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EMULATION FRAMEWORK FOR TESTING

HIGHER LEVEL CONTROL METHODOLOGY

by

Harold W. Ennulat

Michael P. Deisenroth, PhD., Chairman

Industrial and Systems Engineering

(ABSTRACT)

Emulation is defined as an intermediate stage of simulation where the model

represents the "as specified" mechanical plant and equipment, but not the control logic

required to drive it. This thesis investigates the utility of providing a computer representation

of the functional elements to be controlled by system control programs. These

representations or "emulators" mimic the behavior of the system, or factory being controlled.

The advantages of such a scheme are that developers of control software, are able to test

out new control methodologies withoit actually connecting to the hardware system under

control.

This thesis investigates system control for automated manufacturing systems and

identifies how emulation can be used as a valid tool in reducing the implementation time of

such systems. The functions and characteristics of system control are identified as well as

the problems associated with their implementation. The problems are then categorized to

identify where emulation is a valid tool for problem resolution. This thesis is concluded by a

description of a software demonstration which validated the concept of using emulation to

solve system control problems.
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1.0 INTRODUCTION

With the arrival of low cost microprocessors and the quest for increased productivity

from manufacturing enterprises, automation of manufacturing systems is receiving increased

attention within the manufacturing community. Many companies view Flexible Manufacturing

Systems (FMS) and Computer Integrated Manufacturing (CIM) as keys to increased

productivity. However, research has shown that implementation of these systems presents

many obstacles [40]. Most of these can be traced to the following points:

1. Software development is a major technical problem and many difficulties

arise related to the software implementation.

2. Implementation time is almost always considerably longer than expected.

3. Training is of vital importance when applying these advanced technologies.

As a result, a high percentage of companies attempting to implement advanced

automation encounter major difficulties. More often than not, the final results are "islands of

automation." One area where many companies encounter oroblems is in the control,

coordination and communication between devices to make them act as an integrated

system.

1.1 BACKGROUND

Software development, being a major hindrance in implementing automated systems

such as CIM and FMS, has been the focus of much research in the past decade. The design

of control software for FMS and CIM systems is a challenging task, and is hampered by a
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number of factors which cause the development of such software, by its very nature, to be a

time consuming and iterative process. Among these are:

1. large data requirements,

2. randomness in the environment,

3. multiple interface requirements,

4. multiple level hierarchies,

5. multiple communication protocols, and

6. event timing and sequencing.

In most cases, companies do not even attempt to write this software tnemselves; instead,

they enlist the services of third party system integrators.

Most successful control schemes are structured in a hierarchical manner [8,25,34].

An example of how this structure might look is shown in Figure 1.1. At the highest

hierarchical level, the planning horizon may be three years in length. Command inputs at

this level are decomposed into more detailed commands and passed down to the next level.

Lower hierarchical levels are concerned with shorter planning horizons, in the order of

seconds or fractions of seconds. Modules at each level make decisions based on upper

level commands and lower level feedback 119]. This control scheme is chosen most often

because of its modularity and reliability [50].

Software developers for automated systems, such as CIM and FMS, are most

concerned with the middle and upper levels of the control hierarchy. This research is
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FIGURE 1.1 Hierarchical Control Structure
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focussed on the system control level, and provides details of an emulation framework which

can be used as a tool for the testing and debugging of control software.

1.2 PROBLEM STATEMENT

Typically, it takes two and one half to three years of development time to fully

implement an FMS system [47]; development of the control software is a major part of this

effort. Few companies have the resources to allow equipment to remain idle on the factory

floor while the control software is being debugged. This dictates the need for the software to

be tested and validated, to the fullest extent possible, before it is connected to the hardware

in the production facility.

Presently, control software developers lack adequate means to test and validate their

software without connecting it to the hardware on the factory floor. It is desirable to have a

user friendly tool which would interact with system control software, and mimic the behavior

of the factory floor. Such a tool would allow software test and validation to be done off-line.

This would significantly reduce the development time for automated manufacturing systems.

1.3 OBJECTIVE

The concept of modelling with computer software is known as simulation. Although,

it is now widely used in the manufacturing industry simulation modelling does not allow the

testing of actual control logic used on the factory floor. This is because the model already is

comprised of an abstraction of the control logic and the physical facility. The control logic is

inseparable from the model, and being an abstraction of the actual control logic, it may not
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be transferrable to the actual physical system. The objective of this research was to provide

a framework for testing actual system control software in the form it is being used on the

factory floor, not an abstraction thereof.

1.4 APPROACH

The approach that was pursued in this research is known as emulation. Emulation is

defined as an intermediate stage of simulation where the model represents the "as specified"

mechanical plant and equipment [29], and outside control logic is used to drive the model. In

emulation, inputs to the control logic are generated by the emulation model. These inputs

match the inputs normally seen from the factory floor. The goal of this research was to

investigate the applicability of emulation to system control, and recommend a framework for

providing a computer representation of the elements to be controlled by system control

programs. These representations or "emulations" mimic the behavior of the system being

controlled.

There are many tangible benefits to such a scheme. Developers of control software

will be able to test new control methodologies without connecting to the hardware system

under control. This will save both time and money, as developers will not have to tie up

expensive equipment to debug the control software.

Emulators provide system response feedback to control logic. These responses are

generated, based on the behavior that should occur for the control decision made, by the

control scheme. The control logic can not discem the difference between the emulation

model and the real system. This provides system control designers with the capability to

5



analyze how their software will control the system. Emulation's current major function is to

provide a tool for software developers to use in testing and validating control schemes.

Eventually, the scope of emulation may evolve to provide debugging and optimization

capabilities for control schemes. Currently, validation still requires personnel with knowledge

and experience to identify malfunctioning of the control software.

The use of emulation in the test and design of control software has been addressed

by numerous individuals. The majority of the literature available on this subject leads one to

believe that emulation is only being utilized in cell control applications. A number of authors

mention that it can be used to test and validate control software at and above the system

level. However, there is little mention of emulation being applied at the system control level.

One reason for this may be that there are technical barriers preventing the further application

of this technology at the system control level. This research investigated the use of

emulation in relation to automated system control, with a focus on providing a tool for the

testing and debugging of control software prior to implementation. Recommendations are

provided for the structure and composition of emulators to be used for system control test

and validation.
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2.0 LITERATURE REVIEW

The first portion of the literature review provides a history of the development of

simulation and emulation as a tool for developing and debugging control software. The

second portion reviews some of the major developments in system control concepts and

system control software.

2.1 EMULATION

Johnson, Milligan, Fortmann, Bloom, McLean, and Furlani [33] of the National

Institute of Standards and Technology (NIST), formerly the National Bureau of Standards

(NBS), first utilized emulation as a software development tool at NIST's Automated

Manufacturing Research Facility (AMRF) in 1982.

Approximately 50 different control systems were implemented simultaneously at the

AMRF. Emulation was used as a management tool to integrate all the interfaces between

the different control modules. The hierarchical control system emulator (HCSE) was

developed to accurately reflect the hierarchical structure of the AMRF. In this way, it could

be used as a real-time interface to the individual control modules, allowing each to be tested

when desired. The emulation modules were constructed as finite state-machine tables,

translated into the high-level PRAXIS language, compiled, and combined into processes

according to their emulated process, location, and function. The modules interacted through

a shared time-sliced synchronized common memory. This process required an emulator to

be developed for each component in the system, and was a lengthy, tedious process.
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Courvoisier, Bigou, Valette, Desclaux, and Benzakour [16] used a Petri net modelling

approach to develop emulators to integrate the behavior of machine tools and robots in their

Specification, Emulation, and Conception of an Integrated Automation (S.E.CO.I.A.) project.

Their approach executed a discrete event simulation based upon the utilization of timed Petri

nets. Their approach did not allow the interaction of actual control software with the

emulators. They modelled the control structure with Petri nets also, and linked the two

models.

Quinn [46] used a simulation based software system to automatically develop and

test automated guided vehicle (AGV) control software. He created a simulation model of the

AGV system in the GPSS/H based AutoMod simulator. He then linked the outputs, which

represented discrete control interface events, from the simulation, to his emulator software.

The emulator software then translated these events into discrete signals, or messages, that

were transmitted to the control software. The emulator was also capable of receiving control

commands and translating them into future event logic for the AutoMod simulator to execute.

Quinn's emulation model made use of the trace file generated by the AutoMod

simulation software. Trace files provided a very comprehensive means of indicating change

in system status, because they were used by graphics software to generate animation of the

model. The source of the trace file was the event file within the GPSS/H simulator. The

emulator processes traced files and searched for events that would cause the physical

system to send discrete signals or messages to the controller. When these events were

identified, the emulator sent the appropriate signal or message to the controller. While this

was occurring, the event was delayed in the simulator, until a return message was received

8



by the emulator from the controller. The event then was modified, if necessary, and placed

back on the event calendar.

Bell, Roberts, Shires, Newman, and Khanolkar [4] created a suite of data driven

software for manufacturing system design and assessment. This included creating detailed

simulation models with actual values, rather than assumptions and samples from

distributions. They called these detailed simulations, emulations. However, the data was

only used for statistical analysis and an animation of the proposed design. The research did

not include a means for testing control logic.

Godio and Vignale [22] gave the best description of the emulator concept. They

related the use of emulators for control software development and testing, as it related to

automation of discrete parts manufacturing at Sandretto Industrie in Italy. They identified the

major drawback of the emulator approach was the effort required by the development of the

software. Each application differed from the previous one, due to different machines and/or

configurations. Hence, the effort required replication correspondingly. They confirmed the

need for a set of user friendly tools that would allow the user to easily specify and implement

the emulator required by each individual application.

The developed emulator mimicked the facility from both the communication and the

application point of view. The application emulator dealt only with symbolic addresses.

Specifically, data transmission duration was considered negligible and always successful. In

the application view, simulated time could be compressed to a fraction of actual time, if the

processing time was disregarded. This viewpoint only tested the message response portion

of the control software.
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The communication emulator was more complex. It accounted for all other

previously disregarded parameters. The communication application addressed simulating

transmission errors, transmission duration, and volume of data to be exchanged. In this

mode, simulated time equaled actual time.

Erickson, Vandenberge, and Miles [20] described a means of testing planned control

logic for a specific manufacturing system. Their application involved linking a simulation

directly to a programmable logic controller (PLC), providing a means for testing the control

logic of the PLC. This was not considered emulation, which was defined as real-time data

used to drive an animation, providing a display of the current status of the manufacturing

shop floor.

Harmonosky and Barrick [28] discussed the use of simulation logic for real-time

control in a CIM environment. In particular, they were concerned with the computer

communication structures. They modelled the actual system components and the

interactions between them. The logic used in the actual system communication paths, which

triggered system activities, was the same logic used to control the simulation. The simulation

emulated the communication signals which triggered activities, facilitating the critiquing of

communication logic employed in the system. The model utilized the SIMAN simulation

language.

The research concluded that the communication time to download programs or

machining data was a significant contributor to part flow time. In addition, when different

computers attempted to communicate, bottlenecks and computer deadlocks sometimes
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occurred. Therefore, the communication structure and its associated interactions should be

included in the simulation or emulation for proper and accurate reflection of the real system.

Co and Chen [13] discussed an FMS emulator project at Case Western University.

The FMS emulator used was an educational tool to help operations management students to

understand the potential of computers and operations research techniques in the

manufacturing environment. Programmable controller hardware for computer control, and

IBM AT-compatible microcomputers were used for the emulation of the signals emanating

from simulated machine centers. The simulation interacted with PLCs to feed commands to

physical models of the system. Processing times on the models were simulated with manual

toggle switches.

Hitchens and Ryan [29] of HEI Corporation discussed the use of simulation modelling

throughout the life cycle design of automated manufacturing systems. They used detailed

simulation, which was called emulation, to test control logic by direct connection to the

controller. One of the primary distinctions between simulation and emulation was noted. In

simulation, the process model and control logic are usually located in the same processor.

However, in an emulation model, the process model and the control logic often are located in

two separate computers. HEI's emulator was an entity based, time/speed/distance bounded

model, which allowed interaction between the physical elements influenced by the control

devices.

Clark and Withers [11] discussed the Computer Integrated Manufacturing - Open

Systems Architecture (CIM-OSA). Within the context of CIM-OSA, integration criteria was

defined for a decision support system, which was implemented through simulation.
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Simulation models were used to produce emulated data for CIM applications to support "try-

for-fit" and "what-if' analysis. The simulation model was supported by the same CIM

architecture as the physical system it was modelling.

Siggard and Alting [53] discussed the development of a test bed of emulators for test

and validation of shop floor control systems, at the Technical University of Denmark (TUD).

The emulators provided a methodology for testing shop floor control systems' dynamic

behavior in an operating environment before implementation. The emulators, which they

developed, worked at the cell control level, imitating the Distributed Numerical Control (DNC)

communication interfaces between the shop floor equipment and the cell controller.

By utilizing the same protocol, software was written which communicated in the same

way as specific machine controllers. TUD developed a PC based software package which

allowed them to define and emulate the communication interfaces of four computer

controlled devices on a single PC. If more than four machines were contained in a cell, they

had to link multiple emulations on multiple PCs.

The software was composed of three modules, an emulator creation module, an

emulator execution module and a log book analysis module. The creation module allowed

them to create or edit the definition of communication protocols which were to be emulated.

The protocols could be supplemented with additional features, such as the simulation of part

programs, fault messages and other spontaneous messages that the machine controller

might send. The protocol definitions were stored as data files and could be edited any time.

The execution module performed the emulation. It read the data files containing the protocol

definitions and emulated up to four protocols simultaneously. A detailed history file of all

12



communications between the host and the emulators was generated for later analysis. The

log book analysis module allowed the user to view the history file. This file showed the byte

for byte communications, and was a useful debugging tool.

Cloud [12] described work done at the Jet Propulsion Laboratory (JPL) of the

California Institute of Technology. JPL was one of the contractors working on developing the

Strategic Defense Initiative (SDI). The complexity of SDI forced developers to pursue the

use of concurrent processors for the most computationally intensive algorithms, including the

tracking and optimization functions. The work discussed by Cloud focused on developing a

software framework to emulate multiple simultaneously executing strategic defense

processes and their inter-process communications. By utilizing this emulation capability,

developers were able to test multiple algorithms for strategic defense systems under realistic

scenarios. This provided a means to determine the feasibility of different algorithms prior to

implementation.

The JPL emulators were implemented on Mark III hypercube concurrent processors.

The testbed, called Simulation89, operated in a closed loop mode. The SDI architecture was

specified, as were the elements of the environment, with which the architecture interacted.

Since the environment was so complex, JPL devised a method of operating the elements in

either high or low fidelity. The architecture was tested against smaller subsets of the

environment, primarily operating in high fidelity. The remainder of the environment was

utilized, when necessary, but was operating in the background in low fidelity mode.
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2.2 SYSTEM CONTROL

The control of automated manufacturing systems can be approached in a number of

manners. Most control structures decompose the system into hierarchical levels

[7,17,21,30,33,34,36,43,46,49]. Jones and McLean [34], along with colleagues at NIST,

designed a hierarchical control model for the AMRF in Gaithersburg, Maryland. This control

model is shown in Figure 2.1. It is decomposed into five major levels: facility, shop, cell,

workstation, and equipment. Control modules at each level are broken down into one or

more further detailed modules or sublevels, in the classic tree structure.

At each level, there are certain control functions associated with the modules that

comprise that level. Figure 2.2 depicts the control levels with their associated functions. The

facility level comprises three major functional areas: manufacturing engineering, information

management, and production management. Manufacturing engineering provides user

interfaces for the computer-aided design of parts, tools, and fixtures, as well as the planning

of production processes. Information management provides interfaces and supports for the

administrative functions of cost and inventory accounting, order handling, and procurement.

Production management tracks major products, generates long-range schedules, identifies

capital investment requirements, determines excess production capacity, and tracks quality

performance data. The production planning data generated at this level is released to the

shop control system at the next lower level in the hierarchy.

The shop control level is responsible for the coordination and allocation of resources

to the production and support functions on the shop floor. It is comprised of two major

functions, task management and resource management. The first scheduies job orders,
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equipment maintenance, and shop support services. The task manager also tracks

equipment utilization, handles capacity planning, does batch scheduling, tracks orders to

completion, and schedules preventive maintenance for all equipment in the facility. The

resource manager allocates work stations, storage buffers, tools, and materials to cell control

systems for particular production jobs.

The cell control level is responsible for managing the sequencing of batch jobs

through the workstations, and supervising support services, such as material handling or

calibration. Modules within the cell control scheme decompose tasks, analyze resource

requirements, report on job progress to shop control, route batches, schedule tasks at

assigned workstations, and monitor the progress of those tasks.

The workstation control level coordinates and directs the activities of equipment

groups on the shop floor. It sequences robots and machine tools through job setup, part

fixturing, cuffing process, chip removal, in-process inspection, job take-down, and cleanup

operations.

The equipment control level is tied directly to all pieces of automated equipment on

the shop floor; these may be robots, numerical control (NC) machines tools, coordinate

measuring machines, material handling systems, or storage/retrieval devices. The functions

of the equipment controller are to translate the commands from the workstation controller

into a sequence of simple tasks, that can be understood by the vendor supplied controller,

and to monitor the execution of these tasks via sensor feedback.
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Nof, Whinston and Bullers [42] developed a different approach for control of

automatic manufacturing systems. The concept addressed the problems arising from

unstructured and ill-defined decisions when controlling automated manufacturing systems.

Unstructured decisions are those which cannot be formulated a priori because the problem

has not arisen before, is unusually complex, or is so important that it requires special

treatment. Many current automatic manufacturing systems cannot handle unstructured

decision problems, since they do not implement a systematic model of system states and

goals. To satisfy these unstructured and ill-defined decision requirements, Nof, etal., have

developed a computerized decision support system called the Manufacturing Operating

System (MOS). Its primary objectives are to implement automatic control for structured

decisions, and provide, what has been termed "decision support", for unstructured decisions.

In developing the MOS, a number of the contro! limitations in current automatic

manufacturing systems were outlined. Principle to these limitations is that automatic control

systems are comprised of multiple functional areas, such as inventory control, physical

distribution, scheduling, and capacity planning. Often the data required for a particular

decision is contained in multiple program modules. Such disjoint modules may not have

common representation for system attributes. Thus, even if the relevant data can be

identified, attribute value retrieval is complicated by differing attribute representation among

the functional modules.

Kochlar [38] discussed some of the advancements that have been made in software

packages for manufacturing control. These packages are increasingly being used in the

production planning and control capacities. Many of the initial packages available on the

market were rigid, and customizing by the individual manufacturing organizations proved
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difficult, time consuming, and expensive. As a result, many companies had to develop and

implement their own systems over long periods of time. The advances in computer software

packages mean that many of the packages are flexible, easy to customize and implement.

Kochler outlined the features of these advanced automated manufacturing control systems,

including on-line real-time updating, ad-hoc and exception report generation, data validation

based upon user specified rules, automatic system scheduling and recovery, and operation

in distributed processing/local area network environments.

O'Grady [45], in his book, Controlling Automated Manufacturing Systems, discussed

the production planning and control aspect of automated manufacturing systems. He tied

together the work of these two diverse fields. In production planning and control, there is a

large body of work completed in analytical modelling, computer structures, and overall

systems. Equally, in the area of detailed hardware control, extensive studies have also been

completed. His book stressed the important elements of both areas that are vital to effective

production planning and control of the whole automated manufacturing system.

He defined automated manufacturing systems, and outlined a few of their most

prevalent features and useful application areas. This was followed by a description of the

particular requirements that these systems impose on production planning and control. He

then provided the background against which a production planning and control system could

be implemented. Included was an overview of master production scheduling, materials

requirements planning, and job shop scheduling.

The remainder of the book was devoted to the structure of the production planning

and control system for an automated manufacturing system. The control system was divided
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into four hierarchical levels for production planning and control purposes. They are factory,

shop, cell, and equipment levels. Control functions associated with each level were

presented and discussed.

Overall, the book presented a viable production planning and control scheme for an

automated manufacturing system. It demonstrated how this structure ties in with more

traditional production engineering and production management approaches. Feasible and

effective approaches were described, and their application and implementation was

discussed.

The staff of the Charles Stark Draper Laboratories wrote a book entitled Flexible

Manufacturing Handbook [10], which is a good reference guide to companies planning to

implement FMS technology. The book was designed to answer the following questions:

1. Why an FMS?

2. Will an FMS best serve your application?

3. What problems might be encountered?

4. How do you design an appropriate system? and

5. What is required to operate a system?

The book contains detailed descriptions of the subsystems that make up a typical FMS, as

well as descriptions of several operational FMSs.

The book has a fairly detailed section on FMS operation. This section discusses

FMS control from the perspective of a three level view of organizational operation. The first

level is dedicated to long-term decision making. This involves establishing policies,

production goals, economic goals, and making decisions that have long-term effects. The
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second level involves medium-term decisions, such as setting the production goals of the

system for a specified period of time, perhaos the next month. The third level involves short-

term decisions, such as which work order should next be introduced into the system. A

summary of the three decision levels, and the associated software, hardware, and

management tasks are shown in Figure 2.3. The book discussed the tasks involved at each

level of control, and task implemention in a typical FMS.

Bakker [1] introduced a new control structure for FMS which departed from the

traditional hierarchical structure. Bakker's view of hierarchical control structures was that

they are implemented on a single central computer. While not always true, this presented

problems that were the basis for the development of a new distributed FMS (DFMS)

architecture. An argument was made that implementation of a control system on a single

computer has some disadvantages. The system is vulnerable; if the central control system

breaks down, the whole system will become inoperative. It is difficult to adapt the capacity of

the central computer system when the FMS is extended. it will be difficult to add control

power in small steps on an "as needed" basis.

DFL'•3 is a system architecture that can be implemented on a number of small

control units, referred to as station managers. Advantages of the DFMS concept include

reliability, simplicity, and extensibility. Bakker contends that station managers can be

implemented on programmable computerized numerical controls (CNCs) or on separate

PCs connected through a serial link to the CNC it controls. In a DFMS system, the

operations on each machine-tool are controlled by its station manager. The station

managers behave as agents for the machine-tools. They negotiate which operation will be

performed by each machine-tool.
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In the DFMS, concept schedules are not made before the actual production starts.

The system is scheduled by manipulating operational queues for the separate machine-tools.

This system precludes the necessity for an upper control level to track global data for

determining scheduling and sequencing. After the completion of an operation, station

managers check the product to see if more operations are needed, since sequences travel

with the individual products. If another operation is necessary, the station manager

negotiates with other station managers to determine which will get the next operation. The

only information necessary for these decisions is the machine's capabilities and the length of

the operational queues. The station managers also communicate with function modules,

which perform general services, such as pallet transport, tool transport, and NC program

storage.

Bakker provided detailed descriptions of the DFMS concept. He included the

functions performed by the station managers and function modules, and discussed system

implementation. He concluded with the advantages and disadvantages of DFMS.

Duffie, Chitturi, and Mou also pursued a more localized control structure [193. They

described a control architecture and set of fundamental design principles for developing and

implementing fault-tolerant manufacturing systems. Their approach identified a number of

innovative ideas. These included the concept of "intelligent manufactured parts", the use of a

"flat" heterarchical architecture, as opposed to the widely accepted hierarchical architecture,

the combinAtion of simulation and control in system development and operation, and

achievement of implicit modifiability and fault-tolerance.
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Duffie, etal., developed an experimental, heterarchically controlled manufacturing

system, consisting of a robotic machining and assembly cell. Global information was

reduced to a minimum in this system, as were the complex relationships between entities.

Parts to be manufactured were programmed as "intelligent" entities that interacted in a

cooperative manner with "intelligent" robots and processing machines to satisfy system

production requirements. They contended that localized or heterarchical control

architectures offer prospects for reduced complexity by localizing information and control,

reducing software development costs by eliminating supervisory levels, improving

maintainability and modifiability through improved modularity and self-configurability, and

improving reliability by taking a fault-tolerant rather than a fault-free approach.

The basic premise of fault tolerance was included in the author's design. Autonomy

enforces localization of information, isolating each module from other modules in the system.

A system with autonomously functioning components will not collapse when one or more of

the components malfunctions or fails. Increased autonomy reduces the need for a highly

centralized governing body.

2.3 LITERATURE SUMMARY

As the literature review demonstrates, control of automated manufacturing systems

is a complicated problem. There are many interrelated decisions which have effects

throughout the control hierarchy. As these complex control systems are being designed,

software developers invariably make structural and schematic errors which do not become

evident until implementation. The result is often a lengthy and costly delay in implementation

of these systems.
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Emulation, a hybrid of simulation, is an emergent technology, which has evolved in

the last ten years. Control software developers, particularly at the cell control level, have

utilized emulation to assist in the test and validation of cell control software prior to

implementation. The concept applies to system control as well. Definition of a generic

framework, for the use of emulation at the system control level, is the first step necessary in

providing a user friendly tool for the testing and debugging of control software.
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3.0 METHODOLOGY

In order to develop the use of emulation at the system control level, this research

followed a structured approach. The research proceeded according to the following steps:

1. define the characteristics of system control,

2. show how system control interacts with the system,

3. define the form and functions of the emulators,

4. identify problems in developing system control,

5. relate emulation to problem solution, and

6. provide a software demonstration.

3.1 SYSTEM CONTROL

The initial portion of this research had a twofold purpose. The first objective was to

define and identify the problems hindering the development of system control. Second, it

helped define the boundaries of the research. System control, as it was pursued in the

context of this research, is the computer control and coordination of a number of automated

manufacturing workcells, functioning together as a system for the batch manufacturing of

discrete parts. There are many categories of automated manufacturing systems; this

research focused on system control as it relates to flexible manufacturing systems and

computer integrated manufacturing systems in discrete parts manufacturing.

Initially, the functions comprising system control were identified. These functions

were broken down into two categories. The first category consisted of those major functions
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which were absolutely necessary to control an automated manufacturing system. The

second category comprised those other functions which could be added on at the system

control level, but were not necessary to control a basic system.

3.2 EMULATION

The second major portion of the research was to pursue the further development of

emulation concepts in system control applications. Current use of emulation within the

manufacturing industry is limited mostly to cell control applications. Emulation is being used

at a higher level by the Defense Department in the test of major systems, such as the SDI

[12]. This supported the direction of the research, which utilized emulation at a higher level

to test and validate the behavior of systems control. It showed that emulation is not restricted

to a low-level tool for mimicking the behavior of individual pieces of equipment within

workcells. Rather, emulation could be utilized for more complex, high level applications,

such as resolving control and integration issues of automated manufacturing systems.

Initially, the different forms of emulation utilized at the cell level were investigated.

This helped to establish the best emulation structure to utilize at the system control level.

Generic classes of emulators were identified as a means of providing a user-friendly, easily

configured emulator structure at this level. In order to develop the form of the emulators, the

tasks performed by emulators in each class were identified, leading to the categorization of

major functions. In order to provide modularity and reusability for different system

configurations, the major functions were transformed into generic emulator functions. These

functions could easily be configured to any number of emulators to account for different

system control functions.
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This portion of the research concluded with the identification of system control

problems. In addition, it provided a discussion of the uses of emulation in solving some of

these problems.

3.3 SOFTWARE DEMONSTRATION

The final portion of this research was a software demonstration to demonstrate the

viability of emulation, with respect to automated system control. The demonstration showed

how emulation modules could interact in a passive manner with system control software.

The emulation modules incorporated functions to:

1. receive messages from control software,

2. simulate error conditions,

3. induce delays representing applications, and

4. send messages back to the control software.

A hypothetical system was used as the basis for developing the software

demonstration. Figure 3.1 depicts the hypothetical system. This system also served as a

basis in identifying and defining the major system control functions. These functions are

discussed in Chapter 4.

The hypothetical system is an FMS consisting of three machining workcells. Two of

the workcells have fixed processing capabilities, while the third is more flexible and can

perform the operations of the other two workcells. Work pending and finished part queues

exist at all workcells. In the software demonstration portion of the research, it is assumed
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that work pending queues have an infinite capacity. The FMS has a load and unload station

where new parts are introduced into the system, and finished parts are removed for

packaging and delivery. All the machined parts for the finished product are on one pallet

when they arrive at the assembly workcell. Pallets are transported through the system on

AGVs. There are three AGVs servicing the system.

Each workcell, including the AGVs, has its own controller that can communicate with

the system controller through a messaging system on a local area network. Figure 3.2

depicts the communication network servicing the system.
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4.0 SYSTEM CONTROL

4.1 STRUCTURE

A complicated issue in developing an automated manufacturing system is the

integration of a diverse spectrum of components into a functionally homogeneous system

[19]. As the system is being built up, the control structure and the level of control distribution

must be established early in the system development cycle. Control structures vary from

very centralized systems, with all the computing power residing on one centralized machine,

to very distributed systems, where all the entities in the system have a high degree of local

autonomy [1]. Figure 4.1 shows the spectrum from which the choice can be made.

Each potential control structures has advantages and disadvantages. This research

is based on a hierarchical control structure, since it is the most commonly applied

architecture. Hierarchically controlled systems are constructed using the levels of control

concept. These systems contain a number of control modules which are arranged in a

pyramid structure. Commands from the highest level are concerned with longer planning

horizons than those at the bottom of the pyramid. Higher level commands are decomposed

into more detailed commands for the lower levels. Modules at each level make decisions

based on the input from the level above, and feedback from the level below. The number of

levels, and the decisions made at each level, vary from system to system. However, the

basic philoso.oy of command distribution is the same. Figure 4.2 depicts the levels used in

the context of this research.
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The highest level is the facility level; it takes into account all the different inputs from

the environment to develop work to be done by the system. These inputs include demands,

forecasts, material availability, finances, and factory capacity. The functions performed at

the facility level, such as process planning, master production scheduling, and materials

requirements planning, provide the next lower level, the system control level, with the

number of units of a particular product to produce in the form of a 'Work-to" list.

This research was focused on the system control level which is mainly concerned

with taking the requirements given by the facility level, and translating them into commands

or goals for each cell. The functions performed at the system control level will be elaborated

upon in Section 4.2.

Directly below the system control level is the workcell control level. The workcell

controller takes commands from the system controller, and translates them into specific

commands or operations to be conducted on the workpiece by the workcell equipment. The

workcell controllers pass status information back to the system controller, so that workpieces

can be efficiently sequenced through the system. In a hierarchical architecture, the control

structure is suitably decentralized, such that the workcell controllers can have adequate

decision making capabilities, and thus only require fairly simple messages to carry out their

functions.

At the lowest level in the hierarchy are the equipment controllers. These usually

reside on the actual equipment provided by vendors. Equipment controllers accept

commands from cell control to perform the actual processing operations on the workpieces.

The type of equipment usually present at the equipment level include robots, NC machines,
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coordinate measuring machines, AGVs, and conveyors. These different equipment types

have very diverse languages and communication protocols, resulting in severe strains on the

workcell controllers that must communicate with all the different types of equipment in their

cell. Unfortunately, due to the large number of equipment manufacturers, achieving a

common communication protocol has been a long, slow process. It was hoped that General

Motors' Manufacturing Automation Protocol (MAP) would be adopted as the standard for the

industry. However, it now appears that this effort has failed, due to high cost and lack of

vendor compliance.

4.2 MAJOR SYSTEM CONTROL FUNCTIONS

Hierarchical control of most automated manufacturing systems can be decomposed

into functional elements. Some of these elements are essential requirements to control the

system, while others are added features which can just as easily be done off-line or at

another level in the hierarchy. The major system control functions discussed in this section

are not all inclusive. However, they provide a sound representation for the purposes for this

research. They are:

1. Status Monitoring [2] [5] [14] [23] [24] [36] [45] [54] [56]

2. Control Enforcement [10] [19] [20] [24] (36] [45]

3. Traffic Coordination [1] [2] [3] [10] [14] [23] [24] [34] [36] [45] [54] [58]

4. Work Order Scheduling [1] [2] [3] [10] [14] [17] [23] [24] [34] [36] [42] [45] [58]

5. Status Reporting [1] [10] [23] [24] [38] [58]

6. Operator Interface [1] [3] [14] [36] [42], and

7. System Maintenance [10] [19] [38]
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The following sections define each function and its relationship to the other major

control functions. In addition, problems relating to the development and application of each

function are discussed. Lastly, a description of the application of each function in the

hypothetical model, discussed in Chapter 3.3, is provided.

4.2.1 STATUS MONITORING

The status monitoring function is a near real-time function that tracks the status of the

entire system by communicating with the workcells which make up the system. The status

monitoring function consists of four sub-functions:

1. Read

2. Write

3. Watchdog Timer, and

4. Status Tracking

The read sub-function polls workcell communication medium looking for messages.

Once messages are read, they are erased by system control to avoid repeating action on a

workcell just serviced. The type of messages that system control receives from the

workcells can be classified as action messages or status messages. Action messages are

initiated as a result of a change in state within the workcell. Examples of messages, which

are self initiated by the workcell controller, are workorder complete and alarm messages.

The presence of an action message indicates a change of status, requiring system control to

take action with respect to the cell sending the message. This necessitates that the status

monitoring function must interact with other major control functions. Action messages are
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acted upon by the traffic coordination, control enforcement, and/or work order scheduling

function.

Status messages are also usually displayed on an operator interface for monitoring

purposes; examples of these include number in queue, workcell busy, workcell idle, and

workcell down. Whether status display messages are sent as a result of a request, or

independently, is dependent upon the system configuration. Status messages are also

necessary for status reporting. This is a separate function, which interacts with the status

monitoring function, for this data.

Problems with the read sub-function arise when more than one workcell sends a

message since the most recent poll. System control must determine which cell requires the

highest priority action and act accordingly. Another potential problem is determining how

frequently the workcells are to be polled. It is assumed that system control knows the

processing time of the different workpieces for all operations. Workcells should definitely be

polled at least as often as the shortest of these processing times. However, the possibility of

a failure alarm at one of the workcells also exists. Therefore, how often system control

should check for errors needs to be determined. In addition, system control may try to read a

message at the same time that a workcell is writing a message. This type of error is known

as deadlock, and could result in an unrecoverable error. Allowances need to be made to

prevent these timing problems, from impeding upon system performance.

The second sub-function in system monitoring is a write command. It supplies the

workcell controllers with messages which dictate their next action, or perhaps requests them

to supply the system controller with status information. A problem associated with this sub-
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function is assuring that system control's messages are received. This can be accomplished

by having the workcell controller acknowledge receipt of the message.

The next sub-function, watchdog timers, is an error checking type of operation, but,

since it involves reading and writing information from cell control, it is listed as part of status

monitoring. Watchdog timers are simple functions which check if the workcell controllers are

still in an active state. They do not check the status of the workcell. They simply verify the

read/write capability of the workcell controller. Watchdog timers are also used in error

recovery. They are utilized as the first step in responding to a time-out error, during

communications with workcell controllers. A prudent idea is to schedule watchdog timers to

test all workcell controllers on a periodic basis, in order to avoid sending workpieces to a cell

which is inactive. If a watchdog timer test fails, the status of the cell can be changed to

down, and pending work can be rerouted, if necessary, while repair operations are being

conducted.

The final sub-function within status monitoring is the task of status tracking. Status

tracking applies to workcells (busy, idle, down), material handeling devices (breakdowns),

workpieces (the next step in the routing), and possibly raw materials and labor. When the

status of workcells change, system control needs to note this status change, and preserve it.

When workcells are down for repair, system control reroutes work to other cells, if possible.

Maintaining status within system control eases the problem of over burdening the system,

since system control can track when a part can be entered into the system. Tracking the

status of workpieces overlaps one of the other major functions, traffic coordination which will

be discussed in Chapter 4.2.3.
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Tracking the status of broken down material handeling devices is closely related to

another major function, control enforcement, discussed in Chapter 4.2.2. When material

handeling devices break down, the alarm message from the material handling controller

informs systems control. Once the material handeling device has been repaired, system

control can then inform the material handling controller to reactivate it. Raw materials and

labor tracking are areas that fall into other functional elements, which are outside of the

group of major system control functions.

The communication between entities, within an automated manufacturing system,

almost always take place over a local area network. Providing that there is a sufficient level

of decision making capability within the cells of the system, these communications can take

place through the use of a messaging format. Different ways of passing messages between

control entities exist; the most common used method is the use of mailboxes in a common

area of memory, accessible to all controllers [7]. Messages are written into mailboxes by

one controller, where they are read and acknowledged by the receiving controller. After they

are read, it is most efficient if messages are erased by the receiving controller, so that

operations are not repeated. In order to insure that messages are received, system control

awaits an acknowledgement from the cell controller after each message transmission. If no

acknowledgement is received after a set time period, a time out error is assumed.

Communication between system control and the cell controller is verified, and the message

is then retransmitted.

Messages from system control to workcell controllers are general in nature. They do

not contain specific processing information. A generic message format would contain the

part type, the part number for tracking purposes, and the operation type in a numerical code

40



or descriptive type message. From this information, the cell controller ascertains the

configuration of the part to load into the cell, the operation sequence along with specific

processing parameters, and the part number for tracking and status messaging back to

system control. The specific processing information resides within the cell controller. The

cell controller needs to know when a part has been delivered to it, and some basic

characteristics of the part. Again, once the message is read by the cell controller, it is erased

to facilitate the tracking of incoming parts.

4.2.2 CONTROL ENFORCEMENT

Control enforcement is the second of the major control functions. Control

enforcement is a real time function, which provides system control with the ability to deal with

unprelictable events that occur in one of the cells, to the material handeling mechanism, or

in the communication link between the system controller and one of the cell controllers. It is

viewed as a set of emergency contingency plans, which is only enacted when one of the

elements of the system breaks down. The control enforcement function interacts directly

with the status monitoring function in learning when an error or alarm has occurred. Once it

has established that action is necessary, it interacts directly with the part of the system

requiring attention.

The major problem associated with this function is determining what to do with work

already in queue at a broken workcell. Work that must be removed and rerouted must be fit

into the work schedule. If the repair time is relatively short, then work in queue need not be

rerouted. Similarly, when material handeling devices breakdown, the disposition of the part

that was being transported must be determined.
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How the control enforcement function handles different emergencies in the system is

dependent upon the system configuration and the capabilities of the workcell controllers.

Since control enforcement is a real-time function, it should be able to react to an error or

alarm signal immediately. In order to have this quick reaction time, system control should

have contingent plans in the event of various errors, prior to their actual occurrence. Relating

this function to the hypothetical system described in Chapter 3, duplication of processing

capabilities exists for some operations. The workcell controllers have the capability to

determine the nature of the error. Workcell controllers send a specific error message to

system control identifying the type of error that occurred within the cell. System control alerts

the operator of the condition via the system control operator interface function, which is

detailed later in Chapter 4.2.6. System control ascertains the nature of the alarm, and

determines the average repair time from tables or a database to which it has access. Some

error conditions, such as a time-out, may not require the operator to interfere with the

system. In the event that the error requires an operator to attend to it, the system controller

changes the status of the cell to down until the operator notifies it that the error has been

corrected. If an error requires the cell to be down for any length of time, then work going to

that cell is rerouted.

Rerouting of work requires identifying the process necessary, determining which cell

has duplicate capabilities, and routing the work to the new cell. If either duplicate capabilities

do not exist for the particular operation, or the duplicate cell is not in an active state,

workpieces will need to be rerouted to a work-in-process (WIP) storage buffer. In this case,

it is necessary for system control to request more work, which does not require the services

of the nonfunctioning workcell, from the facility controller. Once the cell has been repaired,
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system control reactivates it, and the rerouted work is returned to its original routing. WIP

that was put into storage is cleared back into the system.

If the breakdown occurred to the material handeling system, the recovery scenario is

somewhat different. Since material handeling systems are much larger than workcells, upon

receipt of an error message, system control notifies the operator which part of the material

handeling system is in need of repair via the operator interface. System control waits for the

operator to confirm that repair has been made, before instructing the material handling

controller to reactivate the material handeling device.

4.2.3 TRAFFIC COORDINATION

Traffic coordination is one of the more integral functions in system control. This

function controls the movement of workpieces between workcells. Tracking the routing of

different workpieces is one of the most important aspects of this function. Routings are

determined by facility control, and downloaded directly to system control or located in a

common database accessible by both system and facility control. The implementation of the

traffic coordination function varies, depending upon the material handling mechanism in the

system. In functioning, it interacts with the work order scheduling and status monitoring

functions.

The traffic coordination function faces several potential problems. First, a balance is

necessary between workpiece prioritization and sequencing. Multiple requests for

transportation can occur. Work order determination is required, dependent upon existing

prioritization and workcell status and capacity. Second, a workpiece pileup at a workcell can
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occur. Traffic coordination must know that the next workcell in the routing has the capacity to

accept the work order being delivered. The workcell may have a full queue or be in a down

state.

The traffic coordination function loads parts into the system according to the schedule

provided by the work order scheduling function. The traffic coordination function sends the

material handling controller a message indicating part number, priority, pickup site and

delivery destination. The material handling controller responds to the traffic coordination

function, and indicates when the part has reached its destination. Upon completing the

processing of the workpiece in the workcell, the status monitoring function relays the status

back to the traffic coordination function. The next cell in the routing is then determined, and

the cycle is repeated.

4.2.4 WORK ORDER SCHEDULING

The work order scheduling function determines the processing schedule of work

orders based on the "work-to" list originated by the facility control. It takes into account the

capacity and status of the system before determining schedules. Work order scheduling

prioritizes the schedule based on the order's delivery date and processing time. It tracks all

orders as they progress through the system. Work order scheduling is typically not a real-

time nor near real-time function. Rather, it is utilized on a shift basis. The function interacts

with the traffic coordination and status monitoring functions.

The work order scheduling function varies among system configurations. Various

apl "oaches, including analytical methods, heuristic methods, mixed integer programming,
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and goal oriented programming, have been utilized with mixed success [44]. The work order

scheduling function can be further complicated when the availability of tooling, and high cost

of jigs and fixtures is considered. Some manufacturers only carry limited quantities of these

items. In this instance, a part can not be scheduled until the jig or fixture it needs is available.

In addition, some systems do not have workcells with the capacity to store all the tools

necessary, for all processes needed, for completion of workpieces scheduled in them. In

these instances, work order scheduling must also schedule the delivery of tools to workcells.

The facility control's "work-to" list contains product types, order quantities and

required delivery dates. Schedules are prepared on a shift basis, and transferred to the

traffic coordination function in the order that they should enter the system. Prioritization

allows workcell controllers to resolve conflicts in scheduling that may arise. Unrealistic or

unattainable schedules are avoided through interaction with the status monitoring function,

which determines if any workcells are down, and when they are expected to be back on-line.

4.2.5 STATUS REPORTING

The status reporting function generates and tracks system performance data, and

reports it directly to the facility controller or the operator. Like the workorder scheduling

function, status reporting need not be real-time. Reports are generated according to a

schedule, such as at the end of every shift, or upon request from facility control or the

operator via the operator interface. System performance data is utilized by facility control as

an aid in altering or updating "work-to" lists when necessary. This information will also be

used as trend data, which will be reported to management. Direct interaction with the status
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monitoring function and the workorder scheduling functions are necessary when determining

system performance data.

The type of data which this function tracks and reports include quality control data on

different aspects of production, the number of orders completed, the completion time of

particular orders, workcell utilization, and average downtime of different cells. Most statistics

reported by this function are generated at the system control level. Some of the statistics

which relate more specifically to workcell activities, such as quality control, are generated at

the workcell level. This data is product specific, as opposed to workcell specific, which

describes the previously mentioned system statistics.

In keeping system statistics, this function interacts directly with the status monitoring

function. In the hypothetical system, each status message received from different workcells

has associated with it a time stamp. This time stamp is what enables the status reporting

function to track time based statistics on cell activity. Examples include the workcell

utilization and average downtime of workcells. Workcell utilization is calculated by tracking

the amount of time that the work cells are busy. This is easily accomplished by noting the

time stamp when each of the cells status is reported as busy, and again, when it changes to

idle or down. The total busy time for each cell is tracked, and when the utilization is

requested, this is divided by the total time the system has been operative. Average

downtime is tracked in much the same manner, except, it is downtime which is tracked rather

than busy time.
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4.2.6 OPERATOR INTERFACE

The operator interface function provides a link between the human operator and the

other system control functions. Situations can arise that dictate that a human operator

interact with and take control from the automated system control. The operator interface

function is a real time function with multiple capabilities. These capabilities include:

1. Pausing or halting the system,

2. Configuring system parameters,

3. Requesting statistical data,

4. Displaying system status,

5. Restarting the system,

6. Monitoring communications,

7. Editing of control software, and

8. Direct communication with workcells.

In most cases, the operator interface works via the keyboard and monitor of the

computer running the systems control software. However, this is not always the case. The

operator interface may be a separate processor linked either serially, or via a network node.

The operator interface may also be an interface terminal/monitor, such as those available

from some of the larger vendors.

The major problem which exists with this function is recognizing and processing

requests from the operator interface without interrupting the control of the system. Either a
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flag to system control from the operator interface or a poll of the operator interface from

systems control must be provided to periodically search for requests.

Several instances exist where the operator may want to interface with the system.

The system may need to be shut down for periodic maintenance or the addition of machine

tools. Also, the exact location of a specific workorder may be required for management or a

customer. Lastly, reconfiguration of a part of the system may be necessary, if a problem has

occurred from which the system alone can not recover.

The operator interface usually displays the different tasks or modes in a menu

format. Requests for interaction are made through these menus, which lead to more detailed

menus in different categories.

4.2.7 SYSTEM MAINTENANCE

The system maintenance function can be viewed as a software/computer system

reliability function. It is designed to periodically check the operational system and prevent

catastrophic system failure. System maintenance contends with system control problems,

rather than the elements within the system control. It parallels the control enforcement

function and the watchdog timer portion of the status monitoring function; however, it applies

to the system control hardware/software, not the system itself.

Several potential problems exist with this function. First, in performing system

backup, adequate peripheral storage must exist to produce three copies of the control code

and data. Old backup copies should not be erased until a new backup has been verified to
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be successful. Second, available software for the checking of timing and responses from

system control functions will require extensive development time and cost. Lastly, interfacing

to hardware diagnostic software presents its own class of problems.

The function consists of two elements, the preventive/backup feature, and the system

status checking feature. The backup feature is designed to prevent loss of the control

software and associated data in the event of catastrophic failure of the computer and its

memory. Periodically, the system software is copied to peripheral locations. Peripheral

locations include other parts of a hard drive, floppy drives or onto another machines hard

drive through the communication network. Multiple copies are maintained on different

media, to preclude dependency upon one version of the control software and associated

data. This assures a running copy, with recent valid data of the system software, in the

event of a major systems failure.

The second feature, the system status checking feature, periodically assesses the

operational and functional capability of the hardware running the system software. Such

hardware diagnostics are run at specified intervals, such as the beginning of each shift.

Observation of each function's timely response to a set of test data is required. In addition,

synchronization of workcell and system docks is tested to assess overall system timing.
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4.3 OTHER FUNCTIONS

A number of other functions exist which may facilitate systems control. Although

desirable, these functions are not necessary to control basic automated manufacturing

systems. Some of these functions include:

1. Tool Management

2. Remote Distribution of NC data

3. Model Resources, and

4. Generate Requirements.

Each of these functions will be discussed in the context of their capabilities. This list is not all

inclusive; it is not the intention of this research to identify all possible system control

functions. This recognizes that there are other functions that are desirable, but not essential,

to systems control.

4.3.1 TOOL MANAGEMENT

The tool management function tracks the availability and total processing time on

different tools in the system. This function ensures that the tools necessary for different

processes are available at the proper workcells at the proper time. As was mentioned in the

previous section, instances exist in some systems when all the tools necessary for the

different processes are not kept in the tool racks at the necessary machines. In these

situations, it is essential to know the necessary tools for the different processes. This

function also tracks the location of all the tools in the system, whether in different workcells or
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tool storage. Once a workcell requires a tool it does not possess, the tool management

function ensures that the tool arrives before the process is ready to begin.

Another task associated with this function is the tracking of how much time each tool

has been used, in order to monitor tool wear. This provides a confidence factor in assuring

that operations will be completed before tools break or affect the quality of the part. Tracking

is required at the workcell level, where the tools are being changed during different

processes. Since tools may be passed from workcell to workcell, the processing time

associated with each tool is best monitored at the systim control level for overall tracking.

Other ways of tracking and predicting tool wear exist that may negate the necessity of this

function. Most basic systems, to date, are small enough that they can store the required

tooling in the machines tool racks for all the processes necessary. Therefore, this function is

not considered to be a major function.

4.3.2 REMOTE DISTRIBUTION OF NC DATA

The remote distribution of NC data function supplies the proper robot and NC code

for the different workorders to be performed at each cell. Several different ways exist in

which this data can be distributed to the appropriate equipment. One method involves

maintaining a common database or library containing all the different NC and robot

programs. The workcells would either request the programs directly, or send a request to

the control level maintaining this database. Another method consists of all the appropriate

programs residing in each of the workcell controllers' memory. For these reasons, and

because the NC code is generated off-line or at the facility control level, this function is not

included as a major system control function.
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4.3.3 MODEL RESOURCES

The model resources function provides operators the ability to simulate different

levels of activity, in order to determine the capabilities and capacities of the system. Some

systems utilize this functional capability prior to scheduling the activities of the system. It not

only provides insight into the viability of different scheduling schemes, it also helps in

determining the resources required for particular production levels.

This function is more easily done off-line. There are a multitude of simulation

packages on the market that are more appropriate for this capability, as opposed to trying to

create it within a system control program. Also, there is a duplication of effort when one

considers that most Materials Resouce Planning (MRP) systems can provide capacity

planning, consumption planning, scheduling and other forecasting functions [24]. MRP is a

facility level function, so the use of this function is best left at the facility level.

4.3.4 GENERATE REQUIREMENTS

The essence of generate requirements function is the translation of item

requirements from facility control to processing operations in different workcells in the

routing. This function works very closely with the established routings and process plans

from facility control. It is paramount that the function know the different processing

capabilities at the different workcells. This provides a set of processing operationj for all the

workcells in the routing of a particular workorder.
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This function is viewed as an intermediary form of computer aided process planning

(CAPP). CAPP is the automated generation of a process plan. This function assumes that a

process plan already exists. When an item requirement is produced, this function identifies

the process plan and links it with a routing plan. For this reason, the function is usually found

at the facility control level. Another reason that the generate requirement function is not

considered a major system control function is that workcells can be preprogrammed with the

different processing plans for different workpieces. In this manner, only a processing code

needs to be downloaded to the workcell as the workpiece arrives.
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5.0 EMULATOR DEVELOPMENT

The functions, listed in the previous chapter, comprise the capabilities found in most

automated manufacturing system control structures. The development and integration of

these functional capabilities into a workable control program requires a significant effort on

the part of software developers. To aid in this development, especially in the test and

verification stages, an emulation capability to mimic the controlled elements on the factory

floor is needed. The development of the form and structure of this emulation capability is the

essence of this chapter. These emulators must have the capacity to respond to the

previously discussed control functions.

5.1 EMULATOR STRUCTURE

The structure of emulation capabilities used in the past has varied, from state tables

used by NIST [7], to Petri nets used by researchers in both Europe and the U.S. [6] [16] [27].

One problem of both state tables and Petri nets is that they require an understanding of their

structure in order to develop the emulation capability. Therefore, developers must be

extremely well versed in the theoretical aspects of computer science. The state table and

Petri net approach require large amounts of time when programming these emulators. A

major shortcoming of the Petri net approach is the models intermix of process plans, control,

and cell operation [25]. This intermix causes difficulties when attempting to utilize actual

control code for the control of the models. Also, software reusability is not taken into

account; much duplication of effort exists when developing the models.
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One advantage both the state table and Petri net approaches, has been their efficient

use of limited computing power. Now, with the relative low cost of fast, high power computer

hardware, this is not as great a concern, as it was in 1982, when NIST first developed

emulation capabilities. Today, an interactive, multi tasking, or object oriented approach is

conceivable in a manner which was not possible ten years ago.

A quicker, more user friendly, and cost effective emulator structure is available with

today's computing power. The structure, developed as part of this research, divides the

emulators into different generic classes, according to the type of cells which they are

emulating. These are easily configured to mimic the appropriate characteristics required for

the system. Two appropriate classes of emulators for the system control application are

identified. The first, workcell emulators, are sub-divided into machining, assembly, and

inspection workcells. The second, material handling emulators, are subdivided into AGVs

and conveyors.

5.2 EMULATOR OPERATIONS

The development of generic emulators began by decomposing the operations of

each generic class into the operations performed. Table 5.1 and 5.2 identify the operations

which are performed by a machining workcell and an AGV material handling system

emulator, respectively. The operations performed, by the other subgroups in each class, are

similar enough in nature to preclude the necessity of identifying them in detail. The

identification of these operations facilitates the development and characterization of generic

emulator functions.
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5.3 GENERIC EMULATOR FUNCTIONS

With the development of generic functional capabilities, it is possible to easily configure

an emulator to respond in a realistic manner to any of the major system control functions, or

any other system control functions which a particular application may utilize. Table 5-3 lists

the generic emulator functions.

5.3.1 READ FUNCTION

The read function interacts with the outside environment of the emulator. It also interacts

with other functions internal to the emulator. Upon reading a message, the read function

acknowledges the receipt of the message, and passes it to the data analysis function. In the

event of an interruption of reading the message, the read function instructs the write function

to write a not acknowledged (NAK) message back to system control. After a message has

been read and passed to the data analysis function, the message is erased from the

communication medium.

5.3.2 WRITE FUNCTION

The write function interacts with the other intemal functions of the emulator to provide

messages back to system control. When the write function sends a message back to

systems control, a time stamp is written along with the message. Assuming that the clocks

on both system control and the emulator are synchronized, systems control and/or the

operator can analyze the time taken by the emulator to process the message. The format of
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the messages both read and written must be determined during the initial configuration of the

emulator.

5.3.3 DATA ANALYSIS FUNCTION

The data analysis function decomposes and interprets the messages received from

systems control or the operator interface, and determines the appropriate action required by

the emulator. Some messages require no further action than providing a direct response

back to system control. However, the majority of the messages require the data analysis

function to interact with the other emulator functions.

The data analysis function must know which functions perform which actions, and what

data the different functions need to perform their respective functions. Data is passed to the

appropriate functions, in the form of parameters. The data analysis function also determines

if a message received by a cell was intended for that cell. If a wrong message was received,

data analysis directs the appropriate response to system control.

5.3.4 PROCESS DELAY FUNCTION

The process delay function generates time delays representing processing and

transportation times for workorders. Delays are also simulated to represent the time

required for AGVs to reach a requesting workcell. Process delays are dependent upon part

type and operation. Transportation delays are dependent upon the distance between the

cells in the muting. All delays include the time necessary for loading and unloading.
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TABLE 5.1 Machining Workcell Operations

1. Read message

2. Acknowledge message

3. Periodically simulate correct message not recieved

- according to some distribution

4. Analyze message

- if processing not required simply pass on data

5. Determine processing time

- look up table for part type and process number

6. Change workcell status

7. Write workcell status

8. Simulate processing

9. Write work completed

- part number and finished code

10. Check queue

11. Track % time workcell is busy, idle, and down

12. Periodically generate error messages

- according to some distribution

13. Determine repair time

- different distributions for different error types

14. Respond to watchdog timer

- write a simple acknowledgement

15. Track parts in queue

- maintain number in queue and in which order they should be removed

16. In case of breakdown pass along repair time

17. Wait for signal from system control to begin repair

18. Respond to requests from system control for statistical data

- % downtime, idle time, busy

19. Write messages to screen as well as mailbox

- operator interface

20. Respond to keyboard requests for information

- operator interface

21. Record time messages are read and sent

- allows you to check the real-time characteristics
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TABLE 5.2 (AGV) Material Handling System Operations

1. Read message

2. Write ACK to message

3. Periodically simulate NAK to message

4. Erase message

5. Analyze message

a. determine part type

b. determine pick-up point

c. determine delivery point

6. Decrement number of AGVs available

7. Determine which AGV to send for pick up

8. Determine time to reach pick up point

9. Simulate pick up

10. Write Part retrieved

11. Determine delivery time

12. Simulate delivery time

13. Write part delivered

14. Increment number of AGVs available

15. Track AGV locations

16. Periodically simulate AGV breakdown

17. Track availability of AGVs

18. If multiple requests exist determine order of service

19. Respond to watchdog timer

20. Track parts awaiting pick up

21. Record time messages are read and sent
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TABLE 5.3 Generic Emulator Functions

1. Read

2. Write

3. Data Analysis

4. Process Delay/Simulation

5. Data Retrieval

6. Data Generation

7. Data Tracking

8. Statistical Computation

9. Status Maintenance

10. Numerical Computation

11. Operator Interface
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5.3.5 DATA RETRIEVAL FUNCTION

The next function is the data retrieval function. It retrieves data from internal or external

storage. Repair times, processing times, and transportation times are examples of data

required by the emulators. This data must be retrieved at the appropriate time, either from

data arrays, linked lists or a data base.

5.3.6 DATA GENERATION FUNCTION

The data generation function creates several types of data. The first example of this is, it

generates pass/fail data for parts passing through inspection workcells. Secondly, it

generates error conditions which the emulator sends back to system control. Emulators

generate different types of errors at varying frequencies, these are established upon the

initial emulator configuration.

Errors that occur comprise two classes, communication errors and application errors.

Communication errors deal with incorrect or incomplete data received from system control,

and generate a not acknowledge (NAK) response. Application errors are associated with

machine tools breaking, parts being dropped, robot shutdowns, etc. These are coded in

such a way that the emulator can describe to system control, the type of error which has

occurred. The data generation function must incorporate random number generators, and

have the ability to generate numbers from distributions, such as exponential and normal.

Error generation occurs according to an exponential distribution, defined by a mean of one

divided by the failure rate [36).
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5.3.7 DATA TRACKING FUNCTION

The data tracking function tracks non-stochastic data within the emulators. One

example, is tracking the location of the AGVs in the material handling emulator. When a

request arrives for an AGV at a particular workcell, this function provides parameters to the

numerical computation function to determine the amount of time necessary for the AGV to

reach the requesting workcell. The data tracking function also tracks the amount of time that

different tools are being used in the workcells.

5.3.8 STATISTICAL COMPUTATION FUNCTION

The statistical computation function calculates and tracks statistical data, such as

workcell busy and downtime, and workpiece production history. Status change information is

received from the status monitoring function, and the statistical computation function updates

this information. An integral part of this capacity is the capability of time stamping each

command and status change.

5.3.9 STATUS MAINTENANCE FUNCTION

The status maintenance function monitors whether the workcell is idle, busy or down.

The status of the workcell can be established from either internal or external stimuli.

External stimuli exist if the systems control or operator interface direct the workcell to

shutdown or reactivate the workcell when a repair has been completed. Internal stimuli exist

when the workcell begins processing a workpiece and the cell status becomes busy. Upon

completion of processing, if no parts are waiting in queue, the status of the workcell becomes
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idle. For the material handling class of emulators, the status maintenance function tracks the

number of available AGVs.

Requests may come in from system control or the operator interface, concerning the

status of the system. This function must have facilities to send the status of the emulator at

that time to the requesting entity.

5.3.10 NUMERICAL COMPUTATION

The numerical computation function analyzes alternative conditions, when numerical

parameters are known about each condition. This function does not actually determine the

best alternative; it supplies another function with the results of its calculations, so that an

informed decision may be made. An example of this is the assignment of AGVs to workceU

requests. Data tracking supplies the numerical computation function with the location of all

available AGVs. Utilizing transport times, supplied by the data retrieval function, the time for

all available AGVs to reach the requesting workcell can be computed, by subtracting out the

load and unload times.

5.3.11 OPERATOR INTERFACE FUNCTION

The operator interface function provides interaction to configure certain parameters of the

emulator. It responds to direct information requests from the operator. The operator

interface function accounts for both read capabilities from the keyboard and display

capabilities on the monitor. The operator, through this function, may halt or pause emulator
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operation, or test the system controls reaction to independent condition in an open loop

fashion.

5.4 SPECIFIC EMULATOR TASKS

The classification of generic emulator functions provides a basis for developing

emulation capabilities to mimic real world scenarios on the factory floor. These scenarios

can be broken down into specific tasks which emulators must have the ability to perform.

Table 5.4 lists these tasks.

5.4.1 COMMUNICATIONS

The first task is a communication task. Both the workcell and the material handeling

system emulators must communicate with the system controller. The manner in which

communications occur vary from system to system, however, most systems utilize some

form of messaging scheme. Messages can be passed through files, via shared memory, or

across other advanced communication channels, such as sockets.

Communications capabilities include reading messages, acknowledging messages and

writing messages. Messages can also vary in form. The simplest are numerical or character

strings which are passed between sender and receiver. A more advanced form of message

takes advantage of passing complex data structures which can contain numerous, varying

forms of data.
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TABLE 5.4 Emulation Tasks

1.) COMMUNICATIONS

2.) MESSAGE DECIPHERING

3.) STATUS MAINTENANCE

4.) PROCESS DELAY

5.) QUEUE MAINTENACE

6.) ERROR GENERATION

7.) ERROR RECOVERY

8.) STATISTICAL COMPUTATION

9.) OPERATOR INTERFACE
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5.4.2 MESSAGE DECIPHERING

The next major task is message deciphering. It provides the ability to extract information

from the messages. This task is highly dependent upon the form of message used. String

messages need to be decomposed or compared to known messages to extract the

information being passed. When utilizing structures data can be directly extracted from the

different structure elements. The simulation of incorrect messages must be incorporated into

the emulator, because messages are sometimes received that are not able to be deciphered,

due to the addition or loss of data during transmission. The possibility also exists that

messages can be sent to the wrong emulator.

5.4.3 STATUS MAINTENANCE

Status maintenance is another task. As work flows into and out of workcells, status

changes occur. The status of the workcell is either idle, busy processing a part, or down, due

to a malfunction. Status must be maintained so that inquires, from system control or the

operator, can be responded to in a timely manner. Status maintenance also facilitates

keeping statistics on workcell activity.

5.4.4 PROCESS DELAY

The process delay task simulates the processing and transportation times involved in

producing a part. Processing time is dependent upon the part and operation type. Since an

emulator represents all the elements in a workcell, this task takes into account loading time,

processing time, and unloading time. Transportation time is dependent upon the parts
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present locaticn and the next location in the routing. All the pertanant data for determining

delay times is passed in the message representing the part.

5.4.5 QUEUE MAINTENANCE

The next task is queue maintenance. This task involves tracking and mimicing the

queueing process at workcells. Parts often arrive at a cell while its status is busy, queueing

allows the part to be unloaded while the cell is still processing another part. This frees

workpiece unload stations, which normally only have a much smaller capacity. Also,

material handeling, when it is an AGV, is free to perform other tasks. The queue

maintenance task also includes, determining which workpieces to remove from the queue,

when multiple workorders have accumulated at a busy workcell. Different removal schemes

include first-in first-out (FIFO), last-in first-out (LIFO) and priority schemes.

5.4.6 ERROR GENERATION

Another major task is error generation. During processing or transporting a workpiece, a

number of unforeseen events occur, that would disrupt normal operation. In order to

maintain their real world appearence, emulators must mimic the occurence of these

unforeseen events. Error generation notifies system control of the time and nature of the

disruption, so that appropriate action may be taken. This task simulates all these conditions

and actions.
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5.4.7 ERROR RECOVERY

An error recovery task simulates the repair of a workcell or material handeling device

after a breakdown occurs. In a real world system, the operator is notified and plays a varying

part in error recovery depending upon its severity. In order to simulate this process, this task

accesses and delays appropriate repair times, dependent upon the type of error that

occured. This task awaits a signal from system control to initiate the repair process, this

simulates the availability of repairmen. The status of the workcell is returned to busy after

the appropriate repair delay, and processing continues on the part which was being

processed.

5.4.8 STATISTICAL COMPUTATION

The statistical computation task has the capability to compute, track and maintain

statistical information, concerning the operartion of the cell. This task works hand-in-hand

with the status maintenace task to provide system control and the operator with statistics

concerning cell operation. Emulators have an internal clock which allow accurate time based

statistics to be maintained. This task involves calculating and maintaining means, standard

deviations and trends. Examples range from cell utilization to product tolerance variances.

5.4.9 OPERATOR INTERFACE

The operator interface task allows direct interaction by the operator. It provides an ability

to configure certain parameters and processes information requests from the operator. The

emulator can be used to test system control reaction to a specific condition; in this situation
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the operator configures the emulator to generate that condition. In addition, the operator

interface task accounts for read capabilities from the keyboard and displays of information to

the monitor.
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6.0 PROBLEMS AND ISSUES

The spectrum of problems encountered in developing automated manufacturing systems

is broad. From one extreme are the mundane problems of connecting the different physical

elements in the system together. At the other extreme are cultural problems that many

companies encounter when attempting to increase the level of automation within their

facilities. Somewhere in the middle are problems of designing and developing the required

software to control and integrate these automated manufacturing systems. These software

problems are one of the major roadblocks in implementing automated manufacturing

systems [25]. This chapter identifies and characterizes these software issues, as they relate

to the use of emulation as a problem solving tool.

6.1 CENTRAL ISSUES

The problems encountered by software developers, when attempting to automate the

system control of manufacturing systems, are integration and control of all the different

elements in the system. Some problems appear early in the conceptual development stage,

while others do not surface until late in the implementation portion of the project. The central

issues are complexity, hierarchy, uncertainty, capacity, and communication.

6.1.1 COMPLEXITY

The complexity of the system control problem may be the source of all problems

encountered. Complexity problems surface early in the conception stage, and continue

through implementation. As was identified in Chapter 4, a number of different functions are
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involved in controlling an automated manufacturing system. These functions must work

together to provide the best overall system performance possible. In complex systems the

interaction of the functions can become muddled, especially when the functions are not

clearly defined. Clearly defined functions implemented in a modular fashion provide a level

of order to the complexity issue.

Many complexity problems arise as a result of poor planning at the initial stages of

automated system development. A well defined plan, documenting the system functions and

goals, is imperative to providing system designers a basis for establishing clearly defined

flexible control schemes.

6.1.2 OPTIMIZATION

Optimizing system performance is an other issue designers must contend with. The best

overall system performance is difficult to define because so many elements exist in a

manufacturing system. It is nearly impossible to simultaneously optimize all the different

parameters that define system performance. If developers took inputs from different

departments in the corporation concerning which parameters should be optimized, an

overwhelming list would result. System developers tend to sub-optimize different portions of

the system, according to management's views of the most important performance measures.

Once management has identified the desired performance measures, the developer's

problems are far from solved. Usually through trial and error, the best combination of

algorithms and implementation methods of the different functions must be found, to optimize

the system. Often, the best algorithms during conception do not perform adequately once

71



coded, due to other limitations of the system, such as the hardware or communication

constraints.

6.1.3 HIERARCHY

The hierarchical architecture of most automated manufacturing systems is another issue

which presents problems closely related to those of complexity. Two major concerns are

how decisions are made at the system control level, and what effect the operations of the

elements will have on the other levels of the hierarchy. These problems do not become

evident until the system control software has been coded and linked with the other levels in

the hierarchy.

One example of such a problem is that db,.a requirements at the system contrc' level

may not be accounted for at the cell level. Further data requirements of the cell controller

may be detrimental to the efficient operation of the cell. Another example is a scheduling

and tooling problem. The manner in which work orders are scheduled into the system is

determined at the system control level. However, the schedule may havb a direct, yet

hidden, effect upon workcell control that will ultimately alter system control. Scheduling work

orders of different product mix may require excessive amount of tool changes within the

workcell. The schedule may have appeared acceptable at the system control level, but if it

requires a large amount of time for tooling and setup changes, the performance of the

system may degraded. The scheduling problem now becomes choosing when these tooling

changes should occur [21].
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6.1.4 UNCERTAINTY

Uncertainty relates to unpredictable random disturbances which may occur in the

system. Examples include breaking down of machine tools and AGVs, shutting down

workcells due to breaking a safety barrier, and failing to have required material reach its end

destination.

The system control developer must identify all the different random error conditions or

uncertainties which may occur in the system. Then how these uncertainties affect system

control must be established. Lastly, how the system will recover from all the different

uncertainties is determined.

The identification of random disturbances within a system is the most difficult task. The

system developer has to rely upon poor documentation of disturbances, that have occurred

in the manual system. The best source for this information is often intuition and the

experience of others. It is unrealistic to assume that all possible random disturbances will

be accounted for during the initial stages of development. Therefore, this process of dealing

with uncertainties will plague the system developer throughout the design cycle, and on into

implementation.

Once the uncertainties have been identified, they can be accounted for during the design

of the system control software. Designing the system control software to be affected by such

disturbances, in the least possible amount, is referred to as desensitization of the control

system. In most cases, these disturbances will always have some effect on a subset of the
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functions within system control. The identification of these functions, is paramount to the last

task.

Devising error recovery schemes for all the possible random disturbances is the last

task. Formulating error recovery schemes involves identifying the problem, notifying the

operator, altering necessary control functions, and possibly, running error recovery programs

for simple disturbances. Once the disturbance has been resolved, system control must take

the appropriate action to bring the system back to a steady state.

6.1.5 CAPACITY

All equipment within the system has a fixed capacity. System control must not execute

schedules which exceed this capacity. At the same time, workcells and elements beneath

system control must keep system control informed of their capacity. While they may have a

fixed capacity, the equipment's capacity may change due to unforeseen interruptions.

Development of a scheduling method to account for these unforeseen interruptions is a

problem faced by system control developers. The capacity constraint issues can not be fully

accounted for, until the system control software is linked to the elements beneath it.

Another related problem is system control's handling of facility control's alterations in the

system requirements. Alterations to schedules already developed may be necessary, or if

rhanges are excessive, system control reports back to iacility control that t, desired work

cannot be achieved. System capacity cannot be overloaded, because this may have a

detrimental effect upon throughput, which is, in most cases, one of the system performance

parameters of major concern.
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6.1.6 COMMUNICATIONS

The issue of communication deals with both internal and external communication

problems. Internal communications involves how the functional elements within system

control communicate appropriate data to each other. This problem has been well

researched and documented in the literature by others, and is beyond the scope of this

research.

External communications involves the problems associated with system command

interactions with the environment. This applies to other levels in the hierarchy and the

operator. Most automated manufacturing systems communicate over a network. Network

communications problems range, from speed and protocols, to message translation and

reliability. System control developers must contend with all these problems, and determine

how they affect the operation of the system. Also, the interaction between the system

controller and the operator is considered. The format and the means of portraying system

data to the operator must be established and tested. Some of this information can be

obtained by speaking with operators; however, the developer will not know until the system is

operational, if the data is relevant and portrayed in an adequate manner.

6.2 EMULATION AND THE SYSTEM CONTROL DESIGN CYCLE

As has been discussed earlier, not all the problems which are encountered by system

control developers, lend themselves to the use of emulation as a problem solving tool. The

best way to categorize these problems into a subset where emulation can be used to help
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reach a solution, is to first relate the use of emulation to the system control design cycle.

Figure 6-1 shows the system control design cycle [29].

6.2.1 CONCEPTION AND DESIGN

Conception is the first stage of the design cycle. During this stage, ideas for an

automated manufacturing system are developed and cultivated into the specifications for the

future system. Conception occurs just prior to bringing management "on-board". During the

design stage, specific strategies are chosen to meet the system specification. The initial

game plan is developed, and all the affected departments discuss and concur upon it.

During these initial stages, the form of the final system is not always known. In fact, this is

part of the second stage, design; establishing the system according to the goals of the

company. Emulation is not the optimum tool for assisting the designers during this portion of

the design cycle, since the underlying premise of emulation requires existing control code to

drive the emulated physical system. At this stage system configuration and control software

are still in the infancy of their development, designers are still playing "what-if" games to

reach a consensus on the structure of the system. For these purposes, simulation is an

excellent tool for system control designers [29].

6.2.2 FABRICATION

The third stage of the design cycle is fabrication. Emulation would provide a useful tool

to the system designers in this stage. Designers develop the strategies and system

architectures into software code to control the different elements of the system. This is the

critical stage, where software needs to be debugged, tested and verified, before it is fully
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CLASSES OF CONTROL PROBLEMS

1.) TIMING and SEQUENCING

2.) COMMUNICATIONS

3.) ERROR RECOVERY

4.) RESPONSE DATA

FIGURE 6.1 System Control Design Cycle
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operational. After the initial syntax error debugging, the designer develops a test scheme to

verify that all the functional elements of the code are operational and robust. Emulation

provides a tool, or a platform, which will mimic the operations and communications of the

different elements of the system. This tool allows the system designer to fully test the control

logic for the entire system, without the actual hardware of the system. This is particularly

useful for two reasons. If the hardware is not yet available, the system control design is not

delayed. More importantly, if the hardware does exist and is being used manually,

production does not have to stop while the software is being tested and debugged.

6.2.3 INSTALLATION

The fourth phase in the design cycle is installation, where control logic errors are

normally encountered. This is typically one of the longer phases. Emulation would greatly

reduce the time spent in this phase, since the control logic errors can be debugged prior to

installation. Emulation is used during installation to verify that the physical installation

matches the design. It is used to compare the "as specified design" with the actual physical

system. Performance measures of the emulated system should match those of the physical

system, less discrepancies from random disturbances. If these two do not correspond, then,

either the installed system needs to be corrected or the emulation model needs to be

changed, to reflect the physical installation [29].

6.2.4 OPERATION

The last of the design phases is the systems operation. By this stage, all the bugs have

been eliminated from the system, and the implementation of the control software has been
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tested and verified. Since the emulation model was refined to correspond to the physical

system in the installation phase, it can be used as a diagnostic tool during the operation

phase. By running the emulation in real time, parallel with the physical system, each system

can be continuously compared for discrepancies. Tolerances can be set for variation due to

random disturbances. Outside of these variations, any discrepancy signifies an error

condition in the operational system [29]. In addition, if there are error conditions, which are

continuously causing production disturbances, these can be reconstructed on the emulation

model. This allows the testing of control software upgrades, without shutting down the

production.

6.3 EMULATION CLASSES OF PROBLEMS

Emulation is best suited, as a tool or platform, for system testing during the latter stages

of the design cycle. In particular, the greatest savings will result from its use as a test-bed

during the fabrication phase of the design. The types of problems which emulation is best

suited for can be grouped into classes. The classes of problems which lend themselves to

emulation are listed in Table 6.1.

6.3.1 TIMING AND SEQUENCING

Timing and sequencing take into account all potential errors associated with moving

workorders through the system. This includes requesting and sending AGVs to the

appropriate workcells at the appropriate times, tracking multiple workorders through the

system, and handling and accounting for work in process (VIP). It also accounts for errors

associated with how, and when, workorders are loaded into the system.
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6.3.2 COMMUNICATION

Associated with communications problems are issues relating to system command

interactions with the environment. This applies to other levels in the hierarchy, as well as to

the operator. Since most automated manufacturing systems communicate over a network,

some of the problems encountered will be related to network communications. These

problems range from adequate transmission speed and protocol discrepancies, to message

reliability.

The interactions between the system controller and the operator are not only functional

problems, but also relevancy problems. The format and the type of data being portrayed to

the operator must be adequate enough to monitor and troubleshoot the system efficiently.

Some of this information can be gathered by speaking with operators during the

development phase; however, the developer will not know until the system is operational, if

the data is relevant and portrayed in an adequate manner.

The use of emulation allows the developer to test and verify all communication issues

prior to installing the system control software on the factory floor. Altering the software after

installation is a complex and risky task, as small changes may proliferate problems in other

areas.

6.3.3 ERROR RECOVERY

Once error recovery schemes have been coded, they are a risky and costly portion of the

software to test. It is not desirable to actually create the vast majority of the errors, since
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TABLE 6.1 Classes of Control Problems
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doing so may involve breaking or destroying equipment. Emulation is an effective tool for

simulating the error conditions expected on the factory floor. These routines can be

debugged, tested, and verified, without risk to an operating system.

6.3.4 RESPONSE DATA

Problems associated with response data are closely associated with communications.

However, analysis of the messages received by system control are beyond the scope of

communication problems. System command must recognize messages, then determine

their meaning, and generate appropriate responses back to the workcells. These tasks can

be effectively tested using emulators to represent the workcells generating the messages.

Emulators can be structured so that they only recognize certain commands, and display the

actions taken in response to those commands. This allows the developer to see the action,

generated by the commands, sent to the different cells.

6.4 EMULATION MODES OF OPERATION

The manner in which emulation is used can take different forms. These forms, or modes

of operation are dependent upon the class of problem and where in the system design cycle

the developer is using emulation. The two modes of operation are partial and full. In the

partial mode emulation is used to test specific, known conditions. In the full mode emulation

is used test the operation of the whole system and to help uncover unforeseen problems.
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6.4.1 PARTIAL MODE

In the partial mode of operation, the emulator is controlled via the operator interface.

This mode is utilized to check the operation of system control, with respect to specific

conditions, including reaction to workcell error messages, response to work being completed,

arid response to communications errors. The partial mode's intent is to verify individual

functions of system control, prior to testing it as an integrated system. When it is run as an

operational system, specific error responses will not cloud integration/timing problems that

result when the entire system is coordinated.

6.4.2 FULL MODE

In the full mode emulators for the various cells operate autonomously, responding to

system control without operator interference. This verifies the ability of system control to

operate the entire system. Simulated work orders are processed through the system, and

encounter the same conditions that can be expected on the factory floor. Error conditions

and processing times, including transportation and loading times, are emulated providing

system control with multiple responses at varying times. Developers will be able to

recognize many unforeseen problems as the system is run in the full emulated mode.
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7.0 SOFTWARE DEMONSTRATION

The final portion of this research was the development of a software demonstration

program. The purpose of this demonstration was twofold. First, it provided experience in

developing control and emulation software. Secondly, it showed that the concept of

emulation, as it applies to automated manufacturing control systems, is a viable tool in

debugging control software.

7.1 HARDWARE DESCRIPTION

The emulation and control software were developed on IBM RT workstations. These

workstations operate under the AIX operating system. AIX is a Unix like operating system

based on System V Unix. The RT workstations were connected via a Token Ring network.

Five workstations were used, one ran the system control software, while the other four ran

emulators representing three separate machining workcells and a material handling system.

Figure 7.1 illustrates the demonstrations hardware configuration.

7.2 SOFTWARE DESCRIPTION

All of the code for the demonstration was developed in the general purpose programming

language, C. There are many advantages to using C. It is compact, yet powerful. It allows

for low level development, such as addressing of memory. It is easil) portable compared to

other languages. It encourages modular design and can be extended. Also, one of the major

reasons for its use in this research was that the Unix and AIX operating systems are written
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FIGURE 7.1 Demonstration Hardware Configuration
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in C. By writing the demonstration in C, AIX system calls were able to be utilized. ,hese

included features for communications, multi-tasking, and signals.

7.2.1 MULTITASKING FEATURES

Both Unix and AIX support multitasking environments. Multitasking allows multiple

processes to be executing, what appears to the user to be simultaneously, on the same

machine. In reality, most multitasking environments are achieved via time slicing. Time

slicing is a concept of dividing CPU time between multiple processes. Each process runs a

predetermined amount of time. The process has access to the CPU during this time slice.

This multitasking feature was utilized in the software demonstration for related processes,

particularly in the material handling emulator.

Two of the main multitasking system calls utilized were fork and exec. Fork allows a

process to make a copy of itself, resulting in two processes executing in the samp

environment. When a tct system call is executed, two process identifiers are returned. One

process identifie;, that returned to the parent process, has a value greater than one. This is

the process identifier of the child process. The other process identifier is zero. This process

identifier is returned to the child process. By returning a process identifier of zero to the child

process, a test can b: made to differentiate between the child and parent process.

The exec system call is utilized in conjunction with the fork system call. Exec allows the

child process to discard all tt:e parent code proceeding it, and execute a new program

provided as an argLaent. The new program must be in executable form, and is laid over the
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old code in the child process. The new child process retains all process IlDs, time left on

alarms (discussed later with signals), and directory information.

7.2.2 COMMUNICATION FEATURES

A number of AIX communication features were utilized in this demonstration. Namely

these were pipes, sockets, and select. Pipes and sockets are means of interprocess

communications, while select is a polling feature which determines when communications

are enabled on pipes or sockets. Figure 7.2 illustrates the communication links used in the

demonstration.

Pipes are one way communication channels, between processes running on the same

host. A processes is an instance of a program that is being executed by the operating

system [55]. Since Unix and AIX allow multiple processes to be executing simultaneously.

One method of communicating between these processes is via pipes. Pipes are initiated by

one process, usually the parent process. The connection is made by passing the child

process the file descriptor of the other end of the pipe. Figure 7.3 illustrates communications

with pipes. Pipes were utilized in the software demonstration to communicate between AGV

processes and the material handling emulator.

Sockets are another communication feature utilized in the software demonstration.

Unlike pipes, sockets allow interprocess communications between processes running on

different machines. Sockets were the means of communication between the system control

software and the emulators on their respective workstations. Sockets are established, based

upon a client-server model. The server creates a socket, and then allows the clients to
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connect to it. Once a client has connected to a socket, the server end of the communication

channel is given a new, unique file descriptor. This allows other clients to connect to the

server. Sockets also differ from pipes in the sense that they allow bi-directional

communications.

The select system call is a means of identifying when a file descriptor is ready for reading

or writing, particularly reading. In Unix, select can be used with either sockets or pipes.

Unfortunately, AIX only supports the select system call for interprocess communications

between processes residing on the same host. For this reason select was used by the

material handling emulator to identify when AGVs wanted to communicate with the material

handling control. Select works by first assigning a mask bit to each file descriptor of concem.

When it is called, select can either wait a predetermined amount of time for a message to

appear on the file descriptors masked, or it can be configured to return immediately whether

a file descriptor is ready for reading or not. The masked file descriptors are then tested to

see if a flag was set, indicating data is present for reading.

7.2.3 SIGNAL FEATURES

Unix and AIX also provide a signal feature that was utilized in the software

demonstration. The signal system call allows actions to be predefined when different signals

occur. In particular the software demonstration utilized an alarm signal to simulate different

error conditions. An alarm can be set to occur at a fixed time after processing begins. Using

the signal system call, this alarm can cause an interrupt to any processing and execute

another section of code. Alarms simulated AGV breakdowns, tools breaking in a workcell,

and outside disruption to a cell.
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7.3 SPECIFIC ELEMENTS

The software demonstration is comprised of three different elements: system control,

material handling emulator, and workcell emulators. The three workcell emulators are

virtually alike, the only difference being that workcell number three can process workcell

number one or number two parts. However this is accounted for in system control not the

emulator. Each of the elements is built up in a modular fashion in an attempt to make them

as generic as possible. The features of each element are described below. Each element

utilizes a common header file INET.H, which can be found in the appendice.

7.3.1 SYSTEM CONTROL

A mock system control program was developed to represent a typical program to be

tested with the emulators. The system control program was comprised of three programs

which need to be compiled and linked together. They are system control, system

communications, and system scheduling. These programs are found in the appendices

listed under SYSCTR.C, SYSCOM.C AND SYSCED.C respectively.

The socket communication feature used by system control is unique so it was written as

a separate process. SYSCOM.C establishes a server socket and waits for the

predetermined four emulators (clients) to link to it. The file descriptors for the four emulators

are located in an integer array defined as cell[51. This was considered an initialization

process and can be used by any system control program, utilizing Unix or AIX system calls,

since the results are file descriptors which the read and write functions take as arguments.

One requirement is that the system control communication process, SYSCOM.C, must be
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executed prior to the emulators, due to the client-server relationship of sockets. It is also

important to note that workstation address for the host running the system control software

must be identified in INET.H. These addresses can be found on the network server, in the

HOST.H file.

The other two programs SYSCTR.C and SYSCED.C are not generic, but represent some

of the system control functions discussed in Chapter 4. The system control program,

SYSCTR.C, receives its 'Work-to" list from the keyboard. This represents facility control,

which has been identified as the upper level of the control hierarchy, normally supplying this

information. It is quite possible for facility control to have been represented by an emulator,

however one of the limiting factors in the demonstration was the number of operational

workstations connected to the token ring network. Therefore,the operator supplied the

required amounts of each product type. The scheduling program was very simple, but was

written as a separate program for modularity purposes.

7.3.2 MATERIAL HANDLING EMULATOR

This program was the most complex of all the elements of the demonstration. It too, was

written as three separate programs. These programs can not be considered generic, since

AIX system calls and communication features were utilized which may not be present in all

facilities. However, for the purposes of this demonstration and within the confines of Unix

operating systems two of programs, the workcell communication program and the process

delay program are generic. These are listed in the appendices as WCCOM.C and DELAY.C

respectively.
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These two programs were used by all four emulators in the same form. WCCOM.C is

the client equivalent of socket communication feature discussed in the previous section. It

links itself to the server socket and retums a file descriptor identifying the client end of the

socket. DELAY.C simulates the process and transportation delays necessary for the

emulators. DELAY.C takes as an argument the number of seconds to delay, and returns any

time remaining in the case that an alarm occurred. The other program is the material

handling emulator, AGVEM.C, it emulates the control of three AGVs to transport workpieces

between the three cells. Code associated with this program can also be found in the

appendices. The AGV emulator is comprised of a parent process which initializes

communications and receives messages from system control. It creates a child process

which receives the message read by the parent and controls three AGVs represented by

grandchildren processes. The child is also responsible for sending messages back to

system control. This structure was utilized due to the AIX limitation on only allowing the

select command to work with pipes. Figure 7.4 illustrates this structure and the associated

communication links and file descriptors.

7.3.3 WORKCELL EMULATORS

The three workcell emulators are coded in the same manner the only difference being

their workcell identification numbers. The workcell emulators also utilized the previously

mentioned programs WCCOM.C and DELAY.C. The code for the three workcell emulators

can be found in the appendices under VWC1EM.C VWC2EM.C and WC3EM.C respectively.

The workcell emulators receive messages from system control with appropriate data to

determine how long of a process delay to emulate prior to responding back to system
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control. The emulators continue execution until an appropriate shutdown message is

received from system control.

The workcell emulators in addition to the material handling emulator do not utilize all the

generic functions or tasks identified in Chapter 5. However for the purposes of the

demonstration they provide an adequate illustration of error generation and process delay.

The emulators access information from messages passed to them by system command in

the form of a structure. The elements of this structure are listed in Table 7.1. Upon

completion of processing, or in the event of an error, this same structure is passed back to

system control. Using structures for message passing was a significant advancement over

previous control schemes used in the manufacturing labs at Virginia Tech.
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TABLE 7.1 Message Structure

STRUCT COMMAND{

int celli~d;

int part-num;

int op~num;

int pnior-num;

int error num;

int part type;

int from;

int to;

int ack;

int agv~num;

int agvcod;
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8.0 CONCLUSION

The results and reccommendations that follow, are based on a survey of the literature,

knowledge gained from the development of the framework, and experience in coding the

software demonstration.

8.1 RESULTS

The results of this research support the application of emulation to high level control

systems. Emulation can provide a significant advancement in the method used for testing

and debugging system control software for automated manufacturing systems. This

research identified a standard set of generic functions which can provide emulation

capabilities for any foreseeable system control application. These lay the foundation for a

user friendly approach to emulation, uncomplicated by data restrictions, language

requirements, or theoretical background.

The knowledge gained during the course of this research suggests that future system

control applications would benefit greatly from the use of Unix operating systems. These

operating systems are consistent with the direction of advanced computer applications. The

functional framework identified in this research is applicable to any operating system.

However, implementation would be easist in the Unix environment.

A hierarchical control model was used as the basis for this research, due to its wide

acceptance in the industry. This does not preclude the use of emulation for more distributed

control schemes. On the contrary, distributed control schemes may benefit more from this
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technology, as they are less widely used and potential problems are not as clearly defined.

Utilizing emulation techniques prior to implementation could greatly reduce skepticism and

further the development of this and other advanced control schemes.

8.2 RECCOMMENDATIONS

Reccommendations resulting from this research point to the development of generic

emulator generators. The functions outlined herein provide the basis for such a tool. An

emulation generator should be a user transparent tool, allowing a user to build an emulation

capability for his/her application with a minimal amount of background in emulation. System

parameters should be queried from the user in a simple menu format. These parameters

should supply the arguements to the generic functions and result in an emulation which

accurately depicts the real-world scenario.

A further development would include expanding the domain of emulation to provide

intelligent debugging capabilities. By incorporating a knowledge base into the emulation

capability, control problems might be flagged and reccommendations provided. Current

applications of emulation, still requires a knowlegable control engineer to identify what is

causing the system to behave in possibly undesireable manners. Introducing a knowledge

base would be a step toward reducing this dependency.
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r INET.H *

#define BSDINCLUDES 1
#include <stdio.h>
#include <sys/types~h>
#include <sys/socket~h>
#include <netinetlin.h>
#include <arpalinet.h>
#include <sys/select.h>
#include <sys/ioctl.h>
#include <ermo.h>

#define SERVUDPPORT 6000
#define SERVTCP PORT 6000
#define SERVHOST_-ADDR "128.100.0.4"
#define IDLE 0'
#define BUSY I

int cell[5]; r~ array of file descriptors associated with workcells *
int AGV[4J;

typedef struct init{ r structure for cellid checking *
int cellid;

typedef struct command{ r struct for cmds between control and emulators *
int cell id;
int part num;
int op~num;
int prior -num;
int error num,
int part type;
int from;
int to;
int ack;
char er -msg;
int agv num;

int agvst;7
int agyvcod; r I=amrved at requesting stat. 2= arrived at destination stat ~

typedef struct sellist{
long fds...bits[21;
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r' SYSCTR.C *

#include "inet.h"
#define OK 1
struct command temp, syscom;
struct timeval timeout;
int Idnum, agvidl, tot;
int part[4][7] = {

(0,1,2,1,3,2,0),
(0,2,1,13,1,2,0),
{0,1,.3,2,1,2,0)

mnt on, off;

maino

int qnty_ a,qnty b,qnty _c, order[50], sch~siz, num;
init -como;
Idnum = 1;
agvidl =3;
on = 1;
off =0;

if (ioctl(ceII[1], FIONBIO, (char *) &on) < 0)
perror("ioctl FION BIO error C1l");

if (ioctl(cell[2], FIONBIQI (char'*) &on) < 0)
perror("ioctl FIONBIO error C2T);

if (iocti(celI[3], FIONBIO, (char *) &on) < 0)
perror("ioctl FIONBIO error C3");

if (celif 1] != 0 && cell[21 != 0 U& ceII[3J != 0 && cell[41 !=0){
printf(wThe system can manufacture three part types a,b, and c.\n");
printf ("Enter the amounts of each you would like to produce.\n');
printf("Type a:");
scanf("%d",&qnty~a);
printf("Type b:");
scanf("%/d",&qnty..b);
printf("Type c:");
scanf("0/6d",&qnty~c);
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prnntf('\nPROCESSING INITlATED~n");
sched(qnty~a,qnty~b,qnty_...,order);
sch -siz = qnty~a + qnty~b + qnty~c;
tot = sch-siz;

load(3,order);

prnntf('"mMON ITORING ALL CONTROLLERS~n");

while( (tot > 0 ) {

monitor(order,sch-Siz);

clos~cel~l])
close(cell[1 J);
close(celIC2]);

close(celI[4]);

load(num, ord) r~ function to put new parts into the system *1
int num, orda;

int x;

for (x=0O; x<num; x++){
syscom.part num = Idnum;
syscom.parltjype = ord[Idnum];
syscom.from = part [syscom.parkt_ ype] [0];
syscom.to = part [syscom.part type] [1];
syscom.opjium = 1;
syscom.pror num =0;
syscom.error num =0;
syscom~ack =0;
syscom.agv~num =0;
syscom.agv-cod =0;
syscom.celI-id = 4;
if (write(cell(41, &syscom, sizeof(syscom)) , 0)

perror("server error sending load info");
Idnumn ++;
agvidl -

return;
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errfunct(x)
int x;

printf("ERROR: %s\n",temp.erjrisg)*,
return;

monitor(orderl ,sizo)
int orderiD
int sizo;

int monflag, nfound, x;
monflag =0;

if (ioctl(ceII[4], FIONBIO, (char *) &on) < 0)
perror("ioctl FIONBIO error");

while ( monflag == 0) { r~ monitor until cell message comes in ~

ermo = 0;

if (read(cell[41, &temp, sizeof(temp)) ,0)
perror("server: error reading AGV controller");

if (erno != EWVOULDBLOCK){
prnntf("MESSAGE RECEIVED FROM MATERIAL HANDLING CONTROLLER\n");

if (temp~error numn> 0){
errfunct(temp.error num);

else {

printf("AGVO/d at location %d with part %d~n~n",temp.agv-num, temp.to, temp.part-num);
temp.agv..cod =0;
temp.agvjinum =0;

temp.ack =0;
agvidl ++;

if (temp.to == 0){
tot -1

printf("1n WORKORDER %d COMPLETED\n\n",temp.part-num);

if (tot == )
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temp.errorjium = 999;

for(x=1 ;x<=4;x++) {

if(write (ceII[xJ, &temp, sizeof(temp)) < 0)
perror("serv: error writing to cell emulator");

prnntf("FINISHED PROCESSlNG\n~n");
prnntf("CELL SHUTDOWN PROCEDURE INITIATED\n");
agvidl =0;

return;

else(
temp.cell - d = temp.to;

if (write(cellftemp.cell id], &temp, sizeof(temp)) ,0)
perror("serv: error writng cell emulator");

for (x--1; x<=3; x++)(

ermo = 0;
if (read(cell[x], &temp, sizeof(temp)) , 0)

perror("serv: error reading cell request");

if (ermo 1= EWOULDBLOCK) (

prntff('MESSAGE RECEIVED FROM CELL %d~n",x);

if (ternp.error num >0)
errfunct(temp.error num);

else {
prnnt("Part %d Operation %d completed~n~n",temp.part-num,temp.op_num);

monflag = 1;
agvidl -;

temp.ack = 0;
temp.op~nurn ++;
temp.from = temp.to;
temp.to = part[temp.parttype][temp.op~numj;
temp.cell-id = 4;

if(write(cell[4I, &ternp, sizeof(ternp)), 0)
perrorC'serv:error sending crnd to AGV contr");

return;
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if(agvidl > 0 && Idnum <= sizo)
load(1 ,orderl);

r / close monflag while loop *



r SYSCOM.C *

#include "inet.h"
#define MAXLINE 512

int init -como

struct init *sys;
int sockfd, newsockfd[4], clilen, childpid,rval,i,ci,inbuf;
struct sockaddr in cli addr, serv addr;
char bufflMAXLFNE +1J~inreq[7];
struct init temp;
if ( (sockfd = socket(AF -INET, SOCK -STREAM, 0)) < 0)

prnntf("server: can't open stream socket");

bzero((char *) &serv -addr, sizeof(serv-addr));
serv -addr.sinjfamily = AF JNET;
serv -addr.sin -addr.s-addr = htonlIQNADDRANY);
serv addr.sin port = htons(SERV TCP PORT);

if (bind(sockfd, (struct sockaddr *) &serv-addr, sizeof(serv addr)) < 0)
printf("server:- can't bind local address");

listen(sockfd, 4);

ci =0;
strcpy(inreq,"initcl");

pdnnf("\nnnnnnnnnnnnnnnn\n\n\n\n\n\n\n\n\n");
prnntf("INITIALIZING COMMUNICATIONS\n");

while( cl < 4) {

clilen = sizeof(cli-addr);
i= accept(sockfd, (struct sockaddr *) &cli-addr,&clilen);
newsockfd[cI] = i;

if (newsockfd[cl] < 0)
perror("server: accept error');

if (wnite(newsockfdfcl], inreq, sizeof(inreq)) , 0)

112



perror("server: write error');

if ( read(newsockfdf cl], &temp, sizeof(temp)) ,O0)
perror('error reading stream message\n");

ceII[temp.cellid] = newsockfd[cIJ;

prnntf("CELL %d IN ITIALIZED\n",temp. cell id);

I l+
printf("ALL WORKCELL COMMUNICATIONS INITIALIZED\n");

return;
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r SYSCED.C *

#include "Inet~h"

sched(a, b, c, ord)
int a, b, c;
int ordfl;

int pos =1;

while (a>O IIb>O IIc'O){
if (a! =0){

ord[pos] =1;

a-

if (b =0)f
ord[posJ 2;
pOS ++;
b-

if (C 1=0)(
ord[posJ 3;
pos ++*;
C-

return;
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1* WC1 EM.C *

#include "inet.h"
#define INI 1

struct command ci corn;
int ptime [4][7] = {

{0,0,0,0,0,0,01,
(0,1 3,9,20,15,10,0),
{0,6,21 ,15,17,9,0),
{0,9, 13,24,12,5,0)

maino

int celfd, stat, del, errfig;
long rem,tmp;

celfd = w -in it(INi); r~ initialize comm socket, return file desc. ~
stat = 0;

alarm(145);

wtiile(stat < 100)

if (read(celfd, &cl corn, sizeof(clcorn)) , 0)
perror("WC1: error reading command");

if (clcom.error num == 999){
stat = 1000;
continue;

else if (clcom.cell-i~d!= I NI){
clcom.error num = 1;
strcpy(cl com.er msg,'WC1: Command had wrong cell number');
if (write(celfd, &'l corn, sizeof(cl corn)), 0)

perror("WC 1: error writing on stream socket");
continue;

else

del = ptime[cl com.part type][cl com.op~numJ;

if (clcom.ack == 1){
del = 25;
prnntf("Repair Cycle Began~n");
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printff("Repair Cycle Completedfn");
cl comn.error num = 100;
if (write(celfd', clcorn, sizeof(cl corn)) < 0)

perrorC'WC 1: error writing on stream socket\n");
continue;

if (errfig! =1)
prnntf("PART %d OPERATION %d Processing time %dn"

ci com.part-num,cl com.op~num,del);
else {

prnntf("PART %d OPERATION %d Resuming, Processing time %~"
cl com.partynum,cl com.op_num,tmp);
del = tmp;
errfIg = 0;

printf("Processing Began\n");,
rem = proc-del(del);

if (rem >0);
cl com.error num = 3;
prnntf("Processing Stopped, time remaining = %ld\n\n",rem);
strcpy(cl com.er msg,"VW 1: Processing error, Work suspended");
enrlg = 1;
trnp = rem;

else printf("Processing Finishedfn");

if (wnite(celfd, &clcorn, sizeof(cl corn)) <0)
perror("WCI: error wrilting on stream socket");

prnntf("CELL I SHUTDOWN~n");
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r1 WZ2EM.C */

#include "inet.h"
#define INI 2

struct command c2com;
int ptime [4][7] = {

{o,o,0,0,o,0,0),
{0,13,9,20,15,10,0},
(0,6,21,15,17,9,0),

{0,9,13,24,12,5,0}
1;

mainO{

int celfd, stat, del;
long rem;

celfd = wc init(INI); /* initialize comm socket, return file desc. */
stat = 0;

while(stat < 100) {

if (read(celfd, &c2com, sizeof(c2com)), 0)
perror("WC2: error reading command");

if (c2com.error num == 999){
stat = 1000;
continue;}

else if (c2com.cell id != INI)(
c2com.error.num = 1;

strcpy(c2com.er.msg,"WC2: Command had wrong cell number");
if (write(celfd, &c2com, sizeof(c2com)) , 0)

perror("WC2: error writing on stream socket");
continue;I

else
{

del = ptime[c2com.part.ype][c2com.opnum];

pdnnf("PART %d OPERATION %d Processing time = %dn",
c2com.part-num,c2com.opnum,del);

117



prnntf("Processing Beganfn');
rem = proc .del(del);

printf("Processing Stopped, time remaining = %ld\n\n",rem);

if (write(celfd, &c2com, sizeof(c2com)) <0)
perror('WC2: error writing on stream socket");

printff("CELL 2 SHUTDOWN~n");
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r* WC3EM.C

#include "inet.h"
#define INI 3

struct command c3com;
int ptime [4][7] = {

(0,0,0,0,0o0,0),
{0,13,9,20,15,10,0),
(0,6,21,15,17,9,0),
(0,9,13,24,12,5,0)

maino{

int celfd, stat, del;
long rem;

celfd = wcinit(INI); /* initialize comm socket, return file desc. */
stat = 0;

while(stat < 100) {

if (read(celfd, &c3com, sizeof(c3com)) , 0)
perror("WC3: error reading command");

if (c3com.error num == 999){
stat = 1000;
continue;

I

else if (c3com.cell id != INI){
c3com.error num = 1;
strcpy(c3com.er msg,'VC3: Command had wrong cell number");
if (write(celfd, &c3com, sizeof(c3com)) , 0)

perror("WC3: error writing on stream socket");
continue;

}
else
{

del = ptime[c3com.parttype][c3com.op num];
prinff("PART %d OPERATION %d Processing time = %d~n",

c3com.part.num,c3com.op.num,del);
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fr alarm(8); 1/

printf("Processing beganfn");
rem =proc-del(del);

printf("Processing stopped, time remaining = %Id\n\n",rem);

if (wrnte(ceifd, &ccom, sizeof(c3com)) <0)
perror("WC3: error writing on stream socket");

prinff("CELL 3 SHUTDOWN~n");
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r* AGVEM.C *

#include 'inet.h"
#include <csignal.h>
#define INI4
#define READY 1

struct command c4com, tmnp, tmpl, tmp2, tmnp3, agvi, agv2, agv3;
fd set mask;
mt tranf4][41

{10,0,16,15),
(16,15,0,13),
(10,14,12,0)

maino

int celfd, stat, dely, childpid, agvl id, agv2id, agv3id;
int pipel[2], agvl p1[21, agvlp2[2J, agv2pl[2], agv2p2[2];

int agv3p1[2], agv3p2[2J;
int agvl boc =0, agvý_joc = 0, agv3joc = 0;
int maxfd, agvid[4], nfound, x;
long rem;
AGV[1J = 0;
AGV[2] = 0;

AGV[3J 0;

celfd wc -init(IN); r initialize comm socket, retumn file desc. *
stat = 0;

if (pipe(pipel) < 0)
perror("cant create pipe 1");

if ( (childpid = forko) < 0)
perror("can't create fork");
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if (childpid > 0) r PARENT1

close(pipel 10]);

while (stat < 100){

if (read(celfd, &c4com, sizeof(c4com)) < 0)
perror("WC1: error reading command");

if (c4com.error num == 999){
stat = 1000;

pnntf("AGV CONTROLLER SHUTDOWN\n");
write(pipel (1], &c4com, sizeof(c4com));
exit(0);
kiII(childpid,SIGKI LL);

if ( write(pipelfl], &c4com, sizeof(c4co~n)) < 0)
perror('4 error writing to child pipe");

close(pipel [1]);
exit(0);

if (childpid == 0) r OLDEST CHILD *

close(pipel [1]);

if (pipe(agvlpl) < 0 11 pipe(agvlp2) < 0)
perror("error creating agvl pipes");

if ( (agvl id = forko) < 0) P CREATE AGV1 *
perror("can't create agvl fork");

if ( agvlid > 0) r OLDEST CHILD PARENT FOR AGV1 *

close(agvl p1 [0]);
close(agvl p2[1]);
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if (pipe(agv2pl) < 0 11 pipe(agv2p2) < 0)
perror("error creating agv2 pipes");

if ((agv2id = forko) < 0) r* CREATE AGV2 ~
perror("can't create agv2 fork");

if (agv2id > 0) { r OLDEST PARENT FOR AGV2 *

close(agv2pl [0]);
close(agv2p2[l]);

if (pipe(agv3pl) < 0 11 pipe(agv3p2) < 0)
perror("error creating agv3 pipes");

if ((agv3id = forko) < 0) r* CREATE AGV3 *
perror("can't create agv3 fork");

;f (agv3id > 0) { r* OLDEST PARENT FOR AGV3 *

close(agv3pl [01);
close(agv3p2[1]);

agvid[jj = agvlpl[1];
agvid[2] = agv2pl [1 ];
agvid[3] = agv3pl[1];

if ( agvl p2[0J > agv2p2[O])
maxfd =agvlp2[OJ;

else{
maxfd =agv2p2[0];

if ( agv3p2[O] > maxfd)
maxfd = agv3p2[0];

if ( pipel10] > maxfd)
maxfd = pipel[O];

maxfd ++;

FD-ZERO (&mask);

for(;)
FD-SET(agvl p2[0J, &mask);
FD-SET(agv2p2[0], &mnask);
FD-SET(agv3p2[0J, &mask);
FD-SET(pipel [0], &mask);
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nfound = select(maxfd, &mask, NULL, NULL, NULL);

if(FD-ISSET(pipel[0], &mask) && (AGV[1]==0 11 AGV[2]==O IAGV[3]==O)){
if (read(pipel [01, &tmp, sizeof(tmp)) < 0)

perror("child: error reading parent');

if( tmp.error num == 999)(
kiII(agvl idf,SIGKlLL);
kilI(agv2id,SIGKILL);
kiII(agv3id,SIGKILL);
exit(0);

printf("\M ESSAGE RECEIVED FROM SYSTEM CONTROL~n");
printf("Part %d to be delivered from %d to %d for operation %d\n",

tmp.part-num,tmp.from~tmp.to,tmp.op~num);

if (tmp.ceII id != 4 )(
tmp.error num = 1;
if (wnite(celfd, &tmp, sizeof(tmp)) < 0)

perror("error writing on socket");
continue;

if (AGV[1] == IDLE 11 tmnp.agy.num ==1)

if (AG V[lJ == IDLE)(
printff'Part number %d sent on AGV 1\n\n",tmp.part-num);

AGV[1] = BUSY;
if(write(agvidli], &tmp, sizeof(tmp)) < 0)

perror("error writing on pipe to agvi")

else if (AGV[2J == IDLE 11 tmp.agvnum == 2){

if(AGV121 == IDLE){
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pnintf("part number %d sent on AGV 2\n",tmp.part-num);

AGV[2] = BUSY;
if(write(agvid[2J, &tmp, sizeof(tmp)) < 0)

perror("error writing on pipe to agv2" )I

else if (AGV13] == IDLE 11 tmnp.agv~num ==3)(

if(AGV[3] == IDLE) {
prnntf("part number %d sent on AGV 3\n",tmp.part-num);

AGV[3] = BUSY;
if(write(agvid[3], &tmp, sizeof(tmp)) < 0)

perror('error writing on pipe to agv3");

)r dlose if FDISSET loop ~

if (FD -ISSET(agv3p2[OJ, &mask)){
if(read(agv3p2[OJ, &tmp3, sizeof(tmp3)) < 0)

perror("error reading agv pipe");

if (tmp3.agv -st == ID LE){
AGV131 = 0;

if (tmp3.agv...cod == 2 11 tmp3.error num > 0){
if(tmp3.agv~cod == 2)

prnntf("AGV3 at delivery pointhn");

if(wrnte(celfd, &tmp3, sizeof(tmp3))<O)
perror("error writing on socket");

else{
pnintf("AGV3 at pickup point\n");
tmp3.ack = 1;
if(write(agvid[3J, &tmp3, sizeof(tmp3)) < 0)

perror ("error writing on pipe to agv3\n");
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if (FDJISSET(agvl p2[O], &mask)){

if(read(agvl p2[O], &tmpl, sizeof(tmpl ))<O)
perror("error reading agv pipe");

if (tmpl.agv -st == IDLE){
AGV[1] = IDLE;

if (tmpl .agvý_cod == 2 11 tmpl .error-num >0)
if(tmpl .agvcod == 2)

prinff("AGVI at delivery pointhn");

if(write(celfd, &tmp 1, sizeof(tmpl1))<O)
perror("error writing on socket");

else{
prnntf("AGV1 at pickup point\n");
tmpl.ack = 1;
if(write(agvid[1J, &tmpl, sizeof(tmpl)) < 0)

perror("error wiriting on pipe to agvl )

if (FD-ISSET(agv2p2[OJ, &mask))(

if (read(agv2p2[O], &tmp2, sizeof(tmp2)) <0)
perror("error reading agv pipe");

if (tmp2.agv-st == IDLE){
AGV[21 = IDLE;

if (tmnp2.agv~cod == 2 11 tmp2.error num >0)
if(tmnp2.agvcod == 2)

prnntf("AGV2 at delivery pointhn");

if (wnite(celfd, &tmp2, sizeof(tmp2))<O)
perror("error writing on socket");

else{
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prnntf("AGV2 at pickup point\n");
tmp2.ack = 1;
if(write(agvid(2], &tmp2, sizeof(tmp2)) <0)

perror("error writing on pipe to agv2");

) P close infinite loop1

) P* close agv3 paren: loop *

r close agv2 parent loop *1

) P close agvI parent loop */

if (agv1 id == 0) ( I* AGV1 grandchild1
close (agvl p1 [1]);
close (agvl p2[0]);

while(i){

if (read(agvlpl [0j, &agvl, sizeof(agvl)) <0)
perror("AGV1: error reading pipe");

if (agvl .ack ==0)
agvl .agv~num = 1;
agvl.agv..st = 1;
dely = tran jagvIljocj[agvl .from];
proc..del(dely);
agv-ljoc = agvl from;
agvl.agvcod = 1;
if (wdte(agvl p2[1 ], &agvl, sizeof(agvl)) <0)

perror("AGVI: error writing on pipe");

else if(agvl .ack == 1 ){
dely = tran[agvljlocj[agvl .to];
proc del(dely);
agviljoc = agvl .to;
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agvl.agyvcod = 2;
agvl .agvýst = 0;

if (write(agvlp2[I], &agvl, sizeof(agvl)) <0)
perror("AGV1: error writing on pipe");

}r close of AGV1 grandchild *

if (agv2id == 0) { r AGV2 grandchild *
close (agv2pl [1 ]);
close (agv2p2[OJ);

while (1){
if (read(agv2pl[O], &agv2, sizeof(agv2)) <0)

perror("AGV2: error reading pipe");

if (agv2.ack = )
agv2.agv~num = 2;
agv2.agvst = BUSY;
dely = tran [agv2jloclfagv2.from];
proc del(dely);
agv:Floc = agv2.from;
agv2.agyvcod = 1;

if (write(agv2p2[1J, &agv2, sizeof(agv2)) <0)
perror("AGV2: error writing on pipe");

else if(agv2.ack ==1)
dely = tranjagv2jocj[agv2.to];
procdel(dely);
agv:0oc = agv2.to;
agv2.agyvcod = 2;

agv2.agvý_st = 0;
if (wnite(agv2p2[1J, &agv2, sizeof(agv2)) <0)

perror("AGV2: error writing on pipe");

r close of AGV2 grandchild *
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if (agv3id == 0) r I AGV3 grandchild *1
close (agv3pl [1]);
close (agv3p2[OD);

while (1){

if (read(agv3pl[O], &agv3, sizeof(agv3)) <0)
perror("AGV3: error reading pipe");

if (agv3.ack ==0)
agv3.agvý.num = 3;
agv3.agNv.st =BUSY;
dely = tran [agvý_loc][agv3.from];
proc del(dely);
agv:T oc = agv3.from;
agv3.agK cod = 1;

if (write(agv3p2[1 1' &agv3, sizeof(agv3)) <0)
perror("AGV3: error writing on pipe");

else if (agv3.ack ==1)
dely = tran[agv3jlocJ[agv3.to];
proc del(dely);
agv~jloc, = agv3.to;
agv3.agvcod = 2;

agv3.agy._.st = 0
if (write(agv3p2[1], &agv3, sizeof(agv3)) <0)

perror("AGV3: error writing on pipe");

r close of AGV3 grandchild '

r close of oldest child loop1

r close main1

C1
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r WCCOM.C *

#inciude "inet.h"
#define MAXLINE 512
#define DATA 'Test String"

int wc -init(id)
int id;

struct init temp;
struct init *cell;
int sockfd;
struct sockaddr in serv addr,

char buf[7J;
bzero((char *) &serv addr, sizeof(serv-addr));
serv addr.sin -amily = AF -NET;
serv -addr.sin -addr.s-addr = inet-addr(SERVHOSTADDR);
serv -addr.sinjport =htons(SERVJTCP-PORT);

temp.cellid =id;

if ( (sockfd =socket(AF_ INET, SOCKSTREAM, 0)) < 0)
printf("client: can't open stream socket");

if (connect(sockfd, (struct sockaddr *) &serv addr sizeof(serv addr)) <0)
printf("client: can't connect to server');

cell = &temp;

if (read(sockfd, buf, sizeof(buf)) ,0)
perror("WVC: read error on stream socket");

if (strcmp(buf,"initcl") == 0)

prnntf("CELL %d INlTIALIZED~n",id);

if (wnite(sockfd, &temp, sizeof(temp) ) 0O)
perror("write error on stream socket");

retum(sockfd);
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r, DELAY.C *

#include<stdio.h>
#include<sys/ermo.h>
#include<fcntl.h>
#includecsys/time.h>
#include<signal.h>
int don =1;

nullfcno

don = 0;
retum(don);

proc 7del(n)
intn;

long start,delay,tnow,left,timeo;
signai(SIGALRM,nullfcn);
start = time((Iong *)0);
delay =start + n;
tnow =time((long) 0);
while (tnow < delay && don != 0)

tnow = time((long *) 0);

don = 1;
left = delay - tnow,
retum(left);

del(n)
int n;

long start,delay,tnowftimeo;
start = time((Iong )0);
delay =start +n;
tnow = mre((long )0);
while (tnow < delay)

tnow = time ((long *) 0);

return;
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