp do begin
DsqgrtEigenVals.data[i,i}:=sqrt(abs(E Valstar.data[i,1}));
end;
Mat_transpose(evecstar.temp);

MatMult(DSqrtEigenVals,temp,temp2);
Matmult(evecstar,temp2,Q);
Z.rows:=ordp;Z.cols:=round(n.data[ 1,1]);
For i:=1 to ordp do begin
for k:=1 1o round(n.data[1,1]) do begin
z.data[i,k]:=sqr(2.0*(In(I/random)))*cos(2.0*pi*random);

end;end;

(* This section uses the Eigen values and vectors 1o find *)
(* the endpoints of the major and minor axis of each ellipse *)
(* These are put into Xhigh and Xlow *)
(* endpoints of axis - each col is a coordinate for a point *)
(* Istpt*)
xhigh[1,4]):=cvalue.data[1,1]*(sgri(abs(eigenvalues.data[1,1]))*v[1.1])+xbar.data[1,1];
xhigh[2.4]:=cvalue.data[1,1]*(sqri{abs(eigenvalues.data[1,1]))*v{2.1])+xbar.data[2,1];
(*2nd Pt *)
xhigh[1.5]:=cvalue.data[ 1,11*(sqri(abs(cigenvalues.data[2.1]))*v[1.2])+xbar.data[1,1];
xhigh[2,5}:=cvalue.data[1,1]*(sqri{abs(eigenvalues.data[2,1]))*v[2.2])+xbar.data[2.1];

(*4thpt *)

xlow[1.4]:=-cvalue.dataf1,1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[1.1])+xbar.data[1,1];
xlow[2.4]:=-cvalue.dataf 1, 1]*(sqri(abs(eigenvalues.data[ 1,1]))*v[2,1])+xbar.data[2.1];
(*5thP *)
xlow[1.5]:=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[1,2])+xbar.data[1,1];
xlow[2.5]:=-cvalue.dataf 1. 17*(sqri(abs(eigenvalues.data{2,1]))*v[2.2])+xbar.data[2.1];

If ordp=3 then begin
xhigh{3.4]:=cvalue.data[ 1,1]*(sqri(abs(cigenvalues.data[1,1]))*v[3,1])+xbar.data[3,1];
xhigh[3.5]:=cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[3.2])+xbar.data(3,1);
(*3rdpt *)
xhigh[1,6):=cvalue.data{1,1)*(sqrt(abs(eigenvalues.data[3,1]))*~[1,3])+xbar.dataf1,1];
xhigh[2,6]:=cvalue.data[1,1]*(sqri(abs(eigenvalues.data[3,1]))*v[2,3])+xbar.data[2,1];
xhigh{3,6]):=cvalue.data[1,1]*(sqrt(abs(eigenvalues.data{3,1]))*v[3,3])+xbar.data(3,1};
xlow[3.4]):=-cvalue.data[1.1]*(sqrt(abs(eigenvalues.data[ 1,1]))*v[3,1])+xbar.data[3,1];
xlow[3,5):=-cvalue.data[1,1]*(sqri(abs(eigenvalues.data[2,1]))*v[3,2])+xbar.data[3,1];
(* 6thpt *)
xlow[1,6):=-cvalue.data| 1.1]*(sqri(abs(eigenvalues.datal 3,1]))*v[1,3])+xbar.data[1,1];
xlow[2.6]):=-cvalue.data[ 1,1]*(sqri(abs(eigenvalues.data[ 3,1]))*v([2,3))+xbar.data[2,1);
xlow[3,6]:=-cvalue.data[ 1, 11*(sqrt(abs(eigenvalues.data[3,1]))*v{ 3,3])+xbar.data{3,1];
end; {if)
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close (Sampone);

GMatwrite(RMatrix,5.4.'rho’,50.285.3,6,7);
GMatwrite(Eigenvalues,6,5,’Eigen Values’ ,GetMaxX div 2,235,3,6,7);
GmatWrite(Eigenvectors,6,5,’E vectors’ ,GetMaxX div 2,285,3,6,7);
readin;clrscr;

end; {ReadData)

end.
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Appendix G

The descriptive statistics are expressed and derived in matrix format. The three main statistics
needed are:
1. Sample Means:

M
[

2. Sample variances and covariances:

S Si2... Sip

891 822 «00 *
Sy =

_Spg Sp2 «ee SzzJ

3. Sample correlations:

r -

nmhnaz..np

rnyra...:
=

_r,, Tp2 ... r,,d

Where p = the number of variables which corresponds to the number of dimensions to be displayed.
The sample mean x is an unbiased estimate of the population mean. The sample variance covariance
matrix s is the unbiased estimator for the population variance/covariance matrix X. Covariance and
correlation measure the variable’s linear associations.

First, the matrix definition of terms where gathered. The x matrix is the matrix of sample values

for a p = 3 sample of n observations:

X11 X12 ... X1
X B X2 X2 oo0 K29
X31 X33 .o. X3a

The 1 matrix is a column matrix p x 1 of 1's:
G.1




1
13xl= 1
1

100
I=1010
001

The J matrix is a p X p matrix of 1’s:

I'matrix:

b bk pd

1
1
1

[ W

'lheldenﬁtymatrix=13x3[

Eigenvalues are scalars A, A; ...A, ]

IA-AI1=0

I % | = determinate of x

EV, is a characteristic vector called eigenvector that is associated with a eigenvalue A, such that :

Aev =dev

[ala )]
AnAy || ens A || eva
At this point the idea of statistical distance needs to be discussed. Statistical distance is related

to straight line of Euclidean distance. In Euclidean distance for p = 2 ( 2 dimensions), the distance
between two points can be calculated using the Pythagorean theorem ( see Figure G.1). The

X

0 I

1 x1
Figure G 1. Pythagorean Theorem

distance between point 0, which is assumed to be at the origin, and point p is d(0, P).
d(O.P)st;.,.x;
All points which lie a constant distance from c, from 0 satisfy ( for p = 2).
The problem with using Euclidean distance measures o express statistical distances measures
is that the Euclidean distance measure does not take into account the random sample’s variability
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involved with statistical study. The Euclidean measure assumes the coordinate of each point
contributes equally to the calculation of distance. When dealing with statistics, it becomes
necessary to weigh each coordinate according to the magnitude of its variability ( as described in
each s matrix) the correlation between its coordinates ( as described in the r and R matrices). The
statistical distance equations can be derived in the same manner as Euclidean distance. A random
sample of points with greater variability in the x, direction then the v, direction, and x; =X, =0 and
x, independent from x, (i.e. R,, = 0) is shown in Figure G.2.

X2

Figure G.2. Scatter Plot

Since there is more of a spread (higher variability in the x, direction) it is not “surprising” to find
values of x; that are larger (in absolute terms) than values of x,. Therefore to standardize the
coordinates, each one (x; or v;) is weighted differently. This is a form of standardization. The

weights the standard deviates, therefore

Xy

x = andx; =
! V511 : V522

and
— a(a)
d(0,P)=Vx+x,= ' |==[+]-=(
( ) X +x (ﬁ) [@J
RENE]
Su Sn
The points (x;, x,), which are an equal distance from point 0, fit the equation
S S

This is an ellipse equation with its center at the origin (0,0), which is at the point (x, ;). The major axis
is along the x, axis. There is more variability in the x, axis. The major and minor axis are coincidental
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with the x; and x; axis, respectfully. A more standard form of distance equation for the two points is
given by:

d(P, Q)-'\l(xl D7) € R VR €5 7

S1 52 Spp
It must be remembered that this equation is based on the assumption of independent variables (i.e.
Ry; = 0). In must relevant samples R x, x, # 0, therefore the effect of removing this assumption needs
to be studied.
For a case of p = 2 and R), > 0, the scatter plot in Figure 3.5 becomes the plot in Figure G.3.

Figure G.3. Scatter plot with Ri2> 0
. 312 -
The correlation R, = ———=c0s ( ©,;) - ©;; = the angle between x, and x, and the angle
12 ‘JEX_I-‘JS_ZZ- ( 12) 12 gl g
between .X.z and x,
©13=cos™! (R;3)

Therefore, the ellipse which describes the points equal distance (statistical distances) C from the center
(p=2) or (p = 3), has its major and minor axis rotate ©; from the x;, x; axis when R;; # 0 and the value

of ©. = cos™!( R;).
d(0,P)= ‘ff £}

Su Szz
where 5, and 5y, are calculated variances with relationship to X, and X, respectively. Substituting these
equations into the distances equation d( 0, P ) yields
d(0,P)=Vay x}28),x, X, + an 53

G4




cos3(©)

%1 = 50s(0) 5, + 2 sin(O) cos(O) sin + Sin((©) 513
+ sin2(©)
Gosz(e) -2 sin(@) COS(G) Sip+ sxn’(@) S
o = sin%(©)
2 = cos¥(O) sy, + 2 sin(O) cos(O) s, + SinX(O) 553
+ cos¥©)
0082(9) Sp=-2 sin(G) COS(G) Spp+ sin’(@) UM
G cos¥®) cos(®)
127 ¢0sY(0) 55, - 2 sin(©) cos(O) s,; + 5in%(O) 51
sin(©) cos(©)

" c0s%(©) 55, - 2 sin(0) cos(©) sy, + sin¥(0) 5,
‘The equation for an ellipse for d(Q, P) = C and R;, # 0 becomes
¢ = ay(xy = y2)* + 28,551 = y1) (%2 - y2) + an(x; - y2)

In order to plot this ellipse the above equation must be stated as two relationships of x; in terms
of x,. This separation is important because the equation for the ellipse is not a function. For every
value of x, y; pair there are two (x;, y;) pairs solves this equation. The equation is divided into a
top and bottom half. Each representing one of two possible solutions. These relationships are:

Since the angle © is related to the correlation between the variables, it is important to show this
concept to the student. The easiest way to show this is to display the major’s and minor’s axis end
points. This can be done using the eigenvalues and eignvectors. Consider the ellipse in Figure G.4
The half length of the major axis is ¢ = ‘[i:and the half length of the minor axis is ¢ = ‘IA: When

.:"m 2 Loigenvector 1
o Yo *s ()

L

Koy Yoo ot )
“sigenvector 1 *-sigenvector 2

Figure G.4. End Points of Major and Minor Axis
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you multiply these constants times the corresponding eignvector the result is the distance in the
eigenvector’s direction which yields the coordinates of the axis’s. For example:

. X
eigenvector, = [——‘]
X2

¢ - eigenvector, + VA, - = [c‘/\,g:;]

c

= coordinate of the major axis

This is for a ellipse centered at the origin. Iftlweﬂipseiscmteredati=[;‘ ]thentlwcoordma!cis
2
given by

Vi, . =%)=|¢ X
cVA, - (eigenvector, =X ) [ W

At this point all mathematical principles required to produce the program have been developed. The
next phase consisted of developing the actual program.

G6




Appendix H

This MathCad Template was used to develop and test the formulas
and concepts needed for the development of the Pascal Program

A3scrico.exe. Plotting an Ellipse ORIGIN = 1
X1 (26.7 384 192 20.6 189 148 19.0 142 137 7.7)
\33 24 17 10 9 10 27 8 11 2
7 4 5 66 87 46 38 68 87 48
X:= 267 384 192 206 189 148 190 142 137 7.7
33 24 17 10 9 10 27 8 11 .2
n = cols(X) one i = 1. cols(X)
one, = 1 xbar := X-—n—
<1> <2> <3>
xone = (XT> xtwo = (XT) xthree - (XT)
6
xbar = | 19.32
1.51
S = ——X:| identty(n) - %~(one-oneT) X7
3313 -3258 -0.46 = 1. cols(S)
S =|-3258 70.411 5.873
-0.46 5873 0.97
182 0 ]
D12 ; - JS,_; DI2=|0 8391 0

0 0 0.985
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- -1
D12INV = D12 0549 0 0

DI12INV = | 0 0.119 0
0 0 1.015

1 -0.213 -0.257
R = D12INV-S-D12INV R=1-0213 t 0.711
-0.257 0.711 1

This angle - THETA12.angle is the angle for the relationship between
and X2.

THETA12 := acos(R, 1)  THETA12 =1786  ; pojiane

180
THETAIZ angle = ac0s(Rp 1)~ THETA12 gngle = 102,315

This angle - THETA13.angle is the angle for the relationship between X1
and X3.

THETA13 - acos(Rj 4) THETA13 = 1.83 in Radians

180
THETA13 angle = acos(Ry q)-—— THETA13 gngje = 104.869

This angle - THETA23.angle is the angle for the relationship between X2
and X3.

THETA23 = acos(R; 3) THETA23 = 0.78 in Radians

180
THETAZ3 angle = ac0s(Ry.3) =~ THETA23 gnqe = 44.708

c =2
s1l == S1‘1 si2 := 812 s21 = 82‘1 822 - 32'2
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si1 = 3313  s12=-3258 s21 =-3.258  s22 = 70.411
s13 = 85 7 Samn 8 Say B Say

513 = -0.46 s31 = -0.46 s33 = 0.97 s23 = 5.873

Calculate the EIGENVALUES AND EIGENVECTORS

ev = eigenvals(S) 3.167
ev = | 71.063 | These are the eigenvalues
0.464
evec! = eigenvec(S, ev,)
evec? = eigenvec(S.ev,)
evec3 = eigenvec(S, ev;)
-0.996 -0.048 0.069
evec! = |-0.054 evec2 = | 0.995 evec3 = |-0.08
0.065 0.084 0.994

The above are the eigenvectors associated with the
eigenvalues found above.

c =2
k1 = c-J;v; K2 = c Jev, k3 - c-J;v;
k1 = 3.559 k2 = 16.86 k3 = 1.362
ax! = ki-evecl + xbar alxn := xbar - ki-evecl

ax2 - k2-evec2 + xbar admn - xbar - k2-evec2 2| ki-evect | = 7-“8'
ax3 - k3-evec3 + xbar admn = xbar - k3-evec32'|k2'e"e°2! = R

axib - k2-evec! + xbar ailxnb := xbar - k2-evecf2:| k3-evec3| = 2.724
ax2b - ki-evec2 + xbar a2xnb = xbar - ki-evec2
ax3b - k2-evec3 + xbar a3xnb - xbar - k2-evecd
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Below are the end points of the major and minor axis of the ellipsoid.

2.453
19.128
1.74

5.184 \)

axl =

36.101

2.921
6.094

19.211
2.865

ax3d =

lengthmaj12 = c- fe;

lengthmaji2 = 3.559

lengthmin12 = c- Jez
lengthmini2 = 16.86

9.547

19.512

1.28
6.816
2.539

0.099
5.906

adxn = (19.429
0.155

lengthmax13 = c- Jev,/engthmax23 - c: Jev,
lengthmax13 = 3.559 lengthmax23 = 16.86
lengthmin13 = cje_;a'engfhmln23 = C-Je-v3
Iengthmjn13 = 1.362 Iengthmin23 = 1.362

alxn =

axn =

You need to associate ev(1) with LARGEST SAMPLE VARIANCE max(s(ii)]

Compute the Coordinates of the ENDPOINTS of
the MAJOR and MINOR AXES of the Ellipse
and Plot the ELLIPSE using them

THIS CASE: si11 is largest Sample Variance so evl ~ s11
ev2 ~ s22

Compute maxv MATRIX {see my notes to you} ... and use
DIAGONAL VALUES of maxv to set min and max values for
range of INDEPENDENT VARIABLE of Plot (here x1)

S, ; = 3.313 ev, = 3.167

S, , = 70.411 ev, = 71.063
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+ xbar maxvx! = 2.453

minv! := -c-( ev -ebecu) + xbar, minvx! = 9.547

maxwx2 = c-(‘]etz-evec%) + xbarz maxvx2 = 36.101
minne2 = -c-(JeTz-wecZZ) + xbarz " minn2 = 2.539

Caution: We add XBAR to make points relative to CENTROID
Elliptical Functions Derived by MACSYMA....
This section does the calculations for X1 vs X2:

x2a - s12% - s11-822 x2b = 2-511-822 - 2-512°

x2c = §12° - s11-s22  xbarl = xbar, xbar2 = xbar,

X2a = -222.681 x2b = 445362 x2c = -222.681

At = -s!11-xbar, A3(x1) := x2b-x1-xbar,
A2 - )<2a-(xbar1)2 A3 prime(’d) = x2b-xbar,
Ad(x1) = x2c-x1? A5 = cg112.622 AB - -c?-s11-s122

A4 oime(x1) = 2:x2c:x1  A7(x1) = s12-xbar; - s12-xi

A7 prime(X1) = -s12

Al + J(AZ + x2b-x'i~xbar1 + x2c-x12 + A5 + AS) + sl,
eliput2(xt) = - 1
s
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1

(
. <2JA2 + x2b-x1-xbar, + )(20-x12 + A + AS)
elipu12 prime("') = 11

prime(x1) = Lelipu12(x1)
dx1

elipu12 prime (9.64051) = 3640.49

prime ( 9.64051) = 3639.702

“A1 + JA2 + A3(x1) + Ad(x1) + A5 + A6 - AT(xI'
sit

elipbt2(x1) =

This section does the calculations for X1 vs X3:

x3a - s13° - s11-s33 x3b = 2-511-833 - 2-513°

11

x3c = 8132 - s11-s33  xbar! - xbar, xbar3 : xbar,

x2a = -222.681 »x2b = 445.362 x2c = -222.681

B1 - -si1-xbar, B2 = x3a-(xbar;)? B3(x1) = x3b-x1-xbar,

B4(x1) - x3c-x12 BS5 - c2s112.833 B6 - -c’-s11-513°

B7(x1) = s13-xbar, - s13-x1
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(B1+ {B2 + B3(x1) + Ba(x1) + B5 + BS + BI(x1))
s1i

elipu13(x1) -

Bl + JB2 + B3(x1) + B4(x1) + B5 + B6 - B7(x1)
si

elipb13(x1) -

This section does the calculations for X2 vs X3:

x3a - s23° - §22-533 x3b = 2-522-533 - 2-823°

x3c = 823 - 522533 xbar2 - xpar, Par3 = xban

x3a = -33.797 x3b = 67.594 x3c = -33.797

Cl = -522-xbar, C2 = x3a-(xbary)?  C3(x2) = x3b-x2-xbar,

C4(x2) = x3c-x2C5 - c-s222.633 C6 - -c?-s22-523°

C7(x2) = s23-xbar, - s23-x2

ipu23(x2) - (et + Jo2 + capxa) + ca(x2) + C5 + CB + CT(x2)
622

sipp23(x2) - S Jc2 + ca(xe) + Ca(x2) + C5 + C6 - CT(x2)
622

8 - .1
low! - minvx Xbar =6 low2 = minv2
xbar, = 19.32
hight = maxvxi high2 = maxvx2

low! = 9.547 high! = 2.453
hight = if ( maxvx1 > minvx!, maxvxt , minvx1)
lowl = if (maxvx!> minvx!, minvx1, maxvxi )
high2 = if (maxw2 > minvx2, maxvx2 , minv2)
low2 = if( maxvx2 > minn@ , minvx2 , maxvx2 )
lowl = 2.453

"

H.7




THETA12 angle = 102.315

hight = 9.547

low! = 2.453 lengthmaj12 = 3.559

high! = 9.547 § = lengthmaj12-cos (90 - THETA12 4ngje)
hlgh' = 9.63 s = 3.447 xbar1 + 8 = 9447

low! = lowt - .01 elipb12(6.09) = 35.623

x1

low!, lowl + §.. hight
prime(9.63) = 58.133

prime (xbar,) = -0.983

prime (low! - .0135) = -23.537

elipu12(9.64051) = 15.72

Note lengthmin>lengthmaj for 12

1 -0.213 -0.257 i= 1.2
R=1-0213 1t 0.711
-0.257 0.711 1
endpointx1, - axi
po. 1 | 1 endpoint21, = ax2,
endpointx1, = atxn, endpoinb21, = adm,
endpoinb, = axi, endpoinb22, - ax,
endpoinb, = alxn, endpointx22, = a2xm,
THETAI2 - g = 12.315 - deg
2.453
endpointx! = i 6.816
(9.547) endpoint1 = 5.184
19.128 i 2.538
. - endpointx22 =
endpointx2 ( 19'5‘2) 36.101 )
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Graph of X1 vs X2

N\

30
elipul12(x1)
elipb12(x1)

20
endpointx2i

;’;pm""‘zzi H\ \ /

AV

5 10 15 20 25 30 35
x1.x1, endpointx1.. endpoimx21i
6 = .14 i=1.2
c=2 THETA13 = 104.869 - deg
endpointx13, = axi .
po' 1 1 endpoinb231, = ax3,
endpointx13, = alxn, endpoinb@31, = adm,
endpointx23, = axi .
po 1 3 endpoint32, = ax3,
endpoinb@3, = alxn, endpointx32, = adxn,
dpointx13 (2453) ndpoinb231 (6'094)
endpoin = e =
9.547 po 5.906
2.865
1.74 : =
endpoinb3 = endpointx32 = ( )
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Graph of

X1 vs X3
10 T T T T
elipu13(x1) 7.908 |- =
elipb13(x1) 5816 |- =
endpoinb(23i i i
—_ 3724

endpointc32; /—x
— 1632 F N\-

-0.46 -L L
-046 1632 3.724 5816 7.908 10
x1,x1, endpointx] 3i . endpointx231 i

6 |\ THETA23 = 44.708 - deg
5= 4417 1.2 bar=119321 | wmings = 1.362

Rez.3) = 0.711 1.51
’ lengthmax23 = 16.86
x2 = low2,low2 + §.. high2
endpoinb2, - ax2, endptmin2; = ax3,
endpoinb, = a2xmn, endptmin@, = adxn,
endpointx3, = ax2, endptminx3; = ax3,
endpointx32 = a2xng endptminx3, = adxn,
. 36.101 . 19.211
endpoinb@2 = endptmin@ =
2.539 19.429
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endpointx3 = ( 2.921 endptminx3 = ( 2.865
0.099 0.1556
Graph of X2 vs X3
40 ;
10 ' ' ' " 3720340
elipu23(x2) 30 [ 7
elipb23(x2) .
— 20 | P
xblm3 ;
endpoint><3i 10 - -
endptminx3. ny —_——
. | U = Z" 1 ‘ -
10 1 1 1 1 i
-10 0 10 20 30 40

x2,x2,x2, endpointxZi. endptmiani
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2. Highly b. Significant  c. Slighty d. Of No
Significant - Significant Significance

5. Comments

Namc and Grade Organization

Positon or Tile Address
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