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AFIT/GEO/ENG/92D-02

Abstract

This research introduces an optical implementation of the continuous wavelet

transform to filter images. The wavelet transform is modeled as a correlation process

and is implemented with a Vander Lugt correlator. The orthonormal basis set used

is composed of two one-dimensional Haar functions and a two-dimensional Haar

function. Each wavelet, as well as its first two dyadic scalings, is implemented

with computer generated holography. The Interferogram method, which represents

a function only in terms of its phase, is used to encode the wavelet functions.

The results are imaged onto a CCD array and captured using a franmegrabber.

The optical results are compared to digital simulation. The results show that an

optical implementation of the continuous wavelet transform was performed and that

the results compared favorably to digital simulation.

viii



OPTICAL HAAR WAVELET TRANSFORMS USING

COMPUTER GENERATED HOLOGRAPHY

I. Introduction

The Air Force has expended considerable effort attempting to develop an au-

tomatic machine-based pattern recognition system. The machine based system has

particular advantages as part of a smart weapon system. Applications range from

recognizing a tank in a cluttered scene to identifying terrorists as they enter an air-

port. An autonomous system requires no direct cueing by a human operator, and

has clear advantages in circumstances where a human being may not perform well or

where human life is at risk. This research discusses a subsystem of a machine-based

pattern recognition system called an image segmentor.

Traditionally, pattern recognition is broken down into three areas: segmenta-

tion, feature extraction, and classification. Segmentation of potential targets from

cluttered scenes is the first step before classification can begin (22). Image segmenta-

tion is simply finding potential targets in a cluttered scene (21). Feature extraction

picks the critical at,--ibutes of the segmented image such as the length-to-width ratio

or the bright spot intensity and passes that information to the classification subsys-

tem. Finally, the classification subsystem compares the feature extraction data to

features of previously classified or known objects (21). The result is the identifica-

tion of the image as a tank, truck, or terrorist. Once identified, the machine-based

system will either initiate action against the segmented object, or continue to search

for potential targets.

Numerous methods have been proposed for the segmentation of digital imagery

with some success (5, 6, 9, 18, 20, 22, 23); however, the problhm is far from solved.
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Significant research has also been performed in the medical field (15). A method

known as computed tomography is currently used to allow physicians to diagnose

clinical abnormalities from the display of a three-dimensional organ image (15).

This technique segments the organ of interest from the rest of the body and then a

computer transforms the two dimensional image captured by a camera into a three-

dimensional object (15). This technique works well for all stationary organ but it

will not work when the object of interest is a moving target such as a tank.

In addition to the tremeiidous computational resources required by the abovQ

methods, the time required to perform the segmentation is unl)ractical for a real-time

system to be used on a smart weapon. -in optical image segmentation system, if re-

alizable, would improve system performance. With an optical system, the thousands

of computations required by a digital computer can be performed in the amount of

time it takes the light to travel from one end of the system to the other.

1.1 Problem Statement

This research introduces an optical implementation of the continuous wavelet

transform (implemented with computer generated holography) for filtering images.

1.2 Approach

The block diagram of the image segmentation system used is shown in Figure

1. This outlines the various steps utilized in obtaining the filtered image. Several

different types of mathematical functions, called wavelets, are tested in the system.

Each wavelet is encoded in a computer generated hologram (CGH) and then corre-

lated optically with a cluttered scene containing an object of interest. This system

yields a filtered version of the input image in the correlation p)lane. The resolution

of the resultant filtered image is analyzed as -, ". ction of wavelet type and dilation.

Ideally, the results obtained from this research can be passed to a neural network

based image segmentor to complete the segmentation p)rocess (20).

2



Cluttered Fourier

Scene Y Transform

elaar Computer Optical
Wavel-t Generated " C-

Hologram Correlation

image

Segmentation

Figure 1. Optical segmentation approach

1.3 Scope

This research is a continuation of that conducted by Capt Pinski. The major

goal is to improve upon the resolution of the filtered images obtained in his research

(18). It also implements all three wavelet basis functions that make up the complete

orthonormal basis set rather than just the two basis functions used by Capt Pinski.

The primary objective of this resear(h is to optically implement the continuous

wavelet transform utilizing computer generated holography. The filtered images

were captured and stored on a digital computer. The optically segmented images

are compared to results obtained using a digital sinmlation of the optical 'system.

1.4 Outline of Thesis

Chapter II provides the necessary background on te different techniques em-

ployed in computer generated holography as well as an in-depth discussion of the

3



binary interferogram technique used in this research. Additionally, a brief survey of

related work is presented. Chapter III discusses in detail the applicable theory of op-

tical wavelet-based image segmentation. The optical correlation system is validated

by comparing to digital simulation. In Chapter IV, wavelets and the continuous

wavelet transform are introduced. The results obtained during this research effort

are also presented along with a detailed analysis. Specifically, filter performance is

discussed along with its dependencies on both: type of wavelet and its corresponding

dilation. Chapter V presents a comparison of results to those obtained by previous

work. It also presents conclusions reached and provides recommendations for future

research. Lastly, detailed appendices are provided to describe exactly how the CGHs

were encoded and then processed in order to be used in the optical system.
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I. Holography and Computer Generated Holograms

2.1 Vander Lugt Filtering

In order to understand how CGHs are encoded and used, an introduction to

holography and its applications is required. In photography, light from a scene is

recorded on film in terms of the intensity(magnitude) of the electro-magnetic light

waves squared. The phase of the light waves is not recorded. In holography however,

it is possible to record both the magnitude as well as the phase of the light waves. In

1963, A. B. Vander Lugt developed a process to record both the magnitude and phase

of an object optically(10). The optical set-up proposed by Vander Lugt interfered

an object of the form A(x, y)ejO(x'1) with a tilted reference wave represented by

Rej' ". The resulting intensity is given by the transmittance finction, t(x,y), given

below(13):

t(x,y) = R2 + A 2(x,y) + 2RA(x,y)cos[27rax - O(x, y)]. (1)

The expression is both real and nonnegative. It can also be recorded with conven-

tional film. The system used to record this intensity is called a Vander Lugt Filter

and is shown in Figure 2.

In Figure 2, S indicates the location of the point source that is collimated by

lens L1. The collimated source illuminates the input at P1 located a focal length

away from lens L2. This lens then Fourier transforms the input at the film plane

where it interferes with a reference beam approaching at an angle a determined by

the prism, P. The amplitude and phase information are recorded as amplitude and

phase modulations of a high frequency carrier introduced by the reference beam (10).

Therefore, the light from the object optically interferes with the reference beam, and

the resultant interference pattern is recorded on the film. When a slide made from

5
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Figure 2. Vander Lugt Filter (10)

the film is illuminated in the system of Figure 3, the original input image is located

in the back focal plane of lens L2 off-axis at the angle a.

Unlike conventional holograms, computer generated holograms(CGHs) or com-

puter holograms are produced as a graphical output from a digital computer(13).

The main advantage to this holographic method is that it enables the encoding of

analytical expressions which previously were unable to be created using conventional

methods. In the case of a CGH, the object function, A(x, y)e1'4 '-Y), is known. Once a

carrier frequency a is introduced, the complex object function can be encoded using

a modified version of equation 1 given by(13):

t(x,y) = .5(1 + A(x,y)cos[27rax - 0(x.,y)]). (2)

There are several different methods available for converting the desired wave-

front into a real, non-negative function encoded in the CGH. Some methods encode

6



a

Figure 3. System to illuminate Vander Lugt Filter (10)

magnitude and phase while others encode only the phase. The interferogram method,

which encodes only the phase of the desired function, was chosen to carry out this

research. The remainder of this chapter describes the interferogram CGH, why it

was chosen, and the techniques required to encode it.

2.2 The Interferogram

The interferogram method of recording a CGH encodes only the phase of the

expression and ignores the amplitude. Since often the majority of the information

describing a function is contained in the phase, ignoring the amplitude information

should have minimal effect on the results(13). This also simplifies the encoding of

the function. The amplitude information is ignored by setting A(x,y) equal to one

in Equation 2 and yields:

t(x,y) = .5(1 + cos[21rax - O(x,y)]). (3)

7



Since the cosine function oscillates between one and negative one, the transmittance

function of Equation 3 oscillates between zero and one. Maximum values of the

transmittance function occur when the argument of the cosine function is a multiple

of 27r, or:

27rax - ¢(x,y) = 27rnk. (4)

In Equation 4, nk is a list of integers ranging from zero up to the number of maxima

in the transmittance function. The pairs of (x,y) values which satisfy Equation 4

correspond to the locations of the maximum values of the transmittance function

and also define the locations of the interference fringes in the hologram (13). The

contrast of the fringes improve if only the fringe peaks are recorded(12). Therefore,

a binary device such as a laser printer can be used to plot the interference fringes.

The resulting hologram is called a computer generated interferogram. The plot is

then photo-reduced onto a glass slide using the system discussed in Appendix A.

Two types of CGH system architectures were considered for this research. The

first type encodes the phase of the desired object function. When the complex

wavefront encoded in a CGH is created by the superposition of an object beam with

a reference beam, the object is reconstructed with a plane wave (12). The system

required for this system architecture is shown in Figure 4. The second type encodes

the phase of the two-dimensional Fourier transform of the desired object function.

This type of CGH is reconstructed using the system shown in Figure 5. In this

system the CGH is also illuminated with a plane wave. The lens Fourier transforms

the CGH to yield the reconstructed object function. The system architecture shown

in Figure 5 is the one chosen for this research. For reasons to be discussed in the

next chapter, this method is best suited for the optical correlation system used in

this research.
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Collimated
Source (, Reconstructed

Image

Figure 4. Image reconstruction from CGH encoded with phase of object image (12)

CGH ., , .•

Reconstructed

Image
CollimatedSource ,

Lens

Figure 5. Image reconstruction from CGH encoded with 2-D Fourier transform of
object image (12)
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The hologram consists of fringes, or grating lines, allowing the desired wave-

front to be produced by diffracting illuminating light through the grating(12). Since

the carrier frequency, a, represents a reference beam, illumination of the CGH using

the system of Figure 6 will result in the reconstruction of conjugate images at angles

±a, -2a, etc. depending on the diffraction efficiency of the CGH. It is therefore

extremely important to choose a correctly to prevent any overlap of these multiple

orders.

2ax

S 
a

Figure 6. System to illuminate CGH (13)

The most important consideration after the type of CGH and the system ar-

chitecture to be used is the proper selection of the carrier frequency. In order to

separate the first order diffracted wave from the second order wave, a sufficiently

high carrier frequency must be chosen. Since the multiple orders are located along

the x-axis (as defined by Equation 3), it is necessary to consider only the spatial

frequencies of the input object along the x-direction. The relationship between a

10



and Umax, the maximum spatial frequency in the x-direction, is given by (13):

a > 2Um,,, (5)

For an input object that has resolution of X pixels in the x-direction, the highest

spatial frequency, Um,., possible is determined by:

Uma. = X/(input dimension in x - direction) (6)

Therefore, for an input image consisting of 128 x 128 pixels and size of 10 mm x

10mm, a > 2(128/10) = 25.6 lines/mm = 12.8 cycles/mm. Once a has been

chosen, the CGH can be created.

This chapter provided the basic information required to understand conven-

tional holography as well as computer generated holography. The Interferogram

method, described by Equation 3, was discussed in detail. The system architecture

for this research, as well as the system required to illuminate a CGH were also de-

scribed. Lastly, the importance of the carrier frequency, a was discussed in addition

to the method used to correctly choose it. The next chapter introduces image seg-

mentation and describes how it can be performed optically. Additionally, a method

to validate the entire system from CGH encoding to the optical implementation is

proposed and tested.
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III. Methodology

3.1 Image Segmentation

The first task required to solve the pattern recognition problem is to extract the

object of importance (the potential target) from the given scene. Once segmented,

the important features of the image can be extracted and sent to the pattern classifier

to identify the image. Each subsystem depends on the information passed by its

predecessor to perform its task.

Although each subsystem is optimized individually, in reality the pattern recog-

nition system is only as good as its worst subsystem. In other words, the pattern

classifier relies on the feature extractor to not only extract the best features, but ex-

tract them accurately. In order for the feature extractor to perform well, it requires

a high quality or high resolution segmented image. Therefore, the image segmen-

tation subsystem is the foundation of any good pattern recognition system (19). A

good pattern recognition system is one that not only correctly identifies targets, but

identifies them quickly as well.

Until recently, research to improve pattern recognition systems was limited

to improving algorithms based in digital computers. To improve the speed of the

overall system, pinski proposed an optical image segmentation scheme utilizing a

Magneto-optic Spatial Light Modulator (18). Although the speed of the segmen-

tation was improved significantly, the resolution of the segmented image was less

than predicted. The poor resolution was caused by the limited resolution of the spa-

tial light modulator (18). Therefore, if the resolution can be improved, an optical

segmentation scheme is clearly the best choice for an image segmentation subsystem.

12



3.2 Optical Implementation

One way to filter an image is to perform a cross correlation operation. If a

cluttered scene is correlated with a function that highlights edges, a segmented image

is obtained (22). The cross correlation of a cluttered scene, denoted by f(x,y), with

an edge-detection function, denoted by g(x,y), is defined by (8):

f(x,y)*g(x,y) = f (af)g(a - x,/3 - y) do dr3 (7)

A cross correlation can also be obtained by taking the Fourier transform of the

product of each function's Fourier transform. If YF is defined as the Fourier operator,

then the Fourier transform operation can be written as:

Y [f(x,y)] = F(i,,) (8)

Equation 7 is rewritten as:

f(x,y)*g(x,y) = q[F(•,7) G(-q,-?,)] (9)

The operation described by Equation 9 lends itself extremely well to an optical

implementation.

The system shown in Figure 7 optically implements the cross correlation op-

eration as described in Equation 9. Lens Li collimates the point source, S. The

cluttered scene is placed at plane, P1. Lens L2 Fourier transforms the scene at plane

P2 where it is multiplied by the CGH of the edge-detection function. The CGH is

inserted at P2 in a flipped configuration (about the horizontal and vertical axes) to

satisfy Equation 9. Lens L3 Fourier transforms the product and the cross correlation

is located at the output plane, P3. Once again, the method in which the CGH is

encoded causes the multiple cross correlations shown.

13
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Figure 7. Optical system to perform cross correlation (10)

3.3 Method Verification

In order to ensure the CGH encoding methods, its software implementation,

as well as the optical system all function as predicted, a total system validation is

required. If a function is used as the input image and it is also encoded in the CGH,

the optical system of Figure 7 performs an auto-correlation of the function with

itself. To properly validate the system operation, the optical results obtained are

compared to those obtained by digital simulation.

The two-dimensional rectangle function is chosen to perform the validation and

is defined below:

rect(xy) 1 if -. 5<x< .5 and -. 5<y<.5 (10)
0 otherwise.

A three-dimensional plot of the rectangle function is shown in Figure 8. To im-

plement this function in the optical system of Figure 7, a two-dimensional square

14
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Figure 8. 3-D plot of rectangle function

aperture is placed at plane,Pl. It is necessary to take the Fourier transform of the

rectangle function to encode the CGH. The two-dimensional Fourier transform of

the rectangle function is given below:

Y [ rect(x, y) ] = sinc(ý, yi). (11)

A function is completely described by its absolute value, or magnitude, and its cor-

responding phase. The three-dimensional plot of the magnitude of the sine function

is shown in Figure 9. Its phase function is shown in Figure 10. Note that the phase

function is discrete, having values of either zero or 7r. The phase is zero valued over

intervals where the sine and the magnitude of the sinc are identical in value and sign.

The phase function has a value of 7r over the intervals where tile simc is negative. It

is the phase of the Fourier transform of the desired function that is encoded in the

Interferogram CGH. The Interferogram was created using the software and methods

15
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outlined in the appendices. The plot of the Interferogram is showni in Figure 11.

To validate the encoding operation, the CGH was made and placed in the optical

Figure 11. Plot of interferogram of two-dimensional rectangle function

set-up shown previously in Figure 5. When the CGH is illuminated, the lens Fourier

transforms the function encoded and the result is located in the back focal plane

of the lens. The result obtained was captured with a CCD camera, stored, and is

shown in Figure 12. It is important to note that the CGH encodes onlN the phase

17



of the sinc. The amplitude is not encoded. For this reason, the Fourier transform

is not a perfect rect as shown in Figure 8. Since it is difficult to predict what the

Fourier transform will be, a digital simulation was performed. The digital simulation

is shown in Figure 13. The digital simulation compares very well with the optical

result. Careful inspection of Figure 13 shows four main peaks corresponding to the

four corners of the rectangle function as well as multiple secondary peaks located

outside of the main peaks. When the optical result was obtained, only the main

peaks were captured and stored.

Figure 12. Optical Fourier transform of phase of sine function encoded in CGH

Once the CGH encoding method and software were validated, the optical cor-

relation system was tested. Again, the square aperture was placed in the input plane,

P1 and the CGH was placed inl plane, P2. The result was captured and stored and

is shown in Figure 14. The digital simulation result is shown in Figure 13. It, is

extremely difficult to compare the optical result with the digital simulation because

18
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Figure 13. Digital simulation of Fourier transform of phase of sine function encoded
in Interferogram CGH

Figure 14. Optical result of the auto-correlation of the rectangle function with itself
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Figure 16. Optical result of the auto-correlation of the rectangle function with itself
using Beam Code Software
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the center peak is so dominant that it washes out the rest of image. For this reason,

a laser beam analysis tool called Beam Code Software(4) was obtained from the

Engineering Physics Department at AFIT to properly analyze the result. Although

the primary purpose of the Beam Code Software is to analyze laser beam modes

and spot size, it works well for this application. The tool uses a radiation detector

that has a much larger dynamic range than the CCD camera. This allows the entire

image to be captured without having the bright central intensity peak washing out

any of the remaining signal. The detector was placed in the output plane and the

results were stored, processed, and displayed with a conventional CRT display. The

result obtained using the Beam Code Software was displayed as a three-dimensional

graphic to allow easy comparison to the digital simulation. This result is shown in

Figure 16 . The result is almost identical to the digital simulation.

Now that the total system is validated, the next phase of the research can be-

gin. The next chapter gives a brief introduction to wavelets, the continuous wavelet

transform, and describes the methods used to perform the optical image segmenta-

tion.
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IV. Results and Discussions

Image segmentation has been tried using several different image processing

techniques with varied results (15, 20, 22). This research implements a method

known as wavelet analysis (20). The wavelet transform can be described by a Fourier

filtering operation, where the inherent filtering operation of the wavelet transform

passes certain frequencies while attenuating others. The type of wavelet chosen

determines which frequencies are passed and which are filtered. It is also possible to

adjust the filtering characteristics by varying a parameter of the wavelet called the

dilation. The remainder of this chapter describes the wavelet transform and discusses

how it is implemented in the optical correlator system presented in Chapter 2.

4.1 Wavelet Analysis

The Fourier transform gives no information about where specific frequencies

are located in the original signal. The wavelet transform, on the other hand, provides

both frequency and location information with respect to the input image or signal.

A wavelet transform decomposes an image into scaled, translated, and dilated ver-

sions of a transform kernel referred to as a mother wavelet (6). Due to the kernel's

translational properties, the wavelet transform can be characterized as a correlation

process (6). As stated in the previous chapter, correlation processes are well suited

for optical implementation.

The filters in a wavelet analysis are derived from shifted and dilated versions

of the mother wavelet. The mother wavelet acts as a window in the temporal or

spatial domain, allowing certain frequencies to be passed and attenuating others.

The form of the two-dimensional mother wavelet, 'I'aOd , is given by the following

expression(6):

_ 1 "(x-b y-c (12)
v 22-d a ( d
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In this expression, the variables a and d denote the dilation or width of the wavelet,

which varies the size of the window used in the filtering process (20). The variables b

and c denote the translation or location of the wavelet along the x and y axes. Since

the correlation process will automatically perform all possible translations of the

wavelet, the translation variables will be set to zero and ignored in the remainder of

this discussion. Therefore, the mother wavelet will always be located at the origin.

The correlation process cannot produce the energy normalization factor, -,7 but

this does not affect the validity of the wavelet transform as discussed in the article

by Burns et al (6). This reduces Equation 12 to:

ýOad = V' , • (13)

In Equation 13, all positive values of a and d provide for all possible dilations of the

mother wavelet which make up the basis set, bad (20). This basis set provides broad

windows for large dilations corresponding to narrow bandwidth filters that yield

a coarse resolution analysis of a scene, and small dilations corresponding to wide

bandwidth filters that capture high spatial frequencies. The result provides details

unable to be detected with the larger dilation. For this reason, wavelet analysis is

sometimes called multiresolution analysis.

The continuous wavelet transform of an image, i(x,y) is given by:

[WO 2i1(a,b,c,d) =J 0  1 x-b Y_:If dxdy.

For a more detailed discussion of wavelet transforms, read the article by Burns et al

(6).

The wavelet transform can be described as the projection of the image onto a

basis set made up of all shifts of a scaling function at a fixed dilation. By choosing

discrete dilations properly, a discrete multiresolution analysis is p)erformed by de-

composing an image into its basis set of images, thus representing the image by its

23



wavelet transform coefficients. The image can then be reconstructed by combining

the coefficients without performing every possible dilation. Just as an image can be

approximated by a subset of its Fourier coefficients, it can also be approximated by

a set of discrete wavelet transform coefficients. The next section describes how mul-

tiple dilations of a scaling function can be used to perform a multiresolution analysis

on a two-dimensional image.

4.2 Multiresolution Analysis

Multiresolution analysis represents an image as a series of projections, each

of which approximates the original image at different levels of resolution (20). The

levels of resolution correspond to different dilations of a scaling function which can

be combined to produce an orthonormal wavelet basis set. For two-dimensional

images, the orthonormal basis set is composed of three wavelet basis functions,

p I(x, y), pJ2(x, y), %3(x, y), which are constructed from two, one-dimensional scal-

ing functions, O(x) and 0(y), and the mother wavelet, Vi/(x, y). The scaling functions

can be thought of as passband controllers or filters in the frequency domain. Each

successively larger scaling function and mother wavelet combination filters a suc-

cessively narrower band of frequencies. The three wavelet basis functions are given

below (16):

&IFl(x, y) = O(X)g'(y)

P'I2(x,y) = O(y)V)(x) (15)

,p3(x, y) = V,(x)Vy(y)

It is common practice to take scaling functions at dilations that are powers of two

(also known as the dyadic scaling functions) to obtain an orthonormal basis set

for a multiresolution analysis(16). This research used three dilations of the scaling

functions. The first dilation does not alter the mother wavelet: the second doubles
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the width of the mother wavelet, and the third quadruples the width of the mother

wavelet. This will provide the successive filtering operation discussed earlier.

4.3 The Haar Wavelet

The wavelet chosen to perform this research is the Haar wavelet. To form

the orthonormal basis set, T 1(x, y), Xp2(x, y), jp3(x, y), three variations of the Haar

wavelet are necessary. The orthonormal basis set consists of two one-dimensional

Haar wavelets and the two-dimensional Haar wavelet. The expression for the first,

one-dimensional wavelet, Haar(x) is given below:

J1 if-.5<x<0

Haar(x)= -1 if0<x<.5 (16)

0 otherwise

This function will highlight vertical edges when correlated with an image using the

optical correlator of Figure 7. The three dimensional plot of the function is shown

in Figure 17. In order to encode this function in a CGH, it is first necessary to

0,

x - axis

Figure 17. 1-D Haar wavelet required to highlight vertical edges
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Fourier transform the function. This function can be considered the difference of

two, one-dimensional rectangle functions. The first rectangle function would have a

width of .5, be centered at x = -. 25, and have a height of 1. The second rectangle

function would have a width of .5, be centered at x = .25, and have a height of -1.

Therefore, the Haar(x) function can be rewritten as:

Haar(x) = rect (X xJS 5 -2 rect (X x 25) (17)

The Fourier transform of Haar(x) is obtained using this representation coupled with

the following Fourier transform identity and property:

.T rect(z) ]=Sinc(ý),

(18)

-T [t (x a b)]

The Fourier Transform of Haar(x) is:

.F [ Haar(x) ] = .5Sinc(.5 )ej27r('25)c inc(.5n.5)e -j2,"2'55  (19)

This can be rewritten as:

Y [ Haar(x) ] .5Sinc(.5ý) ("'5' - e-i5"r). (20)

Using Euler's formula (8),

ej.'57Tý - j''5ir = (2j)sin(.57rý).

Equation 20 is now given by:

Y [Haar(x)] = jSinc(.5f)sin(.57rý). (21)
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Since only the phase of the Fourier Transform is encoded in the CGH and we are

only interested in phases that change as a function of the independent variable, (,

we will ignore the constant phase factor of j. This yields:

Im([F Haar(x) 1) = Sinc(.5ý)sin(.57rý). (22)

The absolute value of the two-dimensional Fourier Transform is shown in Figure 18

and its corresponding phase is shown in Figure 19. Since the Haar(x) wavelet is

infinite in the y-dimension, it is expected that the Fourier Transform will collapse

down onto the a-axis. This is exactly as shown in Figure 18.

'0 in axis

4¢

I~ z - axis

10 20 3 0 5

•-axis

Figure 18. Absolute value of the Fourier Transform of 1-D Haar(x) wavelet

It is important to note that the phase of the Fourier Transform of a one-

dimensional wavelet is independent of dilation. This means the phase function is

constant for all of the dyadic dilations of the mother wavelet. Figures 20 and 21

are one-dimensional plots showing the amplitudes of the Fourier transforms of the

one-dimensional wavelet for two different dilations. Both functions are positive

or zero for positive values of ý, and negative or zero for negative values of ý. The

phase of the magnitude of these two functions are identical except for the zero values
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Figure 19. Phase of the Fourier Transform of 1-D Haar(x) wavelet

1

0.5

-6 4 2 4 6

-1

Figure 20. 1-D amplitude of the Fourier Transform of 1-D Haar(x) wavelet
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-0
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Figure 21. 1-D amplitude of the Fourier Transform of the first dyadic dilation of
the 1-D Haar(x) wavelet

to the left of the origin. In order to have phase functions that differ for different

dilations, it is necessary to make some assumptions. Figures 20 and 21 show that tile

amplitude of the Fourier transform drops off by more than a factor of three outside

the first maxima. Therefore, we will assume the amplitude to be zero outside the

first maxima as shown in Figures 22 and 23. Using this assumption, the phase

function will change as the mother wavelet is scaled.

In order to predict how well the phase-only approximation of the Haar wavelet

will perform in the correlator, it is necessary to inspect the Fourier transform of the

CGH. The absolute value of the Fourier Transform of the CGH is shown in Figure

24. This function along with its first two dyadic dilations are encoded in CGHs.

The second one-dimensional wavelet function is Haar(y). This function will

be used to filter horizontal spatial frequencies. TheI Haar(y) wavelet is identical to

the Haar(x) wavelet except the x and y axes are interchanged. The expression for
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-6 -4 -204 6

0.

-1

Figure 22. 1-D amplitude of the Fourier Transform of 1-D Haar(x) wavelet using
assumption

0.5-

-6 -4 -2 2 4 6

-0

-1

Figure 23. 1-D amplitude of the Fourier Transform of tho first dyadic dilation of
the 1-D Haar(x) wavelet using amplitude assumlption
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Figure 24. Absolute value of the Fourier Transform of the Phase of the Fourier
Transform of 1-D vertical wavelet

Haar(y) is given below:

1 if -. 5< y <0

Haar(y)= -1 if0<y<.5 (23)

0 otherwise

The three-dimensional plots for the Haar(y) wavelet would be the same as the plot

shown in Figures 17 - 19, but rotated counterclockwise by 90 degrees. Following the

discussion presented in Equations 18-22, and substituting y for x and q for ý yields:

Im(F [ Haar(y) ]) = Sinc(.5qi) sin(.57r'j). (24)

The phase of this function along with its first two dyadic dilations are encoded in

CGHs.
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The last function to be encoded is the two-dimensional Haar(x,y) wavelet. The

expression for the two-dimensional Haar(x,y) wavelet is given below:

{1 if0_<x<.5and0<y<.5 oi- -. 5<x<0and-.5•<y<0

Haar(x,y)= -1 if0<_x<.5and-.5<y<0 or -. 5<x<0and0<y<.5 (25)

0 otherwise

This function can be written as the combination of four different rectangle functions

as given by:

Haar(x,,y) = rect(x+5.5 y + .25-) + rect x-'5.2- y 5-.25)

rect (x 525, y+ 2 ) rect (x + .25 5-.2 5) (26)

The Fourier Transform of Haar(x,y) is obtained using the identities given in Equation

18 and yields:

.F[Haar(x,y)] .25Sinc(.5ý, .51) [e-2f%('25)( +I)- +

- .25Sinc(.5ý,.5q) [ej21r(.25)(1-i) + e-j27r(_25)(c-q) (27)

Once again, ignoring the amplitude factor of .25 and applying Euler's formula yields:

Y [ Haar(x,y) I = Sinc(.5ý, .57;) (cos[.57r(ý + q)] - cos[.5-(ý - ij)]) (28)

The phase of the function given in Equation 28 is shown in Figure 25. The negative

spikes in Figure 25 correspond to zero values of the function over those intervals. In

other words, the function is negative everywhere over those intervals except at those

points where it is zero-valued. This function, along with its first two dyadic dilations
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Figure 25. Phase of the Fourier Transform of 2-D Haar wavelet

are encoded in CGHs using the same assumption made for thle one-dimensional

wavelets.

4..4 Wavelet Transform Results

The input image used for the remainder of the research is shown in Figure

26. This image is used for this type of research because it has a wide variety of

spatial frequencies within its image structure. A negative of this image was plotted

on a 400 dot per inch laser printer, back illuminated using a Dekagon camera system

(detailed in Appendix A) and then photoreduced onto a glass slide. This creates a

positive image on the slide which is then placed in the input plane of the optical

correlator system shown in Figure 7. Each CGH was then p~lacedl in l)lane, P2 and

the correlation result was then captured using a CCD camera.

To validate the optical results, a series of digital silnulations were performed.

The digital simulations exactly modeled the optical system used. The optical results

were then compared to the digital simulations to validate the results obtained. The

next several pages provide the optical results of the wavelet. transform along with its
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Figure 26. Input image

corresponding digital simulation for ease of comparison. It should be noted that a

slightly different version of the input image was used for all of the digital simulations.

The digital simulation image is cropped slightly more than the image used in the

optical system. The image used for the digital simulations is shown below.

The optical result obtained by using the unscaled mother wavelet, Haar(y),

followed by its corresponding digital simulation are shown on the following page. The

unscaled wavelet represents the narrowest passband filter and therefore is expected

to pass the highest horizontal spatial frequencies. The vertical spatial frequencies

are filtered out. Note that the pole on the left side of the image is not highlighted or

filtered in Figures 28 and 29. In both figures, the edges of the hat, the eyebrows, as

well as the shoulder are highlighted by the filter. The digital simulation compares

very well to the optical result.
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Figure 27. Digital simulation image

On the following page, the input image is filtered by the first dyadic dilation

of the Haar(y) wavelet. The filter used in this correlation is coarser than that used

on the previous page. This coarser filter will pass a wider band of spatial frequencies

allowing more details of the image to be seen. This can be seen by looking at the hat

feathers in Figures 30 and 31. More details of the feathers can be seen in Figures

30 and 31 than can be seen by looking at Figures 28 and 29. This is caused by the

coarser filter used to obtain the results shown in Figures 30 and 31. Once again, the

digital simulation compares very well to the optical result.

In Figures 32 and 33, the input image is filtered by the second dyadic dilation

of the Haar(y) wavelet. The filter used in this correlation is coarser than that used

for Figures 30 and 31. This filter passes an even wider band of spatial frequencies

and therefore the results show even more details of the image. Note highlighting of

the shoulder and the left side of the hat in both figures. The two figures compare

favorably.
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Figure 28. Optical result obtained using the Haar(y), unscaled, mother wavelet

Figure 29. Digital simulation obtained using the Haar(y), unsealed, mother wavelet
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Figure 30. Optical result obtained using the first dyadic scaling function and the
Haar(y) mother wavelet

Figure 31. Digital simulation obtained using the first dyadic scaling function and
the Haar(y) mother wavelet
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Figure 32. Optical result obtained using the second dyadic scaling function and the
Haar(y) mother wavelet

Figure 33. Digital simulation obtained using the second dyadic scaling function and
the Haar(y) mother wavelet
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The optical result obtained by using the unscaled mother wavelet, Haar(x),

followed by its corresponding digital simulation are shown on the following page. The

unscaled wavelet represents the narrowest filter and therefore is expected to pass the

highest vertical spatial frequencies. The horizontal spatial frequencies are filtered

out. Note that the edges of the pole on the left side of the image are highlighted or

filtered in Figures 34 and 35. In both Figures, the edges of the hat, the shoulder, as

well as the right side of the face are highlighted by the filter. The digital simulation

compares very well to the optical result.

On the next page, the input image is filtered by the first dyadic dilation of

the Haar(x) wavelet. The filter used in this correlation is coarser than that used on

the previous page. This coarser filter will pass a wider band of spatial frequencies

allowing more details of the image to be seen. This can be seen by looking at the hat

feathers in Figures 36 and 37. More details of the feathers can be seen in Figures

36 and 37 than can be seen by looking at Figures 34 and 35. This is caused by the

coarser filter used to obtain the results shown in Figures 36 and 37. Once again, the

digital simulation compares very well to the optical result.

In Figures 38 and 39, the input image is filtered by the second dyadic dilation

of the Haar(x) wavelet. The filter used in this correlation is coarser than that used

for Figures 36 and 37. This filter passes an even wider band of spatial frequencies and

therefore the results show even more details of the image. Note slight highlighting

of the shoulder and pole, as well as the hair on the right side of her face in both

figures. The two figures compare favorably.
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Figure 34. Optical result obtained using the Haar(x), unscaled, mother wavelet

Figure 35. Optical result obtained using the Haar(x), unsealed, mother wavelet
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Figure 36. Optical result obtained using the first dyadic scaling function and the
Haar(x) mother wavelet

Figure 37. Digital simulation obtained using the first dyadic scaling function and
the Haar(x) mother wavelet
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Figure 38. Optical result obtained using the second dyadic scaling function and the
Haar(x) mother wavelet

Figure 39. Digital simulation obtained using the second dlyadic scaling function and
the Haar(x) mother wavelet
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The optical result obtained by using the unscaled, two-dimensional mother

wavelet, Haar(x,y), followed by its corresponding digital simulation are shown on

the following page. This represents the last of the three wavelet basis functions. In

both Figures, the edges of the hat, the shoulder, as well as the hair on the right side

of the face are highlighted by the filter. The digital simulation compares well to the

optical result.

On the next page, the input image is filtered by the first dyadic dilation of the

Haar(x,y) wavelet. The filter used in this correlation is coarser than that used on

the previous page. This coarser filter will pass a wider band of spatial frequencies

allowing more details of the image to be seen. This can be seen by looking at the hat

feathers in Figures 42 and 43. More details of the feathers can be seen in Figures

42 and 43 than can be seen in Figures 40 and 41. This is caused by the coarser

filter used to obtain the results shown in Figures 42 and 43. Once again, the digital

simulation compares very well to the optical result.

In Figures 44 and 45, the input image is filtered by the second dyadic dilation

of the Haar(x,y) wavelet. The filter used in this correlation is coarser than that used

for Figures 42 and 43. This filter passes an even wider band of spatial frequencies and

therefore the results show even more details of the image. Note slight highlighting

of the shoulder and pole, as well as the hair on the right side of her face in both

figures. The two figures compare favorably.
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Figure 40. Optical result obtained using the two-dimensional, unscaled, mother
wavelet

Figure 41. Digital simulation obtained using the two-dimensional, unsealed, mother
wavelet
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Figure 42. Digital simulation obtained using the first dyadic scaling function and
the two-dimensional mother wavelet

Figure 43. Digital simulation obtained using the first dyadic scaling function and
the two-dimensional mother wavelet
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Figure 44. Optical result obtained using the second dyadic scaling function and the
two-dimensional mother wavelet

Figure 45. Digital simulation obtained using the second dyadic scaling function and
the two-dimensional mother wavelet
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Capturing the output correlations with the CCD camera varied with each CGH

used. Each time a new CGH was placed in the optical correlation system, minor

adjustments were made to the system alignment as well as the camera location. In

all cases, the optical results ccru"pared favorably to the digital simulations.

4.5 Summary

This chapter introduced the wavelet analysis, multiresolution analysis, and the

wavelet transform. The wavelet transform was used to filter an image. The optical

results obtained with each wavelet and dilation were compared to its corresponding

digital simulation. The digital simulations compared favorably to the optical results.

The next chapter draws conclusions and makes recommendations to improve upon

the results obtained. It also gives an overall summary of the research.
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V. Conclusions and Recommendations

This research introduced an optical implementation of the continuous wavelet

transform to filter images. The wavelet basis functions, required to perform the

transform, were implemented with computer generated holography. This research

had three main objectives. The first objective was to successfully filter images using

the continuous wavelet transform. The second was to implement the continuous

wavelet transform optically using computer generated holography. The last objective

was to obtain better resolution than was obtained by Capt Pinski who used the

Magneto-optic Spatial Light Modulator.

To validate the optical system and software used to encode the CGHs, an

autocorrelation was performed using a known function. The results of the autocor-

relation were compared to results obtained by digital simulation. The two results

were identical. Next the continuous wavelet transform was introduced. The wavelet

basis set was then defined and implemented with a CGH. The basis set consisted

of two, one-dimensional Haar wavelets and the two-dimensional Haar wavelet. Each

mother wavelet, along with its first two dyadic scalings, was implemented in the

optical correlation system. The continuous wavelet transform performed a filtering

operation on the input image. The results were captured with a CCD camera and

provided in Chapter IV.

5.1 Conclusions

The continuous wavelet transform was implemented, using the Haar wavelet,

in an optical correlator system. One assumption was required to encode different

dilations of the Haar wavelet in the Interferogram CGH. The results compared fa-

vorably with the digital simulations except for the filtered images obtained using the

dilated two-dimensional Haar wavelets. These images all contained some noise. It is

not clear exactly what caused the noise in these images, however the close proximity
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of the phase changes in those CGHs coupled with the quality of the CGH plot may

have contributed to the less desirable results.

In each of the filtered images, too much detail of the input image is visible. If

the results of the continuous wavelet transform will be passed to a neural network

based system to segment the image, too much additional filtering is required. The

Fourier transform of the Haar wavelet, as shown in Figures 20 and 21, varies greatly

in amplitude as a function of the independent variable, ý. Additionally, the phase of

the Fourier transform of the Haar wavelet does not change as a function of dilation.

Since the Interferogram CGH encodes only the phase of a function, it is not the best

choice for encoding the Haar wavelet.

In addition, dark areas are visible in each of the filtered images. It is believed

these dark areas are caused by the change in fringe line spacing occurring where

the phase changes. To validate this hypothesis, the CGH of the first dyadic scaling

function and the Haar(x) wavelet was bleached to lighten the fringe lines while

maintaining the phase information. The bleached CGH allowed more light to pass

through the system and improved the dark areas as can be seen by comparing the

result shown in Figure 36 to the result shown in Figure 46 on the following page.

Lastly, this research was undertaken to improve the resolution of the results

obtained by Pinski. Pinski's research used the Haar(x) and Haar(y) wavelets and

implemented one dilation of each. His best results are shown on page 39 of his

thesis (18). Comparison of his results with the results obtained in this research show

improved resolution, however more detail of the image can also be seen. Additional

processing would be required to remove the additional details p)resent in the filtered

images of this research.

5.2 Recommendations

Special assumptions were made to allow encoding of the dilated versions of

the Haar wavelets. The assumption made to facilitate encoding of the Interferogram
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Figuire 46. Optical result obtained using the first dyadic scaling function and the
Haar(x) mother wavelet with a bleached CGH

CGH can be eliminated if the phase as well as the amplitude information is encoded.

This can be achieved using the detour-phase method of encoding CGHs. Because the

detour-phase method will reduce the amount of light passing through the system,

it is possible that a more powerful laser may be required. Since this method filters

amplitude as well as phase, additional processing of the image discussed above would

not be required. This system would more closely relate to that iml)lemented by Pinski

and allow for a better comparison of results.
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Appendix A. Creating a Computer Generated Hologram

A. 1 Introduction

Unlike regular photography where light from a scene is recorded on film in terms

of its intensity(magnitude-squared), holography is a technique used to encode the

magnitude and phase, or phase-only of the light originating from a three-dimensional

object. This is usually done by optically interfering the light from an object with

a reference beam and then recording the resulting interference pattern on a film

plate (10). In many applications, it is necessary to create a hologram with a certain

analytical magnitude and phase distribution. To do this, it is necessary to digitally

calculate values of the magnitude and phase of the desired function for individual

points. These data points can then be encoded into a real, nonnegative function

which can be plotted using a standard laser printer. The plot, once photo-reduced

onto a glass slide, is called a computer generated hologram.

This appendix provides the reader with all of the resources necessary to create

phase-only computer generated holograms. First, the detailed background on the

equations used to encode a computer generated hologram (CGH) is presented. Next,

the software used to implement the derived equations is discussed in great detail.

Lastly, the equipment used to photo-reduce the plotted transparency onto a glass

slide is presented.

A.2 Encoding the CGH

The intensity variation resulting from an optically generated hologram is given

by a transmittance function of the form

t(x, y) = R 2 + A2 (X, y) + 2RA(x, y)cos[27rox - 6(.r. y)]. (29)
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which is real and nonnegative(10). A(x,y) is the intensity (magnitude) of the light

coming from the object and O(x, y) is its phase. R is the intensity of the reference

beam and a is the angle between the reference beam and the object beam. For the

phase-only CGH, the transmittance function is given by(12):

t(x, y) = .5(1 + cos[27ra. - O(x, y)]). (30)

In this equation, a is the carrier frequency. The CGH will produce many diffracted

waves when illuminated, therefore a sufficiently high carrier frequency must be chosen

to separate the first diffracted order of the desired function from its higher orders(13).

The transmittance functions above have maximums where the argument of the cosine

term satisfies:

27rax - ¢(x, y) = 2 7rnk, (31)

for integer values of nk, where k corresponds to a different fringe.

To test the theory, a two-dimensional rectangle function CGH was created.

The rectangle function was chosen because its Fourier Transform is known and the

phase of the Fourier Transform is discontinuous. For the two-dimensional rectangle

CGH, O(x, y) is a discrete function having a value of zero or pi depending on the

sign of the Sinc function.

A.3 Plotting a CGH

The rectangle function was encoded and the CGH was plotted on a trans-

parency using the C language software program provided in Appendix B. Although

several commercial software packages are available to plot contour lines, or inter-

ference fringes, (including Matlab, Metalib, IDL, and Mathematica) none of them

can handle functions containing sharp discontinuities as the phase functions shown

in Chapters 3 and 4. The C program gave the best results. This work was accom-
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plished on the Next Computers in the Signal Processing Lab, Room 2001, Building

642 at AFIT.

The C software program breaks up the plot into a 1600 by 1600 array of pixel

values. Each pixel value maps to specific location in the two-dimensional spatial

frequency plane. Since the output of the program is plotted on a transparency and

then photoreduced onto a glass slide, the output plot must be a negative of the

desired plot. In other words, if a single black line is required on a glass slide, the

transparency must be opaque everywhere and clear where the line appears. The

program loops through each pixel location, checks the sign of the Fourier Transform

of the given function to determine the value of the phase function, 6, at that point.

If the Fourier Transform is less than zero the phase is set to pi, otherwise the phase

is set to zero. Next, the program evaluates the cosine function in Equation 31. Due

to sampling considerations,the 2irax term in the argument of the cosine function

was changed to 2x. This ensures the cosine function will always be sampled at

multiples of 90 degrees. If the cosine function is equal to one, the pixel is set to zero.

Otherwise, the pixel is set to one. The loop continues until each pixel is assigned a

value.

To compile and link all of the necessary files, a make file was created and is

provided in Appendix E. Th- make file is run. using the terminal, simply by typing

"make" followed by a carriage return. The program is run by typing the program

name (in this case "petebin") followed by the name of the array the data is to be

written to(in this case "tempi"). After the program has run, the plot of the CGH is

obtained by executing the make eps program provided in Appendix F. This program

is run by typing "make eps templ 1600 1600 6". In this command, templ) is the

name of the pixel array, 1600 is the size of the array in each direction, and 6 is the

size of plot desired in inches.
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A.4 Creating the CGH

Once the contour lines are plotted on a transparency, the transparency is taken

to the Cooperative Electronics Materials Process Lab, room 1065 of building 125, to

be reduced onto a high-resolution glass slide. A Dekagon Optical System was used

to reduce the plot onto a glass slide and is shown in Figure 47.

Back-illuminated
Screen

Transparency
Front Rear
Box Box

• <-----Film Plate

S Dekagon Camera

Figure 47. Dekagon Optical System

A 5 inch lens was placed on the front box and used to obtain a 20x reduction.

This resulted in a CGH that was approximately 1.0cm by 1.0cm. To correctly align

the system, the front and rear boxes were set at 49.97 and 70.05 respectively. These

settings are only estimates of the correct alignment so the system must b)e focused.

To do this, an exposed glass slide is scored with a sharp instrument on its emulsion

side. The slide is then placed in the film plate with its emulsion side facing the

screen and the transparency is place on the screen. Next, focus a microscope on the

scored marks of the glass slide. After the marks are in focus, adjust the position of
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the front box until both the contour lines and the score marks are in focus. Once

this is done correctly, the Dekagon Optical System is correctly focused.

Next, in a darkroom, a 2in x 2in glass slide was placed in the film plate with the

emulsion side facing down. The film plate was then mounted on the system. With

the screen illuminated, the door closed, and the lights off, the shutter was removed

and the slide was exposed for three minutes. The shutter was inserted back into the

plate and then the plate was taken into the dark room for development. Once in the

dark room, the slide was removed from the film plate and placed in a developer bath

for two minutes. Next, the slide was placed in a fixer bath for two minutes. Finally,

the slide was placed in the stop bath for two minutes, rinsed off in deionized water

and then blown dry with nitrogen gas. To verify the system was focused properly,

the slide was viewed under a microscope where clear, distinct lines were noted.

Please note the exposure time may vary based on how dark one wishes the

lines to be and the age of the glass slides. The slides have expiration dates just like

film and should be checked before using them. Also the amount of time the slides

need to spend in the developer, fixer, and stop is a function of age and how many

times each has been used previously. The times quoted in the previous paragraph

were for freshly mixed chemicals.

A. 5 Conclusions

Creating a CGH is a complex task. Use the software provided and your re-

sults should be excellent. It should be remembered however that nothing remains

constant. Some of the steps highlighted in this report may require some fine adjust-

ments. Remember, the measure of success is whether or not the CGH works on the

optics bench.
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Appendix B. C Programs Used to Encode CGHs

/* This C program creates the matrix that defines the CGH of a */
/* two-dimensional rect function.

#include <stdio.h>
#include <math.h>

float *vectoro; /* Declare and initialize variables */
float **matrix);

main(argc,argv)
int argc;
char **argv;

{int x,y;
float *rdata;
float **pete;
double tmp,temp,phase,pi;
int number-points;
FILE *output.file;

number.points=1600; /* Define dimensions of CGH matrix */

rdata=vector(l,numberpoints);

pete=matrix(l,number.points,l,number.points);
if (argc !=2)
{printf ("need an output file");
exit(O);}
pi=3.141592654;
output-file = fopen(argv[1],"w");

for (y=1;y<=numberpoints;y++) /* Initialize and start do while loops */
{for (x=l;x<=number.points;x++)

/* The next three nested if statements handle the discontinuities of */
/* the Sinc function.
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{if ((double)x/160.0-5.0== 0.0 & (double)y/160.0-5.0== 0.0)
{tmp=1.0;1

else if ((double)x/160.0-5.0== 0.0)
{tmp=sin(pi*((double)y/160.0-5.0))/(pi*((double)y/160.0-5.0)) ;}

else if ((double)y/160.0-5.0== 0.0 )
{tmp=sin(pi*((double)x/160.0-5.0))/(pi*((double)x/16o.o-5-o));}
else
{tmp~sin(pi*( (double)x/160 .0-5.0) )*sin(pi*( (double)y/160 .0-5.0))!

(pi*pi*((double)x/160.0-5.0)*((double)y/160.O-5.O));}

if (tmp0o) /* Check for phase of Sinc at current (x,y) value *
{phase=pi; }
else
{phase~o; }

temp~cos ((double) ((pi/2) *x - phase));

if (temp>=.9999999999) /* Check if at maxima of cosine *
f{pete [x] [y]=. 0;}1
else
{pete [x] [y]=1.0;}1

} * end x loop *
}/* end y loop *

printf("Values computed saving the data\n");
fflush(stdout);

for (y=1;y<=number..points;y++) 1* Write data to output file *
f
for (x= ; x<=number-.points ;x++)
{rdata[x]=(float)peterx]Cy] ;}
fwrite(rdata,sizeof (float) ,number-.points,output-.file); }

I /* end main *

\newpage

/* This C program creates the matrix that defines the OGH of a *
/* one-dimensional Haar wavelet. *
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#include <stdio.h>
#include <math.h>

float *vector); /* Declare and initialize variables */
float **matrix(;

main(argc,argv)
int argc;
char **argv;

{int x,y;
float *rdata;
float **pete;
double tmp,tempphase,pi;
int number-points;
FILE *output-file;

number-points=1600; /* Define dimensions of CGH matrix */

rdata=vector(l,number.points);

pete=matrix(l,number-points,l,number.points);
if (argc !=2)
{Drintf("need an output file");
exit(O);}
pi=3.141592654;
output-file = fopen(argv[1],"w");

for (y=l;y<=number-po:.nts;y++) /* Initialize and start do while loops */
{for (x=l;x<=number-points;x++)

/* The next two nested if statements handle the discontinuities of */
/* the Fourier Transform of the scaled Haar wavelet */

{if ((double)x/50.O-16.0== 0.0)
{tmp=O.0;}

else if (y> 600 & y<1 0 00 & x>=O & x<800)
{tmp=-j;}
else
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{tmp=l;}

if (tmp<O) /* Check for phase of Haar at current (x,y) value */
{phase=pi;}
else
{phase=O;}

temp=cos((double)((pi/2)*x - phase));

if (temp>=.9999999999) /* Check if at maxima of cosine */
{pete[x][y]=O.O;}
else
{pete[x][y]=l.O;}

} /* end x loop */
} /* end y loop */

printf("Values computed saving the data\n");
fflush(stdout);

for (y=1;y<=numberpoints;y++) /* Write data to output file */
{
for (x=l;x<=number.points;x++)
{rdata[x]=(float)pete[x] [y];}
fwrite(rdata,sizeof(float),number-points,output.file);}

} /* end main */

\newpage

\newpage

/* This C program creates the matrix that defines the CGH of a
/* two-dimensional Haar wavelet.

#include <stdio.h>
#include <math.h>

float *vectoro; /* Declare and initialize variables */
float **matrixo;

main(argc,argv)
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int argc;
char **argv;

{int x,y;
float *rdata;
float **pete;
double tmp,temp,phase,pi;
int number-.points;
FILE *output-file;

number-.points=1600; /* Define dimensions of CGH matrix *

rdata~vector(1 ,number-.points);

pete~matrix(1 ,number-.points,l1,number..points);
if (argc !=2)
{printf ("need an output file");
exit(0) ;}

pi=3. 141592654;
output-.file = fopen(argvrl] ,"w");

for (y=1;y<=number-.points;y-H-) 1* Initialize and start do while loops *
{ffor (x= ; x<=number..points ;x++)

/* The next three nested if statements handle the discontinuities of *
/* the Fourier Transform of the scaled 2-D Haar wavelet

{mf ((double)x/160.O-5.0== 0.0 & (double)y/160.0-5.0== 0.0)
{tmp=o.0;}

else if ((double)x/160.0-5.0== 0.0)
{tmp=-1; }
else if ((double)y/160.0-5.0== 0.0)
{tmp=-1; }
else if (y> 400 & y<1200 & x>=400 & x<1200)

{tmp=(cos(pi*((double)x/160.0-5.0+(double)y/160.0-5.0))-cos(pi*(((double)x/160.0-5.

else
{tmp=-1; }
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if (tmp<O) /* Check for phase of Haar at current (x,y) value *
{phase~pi; }
else
{phase~o ;

temp=cos((double) ((piI2)*x - phase));

if (temp>=.9999999999) /* Check if at maxima of cosine *
{pete [xi £y]=O.O;1

else
f{pete [x] [Y]l=1.O;}

} * end x loop *
} * end y loop *

printf ("Values computed saving the data\n");

fflush(stdout);

for (y=1;y<=number-.points;y++) 1* Write data to output file *
f
for (x=1.; x<=number-.points ;x++)

{rdata [x]=(float)pete [xl[y] ;}
fwrite(rdata,sizeof(float) ,number-.points,output-.file) ;}

I /* end main *

\newpage

1* This C program compiles the petebin program and links it
/* with all required programs.

LIBS =-lNeXT-s -lsys-.s /usr/local/lib/libnr.a -lm

all: petebin flotbintogray

petebin: petebin.c

cc -g -I/usr/local/irnclude -o petebin petebin.c $(LIBS)

flotbintogray: flotbintogray. c
cc -g -I/usr/local/include -o flotbintogray flotbintogray.c $(LIBS)

\newpage
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/* This is the make.eps software program used to convert the raw data */
/* to an eps format for plotting.

#!/bin/csh
if ($1 == "" II $2 == "" II $3 == "" II $4 == "") then
echo " "";
echo "The proper format is:"
echo " "

echo "make.eps filename number-rows number-columns pictsize";
echo " ""
exit -1
endif
set inputfile = $1

set temp = $1:r
echo $temp
flotbintogray $2 $3 $inputfile > $temp.gra
graytorle -o $temp.rle $3 $2 $temp.gra
rle2eps $temp $4
open $temp.eps

\newpage

/* This software program is used by the make.eps software */
/* program. ,/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>

float **matrix);

main(argc,argv)
int argc;
char **argv;

{

/* command line:
flotogray row col infile > outfile
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unsigned char *rdata;
int row,col, pixel) i, j;
float **image;
float max,min~thresholdl ,threshold2,temp;

FILE *fp;

if(argc '=4)

fprintf(stderr,"flotogray: Syntax error!\n");
fprintf(stderr, "Correct syntax: \n");
fprintf(stderr,"flotogray row col infile > outfile \n");
exit (-1);

row = atoi(argv[1]);
col = atoi(argv[2]);

rdata=(unsigned char*)malloc(row*sizeof (unsigned char));
image = matrix(O,row-1,Ocol-1);
fp = fopen( argv[31J, "1r");

for (i =0; i < row; i++)
{for (j0O;j < col; j++)
{fread(&image[i] [j] ,sizeof (float) ,1,fp) ;}
I
min = image [0][0];
for (i=0; i<row; i++)
{for (j0; j<col; j++)
if ( image[i] [j] < min ) min = image [ii [ji;

fprintf(stderr,"flotogray: min is Yf\n", min);
for (i0O; i<row; i++)
{for (j=0; j<col; j++)
image Ci] [j] = image [i] [j] -min;

max = image [0][0];

for (i0O; i<row; i++)
{for (j=0; j<col; j++)
if ( image[i] [j] > max ) max = image[i] [j];
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fprintf(stderr,"flotogray :max is %f\n",max);

for (i0O; i<row; i++)
{for (j0O; j<col; j++)

image Li] Li] = 255.0 - imageLi] [j] *255.0/max;

for (j0; j<col; j++)

for (i =0; i<row;i++)
{rdata~i]=(unsigned char)image[i] [j] ~}
fwrite(rdata,sizeof(unsigned char) ,row,stdout);

exit (0)
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