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Dynamic Stability of Maglev Systems

by
Y. Cai, S. S. Chen, T. M. Mulcahy, and D. M. Rote

Abstract

Because dynamic instability is not acceptable for any commercial maglev
systems, it is important to consider this phenomenon in the development of all
maglev systems. This study considers the stability of maglev systems based on
experimental data, scoping calculations, and simple mathematical models.
Divergence and flutter are obtained for coupled vibration of a three-degree-of-
freedom maglev vehicle on a guideway consisting of double L-shaped aluminum
segments attached to a rotating wheel. The theory and analysis developed in this
study identifies basic stability characteristics and future research needs of maglev
systems.

1 Introduction

The dynamic response of maglev systems is important in several respects:
safety and ride quality, guideway design, and system costs. Ride quality is
determined by vehicle response and by environmental factors such as humidity
and noise. The dynamic response of vehicles is the key element in the
determination of ride quality, and vehicle stability is one of the important
elements relative to safety. To design a proper guideway that provides acceptable
ride quality in the stable region, the vehicle dynamics must be understood.
Furthermore, the trade-off between guideway smoothness and the levitation and
control systems must be considered if maglev systems are to be economically
feasible. The link between the guideway and other maglev components is vehicle
dynamics. For a commercial maglev system, vehicle dynamics must be analyzed
and tested in detail.

For safety, maglev systems should be stable. Magnetic forces are basically
position-dependent, although some are also velocity-dependent. These motion-
dependent magnetic forces can induce various types of instability. In addition,
the periodic structure of the motion-dependent magnetic forces may in some cases
also induce parametric and combination resonances.




Some analytical and experimental studies have been performed to
understand the stability characteristics of maglev systems. Several examples are
summarized briefly as follows:

1.1 Theoretical Studies

® Davis and Wilkie (1971) studied a magnetic coil moving over a
conducting track and concluded that negative damping occurs at
velocities greater than the characteristic velocity based on thin-track
theory.

¢ Ohno et al. (1973) studied the pulsating lift forces in a linear
synchronous motor. These forces may cause parametric and
combination resonances, as well as heave and pitch oscillations.

® Baiko et al. (cited in Chu and Moon 1983) considered the interactions
of induced eddy currents with on-board superconducting magnets
and found possible heave instabilities.

1.2 Experimental Studies

¢ An experimental vehicle floating above a large rotating wheel was
found by Moon (1974) to have sway-yaw instabilities.

* Experiments performed at MIT on a test track showed pitch-heave
instability (Moon 1975).

1.3 Experimental/Analytical Studies

® A conducting guideway, consisting of L-shaped aluminum segments
attached to a rotating wheel to simulate the Japanese full-scale
guideway at Miyazaki, was studied experimentally and analytically
by Chu and Moon (1983). Divergence and flutter were obtained for
coupled yaw-lateral vibration; the divergence leads to two stable
equilibrium yaw positions, and the flutter instability leads to a limit
cycle of coupled yaw and lateral motions in the neighborhood of the
drag peak.

® Variation of the magnetic lift force due to variation of the levitated
height corresponding to the sinusoidal guideway roughness was
studied by Yabuno et al. (1989). Parametric resonance of heaving and
pitching motions is possible.




Based on these published analytical results and experimental data, it is
obvious that different types of dynamic instabilities can occur in maglev systems.
Because dynamic instability is not acceptable for any commercial maglev
systems, it is important to consider this phenomenon in the development of all
maglev systems.

This study considers the stability of maglev systems and is based on
experimental data, scoping calculations, and simple mathematical models. The
objective is to provide some basic stability characteristics and to identify future
research needs.

2 Motion-Dependent Magnetic Forces

2.1 Motion-Dependent Magnetic-Force Coefficients

Magnetic forces are needed for any vehicle dynamics analysis, guideway
structural design, fastening design, and prediction of ride quality. These force
components are considered from the standpoint of vehicle stability.

As an example, consider a vehicle with six degrees of freedom, three
translations, uy, uy, u,, and three rotations, a, Wy, @, as shown in Fig. 1. Let U
be the vector consisting of the six motion components, i.e.,

4 3 4 3

uq Uy
uz| Yy
U=<u3>=<uz > M
uy Wy
usg (t)y
(U6} (g

Velocity and acceleration are given by

~ U
U=—
at b4
and 2
. J2U
U= .
a2z

The motion-dependent magnetic forces can be written




= X

"
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Fig. 1. Displacement components of a
maglev system

6
f; = Z(muu_, +Cj0; +ki,'llj), 3
1

where mjj, cjj, and kj; are magnetic mass, damping, and stiffness coefficients.
These coefficients can be obtained analytically, numerically, or experimentally
and are functions of the system parameters.

® Analytical Studies: Analyses for simple cases can be performed to
determine the characteristics of the coefficients. For example, an
analytical method may be used to identify the coefficients that can be
neglected under specific conditions.

® Numerical Methods: For the general case with complicated
geometries, analytical methods may not be appropriate and
numerical methods will be more useful. Numerical methods (finite-




element method and boundary-element method) can be used to
calculate the values of all coefficients under specific conditions.

¢ Experimental Techniques: Measurements of magnetic forces will
give the information required to calculate magnetic-force coefficients.

2.2 Experimental Methods to Measure Motion-Dependent
Magnetic-Force Coefficients

Quasistatic Motion Theory. The magnetic forces acting on an oscillating
vehicle are equal, at any instant in time, to those of the same vehicle moving with
a constant velocity and with specific clearances equal to the actual instantaneous
values. The magnetic “orces depend on the deviation from a reference state of
speed and clearance, i.e., the motion-dependent magnetic forces depend only on
uj, but not u; and iij, so that

6
fi = Zkijuj' @
=1

In this case, the magnetic forces are determined uniquely by vehicle position. All
elements of magnetic stiffness kj; can be obtained. To determine kjj, the
magnetic-force component f; is measured as a function of u;. Stiffness is given by

~

kij = 5

)

In general, kj; is a function of U.

Unsteady-Motion Theory. The magnetic forces acting on an oscillating
vehicle will depend on U, U, and U. The magnetic force based on the unsteady-
motion theory can be obtained by measuring the magnetic force acting on the
vehicle oscillating in the magnetic field. For example, if the displacement
component u; is excited, its displacement is given by

u; =1; exp(*/——l G)t). 6)

The motion-dependent magnetic force of the component f; acting on the vehicle is
given by




6
f, = [aii cos(\vij) +v-lay sin(wij)]iij exp(\/:i mt), D

where ajj is the magnetic force amplitude and yj; is the phase angle between the
magnetic force and the vehicle displacement u;. These values are measured
experimentally.

Using Egs. 3 and 6, we can also write the motion-dependent magnetic force
component as

fi = (—ﬂlijﬁ)z + '\/—_1 o Cj5 + kn)ﬁj exp(w/-_l (Dt). (8)
A comparison of Eqgs. 7 and 8 yields

Cij = aj sin(\vij) / ®,
9)
m;; = [kﬁ - ajj cos(wij)] /w2,

Based on Egs. 5 and 9, all motion-dependent magnetic-force matrices can be
determined from two experiments: quasistatic motion and unsteady motion.

If m;; and cjj are of no concern, the experiment using quasisteady motion is
sufficient to determine k;;.

2.3 Quasistatic Motion-Dependent Magnetic-Force Coefficients of
Maglev System with L-Shaped Guideway

An experiment w ‘s conducted recently at Argonne National Laboratory to
investigate the lift, drag, and guidance magnetic forces on an NdFeB permanent
magnet moving over an aluminum (6061-T6) L-shaped ring mounted on the top
surface of a 1.2-m diameter rotating wheel (shown in Fig. 2). For a given rotating
speed of the wheel, the lift and guidance magnetic forces were measured as the
guidance gap Y* and lift height h were varied. A schematic diagram of the
measurement approach is shown in Fig. 3. Figure 4 shows those measured
forces as a function of h, with Y* fixed (Y* = 5§ mm and 12.7 mm), or as a function
of Y* with h fixed (h = 7 mm and 12.7 mm) when the surface velocity of the lateral
leg of the guideway is 36.1 m/s, the highest velocity tested.

During testing, the long side of the 25.4 x 50.8 x 6.35 mm rectangular magnet
was oriented parallel to the direction of motion of the L-shaped guideway and was




Fig. 2. Experimental apparatus for magnetic force measurement
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Fig. 3. Schematic diagram of the apparatus used to measure
magnetic forces on an L-shaped aluminum sheet

guideway
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held stationary by a two-component force transducer that comprised two BLH
C2G1 load cells connected in series to measure the lift and guidance forces
simultaneously. Laboratory weights were used to calibrate the transducer and to
assess crosstalk (which was found to be <2%). The base of the load cell assembly
was mounted on motorized stages that provided accurate positioning (+0.05 mm).
Out-of-roundness of the L-shaped guideway ring varied, but was always less than
10.15 mm for the lateral leg and +0.35 mm for the vertical leg. Ability to exactly
position the magnet with respect to the guideway dominated our experimental
error, estimated at +5%.

The qualitative trends in the lift and guidance force data taken at lower
velocities for the L-shaped guideway are the same as shown in Fig. 4 for the
highest velocity tested. Two interesting features are evident. First, a maximum
occurs in the guidance force variation with respect to height variations at a fixed
gap (as shown in Figs. 4e and 4f) that is caused by the corner region of the
guideway. Second, a minimum occurs in the guidance force variation with
respect to gap variations at a fixed height (as shown in Figs. 4g and 4h) that is
caused by the edge of the lateral leg of the guideway. As will be shown in Section
4.4, the first feature is associated with a flutter and the second with a divergence
instability.

Based on the magnetic force data shown in Fig. 4, we can calculate the
quasistatic motion-dependent magnetic-force coefficients with Eq. 5. All elements
of magnetic stiffness kyy, kg, kgy, and kgg, were calculated and are shown in
Fig. 5 with various Y* and h.

The curve fits to both magnetic forces and stiffnesses were derived with

polynomial expressions (results are given in Figs. 4 and 5) and input into a
computer code to simulate coupled vibrations of the maglev vehicle.

3 Stability of Maglev Systems

Without motion-dependent magnetic forces, the equation of motion for the
vehicle can be written as

(M, {0} +[c, {O}+[K, J{U} = {Q}, 10)

where My is the vehicle mass matrix, Cy is the vehicle damping matrix, Ky is the
vehicle stiffness matrix, and Q is the generalized excitation force.

The motion-dependent magnetic forces are given in Eq. 3. With motion-
dependent magnetic forces, Eq. 10 becomes
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[M, +M, {U}+[C, +C {U}+[K, +Kn {U}={Q}, av

where M, is the magnetic mass matrix, C,, is the magnetic damping matrix,
and K, is magnetic stiffness; their elements are m;;, c;;, and kj;.

Once the magnetic-force coefficients are known, analysis of vehicle stability
is straightforward. Equation 11 may be written as

[M{}+[c{U}+[K{U}={Q}. (12)

In general, M, C, and K are functions of U, U, and U; therefore, a complete
solution is rather difficult to obtain. In many practical situations, one can ignore
all nonlinear terms, so that M, C, and K are independent of vehicle motion.

By premultiplying by {U}JT and forming the symmetric and antisymmetric
components of the matrices

[My]=(@0+0T),  [Mg]= (M- MTT)
[Ci)=5(c1+icT),  [c5)=3{ic1-cI"), 19)

_1 T D WP |
[Ky]= E([K]+[K] ) [Kz]-E([K] (K1T),
the terms may be separated, giving

{0 {0} + {0} e KU} + {0 [KaU}

- {{0Y al{5}+ {0} TCa {0} + {0} T U} a0

Equation 14 equates rates of work. The terms on the right-hand side of the
equation produce a net work-resultant when integrated over a closed path
through the space {U}, the magnitude depending on the path taken. The forces
corresponding to the matrices Mg, C1, and K2, appearing on the right-hand side,
are thus, by definition, the nonconservative parts of the forces represented by M,
C, and K. The terms on the left-hand side similarly can be shown to give rise to a
zero work-resultant over any closed path, and therefore together are the sum of
the rates of work from the potential forces and the rate of change of kinetic energy.




18

Different types of instability can be classified according to the dominant terms in

Eq. 14:

® Magnetic-Damping-Controlled Instability (single-mode flutter): The
dominant terms are associated with the symmetric damping matrix
[C1]. Flutter arises because the magnetic damping forces create
"negative damping,” that is, a magnetic force that acts in phase with
the vehicle velocity.

® Magnetic-Stiffness-Controlled Instability (coupled-mode flutter): The
dominant terms are associated with the antisymmetric stiffness
matrix [Kg]. It is called coupled-mode flutter because at least two
modes are required to produce it.

Corresponding to the single- and coupled-mode flutter, parametric and
combination resonances may exist if the motion-dependent magnetic forces are a
periodic function of time.

® Parametric Resonance: When the period of a motion-dependent
magnetic force is a multiple of one of the natural frequencies of the
vehicle, the vehicle may be dynamically unstable.

® Combination Resonance: When the period of the motion-dependent
magnetic forces is equal to the sum or difference divided by an
integer of the natural frequencies of the vchicle, the vehicle may also
be subjected to dynamic instability.

In practical cases, two or more mechanisms may interact with one another, and
Eq. 12 is applicable for general cases.

It is noted that maglev systems are subjected to several groups of forces,
including magnetic forces, aerodynamic forces, and guideway perturbation. The
theory presented in this paper is applicable to maglev systems when they are
subjected to other types of forces. In particular, the aerodynamic effects can be
described exactly the same way as those given in Eqs. 1-14 and the dynamic
response characteristics to aerodynamic forces are similar to magnetic forces; see
Chen (1987) for details.

4 Simplified Vehicle Modeis for Dynamic Instability

Four different vehicles are considered, in order to provide an understanding
of stability characteristics.
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4.. Two-Degree-of-Freedom Vehicle

A maglev vehicle is supported by magnetic forces; the resuitant lift and drag
forces of the coil above the continuous-sheet track can be represented
approximately by (Sinha 1987)

FrL(v,z,t) = g F(t),
Fp(v,z,t) = epF(t),

F(t) = p,12/4nz,
15)

e = 1 - 1/(1 + v2/w2)n,
ep = (W1 - /(1 + vZ/w2)"],
w = 2/u,ch,

where v is the forward velocity, z is the steady-state height of the coil above the
track, t is the time, I is the constant coil current, and w is the characteristic speed
and is related to track thickness h, conductivity ¢, and permeability p,. The value
of n is 1 for a single conductor and varies from about 1/5 to 1/3 for coils (Rhodes
and Mulhall 1981). Note that F(t) represents the repulsive force between the coil
and its image coil. The force ratios, €}, and ep, are given in Fig. 6 for n = 1, 1/3,
and 1/5.

Assume that the vehicle is traveling at a velocity v, at an equilibrium height
zo,- The instantaneous position and height of the vehicle are x and z respectively;
therefore,

x(t) = vt + X(t),
(16)

2(t) = 7o + L),

The equations of motion for the vehicle moving at a velocity v(t) with a levitation
height z(t) can be written as

m#(t) = —mg + Fy(v,z,t),
amn
mi(t) = F, — Fp(v,z,t) - Fy,

where m is the mass of the vehicle, F;, is the propulsion force, and F, is the aero-
dynamic force. The aerodynamic force is given by
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Fig. 6. Magnetic forces divided by image force
Fo=K,v2,
(18)
K, = 0.5 CpLAp,

where L and A are the length and cross-sectional area of the vehicle, p is air
density, Cp is the drag coefficient (with its values varying from 0.2 to 0.3,
depending on vehicle shape).

The equilibrium point of the vehicle v, and z, is defined by

FL(VOszo) = mg, (19)
Fp(ve,z) =Fp - F,.

Using Eqs. 16-19 and neglecting the nonlinear terms, we obtain the following
equations of motion tor the vehicle X(t) and Z(t):

m(t) — Cpx(v,2,0)X(t) + Kpp(v,2,t)Z(t) = 0,
mX(t) + Cyyx(v,z,t)X(t) - Ky,(v,2,t)Z(t) = 0.

(20)
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Cx(v,z,t) and Cy4(v,z,t) are magnetic damping, and K,,(v,z,t) and K,,(v,z,t) are
magnetic stiffness; these are given by

sz(v,Z,t) = aFL(V,Z,t)/aV l (Vo,Zo)

Cyx(v,2,t) = OFp(v,2,t)/0v | (v, z,) + 2KaV,,

(21)
K,,(v,2,t) = - dF(v,2,t)/0z | (v o Zo)
Ky2(v,2,t) = 0Fp(v,2,)02 | (v, z,)-
Their values are given as follows:
Cax = (mgley)2nvIw2(1 + v2/w2)n+l],
Cyx = wmg/vZ[w2 - (2n - 1)v2/(w2 + v3)] + 2K,v,, 2

K;; = mg/z,,

Ky, = wmg/v,z,,.
For high speed vehicles, the values of C,, and K,, are approximately zero.
Therefore, the motions in the vertical direction and forward direction are
uncoupled at high speeds.

Equations 20 can be analyzed; let

Z(t) = a exp(int),

23)
X(t) = b exp(iet).
Substituting Eqs. 23 into Egs. 20 gives the following frequency equation:
-mw?+K,, -ioC, a] (0
={ > (24)
-K,, ~-mo? +ioCy |{b] 0

The natural frequencies can be determined from the determinant of the coefficient
matrix given in Eq. 24. At high speeds, the off-diagonal terms may be neglected.
The natural frequency of the vertical motion f, is

£, = (g/2,)05/2r. (25)
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Fig. 7. Natural frequency as a function of levitation height

The natural frequency in the vertical direction depends on the levitation height
only. Figure 7 shows the natural frequency as a function of the levitation height.
At high speeds, oscillations in the vertical direction are stable.

In the forward direction, the motion is given by

X(t) = C1 + Coexp(st). (26)
For high-speed vehicles, the exponent s is approximately given by

8 = (2n - )wg/v2 - 2K, v, @7
Note that the vehicle may be unstable if n = 1, and K; is zero. At high speeds, the

second term given in Eq. 27 is larger than the first term regardless of the values of
n; therefore, s is negative and the system is stable.

4.2 Three-Degree-of-Freedom Vehicle

Figure 8 shows a three-degree-of-freedom vehicle traveling at a velocity v, at
an equilibrium height z,. For a symmetric vehicle, the instantaneous position
and height of the vehicle are x(t), z1(t), and z2(t); therefore,




Fig. 8. Three-degree-of-freedom vehicle
x(t) = vo(t) + X(t) ,
z1(t) = zo + Z1(t), (28)
22(t) = zo + Z(t) .

The equations of motion for the vehicle moving at a velocity v(t) with levitation
height z3(t) and z2(t) can be written as

mi(t) = F, - Fp1(z4,v,t) - Fpa(zg,v,t) - Fy,

%['z'l(t) +3g(t)] = ~mg + Fp,1(21,v,0) + Fro(29,v,1), (29)

%[zl(t) ~ip(t)] = %[Fm(zl,v,t) ~Fra(zz,v,0))

where m is the vehicle mass, Ig is the rotational moment of inertia about the
vehicle's center of mass, Fp is the propulsion force, and Fj is the aerodynamic
force that is assumed to act at the center of mass of the vehicle and is given by

Eq. 18.
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For a symmetric vehicle with two identical levitation systems at the two ends,
the equilibrium point of the vehicle v,, z19, and z2¢, as well as the magnetic forces,
is defined as

FL1(vo,210) + Fr2(v0,220) = mg,

Fp1(vo,210) + Fp2(vo,220) = Fp - Fy,

z10 =220 = 29, (30)

Fr1(vo,210) = FL2(v0,220) ,

Fp1(vo,220) = Fp2(vo,z20) .

Using Egs. 28, 29, 30, and 18 and neglecting the nonlinear terms, we obtain the
following equations of motion of the vehicle, X(t), Z1(t), and Za(t):

-“23(21 +Z9)+(Cpx1 + Cpxa)X + Kpp1Z1 + K 5970 = 0
%‘}(ﬁl—'z'2>+<cm-Cu2>x+<Kzzlzl—Kzzzzz=o @D

mX +(Cyy 1 +Cxxa + 2k Vo)X + Ky y1Zy + Ky y0Z9 =0

where
oFy;
Cpu: =—
= av (Vo,20)
oFp;
c -=—Dl{
v (Vos20)
32)
doFy;
K...=—
= azi Vo1Zo)
oFp;
e =524
1 Kvo,20)
i=1,2
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The magnetic damping coefficients C,xi and Cxxi, and the magnetic stiffness
coefficients K,,; and Ky;i can be calculated from the magnetic lift and drag forces
given in Eq. 15.

At high speeds, K,xi and Cy;i are approximately zero. The equations of
motion become

%(21 +29)+K 5171 +Kyp222 =0,
%Q(Zl - 22) +K;2121 - K;22Z2 =0, (33)

mX + (Cyy1 + Cxxa + 2Kov)X = 0.

In this case, the vehicle is stable at high speeds; this is similar to the two-degree-
of-freedom vehicle. The natural frequency of vertical oscillations is the same as
that in the two-degree-of-freedom system given in Eq. 25. The natural frequency of
pitching oscillations is

05
_1(1’meg 39)
P~ 2n 41920 .

For a square vehicle with length L. and height h, the natural frequency of
pitching oscillations is

0.5

1(g 0.5 3
L2

The natural frequency of pitching oscillations is larger than vertical oscillations.
For a long vehicle (h << L), f;, is equal to about 1.7 f,. For a square vehicle, fp = 1.4
fv. At high speeds, heaving and pitching oscillations are stable for the magnetic
levitation described by Eq. 15. In the forward direction, the result is the same as
that for the two-degree-of-freedom vehicle.
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4.3 Six-Degree-of-Freedom Vehicle

For the six-degree-of-freedom vehicle shown in Fig. 1, stability can be studied
from Egs. 11 or 12. Once the coefficients of magnetic forces mjj, ¢jj, and kj; are
known, Eqs. 11 or 12 can be evaluated for Q = 0. Let the displacement of a
particular component be

uj(t) = ajexp(A + i)t . (36)
Substituting Eq. 36 into Eq. 12 with Q = 0 yields
{0 + i@)2(M] + A + i0)[C] + [KIHA) = (0} . @7

The values of A and ® can be calculated based on Eq. 37 by setting the determinant
of the coefficient matrix equal to zero.

Vehicle stability is determined by A, which is a function of v. If A < 0, vehicle
motion is damped; if A > 0, vehicle displacement increases with time until
nonlinear effects become important.

To solve this problem, all motion-dependent magnetic-force coefficients must
be known. At this time, it appears that limited analytical, numerical, or
experimental data are available. For any future maglev systems, it will be
necessary to investigate the characteristics of motion-dependent magnetic forces
to avoid dynamic instabilities.

4.4 Vehicle on Double L-Shaped Aluminum Sheet Guideway

Figure 9 shows a cross section of a vehicle on a double L-shaped aluminum
sheet guideway. Assume that the vehicle travels at a constant velocity along x
direction. Two permanent magnets are attached to the bottom of vehicle and
provide lift and guidance force Fi,, FL,, FG,, and Fg, (see Fig. 9). Assume at the
initial state that h; = hy = hy and g; = g5 = go; thus, the vehicle and guideway
geometries can be expressed as follows:

Li=1l2=S=76.2 (mm)
W =1524 + S -2g¢ (mm)

H=09W (mm)
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mg
I‘ L2 ——I‘ S + L‘ 4
Fig. 9. Maglev system with a vehicle operating on double L-
shaped aluminum sheet guideway

N

a=05H (mm)
b = 0.5(W - 25.4) (mm).

Equations of motion for this three-degree-of-freedom maglev system can be
written as

mi+Cz=F, +F, -mg
18+E8 = (Fg, +Fg, Ja+(Fg, +Fg, )b (38)
mj'r+DjI=FG1 +FG2,

where m i8s the mass of the vehicle, C and D are damping ratios; I is the moment
of inertia about the center of mass inertia moment of the vehicle [I =
(m/12)(H2 + W2)). FL,, FL,, Fg,, and Fg, are lift and guidance forces and are
functions of y and z. At the equilibrium position, they are FL,,(y0,20), FLo¢(Yo0,20),
FG,0(Y0,20), and FGy((¥0,20). Apply them to Eqgs. 38:




FLio=FLp
Fryo + FLy =mg 39
FGyo=-FGa

Therefore

Figo Py _ 2 (hy)

m . . (40)
Let
= %(ul +ug) ‘
y=ug € 41
0=(u;-ug)/2b
where uj, ug, and ug are shown in Fig. 10. Equations 38 can be rewritten as
m(iiy +tg)+c(iy -ug)= Z(FL1 +Fp, - mg)
%(iil -ﬁ2)+{—:(ﬁ1 —t1g) = 2a(Fg, +Fa, )+ 2b(Fg, - Fo, ) 42)
miig + Dug =Fg, +Fg,.
Note the reduced dependence of the forces on the new displacements of Eq. 41:
F, = FL)(u1,u3)
FL, = FL,(u2,u3)
43)

Fg, = Fg,(u3,u3)

Fg, = Fgy(uz,u3).




U,

Fig. 10. Displacement components of three-degree-of-
freedom vehicle

Let
Uj = Ujg + Vj i=1,2 44)

The linear approximation of lift and guidance forces can be expressed as

oFg, oF,
FL1 FLlO +7val+3v];;lv3
oF oF
FLg = FL20 +-8722-V2 +7VI;ZV3
- (45)
G JF,
FG] = FGIO +W1LV1+—§;G§1V3
oFg oF,
FG2 = FG20 +?22'V2 +-5vg;2'V3

Using Eqgs. 39 and 45, we can rewrite Eq. 42 as




X

C 2 aFLl 2 aFLz aF(}l aFG
Bl Ve — +—2 =0
v1+v2+mv1+mv2 m dv; & m ovy dvg  dvg V3

. .. E. E. (2bF, 2b%dFg
—v1+v2—Tv1+Tv2+[I av11+l av11v

oF, aF,
+[2ab L, , 2b° Gz) vs

I ovg 1 ovg 46)
dF dF 2 (9F, oF,
+ 2ab Ll + L2 +2b Gl + G2 V3=0
T \ovg  ava ) I {avg @ ova
D 1 8FL1 1 aFL2 1 aFLl aFL2
et S St B - =0
v3+mv3 m av1 m aV2 v m aV3 * aV3 v3
or
[MU¥}+[CHv}+[K]}{v}=0 47)
where
1 10 c11 ¢z 0 ky; kyp kg3
M=-1 1 0}, C=|cg; cog 0|, K=|kyy koo koj| 48)
0 01 0 0 Co3 k31 k32 k33
and

C11=C12 =;

_ _ E
€21=-C22= 1

D
2 aFL
ku:____L

(49)
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2 dF,
kjg=-=>—22
12570 o,
oF; oF;
kig= _1f{oL + Ly
m aV3 aV3
2ab aFGl 2b2 aFLl
kg; =
T ov; 1 avy
dF, 2 JF;
I avg 1 vy
49)
2
kog = 2ab( 9FG, + oFgy +2b oFy) + oFr, (Cont’d)
1 {ovg  ovg ) 1 (ovg  ovg
1 oFg
= 21
kg =-— v,
1 oFg
kgo = ———2
2=,
oF, oF,
m aV3 aV3
where
JoF dF,
Lok, =S1o kg (h),
ovy 1
El'z:k h 9522.:
3ve ee(h), o kge(h),
oF; oF, ©0)
oL 26 _
-a-I.l'z- = a_ng. o
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kes(h), keg(g), kge(h), and kgg(g) are motion-dependent magnetic-force coefficients
(see Fig. 5).

If we assume that the damping effects can be neglected, the eigenvalues of
Eq. 47 can be obtained from

K] {v} = A [M] {v} (61)
where A = OR +1i 0.

With magnetic forces and stiffnesses measured by the experiments (see
Figs. 4 and 5), the eigenvalues and eigenvectors of a maglev vehicle on a double
L-shaped guideway were calculated with the theoretical model developed in this
section. Some very interesting results were obtained from those calculations.

Figure 11 shows that eigenvalues of vehicle motion versus levitation height
vary when guidance gaps are fixed (g; = g = Y* = 12.7 mm). The first mode w1
shows an uncoupled heave motion; its imaginary part of the eigenvalue is zero,
while the second and third modes are coupled roll-sway motions. Within the
range of height h = 19.0 to 35 mm, the imaginary parts of the eigenvalues appear
not to be zero. This indicates that within this range, flutter does exist for these
coupled roll-sway vibrations. Table 1 and Fig. 12 give eigenvectors and modal
shapes of these three modes of vehicle motion, respectively. When the guidance
gaps are fixed at g; = gg = Y* = 5 mm, the same results are obtained, as shown in
Fig. 13; there is a flutter for coupled roll-sway modes.

Table 1. Eigenvectors of vehicle motion (Y* = 12.7 mm)

h =15.0 mm h =25 mm h =37 mm

Mode Vi v2 v3 Vi v2 v3 Vi v2 v3
Uncoupled 1 1 0 1 1 0 1 1 0
heave mode
w1
Coupled 1 -1 -0.009 058 -0.58 -0332 -1 1 -0.205
roll-sway
mode w2
Coupled -0.545 0.545 1 -0810 0810 0.060 1 -1 048
roll-sway

mode o3
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Figures 14 and 15 show eigenvalues of vehicle motion versus lateral location
of vehicle when g; = gg = g9 = 25 mm and levitation heights h = 12.7 mm and h =
7 mm, respectively. We notice that for the third mode, which presents the
transversal motion of vehicle, the real part is zero and imaginary part is not zero
within a certain region. This indicates that the divergence is subjected to the
lateral motion of the vehicle, given those vehicle and guideway parameters.
Figure 16 shows the real part of the third mode versus lateral location of vehicle
when the parameter-equilibrium guidance gap varies as g; = gg = gp = 10 mm,
15 mm, 20 mm, and 25 mm. We found that divergence appears only in the case of
go = 25 mm.

We must point out that the measured and calculated data for motion-
dependent magnetic-forces and force coefficients are very limited and that
damping effects were not considered in the above analysis. Even though
divergence and flutter appear in the eigenvalue results, we still have difficulty in
completely predicting the dynamic instability of this three-degree-of-freedom
maglev vehicle model. Further research is needed in modeling to gain an
understanding of dynamic instability in maglev systems.

5 Closing Remarks

® Motion-dependent magnetic forces are the key elements in modeling
and understanding dynamic instabilities of maglev systems. At this
time, it appears that very limited data are available for motion-
dependent magnetic forces. Efforts will be made to compile
analytical results and experimental data for motion-dependent
magnetic forces. When this work is completed, recommendations
will be presented on research needs on magnetic forces. In addition,
specific methods to obtain motion-dependent magnetic forces will be
described in detail.

¢ Various options can be used to stabilize a maglev system: passive
electrodynamic primary suspension damping, active electrodynamic
primary suspension damping, passive mechanical secondary
suspension, and active mechanical secondary suspension. With a
better understanding of vehicle stability characteristics, a better
control law can be adopted to ensure a high level of ride comfort and
safety.
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Fig. 14. Maglev-system eigenvalues vs. lateral location of

vehicle, with h = 12.7 mm and gg = 25 mm
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Fig. 16. Real part of maglev-system eigenvalues vs. lateral
location of vehicle, with h = 7 mm and g¢y = 10, 15,
20, and 25 mm

¢ Computer programs are needed to screen new system concepts,
evaluate various designs, and predict vehicle response. It appears
that the stability characteristics of maglev vehicles under different
conditions have not been studied in detail in existing computer codes.
When information on motion-dependent magnetic forces becomes
available, the existing computer codes can be significantly improved.

¢ Instabilities of maglev-system models have been observed at Argonne
and other organizations. An integrated experimental/analytical
study of stability characteristics is an important aspect of maglev
research.
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Fig. 9. Maglev system with a vehicle operating on double L-
shaped aluminum sheet guideway
a=05H (mm)

b = 0.5(W -25.4) (mm).

Equations of motion for this three-degree-of-freedom maglev system can be
written as

mz+Cz=Fy, +FL, -mg
16+E6 =a(Fg, +Fg, )+b(F, - FL,) (38)
my + Dy = FG1 +FG2,

where m is the mass of the vehicle, C and D are damping ratios; I is the moment
of inertia about the center of mass of the vehicle [I = (m/12)(H2 + W2)]. Fr,, FL,,
FG,, and Fg, are lift and guidance forces and are functions of y and z. At the
equilibrium position, they are FL,y(yo,Z0), FLy¢(Y0,20), FG4(Y0,20), and FGog(¥0,20)-
Apply them to Eqgs. 38:




FrLio=Fip
FLjo+ FLy=mg (39)
FGyo=-Fay

Therefore

= FLl.O +F£2£ = 2FL(h0)

m (40)
g g
Let
1
== +
2= 2(u1+up)
8=(u;-uy)/2b
where uy, up, and ug are shown in Fig. 10. Equations 38 can be rewritten as
m(iil +1iig)+ Cla + ug) = 2(FL1 + FL2 - mg)
(61 - tig) + 2 () - g) = 2a(Fg, + Fg, |+ 2b(F FL,) 42)
ML u2)+g(u1 ug) = 2a(Fg, +Fg, )+ 2b(Fy, - Fr,, (
miig + Dug = FGI +FG2.
Note the reduced dependence of the forces on the new displacements of Eq. 41:
Fr, = Fr(uy,u3)
Fr, = FL(uz,u3)
(43)

Fg, = Fg,(u1,u3)

Fg, = Fgy(ug,ug).




U,

Fig. 10. Displacement components of three-degree-of-
freedom vehicle

Let
U; = Ujp + Vi i=1,2,3 (44)

The linear approximation of lift and guidance forces can be expressed as

aFLl vi+ aFL1

FL, =F
L1 = 1o ¥ 5 V1 g

v3

JoF
L + aFLz v

Fr =F —2
Ly L20+ aV2 V2 aV3 3
(45)
oFg oFG1
FGI =FG10 + vy V1+ﬁV3

oFG oF,
FG2 = FG20 +-Ta-;-22-V2 +—a-‘;c;—2V3

Using Eqgs. 39 and 45, we can rewrite Eq. 42 as




0

. .. . C. . C. 20F _2 oFL aFL
= RIS el © 2y —Ll4 =
Vi+Vo+—vVi+—Vo 3v, 8v2 EV3 0

.. E. _(2abdFg, = 2b2 oF,
Vi+vVe IV1+TV2+\ I av1 + I av1 \41
+(23b aFGz b aFLz) Vo
\I dvo I odvg
[ oF;, OF, 2(9F,, oF
+ 2ab GL+ Go +2b L, %L vy =0
i I aV3 aV3 I aV3 aV3
oF, oF, oF, oF,
v Dyy 120y, 1o, LI, Fop),
m m 8v1 “m 8v2 dvg  dvg
or
M)V} +[CHv} +[Kl{v) =
where
]'1 10 "cn C99 07; ki kig k131
M=-1 1 0|, C{Cm cog 0 K=1koy koo kog,
LO 0 1 0 0 cg3) k3; ka2 ks3]
and
C11=C12—'9
m

E
Ca1==C22=-7

(46)

47

(49)
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oF
kyp=-——22Ll2
m dvy
oF oF
yg =2 (_h,, __Lz)
m\ dvg dvg
2ab oFG, 2b° oF)
koy = = -1
I ov; 1 av,
2ab oFg, 2b? 9F)
koo = ~2 2
I ovy 1 avg
c (4(51))
t’
. _2ab(3Fg 3Fg,) 2b?(3F aF, ot
BT ovs | ova I {ovy avg
1 oFg
kg = - ——1
31 m avl
1 dFg
kg = - ——2
32 m aV2
dF, F,
kg = _..1_(_91..,.8_0'&}
m aV3 aV3
IFL, Fg
—1 =k,,(h) L=
8v1 ll( N avl kg[(h),
JFL. 9Fg
2 -k, (h =
dF, dF, o
Lk 5
aFy aF,
Tl g Gg -




