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Abstract

Estimation of structure and six-degree-of-freedom motion of manoeuvring objects
through measurements of feature positions in long, multiple-camera image sequences
is widely recognized to have broad industrial, military, and space applications, par-
ticularly in the control of autonomous systems. This report focuses on the case of
manoeuvring objects thereby removing restrictive assumptions concerning the mode
of translational and rotational moticn which are commonly employed in many exist-
ing methods. Object manoeuvres, being “smooth™ and time correlated, are modelled
as first-order Gauss-Markov processes for both translational and rotational motion.
In the literature, rotational motion is often parameterized with unit quaternions even
though constraints on the quaternion norm are not easily enforced, roll-pitch-yaw
parameterizations have been reported to be poorly Lehaved and have led to com-
putationally demanding implementations, and results using the Euler angle-axis pa-
rameterization in recursive motion and structure estimation are not available. In
this report, six-degree-of-freedom, nonlinear, approximate state estimation filters for
quaternion, roll-pitch-yaw, and angle-axis parameterizations are compared in terms
of estimation performance for manoeuvring object trajectories. Special considera-
tion is given to the problem of imposing unit norm on the estimated quaternion
since previously proposed methods led to filter instability, particularly in angular
velocity estimation. Methods proposed herein not only demonstrate how previous
quaternion-based algorithms might be extended to track manoeuvring objects ob-
served in multiple-camera image sequences, but also provide two much simpler alter-
natives using angle-axis and roll-pitch-yaw parameterizations. The angle-axis filter
was found to give the best overall performance with a significant reduction in com-
putational requirements in comparison to the quaternion filter.

DRES-SR-577 UNCLASSIFIED




DRES-SR-577




UNCLASSIFIED

Executive Summary

Image-based motion analysis is primarily concerned with accumulation and re-
finement of information related to motion and structure of objects within the en-
vironment of an imaging system. Motion parameters include position, orientation,
and time derivatives of position and orientation of objects with respect to a specified
reference frame. Structure, in the present context, refers to the shape of observed
objects in the sense that positions of object features are estimated with respect to
an object-centred reference frame. Estiination of structure and six-degree-of-freedom
motion of manoeuvrin: bjects through measurements of feature positions in long,
multiple-camera image sequences is widely recognized to have broad industrial, mil-
itary, and space applications. Image sequence analysis provides a means for passive
tracking of either airborne or ground-based moving targets. Structure estimation in
a static environment and recovery of motion of a moving platform which carries the
imaging system is an equivalent problem which is of fundamental importance in the
control and guidance of autonomous systems.

The Defence Technologies Division of the Defence Research Establishment Suffield
has several groups whose research efforts are or will be focussed in part on acquiring
information from imaging systems: object localization, tracking and recognition is of
primary interest to the Threat Detection Group; methods for passive target tracking
are being investigated by the Systemns Integration and Vehicle Concepts Groups; and
vision-based navigation and control of autonomous systems are common research
areas of the Advanced Guidance Concepts, Electronic Design and Instrumentation,
and Vehicle Concepts Groups.

This report provides a framework on which future research in motion and structure
estimation can be based. Methods proposed herein concentrate primarily on the
recovery of motion and structure of a rigid object observed with a multiple-camera
imaging system. However, the resulting state estimation algorithms are sufficiently
general to be of interest in a broad range of applications, including those of the
various research groups listed above. The report provides a detailed review of image
analysis methods currently available in the literature and proposes a hierarchical
image analysis system which partitions the overall problem into three coupled target
tracking problems with increasing levels of complexity. One of these levels is concerned
with the estimation of structure and six-degree-of-freedom motion of observed objects
and is the focus of the remainder of the report. Detailed background material is
provided in the Appendices in order that this report may be self-contained.

A fundamental difficulty associated with vision-based motion estimation, in com-
parison to the more traditional radar-based point tracking problem for example, lies
in the recovery of the object’s orientation and rotational motion. Theoretically pre-
cise models of rotational motion may be formulated in terms of the object’s inertial
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parameters, external torques acting on the object, and Euler’s equations which repre-
sent a coupled system of three nonlinear differential equations that admit closed-form
solutions only in very limited cases. In object tracking applications, however, inertial
parameters and external torques are generally not available. Consequently, alternate
and often simplified models for rotational motion are employed.

Many existing methods for recursive motion and structure estimation from long
image sequences have been developed under specific assumptions concerning the na-
ture of translational and rotational motion, for example, constant velocity, accel-
eration, precession, or angular momentum. A number of techniques define object
structure based in part on the assumed motion of the object which can lead to un-
observability for some manoeuvres. Rotational motion is often modelled with unit
quaternions for which dynamical models are parameterized directly in terms of angu-
lar velocity and are nonlinear. Roll-pitch-yaw parameterizations have been reported
to be poorly behaved numerically and have led to computationally demanding imple-
mentations. Published results using the Euler angle-axis parameterization in recursive
motion and structure estimation are not present in the literature.

Methods proposed herein focus in part on removing restrictive assumptions con-
cerning the nature of object motion and eliminating dependence of object structure
on assumed motion by developing motion, structure, and measurement models for a
rigid manoeuvring object observed with a multiple-camera imaging system. Object
manoeuvres, being “smooth” and time correlated, are modelled as first-order Gauss-
Markov processes for both translational and rotational motion. Object structure is
defined on the basis of observed feature points only. Six degree-of-freedom extended
Kalman filters for roll-pitch-yaw, Euler angle-axis, and quaternion parameterizations

are developed and compared in terms of estimation performance for manoeuvring
object trajectories.

Both the angle-axis and roll-pitch-yaw filters are based on approximate linear
dynamic models which lead to computationally efficient implementations. Computa-
tional requirements of the quaternion filter are more significant than the other two
due primarily to the nonlinear dynamic model. Another difficulty associated with the
quaternion filter is that nonlinear constraints which maintain unit quaternion norm
are not easily incorporated into the linear structure of the Kalman filter. Previously
proposed methods of applying an impulsive normalization of the estimated quaternion
immediately following each observation event was found to contribute significantly to
divergence in angular velocity estimates. Instead, the quaternion estimate is propa-
gated without impulsive normalization, and a unit quaternion as well as appropriately
scaled structure vectors are extracted from the state estimate.

Simulation results with computer-generated imagery suggest that all three filters
perform equally well for most trajectories. The roll-pitch-yaw filter has the simplest

iv
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form, but sometimes yields poor results in angular velocity estimates. The quaternion
filier shows degraded performance in estimation of object position and some structural
parameters. The angie-axis filter is computationally efficient and performs at least as
well as, and often better than, the quaternion and roll-pitch-yaw filters. This work not
only demonstrates how previously proposed quaternion-based apnroaches might be
extended to track manoeuvring objects observed in multiple-camera image sequences,
but also provides two much simpler alternatives using angle-axis and roll-pitch-yaw
parameterizations. The angle-axis filter based on a linear dynamic model was found
to give the best overall performance with a significant reduction in computational
requirements in comparison to the quaternion filter.

Future research efforts will address problems associated with implementation of
other modules of the hierarchical structure proposed in Section 1.2. Generally, the
proposed system is composed of three coupled multi-target tracking systems with in-
creasing levels of complexity. It might be expected that statistical-based multi-target
tracking methods, which have been extensively studied in radar-based point track-
ing applications, will be extremely useful in such a system. Feature detection and
correspondence as well as feature occlusion processes represent challenging problems
for future investigations. However, a primary consideration in future work will also
involve further evaluation of the extended Kalman filtering approach in comparison
to other nonlinear observers. Adaptive extended Kalman filtering, Lyapunov meth-
ods, transformation to nonlinear observer canonical form, nonlinear map inversion,
and sliding mode observers are representative of recently proposed methods which
may lead to more robust observers for recovery of object motion and structure from
multiple-camera image sequences. Initially, future work will focus on performance
evaluations with simulated imagery. As motion and structure estimation algorithms
mature, however, experiments with real imagery will be required to assess the true
performance of proposed image analysis systems.
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1. Introduction

A primary function of biological vision systems is the detection, processing, and
understanding of motion perceived from a continuous flow of visual information. Per-
ceived motion results from relative motion of a vision system within a dynamic en-
vironment. Analysis of object motion in scenes, or the apparent motion perceived
by a moving observer in a static scene can yield vital information concerning the
structure and dynamic behavior of the observed process. Over the last two decades,
research in motion detection, analysis, and understanding techniques with applica-
tions in computer vision systems for robotics and autonomous vehicles represents
an area of vigorous growth. Rosenfeld’s annual bibliographical surveys (see [1] for
example) demonstrate the intense interest in this field of research.

Motion and structure estimation from multiple-camera image sequences has broad
industrial, military, and space applications. Motion parameters include position, ori-
entation, and time derivatives of position and orientation of an object with respect to
a specified reference frame. Structure, in the present context, refers to the shape of
the observed object in the sense that feature positions are estimated with respect to
an object-centred reference frame. These notions are made more precise in Chapters 2
and 3. A fundamental difficulty associated with vision-based motion estimation, in
comparison to the more traditional radar-based point tracking problem for example,
lies in the recovery of object orientation and rotational motion. Theoretically precise
models of rotational motion may be formulated in terms of the object’s inertial pa-
rameters, external torques acting on the object, and Euler’s equations which represent
a coupled system of three nonlinear differential equations that admit closed-form so-
lutions only in very limited cases. In object tracking applications, inertial parameters
and external torques are generally not available. Consequently, alternate and often
simplified models for rotational motion are employed.

Many existing approaches to motion and structure recovery from long image se-
quences are somewhat restrictive in that solutions are proposed for specific cases of
translational and rotational motion, for example, constant velocity, acceleration, pre-
cession, or angular momentum, etc. These techniques have been designed and evalu-
ated on appropriate data generated under these assumptions. However, such precise a
priori information is seldom available in general object tracking applications, particu-
larly in an unstructured environment. Rotational motion is often parameterized with
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unit quaternions, which leads to further difficulties when enforcing a nonlinear con-
straint on the quaternion norm. Roll-pitch-yaw parameterizations, on the other hand,
have been reported to be neither simple nor well-behaved numerically and have led
to overly complicated and computationally demanding implementations. The Euler
angle-axis parameterization has appeared in small intersample-angle approximations,
but published results in the context of recursive motion and structure estimation are
not available. None of these methods have been developed for the case of manoeu-
vring objects with measurements from multiple-camera systems. These observations
are discussed further in the literature review of Section 1.1. The reader who might
be unfamiliar with these parameterizations, after becoming familiar with notation
introduced in Chapter 2, may wish to consult Appendix A which presents a brief
tutorial review.

Primary contributions of the research reported herein include the development of
motion, structure, and measurement models, and corresponding recursive nonlinear
filters to estimate motion and structure of a manoeuvring object through measure-
ments taken from a multiple-camera imaging system. Six degree-of-freedom, non-
linear, approximate state estimation filters for three parameterizations of rotational
motion, using roll-pitch-yaw, Euler angle-axis, and quaternion parameters, are devel-
oped and compared in terms of estimation performance for manoeuvring object tra-
jectories. Simulation studies have been conducted over a wide range of trajectories.
Simulation results suggest that the roll-pitch-yaw, Euler angle-axis, and quaternion
filters perform equally well in almost all cases, with the roll-pitch-yaw filter giving
slightly poorer results and the angle-axis filter giving slight improvements over the
the other two. The roll-pitch-yaw filter has the simplest form due to the use of a
linear dynamic model. The Euler angle-axis filter is also derived from a linear dy-
namic model which results in computationally efficient implementation, but requires
an occasional impulsive reset of the state estimate to maintain the rotation angle to
within £x. The quaternion filter is the most computationally demanding of the three
due to a nonlinear dynamic model. Time propagation of the estimated quaternion is
performed with a simple numerical integration scheme which incorporates estimates
of higher-order time derivatives of angular velocity. Special consideration is given
to the problem of imposing unit norm on the estimated quaternion, since previously
proposed methods led to filter instability, particularly in angular velocity estimation.
Strict assumptions are not imposed on the mode of translational or rotational motion
except “smoothness” conditions in the sense that parameters may be differentiated
with respect to time.

This introductory chapter continues with a discussion of motion analysis tech-
niques through a review of the literature. Section 1.1 describes and compares two
fundamentally different approaches to motion analysis known as image flow-based and
feature-based techniques, and presents a summary of major contributions to motion
analysis which are based on extended Kalman filtering. Section 1.2 discusses vari-
ous components of feature-based motion analysis and proposes a possible hierarchical
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structure for an image analysis system. Three-dimensional, six degree-of-freedom
motion and structure estimation, which is the primary subject of this investigation,
represents only a single component of the hierarchical system. Section 1.3 summarizes
this introductory chapter and provides an overview of the remainder of the report.

1.1 Literature Review

Early work in image sequence analysis prior to 1978 has been surveyed by Martin
and Aggarwal [2] and Nagel [3]. A large amount of research during this period fo-
cussed on applications of motion analysis to bandwidth compression for transmission
of TV signals, and on detection and tracking of geographical landmarks and cloud
motion in satellite imagery. In a more limited sense, real-time feature tracking tech-
niques were also studied in applications of visual feedback to industrial automation
and autonomous vehicle navigation. Feature tracking methods initially focussed on
extracting motion parameters through detection of object displacement between two
consecutive frames—a technique that is still being investigated today. Some empha-
sis, however, shifted towards tracking features within a sequence of more than two
image frames through stochastic modeling of the dynamic processes being observed.

Motion analysis techniques are often classified according to whether they are for-
mulated through an image flow-based, or feature-based approach. The image flow
approach first estimates apparent velocities of intensity patterns in an image sequence
before motion analysis begins. In feature-based algorithms, features such as points,
lines, contours, corners, etc., are extracted from each image and matched between
images in order to estimate relative motion of features in scenes with respect to an
observer. More recent surveys have been presented by Nagel [4], who focuses on tech-
niques based on measurement of image flow, and Aggarwal [5], who treats primarily
feature-based techniques. Feature matching between successive images is known as
the correspondence problem and has been reviewed by Aggarwal, Davis, and Martin
[6). The correspondence problem, although it has not yet been explicitly treated in
this research, is discussed further in Section 1.2 in terms of its placement in the overall
motion analysis problem.

Image flow is often modeled by the image flow constraint equation [8] which de-
scribes the interaction between velocity fields and spatial and temporal gradients of
image intensity functions under a common assumption of small motion between suc-
cessive image frames. This approach requires that spatially and temporally discrete
intensity distributions be differentiated through approximate differencing techniques
which tends to enhance noise present in real images. The image velocity field is then
iteratively computed for each pixel based on various proposed optimization criteria
[8, 9, 13]. The image flow field contains information concerning relative depth, surface
orientation, and relative motion of objects [10}. Several methods have been proposed
to extract three dimensional structure and motion from flow fields [11, 12, 14]. It
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has been noted, however, that the system of equations relating position and motion
in space to image position and flow are not well behaved numerically and are highly
sensitive to noise in image position and flow estimates [5]. Further difficulties are
encountered in the accurate measurement of flow fields near discontinuities in image
intensity and in areas of uniform intensity [8]. Moreover, if the inter-frame motion
is indeed small, inaccuracies in flow field estimates may overshadow the true velocity
field and lead to ambiguous results.

Feature-based approaches formulate systems of equations relating positions of fea-
tures detected in an image sequence to object translational and rotational parameters.
This approach implicitly assumes that the object of interest has a set of discernible
features which can be detected in the image sequences. Roach and Aggarwall [15] give
a thorough discussion of this problem when only two or three frames are considered.
They proposed a modified least-squared error solution of a nonlinear system of equa-
tions to estimate motion parameters. Their results demonstrate that this approach
can be quite sensitive to noise in estimates of feature positions in the image. Tsai and
Huang [16, 17] have shown that in many cases motion parameters can be obtained by
solving a system of linear equations for a set of “essential parameters”, followed by
a Singular Value Decomposition of the 3 x 3 essential parameter matrix. Their sim-
ulation results also show that motion parameter estimates can be highly sensitive to
feature position errors. Fang and Huang [18] have implemented the approach and give
detailed experimental results. Again, accuracy of the results are seriously degraded
in the presence of feature position measurement errors. Recently, extensions of this
method, such as those proposed by Philip [22] or Weng et al [19, 20, 21] for exam-
ple, aim at reducing measurement noise sensitivity through refinement of parameter
estimates over multiple frames.

Structure and motion processes, and the correspondence process are believed to be
complementary, perhaps even inseparable, in the human visual system [73]. Feature
detection and correspondence are required to interpret raw image data and drive the
motion estimation scheme. Knowledge of motion parameters and their uncertainty,
on the other hand, may serve as constraints to reduce the search space associated
with detection and correspondence problems. Matthies and Kanade [43] give a thor-
ough discussion of this concept and provide two illustrative examples which propose
solutions based on Kalman filtering techniques. The Kalman filter with its recursive
structure and explicit modeling of uncertainty has been proposed as an extremely use-
ful approach to dynamic vision problems, particularly in view of the “built in” state
and error prediction capabilities. Applications of Kalman filtering to image analysis
have been reported by many authors, for example Futrelle and Speckert [23], Gennery
[24], Hallman [25], Legters and Young [26], Stuller and Krishnamurthy [27], Wu et al.
[38], Matthies, Kanade, and Szeliski [44], Chang et al. [39), and Iu and Wohn {53, 54)
consider diverse vision-based problems to which sequential state estimation has been
applied. The work of three other groups, however, provides the primary motivation
for the approach investigated in this report.
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Ayache and Faugeras [40], Ayache and Lustman [41], Randall, Foret, and Ay-
ache [42] (see further references cited therein) recursively build and update three
dimensional representations of the environment of a mobile robot. These methods
are developed primarily for trinocular (three cameras) image sequences, however their
general approach could also be applied to binocular stereo imagery or that produced
by a monocular imaging system under egomotion. Positions of world features (points,
lines, planes) are recursively estimated from measurements in the image plane through
extended Kalman filtering. They have generalized the problem of updating positions
of any feature so that the same Kalman filtering structure can be employed in all
cases. Geometric relations are inferred between features by computing a generalized
Mabhalanohis distance and using a x? acceptance test. An estimate of robot motion
is also maintained with the Kalman filter. They have applied their t=chnique to real
scenes taken from an indoor mobile platform and demonstrate some of the major
properties of their algorithm.

Dickmanns and Graefe [45] present a thorough discussion of their approach to
dypnamic machine vision which employs special hardware and methods for feature
extraction and information processing. Through the use of integral spatio-temporal
models, extended Kalman filtering, and prediction error feedback, they have demon-
strated real-time vision-based control capabilities in several important problems in
robotics [46]. Real-time capability in dynamic vision is achieved through a special-
ized multiple instruction stream, multiple data stream (MIMD) computer architec-
ture [46, 47). This system associates each processing element with a dynamically
allocated window on each image which, in turn, is associated with a single feature
of interest. Each window is defined by prediction error feedback from the Kalman
filter. Controlled correlation techniques are employed by each processing element to
efficiently extract the feature of interest in each window. Results of feature extraction
are passed from all processing elements to a host computer which executes the ex-
tended Kalman filter. They have successfully applied their technique to control of an
inverted pendulum on a moving cart [48], autonomous vehicle docking problems [46),
autonomous road vehicle guidance [46], and vision-based control of an aircraft in a
simulated landing approach [49]. More recently, enhancement of road curvature mod-
els and extensions of algorithms and hardware to obstacle avoidance in autonomous
vehicle guidance applications have been proposed [50, 51, 52].

Broida [37], Broida and Chellappa (28, 29, 30, 31, 36], Broida, Chandrashekhar,
and Chellappa [32], and Young and Chellappa (33, 34, 35] have applied extended
Kalman filtering techniques to estimation of motion and structural parameters of a
rigid object through measurements taken from noisy monocular and stereo image se-
quences. Early work, [28], considered a special case of the general motion problem
in which object translational motion is constrained to lie on a plane defined by the
optical axis and central scan line of the imaging system. All feature points of interest
are assumed to lie on this plane. Estimates of model parameters were refined over
an arbitrary number of image frames with an iterated extended Kalman filter under
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the assumption that some prior knowledge of object structure is available. In three
dimensional tracking, [29]-[32], rotational motion is modelled with unit quaternions.
An earlier choice of Euler angles and rates was described as being neither simple
nor well-behaved, which is in sharp contrast to the results reported herein. Several
cases have been treated based on a prioriinformation concerning the nature of object
motion: pure translational motion, {29); constant translational and rotational ve-
locities, {32, 36]; and constant translational acceleration and rotational motion with
constant precession, (33, 34]. Both recursive algorithms, [28, 29, 32, 33, 34], and a
batch approach based on a fixed number of frames, [30, 36}, have been investigated.
Approximate Cramer-Rao covariance bounds in the absence of a priori information
are used extensively for performance analysis, [31). Considerable effort has also been
devoted to uniqueness issues for the constant acceleration and precession case, [34].
A more detailed review of their recursive methods for monocular systems, [28, 32, is
given by Aitken [58].

Methods reviewed above have been developed for significantly diverse applications.
Each method is dependent on a particular set of assumptions. For example, difierent
types of imaging sensors have been investigated: sonar [25], visual monocular [23] [26]-
[32] [38, 39, 44, 45, 50], or visual stereo and trinocular [24, 33, 34, 40, 41, 45, 50]. Some
approaches assume a static environment with moving sensor (25, 40, 41, 44], while
others consider dynamic environments with stationary sensors [23, 24, 26] [28]-[39],
and some consider both a dynamic environment and moving sensor [27, 45, 50]. In
some cases only motion parallel to the image plane is considered [26, 27, 44]. Of those
techniques which estimate motion and orientation of objects in scenes, some assume
partial or complete knowledge of object structure [23, 24, 28, 38] while others estimate
total object structure from stereo images or with monocular image sequences assuming
depth information is available [32, 33, 34]). A general result is that performance of
the above techniques cannot be directly compared since each must be applied to the
specific problem for which it was developed.

Evaluation of proposed estimation schemes for long image sequences using real
imagery has been conducted extensively only in the work of Ayache and Faugeras
(40], Matthies et al. {44], and Dickmans et al. [46]. In a more limited sense, Wu et al.
[38) show results for imagery obtained in a controlled laboratory setting, while Broida
[37] and Broida et al. [32, 36] show qualitative results based on real imagery for which
ground truth data is not available, and feature points were extracted manually. In
most of the above investigations, simulations are performed in which feature detection
and correspondence problems are assumed to be solved. In this case, feature positions
in each image are obtained from true analytical motion and structural models and an
assumed image formation model, and additive noise processes are included to simulate
measurement noise.

Application of sequential state estimation techniques such as the Kalman filter
to machine vision problems emphasizes temporal continuity conditions for image se-
quence interpretation. This allows proper definitions of state variables and formula-
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tion of systems of differential equations to model motion processes of objects in space
and time. Dickmanns [45) refers to spatio-temporal motion analysis as “dynamic vi-
sion” which, in contrast to “static” image sequence processing, does not separately
apply object recognition from one frame to the next as a first step and motion recon-
struction afterwards as a second. Instead, object structure and motion are treated
simultaneously in order to generate an estimate of the system state based on noisy
measurements from images. There are several immediate advantages of this approach:

1. Storage requirements for past images are reduced or eliminated in that the
current system state can be represented solely by siate vectors and their uncer-
tainty, together with shape descriptors which describe the particular feature to
which each state vector applies (point, line, plane, etc.);

2. The motion estimation process need not be explicitly dependent on assumptions
of small motion between scenes which is common to the optical flow based
approach [8, 9, 11, 12, 13};

3. The estimation process can be made robust to large measurement errors through
explicit modeling of measurement uncertainty; and

4. Feedback of state predictions and uncertainties reduces the search space asso-
ciated with feature detection and correspondence problems.

Two disadvantages of this technique arise from computational requirements of Kalman
filters, and nonlinear dynamical and measurement models which result in the use of
suboptimal extended Kalman filters. The computational burden may, in some cases,
be less than that required for iterative approaches to obtain solutions to systems of
nonlinear equations. The use of suboptimal extended Kalman filters in computer
vision and other nonlinear observer applications is often criticized for several reasons:

1. Guaranteed convergence or stability cannot be established a priors;

2. Dynamical models are often approximated as polynomials in time which may
contribute to modelling error and instability; and

3. Theoretical requirements of precise stochastic models, such as white Gaussian
disturbances with known mean and covariance, are often violated.

The fact remains, however, that extended Kalman filters are being used in a wide
range of applications with varying degrees of success. In these applications, extended
Kalman filters should be considered as nonlinear observers with a particular structure
in which the plant-, and in some cases the measurement-, “covariance” matrices are
treated as tuning parameters which are specified by the designer in order to achieve
a desired performance over a sufficient range of trajectories.
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In planar motion applications, the axis of rotation is fixed and is often assumed to
be known (15, 25, 26, 28, 58, 59]. Parameterization in terms of angular velocity then
results in linear dynamical models. More general rotational motion is often modelled
with unit quaternions [24, 53, 55], [29]-[37). Dynamical models which govern time
propagation of the unit quaternion are parameterized in terms of angular velocity
and are nonlinear. State estimation is then subject to a nonlinear constraint which
imposes unit length on the four-element quaternion. This constraint is not easily
incorporated into the linear structure of the Kalman filter. A common approach,
[53], [29]-[37}, is to normalize the estimated quaternion following each measurement
update of the filter. However, in the present investigation with manoeuvring objects,
this practice was found to contribute significantly to divergence in angular velocity es-
timates. Bar-Itzhack and Oshman [65] also observed poor performance with impulsive
normalization even whe.: angular velocity measurements are available. An approach
similar to that employed by Bar-Itzhack and Oshman, [65], is used in that the quater-
nion estimate is propagated in the filter equations without impulsive normalization.
For output purposes only, a unit quaternion as well as object structure vectors are
extracted from the state estimate. This problem is discussed further in Section 3.5.2.
The use of higher-order time derivatives of angular velocity in a quaternion-based
filter has been examined by Iu and Wohn [53] who employ a dynamical model for
monocular image sequences similar to Broida et al. [32, 36]. However, time propa-
gation in their approach assumes constant angular velocity over the sample period.
Methods proposed herein assume instead that the highest time derivative of angular
velocity included in the state vector is approximately constant over any sample pe-
riod. A numerical integration scheme which maintains constant cuaternion norm is
derived for time propagation of the quaternion estimate.

Quaternions are often selected over roll-pitch-yaw angles due to mathematical sin-
gularities of the roll-pitch-yaw parameterization. Wu et al., [38] use roll-pitch-yaw
angles and parameterize rotational motion in terms of a constant inter-frame rota-
tion matrix. This approach leads to an extremely complicated and computationally
demanding implementation. Their technique has been applied to real scenes gen-
erated in a laboratory environment using 14 feature points on an object of known
structure which is constrained to lie on a planar surface. Previous research, [58], has
demonstrated that very little additional information is provided to the planar mo-
tion problem as the number of feature points is increased beyond 4. In the present
investigation, both the roll-pitch-yaw and Euler angle-axis filters are developed from
approximate linear dynamical models. In this case rotational motion is not parame-
terized directly in terms of angular velocity and its time derivatives. Instead, angular
velocity is computed through a nonlinear function of the state estimates and compared
to the true value and that generated by the quaternion filter.

This Section has provided a review of only a small subset of literature available
on motion and structure estimation and has focussed on those methods which employ
extended Kalman filtering. Three dimensional motion and structure estimation repre-
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sents only a single component of the overall motion analysis problem. The following
Section discusses a possible structure for a motion analysis system and describes
some of the assumptions, restrictions, and limitations of the methods studied in the
remainder of this report.

1.2 Hierarchical Motion Analysis

The motion analysis problem is primarily concerned with accumulation and re-
finement of information pertaining to the motion and/or structure of objects within
the environment of an imaging system. One possible hierarchical approach to feature-
based motion analysis is shown in Figure 1.1. The system has been divided into eight
levels, as indicated on the right, in which higher levels represent increased sophis-
tication in the representation of observed processes. In Level I (bottom row of the
Figure), multiple cameras, which need not be stationary, observe a dynamic scene.
An estimate of each camera’s motion is computed from local sensors and perhaps
feedback from higher levels of the system. In Level II, each camera produces an
image sequence which must be captured and digitized, and may pass through a pre-
processing stage. Feature detection algorithms are then applied in Level III to each
frame, or a subsequence of frames, in order to extract features of interest (points,
lines, corners, etc.). Feedback from motion estimation algorithms in higher levels
of the system may significantly reduce the computational effort required for feature
detection. It may also be necessary to scan any remaining portions of image frames
for new features, or features that might reappear after being occluded. The output
data from Level III includes sets of available features from each image sequence.

Level IV of the system attempts to establish correspondences between features
extracted from image sequences. In a temporal sequence of images generated by
any single camera, the process of tracking features from one sample time to the
next will be referred to as “temporal correspondence.” In the case of feature points,
this is essentially a two-dimensional multi-target tracking problem. Salari and Sethi
[57) have recently proposed a batch approach for temporal correspondence in the
presence of occlusion. This method is an extension of that proposed by Sethi and
Jain [56). However, their approach is based on the assumption that, “As long as
these points are on physical objects, we can safely assume that the trajectories of
these points in the stationary image plane will be smooth.” This assumption is not
correct in the context of their definition of “smooth trajectories”. Smooth object
motion can and often does result in sharp cusps in image plane trajectories (see
Figure 2.3 of this report) which violates their smoothness definition. If feature point
trajectories are modelled with parametric equations in time (u(t),v(t)), “smooth”
three-dimensional object motion will result in u(t) and v(t) being “smooth” functions
of time. However, if the image plane trajectory is written as v(t) = flu(t)), it is
very restrictive to assume, as in [56], that f[-] is smooth. A possible solution to the
temporal correspondence problem may be provided by sequential state estimation

DRES-SR-577 UNCLASSIFIED




10

Camera Motion C1
Estimation

Level
Environmeatal Interaction } vig
¥ 1
Knowledge Refinement e vi
v 1
Motion and Structure Estimation » Vi
3D Object Tracking
—
N 1
3D Featime Trackt 5|  Risid Objoct Segmentation v
A A
| ]
’,( Temporal Correspondence, Temporal Conupondencel )_ v
2D Feature Tracking | 2D Feature Tracking |
Y 1 y_ &
r)( Feature Detection Feature Detection )— n

Frame Capture
and Preprocessing

Estimation

)_ .

Figure 1.1

Hierarchical structure for motion analysis.
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techniques, such as the Kalman filter. This approach has received a great deal of
attention in radar-based multi-target tracking literature in which adaptive Kalman
filtering or hypothesis testing methods are proposed to track muiiiple manoeuvring
targets. Again, feedback from motion and structure components of higher levels of the
system may guide the two-dimensional tracking, or temporal correspoidence problem.

Once feature positions and temporal correspondence have been established for im-
age sequences of each camera, higher levels of the system attempt to fuse information
from multiple cameras. Level V focuses on three-dimensional feature tracking and
segmentation of feature sets into groups such that each group corresponds to a rigid
object. The process of matching features seen in two or more images taken at the
same time instant will be referred to as “spatial correspondence.” Three dimensional
information can be inferred from image plane feature position measurements and spa-
tial correspondence in two or more cameras. As a result, this processing stage leads
to a three-dimensional multi-target tracking problem.

Initial spatial correspondences must be established through epipolar geometry
together with any information available from two-dimensional tracking problems of
Level IV. Spatial correspondence for binocular stereo pairs is simplified if the image
planes are parallel and physically close together. In this case corresponding points
have almost the same locations and possibly similar appearances in the respective
images. However, triangulation then becomes ill-conditioned and highly sensitive to
measurement noise due to the nearly parallel three dimensional rays representing
inverse perspective projections of the corresponding points. Spatial correspondence
is simplified and more robust if more than two cameras are employed [41].

With image plane feature position measurements, and temporal and spatial cor-
respondence, sequential state estimation, possibly in the ferm of adaptive Kalman
filtering with hypothesis testing, may provide a means to track features in three
dimensions. Three dimensional position and velocity information will be useful to
segment all available features into rigid objects. For example, in the case of feature
points, if vectors joining any two three-dimensional points have constant length (in
a statistical sense, i.e. through hypothesis testing), then associate these two points
with a single rigid object. It may also be possible to incorporate optical flow informa-
tion into the rigid object segmentation component. As before, feedback from higher
levels, particularly the ob ect tracking component of Level VI, may aid in the spatial
correspondence and rigid object segmentation problems.

Level VI comprises motion and structure estimation or three-dimensional object
tracking and is the major focus of this report. Once at least three noncollinear fea-
ture points, for example, are available for a single rigid object from Level V, three
dimensional object state estimation may be initiated in order to further refine repre-
sentations of the observed process. For the purposes of this investigation, solutions of
the important problems of Levels | through V are assumed; the cameras are assumed
to be stationary (although methods considered herein may immediately be extended
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to the case of moving sensors), noisy feature position measurements as well as tem-
poral and spatial correspondence information are assumed to be available, and only a
single rigid object is present in the multiple-camera image sequences. These assump-
tions are very common in simulation studies as outlined in the literature review of
Section 1.1.

Two additional levels in Figure 1.1 include knowledge refinement in Level VII and
environmental interaction in Level VIII. Knowledge refinement refers to the accumu-
lation and refinement of information from all previous levels in order to construct
a meaningful representation of the observed processes. This decision-making level
might be responsible, for example, for filter decoupling once structure estimates of
rigid objects reach a pre-defined confidence level, fusion of rigidly attached objects,
maintaining an estimate of relative motion or interaction of multiple objects, or per-
haps object recognition and/or classification. The primary objective of most vision
systems ultimately is to interact in some way with the environment or at least to
form intelligent decisions concerning all observed processes. This is the function as-
signed to Level VIII and may include, for example, direct control of dynamic systems,
path planning and navigation, threat detection with assessment and evasive strategy
planning (collision avoidance), or perhaps compilation of surveillance information in
security systems. Knowledge based systems will no doubt play a major role in forming
solutions to these higher-level problems.

The hierarchical structure proposed in Figure 1.1 provides a means to proceed
to higher lev-ls once sufficient information is available, or revert to lower levels if
insufficient information is present to proceed at the given level, particularly at Level
VI. Generally, the proposed system is composed of three coupled multi-target tracking
systems with increasing levels of complexity: in Level IV multiple features are tracked
in the image planes; Level V fuses information from Level IV in order to track multiple
features in three-dimensions; and Level V1 is concerned with tracking multiple objects,
composed of multiple features from Level V, in three dimensions with six degrees-of-
freedom. It might be expected, therefore, that statistical-based multi-target tracking
methods, which have been extensively studied in radar-based tracking applications,
will be extremely useful in forming solutions to the vision-based motion analysis
problem.

Another problem which has not been mentioned above, but is of fundamental
importance in feature-based techniques, is that of feature occlusion due to object mo-
tion or other objects in the foreground of a scene. A common approach in simulation
studies is to assume that occlusion does not occur [7]. However, recursive approaches,
such as the Kalman filter, may provide natural solutions for state estimation in the
presence of occlusion since measurements need not be of the same set of features at
each observation event. Feature occlusion is an important component of the tempo-
ral and spatial correspondence problems and will not be explicitly examined in this
report. In previous work [58] which is reviewed in Chapter 2, feature occlusion was
treated by simply proceeding with state estimation, but in the absence of data from
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Evaluaticn of methods for Level VI on real imagery is beyond the scope of current
work. Such an aaalysis will require an intense review of feature detection and corre-
spondence problems, sensor modeling and measurement noise characterization, and
complex experimental :.rrangements in order to obtain long sequences (100 frames, for
example) of digital, time-aligned, recorded imagery and ground truth data associated
with object and/or camera motion. More complete implementations and performance
analysis of proposed methods with real imagery constitute major proposals for future
research outlined in Chapter 5. In this investigation, suitable imagery with or with-
out occlusion is computer-generated for a translating and rotating block. Features
of interest are the block corners whose positions in each image are perturbed by
an additive pseudo-random noise process and made available to structure and mo-
tion estimation algorithms along with correspondence information. This approach to
simulation analysis is consistent with similar studies in the literature [15] [28]-[34].

1.3 Chapter Summary

This chapter introduced and compared image flow and feature based approaches to
motion analysis, and presented a survey of major contributions which apply extended
Kalman filtering to motion and structure estimation. A possible hierarchical approach
to feature-based motion analysis has been proposed in which motion and structure
estimation represents only a single component. Major assumptions employed in this
investigation that serve to isolate the motion and structure estimation problem have
been discussed. The remaicder of this report is organized as follows:

Chapter 2 treats an important but simplified problem in which the object of interest
is constrained to lie on a known planar surface;

Chapter 3 treats the more general object tracking problem by introducing geom-
etry and notation, developing state space models for three parameterizations

of rotational motion, and presen:ing a simple single-frame filter initialization
scheme;

Chapter 4 compares Cramer Rao bounds of the three parameterizations for a sim-
plified trajectory, and presents simulation results and comparisons of estimation
performance of the three filters for manoeuvring object trajectories;

Chapter 5 provides general discussions, conclusions, and proposals for future work.
Several appendices are provided so that this report may be self contained:

Appendix A provides a tutorial on parameterizations of relative orientation includ-
ing the roll-pitch-yaw, Euler angle-axis, and quaternion representations, and
equations which govern the temporal behavior of parameters;
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Appendix B gives a review of Kalman and extended Kalman filtering for continuous-
and discrete-time systems, as well as modifications such as local iterations;

Appendix C derives closed-form as well as recursive expressions representing the
Cramer Rao lower bounds for discrete-time nonlinear state estimation;

Appendix D lists equations of measurement model Jacobians, which are required
in the extended Kalman filter implementation, for the three parameterizations
of rotational motion.
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2. Motion On A Known Planar
Surface

In a large number of motion analysis problems, particularly in many robotics ap-
plications, objects of interest are constrained to lie on a surface which is known or can
be approximated analytically. This chapter briefly introduces the Kalman filtering
approach by reviewing previous research by the author, [58, 59]. This work proposed
linear motion and structural models for a rigid object which is constrained to lie on
a known planar surface, and a nonlinear measurement model which describes noisy
monocular (single camera) perspective projection observations from an arbitrary po-
sition above the known plane. As in the work of Broida et al. [32], object motion
was assumed to be of constant translational and rotational velocity. These assump-
tions, although restrictive, provided a simplified framework in which to investigate
the performance of Kalman filtering methods in motion analysis problems.

This chapter first introduces notation and geometry for reference frames, coor-
dinate transformations, and the perspective projection image formation model in
Section 2.1. Section 2.2 briefly reviews the planar motion method by developing
structure, motion, and measurement models, and presenting a reduced set of simu-

lation results. Section 2.3 summarizes and discusses the methods and results of this
chapter.

2.1 Notation, Geometry and
Perspective Projection

Planar motion and object structure are recovered from positions of object feature
points extracted from a monocular image sequence. Three reference frames, denoted

Fo ~ Object-fixed,
Fg ~ Earth-fixed, and (2.1)
Fc ~ Camera-fixed

are used in this problem.
A reference frame, F,, where a € {O, E,C}, is defined by a point O,, the origin
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of F,, and three orthonormal vectors i,, ja, and ko which lie along the z,, y,, and
z, axis of F,, respectively. A vector r which describes the position of a feature point
on the object with respect to O, and is expressed in F, is denoted by r,. The
components of r, are written as Fy = [Fg.1,7a.2,7a3)% -

A second reference frame, Fj, is related to F, by a translation T¢, which represents
a vector from O, to Op and, when expressed with respect to F,, is written as [T§]a,
and an orthogonal 3 x 3 matrix, I§, which denotes a transformation from the a-basis
to the B-basis and represents a rigid rotation of IR Appendix A provides a tutorial
review of the Euler angle-axis, quaternion, and roll-pitch-yaw parameterizations for
basis transformations represented by I§. The planar method employs only the yaw
angle of the roll-pitch-yaw parameterization. With this notation,

[ra]s = Ijre, and (2.2)
ro = [raly+ (T3], (2.3)

If optical distortions of an imaging device are not severe, a perspective projection
image formation model can be used to relate the observed location of a feature in
a two-dimensional image to the three-dimensional coordinates of that feature in a
camera-centred reference frame. Figure 2.1 shows the assumed geometry for the
image formation model. The position of the tth feature point, p’, with respect to a
camera-centred reference frame, Fc, is described by the vector ri;. A feature at point
p' is projected onto the image plane and appears at point (L, u',v*) in F, where L is
the effective focal length. The origin of F¢ is taken at the centre of projection of the
imaging lens. The x¢ axis of F¢ is aligned with the optical axis, while y¢ is parallel to
a scan line and positive to the right in the image. The z¢ axis is positive down in the
image to form a right-handed coordinate system. Neglecting separate horizontal and
vertical scale factors, and assuming any distortion effects are negligible, the projected
image plane position of feature point p' is given by

v = L (r?._,) , and
Tea

v = L ('-:"'—'3) . (2.4)
rca
The central projection transformation defined in (2.4) demonstrates the loss of depth

information in monocular imaging systems; the image position (u',v%) is invariant
under any scalar multiple of r{.

Figure 2.2 shows a typical physical arrangement for the planar motion problem.
The object of interest, shown here as a block, is described by feature points, for
example the block corners, in Fo. The earth-fixed reference frame, Fg, is defined
such that the zg-yg coordinate plane is the plane of motion. The zo-yo plane of
Fo is defined to be parallel to the plane of motion in which case the axis of rotation
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Figure 2.1

Central projection image formation geometry. A feature at point p'
projects onto the point (L,u’,v') in the camera-centred frame, F,
where L is the effective focal length.

is parallel to zg. The position and orientation of F¢ is assumed to be known with
respect to Fg.

2.2 Estimation of Structure and Planar Motion

The extended Kalman filtering (EKF) approach requires first that dynamical and
measurement models be expressed in state space form. Appendix B provides a review
of the filtering equations which, in general, are based on a dynamical (plant or process)
model of the form

x(t) = flx(t)] + G(t)w(?), (2.5)

where the white noise process! w(t) ~ N(0,Q(t)) is mapped to the state space
through the matrix G. The measurement model is expressed in discrete-time form,
since images arrive at discrete instants in time, as

z(k) = h{x(ts)] + v(k), (2.6)

where the measurement noise process, v(k) ~ N(0,R(k)), is also assumed to be
temporzlly white. Motion, structure, and measurement models for the planar motion
problem are required in the above form.

1The notation N(m, C) denotes a jointly Gaussian population with mean vector m and covariance
matrix C.
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Figure 2.2

System geometry for planar motion analysis.

Motion and Structure Models: The position of the origin of Fo relative to
Fg is represented by [T§]£(t) = [z(t),y(t),0]E. The orientation of Fo relative to Fg
is described by the yaw angle y(t) whose (constant) time derivative w defines the
rotational velocity vector as w = [0,0,w]Z. The state vector for object motion is
then given by

xn(t) 2 [2(2),2,8(t), 4, 9(8), ], (27)
where superscript ‘T’ denotes the matrix transpose.

The origin of Fo is defined to have constant translational velocity and lies at the
intersection of the rotational axis and the plane of motion. Note in this case that
the object-centred frame depends on the assumed nature of object motion, which
results in unobservability in the absence of rotational motion. Further comments on
this problem are given in Section 3.2. It is also assumed that one feature point is
observed whose height above the plane of motion is known or estimated. This point
is fixed in the (vertical) xo-zo plane. Hence both the zo- and yo-coordinates of this
special feature point are known and removed from the estimation process. In order
to simplify notation in the following development, removal of two coordinates of one
feature point is neglected.
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The full state vector which describes object motion and structure is defined as

x(t) = [ Xn(t) (2.8)

x, |’
where x, is the structure state vector,
7Y N T
x, & [(eh)T,.... 5], (2.9)
and N; is the number of feature points of interest. A linear discrete-time difference

equation which describes time propagation of the state x(t) over a sample period T}
can be written as

x(k + 1) = ®(k)x(k) + G(k)w(k), (2.10)
where ®
Qm 06 3N
®(k) £ XNy || 2.11
(k) [OaN,xe LN, ] (2.11)
in which O, , represents a p x q block of zeros, L, is the p x p identity matrix, and
(1 T 0 0 0 O ]
0100 00O
210 0 1 T,00
®,.(k)= 00010 0 (2.12)
00 001T,
[0 0 0 0 0 1 |

Higher-order motion may be incorporated into the system model which remains linear,
due to the planar motion assumption, in the elements of the state vector. The overall
state transition matrix ®(k) in (2.11) is extremely sparse which leads to very efficient
time propagation in the discrete-time extended Kalman filter implementation.

Measurement Model: The instantaneous position and orientation of Fy relative
to Fg are given by the translation

[T8] . () = [=(0), (1), O] , (2.13)

and basis transformation matrix

cosyp —siny 0

Ig(‘/’)=[53n'/’ cosyp 0
0 0 1

while the known position and orientation of F¢ relative to Fg are defined by TZ and
I£, respectively. The position of the ith feature point with respect to F¢ is written

as
ro = 1E {1grb + [T§] - [TE] }- (2.15)
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which can be expressed in component form (see Appendix A) as
réa = liclf {13¢b + [T] . - [T8],},
réa = liclp {19rb + 18] - [T4],}, (2.16)
eo = kel {Ter + [T5], - (18]}

~

a-

[
I

With N; feature points of interest the measurement model is given by

2(k) = h{x(k)] + v(k), (2.17)
with
Y x(k)]
O L 218)
b [x(k)]

where the image plane position, h*[x(k)], of the ith feature point is computed with
the perspective projection transformation of (2.4),

Fea
wiah) = | b | = 2| o |, (2.19)
rca

and v(k) models the measurement noise which is assumed to a discrete-time, zero-
mean, white Gaussian process with covariance matrix R(k).

A single image provides 2N, equations in 6+ 3N; — 2 unknowns (since one feature
point has two known coordinates). Each additional feature point provides two more
equations, but increases the dimension of the state vector by three unknowns. With
four feature points, for example, each image provides 8 equations in 16 unknown
variables. In this case, at least two image frames are required to obtain more equations
than unknowns. Three of these variables (z,y,v) are time varying while all others
are constant.

Simulation Results: This discrete-time state estimation problem is formulated
with a linear dynamic model and a nonlinear measurement model. The discrete-
time extended Kalman filter (EKF) was found to yield satisfactory results without
local iterations when object structure is known, but demonstrates somewhat slower
convergence in the absence of prior structural information. The iterated, extended
Kalman filter (IEKF), which is also reviewed in Appendix B, generally gives signifi-
cant improvements in the rate of convergence while structure is being estimated. In
extensive simulations [58], the IEKF demonstrated reliable convergence to true pa-
rameters with a simple single-frame initialization of object position and orientation,
and with all other parameters set to zero. This Section, however, shows Monte Carlo
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simulation results based on 60 runs with random filter initialization taken from a
Gaussian population centred about the true initial state, i.e., simulations assume the
availability of an unbiased estimator of x(0) with statistics xo ~ N(x(0), Po), where
the covariance matrix Po defines the level of prior information in the initial estimate
Xo. Filter initialization is then taken as x(0| — 1) = xo and f’(OI — 1) = Py. Filter
mean errors (ME) and root-mean-square-errors (RMSE) are computed immediately
following each observation event over the 60 simulation runs.

The EKF is generally a nonlinear, suboptimal state estimation technique. A
powerful result which provides a performance assessment of parameter estimation
techniques is the Cramer-Rao inequality {79]. Appendix C rcviews the significance
and derivation of Cramer-Rao lower bounds (CRLB) for this estimation problem.
Generally, the error covariance matrix S(N) of an unbiased estimator x(N) of the
state x(N), where the estimate is based on the prior information in Xg and the
observations z(0),...,2(N), is lower-bounded by the inverse of Fisher’s information
matrix [80, pp. 91-93]. This result, in theory, provides estimation error variance
lower bounds for elements of X(N). It should be noted, however, that these bounds
assume an unbiased estimation procedure; a state dependent bias can result in higher
or lower bounds [78] (see Appendix C). As a result, most analysis [28]-[31], [61],
[62], proceed under the assumption of unbiased estimation resulting in approximate
covariance bounds.

The geometry of Figure 2.2 was used to generate sequences of image feature points
with occlusion and correspondence information. The camera position and orientation
is defined by a translation [TE]g = [0, —30, ~30)7, and the transformation IZ formed
from Euler angles yc = 45° (yaw or pan), 0c = —45° (pitch or tilt), and ¢c = 0 (roll
about optical axis).

The object is described by eight corners of a solid rectangular block 20 units wide
and 10 units in height and depth. Four feature points labelled p*, p?, p®, and p7 define
the structure of the block. It was found that Cramer-Rao bounds do not decrease
significantly when more than four feature points are considered. Points p' and p° are
diagonally opposite corners on the bottom face of the block, and hence are subject to
occlusion due to object motion. Points p* and p? are diagonally opposite corners on
the top face of the block and are diagonally opposite to p' or p® on side faces. Point
p® (sometimes occluded) is selected as the special feature point which is known to
lie in the plane of motion and is further assumed to lie on the negative xo axis. All
structure parameters are retained in the state vector during occlusion.

The true trajectory is defined by an initial position (z(0),y(0)) = (30, —25) units,
orientation ¥(0) = 2.1 radians, constant translational velocity (z,y) = (2.5,5.0)
units/s, and constant angular velocity w = —0.5 radians/s. Initial estimate uncer-
tainty is defined by a diagonal Py in which the square roots of the diagonal entries
represent standard deviations of 5 units for position, 3 units/s for translational veloc-
ity, 0.35 radians for angular position, 1.0 radians/s for angular velocity, and 5 units
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for each of the 10 structural parameters (the y- and z-coordinates of p® are not esti-
mated). Local iterations at each observation event are employed with a maximum of
10 and terminating if the maximum element of the difference in successive iterates is
less than 0.01. In most cases, only 5 to 7 iterations were required during initial ob-
servation events, but as the filter accumulates information, only one or two iterations
were necessary.

Figure 2.3 shows a true and a sample noisy image sequence of feature point tra-
jectories with additive measurement noise of standard deviation o, = 0.02 units and
unity focal length. A 20 second time interval is employed with a sample period of
T = 0.1 seconds. The measurement noise level of 0.02 units represents quantities on
the order of 5% to 10% of the object image size when the object is closest to the
camera, but as the object moves away from the camera noise levels are on the order
of 11% to 23% of the object image size at the end of the trajectory. A feature point
occlusion map is shown in Figure 2.4. Feature point p' is visible in the first 9 image
samples or almost 1 second before being occluded for about 3 seconds. The special
feature point p® is occluded during time periods from 6.5 to 10 seconds and from
about 19 seconds to the end of the trajectory.

Figures 2.5 and 2.6 show the root-mean-squared error (RMSE), Cramer-Rao lower
bound (CRLB), and mean error (ME) results for a 60 run Monte Carlo simulation.
Figure 2.5 shows results for motion parameter estimation. Position and orientation
estimates tend to be biased over the first 10 seconds as indicated by the ME trace.
After 10 seconds, the RMSE for z-position approaches and follows the CRLB. RMS
errors for y-position and velocity are also initially biased, but approach and follow
the CRLB just after 4 seconds. Angular position RMSE remains above the CRLB
throughout the trajectory and tends to increase slightly during the occlusion of p®,
but demonstrates only small bias after 10 seconds. Good performance is shown in
the estimation of angular velocity and z-velocity.

Figure 2.6 shows results for structure estimation of one point, p?, on the top of
the block (not subject to occlusion), and both points, p* and p®, on the bottom of
the block. Satisfactory RMSE performance is demonstrated for p? structure after 5
seconds with negligible bias. Simulation results for estimation of p” structure (not
shown) are almost identical to those shown for p®. Errors in estimates of p! structure
during occlusion may be largely responsible for bias in other state estimates over the
initial portion of the trajectory. The presence of p' in images sampled after t = 4
seconds results in a rapid decrease in structure RMS errors as estimation performance
approaches the CRLB. Estimation of the zo-coordinate of p® is also somewhat biased
particularly just after p! becomes visible and during the time interval 6 < ¢t < 10
seconds when p® itself is occluded. RMS errors of all structural parameters approach
and follow the CRLB towards the end of the trajectory.
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Feature point occlusion map.
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Figure 2.5

Planar motion parameter Monte Carlo simulation results. All plots

show — RMSE, — — — CRLB, and ------ ME.
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Figure 2.6

Planar motion, structure parameter Monte Carlo simulation results.

All plots show — RMSE, — —~ — CRLB, and ------ ME.
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2.3 Chapter Summary

This chapter has introduced notation for reference frames and coordinate trans-
formations that will be used extensively in following chapters and in the Appen-
dices. The perspective projection image formation model is fairly standard in image
analysis work, with the exception of some methods which are based on orthographic
projection—a simplification which leads to mathematically tractable systems of equa-
tions in some cases. Only perspective projections will be considered in this work.

Previous research proposed motion, structure and measurement models which de-
scribe motion of a rigid object constrained to a known planar surface with monocular
observations from above the known plane. Monte Carlo simulation results compared
to approximate Cramer-Rao bounds demonstrated good performance in recovery of
absolute motion and structure through iterated extended Kalman filtering which par-
allels the approach of Broida et al. [32]. This investigation demonstrated filter per-
formance that might be expected for constant translational and rotational velocity.
A fundamental assumption of this technique is that the height of one feature point
above plane is known or approximated. Another important limitation of the proposed
technique and methods of Broida et al. [32] and Young et al. [35] is that the systems
as formulated are not observable for zero angular velocity. The absence of rotational
motion must be detected during initialization, and an alternate parameterization is
required in which one feature point is selected as the origin of the object-fixed frame
and angular velocity is removed from the state vector. Filter performance, in fact,
was found to be seriously degraded as rotational rates become very small.

Current research, which is the subject of subsequent chapters of this report, re-
moves assumptions regarding partial knowledge of the position of some special feature
point, extends motion models to six-degree-of-freedom manoeuvring object trajecto-
ries, extends the measurement model to multiple imaging systems, and investigates
three parameterizations of rotational motion. In addition, the object-centred frame
is defined independent of object motion so that the system is observable, provided at
least three feature points are available, for arbitrary object motion.
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3. Approximate Models for
General Motion

Methods for planar motion considered in the previous chapter employed several as-
sumptions which may be difficult to satisfy or verify in analysis of general scenes. This
chapter develops approximate dynamic models for six-degree-of-freedom manoeuvring
object motion, and a perspective projection measurement model for multiple-camera

imaging systems. As in the planar motion problem, dynamical and measurement
models must be obtained in state space form as

x(t) = flx(t)]+G(t)w(t), (3.1)
z(k) = hix(t)] + v(k), (3-2)

where the process noise w(t) ~ N(0,Q(t)), which is mapped to the state space
through the matrix G, and the measurement noise, v(k) ~ N(0,R(k)), are assumed
to be temporally white.

Notation and assumed geometry are introduced in Section 3.1. Section 3.2 dis-
cusses the structural model for a rigid object. The measurement model for observa-
tions with multiple imaging systems is presented in Section 3.3. Translational motion
models are developed in Section 3.4, and approximate dynamic models for the Euler
angle-axis, roll-pitch-yaw, and quaternion parameterizations of rotational motion are
proposed in Section 3.5. A simple initialization scheme based on a single measure-

ment event is the subject of Section 3.6. A brief chapter summary is provided in
Section 3.7.

3.1 Notation and Geometry

This chapter employs the same notation for reference frames and coordinate trans-
formations as presented in Section 2.1, but with multiple-camera image sequences,
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Figure 3.1

System geometry for general motion analysis.

multiple camera reference frames are required. Reference frames denoted as

Fo ~ Object-fixed,

Fg ~ Earth-fixed, and

Fc, ~ jth Camerafixed, j =1,2,...,N¢
for Nc-ocular imaging systems,

(3.3)

are used in the following development.

Figure 3.1 illustrates a typical physical arrangement for the problem considered
in this work. Two or more cameras observe a single rigid object whose motion is
both translational and rotational. Image formation and axis orientation for each
camera frame is as described in Figure 2.1 of Section 2.1. The position, [Tg,]g,
and orientation, Ig,, of the jth camera frame, Fc,, j = 1,2,..., Ng, is known or
estimated with respect to the stationary earth fixed frame, Fg. Object structure is
again formulated in terms of positions, r}, of feature points expressed with respect
to the object-centred frame, Fp, while object motion, which consists of translational
motion of the origin of Fo together with rotational motion of Fp, is described with
respect to the stationary earth-fixed frame Fg. As a result, parameterization of
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object motion and structure is independent of position, orientation, and motion of
the imaging systems.

The overall state vector x € IRY includes states corresponding to translational
motion, rotational motion and object structure:

X
x=1{x/, (3.4)
X,
where
x; €R™ ~ Translational motion state vector,
x, €ERM ~ Rotational motion state vector, (3.5)

x, €IRM ~ Structure state vector.

The dynamical model is written in the general form

fg[Xg(t)] Gg 0
X = fr r r Wi 3 .
0 [ lxo(t)1}+[g Cf,“w,] 39)

where subscripts ‘t’, and ‘r’ denote translational and rotational motion models, re-
spectively. As indicated, elements of the structure state vector are constant in time.

3.2 Structure Model

The rigid object is defined by N; feature points, p*, i = 1,2,...,N;, whose
position vectors with respect to Fp, rf), collectively define the structure set § =
{rh,rd,...,r0’}. Observation of at least three noncollinear feature points by at
least two cameras at each observation event provides sufficient information to fix
an object-centred frame on the object. A number of techniques, including [28]-[38],
{58, 59], define an object-centred frame whose orientation and position with respect
to the object itself is based in part on the assumed motion of the object. For example,
in Chapter 2, the origin of the object-centred frame is defined to be a point which
satisfies the following constraints:

1. Rigid object assumption - The position of the origin with respect to all observed
feature points is constant in time;

2. Planar motion assumption - The origin lies in the known plane of motion; and

3. Constant velocity assumption - The origin moves with constant translational
velocity (on the axis of rotation) with respect to the earth-fixed frame.
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Figure 3.2

Fixing the object-centred frame with three feature points.

This leads to unobservability even if the assumption of constant translational velocity
is correct in the absence of rotational motion since in this case an infinite number of
points will satisfy items 1-3 above. Similar arguments can also be applied to methods
proposed in [28]-[38] which cannot be directly employed in the case of manoeuvring
objects for which the true nature of translational and rotational motion is unknown.
In this case, the object-centred frame must be independent of object motion and
defined on the basis of observed feature points only.

In the present work, Fo is fixed on the object by selecting, as will be discussed
further in Section 3.6, three noncollinear feature points {p', p?, p}, (three noncollinear
image points are necessarily projections of three noncollinear 3D points) and imposing
the following constraints as demonstrated in Figure 3.2:

1. Feature point p* lies at a known position do = [do1,d0.2,d03]T in Fo, and
hence its structure vector is known;

UNCLASSIFIED DRES-SR-577




UNCLASSIFIED 33

2. One of the coordinate axis of Fp, say the xo axis, is parallel to the line passing
through p' and p?, in which case the yo- and zp-coordinates of the structure
vector of p? are known to be doz and dp 3, respectively; and

3. One of the coordinate planes of Fp, say the Xo-yo plane, is parallel to the plane
containing p', p?, and p?, in which case the zp-coordinate of the structure vector
of the third point is known to be dg 3.

Selection of the vector dp, which is fixed at the time of filter initialization and there-
after remains constant, will also be discussed in Section 3.6. This method results in
one of four possible orientations of Fo with respect to the three points: feature point
p? in item 2 could have a positive or negative xo coordinate, and/or feature point
p° in item 3 could have a positive or negative yo coordinate. These four discrete
solutions are related by diagonal basis transformations (rotations of the basis set by
0 or 7 about a coordinate axis). The three special feature points would most likely
be selected, as outlined in Section 3.6, from a larger set of all available feature points,
which leads to many possible positions and orientations of Fp with respect to the ob-
ject. Once the initial ordering of three special points has been specified, depending on
the initialization error and filter transients, any one of the four possible orientations
of Fo is possible. Obviously, the estimation process is likely to be poorly behaved
if images of these three points are very close together relative to measurement noise
levels. The important advantage, however, is that Fy is defined independent of object
motion.

The approach taken here is to use measurements of feature positions in the images
directly, and enforce the three constraints above by fixing the six known structural
coordinates indicated in items 1,2, and 3 by excluding these parameters from the esti-
mation process. Explicit removal of the six structural coordinates from the structure
state vector in the development of dynamic and measurement models below would
lead to unnecessarily complicated notation. For brevity, the full structure state vec-
tor is indicated by the notation, but it is understood that these six coordinates are
removed from the estimation process. The structure state vector, x, € IRM+, where
N, = 3N; is written as

rH
2
X, = O (3.7)
ry’
For a rigid object, the elements of x, are constant in time.

At any given sample time, only a subset of feature points S,; C § will be visible
in the image of the jth camera due to occlusion of feature points, i.e., the same set
of feature points need not be observed by all cameras at each measurement event.
In addition, the total number of feature points, Ny, is generally an integer-valued
function of time; as new object features become of interest, they might be added
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to the structure set, and when structure estimates reach some pre-defined threshold
confidence level, they might be removed from the structure set and the estimation
process. These important aspects of motion analysis are not explicitly examined
in this report. In the present work, it is assumed that at least three noncollinear
feature points are observed by at least two cameras at each observation event, and
that the same three points are available without occlusion over the simulation time
interval. These assumptions should be viewed as simplifications for development and

presentation of the problem under consideration rather that restrictions imposed by
the proposed methods.

3.3 Measurement Model

The measurement model is formed from a set of N¢ individual measurement mod-
els which have identical form and each corresponds to a single camera. The instan-
taneous position and orientation of Fp relative to Fg are given by the translation

[T5] . (1) = p(t) = [2(2), y(8), 2(OIE., (3.8)

and basis transformation I((), respectively, in which elements of the vector ¢ depend
on the parameterization of rotational motion. The known instantaneous position
and orientation of the jth camera frame, F¢;, with respect to Fg is specified by a
translation vector TE, . and basis trans{orma.non Ic , respectively. The position of the
tth feature point wnth respect to F¢; can be written as

rb, =15, {18+ [15], - 15}, 39)
and writing - . T
1, = [lic,)s lic, &, [kc;le] (3.10)

gives rg, in component form as

o = [io] {X8ro + [18) - (18]}

rha = [ia], {18rb + [18] - 18]}, (3.1)
s = [a]f {i8eb + [8], - (78],

With N; observed feature points, the measurement model for the jth camera is
given by

z;(k) = h;[x(k)] + v;(k), (3.12)
where
IX(k)]
b [ (k)]
J[x(k)] = ’ (3'13)
h;" [x(k)l
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in which subscripts refer to the camera and superscripts refer to the feature point.
The image plane position, h}[x(k)], of the sth feature point in the jth camera is
computed through perspective projection as

hj[x(k)]:[h;f"[x(k)] =L o | (3.14)

Bale(k)] | =1 | oL

r‘C,',l
The Kalman filtering approach assumes that measurement noise, v;(k), in (3.12) is
a discrete-time, zero-mean, white Gaussian process with known covariance, R;(k).

The proportionality factor L; in (3.14) represents the effective focal length of the jth
camera.

The overall measurement model is written as

z(k) = hix(k)] + v(k), (3.15)
Zi h) Vi
h
z=| 7 lon=| 7 [ adv=| 7. (3.16)
ch th vIVC

Implementation of the extended Kalman filter, which is reviewed in Appendix A,
and estimation of Cramer Rao bounds, which are reviewed in Appendix B, requires
the computation of rf; , IZ() and h[x] as well as the Jacobian of h[x],

4 h[x]
T oox
from the most recent state estimate. Computation of H[x] is a straight-forward but
tedious exercise in differentiation, however, with algebraic manipulation and simpli-
fication, H can be written in simple form which admits computationally efficient

implementation. Equations of the measurement model Jacobian for the three param-
eterizations of rotational motion are given in Appendix D.

H(x] (3.17)

3.4 Translational Motion

Translational motion in object tracking problems is commonly modelled with a

truncated Taylor series expansion in time. In this case the position, p(t) = [TE)e(t),
of the object-centred frame over any sample period, {t| ty <t < t441}, is modelled
with an (N, — 1)th-order polynomial in time,

Np-1 i _
p(t) = g %%’—t‘,—.’(t,,)[t -4). (3.18)
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A state vector corresponding to translational motion, x; € R™, where N; = 3N,, is

defined as T
o (22T o
which propagates in time according to
x:(1) = Aexe(t) + Gewq(t), (3.20)
where
A = [ g:(:::;:)_::; I3(N,-l) ] and G, = [03(Ni‘l)x3 ] (3.21)

and w; €IR%is a zero mean, temporally white Gaussian process with covariance Q.

In this case, the manoeuvre variable, m(t), defined as

m(t) & 2P

is modelled as being uncorrelated in time. However, if an object is executing a
manoeuvre at time ¢, it is likely to be executing a similar or perhaps even the same
manoeuvre at time t + 7 for sufficiently small 7 which implies that m(t) should be
modelled as a time-correlated process. One approach, [27, 71, 75] is to model each
component of m(t) = [m;(t),ma(t),ms(¢)]7 as a first-order Gauss-Markov process
with autocorrelation function r;(7) given by

=== (t) = wi(t) (3.22)

ri(r) & E{mi(t)mi(t + 1)} = ore ol (3.23)

where a;".. is the variance of the ith component of the manoeuvre variable, and oy, > 0
is the reciprocal of the manoeuvre correlation time constant.

The subscripts ¢ on ay, and o, will be omitted since, in the absence of alterna-
tive information, each component of m(t) can be treated identically. The Wiener-
Kalmogorov whitening procedure can then be used to express the manoeuvre variables
m;(t) in terms of white noise by taking the Laplace transform of r;(7) and writing

Ri(s) £ cL{ri(r)}

_ —2a40}
(s —ag)(s+ )

£ H(s)H(-s)Wi(s). (3.24)

The function 1
2

H(s) = —— . (3.25)
is identified as the Laplace transform of whitening filters for each m(t), while

Wi(s) 2 20,02 (3.26)
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represents the power spectral density of independent white noise processes w;(t) that
drive identical filters H(s) to produce m;(t), according to first-order differential equa-
tions

mi(t) = —am(t) + wi(t). (3.27)

With this model for manoeuvring motion, the state vector x, in (3.19) is aug-
mented to include m(t) of (3.22),

T
X = [pT’ pT’ f)T’ ey (aatN;l:)r] ) (3.28)

and propagates in time according to (3.20), but now

_ | Osn,x3  Iaw, G. = 03N, x3
A‘_[oaxaN, -a,h]' and Ge=1 g | (3-29)

and w,(t) is zero-mean, temporally white Gaussian noise wit) covariance Q; =
2010‘213.

The linear differential equation in (3.20), with the definitions in (3.29), can be
written as a discrete-time difference equation using standard teckniques to give

Xe(k + 1) = 8,(k)x(k) + wi(k), (3.30)

where

®, (k) = eAlten—ta), (3.31)

The state transition matrix, ®;, can be written in closed form due to the simple
form of A, [71). The system is driven by a zero-mean, discrete-time, white noise
sequence, wi(k), with covariance Q¢ which may be computed (see [71]) directly from
Equation (B.35) of Appendix B, or approximated, assuming the sample period is
much smaller than system time constants (2aT < 1, [71]) as

Q{ ~ 2a/0{TG,G7, (3.32)

where T is the sample period (superscript ‘T still denotes transposition).

Three parameters, N,, a;, and ¢, must be specified to complete the translational
motion model. Extensive simulations have demonstrated that N, = 2 provides a rea-
sonable balance between accuracy and computational requirements. In fact, because
measurements are related directly only to object position, estimation of higher time
derivatives (N, > 2) often demonstrated serious lag and overshoot which can lead
to filter instability. The parameter a; is the reciprocal of the manoeuvre correlation
time constant. If manoeuvres are expected to occur only over short time periods, a,
should be chosen fairly large (> 1), whereas slower expected manoeuvres are modelled
with a much smaller a; (= 1/60). In the selection of o2, Singer [71] proposed a model

DRES-SR-577 UNCLASSIFIED




38 UNCLASSIFIED

for the probability distribution of each m;(t): the maximum and minimum values,
Mpyax and — My, respectively, each occur with probability P,,..; m; = 0 occurs with
probability Fo; and m; takes on values in the range (Mmax, —Mmax) according to the
appropriate uniform distribution. In this case,

2
o} = Mg‘“[l + 4 Prax — P} (3.33)

Although this discussion may provide some guidance in the selection of parameters,
a, and ¢} in particular can be treated as tuning parameters in the filtering equations.
The first-order Gauss Markov model is also used in the parameterizations of rotational
motion developed in the following sections.

3.5 Rotational Motion

The object’s instantaneous orientation with respect to the earth-fixed frame is
given by the basis transformation I2(¢), where elements of the vector ¢ depend on
the parameterization selected for rotational motion. The orthogonal transformation
I belongs to the three-dimensional rotation group for which there are about eight
commonly used parameterizations [67]. Appendix A provides a review of the Eu-
ler angle-axis, quaternion, and roll-pitch-yaw parameterizations and equations which
govern their temporal behavior.

A state vector, x, € IR™, corresponding to rotational motion is defined which
contains elements of { and additional states which describe the temporal behavior of
¢. The dynamical model for rotational motion is written as

() = £,[%.(t)] + G, w, (t), (3.34)

where f,[-] is a vector-valued function, and the zero-mean Gaussian white noise process
w,(t) is mapped to the rotational motion state space through the matrix G,. In
the angle-axis and roll-pitch-yaw parameterizations, approximate temporal behavior
results in linear dynamic models, however, the quaternion formulation results in a
nonlinear model.

In navigation systems, measurements of angular velocity are often provided by
rate gyroscopes. Applications in navigation, therefore, commonly parameterize rota-
tional motion directly in terms of angular velocity. The angular velocity of Fp with
respect to Fg expressed in Fg, denoted [wQ]g, is related to IS and its time derivative
according to

walk = 13 (18)" = 215, (3.35)

where [w]! denotes the matrix cross-product operator corresponding to the vector
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w = [w;, w3, w37 and is defined as

A 0 —w3 w;
wzl ws 0 -—w]. (3.36)
—W; wy 0

When no confusion can result, the angular velocity will be simply written as w =
[wgle.

Target tracking problems, however, are rarely provided with estimates of angu-
lar velocity, but instead must estimate w(t) based on angular position information
embedded in the available measurements. Only the quaternion parameterization is
formulated directly in terms of the angular velocity; dynamical models for angle-axis
and roll-pitch-yaw parameterizations employ time derivatives of rotational parameters
which, in turn, can be used to compute a suboptimal estimate of angular velocity.
Even in the quaternion formulation, an extended Kalman filter must be employed
and hence suboptimal performance can be expected. Sections 3.5.1, 3.5.2, and 3.5.3

present and discuss dynamical models for the angle-axis, quaternion, and roll-pitch-
yaw filters, respectively.

3.5.1 Angle-Axis Parameterization

An orthogonal basis transformation in IR? can be defined by an orientation vector
£e = 6, &, &)L whose direction,

R :

= ol (330
specifies the axis of the rotation operation relating the two reference frames, and
magnitude,

7 £ li¢ell, (3.38)
specifies the angle through which the coordinate system is rotated about {g, with
the direction of rotation taken by the right-hand rule. Since elements of {¢ are
invariant under this rotation operation, the subscript ‘E’ will be omitted. The basis
transformation in this case is computed as

I3 = exp(¢')
= Lo+sin(n)f +[1 - cos(7)] (&), (3.39)

where ¢! is the matrix cross product operator, defined in (3.36), associated with ¢.

The axis, £, of I is generally distinct from what is commonly called the “axis of
rotation” or instantaneous angular velocity!,

w = 3¢ + sin € + (1 — cos 1), (3.40)

1A]] time derivatives are relative to an observer in the earth-fixed frame, and derivative vectors
are expressed in the earth-fixed frame.
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which has components on three orthogonal axis £, f , and f’f - If the axis £ is fixed,
(3.40) reduces to the simple expression w = 4. However, even if the object has
constant angular velocity, the axis of I need not remain fixed.

Under an assumption of “smooth” object motion, approximate temporal behavior
of the orientation vector £ over any sample period, {t|ty <t < ti41]}, is expressed in
terms of a first-order Gauss-Markov process in a manner equivalent to that employed
for translational motion in Section 3.4. In this case the rotational motion state vector,
x, € IR™, where N, = 3(N¢ + 1), is defined as

T
x, £ [{T,ET,...,(?;;?) ] , (3.41)

and propagates in time according to

x.(t) = A, x.(t) + G,w,(1), (3.42)
where
_ | Osn,x3  Law, d G = | Oanexa
Ar= [Osst( Y 8 i I ! (343)

and w,(t) is zero-mean, temporally white Gaussian noise with covariance Q, =
2a,0%1;3, and the roles of the reciprocal manoeuvre correlation time constant, o,
and the variance, 02, of the manoeuvre variable are equivalent to that described in
the development of the translational motion model.

A primary difficulty with this approach is that the orientation vector { must be
reset, first to maintain a finite magnitude (rotation angle) when the object continually
rotates in one direction, and second to yield decreasing Cramer Rao bounds. A
trajectory £(t) in the region x < |||| < 2« is equivalent, in the sense that it produces
the same rotation matrix, to a trajectory ((t) in the region ||(|| < = if

¢(t) = (eI — 2x)E(2) = £(t) — 2xE(2). (3.44)

This transformation represents a reflection through the origin of IR® followed by a
reflection in the plane tangent to the sphere of radius x at the point —x{. One
difficulty is that if £ is non-constant, then ((t) may have an infinite number of non-
zero time derivatives. Let the orientation vector immediately before the reset be
denoted by £, and the corresponding orientation vector immediately following the
reset °.> denoted by (. An approximate impulsive reset which limits 4 to the range
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[0, ] can be applied according to the algorithm (given only to the first 2 derivatives)
If (J|¢]| > =) then

v = ||¢él| {Preliminary Calculations}

£ = &/

¥ = ¢

£ = (L-EN)N

5 = @G-l

£ = (L~E&N)E/v - E3/7*) — (EE +EE Y/ (3.45)
¢ = ¢- 21r£ {Reset Procedure}

¢ = §-2xf

( = é-2x

where, as indicated, the approximate reset can be extended to further time derivatives
by differentiating

=(y~-27)§ = { — 2L, (3.46)

This model is completely specified by three parameters, N¢, a,, and 02, which can
be selected based on the discussion of translational motion parameters in Section 3.4.
Further discussions of the reset and expected performance of the angle-axis filter are
deferred to Chapter 4 which compares Cramer Rao bounds and presents simulation
results.

3.5.2 Quaternion Parameterization

A quaternion [29])-[37], [65])-[70], [83], [84], is a four dimensional hypercomplex
number?
Q@
a=| 2| =aitaitakta, (3.47,
G
which is expressed in terms of basis elements consisting of the real number +1, and
three imaginary units i, 7, k, which satisfy

==k = -1,

ij = —ji = k, \
jk=—kj=i, and (348
ki = —ik = .

2Some authors place the scalar quaternion element, g4, in the first position while others place the
scalar element in the fourth position, as is the case here, when representing the quaternion in vector
form.
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If 12(q) rotates IR? through an angle 4 about the axis £ = [§},£;,£)7 to bring Fg
into alignment with Fp, the unit quaternion defined by

. A q
qQ = w5
Tl
= [”f—xsin(%),—fzsin(%)a—fssin(%),cos(%)]r (3.49)
gives I3(q) as
13(a) = r-T(@) = 7@, (3.50)

where

1-ad-d+d  2qna+ q3q0) 2(9195 — g2q4)

q
I(q) £ [ Ang— @) -@+@E-ad+ad 20+ aw) } . (3.51)
2(q193 + q2q4) Az —qa) -d-d+¢d+q

The matrix I'(q) represents combined operations of an orthogonal transformation (I2)
and uniform scaling by ||q||*>. The quaternion parameterization is four-dimensional
and 1s often fixed with a quadratic constraint of the form ||q|| = 1 since IZ(q) depends
only on the normalized quaternion q. Such constraints are not easily incorporated
into the Kalman filtering equations due to the linear structure of the filter.

A common approach, (29]-{37], [63], is to implement the filter based on unit quater-
nions and employ an impulsive normalization of the estimated quaternion, using stan-
dard Kalman filtering notation from Appendix B,

- a(k|k)
ED -~ Raeor (852
immediately following each observation event. In the present work, this approach
resulted in strict and total divergence of angular velocity estimates in a significant
portion (sometimes more than 80%) of simulation runs. Tahk and Spayer [66] propose
to incorporate soft or stochastic constraints directly into the measurement model and
apply the extended Kalman filter to the augmented system. This approach, although
it resulted in an improvement over impulsive normalization, also led to poor and
often divergent behavior in angular veiocity estimation. Bar-Itzack and Oshman [65]
treat the problem of estimating, in the current notation, a unit quaternion g, and
hence I2(q), from sequences of observations of corresponding vectors {(ri;,r);i =
1,2,..., N}, and angular velocity w over time with an extended Kalman filter. With a
first-order approximation, their approach is to propagate the estimated quaternion in
the filter without impulsive normalization, which means that the estimated quaternion
need not have unit norm. For output purposes only, the estimated quaternion is
normalized through division by its Euclidean norm [64]. Their problem is slightly
different from the one presently under consideration, but the main ideas of their
approach have been employed in the quaternion filter with slight modifications.
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The dynamical model is based on the assumption that the quaiernion has constant
norm (not necessarily unity) so that

q(t) = lla@)lialt)- (3.53)

The unit quaternion, §(t) defined in (3.49), propagates in time (see Appendix A)
according to the differential equation

q(t) = 2(w(t)la(®), (3.54)

where w = (W@ = (w1, w2, w3]T and

0 -—-wy w -—-wy
T e (3.55)
w, w; ws 0
Multiplying both sides of (3.54) by ||q|| gives, with (3.53),
q(t) = Qw(?)q(2). (3.56)

Once again employing the assumption that rotational motion is “smooth”, tem-
poral behavior of w over any sample period is approximated by a first-order Gauss-
Markov process in a manner equivalent to that employed for translational motion in
Section 3.4. A state vector, x,,, for the angular velocity and its time derivatives is

defined as r
X, 2 [wr,wr,__.,(%%;)'] , (3.57)

which propagates in time according to

Xo(t) = AuXo(t) + Gow,(t), (3.58)
where L
_ | Oanvexs  Iaw, _ | Osnuxa

and w,(t) is zero-mean, temporally white Gaussian noise with covariance Q, =
20,015, and the roles of the reciprocal manoeuvre correlation time constant, a,,
and the variance, o2, of the manoeuvre variable are equivalent to that described in
the development of the translational motion model.

An overall state vector, x,, corresponding to rotational motion is defined as
arr 1T
x. £ [q".x]]", (3.60)

DRES-SR-577 UNCLASSIFIED




44 UNCLASSIFIED

which propagates in time according to the nonlinear differential equation
x(t) = f[x(t)]+Gew.(t)

Qw(t)] o 0
- [ (e} N ]x,(t)+ [ o ]w,(:). (3.61)
Time propagation in the extended Kalman filter requires numerical integration of
(3.61) with G,w,(t) =0.

If w is approximately constant over any sample period, an approximate discrete-
time difference equation can be obtained for x, of the form

xp(k +1) = &, (k)x.(k), (362)
where
®,(k) £ diag[B,(k), (k)] (3.63)
and
B,(k) £ exp(Qw(k){trs —tx}) (3.64)
B,(k) 2 exp(Au{tis —t}) (3.65)

A closed-form expression for ®, (see Appendix A) is

&,(k) = cos (“w" i‘iﬂ{_‘_'fl) L +sin (llw" LS "‘)) "i"n[wl. (3.66)

Because f3[w] is a skew symmetric matrix, ®,(k) is orthogonal® and hence |q(k +
DIl = llq(k)|| as required.

Numerical integration in (3.62) is based on the assumption that w is approxi-
mately constant over the sample period. This will be essentially true provided either
w s constant, or the sample period is very small. An assumption of small sample
periods is often employed in motion analysis, but is very restrictive. Moreover, this
approximation does not exploit estimates of time derivatives of w. Many standard
methods for numerical integration of the quaternion differential equation are designed
for navigation systems in which measurements of angular velocity are available di-
rectly [84). The following algorithm is similar in form to one analyzed by Branets
and Shmyglevski [83]. This approach employs the modelled temporal behavior of w
and the most recent estimates of w and its time derivatives.

Define a partition

k) E {ti=r<n< -, = tin) (3.67)

3The matrix exponential of a skew symmetric matrix is always orthogonal.
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of the kth sample period, and assume for convenience that 7,41 — 7¢ £ 7 is constant.
With the linear model for x,,,

xo(1e) = [Bu(7)]" Xu(ts)

W(T[) = waw(rl) (368)
where
®.(7) 2 A", and
1,0,0,0,...,0
c. & |o,1,00,...,0]. (3.69)
0,0,1,0,...,0

Provided 7 is chosen small enough, or that N, is chosen large enough, so that w is
approximately constant over any interval of the partition II(k), time propagation of
q over the complete sample period may be approximated by

q(k +1) = ®,(k)q(k), (3.70)
where
Ng-1
&, (k) 2 z[Io exp {ﬂ [Cw (Bu(r)) x,,,(t,,)] r} , (3.711)

in which the notation | [] indicates that the index £ decreases from left to right in
the matrix product, 2] : IR® — IR*** according to (3.55), and (3.66) can be used to
evaluate the matrix exponentials. Note that ®, in (3.71) is a product of orthogonal
matrices and hence is orthogonal, which means that ||q(k + 1)|| = liq(k)]l-

It should be noted that the continuous-time form, ®,(¢,1), of ®,(k) obtained
by replacing ti4+1 with t and t; by X in (3.64) or (3.71) and (3.65), is not a “state
transition matrix” in the usual sense because it does not satisfy the fundamental

property

d'I"d(:’ A ag,[":'] ®,(t,)), (false). (3.72)
As a result, even though ®, may be used for approximate time propagation of the
state estimate, this matrix cannot be used to propagate the Kalman covariance ma-
trix over time. At any measurement event, the measurements are directly related
to the quaternions and not to the angular velocity. The Kalman filter must use the
dynamical model to extract information about angular velocity from prediction er-
rors which, in turn, depend on the quaternion estimates. Time propagation of the
Kalman covariance, therefore, must maintain the interaction between quaternions and
the angular velocity specified in (3.56). The block diagonal matrix ®, in (3.63) does
not explicitly model the interdependence of q and w. Approximate time propaga-
tion, [29]-[37], [63], of the covariance matrix is performed with an approximate state
transition matrix which employs the rotational motion component as

&,(k) = exp{F,(k)[tes1 — ta]}, (3.73)
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where F,(k) is the Jacobian of f,{x,(k)],

Fr ( k) Ja¥ afr [xr]

= T (3.74)
a | Qw(k) [qu(k) 0]
0 Ay
and
a¢ —q« 93 —q
a0q 3 —q
qu(k) = (Ic) @ —a -l (3.75)
L] @ ¢

Note that &,(k) in (3.73) need not in general maintain constant quaternion norm and
hence should not be used in time propagation of the state estimate.

The quaternion filter has been implemented, using standard Kalman filtering no-
tation introduced in Appendix B, with the following approach:

1. The filter is initialized with a unit quaternion, ||§(0] - 1)|| = 1;

2. The norm of the estimated quaternion is invariant under time propagation, i.e.,
lla(k + k)| = lla(klk)l, k = 1,2,3,..

3. The measurement model employs I'() of (3.51) as the transformation from Fp
to Fg instead of the strictly orthogonal matrix I2;

4. For output purposes only, the estimated unit quaternion is taken as

z a _qg(klk)
(HE) = e

and, again for output purposes only, structure estimates denoted *})(k|k) are

taken as _ A _
“to(klk) = (kI e (kIK), (3.77)

fori=1,2,...,Ny, where the vectors i}, (k|k) are structure estimates generated
within the filter;

(3.76)

5. The estimation error covariance matrix, P*(k]k), for the filter output is taken

as
P (k|k) £ BP(k|k)87, (3.78)
where P(k]k) is the estimated Kalman covariance, and
8 .
2 ding{In, Lo GG, | (079
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This approach parallels that proposed by Bar-Itzhack and Oshman [65]. Due to
Item 3 above, the measurement model depends on the product of I'(¢) and structure
vectors r}, internal to the filter which appears in the expression,

rg = L(g)ro + [TEE. (3.80)

The innovation sequence in the quaternion filter, therefore, depends on the product
T A e

[rb)s = D(@)Fp. (3.81)

If the quaternion filter works well, [E,T g — [rb]g for ¢t = 1,2,..., Ny, even though g
may not have unit norm, and £, may not converge to a true structure vector (due to
the scaling effect of I'(q)). Noting from (3.50) and (3.51) that

[ble £ (@)
1 " P,
- {Wr(q)}{uqu’ro}
= (@M EER) (382)

leads naturally to the extraction, in item 4 above, of a unit quaternion and appropriate
structure estimates.

This quaternion model is completely specified by four parameters, N,, a,, o2,
and Np;. The first three of these can be selected based on the discussion of transla-
tional motion parameters in Section 3.4. Selection of number of intervals, N,, in the
partition of each sample period should also be based in part on the expected com-
plexity of rotational motion. Investigations leading to the research reported herein
indicated that N, = 5 with a sample period of T = 0.1 seconds gives reasonable accu-

racy in ideal time propagation of the state at the expense of increased computational
complexity.

3.5.3 Roll Pitch Yaw Parameterization

The roll-pitch-yaw (RPY) representation [38, 63, 82] is a particular case of an Euler
angle parameterization of the three-dimensional rotation group. The roll, pitch, and

yaw angles, denoted ¢, 0, and v, respectively, define an ordered sequence of three
plane rotations which can be used to express I as

IZ = exp(ve}) exp(0e}) exp(sel), (3.83)

where e;, i = 1,2, 3, are the standard basis vectors of IR> Expanding the exponentials
with (A.13) gives three plane rotations,

1 0 0
exp(ge]) = [0 cos(¢) -sin(¢)],
0 sin(¢) cos(¢)
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[ cos(d) O sin(6)
exp(fel) = 0 1 0 ],and (3.84)
| —sin(8) 0 cos(6)

[ cos(¢p) —sin(y) 0
exp(vel) = | sin(¥) cos(¥) 0}
0 0 1

The angles ¢, 8, and 3 have positive sense defined by the right hand rule about their
respective rotation axis (see Appendix A).

It has been reported, [28, 32, 37], that major difficulties arise with this approach
because the sequence of plane rotations are not defined about orthogonal axis. This
property results in highly nonlinear dynamical models if rotational motion is formu-
lated directly in terms of angular velocity. The angular velocity w = [w@]g, is given
in terms of time derivatives of roll, pitch, and yaw angles as

¢
W=any[0:], (385)
¥
where .
cou() con(6) —sinf(y) 0
Jrpy = | sin(y)cos(f) cos(¢) 0 {. (3.86)
—sin(0) 0 1
The mathematical singularities, § = +x /2, characterize orientations where the deter-
minant of the Jacobian matrix det[Jrpy] = — cos(@) vanishes.

The parameter vector for the roll-pitch-yaw filter is defined as
¢£[4,0,91" (3.87)

Under an assumption of “smooth” object motion, an approximate temporal behavior
of { over any sample period, {t|{ty <t < t34,}, is expressed in terms of a first-order
Gauss-Markov process in a manner equivalent to that employed for translational
motion in Section 3.4. In this case the rotational motion state vector, x, € RN,
where N, = 3(N¢ + 1), is defined as

T
x, 2 [(T, T,..., (%)T] . (3.88)
and propagates in time according to
x.(t) = A, x,(t) + G,w,(t), (3.89)
where
S ot IS ol
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and w,(t) is zero-mean, temporally white Gaussian noise with covariance Q, =
2a,0%1;, and the roles of the reciprocal manoeuvre correlation time constant, a,,
and the variance, o?, of the manoeuvre variable are equivalent to that described in
the development of the translational motion model.

The roll-pitch-yaw model is completely specified by three parameters, N¢, a,,
and o? which, again, can be selected based on the discussion of translational motion
parameters in Section 3.4.

3.6 Initial Estimates

The extended Kalman filter requires an initial estimate of the state, x(0] — 1),
and characterization of the initial uncertainty, P(0|—1), in this estimate. Broida and
Chellappa, for example, have studied a batch approach [30, 31, 32, 37] which employs
the Conjugate Gradient descent technique from the IMSL library. Simulation results
shown by Broida et al., {32], employ what are called “crude” initial estimates obtained
from the first 10 image frames with 75 iterations of the batch technique.

In future work and eventual applications, it is expected that initialization of object
tracking filters would be based on information from lower subsystems in a hierarchical
structure such as that described in Section 1.2. For the purpose of this investigation,
a simple single-frame 1nitialization provides suitable estimates of position, orienta-
tion, and structure, while all higher-order motion parameters (time derivatives) are
initialized as zero. The initialization algorithm is described as follows:

Step 1 Obtain an estimate of the 3D positions of three or more feature points with
respect to the earth-fixed frame through steriopsis based on noisy measurements
in multiple-camera images and assumed correspondence information;

Step 2 Select three noncollinear feature points from all available 3D points;

Step 3 Estimate the initial position of the object, form an orthonormal, right-handed
triad, Fo, in Fg from the three special 3D points based on constraints detailed
in Section 3.2 and illustrated in Figure 3.2, and fix the origin, Op, of Fo with
respect to the 3D feature points by specifying the vector d;

Step 4 Extract a valid set of orientation parameters from the basis vectors of Fo
expressed in Fg;

Step 5 Express positions of all feature points and d with respect to Fp.

This initialization is concerned only with obtaining an initial estimate of the state;
the initial covariance matrix is selected as diagonal assuming significant initialization
errors (fairly large diagonal entries).
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Step 1: Given N; > 3 feature points visible in each of Nc > 2 cameras with
spatial correspondence information, the objective is to estimate ri;, i = 1,2,..., N;.
The position of the ith feature point in the image plane of the jth camera is written,
from (2.19), as

: ]
e

; A u rb.l
22| Y=L o], 3.91
241 o (391)
l-.C"l,'.l
With (3.91) and
ia vy -L; 0
D; [,,;, o L |’ (3.92)
so that Dirg, = 0 and
rg, = IE ks + [T¥lc,, (3.93)

where Igj and [Tg’]c, are known for j = 1,2,..., N¢, a system of linear equations
can be written in the form

Dif ri = -Di[TZ]c,, i=12,...,Nc. (3.94)

Forming two matrices

M & ’:IC’ , and N2 NG @ |, (3.95)
D‘Nc Ig N ..Nc [Tg Ne ]ch
immediately gives the least-mean-squared estimate #%; of ri; as
. . -1 . ,
#o= [(M‘)TM'] (M)" N (3.96)

for the ith feature point. This process is repeated for each of the N, feature points.

Step 2: Many criteria could be specified for selecting the best set of three special
noncollinear feature points from all available #{;. Moreover, this selection might be
aided by decisions from lower-level subsystems of a hierarchical approach such as that
discussed in Section 1.2. A simple approach is to select those three points for which
the area of the triangle (see Figure 3.2) formed by joining the three 3D points is
maximized, thus maximizing a measure of the degree of noncollinearity and distance
between points. This can be done by selecting 3 indices, {i;,i,i3} C {1,2,...,Ny}
such that,

{7 - #) [ - #] 1 (3.97)
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is maximized. Since the order of selection is unimportant, there are

N Nyt
(%) 2 e (398

combinations for comparison.

Step 3: The estimated initial position, p(0) a [’f‘o'?] g(0), of the object is taken as
the sample mean of all estimated feature point positions:

A 1 &
p(O) = —N_, Z rg. (3.99)

=1

The three feature points selected in Step 2 are ordered, arbitrarily in the absence of
prior information, as {#%, riz, #3*} according to the constraints detailed in Section 3.2.
The object-centred frame is fixed on the object, and the initial estimates of orientation
are provided with

[dole = f"é-— p(0), (3.100)
v, = JTEFE ,

liole ek — 8l (3.101)
5 _{l— liols(liols)iE 3102
bole = ik Zfele(iale) e T (3102)
kole = [iol liole- (3.103)

Step 4: Initial estimates of orientation parameters (angle-axis, quaternion, or
roll-pitch-yaw) are extracted from the initial estimate of the basis transformation

fg = [[i;TE’ ,j:)TEa [k:)\]E] ’ (3104)

according to methods outlined in Appendix A.
Step 5: Initial structure estimates with respect to Fp are computed with

~T
do = If [do]s, and (3.105)
. ~T , .
iy = Ig (i-p(0), i=1,2,...,N,. (3.106)

By construction, £ = do, 1"‘0", = doa, 1“"0' 3 = doga, and '-"o'?a = do 3, where do
is now treated as a known constant vector; these six structural parameters are not
estimated by the filters.

DRES-SR-577 UNCLASSIFIED




52 UNCLASSIFIED
3.7 Chapter Summary

This chapter has introduced structure, translational motion, rotational motion,
and measurement state space models for manoeuvring objects observed with a multiple-
camera imaging system. Both translational and rotational motion are described with
first-order Gauss-Markov processes which are completely defined by selection of a
small number of parameters: the number of time derivatives (N; and one of N¢, N,
or N;); the reciprocal manoeuvre correlation time constants (a; and a,); and the
manoeuvre variances (¢? and 02?). The quaternion filter also requires selection of
the number of intervals, Ny, of each sample period for time propagation of the state
estimate, and all filters require estimation of the measurement noise covariance, R.
A simple single-fiame initialization algorithm has been proposed for object position,
orientation, and structure. Chapter 4 discusses parameter selection, measures of op-
timal performance provided by Cramer Rao bounds, and presents simulation results

and performance comparisons for filters formed from the three parameterizations of
rotational motion.
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4. Performance With Simulated
Imagery

The previous chapter introduced motion, structure and measurement models based
on three parameterizations of rotational motion. In this chapter, relative performance
of three iterated extended Kalman filters, each based on a single parameterization,
is examined and demonstrated through presentation of a subset of results generated
from extensive Monte Carlo simulations. One limitation of analysis based on simu-
lated imagery is that the assumed central projection image formation model is exact;
that is, the measurement model is based on the central projection transformation, and
simulated imagery is generated precisely from this model. This approach, which is
common to most simulation studies in image analysis, is only valid if distortion effects
in the imaging system are small in comparison to measurement noise levels. Eval-
uation of motion and structure estimation schemes on simulated imagery, however,

provides an efficient means to verify and compare performance of the three filtering
algorithms.

The geometry of Figure 3.1 was used to generate binocular image sequences of
a single, rigid, translating and rotating block. Figure 4.1 shows the object used for
simulations with the convention for labelling of feature points. Features of interest
are four, p*, p®, p%, and p’, of the eight corners of a rectangular block 20 units wide
(p® — p®) and 10 units in height (p® — p®) and depth (p® — p”). Feature detection
and both temporal and spatial correspondence information is provided by the imagery
generation program, and occlusion is not explicitly considered in this work.

In all simulations of this Chapter, two cameras are employed with unity focal
length. The position and orientation of the left camera (C,) is defined by a translation
[T e = [0, -5, —30]7, units, and transformation IZ, formed from Euler angles y, =
10° (vaw or pan), 8¢, = —45° (pitch or tilt), and é¢, = 0 (roll about optical axis).
The position and orientation of the right camera (C;) is defined, respectively, by
[Tg,]g = [0,5, —30]; units, and Ig, formed from Euler angles y¢, = -10°, Oc, =
—45°, and ¢c, = 0. Measurement error in feature-based motion analysis studies is
often taken as uniform digitization noise (19, 20, 32, 34]. Simulations of this Chapter
assume moderately high levels of measurement noise in the range +0.02 units in the
image plane, which corresponds to errors on the order of 4% to 8% of the size of the
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p?

ps
p?

pS
p!

p
Figure 4.1

Object used in simulation studies. Feature points of interest are
labelled p, p®, p%, and p’.

object in the image when the object is closest to the cameras. Measurement models
in the Kalman filters assume Gaussian statistics with standard deviation 0.02 units
in both horizontal and vertical components. As a result, the measurement models are
not exactly matched to the true statistics of measurement error, as would probably
be the case in any implementation.

Section 4.1 provides a brief investigation of Cramer Rao bounds, first for the reset-
ting requirement of the angle-axis filter, and second to compare optimal performance
for the three filters. Section 4.2 provides an overview of simulations and results which
are presented in detail in Section 4.3. A closing summary and discussion is provided
in Section 4.4.

4.1 Comparison of Cramer Rao Bounds

As discussed in Section 2.2, the extended Kalman filter is generally a nonlinear,
suboptimal state estimation technique. Performance assessment of such techniques
often employ the Cramer-Rao inequality [79] to derive covariance lower bounds. Ap-
pendix C reviews the significance and derivation of Cramer-Rao lower bounds (CRLB)
for this estimation problem. Generally, the error covariance matrix S(N) of an un-
biased estimator X(N) of the state x(NN), where the estimate is based on the prior
information in xo and the observations z(0),...,2z(N), is lower-bounded by the in-
verse of Fisher’s information matrix [80, pp. 91-93]. This result, in theory, provides
estimation error variance lower bounds for elements of X(/N). It should be noted,
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however, that these bounds assume unbiased state estimation; a state dependent bias
can result in higher or lower bounds [78} (see Appendix C). As a result, most analysis

[28)-[31], [61], [62], proceed under the assumption of unbiased estimation resulting in
approximate covariance bounds.

A further assumption in deriving Cramer Rao bounds is that the dynamic model
is noise-free. This means that the dynamic model from which the filter is constructed
is assumed to exactly match the deterministic temporal behavior of observed pro-
cesses. For the purposes of satisfying this assumption during investigations of this
Section, modeling parameters ay, a,, 0, and o, are set to zero, thereby eliminating
process noise and reducing the dynamic models to truncated Taylor series expansions,
the initialization parameter vector do is set to zero, which means ihat the origin of
the object centred reference frame lies at a feature point, and true object motion is
defined such that it can be exactly modelled by any of the three parameterizations of
rotational motion. These restrictions obviously place some limitations on the overall
scope of evaluations with Cramer Rao bounds, however, comparisons of optimal per-
formance possible under these ideal circumstances provides a general appreciation for
accuracy that can be expected for more complex motion investigated in Sections 4.2
and 4.3.

It was noted in Section 3.5.1 that the orientation vector of the angle-axis filter
must be reset, first to mairtain a finite magnitude (rotation angle) when the ob-
ject continually rotates in one direction, and second to yield decreasing Cramer Rao
bounds. Figure 4.2 shows Cramer Rao bounds in the absence of prior information
(P! = 0) for the rotational state vector X, defined in (3.41) for purely rotational
motion with N¢ = 1, i.e. constant first time derivative of . Here, object structure
is assumed to be known, and is removed from the state vector. The origin of the
object-centred frame, which lics at the block centroid, remains fixed at [30,0,0]%
units, with rotational motion about an axis parallel to zg defined by £(0) = [0,0,0]%
and £(0) = [0,0, 1)L radians/s. Note that in this case the reset is exact since the axis
of the rotation matrix, £, is constant.

The top two graphs of Figure 4.2 are shown without applying the reset of (3.45)
while the bottom two graphs are shown with resetting. Without the reset, and for
this trajectory, the CRLB of the z- and y-components of { increa-e after 2 seconds.
The CRLB of the z- and y-components of § are approximately an order of magnituo--
larger than the z-component CRLB at the end of the trajectory. Because, for this
trajectory, & = £, = 0, the second and fonrth terms in expression (D.10) for 812/8¢;
with j = 1,2 are zero. As v = ||¢|| increases, 9I2/d¢; — O for j = 1,2 which implies
that the -otation matrix becomes insensitive to changes in §, and §; which, in turn,
leads to increasing CRLB’s. The bottom two graphs of Figure 4.2 show CRLB’s for
¢ and ¢ with resetting applied as shown in (3.45). In this case, the bounds exhibit a
decreasing trend over the trajectory with final values after 20 seconds of approximately
0.005 radians for £ and 0.0005 rad'~ns/s for .

DRES-SR-577 UNCLASSIFIED




Figure 4.2

CRLB’s of orientation vector a) without and b) with resetting

Figures 4.3 through 4.6 show Cramer Rao bounds for the three filters in the
absence of prior information (Pg' = 0) during a simple trajectory with constant
axis of rotation. Measurements of positions of feature points p?, p®, p, and p” (see
Figure 4.1) are available throughout the trajectory. The initialization parameter
vector dg is set to zero, point p® is chosen to lie at the origin of the object-centred
reference frame, point p’ lies on the zp-axis, and point p? lies in the zo-yo plane. All
three coordinates of p® are unknown. True motion of the object is defined by constant
acceleration translational motion of point p®,

p(0) = [30;-20;0] units,
p(0) = (2;2;-2]% units/s, and (4.1)
p = [-0.4;0.4;0.4)% units/s?,

and rotational motion about the yo-axis with constant angular acceleration,

Angle-Axis -
0 0 0
{(0)=[-1r/4], c‘m:[o.e:], 3 =[-—0.161r], (4.2)
0 0 0
Quaternion -
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0 h

] 0
q(0) = ‘? , w(0)= { 0.87 ] , W= [ —0.16x ] , (4.3)
Vo | 0 0
Roll-Pitch-Yaw (¢ = [¢, 9, ¢]T)
0

0 0
¢(0) = [-x/4 , ((0)= [o.sx ] (= [ ~0.16x ] (4.4)
0 | 0 0

The angle-axis filter is reset twice during this trajectory at about 2.1 and 8.2 seconds,
and pitch in the roll-pitch-yaw filter passes through the singular point of 8 = x/2 at
about 1 and 9 seconds. True structure parameters in this case (measured in units)

0 0 10
=] 0 |, =2, 3=]0], (4.5)
-10 0* 0*

where (-)* indicates a known value.

Cramer Rao bounds for translational motion estimation, Figure 4.3 and top of
Figure 4.4, demonstrate, as might be expected due to identical models for trans-
lational motion, that bounds on all three filters are very close for this trajectory,
especially for the angle-axis and roll-pitch-yaw filters. Bounds for the quaternion
filter lie slightly above those of the other two parameterizations. Bounds on orienta-
tion parameters, shown in the lower part of Figure 4.4, exhibit oscillatory behavior,
but a decreasing trend over the trajectory. These oscillations appear to contradict
the notion that as more measurements become available, more information should
be accumulated about the observed process, which means that one might expect the
bounds to decrease monotonically. Appendix C clarifies the meaning of these bounds
in the present context and demonstrates why they need not decrease monotonically.

Figure 4.5 compares covariance bounds for estimation of angular velocity and
acceleration. Again very similar behavior is demonstrated for the angle-axis and
roll-pitch-yaw filters, whereas bounds for the quaternion filter are slightly higher.
Figure 4.6 shows the bounds for estimation of the six structural parameters. Again,
almost identical behavior is shown for the angle-axis and roll-pitch-yaw filters. How-
ever, significantly higher bounds are present for the quaternion filter in the estimation
of the zp-coordinate of p, the yo-coordinate of p®, and the zo-coordinate of p”. Note
that these are precisely the non-zero parameters in the structure set shown in (4.5).
This investigation was repeated for different combinations of structural parameters
and always yielded similar results in that quaternion filter bounds for non-zero struc-
tural parameters were significantly above those for the other two filters.
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Figure 4.3

Cramer Rao bound comparison of position and velocity.
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Figure 4.4

Cramer Rao bound comparison of acceleration and orientation.
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Figure 4.5

Cramer Rao bound comparison of rotational motion.
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Cramer Rao bound comparison of structure estimation.
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4.2 Overview of Simulations and Results

Simulation studies have been conducted over a wide range of trajectories, begin-
ning with known structure and simple motion, and progressing to completely unknown
structure with more complex motion. Various sets of parameters were employed for
dynamical models in the filters during these simulations. A simple process for select-
ing physically justifiable parameters led to the best results.

Because measurements are related directly only to object position and orientation,
estimation of high-order time derivatives often demonstrated serious lag and overshoot
which can lead to filter instability. Consequently, motion only up to the second time
derivative is included in dynamic models by setting Ny = 2, N = 2, N, = 1, and
N¢ = 2. Following Singer’s approach [71] in Equation (3.33) of Section 3.4, the
manoeuvre correlation time constant is estimated for the expected class of objects
and motion, extreme values are estimated for the manoeuvre variables of translational
and rotational motion, and probabilities are assigned to the occurrence of maximum,
minimum and zero values of the manoeuvre variable. Results shown in Section 4.3
were generated assuming a manoeuvre correlation time constant of 2 seconds which
gives oy = a, = 0.5s7. Extreme values of acceleration for translational motion is
estimated as M,,,,, = 12 units/s? which occur with probability P.,,, = 0.1, and zero
translational acceleration occurs with probability P,, = 0.1. These values in Equation
(3.33) give

2 i
oy = {Mt;“ [l + 4Pgm - P‘o]} = 8. (46)

The continuous-time white noise process driving the translational motion model then
has covariance Q; = 240?13, and the approximation of (3.32) is employed to com-
pute the covariance matrix of the corresponding discrete-time process noise sequence.
Corresponding parameters for rotational motion are M,,,, = 6rad/s?, P, ,, = 0.1,
and P,, = 0.1, which gives o, ~ 4 and Q, = 2a,03I5. Integration of the quaternion
differential equation with N, = 5 was found to give sufficient accuracy.

A subset of results from three trajectories are presented in Section 4.3.

Case 1 With model parameters selected as described above, the Extended Kalman
filter keeps the gains relatively large in order to follow manoeuvres as they oc-
cur. Consequently, although performance for manoeuvring trajectories is good,
performance for nonmanoeuvring trajectories may be degraded from that of sim-
pler filters [71]. This Case considers the nonmanoeuvring trajectory employed
in the coupasison oi Cratuer Rao bounds in Section 4.1, and shows results of
filters exactly “matched” to the trajectory (no process noise) and results from
“unmatched” filters formed from the parameter selection above. Results demon-
strate that although performance of the unmatched filters are slightly degraded
in the estimation of translational and rotational time derivatives, performance
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in the estimation of position, orientation, and structure are very similar for both
the matched and unmatched filters.

Case 2 True object motion is defined with constant acceleration of the block cen-
troid, and rotational motion computed from an angle-axis formulation which
cannot be exactly matched by any of the three parameterizations of rotational
motion employed in the filters. The origin of the object-centred reference frame
does not, due to the initialization algorithm described in Section 3.6, lie at the
block centroid, and hence translational motion models in each filter are not
matched to the trajectory. The angle-axis filter gives slightly better overall per-
formance for this trajectory than the quaternion and roll-pitch-yaw filters; the
roll-pitch-yaw filter demonstrates poorer performance in estimation of angular
velocity, and the quaternion filter exhibits poorer performance in the estimation
of position and some structural components.

Case 3 The trajectory of Case 2 was based on an angle-axis formulation in which
case one might expect the angle-axis and quaternion filters to more accurately
match the trajectory than the roll-pitch-yaw filter. The trajectory of Case 3
defines true object motion with constant acceleration of the block centroid,
as in Case 2, but rotational motion is computed from a sinusoidal roll-pitch-
yaw formulation. As in Case 2, neither translational nor rotational dynamic
models are matched to the trajectory. The angle-axis and roll-pitch-yaw filters
show almost identical performance in this case. Again the quaternion filter

exhibits poorer performance in the estimation of position and some structural
components.

Results from these three Cases are representative of all results obtained from
various trajectories investigated during simulation studies. In general, all three filters
demonstrated satisfactory tracking of manoeuvring objects with the angle-axis filter
giving slightly better performance than the quaternion and roll-pitch-yaw filters. The
quaternion filter, apart from its higher computational requirements, appears to give
poorer (slower) performance in tracking position and estimation of structure. The roll-
pitch-yaw filter, which is the simplest from a computational point of view, sometimes
showed significant error in angular velocity estimates. The angle-axis filter is only
slightly more computationally demanding than the roll-pitch-yaw filter. The following
Section presents detailed graphical results for the above three cases, and provides
further discussions on relative performance of the three filters.

4.3 Detailed Simulation Results

This Section presents partial sets of simulation results for the three Cases outlined
in Section 4.2. The vision system and object geometry, and measurement noise levels
are as described in the Introduction to this Chapter. With four feature points of
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interest, the angle-axis and roll-pitch-yaw filters have 24 states, while the quaternion
filter has 25 states. Presentation of results for each Case includes a discussion of the
true object motion, initialization parameters, true structure (which depends on the
initialization parameter vector do), and the resultant image sequences. Graphical
presentation may include results of single-run samples and/or 60-run Monte Carlo
simulations. In order to duplicate true motion and structure over Monte Carlo sim-
ulations, initialization during the first run selects do (the same for all three filters),
and subsequent runs employ the same do as the first, but with other parameters
being initialized as outlined in Section 3.6.

The angle-axis and roll-pitch-yaw formulations provide intuitive parameterizations
for the three-dimensional rotational group. However, to say that an estimated quater-
nion { has an error , what does this mean in terms of the error in the corresponding

basis transformation I £ I — §2? A convenient measure of estimation accuracy at
the kth time step is given by the scaled Frobenius norm

ch)2 5 (Te(i2() A (k)3)} (1)

The Frobenius matrix norm without the normalization factor 1/(2v/3) has been em-
ployed in investigations such as [65]. Because I2(k) and I2(k) are both orthogonal
for all three parameterizations, the scale factor employed in (4.7) implies that the
smallest interval containing C(k) is [0, 1].

Angular velocity is available directly in the quaternion filter, and is computed from
state estimates using Equations (3.40) and (3.85) for the angle-axis and roll-pitch-
yaw filters, respectively. Errors in angular velocity estimation are shown as sample
or root-mean-square values of the Euclidean norm of the difference between true and
estimated angular velocity vectors. Sample results show true and estimated values of
position and velocity, whereas Monte Carlo simulation results show root-mean-square
values of the Euclidean norm of the difference between true and estimated position
and velocity vectors, respectively. Results for structure estimation show estimation
errors for sample runs and root-mean-square values of the Euclidean norm of the
difference between true and estimated structure vectors for Monte Carlo simulations.

Case 1: This Case considers the nonmanoeuvring trajectory employed in the
comparison of Cramer Rao bounds in Section 4.1, and shows results of filters exactly
“matched” to the trajectory (no process noise) and results from “unmatched” filters
formed from parameter selection as shown in Table I.

The matched filters set a; = a, = 05~!, o, = 0 units/s?, and o, = 0 rad/s?, while
the unmatched filters employ a¢ = a, = 0.5 s~?, oy = 8 units/s?, and o, = 4 rad/s?.
The initialization parameter vector do is set to zero for this investigation. True
translational motion of the origin of the object-centred frame, which lies at feature
point p%, true rotational motion about p?, and true structure parameters are given in
Table I along with a sample initialization denoted by %,..(0). Note that structure
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Table 1

Simulation parameters for Case 1. Table entries replaced by ‘NC’
indicate that quantities have not been computed and are not used
in initialization.

Structure: N; =4, o(x,) = 5.0, dg = [0,0,0}"
¥

To

N §

[0,0, 10]

o
(01 20, d0,3]

To
ﬁor d0,2 » dO,a]

x,(0)

—4.54,-0.30,9.15)

[~11.56,18.87,do )

(17.96,do 2,do s

l

Translation: N; =2, a; = 0 and 0.5, o; = 0 and 8

p

b

p

Xg(O)

(30, —20, 0] [2,

2,-2]

[~04,0.4,0.4]

%.(0)

[31.84, —20.72, 2.23]

[0,0,0]

{0,0,0]

U(ig)

5.0

5.0

5.0

Rotation: Angle-Axis, N¢ = 2, a, = 0 and 0.5, 0, =0 and 4

§

§

3

x,(0)

[0, =0.7854, 0]

NC

NC

%,(0)

[0.0052, —0.72, —0.2]

{0,0,0]

[0,0,0]

a(%,)

0.5

20 _

2.0

i

Rotation: Quaternion, N, =1, N, = 5, a, = 0 and 0.5, 0, = 0 an

d4

i
|

q

w

w

x,(0)

10,0.38,0,0.92]

NC

NC

x,(0)

[0.0025, 0.35,0.098, 0.93]

[0,0,0]

[0,0,0]

o(%,)

0.5

2.0

2.0

|

C = I¢,07‘b] C

¢

¢

x,(0)

T0,=0.7854, 0]

NC

NC

*,(0)

[0.084, —0.72, —0.24]

{0,0,0]

0,0, 0]

Rotation: Roll-Pitch-Yaw, N¢ =2, a, =0 and 0.5, 0, = 0 and 4
a(x,) 0.5 2.0 2.0
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initialization for the sample shown has significant errors, particularly in r} ;. The
initial filter covariance matrices are taken as diagonal with the square-roots of diagonal
entries corresponding to standard deviations, as indicated in Table I, of 5 units for
structure states, 5 units for position and its time derivatives, 0.5 for orientation, and
2.0 Rad/s for time derivatives of orientation parameters.

True and noisy feature point trajectories in the image plane of the left camera
are shown in Figure 4.7. In the image, the top of the object first rotates towards the
observer, slows down, stops, and then reverses its direction of rotation to return to
its original orientation. The axis of rotation is constant for this trajectory. Measure-
ment noise, illustrated in the lower half of Figure 4.7 is moderately high, but free of
significant outliers due to the assumption of uniformly distributed errors. In practice,
the frequency of occurrence of outlier measurements for object tracking filters could
be reduced through a hierarchical approach similar to that outlined in Section 1.2, or
rejected with chi-squared tests as employed by Ayache and Faugeras (40].

Figures 4.8 and 4.9 show 60-run Monte Carlo simulation results for matched and
unmatched filters, respectively. In the absence of process noise, Figure 4.8, the
Kalman filters eventually neglect further measurements as information is accumu-
lated. This is demonstrated by the sample trace (lower right graph of Figure 4.8)
of the maximum principal value (singular value) of the Kalman gain matrix over
time. For this particular trajectory and measurement noise, the filter gains appear
to prematurely reject further measurements. This is demonstrated by the increasing
root-mean-square errors in position estimation, with the angle-axis filter showing the
poorest performance in the second half of the trajectory. Cramer Rao bounds for po-
sition estimation at the end of the trajectory, from Figure 4.3, are approximately 0.3
units in each component, or very roughly 0.3v/3 ~ 0.5 units for the Euclidean norm
of position errors. This suggests reasonably good performance of the quaternion and
roll-pitch-yaw filters in position estimation. The quaternion filter shows slightly bet-
ter performance in translational velocity and orientation estimation, while all three
filters yield similar performance, in comparison to Cramer Rao bounds, for angular
velocity and structure estimation.

Figure 4.9 shows results for the three filters with parameters selected to track
manoeuvring objects. All three filters demonstrate similar performance during this
simulation. In this case the maximum principal gains are maintained at approximately
95 to 100 after initial iransients. In comparison to performance of the matched
filters of Figure 4.8, position orientation and structure estimation is very similar, but
translational and rotational velocity estimation is degraded. Generally, higher filter
gains were found to increase root-mean-square errors, but decrease mean errors (bias)
in velocity and higher time derivatives. These results demonstrate the conflicting
requirements of keeping the gains small enough to suppress measurement noise while
at the same time keeping the gains high enough to track manoeuvring objects or to
maintain robustness in the presence of unmodelled dynamics.
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Figure 4.7

True and sample noisy image feature point trajectories in the left
camera without occlusion for Case 1.
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Figure 4.8

Monte Carlo simulation results for Case 1 without process noise.
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Figure 4.9

Monte Carlo simulation results for Case 1 with process noise.
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Case 2: In this case, true object motion is defined with constant acceleration of
the block centroid, and rotational motion computed from an angle-axis formulation.
For the purposed of describing the true motion of the block, define Fg as the block-
centred reference frame used in the imagery generation program. Note that Fp and
Fo are generally distinct, but for the purpose of simulation differ only by a translation
(so that I = I3). The origin, Op, of Fpg lies at the block centroid, and the coordinate
planes of Fp are parallel to faces of the block. Translational motion of Og was defined
in the imagery generation program with

[TE]e(0) = [30,-20,0)% units,

[TE]£(0) (2,2, ~2]L units/s, and (4.8)
(TEle = (-0.4,0.4,0.4]% units/s?.

il

Recall that the initialization routine computes dg, which defines the position of the
origin of the object centred frame, based on observations during the first measurement
event. The origin of the object-centred frame employed in the filters, therefore, will
not generally coincide with the centroid of the block and, due to rotational motion,
will not have the constant acceleration motion defined in (4.8). Specifically, the filters
are required to estimate translational motion of Fp whose position and velocity, for
example, are given by

p(t) £ [TE]e(t) = [TE)e(t) + 1215 {rs — [dols}, (4.9)
p(t) = [TEle + [WRILIZ1 {ris - [dols}, (4.10)

where the velocity equation uses (3.35) and the fact that I§ is constani. Higher-
order time derivatives of true translational motion are computed in a straight-forward
manner by differentiating (4.10).

Rotational motion of the block-centred reference frame is defined in the imagery
generation program with an angle-axis parameterization,

IE(t) = exp(n(t)al(t)). (4.11)
The angle of rotation, n(t), has constant second time derivative,
n(0) = 0rad, (0) = 0.4x rad/s, and fj = —0.08x rad/s’. (4.12)

Temporal behavior of @, since it is a unit vector, must be rotational with instantaneous
angular velocity, say, w,(t) in the earth-fixed frame so that

a(t) = wi(t)a, (4.13)
and the initial condition is specified as

a(0) = %[1, 1, )7 (4.14)
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The angular velocity, w,, of the axis of the basis transformation (this is not the
angular velocity of the object) is defined with constant second time derivative,

-0.2 -0.1 0.02
w,(0) = | 0.2 | rad, w,(0)=|—-0.1]rad/s, W, =| 0.02 |rad/s®. (4.15)
0.2 0.1 -0.02

Integration of (4.13) is performed numerically using a method similar in form to the
quaternion integration scheme described in Section 3.5.2 by defining a partition of
each sample period, assuming w,, is approximately constant over each interval of the
partition, and using the closed form expression for the matrix exponential of 2 3 x 3
skew symmetric matrix given in (3.39). As in the quaternion integration scheme, this
method ensures that @i(¢) remains a unit vector.

Table II summarizes simulation parameters for this Case and provides numerical
values of a sample initialization. A subsequence of images viewed in the left camera
is shown in Figure 4.10. In this Figure, each frame sample number is shown in the
lower left: the sequence proceeds across the top row from left to right, back across the
second row from right to left, etc. The top of the object first begins to rotate towards
the observer as does the right side of the object. The object eventually returns to its
original orientation at the end of the trajectory. True and sample noisy feature point
trajectories in the image plane of the left camera are shown in Figure 4.11. Note the
tight loops which would have to be tracked by temporal correspondence algorithms
such as two dimensional feature point trackers in a hierarchical approach similar to
that proposed in Section 1.2.

Sample results shown in Figures 4.12 and 4.13 correspond to the initialization
listed in Table II. Figure 4.12 shows true and estimated position and velocity. Accu-
rate tracking of position is provided by all three filters, however, velocity estimation
indicates slight lag and overshoot, particularly in the z-component. Again the maxi-
mum principal gain is maintained in the interval 90 to 100 during the second half of
the trajectory. Figure 4.13 shows sample results for orientation, angular velocity, and
structure estimation. Similar behavior of the three filters is shown orientation estima-
tion with errors below 5% after initial transients. Both the angle-axis and quaternion
filter track angular velocity with errors less than 0.5 rad/s, but the roll-pitch-yaw filter
shows a fairly significant spike at approximately 2.5 seconds. All structure estimates
show convergence near the end of the trajectory.

Figure 4.14 shows root-mean-square errors from a 60-run Monte Carlo simulation.
Again very similar performance is demonstrated by all three filters, except for slightly
degraded estimation of position and p® structure from the quaternion filter. Note the
fairly significant oscillations in translational velocity estimation due to lag and some
overshoot in filter estimates. The amplitude of oscillation appears to decrease during
the second half of the trajectory. Angular velocity estimates from the roll-pitch-
yaw filter shows distinct peaks in root-mean-squared errors at about 2.5, 4.5, and 6
seconds. The true pitch angle (not shown) for this trajectory behaves like a damped
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Table 11

Simulation parameters for Cases 2 and 3. Table entries replaced by
‘NC’ indicate that quantities have not been computed and are not
used in initialization.

Structure: N, =4, o(%,) = 5.0, dp = [~3.29, —4.74, -3.06]
ro o ro
x,(0) | [-3.28,-4.74,6.94] | [-3.29,15.26,d0 3] | [6.71,d02,d0 3

X, —3.12,—4.80,6.58| | [-4.37,16.05,dp 3] | [9.94,d0 2,do 3

( Translation: N; =2, a, = 0.5, 0, = 8 Ji
P p p
x:(0) | [28.29, —25.26, -1.94] | NC | NC
%.(0) [ [28.39, =25.70, —2.05] | [0,0,0] | [0,0,0] JI
o (%) 5.0 5.0 5.0
Rotation: Angle-Axis, N =2, a, =0.5, 0, =4
£ § £
(0 [0,0,0] NC | NC
%,(0) | [-0.048, —0.047, —0.040] | [0,0,0] | [0, 0, 0] H
o(%,) 05 30 | 20
Rotation: Quaternion, N, =1, N, =5, a, = 0.5, 0, = 4 |
q w w
% (0) [0,0,0,1] NC | NC
%,(0) | [0.024,0.023,0.02,0.999] [ [0,0,0] | [0,0,0
o(%.) 0.5 20 | 20 |
Rotation: Roll-Pitch-Yaw, N¢ =2, a, =0.5,0, =4 ]
¢ =[4,0,¢] ¢ ¢ ¢
x,(0) {0,0,0] NC NC
%,(0) | [~0.047,0.048, —0.039] | 0,0,0] | [0,0,0]
o(%,) 05 50 | 20
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sinusoid with peaks just prior to these times, and has a maximum value of about
0.4x. Although estimation of pitch angle was very accurate, estimation of the time
derivative of pitch, which is also a damped sinusoid, shows some lag and overshoot
much like those occurring in translational velocity estimation. This behavior would
contribute significantly to the peaks present in angular velocity estimation error. The
angle-axis filter gives marginally better performance than the other two filters for this
simulation. Structure root-mean-square estimation errors decrease rapidly during the

first 1 or 2 seconds, and appear to have levelled off at about 0.3 to 0.5 units at the
end of the trajectory.

As discussed in Section 3.2, there are four possible orientations for the object-
centred reference frame with respect to the three special feature points selected at
initialization. When structure was initialized with all zeros, for example, convergence
of structure estimates was observed in one of the four possible orientations of the
object-centred frame, the particular one of the four being dependent on initial filter
transients. In simulations with this object and the given measurement noise levels
it was found that the simple single-frame initialization of Section 3.6 provided suffi-
cient initial accuracy for structure to converge in the object-centred frame selected
at initialization, although obviously this need not always be the case. Figure 4.15
shows the reliable convergence of structure estimates to true structural parameters
given in Table II after 10 seconds (100 measurement events) for each of the Monte-
Carlo simulation runs. Again all three filters give similar results, with final estimates

from the quaternion filter being slightly noisier than those from the angle-axis and
roll-pitch-yaw filters.
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Figure 4.10

Image subsequence from the left camera for Case 2. Image frame
numbers are shown in the lower left corner of each image. Four
feature points, p', p?, p°, and p’, are labelled in each image.
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True and sample noisy image feature point trajectories in the left
camera without occlusion for Case 2.
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Sample results for Case 2, position, velocity and gain strength.
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Figure 4.13

Sample results for Case 2, orientation, angular velocity and struc-
ture.

DRES-SR-577 UNCLASSIFIED




78

Figure 4.14

Monte Carlo simulation results for Case 2.
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Figure 4.15

Final structure estimates in Monte Carlo simulations for Case 2.
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Case 3: This trajectory defines true translational motion with constant acceler-
ation of the block centroid, as in Case 2, but rotational motion is computed from a
sinusoidal roll-pitch-yaw formulation. Again, let Fg denote the block-centred refer-
ence frame used in the imagery generation program with I$ = I,. The origin, Ogp, of
Fp lies at the block centroid, and the coordinate planes of Fp are parallel to faces of
the block.

As in Case 2, translational motion of Opg was defined with

[TEle(0) = [30,-20,0]F units,
[TE]e(0) = [2,2,-2]% units/s, and (4.16)
[TE)e = [-0.4,0.4,0.4)% units/s?.

However, translational motion of the object-centred frame is significantly different
from that of Case 2 due to alternate rotational motion of Fg about O which is
defined with sinusoidal variation of roll ‘and pitch angles and linear yaw angle with
time:

#(t) = asin(bt)
0(t) = a[l — cos(bt)) (4.17)
¥(t) = b, (4.18)
where 5
a= % and b= 1—; (4.19)

Initialization parameters in this Case are identical to those for Case 2 shown in
Table II. Figure 4.16 shows a subsequence of images from the left camera for this
trajectory. The top of the object containing feature points 3 and 7 begins to rotate
towards the observer (increasing pitch angle), while the right side containing points 1
and 3 appears to move down in the image due to positive yaw and roll angles. Again,
the object returns to its original orientation at the end of the trajectory.

Sample results for initialization parameters given in Table II are shown in Fig-
ures 4.17 and 4.18. All three filters reliably track object position, but with noisier
results for z-velocity than shown in Case 2. Almost identical velocity results are ob-
tained from the three filters and, although noisy, do not show significant lag present
in results for Case 2. The maximum gain strength, as in Case 2, is again maintained
between 90 and 100 after initial transients. Very similar behavior between results for
this trajectory and that of Case 2 is shown in Figure 4.18 for orientation and angular
velocity estimation. Some bias, however, appears in structure estimates, particularly
for the quaternion filter in p® z- and z-coordinates and p* y-coordinate.

Figure 4.19 shows Monte Carlo simulation results for this trajectory. Asin Case 2,
the quaternion filter gives slightly poorer performance in estimation of position and
some structural components. Velocity root-mean-square errors lie below 2 units/s
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during the second half of the trajectory and do not show significant oscillations that
were present in results of Case 2. Orientation errors lie below 5% after about 2
seconds, with final errors of about 2.5% for all three filters, which is very similar to
results of Case 2. Angular velocity errors decrease rapidly during the first 1 second
and remain below about 3 rad/s for the remainder of the trajectory. Final root-mean-
square errors for structure estimation are on the order of 0.5 to 1 unit.
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Figure 4.16

Image subsequence from the left camera for Case 3. Image frame
numbers are shown in the lower left corner of each image. Four
feature points, p', p®, p°, and p’, are labelled in each image.
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Figure 4.17

Sample results for Case 3, position, velocity and gain strength.
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Figure 4.18

Sample results for Case 3, orientation, angular velocity and struc-
ture.
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Figure 4.19

Monte Carlo simulation results for Case 3.
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4.4 Chapter Summary

This Chapter has investigated approximate Cramer Rao bounds for a simple tra-
jectory, discussed parameter selection for dynamic models, and presented a reduced
set of simulation results which are representative of performance achieved for a wide
range of trajectories. Cramer Rao bounds suggest very similar optimal performance
for the three filters over a simple trajectory, and this is supported by sample and
Monte Carlo simulation results for more complex trajectories presented in Section 4.3.
One significant advantage of employing dynamic models developed in Chapter 3 is
that model parameters can be selected as proposed by Singer [71] based to a large ex-

tent on the expected class of objects or motion, rather than purely through heuristic
methods.

All three filters demonstrated good performance in tracking position and orienta-
tion of manoeuvring objects, however, estimation of translational velocity can exhibit
filter lag, as in the trajectory of Case 2. Lag in the filters could be reduced to a
certain extent by increasing the strength of filter gains (by increasing o) but this
may be in conflict with required measurement noise suppression. Angular velocity
root-mean-squared errors for Cases 1 and 2 decrease very rapidly during the first 10
measurement events, and thereafter appear to remain at levels of about 0.3 rad/s
(= 17 Deg/s). In Case 2, angular velocity estimates from the roll-pitch-yaw filter
showed distinct peaks in root-mean-squared errors which are due in part to some lag
and overshoot in estimation of time derivatives of a sinusoidal pitch angle. Similar
behavior, only on a smaller scale, is seen in Monte Carlo simulation results for Case 2
(see Figure 4.19) with a slight increase in angular velocity root-mean-squared errors
just prior to 5 seconds. Generally, performance of the extended Kalman filters was
degraded in the estimation of time derivatives of sinusoidally varying states.

Structure estimation for all three filters showed a sharp decrease in root-mean-
squared errors during the first 1 or 2 seconds, with final accuracy after 100 obser-
vations of about 0.25 to 0.5 units. Structure estimates for the special feature point
(p” for these simulations) for which the filters must estimate only a single component
showed rapid convergence to within about 0.5 units after only 10 to 20 measurement
events, while those for the feature point (p® here) in which two components must be
estimated required about 50 measurement events.
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5. Conclusions and Future Work

Many existing methods for motion and structure estimation proposed in the lit-
erature have been developed and examined for specific cases of translational and
rotational motion. Violation of these assumptions often results in unobservability
due to strict dependence of structural models on the nature of assumed motion of the
object. The planar motion, constant velocity case of Chapter 2 falls into this category
of strict motion assumptions, but provided a simplified framework to introduce the
Kalman filtering approach while at the same time treating an important problem in
motion analysis. The planar motion filter has demonstrated good performance over a
wide range of trajectories with estimation accuracy in all states approaching Cramer

Rao bounds.

Methods for more general motion proposed and evaluated in this report focus
in part on removing restrictive assumptions concerning the nature of object motion
by developing motion, structure, and measurement models for a manoeuvring object
which is observed with a multiple-camera imaging system. Strict assumptions were
not imposed on the mode of translational or rotational motion except for “smooth-
ness” conditions in the sense that parameters can be differentiated with respect to
time. Object manoeuvres, being “smooth” and time correlated, are modelled as first-
order Gauss-Markov processes for both translational and rotational motion. The
structural model has been defined on the basis of observed feature points only and
is independent of object motion. In this case, three or more feature points observed
by two or more cameras over multiple frames give sufficient information to estimate
both motion and structure of the manoeuvring object.

Translational motion models were identical for all three filters. Good position
tracking performance was demonstrated by the angle-axis and roll-pitch-yaw filters,
with only slight degradation of position estimation shown by the quaternion filter. If
the object is undergoing rotational motion, it is unlikely that the origin of the object-
centred frame will coincide with the centre of rotation. As a result, translational
motion in the presence of rotation will probably have strong sinusoidal components
Estimation of tcmpoial derivalives of position in this case can exhibit lag and over-
shoot which led to the poor performance in velocity estimation shown in Case 2.
This result demonstrates the conflicting requirements of maintaining large enough
gains to track manoeuvring objects while at the same time keeping the gains small
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enough to suppress measurement noise. Gain adjustment is easily accomplished, how-
ever, through selection of the manoeuvre correlation time constants and estimation
of variances of the manoeuvre variables.

Unit quaternions have been examined by many authors in the parameterization
of rotational motion. Imposing a unit norm constraint on the estimated quaternion,
however, is not easily incorporated into observers such as the extended Kalman filter.
Applying impulsive normalization of the estimated quaternion following each mea-
surement update—a common proposed iniervention in quaternion-based observers—
was found to contribute significantly to filter instability. Instead, the quaternion filter
is initialized with a unit quaternion, and propagates the quaternion estimate over time
with constant norm. A unit quaternion and appropriately scaled structure vectors
are then extracted as output variables from the state estimate. Note, however, that
a continuum of valid solutions exist for quaternion filter; the squared norm of the
quaternion estimate maintained within the filter is free to vary inversely with mag-
nitudes of estimated structure vectors. In simulations, the quaternion filter showed
slightly degraded performance in the estimation of position and some structure pa-
rameters in comparison to the roll-pitch-yaw and angle-axis filters.

The roll-pitch-yaw parameterization has previously been reported to be poorly
behaved, and can lead to computationally demanding implementations. The approach
taken here led, instead, to a very simple filter which may perform as well as the
quaternion and angle-axis filters over some trajectories. However, some difficulties
were encountered in the estimation of angular velocity for the trajectory of Case 2.
This may have been due in part to sinusoidal temporal behavior of the true pitch
angle since it was generally observed, as in the case of translational motion, that

the extended Kalman filter performed poorly in the estimation of time derivatives of
sinusoidally varying states.

Published results using the angle-axis parameterization in recursive motion and
structure estimation are not available in the literature. Modelling rotational motion
as a first-order Gauss-Markov process in the orientation vector and its time deriva-
tives led not only to a simple implementation, but also performance which was as
least as good as the other two parameterizations for all trajectories considered. Al-
though this filter has very efficient time propagation due to the linear dynamic model,
computation of the measurement model Jacobian is slightly more complex than the
other two, and an occasional reset of the orientation vector and its time derivatives
is required to maintain the rotation angle to within +x.

In all three filters, there are four possible orientations for the object-centred ref-
erence frame with respect to the three special feature points selected at initialization.
When structure was initialized with all zeros, for example, convergence of structure
estimates was observed in one of the four possible orientations of the object-centred
frame, the particular one of the four being dependent on initial filter transients. In
simulations with this object and the given measurement noise levels it was found that
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the simple single-frame initialization provided sufficient initial accuracy for structure
to converge in the object-centred frame selected at initialization, although this need
not always be the case. Reliable convergence of structure estimates to true structural
parameters was observed during all simulations, with the quaternion filter giving
slightly noisier results that the angle-axis and roll-pitch-yaw filters. All structural
parameters are modelled as constants and hence are not driven by process noise. As
a result, the filter gains for structure states eventually become small as information
is accumulated in the filter. Decoupling of structure states from the filters is possible
and recommended after predefined confidence levels have been attained.

Several important factors, such as the expected nature of object motion, compu-
tational complexity, and required accuracy, must be considered when selecting a pa-
rameterization of rotational motion for any particular application. Prior information
concerning motion constraints, for example the planar motion problem of Chapter 2,
may clearly indicate appropriate and often simplified parameterizations and dynamic
models. For more general motion, however, results of this investigation suggest that
the angle-axis filter may provide a computationally efficient and sufficiently accurate
means to recover both structure and motion of a manoeuvring object.

Research leading to this report has focused on only a single component of the
overall motion analysis problem. Future work will investigate further components of
this problem in the context of a hierarchical structure such as that proposed in Sec-
tion 1.2. Generally, the proposed system is composed of three coupled multi-target
tracking systems with increasing levels of complexity: multiple features are tracked
in the image planes; multiple features are tracked in three-dimensions; and multi-
ple objects, composed of multiple features, are tracked in three dimensions with six
degrees-of-freedom. In such a system, occlusion, and temporal and spatial correspon-

dence as well as rigid object segmentation represent challenging problems which have
received little attention in the literature.

Another primary consideration in future work involves further evaluation of the ex-
tended Kalman filtering approach in comparison to other nonlinear observers. Adap-
tive extended Kalman filtering, Lyapunov methods, transformation to nonlinear ob-
server canonical form, nonlinear map inversion, and sliding mode observers are rep-
resentative of recently proposed methods which may lead to more robust observers
for recovery of object motion and structure from multiple-camera image sequences.
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Appendix A

Parameterizations of Relative
Orientation

Chapters 2 and 3 introduced notation and defined a change-of-basis transformation
I2 such that a vector ro in Fp is transformed to [ro)g, its representation in Fg,
through the expression
[l‘o]E = Igl‘o. (A.l)
As before, the object-centred frame, Fp, is defined by a point Op, the origin of Fp,
and a right-handed, ordered, orthonormal basis set {io,jo,ko}. Equivalent notation
also applies to the earth-fixed frame Fg. In order to focus on relative orientation
only, it is assumed throughout this appendix that Op and Og are coincedent. In this
case,
[l'O]E =TE (A.2)
since the translation vector from Fg to Fp is zero. The orthogonal transformation I
belongs to the three-dimensional rotation group, denoted here by R3, for which there
are about eight commonly used representations [67]. This appendix provides a tutorial
on three such representations: the Euler angle-axis, quaternion (sometimes called
Euler parameters, or Rodriquez-Hamilton parameters), and roll-pitch-yaw (sometimes
called Euler angles) parameterizations. The material presented in this appendix draws
primarily from references [67]-[70], [82]-[84].

The problem of parameterizing the group R; has been of interest since 1776,
when Euler first showed that this group is itself a three-dimensional manifold. Euler
observed that the general displacement of a rigid body with one fixed point is a
rotation about an axis through that point (Euler’s theorem). In the present context,
Euler’s theorem states that Fp is related to Fg by a rigid rotation of IR? about an
axis through their common origin. Since R; is known to be three-dimensional, the
rotational degrees-of-freedom in IR® are at most three. However, it is topologically
impossible to have a global and nonsingular three-dimensional parameterization of R3,
[67). In fact, Hopf showed in 1940 that the minimum number of parameters required
to represent R3 in a one-to-one global manner is five, (see [67]). The quaternion
representation, a four-dimensional parameterization of Rj, results in a two-to-one
mapping of IR*onto Rj3, and is often considered sufficient for most practical purposes.
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It is important to appreciate a rather subtle distinction between two interpreta-
tions of operations performed by elements of R3. One interpretation treats an element
R € Rj; as a rotation operator which relates two vectors, say x and y with ||x]| = |ly||,
in the same bases according to y = Rx. In this case, R rotates the vector x into a
new vector y. The second interpretation treats an element I¢ € R; as an orthogonal
(or identity, hence the use of ‘I') change-of-basis transformation which operates on a
vector rg expressed with respect to Fp to obtain a representation for the same vector,
ra, expressed with respect to F, according to r, = Irs. The main point is that
vectors r; and r, represent the same physical entity, while the vectors x and y in
general do not. It is often the case that “rotation” is used interchangeably to im-
ply either interpretation. This appendix deals exclusively with the “change-of-bases
transformation” interpretation.

This review first introduces fundamental properties of rotation matrices in Sec-
tion A.l, treats the Euler angle-axis parameterization in Section A.2, quaternions in
Section A.3, and the roll-pitch-yaw representation in Section A.4.

A.1 Fundamental Properties of 19

The following list states some fundamental and well-known properties of the ma-
trix I representing the change-of-bases transformation from Fo to FE.

Property 1 The matrix I€ is orthogonal with determinant +1.

Property 2 The matrix I has eigenvalues {+1,e*77}. Euler’s axis of rotation of I
is parallel to the (normalized) eigenvector, £, corresponding to the eigenvalue
+1, while the angle of rotation, v, about £ is measured with positive sense from
Fg to Fo according to the right-hand-rule about £.

Property 3 The matrix I can be written as

12 = [liols Gole Mols ]
= [lielo Gelo [kelo ]T, (A.3)

where superscript ‘T’ denotes transposition.

Property 4 The angular velocity of Fo with respect to Fg expressed in Fg, denoted
[w2]Eg, can be computed by noting that

5 = [Wele x [iolE,
dlole ~ fwgle x fols, (A1)
ﬂ:’?—]ﬁ = [nggx(kols,
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which gives .

Ig‘ = [Wgﬂ.;lg, (A.5)
where []* is the matrix cross-product operator defined in terms of components
of a vector £ = [£;,&3, &) as

Al 0 6 &
8= & 0 -&4|. (A.6)
-6 &L 0
Rearranging (A.5) gives
oL =12 (12)" = 1215
[WElE = E( E) =IEls. (A.7)
The matrix (tensor) [wQ]% is basis-dependent and is transformed to Fo accord-
ing to
welh = IEwELE
= IBIRIGIE (A-8)
= IGIg

Property 1 follows from the fact that both Fo and Fg are right-handed or-
thonormal triads. Property 2 then follows imediately from Property 1. Property
3 is derived by considering identities of the form [io)e = IQ[io]o and noting that
liolo = [1,0,0]T. Property 4 is fundamental in derivations of relationships between
angular velocity and the selected parameter set and their time derivatives.

A.2 Euler Angle-Axis Parameterization

According to Euler’s theorem, a rigid rotation of IR%is completely defined by a unit
vector ¢ which specifies the axis of the basis transformation operator I, and an angle
~ through which the coordinate system is rotated about £. This is a four-parameter
representation with one quadratic constraint. Note that £ is invariant under the basis
transformation and hence the subscript specifying the frame to which ¢ is referenced
has been dropped.

Given an angle v and axis £ the corresponding matrix I2 can be determined by
the following argument. Suppose at t = 0 reference frames Fp and Fg are aligned
so that I2(t = 0) = I, the 3 x 3 identity matrix. At time ¢ = 1, the orientation of
reference frame Fy relative to FE is given by a rotation about ¢ in Fg through an
angle 4. For the purposes of deriving IZ(¢ = 1), the motion during this time interval
can be modelled with constant angular velocity (w@]g = 7€. Integration of (A.5)
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from ¢t = 0 to ¢t = 1 with initial condition IZ(t = 0) = I immediately gives the
matrix exponential representation

IB(t=1)=exp (), (A9)
or, with
¢ 2+, (A.10)
the basis transformation in terms of ¢ is
I3(6) = exp (¢) . (A.11)

Equation (A.11) is a three-dimensional parameterization in which £ is often called the
orientation vector. This representation has been used extensively by Faugeras [40],
for example. The matrix cross product operator, (-)!, yields a 3 x 3 skew symmetric
matrix. As suggested by (A.9), every 3 x 3 rotation matrix can be expressed as an
exponential function of some 3 x 3 skew symmetric matrix, which has led to elegant
studies in terms of Lie algebra as an approach to resolving the problem of rotation
and orientation representations, [68].

By applying the well-known Cayley-Hamilton theorem to the characteristic equa-
tion of the skew symmetric matrix £, and using the fact that £ is a unit vector, the
following important identity is obtained:

@) +a=o. (A.12)

A result of (A.12) is that the highest order of any power series of £! is two. Conse-
quently, (A.9) can be written as

21 = 3= (@)

=7
= L +sin(1)@ +[1 - cos(7)] (&) (A.13)
With the identity .
the result in Equation (A.13) can also be written as
12(7,€) = cos(7)Ls + sin(7)@ + [1 — cos(7))éET- (A.15)

The angle of rotation, v, can be obtained from I$ either by using Eigen analysis
with Property 2 of Section A.1 and recalling that the trace of a matrix equals the sum
of its eigenvalues, or by noting that in (A.13) £ is skew symmetric and® Tr{(£)?} =
—2. In either case,

cos(7) = %(Tr{lg} -1). (A.16)

}The notation Tr{A} denotes the trace of the matrix A.
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In addition, the axis £ may be obtained from (A.13) with

1
&= 5 (12 - (19)7). (A.17)

Because a rotation about £ through an angle v is equivalent to a rotation about —¢
through an angle —v, the angle of rotation may be restricted to the interval 0 <y < x
for unique inversion of the cosine in (A.16). In this case, £ computed from (A.17) to-
gether with ~ define the transformation I§. However, numerical difficulties may arise
when I is symmetric (y = 0, ) for which the expression in (A.17) is of indetermi-
nate form (0/0) indicating the mathematical singularities of this parameterization;
when v = 0 the axis £ is undefined and when v = 7 the sign of £ is arbitrary.

It is important to note the difference between the axis, £, of the basis transforma-
tion operator, I2, and what is commonly called the “axis of rotation” or instantaneous

angular velocity of the object w(t) = [w@]£(t). In the following development, all time
derivatives are with respect to an observer in the earth-fixed frame, and, although

the subscript ‘E’ is omitted, £ is expressed in Fg. Several identities are required in
the derivation of w, and are also used to write ¥ and £ in terms of w:

1. Because £ is by definition a unit vector,
7€ = 1, and (A.18)
£¢ = gé=o, (A.19)
which means that ¢ is always orthogonal to its time derivative.

2. For any vector a, f x (€ x a) is collinear with £ and hence

Ex(Ex(Exa)=0. (A.20)
In terms of matrix cross product operators, (A.20) is written as
aera=o. (A-21)
3. The set {¢, f , E‘f } forms a right-handed orthogonal triad and hence
FAE = 0, and (A.22)
&8¢ = & (A.23)
Similar identities can be applied to various combinations of the three elements
of this triad.
4. Two standard results from vector analysis give, for any a,b,c € IR?,
ax(bxc) = a’cb—a’be, and
(axb)xc = (baT —abT)ec. (A.24)
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Substitution of (A.13) into (A.7) followed by repeated applications of identities
(A.12) and (A.21) results in

wh= 38 +sin g + (1 - cosn) (8 - £8). (A.25)

All terms in (A.25) are cross product operators. With identities (A.24) and using the
obvious result that £!¢ = 0, the following result holds for any vector ¢ € IR}

(88 -Ea)c = exxa-ExExo

= -8 (A.26)
= (Ex€)xe,
which implies that
(e¢'-€a) = (ee)". (A21)

This result allows the cross product operators of {A.25) to be removed which gives,

w=§€ + sin'yf+ (1- cos7)§_'£_ (A.28)

Equation (A.28) demonstrates that the angular velocity has components on three
orthogonal axis £, E, and f‘{

Multiplying both sides of (A.28) on the left by £7 and using identities (A.22) and
its counterparts immediately gives

4=w. (A.29)
Multiplying both sides of (A.28) on the left by & and using identity (A.23) gives
Ew = — (1~ cos(7)) € + sin(7)E%. (A-30)

Muitiplying both sides of (A.30) on the left by £! and again using identity (A.23)
gives . .

§8w = —sin(7)§ — (1 - cos(7)) £%. (A.31)
Equations (A.30) and (A.31) can be treated as two equations in the two unknowns {

and @€. Solving (A.30) for the quantity & and substituting the result into (A.30),
followed by algebraic manipulation and the use of standard trigonometric identities

E=-g{ese(3) @) (A2

Equations (A.29) and (A.32) together define the relationship between the time deriva-
tive of the orientation vector and angular velocity,

§= [ggr _ .12.@ - IKT"cot <"—§ﬂ) ({1)’] w. (A.33)
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The complexity of this expression clearly indicates the difficulty of implementing an
extended Kalman filter with the angle-axis parameterization if temporal behavior is
modelled directly in terms of angular velocity.

A.3 Quaternion Parameterization

In order to extend the operations of three-dimensional vector algebra to include
multiplication and division, Hamilton (1843) introduced an algebra for four-dimensional
numbers, or quaternions. The objective of this section is to provide an introduction
to quaternion calculus with emphasis on their use in representing change-of-basis
transformations. Results of the previous section on the Euler angle-axis parameteri-
zation will play a major role in the following derivations. Branets and Shmyglevski
[83] present a very detailed treatment of the application of quaternions to rigid body
rotation problems and provide an elegant interpretation of rotation in terms of spher-
icai geometry. Hughes [84] treats several parameterizations, including quaternions, in
applications to attitude dynamics.

A quaternion [29}-[37] [65]-[70], [83], [84], is a hypercomplex number which is
expressed in terms of basis elements consisting of the real number +1, and three
imaginary units i, j, k, which satisfy

i2=j2=k2=—1,

ij=—ji =k,
jk=—kj=i, and (A.34)
ki =—ik=3j.
A quaternion, q can be written? as
@
q= Z: = qui + @ + G5k + ¢u. (A.35)
94

Quaternions can be viewed as containing the real numbers [0,0,0,a)” with the real
unit 1, the complex numbers [b,0, 0, a)7 with the two units 1 and 4, and the vectors
[b,c,d,0]T in three-dimensional space. Some additional notation is required for de-
velopments of this section. Both quaternions and vectors are represented by bold
face lower-case letters. As before, matrices are represented by bold upper-case letters
(with the exception of matrix cross product operators). The vector part of a quater-
nion q is written as vect(q) = g1, g2, ¢3)7 while the real or scalar part of q is denoted

3Some authors place the scalar quaternion element, ¢, in the first position while others place the
scalar element in the fourth position, as is the case here, when representing the quaternion in vector
form.
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by scal(q) = g¢. With this notation,

q = vect(q) + scal(q). (A.36)

A quaternion formed from a vectorr € R® by adding a zero scalar part will be denoted
by quat(r).

Addition of quaternions and their multiplication by a scalar (which can also be
viewed as a quaternion) are performed in the same way as in an ordinary vector space.
Quaternion multiplication, which is denoted here with the symbol ‘o’, is defined in
terms of the products of basis elements shown in (A.34). Quaternion multiplication
is associative, and distributive with respect to addition, but it is noncommutative
which is evident from the last three rows of (A.34), i.e. ij # ji for example. For any
quaternion q, the conjugate, q*, of q is defined as

q . vect(q) + scal(q), (A.37)

and the norm is defined as the Euclidean length of the 4-vector representing gq:

lal & Ve+ai+dad+dl, (A.38)
= Vqogq’, (A.39)

where the second equation above follows from the rules of multiplication given in
(A.34). Provided ||q|l # 0, the inverse of q is

-1 é qQ
llqlf?’

and satisfies qo q~! = q~' 0 q = 1. For any quaternion q, the corresponding unit
quaternion q is given by

(A.40)

-4 q

qQ= 4

lall’

and note that G—! = @*. The set of unit quaternions can be placed in a two-to-one
correspondence with elements of the three dimensional rotation matrices.

(A.41)

In Equation (A.13), the transformation from Fo to Fg was written as

12 = Is + sin(7)@ + [1 — cos(7)] (&) (A.42)
Using the familiar double-angle formulas
sin(y) = 2ms(%)sin(%), and (A.43)
cos(7) = cos”(3) - sin’(3) (A.44)
= 1- 2sin’(%) (A.45)
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in (A.42) gives

)\ 7 Yl ek ?
2 =1y~ 2c08(7) [- snn(§)£] +2 ([[- sm(E){] ) . (A.46)
The set of four parameters [T, ¢]T, where

n 2 -sin(3)

e 2 cos(-;,-) (A47)

are called Euler Parameters [84] and can be identified with the unit quaternion

a=1[",¢". (A.48)
With
q = |lqll(n + ), (A.49)

substitution of (A.47) into (A.46) gives the following matrix representation for I in
terms of the elements of a quaternion q:

;] [d-d-d+ad  2Ann+) 2(9193 - ¢294)
@)= jqp| 2nu-ow) -drd-d+ad  2anes+ag)
Angs + ) 2Apss—@g) -6 -a+d3+ad
(A.50)
It can be verified by direct computation, using the miultiplication rules in (A.34),

that for any vector r, the representation of r in Fg can be obtained from its repre-
sentation in Fp according to

re = Ig(q)ro
= vect {q" o quat(rg)o q}
= vect{q" o quat(rp)o g} (A.51)
This property of quaternion calculus is evtremely useful when multiple consecutive

transformations (or rotations) must be performed as in the roll-pitch-yaw formulation
which will be demonstrated in Section A 4.

Temporal behavior of the unit quaternion §(t) can be obtained through differen-
tiation of 7 and € in (A.47) and the use of results in Equations (A.29) and (A.32) of
Section 3.5.1. With some algebraic manipulation, one easily obtains

1
. — ]
n = -3 (17 + eh) w, and (A.52)
é = —%qu, (A.53)
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where w = [W@]g = [w), wy, w3)7 is, as before, the angular velocity vector of Fp with
respect to Fg expressed in 7g. Two equivalent expressions for q(t) are then given by
using (A.48) in (A.52) and (A.53):

(L.; = g—g-w, and (A.54)
q = Qw(t)lq(t), (A.55)
where
" g« -G @
99 _ 11 @& @ -a d A56
ow 2l -@ @& a0 |’ an (A.56)
G @2 ¢
0 —W3 wr —w
i 1 W3 0 —Wwy; —wn
n[W] = § —w, w; 0 —ws (A.57)

un wa w3 0

Both (A.56) and (A.57) are required in the extended Kalman filtering equations.

With constant angular velocity, the solution of (A.55) with initial conditions given
as q(to) is simply
q(t) = exp[£2 - (t — t0)] q(to)- (A.58)

Note that 2 is skew symmetric and, since the matrix exponential of a skew symmetric
is always orthogonal, time propagation of the quaternion in (A.58) with unit length
is maintained. It can be verified by direct computation that

1
Q= ||’ L, (A.59)

which implies that the highest power of §) in a power series is one. Expansion of
(A.58) followed by repeated application of (A.59) gives

q(t) = |cos([|wli(t - to)/2) L + I-%'—Itﬁn(ll""ll(t-to)ﬂ)n q(to)- (A.60)

Equation (A.60) is only valid when w is constant. Closed form solutions for §(t) are
also available [34] for rotation with constant precession.

A.4 Roll-Pitch-Yaw Parameterization

The roll-pitch-yaw representation [38, 63, 82] is a particular case of an Euler angle
parameterization of the three-dimensional rotation group. The roll, pitch, and yaw
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angles, denoted ¢, 8, and 1, respectively, define an ordered sequence of three plane
rotations which can be used to express the basis transformation I as

I = exp(ve}) exp(e}) exp(ge}), (A.61)

where e;,t = 1,2, 3, are the standard basis vectors of IR> Expanding the exponentials
with (A.13) gives the three plane rotations,

1 0 0
exp(gel) 0 cos(¢) —sin(¢)],
| 0 sin(¢) cos(¢)
[ cos(8) 0 sin(6) ]
exp(fel) = 0 1 0 |, and
| —sin(@) 0 cos(f)

[ cos(y) —sin(y) O ]

(A.62)

exp(ye}) = | sin(y) cos() O
| 0 0 1

The angles ¢, 8, and ¥ have positive sense defined by the right hand rule about their
respective rotation axis. Specifically, the rotation from Fg to Fo is carried out by the
following sequence:

1. rotate about kg by the yaw angle ¢;
2. rotate about the axis [~ sin(¢), cos(1), 0] by the pitch angle 8; and

3. rotate about the axis [cos(y) cos(8), sin(1) cos(8), — sin(8)]L by the roll angle ¢.

In order to avoid ambiguities in these angles their ranges are often limited to

—

(A.63)

—

INA A
D
A
'lll
B
[~ 9

The angular velocity of Fp with respect to Fg expressed in Fg, w = [wQ]E, is
given in terms of the time derivatives of roll, pitch, and yaw angles as

¢
[Wg]‘:; = JRPY [ 0 } s (A64)
¥

where

sin(y) cos(6)  cos(¢) O

[ cos(¢)cos(6) —sin(yp) 0 ]
Jrpy = (A.65)
—sin(0) 0 1
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contains the three rotational axis (from items 1,2, and 3 above) as its columns (which
follows from the vector addition property of angular velocity). The mathematical
singularities, § = +x/2, characterize the orientations where the determinant of the
Jacobian matrix det[Jrpy] = — cos(6) vanishes. At @ = x/2, the roll and yaw angles
are indistinguishable in the sense that the rotation matrix can be written as

. 0 sin(¢—-v) cos(¢— )
1200 = 3) = (1) 008(46- ¥) — Sin(: -v¥) |, (A.66)

and hence depends only on 8§ = x/2 and the difference ¢ — 9.

The sequence of roll, pitch and yaw transformations can be represented in terms
of corresponding unit quaterions,

—sin(¢/2) 0 0
_ A 0 _ & | —sin(8/2) N ]
Qe = 0 y Qo = 0 y Qv = | _ sin(/2) |° (A.67)
cos(4/2) cos(6/2) cos(0/2)
according to
Prg = I%ro
= exp(vel) [exp(del) (exp(gel)ro))
= vect {q;, 0z 0 {yoquat(ro)oqeoqeo q,,,} . (A.68)

A single equivalent quaternion representing the basis transformation can be then
defined as

~ a _ _ -

Gequiv = G4 © Go © Gy- (A.69)
Noting that multiplication and conjugation rules for quaternions imply that

Uqiv = QoG oq (A.70)

the transformation operation can be written as

I9ro = vect {q;qm, o quat(ro) o q,q“;,,} . (A.71)

The Euler axis-angle representation corresponding to a particular set of roll, pitch
and yaw angles can then easily be extracted from the equivalent quaternion.

By forming the product of the three plane rotations in (A.61) and defining the
elements of I as ¢;;, the following algorithm can be used to extract a valid set of roll
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(¢), pitch (8), and yaw (1) angles:

Check for singularity with e € 1
if ((tn] < €) & (|| < €)),
¢ = 0.0;
Y = —atan2(fy,, {;);
if ([31 > 00),
0=x/2
else
0=—-x/2
else
6 = atan2(£s, bss);
4
&, + 6,

¥ = atan2({y, 4y);
end.

8 = atan

A13

(A.72)

Functions atan2(y, z) and atan(z) return, respectively, the four-quadrant arctangent
of y/z and the two-quadrant arctangent of z, and are available in most programming
languages. Note that in the singular orientations (§ = %), the roll angle is arbitrarily

set to zero.
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Appendix B
Kalman Filtering Review

This appendix provides a review and discussion of the linear discrete-time Kalman
filter, the discrete-time extended Kalman filter, and the continuous-discrete Kalman
filter. Local iterations which lead to the iterated extended Kalman filter are also
introduced. Applications of Kalman filtering to trajectory estimation problems has
received widespread attention since the introduction of Kalman’s sequential state
estimation technique [60]. Chang and Tabaczynski {62] give a thorough discussion of
many important aspects of Kalman filtering approaches for target tracking problems.
In general, the trajectory estimation problem is one of nonlinear estimation for which
the optimal (conditional mean) nonlinear estimator cannot be realized with a finite-
dimensional implementation. Furthermore, the mathematical model representing the
target trajectory is seldom exact. Consequently, most practical implementations of
nonlinear tracking filters are suboptimal.

The Extended Kalman Filter (EKF) is a suboptimal approach which applies lin-
ear Kalman filtering theory to a linear approximation of the nonlinear problem. A
rigorous development of filtering equations requires the use of stochastic integral and
differential equations and mathematical expectation conditioned on o-algebras gener-
ated by the observation process, and formulates solutions through Ito calculus ([74, 81,
for example]). In applications, however, the somewhat more intuitive approaches us-
ing “formal” manipulations of white noise processes and expectation conditioned on
sets of observations are often preferred [62], [65], [23]-[44]. This approach will also
be taken in the following review of the EKF formulation. The following subsections
draw primarily from [74]-[78].

In many cases, the target tracking problem can be formulated in terms of discrete-
time system (plant) and measurement models. In the case of image-based tracking,
measurements are taken from image frames which arrive at discrete instants in time.
The measurement model for this class of problems, therefore, is always discrete. In
addition, the perspective projection image formation model results in a nonlinear
measurement model. If the system model is continuous in time, it can often be
discretized, or the “continuous-discrete” [74] form of the filter can be employed.

Notation and filtering equations for the discrete-time linear state estimation prob-
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lem are reviewed in Section B.1, with extensions to approximate filters for the nonlin-
ear discrete-time problem in Section B.2 and the continuous-discrete form of extended
Kalman filtering in Section B.3. Finally, Section B.4 describes local iterations which
enhance filter performance in the presence of nonlinear measurement models.

B.1 Discrete-Time Kalman Filter

Consider a linear discrete-time dynamical system model given by
x(k + 1) = ®(k)x(k) + B(k)u(k) + G(k)w(k), (B.1)

where k ~ an integer valued sample index, time t = kT where T is the sample period,
and
x €IR® ~ vector of state variables,

u €IR' ~ deterministic input vector,
w €IR? ~ zero mean, white, Gaussian, system noise
process with covariance matrix Q(k),
® ¢ IR™" state transition matrix, (B.2)
B €IR"*? ~ input matrix mapping the input vector
u into the state space, and
G €IR™? ~ matrix mapping the noise process
w into the state space.

2

The linear, discrete-time measurement model is given by
z(k) = H(k)x(k) + v(k), (B.3)
where

z EIR™ ~ vector of observations or measurements,
H € IR™™ ~ measurement matrix relating state variables
to measurement variables, and (B.4)
v EIR™ ~ zero mean, white, Gaussian, measurement noise
process with covariance matrix R(k).

With definitions (B.2) and (B.4), the system and measurement noise processes
satisfy

E{wk)} =0  £{w(k)wT(j)} = Q(k)és; (B.5)
E{v(k)}=0  E{v(kV'(j)} = R(k)és;,

where £{-} denotes expectation and §;; is the Kronecker delta product. In the present
analysis, w and v are also assumed to be uncorrelated, i.e.,

E{wkvT(5)} =0, (B.6)
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for all integers j and k.

The expectation of the state x at time step k conditioned on all measurements up
to time step j is denoted by

x(klj) £ € {x(k)|Z;} (B.7)

where Z; = {2z(i), = 1,2,---,j} represents the set of all measurements up to and
including the jth time step. It is precisely the conditional mean in (B.7), usually with
j = k, which the optimal filter is required to estimate. In the case of linear system and
measurement models, assuming exact mathematical models and characterization of
the noise processes, the Kalman filter provides a recursive “formula” for this optimal
estimate. It is well known that in this case the Kalman filter provides an unbiased,
minimum variance, consistent estimate x(k|k), which is also the maximum likelihood
estimate of the true state x(k).

The error between the filter state and the true state is given by

%(klj) 2 x(k) - x(klj), (B8)

with covariance matrix A
P(klj) £ £ {x(k|j)%T (kls)}- (B.9)
The development of the filtering equations assumes that the true initial state of
the system x(0) ~ N(Xq,Po)!. Throughout this work, it is assumed that an initial

estimate, (0] —1), of the mean of the true initial state, £{x(0)}, is available just prior

to taking initial measurements, z(0). In theory, then, the recursive filter is initialized
with

%(0| - 1) = £{x(0)} = %o, and
P(O|-1) = £{x(0|-1)%"(0]-1)} £ P.. (B.10)

In practice, however, the filter is often initialized with an unbiased estimator of %o
for which some a priori statistical information is known of the form

(0] — 1) ~ N(%o, Po). (B.11)

After k — 1 measurements have been taken, the recursive equations of the linear
Kalman filter are summarized as follows:

1. State and covariance prediction (or time update) -
x(klk—1) = ®(k-1)x(k-1jk—-1)+ B(k—1)u(k—1), and
P(klk-1) = &k -1)Pk-1]k-1)®T(k-1)
+ G(k - 1)Q(k - 1)GT(k - 1). (B.12)

1The notation N(m, C) denotes a normally distributed random variable with mean m and co-
variance C.
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2. Measurement update computed following the kth measurement -
K(k) = P(klk—1)HT(k)
[H(k)P(kk - HT(R) + R(K)] ", (B.13)
x(kjk) = %x(k|k - 1) + K(k)[z(k) — H(k)X(k|k — 1)}, and
P(klk) = [I-K(k)H(k)]|P(klk~1).

An equivalent form, known as the “information form”, of the measurement update
stage of the filter, which is often used in place of (B.13), is given by

P! (k|k) P-'(k|k — 1) + HT (k)R (k)H(k),
K(k) = P(k|k)HT(k)R™!(k), and (B.14)
x(klk) = x(klk —1)+ K(k)[z(k) — H(k)x(k|k - 1)].

In any implementation of the above filtering equations, the following parameters
must be specified in addition to the measurement sequence: 1) an initial state estimate
%(0| —1); 2) an estimate of the initial error covariance Py; 3) the system or plant noise
covariances Q(k); and 4) the measurement or observation noise covariances R(k).
The initial state estimate and its error covariance matrix often result from a batch
estimation technique applied to the first few image frames (30, 32, 38]. In simulations,
the measurement noise covariance is known, however, in applications to real imagery,
determination of the actual measurement noise is difficult since this involves modeling
of various sources of error in the imaging system and feature detection algorithms.
Specification of the system noise covariance Q(k) is seldom exact in object tracking
problems since unmodeled dynamics resulting from manoeuvring object trajectories
are difficult to quantify. As a result, Q(k) together with the matrix G(k) are often
treated as “tuning” parameters which are selected to give satisfactory convergent
bebavior of the filter over a wide range of applications.

In Equation (B.12) the previous state estimate X(k— 1|k —1) is propagated in time
between measurements according to the noise-free dynamic system model to obtain
a state estimate x(k|k — 1) just prior to a measurement event. Once measurements
are available, the state estimate is corrected in (B.13) by an amount proportional to
the current error [z(k) — H(k)X(k|k — 1)] called the innovation. The proportionality
factor K(k) is called the Kalman gain which, from (B.14), is proportional to the un-
certainty in the state estimate P(k|k) and inversely proportional to the measurement
uncertainty R(k). The system noise covariance Q(k) which is mapped to the state
space through G(k) adds a positive definite matrix to the filter error covariance ma-
trix during each time update (B.12) which reflects a “diffusion” of confidence in the
state estimate over the time interval between measurements. In the absence of system
noise (Q = 0) the error covariance and gain matrices may decreases monotonically in
the presence of measurement data, depending on the state transition matrix through
the similarity transformation in (B.12), i.e., consider (B.14) for the scalar case with
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H = 1. In this case, the filter eventually neglects further measurements and operates
solely on the system model which, with Q = 0, is assumed to be exact.

B.2 Discrete-Time Extended Kalman Filter

The problem of estimating the state of a nonlinear system can be formulated as an
extension of mean square estimation to dynamic systems. Formally, the method for
deriving the fundamental equations of the optimal filter is quite similar to that used to
design the optimal linear filter (Kalman filter) for linear systems with Gaussian noise
processes. However, in the nonlinear case, the explicit analytical solution cannot, in
general, be found and hence approximate numerical solutions are often considered.

In the case of linear systems, all of the variables and processes involved (states,
noises, measurements, estimates, and errors) are usually assumed to be normally
distributed. Therefore, mean values and covariance matrices are “sufficient statistics.”
In the nonlinear case, on the other hand, the state, observation, and estimation
processes are not, in general, normally distributed even if the input noise sources
are. As a result, the entire probability distribution may be required for optimal filter
design. In addition, the filter performance and parameters are often dependent on the
filter estimate so that it is even more difficult to obtain bounds for filter performance.

Consider the nonlinear system model given by

x(k + 1) = f[x(k)] + B(k)u(k) + g[x(k)jw(k), (B.15)
and the nonlinear measurement model
z(k) = h[x(k)] + v(k), (B.16)

where f : R* — R, g : R* — (R"*?), and h : R* — R™ are, in general, nonlinear
functions of the state vector x(k). The mapping of the input vector u to the state
space may also be nonlinear, but this case will not be considered here and, in any
event, does not alter the filter structure significantly.

The Extended Kalman Filter (EKF) is based on the concept that if the nonlinear-
ities in f and h are sufficiently smooth, these functions can be expanded in a Taylor
series and approximated by linear terms. Furthermore, if the filter works properly, it
will provide a reasonable estimate of the conditional mean £{x(k)|Z,} which is what
the optimal filter is required to estimate. For this reason, the Taylor series expansion
of nonlinear terms is formulated about the most recent state estimate. The primary

consequence of this “feedback” of the estimate into the model is that the EKF is a
nonlinear estimation technique.

With the definitions
a Ofx]
®(k) = Bx , (B.17)

x=2(k|k)
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G(k) 2 glx(k|k)), and (B.18)
HE) 2 hix] , B.19
( ) ax x=%(kjk-1) ( )

and neglecting all terms beyond first order in the Taylor series expansions, approxi-
mate linear system and measurement models can be written, respectively, as

x(k+1) = ®(k)x(k)+ (k) + G(k)w(k), and (B.20)
z(k) = H(k)x(k) + y(k) + v(k), (B.21)

where
a(k) £ f[x(k|k)] — ®(k)x(k|k) + B(k)u(k), and (B.22)
y(k) £  h[&(k|k - 1)] - H(k)x(k|k - 1). (B.23)

The EKF equations are formulated, essentially, as the standard Kalman filtering
equations for the linear system given by (B.17)-(B.23).

After k—1 measurements have been taken, the recursive equations of the extended
Kalman filter are summarized as follows:

1. State and covariance prediction (or time update) -
x(klk—-1) = f[x(k— 1}k —1)] + B(k)u(k), and (B.24)
Pklk—1) = &k -1)P(k -1k -1)®T(k-1)
+ G(k - 1)Q(k - 1)GT(k - 1).

2. Measurement update computed following the kth measurement -
K(k) = P(klk~1)HT(k)
[H(RP(kIE - DETR) + RK)] (B.25)
x(klk) = x(k|k—1)+K(k) {z(k) — h[x(k]k —1)]}, and
P(kk) = [@-K(k)H(k)]P(k|k ~1).

The accent on P has been used to emphasize the fact that the covariance estimate is
dependent on the filter estimate.

B.3 Continuous-Discrete Extended
Kalman Filter

In Section B.2, both the system and measurement models were assumed to be
available in discrete-time form. In general, however, the system model is often devel-

oped in continuous-time form, while measurements are taken at discrete instants in
time.
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Consider a continuous-time system which is described by the stochastic differential
equation

x(t) = f(x,t) + G(t)w(t), t 20, x(0) ~ N(xo,Po), (B.26)
where w(t) is a zero-mean white Gaussian noise process with
£ {w(tyw?(r)} = Q()é(t - 7), (B.27)

and §(t — 7) is the Dirac-delta function. The system model may also depend on a de-
terministic input vector u(t). To simplify the notation, this dependence is not shown
explicitly here and, in any event, does not alter the filter structure significantly. As
in the discrete-time case of Section B.2, the nonlinear system model of (B.26) is lin-
earized approximately through a first-order Taylor series expansion about a nominal
trajectory x(t) which satisfies

x(t) = f(%,t), t>0. (B.28)
The state perturbation is defined as
%(t) 2 x(t) — x(t), (B.29)
which satisfies the stochastic differential equation

x(t) = f(x,t)—f(x,t) + G(t)w(t)

~ Flt;x]x(t) + G(t)w(t), (B.30)
with the initial condition %(0) ~ N(%o — %(0), Po) and where
. o Of(x,t)
Flt;x] & —= (B.31)
ox x=%

It should be noted that F is evaluated at particular values of X(t) and hence is a
function of t only. Specifically, as in the discrete-time case of Section B.2, the nominal

trajectory is taken as the most recent state estimate which, for the linearized system
model, is given by

x(ty) = x(k|k). (B.32)
In principle, equation (B.30) can be written in discrete-time form as
%(k + 1) = ®(tayy, ta)x(k) + wa(k + 1), (B.33)
where &(t441,t:) is the state transition matrix which satisfies [74]
PO Pl ),

&(r,7) = L, Vvr, (B.34)
é(ta‘r)é(r’() = 6(‘*()’ vt,1,(,
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and w4(k +1) is a zero-mean, white Gaussian sequence, wy(k+1) ~ N(0,Qq(k +1)),
where

Qu(k +1) = / & (ti41, 7)G(r)Q(r)GT (1) (tin, 7) dr. (B.35)

If F is approximately constant over the interval (t,ti41], where tyyy — 8 = T, the
state transition matrix for each sample interval can be estimated as
®(tr41,ts) = exp(FTo). (B.36)

In general, however, the computation of the state transition matrix is often difficult
and, therefore, replaced by numerical integration of the Riccati covariance equation

[74]
P(tl) = Flt;x(t[ta)]P(2]te)

+ P(t[ta)FT[t; k(t1ta)] + G(£)Q(1)GT(2). (B.37)
The nonlinear, discrete-time measurement model is again given by (B.16) and is
treated in a manner identical to that used in Section B.2. The extended Kalman filter
is then formulated based on the approximate linear perturbation equation (B.30), or
its discrete form (B.33), and the linear approximation of the measurement model
(B.21). However, in this case, the state prediction is computed by integration of the
nonlinear noise-free system differential equation. After k— 1 measurements have been

taken, the recursive equations of the continuous-discrete extended Kalman filter are
summarized as follows:

1. State and covariance prediction (or time update) - Either
t
x(klk=1) = %(k—1jk—1)+ [ " f[%(tlts_1), ] dt and
k=1
A A 2
Pklk—1) = P(k—1k—1)+ [ " Plux(tlh-n))dt, (B39
k-1
where lg[t;x(tlt;,_l)] is defined in (B.37), or equivalently,
x(klk—1) = &(k-1)x(k -1k -1) (B.39)
P(klk—1) = &(k-1)P(k - 1]k - )BT(k — 1) + Qq(k).
2. Measurement update computed following the kth measurement -
K(k) = P(k|k - 1)HT(k)
 [H(R)P(RIE - HHT(K) + R(K)] ™, (B.40)
x(klk) = x(klk—1)+ K(k){z(k) - h[x(k|k - 1)]}, and
P(klk) = [I-K(k)H(k)]P(klk-1).
Again, the accent on P has been used to emphasize the fact that the covariance

estimate is dependent on the filter estimate.
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B.4 Local Iterations

The Iterated Extended Kalman Filter (IEKF) is designed to reduce the effect
of measurement nonlinearities on the performance of the linear filter applied to a
linearized nonlinear system [74, p. 279]. Between observations the conditional mean
and covariance matrix propagate according to the equations of (B.24). Following the
time update of the state and covariance from time step k — 1 to time step k, and with
the kth measurement available, the iteration is initialized with

x(k|k)o = %(k|k — 1). (B.41)

Iterations are carried out on the measurement update equations in (B.25) according
to the following algorithm:

1. Linearize the measurement equations about the current iterate -

oh|[x]
H(k), = —/— , B.42
( ) ox x=2x(k|k)n ( )
2. Compute the Kalman gain -
K(k), = P(klk - VHT(k),
 [H(#)P(klk - DHT (k) + R(¥)] (B.43)

3. Compute the measurement update -

X(klk)nsr = (kik = 1) + K(k)n {2(k) — h[x(k[K)a]
— H(k)n [X(k[k — 1) — %(k|k)n]} - (B.44)

Iteration is terminated when there is no significant change in consecutive iterates.
Then the last iterate, X(k|k)n say, is taken for the estimate x(k|k) and the covariance
matrix is computed based on the linearization about x(k|k)n,

P(klk) = [T - K(k)VH(k)n] P(k]k - 1). (B.45)

The iterative procedure described by (B.42)-(B.44) can be interpreted as a modi-
fied Newton-Raphson search for the conditional mode of the posterior density of the
state estimate given the measurement at time step k, assuming the prior density is
Gaussian [74, pp. 349-351]). The mode of the posterior density is then used for the
conditional mean. In nonlinear problems, these local iterations can be expected to
produce a biased estimate since the mode is not, in general, equivalent to the mean.
However, as the error variance becomes small, so does the bias in this estimate.
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Appendix C
Cramer-Rao Covariance Bounds

The extended Kalman filter is generally a suboptimal state estimation technique.
A natural consideration in any estimation problem is how well the proposed technique
performs when compared to the optimal performance possible. A powerful result
which provides a performance assessment of parameter estimation techniques is the
Cramer-Rao inequality [79]. The following derivation draws from methods outlined
in [61, 62, 74, 79, 80].

Consider a nonlinear discrete-time estimation problem with noise-free system
model

x(k + 1) = f[x(k)] (C.1)
and measurement model
(k) = h{x(k)] + v(k), (c2)

where v(k) ~ N(0,R) and is temporally white. Assume further that some unbiased
a priori statistical information about x(0) is available of the form

Xo ~ N(x(0), Po), (C.3)

where xo and v(k) are independent. The objective is to determine how well x(N),
N >0, can be estimated given the sequence of observations Z},, where

Zi 2 {x0,2(0),2(1),---,2(N)}. (C-4)
Under the stated assumptions of independence and normal distributions, the joint

conditional probability density function of Z} given x(N) can be written, from (C.2)
and (C.3), as

1 ..
PN 2 Pz x(N) = 2—8'*'[2""‘(")], (C.5)
where!
N
A 2 (@2n)Po Y2 [T i2x)™ 3R (k)] (C.6)
=0

1The notation |P| denotes the determinant of P.

DRES-SR-577 UNCLASSIFIED




C.2 UNCLASSIFIED

V[Ziix(N)] £ (%o — %0)"P5 (%0 — %o)
+ g:o[z(k) — #(k)"R(k)[2(k) - 2(k)),  (C.7)
and
% £ £{xo} =x(0), and (C.8)
z(k) S £{z(k)} = hix(k)). (C.9)

The Cramer-Rao lower bound for the error covariance matrix S(N) of an unbiased
estimator X(N) of the state x(N), where the estimate is based on the observation
sequence Z§, is given by

S(N) 2 E{[%(N) — x(N)][X(N) - x(N)|]} = 3I7/(N), (C.10)

where J(N) is Fisher’s information matrix. The matrix inequality S > J-! is equiva-
lent to stating that (S—J 1) is positive semi-definite. In particular, since the diagonal
elements of a positive semi-definite matrix are non-negative, the diagonal elements
of J-1(N) provide the estimation error variance lower bounds for the corresponding
elements of X(N). In the linear system and measurement case, (B.1) and (B.3), the
discrete Kalman filter given by (B.12) and (B.13) provides the minimum variance
unbiased estimate. If the system noise w(k) in (B.1) is zero, then for the linear case

S(N) = P(N|N) = J"Y(N). (C.11)
In the nonlinear EKF formulation, S(N) and P(N|N) are not, in general, equivalent.

Fisher’s information measure on x(N) contained in Z} is given by two equivalent
representations [80, pp. 91-93]:

IN) = s{(gl'z;’;)r (gi‘;;’;) x(N)}, or (C.12)
I(N) = -3{(3_;‘(“;;)";) x(N)}, (C.13)

where the gradient 1n pn/9x(N) is a row vector. The inequality (C.10) with J(N)
expressed as in (C.12) is termed the “Cramer-Rao inequality.”

Taking the logarithm of py in (C.5) yields

Inpy = —InA — -12-\Il[Z,‘v;x(N)]. (C.14)
The gradient of (C.14) is given by the row vector

a]npN _ _ - axo
ax(v) = =% Pl ey
> Tt 1y 0%(k)
+k§l2(k) #(RTR™ (k)5 (C.15)
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Appendix C

Cramer-Rao Covariance Bounds

The extended Kalman filter is generally a suboptimal state estimation technique.
A natural consideration in any estimation problem is how well the proposed technique
performs when compared to the optimal performance possible. A powerful result
which provides a performance assessment of parameter estimation techniques is the
Cramer-Rao inequality [79]. The following derivation draws from methods outlined
in [61, 62, 74, 79, 80).

Consider a nonlinear discrete-time estimation problem with noise-free system
model

x(k + 1) = f[x(k)] (C.1)
and measurement model
z(k) = h[x(k)] + v(k}, (C.2)

where v(k) ~ N(0,R) and is temporally white. Assume further that some unbiased
a priori statistical information about x(0) is available of the form

Xo ~ N(x(0), Pq), (03)

where xo and v(k) are independent. The objective is to determine how well x(N),
N > 0, can be estimated given the sequence of observations Zj,, where

. B
Zy = {x0,2(0),2(1),---,2(N)}. (C4)
Under the stated assumptions of independence and normal distributions, the joint

conditional probability density function of Z} given x(/N) can be written, from (C.2)
and (C.3), as

1 ..
PN = P2y ix(n) = Xe—mznan, (C.5)
where!
N
A £ (@n)Po|'? TTI2m)™? R (K)M?, (C.6)
k=0

1The notation |P| denotes the determinant of P.
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V[Zy;x(N)] & (% - io)TP-'(xo Xo)

+le k) - z(k)'R(k)(z(k) - 2(k)],  (C.7)

and
%0 = &{xo}=x(0), and (C.8)
(k) £ €{z(k)} = h[x(k)). (C.9)

The Cramer-Rao lower bound for the error covariance matrix S(N) of an unbiased
estimator X(V) of the state x(/V), where the estimate is based on the observation
sequence Zy,, is given by

S(N) £ E{[&(N) — x(MIX(N) —x(M)]T} 2 I7(N), (C10)
where J(N) is Fisher’s information matrix. The matrix inequality S > J~! is equiva-
lent to stating that (S—J~1) is positive semi-definite. In particular, since the diagonal
elements of a positive semi-definite matrix are non-negative, the diagonal elements
of J-}(N) provide the estimation error variance lower bounds for the corresponding
elements of X(N). In the linear system and measurement case, (B.1) and (B.3), the
discrete Kalman filter given by (B.12) and (B.13) provides the minimum variance
unbiased estimate. If the system noise w(k) in (B.1) is zero, then for the linear case

S(N) = P(N|N) = J7}(N). (C.11)
In the nonlinear EKF formulation, S(N) and P(N|N) are not, in general, equivalent.

Fisher’s information measure on x(/N) contained in Z} is given by two equivalent
representations [80, pp. 91-93]:

IN) = 5{(2‘21’;’;)7 (gl’;l’;,";) x(N)}, or (C.12)
IN) = —e{(g‘("‘—}\’(’;) x(N)}, (C.13)

where the gradient dlnpy/3x(N) is a row vector. The inequality (C.10) with J(N)
expressed as in (C.12) is termed the “Cramer-Rao inequality.”

Taking the logarithm of py in (C.5) yields

Inpy = ~1n A ~ 2¥{Z3; x(N)]. (C.14)

The gradient of (C.14) is given by the row vector

dlnpy

a_x(ij - (xo—io)TP" 8"0

° 3x(N)
3 (k)

+ E[Z(k) - z(k)]TR-l(k)ax(N)

(C.15)
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To evaluate (C.12), consider the four terms of the outer product of (C.15):

(o) (322 -
(%_))T P5" (X0 — %o)(o — o) P5’ (3%‘,‘:,—)) (C16)
+ :0 (%Z%)T P5 (%0 — %o) [2(k) — 2(k)]" R (k) ( 363((,’3))
N (oz(k)\T .
n {z mﬂ) R (k) fa(k) - z(k)l}
- {i a0) - )" R 20 ) } -

The conditional expectation in (C.12) can be computed from (C.16) with the following
observations:

1. The Jacobian matrices 9%q/dx(N) and 9%Z(k)/3x(N) are deterministic;

2. From (C.2), (C.8), and (C.9), the random variables (xo — Xo) and [z(k) — z(k)],
k = 0,1,.---,N, are independent with zero mean and hence the second and
third terms of (C.16) do not contribute to the expectation and the product of
summations in the last term of (C.16) reduces to a single summation of products
with k = 3;

3. By definitions (C.2) and (C.3),
€ {(x0 ~ %o)(%o — %0)7} = Po and
£ {la(k) - a(k)[z(k) ~ 2(K)"} = R(k).
Furthermore, from the definitions given in (C.8) and (C.9),

%0 _ 9x(0)
ax(N) ~ 9x(N)

(C.17)

and
0z(k)  Ohx(k)]
ax(N) ~—  8x(N)
ax(k)
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where

Jh|x]
ox x=x(k)
The subscript “t” on H; is used to emphasize that (C.19) is evaluated along the true

trajectory x(k) rather than along the estimated trajectory %(k) as in the usual EKF
realization.

H,(k) &

(C.19)

Performing the expectation of (C.16) in accordance with (C.12) and substituting
(C.17), (C.18), and (C.19) yields Fisher’s information matrix:

+>:(ax(1’f,))) HEWR ) () (0

k=0

Evaluation of the alternate representation for Fisher’s information matrix in (C.13)
is most easily accomplished through component-wise differentiation of (C.14). Con-
sider a vector { € R and a scalar-valued function F(£) given by

F = %&Tl‘e, (C.21)

where I' € R**" is positive definite symmetric. Equation (C.21) represents the general
form of Inpy in (C.14) which must be differentiated. Provided the components of ¢
admit second derivatives with respect to components of a vector J € R™,

3F (f) _ 0*F(§)
i T 89;09;
= Z O I'z,k gf; + &L ag:;:,’_

0 0 i
[(%g) r (5%)] | + ‘zk: N vy ey 19.;:9,-] - (C.22)

Taking the expectation of (C.22) in accordance with (C.13) in a sequence of steps
with ¥ = x(N) and first with { = (xo — %) and then with £ = [z(k) — z(k)],
k=0,1,2,...,N, which implies that in all steps { has zero mean and deterministic
first and second partial derivatives, eliminates the second term on the right of (C.22)

giving, with (C.17), (C.18), and (C.19), the previous result (C.20) as expected.
Finally, from (C.1)

ax(k +1)
9x(N)

Ox(k)
x(N)’
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where
, for0<k<N-1 (C.24)
x=x(k)

is evaluated along the true trajectory as shown. In particular, with I, representing
the n x n identity matrix,

Ox(N) _ ox(k)
ox(N) [‘..EI B )] XN (€29

where the notation “{[]” indicates that the index ¢ decreases from left to right in the
matrix product. The Jacobian matrices in (C.20) are then computed as

N-1
g:((]';)) I-Ik &;1(3). (C.26)

Substitution of (C.26) into (C.20) gives a closed-form expression for Fisher’s in-
formation matrix for the system and measurement models defined in (C.1) and (C.2):

W) = ('i_Io @:‘(a’))TPa' (T #w) (c21)

T N-1

+3 (T #'0) mrwRr- @R (TT #70).
k=0 \ i=k i=k

A more useful form for practical computation is a recursive formulation which follows

from (C.27) by inspection:

1. Initialization -

J(0) = P;! + HT(0)R~"(0)H,(0); (C.28)
2. Recursive evaluation for k > 0 -
I(k+1) = [B72(k)] " I(k) [®72 ()] + HI (KR (K)HL(E). (C.29)

If the information matrix J(k) remains singular in the absence of prior information,
i.e. Pg! = 0, then the system has an unobservable subspace. The converse is not
generally true, that is the bounds may decrease even though the system is unobserv-
able. Observability of nonlinear systems, although often difficult to establish, can be
investigated locally through methods from differential geometry [72].

The above derivation has been given for discrete-time, nonlinear system and mea-
surement models. Furthermore, this derivation assumes an unbiased estimation pro-
cedure. A more general result for an estimator with state dependent bias b(x) is

given by (78]
S(V) 2 (I.. + a‘%’-) 5 (1.. + "’%S‘-’)T, (C.30)
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where S(N) is defined in (C.10) and the Jacobian of b is evaluated along the true
trajectory. However, the bias b(x) is generally not available in analytical form. Un-
fortunately, a state dependent bias can result in higher or lower bounds in comparison
to J-!: for example, consider b(x) = —x/2 which gives S > J-1/4, while b(x) = x
gives S > 4J-!. As a result, most analysis proceed under the assumption of unbiased
estimation resulting in approximate covariance bounds.

Broida and Chellappa [28, 30, 31, 37}, Young and Chellappa [34], Taylor [61], and
Chang [62] all employ Cramer-Rao analysis for filter performance evaluation. Broida
and Chellappa, and Young and Chellappa do not consider a priori information. Tay-
lor does consider information provided by the initial state estimate and treats the
continuous-time system case. In the continuous-discrete filtering techniques of Sec-
tion B.3, results in [61] indicate that approximate covariance bounds can be computed
as in (C.28) and (C.29), but with &,(k) replaced with &,(k,k - 1) defined in (2.11).

The Cramer Rao bounds shown in Section 4.3 do not decrease monotonically. This
seems to contradict the notion that as more measurements become available, more and
more information should be accumulated about the observed process and, as a result,
the CRLB’s would be expected to decrease. Fisher’s information matrix defined in
(C.12) provides a measure of information contained in Zj, concerning the state x(N).
As time, N, increases, the measurement set Z3, accumulates more measurements but,
in addition, the state x(N) may vary with time. As discussed by Young and Chellappa
[34], the noise-free dynamical model implies a one-to-one deterministic relationship
between x(0) and x(N) so that

P23, Ix(N) = Pz |x(0) (C.31)

and
Opzzixny _ [9Pz31x@] 9x(0)
Ix(N) dx(0) ] ox(N)’

Inversion of Fisher’s information matrix then gives

where (-)~T denotes the inverse transpose and
-1
x(N )} ,] (C.34)

[ dlnpze 1x(o 0ln pzs, ix(o
-1 A N 1%(0) ix(0)
= ‘{( Bx(N) ) ( Secine)
_ |p- 9%(0) \" L1 \R-1 9x(0)
- [t 5 (20 urmr- i (20
Cramer Rao bounds for estimation of the initial state x(0) from the measurement

set Zj are the diagonal elements of K~1(N), and these decrease monotonically. The

bounds on x(N), however, depend on the time-varying congruent transformation of
K-'(N) in (C.34) and need not decrease monatonically.

(C.32)
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Appendix D
Measurement Model Jacobian

Implementation of the extended Kalman filter and estimation of Cramer Rao
bounds requires the computation of r"C’, 12(¢) and h[x], which are all components of
the measurement model, as well as the Jacobian of h[x],
A dh X
Hp) & 2 (0.1)
from the most recent state estimate. Computation of H[x] for the three parameteri-
zations of rotational motion is a tedious exercise in differentiation, but, with algebraic
manipulation and simplification, can be written in simple form which admits compu-
tationally efficient implementation.

The Jacobian matrix, H € R¥WsNc*N  can be written as
H,
H,

H= (D.2)

Hn,
where H; is the approximate linear measurement matrix corresponding to the jth

camera. Each Hj can be further partitioned according to the feature point of interest
as

- H!
Hj
H.i = : ’ (D3)
N
| H;
P! 0o W/ 0SS! 0 ... 0
P2 0 W2 0 0 S ... 0
= S S S (D4)
(P}” 0o W) 00 0 .58
whereeachH;EIR"N,i=1,2,...,N/,j=1,2,...,Ncisdeﬁnedas
'.Aah"-[x]
Hj=#. (DS)

DRES-SR-577 UNCLASSIFIED




D.2 UNCLASSIFIED

The submatrices P} € IR>°, W € IR?*( o 9) depending on the parameterization

of rotational motion, and S} € IR can be written, after some algebraic manipula-
tion, as follows:

o>
(=)
L
X

P;

=

3 I¢,, (D.6)
("'C:'-‘)
a Ghjlx]
o
= p 20,
a Ohilx]
I
= PIg. (D.8)

(D.7)

All entries of H other than those specified above are zero. In the above equations,
je = [0,1,0]7, kg = [0,0,1)7, and j% and k; are the matrix cross product operators
associated with jg and kg, respectively. In Equation (D.7), the notation 8I2/d¢
denotes a three dimensional entity which premultiplies a vector ¥ € IR3 to yield a
matrix according to the rule

o12(¢) >, O[1gix
B9 =Y ERy,. (D.9)
[ /e ij kz=l 8(5

The general form of the measurement model is common to all parameterizations
of rotational motion, except that different parameterizations will yield different ex-
pressions for 12(¢)/8¢. These expressions are now stated for each parameterization.

Angle-Axis Parameterization: The measurement model Jacobian can be com-
puted with

o19(¢ 1- = i vy ()2
abé ) 1 ‘;“(’)}ﬂ,- +cos(1);8 + 5’37(111‘,- +sin(n)§; (&), (D10)
where
T £ el (D.11)
. A €
a8 £ D.

¢S (D12)
I‘j é e}—f—,’?, (D13)
g £ rd+ar, (D.14)
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and {; denotes the jth component of the unit vector £, and e; denotes the jth standard
basis vector of R> For very small v, it is apparent from (D.10)-(D.14) that

IZ(¢) ~ Li+¢, and (D.15)
IIR(¢) Yo, .
TEEJ'_ ~ 5/5 + ;. (D.16)

This information can be used to eliminate numerical difficulties encountered in appli-
cations when (D.10) must be computed with ¢ = ||¢]| ~ 0.

Quaternion Parameterization: The Jacobian of the measurement model is
computed with

o (@ @ g ]
aIaE(q) = 21q - @ |, (D-17)
n | 3 —G¢« —q1 ]
0 [ —q2 @1 —Yq4 ]
_6IE(q) =2l q @ ¢ |, (D.18)
94s | @ @ -
0 [ —q3 QU Q ]
9lE(q) = 2| —q« —¢3 ¢q2 |, and (D.19)
a‘la
l @1 92 43
(o) [ q4 B —q
Agla) _ , -5 @ @ |- (D.20)
6q4 _
| 92 Q1 QU

Roll-Pitch-Yaw Parameterization: The measurement model Jacobian is com-
puted with

I1Z(() 12¢!

¢  E°v (D.21)
—"’§,§° = exp(yel)e] exp(9e}) exp(de}), and (D.22)
a1

5'1(;0 = elg, (D.23)

where, again, the e;, j = 1,2,3, are the standard basis vectors of IR®
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