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SHORT COMMUNICATION

Electrical, magnetic and spectroscopic properties of (TTF)5 Fe(NO3)3

Young Inn Kim

Department of Chemical Education

The Pusan National University, Pusan 609-735 (Korea)

and

William E. Hatfield*

Department of Chemistry

The University of North Caros'na at Chapel Hill

Chapel Hill, North Carolina 27599-3290 USA

Abstract

Tetrathiafulvalene, ITF, reacts with Fe(NO3) 9H20 to yield a dark purple charge-

transfer compound with the formula (T'TF)5Fe(NO3)3. The effective magnetic moment

at room temperature of 0.6 B. M., the temperature independent paramagnetism in the

range 77-300 K, and the absence of an EPR signal attributable to iron, indicates low-

spin iron(II), with electron transfer from TTF. The g values of the parallel and

perpendicular EPR lines, [(T, gl, g.L), (300 K, 2.007, 2.010), (77 K, 2.009, 2.013)],

and the line widths indicate that the odd electron resides on, and is delocalized over

several TrFs. The conductivity at room temperature is 17 S cmt, and the

temperature dependence of the resistivity indicates semiconducting behavior of a

complex nature.

"Author to whom correspondence should be addressed.
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Introduction

Recently it was found that tetrathiafulvalene, TTF, reacts with the metal halides

FeC13, FeBr3, and the hydrated salts of RuC13, RhC13, and IrC!4 :o form a series of charge-

transfer compounds [1]. The compounds formed with iron(III) chloride and iron(ITT) bromide

with the formulas (TTF)2FeC13 and (TTF)3FeBr 3 were especially interesting in view of the

results for (BEDT-TTF)2FeCI4 (BEDT is bis(ethylenedithio)tetrathiafulvalene) [2]. The

compounds with TTF have much higher electrical conductivities than (BEDT-TTF) 2FeC14,

and the properties of all three compounds differ markedly. The magnetic susceptibility of

(TTIF) 3FeBr 3 is nearly constant in the temperature range 4.2 to 300 K, while that of

(TTF)2FeC13 increases sharply at low temperature [1]. The room temperature magnetic

moments are 4.75 and 5.05 B.M. for (TTF)2FeCI3 and (TTF)3 FeBr3, respectively. The

magnetic moment of (BEDT-TTF)2FeC14 is 6.01 B. M., a value that is consistent with high-

spin iron(III) and no detectable contribution from the cation [2]. It was shown earlier, that

the stoichiometry of the charge-transfer compound formed by the reaction of TTF with

complexes of copper(II) halides, depended on the ligand and the halide coordinated to

copper(II) [3]. Variation of the counterion of the metal was the next logical step. This

research has been undertaken [4], and the product of the reaction of TTF with

Fe(NO3)3 9H20 yielded a charge-transfer compound with unusual properties. The

preparation and properties of (TTF)5Fe(NO3)3 are reported here.
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Experimental

The charge-transfer compound (TTF)5Fe(NO3 )3 was obtained as a dark purple

microcrystalline precipitate by adding a solution of Fe(N0 3)3o9H 20 in methanol to a solution

of excess TTF in methanol under a nitrogen atmosphere. Elemental analyses were performed

by Galbraith Laboratories, Inc., Knoxville, TN. Calc.: C 28.21, H 1.60, N 3.30. Found: C

29.11, H 1.61, N 3.60%. Electrical resistivities were measured by the Van der Pauw four-

probe d.c. method [5] by using a model 21SC Cyrodine Cryocooler from CTI-Cryogenics in

the temperature range 80-300 K. Constant current was applied by using a Keithley model

227 current source and the voltage was measured with a Fluke 8502A multimeter. Magnetic

susceptibility measurements were carried out with a Faraday Balance in the temperature range

77 K to room temperature [6]. The data were corrected for temperature independent

paramagnetism and the diamagnetism of the constituent atoms using Pascal's constants [7,8].

EPR spectra of powdered samples were obtained with a Varian E-3 X-band spectrometer at

9.5 GHz. The free radical DPPH (g = 2.0036) was used as a field marker. Electronic

spectra were obtained in the range 200-800 nm by using a Simadzu model UV-240

spectrophotometer and solutions or solid/Nujol mulls of the compound. The samples were

mounted between quartz plates. Infrared spectra were obtained by using Nujol mulls on a

sodium chloride plate with a Mattson Polaris FT-IR spectrophotometer.

Results and discussion

The electrical resistivity of a powdered sample of (TTF) 5Fe(N0 3)3 was measured

from 80 K to 300 K. The resistivity increases with decreasing temperature, but as shown in
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Figure 1, the temperature dependence of the logarithm of the resistivity versus 1000/T of a

powdered sample, pressed into a pellet, is not linear, but forms a smooth convex curve. The

results clearly indicate that (TTF)5Fe(N0 3)3 exhibits semiconducting behavior of a complex

nature.

The data can not be fit by the equation p = poexp(Ea/kBT), nor by the mobility model

p(t) = A*Trexp(Ea/kBT) [9]. The mobility model accounts for thermal activation of charge

carriers and the temperature dependence of the mobility of the charge carriers. The plot of

In p vs. l/T is nearly linear in the temperature range 240 to 300 K, and the activation energy

was estimated from this asymptote. Least-square fits of the equation p = poexp(Ea/kBT) to

the data yield an activation energy Ea = 0.042 eV . The low activation energy is consistent

with the experimentally measured electrical conductivity at room temperature of 17 S cm-1.

This value for aRT is much greater than the electrical conductivities of (TI'F)2CuC14 [10] or

(BEDT-TTF) 2FeCI4 [2], and similar to those of (TTF)nCuC12(n = 2 or 7/3) [11]. TTF in

(TTF)2CuC14 is known to be completely ionized, whereas TTF is partially ionized in

(TTF),CuC12, and columnar structures are formed in the latter compound. (BEDT-

TfF)2FeC14 also consists of stacks of completely ionized BEDT-TrF dimer molecules. The

relatively high electrical conductivity in (TT'F)sFe(N0 3)3 indicates that TTF in the compound

is partially ionized and stacked to form chains.

Magnetic and spectroscopic properties of (TrF)5Fe(NO3)3 also provide evidence of

low-dimensional and partially ionized TTF donor molecules in the compound. Electron

paramagnetic resonance spectra of a powdered sample were obtained both at room

temperature and at 77 K. The EPR spectra exhibit good resolution of parallel (g,) and
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perpendicular (gi) components with the values (T, g1 , g.1) of (300 K, 2.007, 2.010) and (77

K, 2.009, 2.013). The values are very close to g value of TITF ion in solution [12]. This

observation indicates that the odd electrons reside on TITF in (TTF)5 Fe(NO3)3. The relatively

narrow peak-to-peak linewidths in the EPR spectra (6-7 gauss) in (TIF)5Fe(NO3)3 also

indicates that the interaction along and among TTF stacks are significant [13,14]. A signal

attributable to iron metal was not detected, and it may be concluded that the iron ion in

(TTF)5 Fe(NO3)3 is in the diamagnetic low-spin octahedral Fe(II) state.

The experimentally determined magnetic susceptibilities are 1.61 x 10- and 1.70 x

10-4 emu/mole at 300 K and at 80 K, respectively. The magnetic susceptibilities are almost

temperature independent in the temperature range of the measurements, with the effective

magnetic moments being 0.62 and 0.34 B.M. at 300 K and at 80 K, respectively. Small and

temperature-independent magnetic susceptibility, Pauli paramagnetism, is well known in low-

dimensional semiconductors [15], and the magnetic susceptibility results, together with the

EPR results, are consistent with the conclusion that the unpaired electrons are associated with

and delocalized over the (TrF)5' radicals. The data reflect large interactions between

molecular units in stacked columnar chains.

Electronic spectra of (TTF)sFe(NO3)3 show X., = 584 and 442 nm in DMF solution

and XN,.x at 552, 381, and 317 nm in Nujol mulls. The electronic transitions are comparable

to the results found for the charge-transfer compound: TTF-FeX3, in which TTF is partially

ionized [1]. There are bands at 378 and 560 nm in Nujol mulls of (TTF)3FeBr 3, with the

corresponding bands occurring at 404 and 552 nm for (TTF)2FeCI3. There are higher energy

bands in the halide salts also, but there is no direct correlation with the band at 317 in the
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nitrate salt.

The IR spectrum exhibited a very broad intense band extending from about 1,000 cm'

to 4,000 cm1. The intense absorption arises from the band structure of these semiconductors

and masks many of the vibrational modes of the compound [16]. Three vibrational bands of

TTF were observed in the absorption tail; these occur at 729 cm' (U25, ring SCC bend), 823

cm' (u16 , CS stretch), and at 1240 cm' (u23, CCH bend). The bands were assigned by

making comparison with those reported for other one-dimensional TT'F compounds [17]. The

u1 6 absorption band (823 cm-') is intermediate between that of TTF° (781 cm-') and TTF'

(836 cm-1), signaling fractional-charge occupation of TTF in (TTF)5 Fe(NO3)3 [11].

There is no straight-forward explanation for the low-spin electronic configuration of

the iron(II) ion. Coordination by nitrate ions alone would not be expected to lead to low-spin

iron(II). This forces the conclusion that the iron(II) ions are associated with sulfur atoms in

the TTF stacks. It is possible that the iron(II) ions are bound to sulfur atoms in adjacent

stacks, thereby providing a pathway for inter-stack interactions. Such inter-stack interactions

are indicated by the narrow EPR line widths. Tomkiewicz and Taranko [14] have shown that

in TTF-halides, the EPR line widths run parallel to the inter-stack interactions with narrow

line widths indicating stronger. interactions and broader line widths indicating weaker inter-

stack interactions. Evidence for this final suggestion for coordination of the iron could be

obtained from a structural determination by X-ray crystallography. We have not yet obtained

crystals of this quality from our experiments.
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Figure Caption

Figure 1. A plot of In p versus 1000/T (T in units of K) for (TTF)5Fe(N0 3)3 .
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