
ADFA259 384 omApproved
AD-A24iMENTATION PAGE 0M No 0704-0188

est,',a~a eaq -ow~ oe' escorse r~c\.ctng t"e t-me for rev.ew-;n %1f,,a,"j eaf~i'" *.s cý
ana reve•,,- :e'e :Z" ecrl of ,- MatO Send c¢smmens regaraing tp,. ouroen est ?at c, are , ;I, -, .%,e:t it s.e'er

11. 4': 4~ V.8,aqpoe- arc (:,e,. Daer..c'. .ie jctc,, Ploje- (0704.3'88) Aas, ro?:- -.C 235C3

1. AGENCY U5E ONLY (Leave blank) 2. REPORT DATE "'3. REPORT TYPE AND DATES COVERED
FINAL 1 Sep 89 - 31 Jan 92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

"MEMORY-BASED EXPERT SYSTEMS" (U) 61102F

2304/A7

6. AUTHOR(S)

Dr. Roger C. Schank

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Northwestern University REPORT NUMBER

Institute for the Learning Sciences
1890 Maple Avenue

Evanston, IL 60201 93.) o)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFOSR/NM
Bldg 410
Boiling AFB DC 20332-6448 AFOSR-89-0493

11. SUPPLEMENTARY NOTES

IZa. DISTRIBUTION! AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

S UL

13. ABSTRACT (Maximum 200 words)

The goals of this project have been to carry out research aimed at implementing and

applying case-based reasoning, or CBR (Riesbeck and Schank. 1989) in a variety of

distinct tasks and domains. In particular, the work carried out under this project

has focussed on three problems: (1) The development of a robust memory-based parsing

technology (Direct Memory Access Parsing, or DMP), (2) The development of case-based

systems for creatively approaching complex problems in social and Political domains

and (3) The application of case-based reasoning in educational settings.

14. SUBJECT TERMS 15. NUMBER OF PAG1S

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pre-cr.oec b ANSI Slid 139.1
298-102



Memory-Based Expert Systems:

Final Report

submitted December 1992 to

The Air Force Office of Scientific Research

for

grant no. AFOSR-89-0493

Northwestern University
The Institute for the Learning Sciences

1890 Maple Avenue
Evanston, Illinois 60201

(708) 491-3500
fax (708) 491-5258

9/ 93-00731

'" •l~lill~!H ItlllllIIlliltl1



1 Introduction

The Air Force Office of Scientific Research has funded a project in "Memory-

Based Expert Systems" (grant number AFOSR-89-0493) at Northwestern

University's Institute for the Learning Sciences, under the direction of

Professor Roger C. Schank, Principal Investigator. The goals of the project, as

outlined in the original proposal, have been to carry out research aimed at

implementing and applying case-based reasoning, or CBR (Riesbeck and

Schank, 1989), in a variety of distinct tasks and domains. In particular, the

work carried out under this project has focussed on three problems:

(1) The development of a robust memory-based parsing technology

(Direct Memory Access Parsing, or DMAP).

(2) The development of case-based sys3tems for creatively approaching

complex problems in social and political domains.

(3) The application of case-based reasoning in educational settings.

The rest of this document briefly outlines the results of our efforts in these

three areas. Details may be found in the accompanying technical reports, and

in the references.

2 Direct memory access parsing

Our efforts to transform the theory of memory-based language analysis into a

robust, practical technology has led us to develop the XDMAP system.

XDMAP is a Lisp-based tool for X-windows for building hierarchical dynamic

memory structures, such as those described in Schank (1982). Some aspects of

the tool are fairly standard: For example, memory structures are displayed as

boxes, organized into a family tree, and the user can point and click to inspect

structures, add and delete structures, and add and delete links.

Unique to XDMAP, however, is the ability to add parsing information in a

similarly simple point and click manner. XDMAP uses the Direct Memory

Access Parsing (DMAP) algorithm, as described in Riesbeck and Martin (1985)

2



and Riesbeck and Schank (1989). In DMAP, you attach templates, such as
"actor says info" and "actor told hearer info" directly to the knowledge

structures that those templates might refer to, such as communication-event.

The DMAP understanding algorithm's primary job is to read text and find the

memory structures referred to by that text. This could mean reading "John

gave Mary a kiss" and finding the concept kiss-cvent, but that would be

missing the point. A dynamic memory (Schank, 1982) contains episodic

knowledge, so reading "John gave Mary a kiss," should lead DMAP to other

examples of kissing events, especially those involving John or Mary, if

present in memory. More interestingly, reading "Bush orders an end to the

fighting," in early 1991 should lead the parser to memory structures

describing the Preiian Gulf war. 1inis would enable the understanding system

to (a) understand what "the fighting" refers to, and (b) update its knowledge

of the current state of the world. A standard understanding system would

read "Bush orders an end to the fighting," and only recognize that a

communication event occurred, and would not be able to tell what kind of

activity "the fighting" referred to, because it might be anything from squabbles

in Congress to military action, and those are quite different concepts.

The DMAP understanding module in XDMAP provides this ability to find

and update episodic knowledge. In addition, the XDMAP tool also provides

"* An interface for defining a frame-based hierarchical memory.

"* A point-and-click interface for linking text to knowledge units.

"* Debugging and maintenance tools.

The general sequence of knowledge entry using XDMAP is as follows:

(1) The user enters a short text (one or more sentences) into the Input

Text portion of the Text Info window.

(2) Pressing the Parse button tells XDMAP to parse the text, producing

the display in the Parsed Result portion of the Text Info window,

indicating which memory structures were recognized.

3



(3) If the desired memory structures were not found, the user can point

and click to connect segments of the text, e.g., "Persian Gulf," then to

the desired memory structure in the MOP Forest window.

(4) If the desired memory structure does not exist, the user can add it,

using the graphical tools available in the MOP Forest window.

(5) Pressing the Parse button, again will re-parse the text, showing the

new results of the parse, and so on.

XDMAP automatically generalizes the text segments as appropriate to enable

to parse texts with similar structure. The user doesn't have to worry about

this. Furthermore, the DMAP algorithm automatically handles ambiguous

sentences, resolving them according to the memory structures available in

memory, so the user doesn't have to worry about that either.

For example, to add "Bush orders an end to the fighting," the user would

enter that text, press the Parse button, and see, perhaps, that the concept

George-Bush and the concept fight-event were recognized. If the user wants
"an end to the fighting" to refer to the concept cease-fire, he would select that

portion of the text and then select that concept, and tell XDMAP to link them.

Suppose that XDMAP now parses the text to the concept George-Bush and the

concept cease-fire, but not the concept communication-event, perhaps because

this particular sense of the word "order" is not known. In many systems, the

user would have to define "order," specify what kind of verb it is, what kinds

of syntactic structures it can appear in, and so on. In XDMAP, the user simply

selects the entire sentence, selects the concept B, and links the two. XDMAP r

then automatically:

0

(1) Generalizes "Bush orders an end to the fighting," to "actor orders

info," and

OT1C,' . - 'C ,

4 |Speo&,ej.



(2) Creates an instance of the concept communication-event, with the

concept George-Bush and the concept cease-fire filled in the appropriate

slots.

The latter action means that the content of this text is in episodic memory,

ready for retrieval in future text understandings.

XDMAP has proven to be a robust and relatively easy to use tool for

simultaneously building memory structures and developing the parsing

knowledge necessary in order to understand natural language texts involving

those structures. It is now being employed to develop natural language

capabilities for computer-based instructional systems at ILS.

3 Case-based problem-solving in complex domains

Two basic technological issues arise in efforts to apply case-based reasoning to

complex problem-solving domains: first, the indexing and retrieval of

complex, highly structured case representations, and second, the creative

adaptation of such cases to fit the requirements of the new situation. Our

efforts to address these issues have primarily been carried out within the

context of two innovative CBR systems, Abby and BRAINSTORMER.

3.1 Abby

Since it constitutes half of the basic CBR process model, progress in CBR

requires that we understand how retrieval works in detail. Until we know

what we can expect to get from memory, we don't really know how much or

what kind of work remains for the rest of the system. The point of CBR is

that, ideally, there should be relatively little work left over. Progress in

understanding the CBR retrieval step requires that we make headway on the

indexing problem.

The development of the Abby case-based lovelorn advising system

(Domeshek, 1992) has followed that research plan. The result is a program

that accepts input describing lovelorn situations, and responds by telling

stories of similar situations interpretable (by a human being) as carrying

5



advice applicable to the input situation. All Abby knows about its cases are

their indices: descriptions of conditions under which it makes sense to tell

each story. Instead of using a rich case representation to generate novel

behaviors specifically tuned to novel circumstances, Abby tells a canned story

and leaves it to the user to extract the implicit advice.

To submit a problem to Abby, a user familiar with the system's index

formalism must use an editor to create a probe index representing a particular

description of the problem. When the user is satisfied that the probe correctly

expresses the intended problem, Abby can be asked to search nlerrlory for

remindings. Abby returns with an ordered list of stories in memory ranked

according to how well their labels matched the probe.

Abby currently contains 500 label indices, each giving access to a story

rendition; these renditions are ASCII text files telling the tale of some past

problem in a way intended to make sense in situations where the attached

index has been matched. In all, there are over 250 distinct situations described

in these renditions. The stories in Abby's collection were adapted from

materials gathered over a period of several years from a variety of sources.

The fact that Abby contains hundreds of stories is important for both

theoretical and practical reasons. First, the availability of a large number of

examples and the need to discriminate amongst them drove the invention of

representational vocabulary; the sheer size of the corpus was both a

motivation and a test for the indexing system. Second, a large corpus is a

prerequisite for a system having any chance at useful performance in a

complex domain like lovelorn advising (Schank, 1991b).

An index is defined functionally as a specification of the information that

ought to affect a case's retrieval. Unfortunately, using standard composible

representations and graph matching techniques, the information accessed

through an index could easily remain unbounded. Abby's indices are

therefore restricted by limiting substructure, recursion, and information from

types, and the explicit encoding of abstract relationships.

A typical example of the sort of problem that Abby can supply advice about is

the following: A teenage girl complains "my parents won't h't me marry

6



Johnny; they think I'm too young and shouldn't marry yet." Abby's advice

for this teenager is the following story:

Sometimes parental concern can be overwhelming. I knew a woman

of about 30 who finally had to move out of her parent's house because

her mother kept pestering her to get married. She liked men well

enough and intended to get married some day. She just hadn't met

anyone she wanted to marry yet (and who wanted to marry her). She

had lots of friends, and she went out on dates fairly often; this was no

social misfit or recluse. But whenever she got home, her mother was
waiting up for her to ask if she had met anyone who interested her. It

finally just got to be too much for her, so she had to find a place of her

own. While that was probably an overdue move for her anyway, the

mother could have avoided forcing the issue if she wanted to keep her

daughter around.

Addressed to the girl, the simplest interpretation of this story is that if the

teenager doesn't like her parents' interference in her love-life then she
should move out. Notice that the mismatch between the ages of the teenage

girl and the 30-year-old may make this direct advice inapplicable. Yet that

very mismatch and inapplicability can lead the girl to a more useful

conclusion: If she is not old enough to move out on her own, then she may
not be old enough to ignore her parents' wishes.

By packaging task-relevant features into a fixed index frame, Abby addresses

the constraints of the indexing problem-recover relevant cases quickly from
a large memory-plus the requirement for an explicit theory of index content

in the complex social domain where relevance often depends on abstract
intentional features. The result is a comprehensible and usable index

formalism. The simple exercise of coding more than 500 indices using Abby's
index formalism and representational vocabulary has served as a test for the

theory that is, in many ways, a more rigorous test of expressivity than that to

which most representational systems are ever subjected. In fact the last 250
indices were coded with little change to the index format: The system has, it

seems, converged on an adequate index design for complex social problem-

solving tasks.

7



3.2 BRAINSTORMER

To study the computational underpinnings of case adaptation, we have
constructed the BRAINSTORMER system (Jones, 1992). BRAINSTORMER is

a planner that operates in the domain of terrorist crisis management. The

system is handed a planning problem and a large set of proverbs, and uses the

proverbs to help it plan. BRAINSTORMER first tries to solve problems it is

given on its own, then considers its proverbs one by one in light of whatever

difficulties it has encountered. The idea is to generate lots of suggestions

without too much concern for their plausibility, with the hope that

something interesting will turn up. BRAINSTORMER thus implements a
theory of brainstorming, in the ordinary sense of the term: a technique for

solving hard problems by generating lots of ideas.

While BRAINSTORMER knows something about terrorism, it is not an

expert in this domain. Instead, BRAINSTORMER'S expertise lies in the more

general domain of planning and social interaction. In this sense, all problems
having to do with terrorism appear novel to BRAINSTORMER. Just as

people fall back on general knowledge to solve novel problems,
BRAINSTORMER adapts its abstract knowledge about planning and acting to

suggest ways to prevent terrorist attacks.

One way to think of BRAINSTORMER is as a creativity aid: a system that can
assist a user presented with a difficult problem by suggesting large numbers of

possible solutions. The system is equipped with a memory of culturally-

shared cases, and generates large numbers of plausible solutions to problems
by the simple strategy of trying to adapt each case to fit. From the user's point

of view, then, BRAINSTORMER takes a planning problem as input and
produces a large number of sketchy solutions, some of which the user might
not have thought of on his own. Of course, the solutions that

BRAINSTORMER actually generates are a function of its memory of

culturally-shared cases, even though these are hidden from the user. It

follows that from a programming standpoint, it is more useful to think of
BRAINSTORMER's input as a user-supplied planning problem and a set of

proverbs, and its output as a set of planning suggestions produced with the

help of these proverbs.

8



Suppose, for example, a user hands BRAINSTORMER the planning problem
paraphrased as follows:

Situation: A terrorist attack carried out by terrorists from the P.L.O., in
which a group of people was held hostage, and one of the hostages was

killed.

Goals: Prevent recurrence of future terrorist attacks with similar causes

and problematic effects; retaliate against agents causally implicated in
producing these effects.

Based on representations of the following proverbs, BRAINSTORMER will

generate the following corresponding plans, among others:

Proverb: Covetousness is at the root of all evil.

Plan: Help the terrorists achieve their goal of a Palestinian state.
Plan: Persuade the Palestinians that they don't need a Palestinian state.

Proverb: When in Rome, do as the Romans do.

Plan: Adopt the methods of the terrorists.

Proverb: He that has suffered more than is fitting will do more than is

lawful.

Plan: Improve living conditions in the refugee camps.
Plan: Get the Palestinians out of the refugee camps.

Proverb: An eye for an eye, a tooth for a tooth.

Plan: Kill or arrest the terrorists.

Proverb: No trouble but a priest is at the bottom of it.
Plan: Assassinate or arrest Khomeini.

Proverb: An old poacher makes the best keeper.
Plan: Employ a former terrorist as an advisor on countering terrorism.

9



Pro, erb: Cities are taken by the ears (refers to the value of propaganda).

Plan: Censor news reports of the terrorists' activities.

Proverb: Fish begin to stink at the head.

Plan: Destroy the political power of the P.L.O. leaders.

Proverb: Anger punishes itself.

Plan: Do nothing (the terrorists will self-destruct).

Proverb: Danger makes men devout.

Plan: Get the terrorists' religious leaders to denounce terrorism.

Some of these plans may seem a little implausible: The Palestinians, for
example, are in reality unlikely to abandon their goal of obtaining a
Palestinian State. A number of the others, however are interestingly

perceptive or even creative. It is left to the user to filter out the promising
candidates from the unpromising ones. Brainstorming is a kind of generate

and test approach to creative problem solving; BRAINSTORMER assists the
"generate" part of this process. The system is not intended to produce

complete, detailed solutions to problems: Instead, it is designed to suggest
promising avenues for the user to explore.

Conceptually, plan generation in BRAINSTORMER divides into three stages:

(1) Initial planning: BRAINSTORMER's planning component

attempts to generate appropriate plans on its own, without the help of
any proverbs. When BRAINSTORMER can make no further progress,
however, it turn to proverbs for assistance.

(2) Adaptation: A proverb is adapted to help the planner in some

particular way, by providing it with a memory structure that allows it

to make further progress.

(3) Final planning: The planner carries out planning steps enabled by

adaptation, eventually producing one or more concrete plan

suggestions.

10



This process is iterative: More than one proverb can contribute to generating

a single plan.

On several occasions, BRAINSTORMER's adapter spontaneously produced

suggestions that we found surprising, using general adaptation capabilities

that we had constructed earlier to handle other examples. For example, when

adapting the proverb he who has suffered more tlzan is fitting will do more
thunt is lawfud, BRAINSTORMER suggested an explanation that we had not

anticipated. After hypothesizing that suffering lcd the terrorists to carry out

the terrorist attack, the system adapted the same proverb a second time, this

time generating a motivational explanation for the suffering: Perhaps some

other agent deliberately caused the Palestinians to suffer, with the aim of

getting them to carry out illegal actions like the terrorist attack. We did not

expect BRAINSTORMER to come up with this explanation, but when it did,
we asked ourselves whether it is plausible. In fact, it is: It can be argued that

the Palestinians are languishing in the refugee camps because of a concerted

policy of neighboring Arab states. These countries have strictly limited
immigration of Palestinian refugees, in part because they hope that the

refugees will blame Israel for their plight, and therefore harass Israel by every

means at their disposal (including terrorism). On this view, the Palestinian
refugees are little more than pawns in an ongoing regional power play

initiated by unscrupulous Arab states.

Although as outside observers we have sufficient background knowledge

about Middle Eastern politics to elaborate the adapter's sketchy explanation,

BRAINSTORMER does not do much with it, because it lacks the relevant

domain-specific knowledge. As a consequence, BRAINSTORMER cannot go

on to generate plans that might follow from the elaborated explanation, such

as convince the Palestinians that Israel is not the source of their difficulties.

Nevertheless, BRAINSTORMER'S unexpected proposal got us to think about

the terrorist problem in a new way, which, of course, is a primary aim of a

creativity aid.

BRAINSTORMER is only a prototype of a practical creativity aid: It is

equipped with a case library of 15 culturally-shared cases. It does however

11



illustrate the essential components of a larger system. In particular, it is

capable of flexibly adapting each of its proverbs to produce a number of

different kinds of outputs, each uf which can potentially assist a planner in a

different way.

4 Case-based teaching

Experts are repositories of cases. Becoming an expert thus depends upon

acquiring this case base in a usable form. Case-based teaching is based upon

the idea that good teaching is good story telling (Schank, 1990): Students

respond well to stories if they are told in an interesting way and at an

appropriate time. The case-based teaching architecture exploits the basic

capacity for students to learn from stories and the basic desire of teachers to

tell stories that illustrate their experiences.

There are two major issues in this approach to teaching: First is the

construction and exploitation of a case base from which cases can be drawn

when they are needed. The second is the creation of a situation that would

cause a student to be interested in hearing about a relevant case. The case base

must be indexed in such a way as to relate to the situations that are created for

the student.

The general paradigm we have developed for case-based teaching is as

follows:

(1) Situation: Present an interesting situation for a student to try out.

(2) Failure: Allow him to fail.

(3) Indexing: Have a story ready to tell that relates to what the student

did wrong.

(4) Story telling: Tell story when consulted.

We have built a number of case-based teaching systems along these lines, in a

i ie variety of domains, and for a diverse set of users (Schank, 1991a). One of

12



these, CREANIMATE, attempts to teach simple functional anatomy to

elementary school students (Edelson, 1991). The program asks the student to

design a new animal. The animal that the student proposes forms the basis

for a dialog about the physical features of animals and how those features

help them to survive in the wild. Thus, for example, if a student wants to

create a kangaroo that flies, the program would initiate a discussion about

why animals fly, that would be illustrated by professionally produced video

clips illustrating different animals that use flying in different ways. After the

student decides on a reason why he wants his kangaroo to fly, he could

continue to discuss the physical changes that would be required in order for a

kangaroo to fly, the particular type of flying that it might be useful for a

kangaroo to be able to carry out, and how flying would change the things that

real kangaroos currently do. During the discussion, general principles would

always be illustrated by video clips of particular animals.

CREANIMATE instantiates the above paradigm for case-based teaching as

follows:

(1) Situation: The situation consists of a design for a new animal proposed by

the student. This is a particularly effective educational situation because it is

generated entirely by the student and provides him with a personal

investment in the outcome. The student becomes concerned with the

viability of his own creation. Children will readily tell you an animal that

they would like to design if they could: The trick here is simply to bring to

the fore the kind of goal that children will readily work towards.

(2) Failure: The program and the student conduct a dialog in order to explore

the ramifications of the student's design. This discussion may uncover actual

failures in the design. For example, simply adding wings to a cow is not

sufficient to enable it to fly. More importantly, the process of seeking failures,

even if there are none in the design, leads the student through an inquiry

process that will expose him to important principles and stories.

(3) Indexing: The indexing scheme for the domain must be consistent with

the knowledge representation of the domain employed by the dialog

manager. The stories are indexed in two ways: first, according to the specific

13



animals that appear in the video clip using features that achieve their

behaviors, and second, according to the general principles they illustrate.

Thus the program is able to look at a proposed design for an animal, identify

which general principles apply to that design, search the case base for stories

that illustrate those general principles, and then make the connection

between the specifics of the video story and the specifics of the student's

proposal, in order to make the video relevant for the student.

(4) Story telling: The issue for this program is not so much story telling as

story selection. The stories exist in video archives already (we do not need to

go out into the wild to film animals). However, we do need to carefully select

the stories that go into the program, using the following criteria:

* Excitment-The program succeeds or fails on the vividness of its

video. Fortunately, it is not hard to find exciting video footage of

animals.

- Instructiveness-The video must present its lesson clearly and

effectively.

* Coverage-We must have a large and diverse enough library of

video to cover the multitude of ideas that students generate, and a

sufficient number of the actual features and behaviors that exist in

nature.

Our key insight in constructing this system has been that a teacher, whether

human or machine, can never have a complete collection of stories for any

domain. With a limited number of stories, it is impossible to have the perfect

story for any situation. Thus, it is important to be able to find a story that is

similar enough to be appropriate, if imperfect. The way to ensure that you

can find these appropriate stories is to have indices that are written in a

scheme that is expressive enough so that, in the absence of a perfect story for a

situation, indices can be considered in part in order to find stories that are

relevant.

14



5 References

Domeshek, E. 1992. Do the right thing: A component theory for indexing

stories as social advice. Technical report no. 26, Northwestern University,

The Institute for the Learning Sciences, Evanston, IL.

Edelson, D. 1991. Why do cheetahs run fast? Responsive questioning in a

case-based teaching system. In Proceedings of the 1991 International

Conference on the Learning Sciences, Association for the Advancement of

Computing in Education, Charlottesville, VA, pp. 138-144.

Jones, E. 1992. The flexible use of abstract knowledge in planning. Technical
report no. 28, Northwestern University, The Institute for the Learning

Sciences, Evanston, IL.

Riesbeck, C., and Martin, C. 1985. Direct memory access parsing. Research

report no. 354, Yale University, Dept. of Computer Science, New Haven, CT.

Riesbeck, C., and Schank, R., eds. 1989. Inside Case-Based Reasoning.

Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R. 1982. Dynamic Memory: A Theory of Reminding and Learning in

Computers and People. Cambridge University Press, Cambridge, England.

Schank, R. 1990. Tell Me a Story: A New Look at Real and Artificial Memory.

Charles Scribner's Sons, New York.

Schank, R. 1991a. Case-based teaching: Four experiences in educational

software design. Technical report no. 7, Northwestern University, The

Institute for the Learning Sciences, Evanston, IL.

Schank, R. 1991b. Where's the AI? Technical report no. 16, Northwestern

University, The Institute for the Learning Sciences, Evanston, IL.

15


