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Abstract

The objective of distributed simulation is to speedup simulation execution by parti-

tioning the simulation processing load over multiple processors. This thesis reviews current

synchronization protocol methods for distributed simulations, and proposes guidelines for

obtaining optimal conservative simulation partitionings using empirical evidence.

An analysis is performed using three protocol variations of the Chandy-Misra NULL

message algorithm, two using a pending message blocking strategy, and the other using a

safetime blocking strategy. A fourth protocol evaluated is based on the SRADS algorithm

proposed by Reynolds. The analysis involves a study of all poisible 2 and 4 node config-

urations, for three queuing simulations, using all possible protocol and model pairings. A

fourth queuing model is then used to independently validate results.

in the end, the safetime version of the Chandy-Misra protocol is demonstrated to pro-

vide better overall performance than the other protocols evaluated. Partitioning guidelines

developed established a relationship between process configurations and load balancing. It

is seen that separating highly communicative processes onto different nodes, or locating

highly communicative processes on the same node with fewer processes, provided the op-

timal 4 node configurations, while reducing the number of intra-node process connections

provided for the optimal 2 node configurations.

xii



DEVELOPMENT OF A PROTOCOL USAGE GUIDELINE

FOR CONSERVATIVE PARALLEL SIMULATIONS

I. Introduction

1. 1 Background

Webster's dictionary defines a simulation as a "training device that duplicates arti-

ficially the conditions likely to be encountered in some operation". Although most people

never think about computer simulations as something commonplace, simulations are in

fact a very real and vital part of our everyday world. From teaching a pilot to fly and

predicting tomorrow's weather, to training Olympic athletes and planning for global war,

computer simulations are a critical component in each of these activities.

Traditionally, system simulaticns like those above have all been done in a sequential

manner on a single central processing unit (CPU), meaning that the entire simulation is

executed by the same CPU. In addition, for discrete-event simulations, the system being

simulated is only executed at specific discrete points in time, after which the simulation

clock is then advanced to the next operation or computation. This sequential mode also

implied that only a single simulation computation could be done at any one point in time.

To store ihe operations, or events, discrete-event simulations usually make use of an event

list structure, which is normally ordered in increasing time. As each event was removed

from the front of the event list and processed, the simulation time was advanced to the

time of the event. This idea of processing events in increasing time is important. In real-

world systems, time is always advancing forwards; going backwards in time cannot happen.

Therefore, simulations cannot allow "old" or past events to be carried forward.

Although simulations, such as those above, have solved many critical real-world prob-

lems, they suffered from two main problems: they had to be executed in a sequential man-

ner, on a single CPU with no concurrency, and second, as a result, they were relatively slow

as compared to the real-time system they were supposed to be simulating. For example,



tomorrow's weather forecast would be ready in three days, or by the time an aircraft simu-

lation responded to the pilot's input, the plane would be nose deep in the ground. In order

to solve these types of problems, the idea of using a parallel computer was evolved. In par-

ticular, by allowing the simulation to be partitioned into several independently executing

parts or processes, and distributed across several CPU's, the simulation's processes could

be run concurrently at an overall speed faster than on a single CPU. Thus, any real-world

system that included individual components or modules which interact independently, at

discrete times, could be simulated.

In general, the partitionings of the real-world system form a series of interacting

modules, or physical processes (PP), that communicate with each other by passing mes-

sages. And as such, each specific PP behavior, at time x, is influenced only by the messages

received from the other PPs after time x. In addition, there is also a defined simulation

model logical process (LP) corresponding to every PP. An LP can safely simulate the ac-

tions of a PP up to time x if the LP knows the initial state, and all the messages that the

corresponding PP received up to time x.

Of course, it would be nice if all randomly selected partitionings, for a specific sim-

ulation, produced optimal results. But the method chosen to partition a simulation is

extremely critical. How a simulation is partitioned will not only effect the control of each

LP within the simulation, but also effect the level of speedup attainable by the simulation.

Thus, one of the basic goals of discrete-event distributed simulations is to improve and op-

timize simulation performance, with respect to wall time and efficiency of operation over

the sequential version, through system partitioning.

To control the simulation's message passing, that is, to ultimately insure that all

the messages are received and processed in an increasing time ordered manner, two basic

message synchronization protocol methods have been developed: conservative and opti-

mistic. I, the conservative method approach, the simulation avoids the possibility of an

out-of-place message by determining when it is safe to process the current message, or

by determining when all the messages that could affect the current message have been

processed. Optimistic methods use a detection and recovery approach; errors are first. de-
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tected (messages from the past), then the simulation is taken back to a time before the

error occurred, reset using the old message as a guide, and then allowed to proceed.

1.1.1 Conservative Methods. Some of the first conservative protocol methods were

developed during the late 1970's by Chandy-Misra (7) and Bryant (4). In these approaches,

increasing time-stamped messages are sent to an LP if the originating LP has determined,

from examining all pending input messages, that it is safe to send the message. The major

problem encountered with this method is that if the LP determines that a message cannot

be sent, the LP must block and wait until a message is received on all input lines, and then

determine which message, if any, can be processed; this can lead to deadlock situations

if appropriate actions are not taken. Deadlock situations arise when one LP is waiting

on another LP to proceed, which in turn is waiting on the first LP to proceed, bringing

the simulation to a halt. One way to avoid deadlocks is to allow the LPs to send NULL

messages (messages containing no simulation information except time) at specific points

during the simulation. These messages specify that the originating LP will not send any

messages in the time interval between the last message received, and the time of the NULL

message.

The basic NULL message method, as with most protocol methods, has many variants.

Some of these are:

1) Sending NULL messages when a receiving LP demands a NULL message, rather

than at specified points during the simulation.

2) Sending NULL messages only after a specified number of real .messages.

3) Sending NULL messages only after it has been determined that a real message

will not be sent out in some specific future time interval.

4) Sending NULL messages to every other connected LP anytime a NULL message

is sent.

1.1.2 Optimistic Methods. Optimistic methods, most notably Time Warp, were

first originated by Jefferson in 1985 (16). In this method, if an LP receives an message from

the past, the LP will "rollback" the simulation time to the time the past message should

3



have occurred, and restarted. In particular, under the Time Warp method, each message

sent has two time values, a send time and a receive time. The receive time represents

the time of arrival at the receiver, i.e., the same, and only time used in the conservative

methods. The send time equals the local clock, defined as the minimum receive time of all

unprocessed messages, of the originating LP when the message was sent. LPs then process

messages and advance the local simulated time for as long as they have any messages

waiting, and unlike the conservative methods, the LP does so without waiting to receive

messages on all its input lines. Because of this, the LP's local clock may get ahead of its

predecessors' local clocks, and may receive a message from the past. If this happens, the

LP "rolls back" its simulation time and restarts the simulation to take into account the

new message. In order to cancel the effects of the previous (now erroneous) messages, the

LP also sends "antimessages" to its successors. Also, unlike the conservative methods, the

states of each LP since the last correct time must be stored; this enables the simulation to

be correctly rolled back.

1.1.3 SPECTRUM Simulation Testbed. With these various types of message pro-

tocols present, there is still not enough current comparative data to determine which

protocol is best for a particular application. The SPECTRUM (Simulation Protocol Eval-

uation on a Concurrent Testbed with ReUsable Modules) testbed has been designed to

support the empirical comparative study of parallel simulation protocols and applications

under a controlled environment (26). SPECTRUM is composed of four programs (12):

an application program, a process manager, a node manager, and the protocol or filter

program itself. The process manager provides the interface to the user-supplied applica-

tion program, and includes modules for clock advancement, message management, and

initialization. The node manager provides the interface between the process manager and

the parallel computer. The filter provides the modules to implement the message protocol,

and is interfaced with the process and node managers. With this, SPECTRUM can be

used to easily switch-out the application and filter programs, with other application and

filter programs with common SPECTRUM interfaces, providing for the quick turnaround

and baselined environment needed for empirical comparison studies.

4



1.2 Problem Statement

Using empirical evidence, can a given simulation model be analyzed prior to imple-

mentation, and based on the analysis, the best protocol and LP allocation strategy be

predicted to obtain the optimal simulation wall time?

1.3 Research Objective

The objective of this research is to develop a guideline to determine, based on model

characteristics, the best protocol and LP allocation strategy for use with a simulation

model.

1.4 Research Questions

To reach the stated objective, this thesis research specifically looks at the following

questions:

1) How do protocol variations affect model performance and wall time?

2) How can the models be partitioned and allocated across several nodes, based on

the application and message protocol, to optimize wall time and performance?

3) Given an untried simulation model, can the most efficient partitioning and protocol

be predicted for use with that model?

1.5 Scope

This research effort consists of empirical studies performed on discrete-event simula-

tions and simulation protocols. Specifically, the dependencies between message protocols

and simulation models are explored using the SPECTRUM testbed. All empirical studies

are performed on hardware implementing a distributed memory architecture.

1.6 Thesis Outline

Chapter I serves to introduce the concepts and methods of parallel simulations and

of simulation testbeds. Chapter II contains an overview of current literature. Chapter

5



III discusses in detail the various environments, both hardware and software, and proto-

col algorithms, used in this research. Chapter IV discusses the approach, methodology,

and design of the experiments, and contains the analysis of the experimental results, and

Chapter V includes experimental conclusions and future research recommendations.



II. Current Issues

2.1 Introduction

As alluded to in Chapter I, there are many variants of the conservative and optimistic

message synchronization protocols. This review will begin by discussing several of the more

well-documented message protocols, as well as briefly mentioning some that are fairly new

and less well known. This will be followed by a discussion of the more important simulation

performance issues and experimental testbeds. In general, one of the main concerns in

comparing simulations is not only how to measure individual performances against other

simulations, but also what to measure. To compound this problem, there has been no easy

method to compare simulation performances on a common environment or testbed. This

has been alleviated, in part, by the creation of the SPECTRUM and TCHSIM testbeds.

These testbeds allow simulations, and their protocols, to be easily switched with other

simulations and protocols, leaving all support systems intact, thus giving the common

environment needed for comparative studies.

2.2 Conservative Simulation Approaches

2.2.1 The Basic Chandy-Misra Algorithm. In the basic Chandy-Misra algorithm

(7), each LP can only execute its own code and two commands: send and receive. In

sending, an LP places a message on an output line, blocks until the destination LP ac-

knowledges receipt of the message, then proceeds with its own code execution. In receiving,

an LP opens any one of many possible input lines from which to receive a message, but

may have to wait until the message arrives along the chosen opened line. These messages

are delivered, and received at the destination LP, in the order in which they were sent.

Every message between PP's is simulated between the corresponding LP's using the

following mpssage sequence format:

(timnel, msg1), (time2, ins92),., (timeN, Msg9N)

and according to the following rules (6):

7



1) 0 < time, <_ time 2 ... < timeN.

2) A PP must have sent msgN to another PP at timeN.

3) A PP must have sent no other messages to another PP besides msg1 , msg2 ,....

msgN.

This means that the sequence of messages sent by an LP, up to timcN,, must correspond

exactly to the actual message sequence sent by the corresponding PP. Also, given that the

LP time is defined as the minimum time of all the incoming lines, all subsequent messages

sent or received by an LP, at any point during the simulation, must have a time greater

than the LP time. The LP computes the time value of a message going out by using, as a

lower bound, the time of the next transmitted message along that line, and computes the

time value of the incoming line using the time of the last message the LP received along

that line. Thus, to summarize (6):

1) An LP must guarantee that all subsequent input messages, along each input line,

will have a time greater than or equal to the LP time.

2) An LP cannot send any message on any output line where the message time is

less than the LP time.

3) An LP need not send a message out on every line, every time, if the LP can

guarantee that the times on all subsequent outgoing messages will be greater than the LP

time.

Normally, during a simulation execution, an LP alternates between computing and

waiting to communicate. When waiting, an LP will follow these rules (6):

1) An LP must wait, before any computations are performed, until the LP has

received a message on all input lines whose time is greater than or equal to the LP time.

2) An LP must wait on all output lines, on which there is a message to be sent, until

each message time is greater than or equal to the LP time.

In other words, an LP cannot compute any output based on only one incoming message

and with pending messages on less than the total number of input lines. Similarly, an

LP must wait to send a message on an output line which has a queued message, until all

other output lines are also ready. Whenever an LP does receive a message, it compares the

.. ..... ..



times of all the incoming messages and chooses the minimum value to work with, and to

update its local clock. If the LP time changes, the LP advances the simulation to the new

time, and then computes, for each outgoing line, any messages that it will need to send

with times up through the new local time. In some cases the outgoing lines will have no

messages destined for them, so no messages are sent. Thus, the basic message algorithm

(20) for LP, is shown in Figure 1.

Initialize LP, time T, = 0;
While the simulation is not complete, loop.
{

/*Simulate PPi up to T,.*/

For each outgoing line, compute the following sequence of messages:

(time1 , msgi), (time 2 ,msg2 ),..., (timen,,msg,)

/*Where time1 < time2 ... < time,, and PP1 sends msgi at time, along line.*/

/1*) All messages sent by PPi up to T, can be deduced by LP1 and sent.

2) Also some messages to be sent beyond T, may be predicted by LP, and sent.
3) Only new messages that have not been sent before are sent. and some or all of

these message sequences may be empty.*/

Send each message, in the sequence, along the appropriate line;

/*Receive any messages and update T, until T, changes value.*/

/*Initialize Ti'.* /

Ti' = Ti;

While Ti' = Ti loop.
{

Wait to receive messages along all incoming lines;

Upon receipt of a message, update all LP2 internal states and

recompute Ti, the minimum overall incoming line clock value;

Figure 1. Chandy-Misra Algorithm

9



A major problem with this basic algorithm is that deadlocks can occur when all the

LPs wait on each other to send a message, as in a cyclic network (Figure 2), or in an

acyclic network (Figure 3), when LP1 only sends messages to LP3. When this happens,

LP3 cannot proceed until it receives a message from LP2, which, in this case, will never

occur. In both cases, though, no computation is done and the simulation is never advanced.

In a more formal definition (20), deadlock occurs when all of the following conditions hold:

1) Every LP is either waiting to receive a message or has been terminated.

2) At least one LP is waiting to receive a message.

3) For any LP that is waiting to receive a message, there is no message in transit to

that LP.

3

Sourc~e 1 2

Figure 2. Deadlocked Cyclic Network

2.2.2 The Chandy-Misra Algorithm with NULL Messages. A popular method to

avoid the deadlock problem is to allow LPs to send NULL messages at specific points during

the simulation (20). These messages indicate that an LP will not send any messages during

the time interval between the last message processed and the encoded time of the NULL

message. As a result, any future message received by an LP will have a time exceeding that

of the NULL message time. Reception of a NULL message is treated in the same manner

as with any other message, causing the destination LP to update its state and local clock.

For example, if it is required that the simulation be correct up to time x, then every LP
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Source 13

Figure 3. Deadlocked Acyclic Network

must send out messages until the LP time equals time x. If no non-NULL messages are

available, NULL messages must be sent until time x is reached.

Suppose now that the LP can predict, that after a message sequence, it will not send

out any message until some future time x. At this point the LP will send a NULL message.

after the message sequence, with the predicted future time x encoded. Since the LP knows

its own state until time x, it can predict all messages, real and NULL, at least until time x.

This means that for each outgoing line, the last message time will be greater than or equal

to the original LP time, and that NULL messages will be the only last messages sent.

Although by using NULL messages the simulation will never deadlock, significant

numbers of NULL messages could be sent which are not necessarily needed or used. For

example, a non-processed NULL message has no effect if it is followed by a real, or another

NULL message, with a greater time stamp. One proposal to reduce the number of NULL

messages sent is to delay the transmission of NULL messages for some arbitrary time,

hoping that any future non-NULL messages received by an LP will make it unnecessary

to transmit the NULL messages at all (20). This time delay ranges from no delay, which

results in NULL messages transmitted all the time (the basic algorithm), through infinity,

in which no NULL messages are transmitted, resulting in deadlock possibilities. Another

proposal would be to send out NULL messages only after some number of non-NULL

messages are sent, or after a specific amount of simulation time has elapsed (9).
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The basic problem with both of the above proposals, and those like them, is that

there is no optimal delay time or number of non-NULL messages. It all depends on

the simulation, the computer architecture, the amount of memory, etc. A more palatable

approach is to use NULL message cancellation methods (22). In this approach, for example,

when an LP receives a NULL message and then later receives another message, NULL or

non-NULL, with a greater timestamp, the previous NULL can be discarded if it has not yet

been processed. An alternative method, for cases in which LPs loopback on themselves, is

to also not send NULL messages back to themselves in any case.

2.2.3 The Carrier NULL Approach. Recently, an improvement on the basic NULL

message Chandy-Misra algorithm has been brought to light (5). This method, known

as the "carrier NULL message" method, not only advances the simulation time but also

stores global knowledge about the system being simulated. This method relies on the fact

that a good simulation lookahead scheme can reduce message traffic by being "smarter"

about the messages sent, thus achieving higher performances and speed-ups. The simplistic

lookahead ability of the basic Chandy-Misra algorithm is thus improved through analyzing

the global knowledge carried within the specialized carrier NULL messages.

The algorithm is based on a concept called global waiting dependencies, which elimi-

nates the requirement that an LP must wait until all input lines have message times greater

than or equal to the LP time before processing a message. Referring to Figure 4, normally

LPI cannot send a message to LP2 unless LP2 first sends a message to LP3, etc. This

type of loop is what is called a waiting dependency loop. But under this algorithm, LP2

does not have to wait for LPl in order to send a message to LP3; it can process a message

from the source input, and send the message to LP3, without concern about whether there

may be a message coming from LPL with a older time.

To provide this certainty, carrier NULL messages are used to provide the earliest

time of any possible real messages which can break the waiting dependency loop. A carrier

NULL message is of the form (time, route info, lookahead info, carrier NULL), where time

is the timestamp of the message, route info is the LP's identifier, and lookahead info is the

earliest time of all the possible messages which can break the waiting dependency loop.
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Source

Figure 4. Waiting Dependency Loop

Carrier NULL messages are treated the same as any other messages; the timestamp on

the carrier NULL message causes the LP to update its clock and process any messages. In

addition, the LP may now safely predict and process any future simulation messages up to

the lookahead time given by the carrier NULL message. The new prediction is then sent

to other downstream LPs via a NULL message, with a time equal to the original lookahead

info time.

2.2.4 A Conditional Chandy-Misra Approach. In an effort to eliminate altogether

the need for any type of NULL message to avoid deadlocks, a conditional algorithm has

been proposed (8). The major differences from the basic NULL message algorithms are:

1) The use of messages for other than interprocess communications.

2) The use of messages which need not duplicate those in the PP.

3) The use of conditional messages. which may or may not be transmitted next

depending on the time stamp and the state of the ot•her messages.

Basically, the event list in any sequential simulation can be thought of as a. list of

conditional messages, in which some particular message is the next message to be executed

on the condition there are no earlie messages. In this algorithm, the event list is used to

determine definite messages (those which will occur in the system being simulated, and

thus are safe to process) from conditional messages (those which may or may not occur,
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and thus are not guaranteed to be safe to process). A definite message is defined as the

next message in the event list that has the minimum time of all the LP's pending messages.

The basic algorithm is shown in Figure 5.

While the simulation is not complete, loop for each LP.
{

1) Compute and execute as many definite messages as far into the

future as possible from stored conditional messages.

2) Update and send a message containing the conditional message
time after computing all possible definite messages.

3) Wait to receive and store a message from all LPs containing
the conditional message time.

Figure 5. Conditional Chandy-Misra Algorithm

2.2.5 Chandy-Misra with Channel Clocks. Proicou (23) modified the basic Chandy-

Misra with NULL messages algorithm to include what he calls "channel clocks". Channel

clocks are used to store the time of the last message received or sent along an input or

cutput line. Before an LP can proceed, it must be sure, by checking the input channel

clocks, that its next message time is less than the minimum times of the last messages

received from all its input LPs. In doing this, the LP ensures that no message can arrive

with a time earlier than the message being processed. The output channel clocks are used

to reduce the number of NULLs sent by eliminating those NULLs with times less than or

equal to the current output channel clock time for that line.

2.2.6 The Chandy-Misra Algorithm Variants. In addition to the approaches al-

ready discussed, there are also several other approaches to the basic Chandy-Misra algo-

rithm which are being studied and evaluated (28). These schemes follow the given rules:

1) When an LP sends a message, the destination LP will acknowledge receipt.
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2) If an LP receives a message, the originating LP either sends or queues-up another

message.

3) If no messages are being received at an LP, a NULL message pointer is returned,

and the destination LP selects a queued output message to send. If no messages are queued,

the destination LP may send a non-NULL message to its predecessors requesting that any

queued messages be sent.

2.2.6.1 Eager Events, Lazy NULL Messages. In this method, all NULL mes-

sages are queued-up, and any non-NULL messages produced are combined with the queued

NULL messages, and sent immediately. If the destination LP happens to returns a NULL

pointer, the NULL message with the earliest time is then sent.

2.2.6.2 Indefinite-Lazy, Single Event. For this algorithm, all messages are

queued-up and sent only when the destination LP returns a NULL pointer. At this point,

the queue with the earliest message time is selected to generate messages up to the first

message, if any, or NULL message.

2.2.6.3 Indefinite-Lazy, Multiple Event. This is identical to the indefinite-

lazy, single event variant, except the queue with the earliest message time is selected to

generate messages up to the last message, if any, or NULL message.

2.2.6.4 Demand-Driven. In demand driven, all output messages from the

originating LP are queued-up, and no NULL messages are sent unless the destination

LP demands one. Therefore, an LP which may have to create numerous NULL messages

can save extra work if none of its successors make requests for NULL messages. When a

destination LP returns a NULL pointer, the originating LP that lags the furthest behind

selects the destination for the demand message. Upon receipt of this message, if the queue

is not empty, the LP sends all messages in the queue. If the queue is empty, the LP

generates another demand message to its predecessors.

2.2.6.5 Demand-Driven, Adaptive. In this approach, a message threshold is

established and associated with each output line. Messages generated by an LP are queued
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up to the threshold. When the threshold is reached, the entire contents of the queue are

sent. The demand message method works as above, but it additionally causes the threshold

level to decrease.

2.3 Optimistic Simulation Approaches

2.3.1 The Basic Time Warp Algorithm. Under the Time Warp (TW) algorithm

(16), a message received by an LP does not necessarily have to be in increasing timestamp

order, as mandated by the Chandy-Misra algorithms, and as such, messages can be re-

ceived in any order. This implies that the TW algorithm takes an optimistic approach in

advancing the simulation time, and assumes that each message received is the next cor-

rect message, and proceeds to process each message as received. Whenever a message is

received with a timestamp less than some other message already processed, the algorithm

was too optimistic and must correct its mistake. It does this in the following manner:

1) backup or "rollback" the simulation to a time just before the incorrect message

time;

2) execute the former incorrect message at the correct simulation time;

3) start re-executing any messages with timestamps greater than the former incorrect

message time in timestamp order, then

4) cancel the effects of any output messages that were sent with times greater than

the former incorrect message time prior to simulation rollback.

The rollback and canceling output message processes in the TW algorithm are special

cases and must be handled in a very specific manner. To support the rollback process,

TW regularly saves the condition of the state of each LP. These states are stored in a

queue associated with each LP and are accessed whenever it is necessary to perform a

rollback. The cancellation of previous, now erroneous, messages is accomplished by means

of "antimessages". In TW, every message is considered to have either a + sign or a -

sign. Two messages that are identical, but opposite in sign are said to be opposite to each

other, thus the term "antimessage". Whenever TW sends a message to another LP, an

antimessage is also created and stored in the LPs output queue. As long as the LP does not
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rollback, the antimessages are never used and are eventually destroyed. If, however, the

LP must rollback, all the antimessages with times greater than the rolled back simulation

time will be sent out (otherwise known as aggressive cancellation) to cancel any messages

at the other LPs.

Another important concept in the TW algorithm is that of Global Virtual Time

(GVT). GVT is defined as the smallest time among all the unprocessed messages. No

messages with times less than the GVT can be rolled back. In other words, the GVT is

the time in which the simulation has safely reached and is sure that no messages less than

the GVT will be received.

2.3.2 Time Warp Variations. As with the Chandy-Misra algorithms, there are

several TW variations and modifications available (10).

2.3.2.1 Lazy Cancellation. In the aggressive cancellation TW algorithm, as

mentioned above, whenever an LP must rollback, antimessages are sent out immediately

to cancel any real messages sent before the rollback time. In lazy cancellation, LPs do not

immediately send out the antimessages. Instead, the LPs wait to see if the new execution

will produce some of the same messages. If an identical message is created, there is no

need to send the antimessage. If, on the other hand, a message is not created, after its

time the antimessage is sent.

2.3.2.2 Lazy Reevaluation. This method is similar to lazy cancellation, except

it deals with the LPs' state and not its messages. This variation looks at the state of the

LP before a rollback, and again after a rollback. If the re-execution of rolled back messages

leads to an identical state as before, the method "jumps forward" over them and continues

simulation execution.

2.3.2.3 Direct Cancellation. Under this TW variation, whenever a message

schedules another message, a pointer is connected to both messages. If the second message

is determined to be canceled, it can be found with ease by following the pointer from
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the first message. Without this, as under the other TW algorithms, the algorithms must

perform a search.to locate the messages to cancel.

2.4 Hybrid Simulation Approaches

2.4. 1 Shared Resource Algorithm for Distributcd Simulation (SRADS). SRAI)S

was proposed by Reynolds (24) to improve upon simulation performance degradation

caused by other methods used to prevent deadlock, and by the blocking of processes await-

ing message time requirements in order to proceed. As will be seen, SRAI)S is both

conservative, by blocking LPs for synchronization, and optimistic. by assuming the next

message time.

In the SRADS algorithm, it is assumed that the communication line between LPs

is a shared resource, and that the shared resource is a facility for message storage, or a

shared facility. Every LP connected to a shared facility may either read from or write into

the facility, given the following constraint: all the other LPs connected to the same facility

have times which are greater than or equal to the requesting LP. When an LP needs to

access a shared facility, it sends out POLL messages encoded with the current time of the

[P at pre-determined frequencies to the facility. The LP will then block while waiting for

an ACK message from the facility indicating that its time has advanced to at least that

of the POLL message. Thus, the POLL message is used to synchronize connected LPs by

ensuring that the sending LP does not get behind the receiving LIP. In addition, the POLL

message is used to aggressively advance the simulation time in the absence of any other

information. If an [P's next mn-ssage is a POLL message, it will go ahead and advance its

clock to that of the POLL message, block, and then wait for an ACK message. With this

type of aggressive strategy, an LP may receive a message from the past called a time slip.

This aggressiveness is based on two assumptions made by an [P (27):

1) Messages will only arrive at regularly scheduled times. Thus, between POLL

message times the LPs can advance at their own rates.

2) The [P can advance its clock to the next POLL message time.
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2.4.2 The Speculative Algorithm. Mehl (19) introduces a new distributed simula-

tion method in which an optimistic approach is combined with a conservative method,

producing what is called a "speculative simulation" method. In this method, a conser-

vative algorithm is modified so that during its non-computing times it processes future

messages in advance, before their correct execution time. These messages are processed

on a copy of tL-,- current LP state, so that the current local state or event queues are not

modified, and stored in a local buffer. If it turns out that the early execution was correct,

the local state and event queues can be updated quickly, saving time during the computing

phases. These early executions are called "speculative executions" because the algorithm

"speculates" that the advanced processing will be correct.

2.5 Alternative Simulation Approaches

As seen above, most simulation algorithm research has concentrated on modifying

either of the two traditional classes of simulation approaches: conservative or optimistic.

Reynolds (25) has proposed that there are many other alternative approaches to simulations

that have yet to be addressed. The proof of this statement lies in a set of nine design

variables which defines a simulation algorithm. By studying different combinations of

these variables, it was shown that current simulation approaches can be correctly derived

from these variables, as well as an infinite variety of other unexplored approaches. These

design variables are described as:

1) Partitioning: How are LPs distributed across the nodes.

2) Adaptability: Allowing an LP to dynamically change the protocol algorithm it is

using based on some chosen criteria.

3) Aggressiveness: Allowing the initial processing of messages not to be in a time-

ordered sequence.

4) Accuracy: Requiring that the processing of messages ultimately be in a time-

ordered sequence.

5) Risk: Allowing inaccurate or out-of-sequence messages to be passed on.

6) Knowledge Embedding: The amount of knowledge embedded within messages.
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7) Knowledge Dissemination: Allowing LPs to transmit knowledge to other LPs.

8) Knowledge Acquisition: Allowing LPs to request knowledge from other LPs.

9) Synchrony: The degree that an LP works independently from other LPs.

2.6 Simulation Performance Issues

As stated before, the goal of distributed parallel sinmulation is to reduce the time

needed to produce results as compared to the same simulation executed on a sequential

computer. Two factors, more than any other, affect how well a simulation is transformed

from sequential processing to parallel processing: partitioning and speedup measurement.

2.6.1 Partitioning. Partitioning is the act of splitting up a simulation into separate

components or LPs. Each LP will, in turn, perform some portion of the total simulation.

How this partitioning is accomplished not only affects the management of each process

within the simulation, but also affects the synchronization between each of the processes.

Partitioning, in general, can be broken down into four basic issues: synchronization, gran-

ularity, data partitioning, and functional partitioning. (21)

1) Synchronization: Synchronization is the exchanging of messages between LPs.

2) Granularity: Granularity is the ratio of the amount of processing an LP can

perform without the need to synchronize with another LP. In other words, a very large-

grained process does not need to "talk" with other LPs, whereas a fine-grain process is

constantly exchanging messages with others.

3) Data Partitioning: Data partitioning replicates the simulation across every LP

but splits up the data onto the LPs which need the data.

4) Functional Partitioning: Functional partitioning, as its name implies, splits up the

simulation functionally across each LP, and data is passed along from one LP to another,

when needed, to complete the simulation.

2.6.2 Speedup. Parallel simulation performance is usually measured by the decrease

in time over the same simulation executed sequentially. This time difference, known as
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speedup, is formally measured by the ratio of the time to execute a process sequentially to

the time to execute the same simulation in parallel. Therefore, theoretically, if a simulation

takes t seconds to run sequentially, then when running in parallel with n LPs, it should take

only t/n seconds (linear speedup). But because of computer scheduling, context switching,

and synchronization delays, linear speedup is rarely achieved.

2.6.3 Timing Simulations. One of the major problems with measuring and report-

ing simulation speedup is in how the timings are gathered. The methods for timing sim-

ulations can cause wide variations in the computed speedup, and as such, the comparison

of speedup values between simulations, especially on different, architectures, can be a com-

parison between apples and oranges. Generally, either wall or CPU clock timings are used

to gather information, but a new log-based method has been proposed which, according

to the author, will eliminate the bias of the CPU and simulation. (17)

2.6.3.1 Wall Clock Timings. Wall clock timings, especially when more than

one simulation is competing for a CPU, are generally considered to be too coarse for

extremely accurate simulation timings. The main reason for this is that the wall clock

cannot separate the time that an LP is working and the time that an LP is swapped out.

As such, this time increases as the CPU load increases.

2.6.3.2 CPU Clock Timings. As an alternative, CPU clock timings can pro-

vide a more accurate method of obtaining simulation times. A problem with CPU clock

timings is that depending on the type of communication scheme used (e.g.. busy-wait).

System loading can play a small role in increasing the overall time.

2.6.3.3 Log Timings. In this new scheme, each process creates a log contain-

ing all of its communications. During this logging phase, the LP denotes the CPU time

before and after each send or receive. After the simulation terminates, an algorithm pro-

cesses each of LP's logs, and compares a set global time to the entries in the log and

calculates elapsed times.
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2.7 Simulation Testbeds

In the past, researchers have performed experiments with various simulation algo-

rithms and compared results from those experiments without much of a common baseline.

As such, comparisons were, to say the least, not very good without an extensive under-

standing of the architectures and conditions of the experiments. In an effort to eliminate

this discrepancy and create some kind common environment to compare algorithms, the

idea of a testbed was formulated. SPECTRUM (26) (12), and TCHSIM (14) are two such

testbeds.

2.7.1 SPECTRUM. The SPECTRUM testbed preliminary results have generally

been positive, and have uncovered several unknown design issues (26). Reynolds' initial

theory was that the effectiveness of a simulation algorithm is dependent on the simulation.

His findings seem to corroborate this theory (in fact the dependence is much more than ex-

pected) and the simulation designer must be aware of the algorithms' limitations. Reynolds

additionally devised a method to package the protocols into "filter" units which could be

changed during and/or after a simulation run. This significantly increased the flexibility

of the testbed by reducing the overhead of changing simulation protocols to merely relink-

ing the simulation code over the static testbed environment. By means of SPECTRUM,

Reynolds additionally identified several simulation variables which affect the choice and

design of simulation protocols:

1) Determinism: The degree to which a simulation is deterministic.

2) Queuing: Amount and type of queuing system employed by the simulation.

3) Processing Delays: How many processing delays occur during the simulation?

4) Causality: Does every message that arrives at an LP directly cause another mes-

sage to be sent?

5) State Change Characteristics: How often do variables change state during the

simulation?

6) Balance: How uniform is the processing requirement across each LP?

7) Activity Level: How many LPs are busy at any point in time?
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8) Connectivity: To what extent can messages on one LP affect messages on other

LPs?

2.7.2 TCHSIM. TCHSIM (Thomas C. Hartrum SIMulation) is an AFIT object-

oriented simulation testbed, interfaced with SPECTRUM, designed to provide a general,

discrete-event simulation environment to allow experimentation with several application

models without having to reconfigure the simulation or modify the model everytime. TCH-

SIM is composed of nine modules: a startup and initialization module (driver), an appli-

cation module, and an interface module to several object oriented functions (clock, event,

next event queue, and general support) and the SPECTRUM process and node managers.

(14)

2.7.2.1 QUESIM. QUESIM (QUEuing SIMulation) is a general queuing sim-

ulation program, built around TCHSIM, that provides an easy method to create customized

network queuing applications. QUESIM is built around seven node types: a source node

that generates arrivals, a server node with a local event list and delay time, a routing node

that sends messages out with no delay, a merge node that receives several messages into

a single output, a sink node that destroys the message, and transmit/receive nodes which

transmit and receive messages for parallel simulation execution. (13)

2.8 Summary

As seen, most simulation methods have been around since the late 1970s and are

very well studied and understood. Even though conservative and optimistic approaches to

simulations are by far the most prevalent, current thinking is beginning to show that there

may be an infinite number of other types of methods that have yet to be explored. Even by

just looking at the surface of these new approaches, a better understanding of simulation

protocols and applications is beginning to come to light. This is even more pronounced

when using a testbed in which a simulation can be held constant and the protocol varied,

and seeing the changing of performance under a controlled environment.
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III. Simulation Environment

3.1 The Intel iPSC/2

The iPSC/2 is a distributed-memory, parallel supercomputer developed by Intel Sci-

entific Computers. The AFIT version of the iPSC/2 is based on a three-dimensional (8

node) hypercube configuration which has the specifications listed in Table 1 (1). Architec-

turally, the iPSC/2 computer consists of two types of CPU's (nodes), compute and I/O,

along with a front-end processor called the System Resource Manager (SRM) or host. The

nodes are setup as a processor/memory pair, with their physical memory distinct from

that of the host and the other nodes. In addition, all the nodes are connected via a Direct

Connect Module (DCM) which coordinates node communication activities. In general, the

DCM provides the nodes with direct, high-speed bidirectional message passing capabili-

ties through calls to the Intel system routines csend and crecv. In other words, when a

node sends a message to another node, the message goes directly to the receiving node

without disturbing any of the other nodes. As a result of the DCM, communication times

between any two nodes are theoretically uniform. In addition, each node can access both

the host file system and the iPSC/2 Concurrent File System, and since a concurrent file is

distributed over several disk drives, different nodes can access the same file simultaneously.

(15)

Table 1. iPSC/2 Specifications

SRM CPU Intel 80386, 32-bit
Numeric Coprocessor Intel 80387
Clock 16 MHz
Operating System Host: AT&T UNIX, Version V

Node: NX/2

Hard Disk 140 MB
Memory SRM: 8 MB

Node: 4 MB
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3.2 SPECTRUM

The SPECTRUM (25) testbed is a system for designing and evaluating parallel sim-

ulation protocols on a common environment. SPECTRUM is composed of four modules

(Figure 6) (12): an application program, a process manager, a node manager, and the

protocol module (filter). The process manager (Appendix A) provides the interface to the

user-supplied application program, and includes support for clock advancement, message

management, and initialization. The node manager (Appendix B) provides the interface

between the process manager and the parallel computer, and provides functions for mem-

ory management and communications. The filter provides the modules to implement the

simulation communication synchronization protocol, and is called directly by the process

manager, and indirectly by the node manager when communication is necessary between

LPs. Although using the filter module is entirely optional (the process and node managers

can handle message communication without it), there would be a dramatic risk increase

for simulation deadlock. Finally, in order for SPECTRUM to understand how the LPs are

networked together, SPECTRUM references an application specific "arcs" file, containing

connection information and line delay times.

3.3 Simulations

3.3.1 8 LP Carwash With Feedback. The 8 LP carwash simulation with feedback

(Figure 7), is a simple deterministic queuing model composed of eight processes; three

sources: LPO, LP1, LP2; four routers (washes): LP3, LP4, LP5, LP6; and a sink (exit):

LP7. In general, cars are "created" by the source processes, sent to the wash processes.

and then routed to the exit process, where the cars are either destroyed, or "rewashed"

by routing them back (feedback) to selected source processes. The deterministic nature of

the carwash simulation is necessary in order to verify the "correctness" of the simulation

after modifications to any part of the carwash, or underlying code. Also, as can be seen

from Figure 7, LPI has only one input line (from itself), and is therefore considered a

"free-runner", meaning it can create messages as fast as it can without waiting on any

other LP.
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Figure 6. SPECTRUM Testbed Structure

The 8 LP carwash simulation used by AFIT is a modified version of the original

software received from the University of Virginia (UVA). The main differences are:

1) The departure times of the cars are recomputed deterministically to guarantee no

simultaneous arrivals at any downstream LP.

2) The car numbers are uniquely computed by each source LP for ease in tracking:

LPO cars start at 0, LPI cars start at 1000, and LP2 cars start at 2000.

3) The simulation ends on a time, and not on a message, to smooth out the simulation

termination.

3.3.1.1 Carwash Source Processes. The source processes create the ears, re-

ceive cars for rewash, and determine to which "wash" LP (according to the car number in

Table 2). the cars will be sent. If this is a new car, as opposed to a rewash, the source

processes set the new car arrival time with a time equal to the current simulation time
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Figure 7. 8 LP Carwash Simulation With Feedback Schematic

Table 2. Source LP Destinations and Departure Factors (8 LPs)

Source LP Destination LP Car Number Departure Factor
Source 0 Wash 1 Odd Numbers I Units

Wash 2 Even Numbers 2 Units

Source I Wash 2 Odd Numbers 1 Units
Wash 3 Even Numbers 2 Units

Source 2 Wash 3 Odd Numbers 1 Units

Wash 4 Even Numbers 2 Units
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plus the arrival interval time (Table 3). The source processes then determine the new car

departure time by comparing the simulation time to the LP time. If the simulation time is

greater than or equal to the LP time, the delay time (Table 3) is added to the simulation

time. If the simulation time is less than the LP time, the delay time is added to the LP

time. In either case, the departure time and the LP time are processed for determinism

by modulo 2 arithmetic, and with the addition of a constant departure factor (Table 2),

then reset. If the car was a rewash, the source processes determine the destination and

departure time as above, but add the rewash delay time (Table 3), instead of the delay

time, to the LP or simulation time.

Table 3. Source LP Arrival and Delay Times (8 LPs)

Source LP Destination LP Arrival Interval Delay Time Rewash Delay Time
Source 0 Wash 1 4 Units 5 Units 10 Units

Wash 2 4 Units 8 Units 10 Units
Source 1 Wash 2 5 Units 4 Units N/A

Wash 3 5 Units 8 Units N/A
Source 2 Wash 3 8 Units 9 Units 14 Units

Wash 4 8 Units 2 Units 14 Units

3.3.1.2 Carwash Wash Processes. The wash processes add the wash delay

time for each car according to Table 4, then routes the car to the exit process. The wash

processes compute the car's departure time by comparing the simulation time to the LP

time. If the simulation time is greater than or equal to the LP time. the wash delay time

is added to the simulation time. If the simulation time is less than the LP time, the wash

delay time is added to the LP time. In either case, the departure time and the LP time are

reset for determinism by modulo 4 arithmetic, and with the addition of a constant wash

departure factor (Table 4).

3.3.1.3 Carwash Exit Process. The exit process either "destroys" the cars, or

"rewashes" the cars by deterministically routing selected cars back to one of two source

pr)wesses according to Tal,;V, 5. If the car is going to be rewashed, its departure time

is computed by comparing the simulation time to the LP time. If the simulation time
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Table 4. Wash LP Delay Times and Departure Factors (8 LPs)

Source LP Destination LP Wash Delay Time Wash Departure Factor
Wash 1 Exit 2 Units 4 Units
Wash 2 Exit 4 Units 5 Units
Wash 3 Exit 5 Units 6 Units

Wash 4 Exit 3 Units 7 Units

is greater than or equal t- the LP time, the exit delay time (Table 5) is added to the

simulation time. If the simulation time is less than the LP time, the exit delay time is

added to the LP time. In either case, the departure time and the LP time Ire - rocessed,

and reset, for determinism by modulo 2 arithmetic so that all rewashes have even times.

If the car is not going to be rewashed, the car is destroyed.

Table 5. Rewash Rates and Delay Times (7 & 8 LPs)

Source LP Destination LP Rewash Car Rate Exit Delay Time
Source 0 3rd of Every 4th Car 6 Units

Exit Source 2 1st, 2nd, 4th of Every 4th Car 8 Units
Destroyed All Others N/A

3.3.2 8 LP Carwash Without Feedback. The 8 LP carwash simulation without feed-

back (Figure 8), is also a simple deterministic queuing model composed of eight processes;

three sources: LPO, LP1, LP2; four routers (washes): LP3, LP4, LP5, LP6; and a sink

(exit): LP7. In general, cars are created by the source processes, sent to the wash pro-

cesses, and then routed to the exit process, where the cars are always destroyed. Also, as

can be seen from Figure 8, LPO, LP1, and LP2 have only one input line (from themselves),

and are all therefore considered "free-runners", meaning they all can create messages as

fast as they can, without waiting on any other LPs. All of the other characteristics of the

simulation are identical with the 8 LP feedback version, except that there are no rewashes.
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Figure 8. 8 LP Carwash Simulation Without Feedback Schematic

3.3.3 7 LP Carwash With Feedback. The 7 LP carwash simulation with feedback

(Figure 9), is a simple deterministic queuing model composed of seven processes; three

sources: LPO, LP1, LP2; three routers (washes): LP3, LP4, LP5; and a sink (exit): LP6.

The 7 LP carwash simulation was based on the modified UVA 8 LP carwash model, and

besides the reduction in the number of LPs, the AFIT modifications and the general LP

logic is the same as in the 8 LP version. But, because of the different configuration,

modifications in the various source and wash delay and factor times were required, and are

listed in Tables 6, 7, and 8.

3.4 Simulation Filters

3.4.1 Chandy-Misra NULL Message Filter. AFIT uses an implementation of the

NULL-message protocol proposed by Chandy and Misra in (7), and modified by UVA. In

this protocol, an LP must block until there is at least one pending message on all of its

incoming lines (a pending message blocking strategy). Also, if two LPs share more than one
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Figure 9. 7 LP Carwash Simulation With Feedback Schematic

Table 6. Source LP Destinations and Departure Factors (7 LPs)

Source LP Destination LP Car Number Departure Factor

Source 0 Wash 2 All Numbers 2 Units
Source 1 Wash 1 Other Numbers 1 Units

Wash 2 Mod 2 Numbers 2 Units
Wash 3 Mod 3 Numbers 3 Units

Source 2 Wash 2 All Numbers 1 Units

Table 7. Source LIP Arrival and Delay Times (7 I,Ps)

Source LP Destination LP Arrival Interval Delay Time Rewash Delay Timc

Source 0 Wash 2 4 Units 5 Units 10 Units

Source I Wash 1 5 Units 4 Units N/A
Wash 2 5 Units 6 Units N/A

Wash 3 5 Units 8 Units N/A
Source 2 Wash 2 8 Units 9 Units 14 Units
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Table 8. Wash LP Delay Times and Departure Factors (7 LPs)

Source LP Destination LP Wash Delay Time Wash Departure Factor
Wash 1 Exit 2 Units 4 Units
Wash 2 Exit 4 Units 5 Units
Wash 3 Exit 3 Units 6 Units

line, the filter will send only one NULL message to the receiving LP. Similarly, a receiving

LP needs to wait for a message from each LP, not from each incoming line. Additionally, the

filter (null-mess-fltr) incorporates a NULL message cancellation algorithm. If the message

received was a non-NULL message, the filter will step through the event list deleting all

NULL messages with times less than or equal to the non-NULL message. In this version,

there are four times that NULL messages are sent:

1) During startup (null initifltr). For each LP, NULL messages are sent on each

output line with the minimum delay time of each line encoded.

2) When an LP receives a NULL message (null-get-fltr) with new information (mes-

sage time greater than the LP simulation time). The LP sends out NULL messages on all

output lines encoded with the simulation time plus the line delay time.

3) When an LP receives a NULL message (null-get-fltr) with old information (message

time less than or equal to the LP simulation time). The LP sends out NULL messages on

all output lines, encoded with the time of the NULL message plus the line delay time, only

if this updated time gives new information.

4) When a non-NULL or NULL message is sent to another LP (null-postlfitr). All

other outgoing lines will receive a NULL message with the same time as the original

outgoing message.

To aid in simulation termination, a termination filter (null-term fltr) is defined. This filter

accepts a real message, whose time is greater than or equal to a pre-defined simulation

termination time, and then sends a real message to all outgoing lines from the terminating

LP indicating that the LP is terminating. A sixth filter component, null-timelfltr, is also
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defined, but it does not perform any function except to print an error message if a message

arrives from the past.

3.4.2 Modified Chandy-Misra NULL Message Filter. A slight modification to the

basic UVA Chandy-Misra filter, described above, is also used by AFIT. In this modification,

an additional NULL message cancellation strategy is employed, so that prior to each time

a NULL message is sent, a check is made to see if the NULL message is addressed back

to the originating LP. If it is, there is no need to send the NULL message and the NULL

message is discarded. All other filter components perform the same function as above.

3.4.3 Chandy-Misra NULL Message Filter with Safetinmes. AFIT also uses a varia-

tion of the basic UVA Chandy-Misra filter implemented by Proicou (23). In this variation,

before an LP can proceed, the LP must ensure that the time of the message to be pro-

cessed is less than the minimum time of the last message received from all its input lines

(safetime blocking strategy). The line "safetime" records this minimum time of the last

message along an input or output line. The input safetimes are used to monitor the simula-

tion progress, while the output safetimes are used to eliminate redundant NULL messages

(messages where the message time is less than or equal to the destination output line safe-

time). This latter use of safetimes was added for the case when a NULL message is sent to

more than one downstream LP. Unlike the general U1VAý Chandy-Misra protocol, an LP is

not required to block until there is at least one pending message on all its incoming lines,

but only by the constraint that the earliest next message to be processed, in the event

list, must be less than or equal to the minimum safetime. But, like the modified UVA

Chandy-Misra protocol, if a message received (null mess-fltr) was a non-NULL message,

the filter will step through the event list deleting all NULL messages with times less than

or equal to the non-NULL message. In this variation, there are also four times that NULL

messages are sent:

1) During startup (nullinit-fltr). For each LP, NULL messages are sent on each

output line with the minimum delay time of each line encoded.
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2) When an LP receives a non-NULL or NULL message (null-getlftr). If the output

line safetime is less than the simulation time plus the line delay time, the filter updates the

output line safetime by sending out NULL messages on all the LP's output lines, encoded

with the simulation time plus the line delay time.

3) When an LP receives a NULL message (null-getifltr) with new information. The

LP sends out NULL messages, on all other output lines, encoded with the NULL message

time plus the line delay time.

4) When a non-NULL or NULL message is sent to another LP (null-post iltr). All

other outgoing lines will receive a NULL message with the same time as the original

outgoing message.

To aid in simulation termination, a termination filter (null-termfltr) is defined. This filter

accepts a real message, whose time is greater than or equal to a pre-defined simulation

termination time, and then sends a real message to all outgoing lines from the current

LP indicating that the LP is terminating. A sixth filter component, null-timeiltr, is also

defined, but it does not perform any function except to print an error message if a message

arrives from the past.

3.4.4 Shared Resource Algorithm for Distributed Simulation (SRADS). This pro-

tocol filter is also a UVA variant of the original SRADS proposed by Reynolds (24). In this

version, called a buffered SRADS, an LP may send a message at any time, being restricted

only by the size of the input buffer. SRADS uses two types of control messages: POLLs

and ACKs. POLLs are used to query a downstream LP to see if it has advanced to a given

time, while ACKs are sent from the downstream LP to the polling LP when the LP time is

greater than or equal to the received POLL time. POLL messages are sent to all connected

predecessor LPs at scheduled times (srads-timefltr), determined by a preset polling fre-

quency, when the message time is greater than or equal to the minimum next poll time of

all the predecessor LPs, or when the last known message times of all the predecessor LPs is

less than the message time. This second condition keeps the LPs "in-synch", meaning that

the simulation time is up to the current message time. A caveat in the use of the SRAI)S

filter is that although UVA preset the polling frequencies and offsets in the simulation arcs

34



file, and preset the delay time in the srads-get-fltr, no fine-tuning was performed in order

to match AFIT's version of the carwash simulation.

ACK messages are sent at three times during the simulatioii.

1) When an LP receives a POLL message (srads-messifltr) and its time is less than

or equal to the simulation time, an ACK is sent with the simulation time encoded.

2) When an LP receives an ACK (srads-messAltr) and there are ACKs which can be

sent out to other LPs, ACKs are sent with the next time to acknowledge a POLL encoded.

3) When the simulation needs to advance its time (srads~timejfltr), ACKs are sent

with the new time encoded .

The initialization filter component, sradsinitfiltr, defines and initializes arrays used to

track next poll times, last message times, and time-to-signal-poll times. The get event filter,

srads-getifltr, blocks (time blocking strategy) until a message is found, then returns the

message to the application. In addition, to aid in terminating the simulation, a termination

filter (srads-termfltr) is defined. This filter accepts a real message, whose time is greater

than or equal to a pre-defined simulation termination time, and then sends a real message

to all outgoing lines from the current LP indicating that the LP is terminating. The post

event filter is not used in the SRADS protocol.
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IV. Queuing Experiment Design, Preparation, and Analysis

4.1 Introduction

This chapter describes in detail the experiment design and preparation needed to

accomplish an empirical analysis of queuing models with various SPECTRUM filters. It

relates experimental results and performance analysis around several simulation parameters

which are used to define optimization guidelines for utilizing queuing models employing

defined SPECTRUM filters. It presents the validation of the proposed guidelines using a

7 LP carwash model version. And finally, Hammell's results (11) are presented as a basis

for a SPECTRUM comparison.

4.2 Purpose

The purpose of this experiment was to analyze and compare the four filters described

in Chapter III, and to determine and define:

1) How run time, SPECTRUM filters, and simulation model configurations affect

simulation wall time?

2) How simulation models can be partitioned and allocated across several nodes to

optimize wall time and performance?

Additionally, in conjunction with this experiment and as a secondary goal, a com-

parison against Hammell's results, using a modified SPECTRUM was performed.

4.3 Experiment Design

The experiment design was centered around two types of simulation parameters: dy-

namic and static. Dynamic parameters are those parameters which were varied during

a particular experiment, and include the LP partitioning and the simulation run time.

Static parameters are those parameters which were held constant during a particular ex-

periment, and include the simulation model configuration, the simulation filter type, and

SPECTRUM.
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In addition, to ensure that any modifications to the simulation system did not cause

any adverse effects to the standard simulation execution, a test output file was generated

and verified against a baselined output file. All filters, except the SRADS filter, produced

the same output prior to an experiment start, and were all verified against the baselined

output file, and against Hamnmell's experimental output when applicable.

4.3.1 Dynamic Simulation Parameters.

4.3.1.1 LP Partitioning. The LP partitioning method for the 2 and 4 node

hypercube configurations was based upon Hammell's calculations (11). Hammell calculated

that the number of possible 2 and 4 node combinations, for an 8 LP application, was based

on:
n!

CQn,r) nc~nr) -r! (n - r)!

which defines the number of r combinations of n distinct objects, thus 8 choose 4 for 70

combinations, and 8 choose 2 for 2520 combinations. In addition, to eliminate duplicate

combinations, Hammell made the assumption that the same combination of LPs on dif-

ferent nodes would give identical results. Although Intel states that message passing is

performed with "uniform latency" (15), there has, in the past, been some discussions and

indications to disprove this statement. These indications seem to favor placement of LPs

on the nodes in a nearest-neighbor fashion, rather than in a logical or random placement.

Since factoring in hypercube placement would dramatically increase the number of ex-

perimental LP configurations required while not adding to the overall thesis goal, it was

decided to accept the claim as true, but with the caveat of reducing any impacts by always

placing the LPs on the same nodes. As a result, in the 8 and 7 node cases, LPs 0 through 6

or 7 were placed on nodes 0 through 6 or 7 respectively; in the 4 node configurations, nodes

0 through 3 were always used; and for the 2 node configurations, nodes 0 and 1 were used.

Using this caveat, there are now 105 possible partitionings on a 4 node hypercube, and

35 possible partitionings on a 2 node hypercube. For the 7 LP application, the possible

partitionings are the same as in the 8 LP case, except without an eighth LP. To change
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the LP partitioning during the experiment, it was simply a matter of allocating the LPs

to the nodes as required during the host program execution.

The 8 LP carwash queuing model was partitioned into 1, 2. 4. and 8 node configu-

rations, with multiple LPs resident on each node for the 1, 2, and 4 node configurations.

Since the AFIT hypercube has 8 nodes, and this carwash model has 8 LPs. the partition-

ing for the 8 node configuration was a one-for-one match, with one LP resident per node.

For the I node configuration, all 8 LPs were placed on a single node and was used as the

sequential baseline for any speedup measurements. In the 2 and 4 node configurations,

all possible combinations were tested, as described above, using 4 LPs resident per node

during the 2 node tests, and 2 LPs resident per node during the 4 node tests.

The 7 LP carwash queuing model was also partitioned in the same manner, this

time into 1, 2, 4, and 7 node configurations, with multiple LPs resident, on each node for

the 1, 2, and 4 node configurations. Since the AFIT hypercube has more than 7 nodes,

the partitioning for the 7 node configuration was also a one-for-one match, with one LP1

resident on a node. The 1, 2, and 4 node configurations were partitioned as in the 8 LP

case, minus the eighth LP, so during 2 node cases, one node contained 3 LPs, and the other

4 LPs. During the 4 node cases, three nodes contained 2 LPs, and one node contained I

LP.

4.3.1.2 Simulation Pun Time. Simulation run times are expressed in pseudo-

seconds, and are used to simulate a length of time for executing a simulation. For the course

of this experiment, run times of 500, 1000, 2000, 5000, and 10000 seconds were selected.

Since the 1, 7, and 8 node carwash configurations were only partitioned one way, all five

run times were used for a comparison study. But during the 2 and 4 node experiments,

run times of 1000 and/or 2000 were selected to reduce the number of experimental runs

to a manageable level, and to keep the wall times low enough to allow enough time for an

exhaustive partitioning study.

In order to modify the run times during the experiments, it, was necessary to edit.

the globals.h file, within SPECTRUM, and change the defined MAXTIME variable to the

desired run time length, then compile and re-link the simulation code.
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4.3.2 Static Simulation Parameters.

4.3.2.1 Simulation Model Configuration. Overall, there were four variations

of the carwash model, all of which are described in Chapter 1II, that were used in this

experiment:

1) The "standard" AFIT 8 [P version, with feedback (Figure 7 in Chapter II).

2) A modified 8 LP "no feedback" version (case 1), designed to destroy all cars

from LP7, but with the arcs file not modified, so it still allowed non-real messages to be

transferred to/from [Ps 0 and 2, to/from LP7 (Figure 8 in Chapter I1I).

3) A modified 8 LP "no feedback" version (case 2), designed to destroy all cars from

LPT, but with the arcs file modified, so it does not allow any messages to be sent to bPs

0 and 2, from [P7 (Figure 8 in Chapter II1).

4) A 7 LP version, with feedback, used to validate the 8 [P carwash results (Figure 9

in Chapter 1II).

4.3.2.2 Simulation Filter Type. For each carwash configuration, all four of the

filters described in Chapter III were used to collect timing and message count measurements

(described below) for the various simulation run times. The following convention is used

throughout the rest of this thesis to reference these four filters and associated (drwash

application systems:

I) Nullwash: Basic Chandy-Misra protocol, from UVA, with NULL messages.

2) Delwash: Modified Chandy-Misra protocol with NULL messages addressed back

to the originating [,1 being deleted, and not sent.

3) Safewash: Chandy-Misra variant using safetinies on input and output arcs.

4) SR.ADwash: SRAI)S protocol described by Reynolds. Again, a caveat, in the use

of the SRAI)S filter is that although UVA preset the polling frequencies and offsets in

the simulation arcs file, and preset, the delay time in the srads-getfiltr filter module, no

fine-tuning was performed to attempt an improved match to AFIT's version of the carwash

simulation, or to improve performance.
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4.3.2.3 SPECTRUM. The version of SPECTRUM used during this experi-

ment was a modified version of that used by AFIT in the past. In this version, SPECTRUM

terminates an LP based upon a pre-defined maximum time, instead of a defined end-event.

In doing so, an LP, after termination, does not need to keep processing messages until it

reaches the end-event; instead the LP can discontinue processing me,ýsages as soon as it

reaches the maximum time. This version of SPECTRUM was compared against the same

experiments Hammell performed in order to determine any improvements in performance.

4.4 Experiment Preparation

To measure the effects of the different filters on simulation performance, both the

carwash models and filters were modified to include performance measurement instrumen-

tation to compute the wall times of each LP, and to count real and non-real message traffic

into and out of each LP. The results of each type of measurement were downloaded to each

respective LPs log file when the LP terminated, and printed. This instrumentation was in

addition to the limited instrumentation already located within the node manager and host

simulation loading programs.

4.4.1 Timing Instrumentation. Although the host program provides timing mea-

surement instrumentation for the wall time of each LP, this time includes the time for the

LP to initialize and terminate. To obtain a more accurate LP wall time measurement based

solely on the LP's activity during the simulation run itself, and not including initialization

and termination time, instrumentation was added to the carwash application programs

using the Intel mclock routine (1), which returns a node clock time in milliseconds. This

routine was called just after each LP's initialization was complete (lpinit module) to ob-

tain a starting wall time of the simulation LP, and then again just prior to the LP's call to

the lp-terminate module, to obtain the LP's stopping wall time. The two wall times were

differenced and then divided by 1000 to obtain a total wall time in seconds.

To obtain further accuracy, each LP was loaded onto a node using the Intel load

command, but with the addition of the -H option (1). This option will load an LP onto

a node, but will halt the node and not execute the LP yet. Once all the LPs were loaded
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onto the specified nodes, the Intel command startcube (1) was given to start all the nodes

simultaneously. Using this method, after several test executions, it became apparent that

it was not necessary to rerun each simulation experiment several times to obtain an average

wall time, as the wall times collected were within acceptable tolerances. All times collected

and reported were the maximum time gathered for the simulation execution over all of the

LPs' wall times.

4.4.2 Message Counting Instrumentation. Although the node manager program

can provide simple message count measurements for each LP, the usefulness of these counts

is limited by the fact that they can only provide a total count of all messages, either sent

to nodes via csend or received from nodes via crecv. Potential concerns in relying only on

this information include:

1) No breakout of message type, either sent or received.

2) No count of messages not transmitted to other LPs (posted).

3) Messages may or may not get received (left waiting on the Intel message buffer).

4) Even if received, messages may never get processed by either the application or

the filters, and just left on the LP queue when the simulation terminates.

5) Messages may get received and then just g0t deleted prior to processing (NULL

messages) when they don't met a certain event time criteria.

To improve the accuracy, as well as improving the capability of the overall system, more

sophisticated message counting instrumentation, including message counts to determine

either directly, or indirectly, the situations above, was implemented in all the carwash

application programs and all four filter programs.

The additions to the application programs included:

1) Tracking real messages being sent.

2) Tracking real messages being posted to the originating LP (applicable only to the

source LP's).

3) Tracking real messages removed from the simulation (applicable only to the exit

LP's).
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4) Logging all count results (application and filter) to the LP's message log when the

LP t-iminates.

The additions to the filter programs included:

1) Tracking NULL messages that are deleted.

2) Tracking NULL, POLL, and ACK messages being sent.

3) Tracking NULL, POLL, and ACK messages being posted back to the originating

LP (applicable only to the source LP's).

4) Tracking NULL, POLL, ACK, and real messages received by the originating LP

and processed (applicable only to the source LP's).

5) Tracking NULr,, POLL, ACK, and real messages received from another LP and

processed.

4.5 Hammell's Results

As mentioned before, Hammell's experimental results were based upon an older ver-

sion of SPECTRUM that terminated an LP based on an end-event, and additionally, only

on the 8 LP carwash with feedback model. Because of this type of termination, and the

fact that LP1 is considered a "free-runner", LP1 produced an inordinate amount of mes-

sages waiting for an end-event message until it terminated. Hammell reported simulation

wall times, for runs of t = 1000, from 6.35 to 11.65 seconds for the 4 node configurations,

and from 8.18 to 36.02 seconds for the 2 node configurations. Message counts for just LP1,

for the same executions, were reported as 3922 messages received and 11769 messages sent

(these were message counts only from the node manager program as described above).

In the 4 node configurations, Hammell reported that nodes with both LP1 and LP6

resident performed the best, followed by LP1 and LP3, LP1 and LP2. LP1 and LPO, LP1

and LP7, LP1 and LP4, and LP1 and LP5. These configurations all gradually increased

in wall time, but still were relatively the same. The worst partitionings, with over a 2

second jump in wall time, were when both LP4 and LP5 were resident on the same node.

This is because LP1, he conjectured, acting as a free-runner feeds all its messages to both

LP4 and LP5. As a result, he concluded that a direct connection between performance
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and number of messages received is established, and that the simulation performance is

affected by how the total number of messages received are distributed across all the nodes.

The more messages received on a node(s), as compared with the other nodes (what he calls

"balance"), the worse the performance.

For the 2 node configurations, Hammell reported that the best performance was ob-

tained when LP1 was resident with either LP4 or LP5, but not both. This was followed

by configurations of LP1, LP4, and LP5 resident together, and then to the worst perfor-

mance when LP4 and LP5 were resident together, while LP1 was on the other node. This

final configuration caused an increase in wall time of over 8 seconds. From these results,

Hammell concluded that it is not the distribution of messages across the nodes, as in the

4 node experiment, that causes poor performance, but just the total number of messages

received over all the nodes. He also stated that this simpler conclusion was due to the fact

that 2-node communication is less complex than 4-node communication.

4.6 Experimental Results

4.6.1 Introduction. Assuming, as a start, that Hammell's conclusions are correct,

then for a 1 node case, the simulation wall time should be based solely on the total number

of messages received over all the nodes; and for the 7 or 8 node cases, the simulation wall

time should be based on the distribution or balance of the messages received across all the

nodes, and less on the total number of messages received.

As seen, Hammell used as a simulation communication/processing load indicator,

the number of messages received at the nodes. As mentioned above, that doesn't relate

how many messages were actually processed or sent by the LPs. although the three are

related. In this research, three other indicators were examined to aid in more accurately

measuring and determining the processing and communication load of the simulation:

1) Number of messages that were actually "seen" or processed by each LP.

2) Number of messages that were sent by each LP, between nodes.

3) Number of messages that were posted by each LP.

A fourth factor, filter computational load, which includes algorithmic computation and
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message setup, can have an impact on the wall time, but it is difficult to quantify and was

inferred if all other factors were equal.

Based on this, for the 1 node configurations, the wall time should rely on all factors:

the number of messages processed, the number of messages sent and posted, the number of

messages received, and the computational load caused by the filter. On the opposite side,

for the 8 and 7 node configurations, since the simulation is distributed with 1 LP per node,

the overhead of processing messages and filter computational load should have a smaller

effect towards the wall time, as compared to the communications overhead of sending,

posting, and receiving messages across all the nodes. For the 2 and 4 node configurations,

there should be varied impacts from all factors, but relying more on communication factors,

and less on processing factors.

Detailed data, data discussions, and figures of each type of carwash configuration

experiment are presented in the appendices. Appendix C discusses the 8 LP carwash

with feedback, Appendix D discusses both the 8 LP carwash without feedback cases, and

Appendix E looks at the 7 LP carwash validation results.

4.6.2 Effects of LP Partitioning. It was soon discovered that predicting the opti-

mum 4 node configurations strictly by looking at an application schematic diagram was

very difficult, although problem areas could be tagged for further investigation. Optimum

2 node configurations seemed to be much easier better to predict from only schematic

diagrams since processing loads were the motivation factor, and there were fewer config-

urations to investigate. The reason for the 4 node difficulty is that 4 node configurations

are more dependent on the communication loads than the 2 node cases, along with the

added difference in LP message delay and sending time intervals. If all LPs sent messages

at the same time intervals, the number of messages sent and received could more easily

be predicted, and effects on downstream LPs could be more easily determined. But, as it

currently stands in the carwash model, the time intervals vary considerably from LP to

LP, making performance predictions much more difficult.

The most successful way of determining the optimum 4 node configurations, or at

least configurations which were toward the top of the scale, was to use a message count
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(sent, postedl, ~i'received) fromn each filter, iii conjunction withi the simulation schematic,

to locate Li's which had multiple incomling pathis and thus were jinvolvedJ in complex

communication p~aths. These Li's were designated as "critical L1~s", an(I once located,

the concept of keeping these. Li's separated onl different nodes, while balancing the node

communication loads, proved to overall produce the b~est results. Additionally, it was found

that in cases where the number of L.Ps per node is riot. balanced, placing tihe critical [IPs

together on the node with the feet ~ , along with balancing the node cornmu nication

loads, also proved to p~roduice good results. These results differed fromn Ilainmell's final 4

nodle conclusions, iii that al1though thre higher the total number of mnessages receivedI overall

ind~icates a higher comnmun~ication overhead, it is actually the balance of messages sent. alnd

recei vedl from each critical LP~, while keepinrg all the nodIes in balance.

D~etermuininrg the best 2 nodle cases seemedl much simp ller, in that it was riot the

communinicationi loads or critical IT~ factors which influrenrcedi the [T configurations, but

redurcing thle i ntra.- 110( communications between all the LPs. Ini this manner, optimumni

configurations couild be determined lby strictly analyzing the simulation schematics. Again,

this finding altered l~a~mmell's conjecture that it was the total number of messages received]

onl the niodes.

To) yenify the effect~s of comimu11nication alid p~rocessinrg loads orr both the 2 and 4

node con figu rations, an idleal simulation model was genera~tedl. Ini this modlel, each [T

only commirunicates with one( dlownistrearn 1,1 in a tandem corifiguiration (Figure 10). The

experimenV~t was run uising the nuliwash filter a~t t =10000. The mnessages sent. from each

[T were ineasured as follows: Li's 0 arid 1: 5001, Li's 2 arid 3: 2500, [P's '1, 5, and 6:

1250. The results of each experi ment are presenitedl in TFables 9 and 10.

As seen inr the 2 node case, when inrteracting LPs were plalcedl together onl the same

rio(le ( secondl con figurration ), resulItinrg in low initernodle commni ni icat ion loads, I. le wall tinlre

was th Ie worst, w hereas in thle first. con figuiration , w hen thle inlterliode corIn ii n ication load

wa~s thre hiighiest,, t.hle wal t i re was thle b~est . TI'his impl)1ies thiat, for 2 nodes, proesing loads

ta~ke precedlence over the comm~nurnicationi load. Ilii t.he 4I niode case, I he samre impl 1ication

can be iiiade by look inrg at t he first, two con figu rations, but, whlen thle cominnniiiIcation load

is balanced. a~s in the thliird con figur ration, the wall time (dec reases even more. Tlhrus, for
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Figure 10. Tandem Simulation Schematic

the 4 node configurations, this implies that the communication load is ultimately more

important than the processing load.

Table 9. 2 Node Tandem Model Results, t = 10000

Node 0 LPs Node 1 LPs Time (secs)
0,2,4,6 1,3,5,7 82.9
0,1,2,3 4,5,6,7 113.5

Table 10. 4 Node Tandem Model Results, t = 10000

Node 0 LPs Node 1 LPs Node 2 LPs Node 3 LPs Time (secs)
0,1 2,3 4,5 6,7 308.1
0,2 4,6 1,3 5,7 79.4
0,7 1,6 2,5 3,4 77.3

4.6.2.1 8 LP Carwash With Feedback. From the 8 LP carwash experiments,

LPs 4, 5, and 7, were shown to have the greatest impact on the simulation wall time.

The reason behind this is the way that the 8 LP carwash model is set up. Referring back

to Figure 7 in Chapter III, LPs 4, 5, and 7 are each merge LPs with multiple incoming

communication paths. This tends to form much more complex communication paths than

the LP 0, 3, and 7 path, which is basically a single input, single output path. LP1 only
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communicates, and thus sends all its messages to LPs 4 and 5, which are also getting

messages from LPs 0 and 2. LPs 4 and 5, in turn, only communicate with LP7, which is

also receiving messages from LPs 3 and 6. Thus, LPs 4, 5, and 7, can be considered the

simulation's critical LPs, since each of the LPs have multiple incoming arcs.

For the 2 node configurations, results indicated that processing overhead within the

nodes plays the major role in the wall time determination. The more intra-node connections

on both nodes, the worst the simulation. The 4 node configurations imply the opposite of

the 2 node results: reduce and balance the impact of the communication load. The more

unbalanced the nodes sending messages, the worse the simulation. Also, it is strictly the

critical LPs which determined simulation performance, unlike the 2 node configurations in

which all LPs have some influence.

4.6.2.2 8 LP Carwash Without Feedback, Case 1. For the 2 and 4 node con-

figurations, identical optimal and non-optimal configurations were obtained, as in the feed-

back version, and are explained from the fact that the only difference from the feedback

version is the lack of real messages sent, those from LP7 to LPs 0 and 2. Additionally,

since the ratio of real messages to NULL messages is small, removing the real messages

sent from LP7 did not effect the overall simulation message counts and processing loads.

4.6.2.3 8 LP Carwash Without Feedback, Case 2. For both the 2 and 4 node

configurations, wall time results also followed the same best and worst partitions that

showed up in the feedback case. The identical partitions are explained from the fact that

the only difference from the feedback version is the lack of two arcs, those from LP7 to

LPs 0 and 2. To reiterate, referring back to Figure 8 in Chapter III, LPs 4. 5, and 7 are

each merge LPs with multiple incoming communication paths. LPs 4, 5, and 7, again can

be considered the simulation's critical LPs. Since the deletion of the feedback arcs did

not effect the processing loads of the critical LPs, or the overall message production of the

critical LPs, the same partitions repeated themselves again.

4.6.2.4 7 LP Carwash With Feedback. In this type of simulation, where there

is an odd number of LPs, a different situation presented itself. Here, not all the nodes
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will have the same number of LPs resident. For the 2 node configurations, one node will

have 3 LPs resident and the other will have 4 LPs resident. For the 4 node configurations,

three nodes will have 2 LPs resident and the other will have I LP resident. This type of

situation causes the simulation to react differently as the various combinations of LPs are

tried. To begin, in an ideal case when 1 LP is present per node, the simulations will be

faster, when compared to the same simulation when multiple LPs are present per node.

This is because each node can now devote itself entirely to only processing one LP, rather

than processing multiple LPs. The same logic can apply when one node contains one less

LP than the other node(s). Since the node has fewer LPs to process, placing the highly

active or critical LP(s) on those nodes provided a better configuration, ultimately speeding

up the simulation.

From the 2 and 4 node experiments, LPs 4 and 6 have the greatest impact on the

simulation wall time. The reason behind this is the way that the 7 LP carwash model

is set up. Referring back to Figure 9 in Chapter III, LPs 4 and 6 are both merge LPs

with multiple incoming communication paths. This tends to form much more complex

communication paths than the LP 1, 3, and 6 path, which is basically a single input, single

output path. LPI communicates, and thus sends all its messages to LPs 3, 4 and 5. while

LPs 0 and 2 only communicate with LP4. LP4 in turn, only communicates with LP6,

which is also receiving messages from LPs 3 and 5. LPs 4 and 6 can be considered the

simulation's critical LPs.

Again, in the 2 and 4 node configurations, the use of the critical LPs, keeping the

simulation balanced, and isolating intra-node communication paths, again proved to be

the factor in determining optimal LP partitioning. Additionally, in cases of odd numbers

of LPs, placing the highly active or critical LP(s) on those nodes with fewer LPs aided in

providing a better configuration.

4.6.3 Effects of Simulation Filter Types.

4.6.3.1 8 LP Carwash With Feedback. Table II offers an overview of the

simulation wall times, for each filter, in each node configuration. For the 2 and 4 node con-
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figurations, wall times are for the best and worst configuration times obtained through the

experiment. In general, each of the Chandy-Misra type filters performed the same during a

simulation run time of 1000. Not until the simulation runs are increased, do the differences

between the filters become more evident and comparisons are easily distinguished.

Table 11. Overall Node Wall Times - 8 LPs (secs), t = 1000

Configuration Nullwash Delwash Safewash SRA Dwash
1 Node 4.01 3.41 4.18 No Data
2 Nodes 1.70-2.75 1.44-2.36 2.06-4.01 7.25-17.58
4 Nodes 1.18-1.59 1.18-1.49 1.16-1.80 3.69-6.54
8 Nodes 1.13 1.09 0.89 2.26

4.6.3.2 8 LP Carwash, Without Feedback, Case 1. Generally, for the 8 LP

carwash, with feedback case 1, the wall times for the filters (Table 12) for higher run times

were faster than with feedback. But why were the wall times generally slower for lower

run times? A possible explanation is that since the filters are not sending real messages

from LP7, and the ratio of real to NULL messages is so small, it takes longer run times

in order to make a measurable difference in message counts and times. Additionally, there

is an indication that real messages, in the feedback mode, cause the greatest impact in

simulation performance for the nullwash and delwash filters. An explanation is that both

these filters, because of their blocking strategy, now wait less when NULL messages are

arriving at a more or less constant interval. Before, when real messages were sent back to

LPs 0 and 2, the filters would receive messages at a less constant interval and therefore

the LPs will wait longer for pending messages.

In the safewash filter, the LPs only need to check the input arc time, so the impact

is far less when a few real messages are not sent to LPs 0 and 2.

4.6.3.3 8 LP Carwash, Without Feedback, Case 2. As seen. the 8 LP carwash

simulation could perform better without feedback at all (Table 13) than with feedback,

depending on the filter and run time used. This implies that the presence of feedback

loops could reduce the speedup attainable, at least in queuing type models. Why then do
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Table 12. Overall Node Wall Times, Arcs Feedback - 8 LPs (secs), t = 1000

Configuration Nullwash Delwash Safe wash SRA Dwash

1 Node 3.74 2.91 3.08 No Data
2 Nodes 2.01-3.45 1.57-2.53 1.84-2.96 11.34-20.00

4 Nodes 1.51-1.82 1.35-1.69 1.27-1.91 5.04-6.31
8 Nodes 1.25 1.21 1.06 2.27

the nullwash and delwash filters perform worse without feedback than with feedback? The

answer, unfortunately, cannot be found by looking at the message counts, since they imply

at least equal run times. Therefore it must be in the filter and/or application code. As a

side note, Lee (18) also reported that the feedback version was better than the no feedback

version, but attributed the slow down to an increased number of messages produced by

the 3 source LPs all acting as free-runners, but as shown above this proved not always to

be the case. Knowing that LPs 0, 1, and 2 send messages at different specific intervals

(for determinism, see Chapter III), it becomes a matter of LP synchronization. In the no

feedback version, LPs 0 and 2 are now also free-runners and are creating messages at will,

and LPs 3 - 6 receive messages from [Ps 0 - 2 at different times. In the nullwash and

delwash filters, before an LP can proceed it must have a message pending on each input

arc. With the source LPs free-running, the wash LPs must now wait more than in the

feedback version, when LPs 0 and 2 are also waiting, allowing the wash LPs to synchronize

and proceed more often. The safewash and SRA Dwash filters allow an LP to proceed based

on the input arc times and not on pending messages, permitting them to proceed without

waiting for messages. Therefore, in certain cases, feedback loops slow down the source LPs

enough allowing the wash [IPs to stay in-synch and to proceed without waiting as often.

Another interesting item is that the SRADwash filter performed better, longer run times

attained and closer wall times to the other filters, than in the feedback version.

4.6.3.4 7 LP ('arwash With Fecdback. Table 14 offers an overview of the

simulation wall times, for each filter, in each node configuration, and in general validated

the 8 [P results.
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Table 13. Overall Node Wall Times, w/o Feedback - 8 LPs (secs), t = 1000

Configuration Nullwash Delwash Safewash SRADwash

1 Node 4.18 3.38 3.16 15.50
2 Nodes 1.46-2.77 1.16-2.42 1.43-2.66 6.88-8.01
4 Nodes 0.94-1.90 0.74-1.36 0.64-1.10 2.87-3.34
8 Nodes 0.82 0.69 0.36 1.07

Table 14. Overall Node Wall Times - 7 LPs (secs), t = 1000

Configuration Nullwash Delwash Safewash SRADwash

1 Node 3.71 2.91 3.82 No Data
2 Nodes 1.61-2.62 1.43-2.06 1.57-4.78 5.71-14.54
4 Nodes 1.23-1.94 1.15-1.65 1.05-2.22 2.38-6.29
7 Nodes 1.19 1.09 0.67 1.62

4.6.3.5 Simulation Speedup. As far as speedup was concerned, the delwash

filter did have its benefits. By reducing the numbers of NULL messages posted to the

source LPs, the simulation did show signs of speedup over the nullwash filter of around 1.2

in the best cases. The safewash filter, with its safetime blocking strategy, proved to be an

excellent filter, beating out the other two Chandy-Misra filters in both the 8 and 7 node

cases, and achieving almost linear speedup in both cases over the 1 node configuration.

While the SRADwash filter continually indicated, with caveats, that it is not a good filter

for queuing type simulations with feedback, it did vastly improve in cases in which there

was no feedback. Also, in looking at the output, the SRADwash filter allows events from

the past, within a time range, to still get processed, resulting in the output not always

being in time ordered sequence. Tables 15 and 16 show these speedup relationships of the

various filters for the 1 node versus 8 node case, with and without feedback. For example,

in Table 15, the 8 node version of nullwash was 4.48 times faster than the 1 node version of

safewash. The 7 node relationships showed very close comparisons to the 8 node versions,

and as such are not included.

4.6.4 Effects of Model Configuration and Run Time. To begin with, there were

several cases in which the simulation failed to complete a specified simulation run time. In
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Table 15. 8 LP With Feedback Speedups - 1 Node vs. 8 Node

1 Node
8 Nodes Nullwash Delwash Safewash SRADwash
Nullwash 2.09 2.14 4.48 11.00
Delwash 2.11 2.16 4.51 11.21
Safewash 3.61 3.69 7.71 16.19
SRADwash 3.16 2.34 2.71 9.55

Table 16. 8 LP With w/o Feedback Speedups - 1 Node vs. 8 Node

1 Node
8 Nodes Nullwash Delwash Safewash SRADwash
Nullwash 4.29 3.89 1.96 18.90
Delwash 4.18 3.79 1.92 22.46
Safewash 12.95 11.75 5.95 43.05
SRADwash 2.67 2.39 2.01 14.48

all these cases, the simulations generally produced too many messages, too fast, and tended

to fill up the Intel message buffer very quickly, causing the hypercube to lock-up. This

problem has been brought to the attention of Intel, but a solution has yet to be delivered.

4.6.4.1 8 LP Carwash With Feedback. Simulation wall times for 1 node tests,

at least through t = 10000, were fairly consistent. During the t = 500 run time, delwash was

the fastest, followed by safewash, nullwash and SRADwash, respectively. Starting around

t = 1000, nullwash begins to outperform safewash, and finally, starting around t = 5000,

nullwash begins to edge out delwash for the top spot. Both safewash and SRADwash failed

to complete the 1 node timing tests for all run times. In this case, the 1 node configurations

seem to rely simply on both the total number of messages received and on the total number

of messages sent. But also, more importantly and expected, the complexity of the internal

code algorithms appears to adversely effect the simulation wall time in the case of safewash

and SRADwash.

For the 8 node experiments, the simulation wall times, through t = 10000, were

very consistent, with safewash executing the fastest, always followed by delwash, nullwash
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and SRADwash respectively. Only SRADwash failed to complete the 8 node timing tests

for all run times. For 8 node configurations, the computational load seems to totally

counteract any communication overhead, unless the communication load is dramatically

higher (SRA Dwash). This also conforms to intuition that any complex processing algorithm

will work better on 8 nodes than on 1 node, despite the number of messages passed, since

the computational load is now spread over more nodes.

4.6.4.2 8 LP Carwash Without Feedback, Casc 1. Wall times for the 1 node

case, at the start, showed the safewash filter performing the best, then as the run time

is increased, the delwash filter becomes the best. In all cases the nullwash and SRAD-

wash filter were always the third and fourth fastest respectively, while the delwash and

SRADwash failed to complete all the run time tests. These results are different than in

the same configuration with feedback, in that the nuliwash and delwash filters were then

always competing as the best filter.

For the 8 node case, the wall times for the nullwash, delwash, and SRADwash filter,

were faster when the run time was greater than 1000, as compared to the feedback version,

while the safe wash filter showed virtually no change. But unlike the I node case, the 8

node case filter wall times compared the same against the feedback case, with safewash

generally executing the fastest, followed by delwash, nuliwash, and SRA Dwash. Again,

delwash and SRADwash failed to complete the tests.

Generally, the wall times, for higher run times were faster than with feedback, and

for all intents and purposes, unless run times are extremely long, the Chandy-Misra filters

performed the same. The speedup encountered is attributable to three things:

1) No real messages, and corresponding NULL messages, are sent to LPs 0 and 2.

2) Reduction in the number of real messages "rewashed" and sent from LPs 0 and 2.

3) Reduction in, and now less complex, application code to process real messages,

since no real messages are sent from LP7.

But why were the wall times generally slower for lower run times? A possible expla-

nation is that since the filters are not sending real messages from [P7, and the ratio of
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real to NULL messages is so small, it takes longer run times in order to make a measurable

difference in message counts and ratios.

4.6.4.3 8 LP Carwash Without Feedback, Case 2. During the 1 node tests,

up through t = 10000, only one general difference resulted over the feedback tests. Here

the safewash filter, now with four less arcs to track (2 output arcs from LP7 and 1 input

arc each into LPO and 2) and process, showed to be the fastest, followed by delwash,

nullwash, and SftADwash, which was the only filter not to complete the test. Compared

to the feedback version, both the safewash and SRADwash filters always outperformed the

feedback version, while the nullwash and delwash filters always performed worse when the

run time was greater than 1000.

During the 8 node tests, the safewash filter again performed the best, followed by

the delwash, nullwash, and SRA Dwash filters, respectively. This time, compared to the

feedback version, both the safewash and SRADwash filters were better. The naliwash and

delwash filters performed better without feedback up to t = 5000, at which point they

slowed down and became worse. The SRADwash filter failed to complete all the tests, but

attained higher run times than with the feedback version.

In this case, when there was no feedback at all, and the simulation was using a

pending message blocking strategy (nullwash and delwash), the simulation continuallý got

out-of-synch and slowed down below that of the feedback version. When the simulation

used a safetime blocking strategy (safewash and SRADwash), the performance improved

over the feedback version.

4.6.4.4 7 LP Carwash With Feedback. The same conclusions reached in the

8 LP configuration were also reflected here. The 1 and 7 node configurations relied on

the total number of messages posted and received, the total number of messages sent, and

filter algorithm effects. But, in some cases, where the number of messages sent were so

overwhelming SRADwash, the numbers of message: posted and received, or the effects of

filter algorithms were inconsequential. Also, although the complexity of the internal filter

algorithms appear,, to adversely effect the simulation wall time, in one case (delwash) with

54



the reduction in the number of LPs and higher run times, it appears that the algorithm's

effect was cut slightly, allowing any benefits not to be canceled.

Simulation wall times with the four filters, with 1 node, at least through t = 10000,

were very consistent. The delwash filter was the fastest, followed by the nullwash, safewash

and SRADwash filters, respectively. Both safewash and SRADwash failed to complete the

1 node timing tests for all run times.

Simulation wall times, for 7 nodes, with the four filters, were consistent with safewash

always executing the fastest, and SRADwash always executing the slowest. The delwash

and nullwash filters reversed themselves when the run time was greater than 2000, with

delwash performing the best at the lower run times, and nullwash performing the best

during the longer run times. Only SRADwash failed to complete the 7 node timing tests

for all run times.

4.6.5 Effects of SPECTRUM. The new SPECTRUM did indeed improve the per-

formance of the carwash simulation. And although LP1 is still considered a free-runnel,

it does not produce the abundance of messages it once did under the old SPECTRUM,

and therefore does not effect the overall simulation wall time or LP partitionings as much

as it did in the past. Also, by using the new SPECTRUM, there was a not quite so clear

delineation, especially in the 2 node case,,, between the various LP combinations effects on

the wall time, as there was in Hammell's work, but certain LP combinations did emerge

as being better as others.

In comparing this experiment and Hammell's recults above, the item that stands out

the most is that the number of mesages produced and sent, especially LP1, is considerably

reduced. An LP can now terminate as soon as it has reached the end time instead of

producing and sending messages until it receives the end-event message. As a comparison

to Hammell's LPI, in this thesis at the same t = 1000 run time and using the nullwash

filter, there were only 609 messages sent and 201 messages received (a decrease of over

1900%). In fact the total number of messages sent for all the LPs was only 2879, and the

total received was only 2435. Using the same example above, in the 2 node configurations,

wall times in this experiment were produced ranging from 1.70 to 2.75 seconds (a 13 time
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decrease in the worst case), and for the 4 node configurations, wall times were produced

ranging from 1.18 to 1.59 seconds (a 7 time decrease over the worst case).

4.7 Summary

The results of the experiments, in most cases, were not so unexpected. The new

SPECTRUM did improve the performance of the carwash simulation dramatically and

Hammell's results were validated overall. Although the optimal configurations were differ-

ent, due to the improved SPECTRUM and to LPI's altered performance, balancing the

simulation's communication or processing load was still the key factor.

It was seen that the four filters did not perform identically. The nullwash and del-

wash filters performed similarly since the only difference was the check for, and deletion,

of NULL messages addressed back to the originator. And, generally, the delwash filter

performed slightly better than its counterpart because of the reduction in NULL message

transmissions. The safewash filter was overall the better of all the filters, in the 7 or 8

node case, based in part by its different blocking strategy. But it usually performed worse

when multiple LPs were present on each node, apparently due to the more complex filter

algorithm. The SRADwash filter indicated that it either was not a very good protocol

for queuing type simulations, or that it needs quite a bit of work to tune it, and make it

competitive with the other filters.

In determining a simulation's optimal partitioning, it appears that simulations, as

part of their internal makeup (intentional or unintentional), have LPs which will always

have a high communication load, both in messages received and messages sent. These LPs

are critical and necessary in the determination of the optimal partitionings, especially in the

4 node cases where communication load is of prime importance. In the 2 node cases, where

processing load outweighed communication load, reducing intra-node LP connections and

isolating LPs from each other showed to be the most important.

In addition, the use of message counts involving the messages "seen" or processed

by an LP didn't seem to have any benefits, nor did using the number of NULL, messages

deleted by the filters. A problem area that was not measured, and might be difficult to do,
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V. Summary and Conclusions

5.1 Summary

Several algorithms for distributed conservative discrete-event simulations were de-

scribed and tested during the course of this thesis. The nullwash filter uses the basic

Chandy-Misra logic in that NULL messages are sent out to all other output arcs when

a message is sent, and an LP will block processing until all input arcs have a message

pending. A modified version (delwash) of the above filter was also tested. The difference

is that, in this version, NULL messages addressed back to the originator will not be sent.

The third filter, safewash, although very similar to those above, uses the input arc times

(safetimes) to determine whether to block processing or not, and will not send a NULL

message if the time of the output arc to the message destination is greater than or equal to

the NULL message time. And finally, a completely different type of filter was also tried in

the case of the SRADwash filter. This type of filter uses POLL and ACK control messages,

instead of NULLs, to synchronize the simulation, and instead of sending control messages

forwa.rd, looks backwards to see if it is alright to proceed. The SRADwash filter also uses

arc times in order to verify if the simulation can proceed, or block processing.

In addition to testing three new filters with the "standard" 8 LP carwash simulation,

two other new variations of the carwash simulation were also tested, with all the filters, to

gather additional simulation performance data. These new versions were:

1) An 8 LP carwash without feedback loops from LP7 to LPs 0 and 2.

2) An 8 LP carwash with feedback loops from LP7 to LPs 0 and 2, but not allowing

real messages to be entered onto the loops.

And finally, an improved version of SPECTRUM, designed to terminate an LP based

on a specified end-time rather than an end-event, was also tested in conjunction with

all the filters and simulations. Results obtained using the new SPECTRUM were quite

encouraging, and successfully improved the performance of the carwash simulation by a

large margin. Along with this, Hammell's results were validated to a point overall, although

the optimum 2 and 4 node configurations were different due to the improved SPECTRUM.
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is the filter algorithm processing effects. In several cases all other factors were the same,

and this effect had to be conjectured as the reason for poor performance, especially during

the 1 node cases where this factor is the most of concern.
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In general, balancing the simulation's communication load on 4 node configurations, and

reducing the number of intra-node connections in 2 node configurations, produced the

optimal LP combinations.

It was good to see that all four filters did not perform identically, so that comparisons

could be made. The nullwash and delwash filters performed and acted the same since the

only difference was the check for, and deletion, of NULL messages addressed back to

the originator. Generally, the delwash filter performed slightly better than its counterpart

because of the reduction in NULL message transmissions. The safewash filter was generally

the better of all the filters when executed on 8 nodes. When multiple LPs on the nodes

were used, the safewash filter performed equal to or below that of the nullwash and delwash

filters. This is conjectured to be caused by the increased processing that the safewash filter

must perform, which doesn't get reduced to a minimum level until executed on 8 nodes.

The SRADwash filter was a genuine disappointment. Although the polling frequencies

used came from UVA and were supposedly correct, no additional effort was spent in fine

tuning the filter for AFIT. Generally, it always performed far worse than the other filters,

and produced out-of-order data. This should be alleviated, by what degree is unknown,

by modifying the polling frequencies and the "get filter" delay time to more match the

simulation model's message interval times.

In an effort to validate experimental results and guidelines, a 7 LP carwash model was

developed. This simulation was designed to provide a slightly different model configuration,

but still retain some of the 8 LP model characteristics (feedback, merge nodes, free-running

LPs, etc.). In all cases, the 7 LP simulation verified the guidelines discovered by the 8 LP

simulation. In fact, the 7 LP simulation brought to light the idea of placing the critical

LPs onto a node with the fewest LPs to aid in improving performance.

5.2 Filter Assignment Guidelines

Although all the filters, in general, gave similar partitioning results, it was seen that

in simulations with no, or limited feedback, the safewash and SRADwash filters performed

better than the nullwash and delwash filters. This is attributed to the use of a safetime

blocking strategy, rather than a pending message blocking strategy, allowing the LPs to
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proceed in a more smooth manner, and not as often get out-of-synch and block as the

pending message strategy appears to accomplish.

5.3 LP Assignment Guidelines

Empirical experiments have provided some guidelines to use when assigning LPs

to nodes using simple queuing models. The experiments have shown that in the 2 node

cases, the allocation problem is based on the processing load of the two nodes, while in

the 4 node cases, the partitioning is based on the communication loads. Even though the

guidelines apply to the 2 and 4 node cases, the overall primary guideline, at least for 8

nodes, is to always use the maximum number of nodes available. This way the LPs can

be allocated closer to the optimum one-to-one ratio to the nodes. In the discussior. that

follow, Figures 11 and/or 12 will be used to illustrate the guidelines for clarity.

Figure 11. 8 LP Carwash Simulation With Feedback Schematic

5.3.1 4 Node Assignments. As mentioned in Chapter IV, predicting the optimum

4 node configurations by only looking at an application schematic diagram is very difficult,
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Figure 12. 7 LP Carwash Simulation With Feedback Schematic

but it is a start. Begin by looking for LPs (critical LPs) which have multiple incoming arcs

(highly merged). These LPs will tend to have a high communication load, and with the

blocking algorithms imposed, will tend to slow the simulation much more than a single-

input/single-output LP. Next, using message count instrumentation, execute runs to obtain

message counts at all the LPs in the simulation. By looking for peaks of messages sent and

received at the LPs, but not posted, verify or modify the initial prediction of the critical

LPs. The prevailing guideline in assigning LPs to 4 nodes is balancing LP communication

loads across all nodes: the more balanced the message loads of the LPs on each node, the

better the performance. Following this guideline, along with applying the following rules

will give one of the best configurations.

1) Separate the critical LPs as much as possible onto different nodes. In the 8

LP case with LPs 4, 5, and 7 acting as the critical LPs, a good configuration could be

0,6/1,5/2,4/3,7, while a bad configuration could be 0,6/1,2/4,5/3,7. As seen, just switching
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two LPs (4 and 5), so that they are together on the same node, can result in a bad

configuration. Therefore care must be taken in LP assignments.

2) Place critical LPs on nodes with the fewest number of LPs, starting with the

critical LP with the highest communication load. In the 7 LP case, LPs 4 and 6 are the

critical nodes, with LP4 having the highest number of messages sent and received. Here,

the best configuration could be 0,2/1,5/3,6/4, whereas the worst combination could be

0,4/1/2,3/5,6. In this case, because of the nodes message imbalance, and one node with

only one LP, LPs 4 and 6 are located on different nodes but produce the worst combination.

5.3.2 2 Node Assignments. Unlike the 4 node guidelines, the 2 node guidelines are

concerned with processing load rather than communication load. Because of this, the use

of the message counts are very limited, and will not be used as often. To reiterate, when

determining partitions, always consider both nodes, a switch in one LP on the wrong node

can turn a good combination into a bad combination. The following guidelines are listed

by priority, but also must be looked at in total.

1) Reduce LP feed-forward connections on the same node through partitioning, or by

reducing the number of LPs on the node. In the 8 LP case, through partitioning, a good

combination would be 0,1,6,7/2,3,4,5, whereas a bad combination is 0,2,6,7/1,3,4,5. For

the 7 LP case, through LP reduction, a good combination would be 0,1,2,6/3,4,5, while a

bad configuration is 0,1,3,4/2,5,6.

2) Totally isolate LPs involved in feedback on the same node. In the 8 node case,

this would mean combinations with LPs 0, 2, and 7 on the same node, and for the 7 node

case, LPs 0, 2, and 6 on the same node. In this case, feedback loops are formally defined

as arcs which connect the exit, or sink, LP, with one or more of its' predecessor LPs, and

also sends real and/or NULL messages towards the predecessor LPs. Thus, feedback LPs

are those LPs at either end of the feedback arcs.

3) Reduce connections into critical LPs on the same node. For example, avoid placing

LPs 1, 4. and 5, or LPs 4, 5. and 7 on the same node.

4) Increase the connections out of critical LPs on the same node. A good example

would be to place LPs 0, 2, and 6. in the 7 LP carwash, on the same node.
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5) If it is unavoidable to put LP connections on the same node, select the connections

that have the lowest message traffic.

5.4 Hypercube Allocation

In an effort to prove or disprove, and document the results, whether the same LP

combinations on different hypercube nodes cause an adverse effect to wall time, a small set

of experiments were designed and performed. As stated in Chapter IV, Intel claims that

any node-to-node message transfer is of uniform latency. As a start, the 8 LP carwash,

without feedback, was allocated and executed on the hypercube in a nearest-neighbor

fashion (Figure 13). In this manner, the placement is the closest match to the actual

carwash simulation layout (LP1 connected to LPs 4 and 5, LP2 connected to LP6, etc.).

The only mismatch, because of the hypercube structure, is that LP6 is not connected

to LP7, but since this LP is a minor player in the simulation, the affects are minor. In

addition, the 8 LP carwash, without feedback, was allocated and executed on the hypercube

in a farthest-neighbor fashion. Here, the LPs were placed on nodes in a manner to gain a

worst placement (LPl connected to LPs 2 and 7, LP5 connected to LPs 0 and 4, etc.). As

an additional experiment, a 4 node test was also performed following the same procedures

as in the 8 node case. As seen in Figure 14, the nearest-neighbor case, again setup like the

carwash schematic, has LP1 connected to LPs 4 and 5, all the wash LPs either connected

or resident with LP7, etc. Also, a farthest-neighbor configuration was also setup as shown.

Results from the experiments are shown in Table 17, and based from them, it appears that

Intel's claim does not hold up, as the wall times between the two respective configurations

were measurably different. Thus, a good starting point for an additional research project

would be to investigate further just how much an effect different cube allocations influence

the wall time.

5.5 Conclusions

In general, partitioning guidelines developed established a relationship between LP

configuration and load balancing. The experiments showed that reducing and balancing

the communication load by separating highly communicative bPs onto different nodes,
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LP1 LP7 LP4 LP7

LILPO LP1 LP5

LP3 LPO

LP6 LP3

LP4 LP5 LP6 LP2

Farthest- Neighbor Nearest- Neighbor

Figure 13. 8 Node Hypercube LP Placement

LP2,3 LPO,1 LP4,5 LP6,7

LP4,5 LP6,7 LPO,1 LP2,3

Farthest- Neighbor Nearest- Neighbor

Figure 14. 4 Node Hypercube LP Placement
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Table 17. Hypercube LP Placement Wall Times (secs), t = 10000

Placement Nullwash Safewash

8 Node Nearest 50.34 12.40
8 Node Farthest 65.72 14.00

4 Node Nearest 60.82 29.08
4 Node Farthest 63.22 30.16

or by locating the highly communicative processes on the same node with fewer LPs,

provided the optimal 4 node configurations. In the 2 node configurations, reducing the

number of intra-node process connections provided for the optimal configurations through

the reduction of the processing load.

For the 4 node cases, locating the optimal configuration is begun by looking for LPs

(critical LPs) which have multiple incoming arcs. Then by using message counts, isolating

and verifying the initial critical LP prediction. The prevailing guideline in assigning LPs

to 4 nodes is balancing LP communication loads across all the nodes: the more balanced

the message loads of the LPs on each node, the better the performance. In an expansion of

the above guideline, the easiest method to balance the communication load is to separate

the critical LPs as much as possible onto different nodes. Or, in cases where the number

of LPs per node is unbalanced, place the critical LPs on the node with the fewest number

of LPs.

As mentioned above, guidelines for the 2 node configurations, are concerned with

only the processing load. Because of this, the use of the message counts are very limited,

and are not used as often. In these cases, the primary guideline is to reduce the LP feed-

forward intra-node connections through partitioning, or by reducing the number of LPs on

the same node.

This thesis also showed that in simulations with no, or limited feedback, the use of

a safetime blocking strategy (i.e., safewash) was preferable for better performance, than a

pending message blocking strategy (i.e., nullwash or delwash). The reason is that safetime

filters allow the LPs to proceed in a smoother manner by not allowing the simulation to

get out-of-synch and block as often.
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Finally, to determine whether any node-to-node message transfers have a uniform

latency, a small set of experiments was performed. And as suspected, Intel's claim did not

hold up, since the wall times between a nearest-neighbor and farthest-neighbor configura-

tion was markedly different.

5.6 Recommendations for Further Research

There are many additional areas to continue further research in empirical analysis

of AFIT simulations. Probably the most beneficial would be the measurement and study

of the filters and application code processing loads. This would help further explain,

and possibly prove or disprove, some earlier conclusions based upon processing loads of

individual LPs, and will show whether the processing loads are reduced enough, going from

1 to 8 nodes, to make a significant impact.

In addition, there are still several areas in which the simulation and/or filter code can

be subtly changed and tested. It would be interesting to perform some of these changes

and see if the same conclusions from this thesis still hold. These include:

1) Studying the effects of spin-loops in the application code (in conjunction with

processing load measurements).

2) Increase the number of messages, in SPECTRUM, taken from Intel buffer at one

time. And if a fix is ever received from Intel for the buffer overflow problem, seeing if this

change causes any adverse effects to the simulations.

3) Modify the SRADS polling frequency, offset, and delay time, to see if a more

accurate time ordered output could be obtained, and if the run time could be decreased.

4) Currently, the carwash simulation sends messages to downstream LPs in an evenly

distributed manner, although at different delay times, meaning connected downstream

LPs will each ultimately receive the same number of messages. Change the method of

determining which downstream LPs messages are addressed into a more uneven manner.

This could also be performed in conjunction with changing the carwash LP message delay

intervals, to either be the same time, or at least in a more ordered manner.
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5) Look into non-symmetric partitioning of simulations, i.e., unequal number of LPs

per node.

6) Evaluate combining or merging LPs and measuring the resulting effects in perfor-

mance.

7) Investigate whether using different synchronization protocols on different LPs, in

the same simulation, is possible, and would it improve performance.

8) Use larger simulations and increase the number of LPs and nodes, beyond eight,

to see if the same guidelines apply.

Finally, a more ambitious project would be to perform the same type of analysis, as

in this thesis, on both the VHDL (3) and battlesim (2) simulations. The safewash filter

has already been modified for use with the VHDL simulation, but the others would have

to be changed in a similar way.
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Appendix A. Process Manager Module

The process manager (lpiman) module is composed of four basic functions: LP ini-

tialization, message management, advancing the simulation time, and displaying message

information.

A. 1 LP Initialization Function

The initialization function is composed of three modules:

1) lpJevelinit: called at simulation startup to initialize SPECTRUM. SPECTRUM

is initialized through calls to readlp-info and the node manager initialization routine,

nodelevel-init, which startup the LPs on the nodes.

2) lpinit: called by each LP to build the filter table. The filter table determines

which filter routines are called and used. If no filters are to be used, NULLs are used to

indicate that filters are not present. In addition. if there is an "simulation initialization"

filter, it is called at this time.

3) readip info: builds the LP information arrays, used in the SPECTRUM initial-

ization, by reading the application arcs file. This file describes the simulation network

structure, and contains each LP's delay times and ids, number of input and output LPs,

number of input and output lines, ids and delay times, and input LP polling frequencies

and offsets.

A.2 Message Manager Function

The message manager function is composed of four modules:

I) lp-get-event: obtains the next message from the event list. If no "get event" filter

is defined, the event list is checked for a current message using the node manager routine

node-receive-pending-messages. If no message is present, tbh LP will block until a message

is received using the node manager routine node-block-til-nessage. If there is a current

message, it is removed and the event list pointer is advanced to the next message.
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2) lp-post-event: sends a message to an LP. If a "post event" filter is defined, it is

called at this point. In any case, if the message is for the current LP, then the message is

"created" via the node manager routine node-create-event and posted +o the LP by calling

lp-post-message. If the message is to another LP, it is sent via the node manager routine

node-send-message to the specified LP.

3) Ip-post-message: posts a message to an LP. If a "post message" filter is defined, it

is called at this point. In any case, the message is entered into the LP's event list through

a call to lp-nq-evcnt.

4) lp-nq-event: places messages in the LP event list in time ordered sequence.

5) lpAerminate: terminates the LP. A "terminate LP" filter must always be defined,

and is called at this puint. When control is returned after coming back from the filter, the

node-terminate routine is called to gracefully shutdown the LP.

A.3 Advance Time Function

The advance time function is composed of one module, lp-advance-time, which ad-

vances the LP time to the new message time. If an "advance time " filter is defined, it is

called at, this point. In any case, the LP time is advanced to the message time.

.4.4 AMessage Information Function

The message information function is composed of four modules:

1) display~lpinfo: displays the I Ps array information built by lp-levelinit.

2) errlog: opens the error log file "errlog" for simulation error messages and diagnostic

display of simulation arcs file.

3) log: opens a message log file for each LP (logz), for simulation REPORT and

DEBUG messages.

4) displa.yevent-list: displays all the messages in an LP's current event list.
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Appendix B. Node Manager Module

The node manager (cube2) module is composed of three basic functions: node ini-

tia!ization and termination, communications management, and memory management.

B.1 Initialization and Termination Function

The initialization and termination functions are composed of three modules:

1) node-tevel-init: called at the startup of each node. This module assigns the

simulation processes to the nodes, and starts up the simulation.

2) node-terminate: determines if the cause of the termination is from a final message

or if the final time has been reached, and sends out a LAST-EVENT or LAST-TIME

message, respectively. In either case, the LP blocks until an END-VISG message is received,

then calls the routine shut-down and returns to the calling function for termination by the

application program.

3) shut-down: terminates the LP.

B. 2 Communications Function

The communication function is composed of three modules:

1) node-receive-pending-messages: processes pending messages. This module checks

incoming messages, via crccv calls, for an END-MSG or EVENTMSC message stamp. If

an END-MSG is received, it terminates the LP through a call to the routine shut-down

and exits, else if an EVENT-MSG is received, it inserts the message into the event list via

a call to lp-post-message.

2) node-block-till-message: block the LP until a message is received. This is accom-

plished by continuously calling node-receive-pending-messages to check for any messages.

:3) node-send-message: sends messages to the specified LP via cscnd calls and then

releases memory through nodeAtrash-event. If the message is an END-MSG, it then calls

shiitdown to terminate the LP.
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B.3 Memory Management Function

The memory management function is composed of two modules:

1) node-create-event: allocates memory space for a new message.

2) node-trash-event: deallocates event list memory space for future use.
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Appendix C. 8 LP Carwash, With Feedback, Experimental Data

C.1 1 Node Configuratio"

As seen in Table 18 and Figure 15, simulation wall times with the four filters, at

least through t = 10000, are fairly consistent. During the lower run time delwash is the

fastest, followed by safewash, nuliwash and SRADwash, respectively. Then starting around

t = 1000, nullwash begins to outperform safewash, and finally, starting around t = 5000,

nullwash begins to edge out delwash for the top spot. Both safewash and SRADwash failed

to complete the 1 node timing tests for all run times.

Table 18. 1 Node Wall Times - 8 LPs (secs)

Run Time Nullwash Delwash Safewash SRA Dwash

500 1.93 1.43 1.65 5.83
1000 4.01 3.41 4.18 No Data
2000 8.35 7.91 11.65 No Data
5000 29.45 30.17 62.95 No Data
10000 91.75 95.10 No Data No Data

Looking at Figures 16 and 18, for the nullwash and delwash filters, it appears from

the graphs that the delwash filter should always perform better than the nulivash filter.

The nullwash filter does send out slightly more messages than the delwash filter, but the

biggest difference is in the number of messages posted and received. In Figures 17 and 19,

it can be seen that all three source LPs posted and received significantly fewer messages

in the deiwash filter. Of course this is due to the delwash filter deleting NULL messages

addressed back to the originator. This accounts for the slower nullwash times during the

lower run dines. But since the delwash filter has the added code to check for posted NULL

messages, it appears that the code is also adding enough processing overhead to cancel-out

the benefits gained by the deletion of unneeded NULL messages during higher run times.

Also, as seen above, this processing overhead appears to slowly increase the difference in

wall time, relative to the nullwash filter, as the run time increases.

The same argument can be applied to why the safewash filter performed worse than

both the nullwash and dehwash filters. Although, the safewash filter sent out more messages
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Figure 18. Delwash Messages Sent - 8 LPs. t 1000
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Figure 19. Delwash Messages Posted and Received - 8 LPs, t = 1000

(LP7 in Figure 20) than both the nullwash and delwash filters, it posted and received more

messages (LPs 0 and 2 in Figure 21) than delwash, and fewer messages (LPs 1 and 7) than

nullulash. Combine this with the fact that the safewash filter also has some added code

to track and update channel times, add up to the wall time significantly increasing when

executed on 1 node.

Looking at the number of sent messages (Figure 22), the SRADwash filter sent hun-

dreds of more messages (LPs 4, 5, and 7) than all the other filters, and posted and received

hundreds of fewer messages (Figure 23). This also indicates that the SRADwash filter, by

its very nature of constantly polling, meaning more control messages are sent, will tend to

be slower than the other filters tested.

C.2 2 Node Configurations

Table 19 shows those LP combinations that indicated a cause-effect relationship to

the wall time. The x's in the table signify that any of the other unmentioned LPs can be

placed at that node, being sure not to violate previous or successive combinations.
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Figure 21. Safewash Messages Posted and Received - 8 LPs, t = 1000
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Figure 22. SRADwash Messages Sent - 8 LPs, t =1000

1100 I F

1000 Polls Posted ---

900 Acks Posted -+-

800 Reals Posted -9-

700 Messages Received -x--

Msg 600

Count 500

400

300
200

100

0
0 1 2 3 4 5 6 7

LP

Figurt 23. SRADwash Messages Posted and Received - 8 LPs, t =1000
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Table 19. 2 Node Wall Time Ranges - 8 LPs (secs), t = 1000

Filter Node 0 LPs Node I LPs Time (Secs)
Nullwash x,4,5,x 1,x,x,7 1.70-1.79

x,4,x,x x,x,5,7 1.80-1.83
x,x,5,x x,4,x,7 1.84-1.90
x,x,x,x x,4,5,7 1.92-2.30
1,4,5,x x,x,x,7 2.41-2.75

Delwash x,4,5,x 1,x,x,7 1.44-1.52
x,4,x,x x,x,5,7 1.55-1.60
x,x,5,x x,4,x,7 1.62-1.76
x,xx,x x,4,5,7 1.79-2.01
1,4,5,x x,x,x,7 2.12-2.36

Safewash x,4,5,x 1,x,x,7 2.06-2.66
x,4,x,x x,x,5,7 2.82-2.95
x,x,5,x x,4,x,7 3.04-3.13
x,x,x,x x,4,5,7 3.18-3.45
1,4,5,x x,x,x,7 3.51-4.01

SRADwash x,4,5,x x,x,x.7 7.25-10.43
x,4,x,x x,x,5,7 10.78-12.69
x,x,5,x x.,4,x,7 12.76-14.11
x,x,x,x x,4,5,7 14.27-17.58

As seen from the 2 node experiments, LPs 4, 5, and 7 have the greatest impact on

the simulation wall time. The reason behind this is the way that the 8 LP carwash model

is set up. Referring back to Figure 7 in Chapter III, LPs 4, 5, and 7 are each merge LPs

with multiple incoming communication paths. This tends to form much more complex

communication paths than the LP 0, 3, and 7 path. which is basically a single ilnput, single

output path. LP1 only communicates, and thus sends all its messages to UPs 4 and 5.

which are also getting messages from LPs 0 and 2. LPs 4 and 5. in turn, only communicate

with LP7, which is also receiving messages frotm LPs 3 and 6. LPs 4I, 5. and 7, can be

considered the simulation's critical LPs since a majority of tile communication paths are

to one of these three LPs.

As seen in Table 19. for the nullwash, drltrash, and safe'wash filters. the optimum

LP combination occurs when [Ps 4 and 5 are resident on the same node, and LPs 1

and 7 are resident on the other node. The wall time then gra 4 ually increases as various

78



combinations of LPs 4, 5, and 7 are located on each of the two nodes, concluding with the

worst combination when LPs 4 and 5 are resident on the same node with LP1.

Looking at Figures 16, 18, and 20, when the worst combinations occur, a majority of

the messages are sent intra-node. In the best cases, when LPs 4 and 5 are one node, and

LPs I and 7 are on the other node, the messages sent are niore internode. This brings up

the point again of why the other LUs are minor players in the simulation performance. As

mentioned before, the other LPs are not critical LPs, and to add to the discussion, while

processing messages the other LPs need only wait on one input arc to proceed. Whereas,

LPs 4, 5, and 7 all must wait on at least two input arcs. By waiting on only one input

arc, the LPs can act as a pseudo-free-runner, meaning that they can proceed as soon as a

message arrives, and can act somewhat independently without effecting the other LPs. LPs

'1, 5, and 7 all must wait for more messages to arrive, which slows down the LP processing

an(] ultimately the simulation. By placing these LPs, in various configurations on the same

node, in a manner which allows them to feed each other (LP4 feeding LP7, or LP1 feeding

L~s 4 and 5, etc) just increases the node processing load an(l simulation wall time.

The SRADwash filter is a. different case. As noticed in Table 19 the best combinations

are those with UPs 4 and 5 resident on one node and LP7 on the other node, while the

worst combinations are those with LPs 4, 5, and 7 resident on the same node. Looking at

Figure 22, and remembering that the SRADwash filter sends a vast majority of messages

(POLLs) "backwards", when LPs 4. 5, and 7 are combined, the critical LPs are all on

the same node, which sends a tremendous amount of messages intra-node. When LPs 4

and .5 are combined, arid LP7 is on the other node, the two nodes now share more equally

the total simulation messages sent, resulting in more internode communications and faster

wall time. In addition, since the nodes processing load was primarily in sending messages,

processing messages posted and received (Figure 23) tended to be overshadowed.

C'.3 ,; Nodc C(onfigurations

As in the 2 node configurations, LPs ,1, 5, and 7 showed the greatest influence on the

simulation wall time. But, unlike the 2 node configurations, all three of the Chandy-Misra

filters did not producu- analogous results (Table 20). For the 41 node runs, the run time
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was increased to t = 2000 in order to produced a better resolution between the filters.

Although, in the case of the SRADwash filter which tended to deadlock most of the time,

the run time was kept at t = 1000. The safewash filter, when LPs 4 and 5 are located

on the same node, produced the best results, while in the other two Chandy-Misra filters,

that same combination produced the worst results. The safewash filter produced the worst

results when LPs 4 and 7 were located on the same node.

Table 20. 4 Node Wall Time Ranges - 8 LPs (secs), t = 2000

Filter Node 0 LPs Node 1 LPs Node 2 LPs Node 3 LPs Time (secs)
Nullwash x,4 x,5 x,7 x,x 1.89-2.63
t = 2000 x,x 4,x 5,7 x,x 2.63-2.79

x,x x,5 4,7 x,x 2.79-3.01
x,x 4,5 x,7 x,x 3.16-3.95

Delwash x,4 x,5 x,7 x,x 2.86-3.26
t = 2000 x,x 4,x 5,7 x,x 3.28-3.47

xx x,5 4,7 x,x 3.48-3.64
x,x 4,5 x,7 x,x 3.72-4.11

Safewash x,x 4,5 x,7 x,x 2.84-3.28
t = 2000 x,4 x,5 x,7 x,x 3.29-4.81

x,x 4,x 5,7 x,x 4.88-5.16
x,x x,5 4,7 x,x 5.17-5.95

SRADwash x,4 x,5 x,7 x,x 3.69-5.07
t = 1000 x,x 4,5 x,7 x,x 5.12-5.23

x,x 4,x 5,7 x,x 5.24-5.55
x,x x,5 4,7 x,x 5.56-6.54

In the nullwash and delwash filters, looking at the Figures 16 and 18, during the worst

combination, when LPs 4 and 5 are located on the same node, the total messages sent are

much greater than the LP7 node, and thus are out-of-balance. In the best combinations,

the total messages sent are more evenly distributed.

In Figure 20, the biggest difference, as compared to the nuliwash or delwash filters, is

the safeiwash LP7 sends out about three times the number of messages, and in this filter,

LP7 sends out more messages than any other LP. In the best case, when LPs 4 and 5 are

combined, the total messages sent on that node are more equal to the nodes with LP7

resident. During the worst cases, when LP7 is combined with either LPs 4 or 5, the total
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messages sent on that node becomes out-of-balance compared against the other nodes with

LPs 4 or 5.

From Table 20, the worst cases for SRADwash are when LP4 or LP5 is resident on

the same node as LP7, while the best combinations are when LPs 4, 5, and 7 are all on

different nodes. Looking at Figure 22, it is seen that when LP4 or LP5 is resident with LP7,

the total messages sent on that node is the greatest and makes the simulation unbalanced.

When LPs 4, 5, and 7 are on different nodes, fewer and more equal numbers of messages

are sent on each node, balancing the simulation.

C.4 8 Node Configuration

As seen in Table 21 and Figure 24, simulation wall times with the four filters, at least

through t = 10000, are also consistent with safewash executing the fastest, always followed

by delwash, nullwash and SRADwash respectively. Only SRADwash failed to complete the

8 node timing tests for all run times.

Table 21. 8 Node Wall Times - 8 LPs (secs)

Run Time Nullwash Delwash Safewash SRADwash
500 0.53 0.52 0.36 0.61
1000 1.13 1.09 0.89 2.26
2000 2.93 2.92 2.08 7.55
5000 14.05 13.95 8.17 No Data
10000 52.41 50.84 26.15 No Data

As in the 1 node case, the nullwash filter should perform slightly below the delwash

filter, since the nullwash filter sends and posts more messages than the delwash filter, and in

this case it always does, although the differences in wall times between the two filters were

closer than in the 1 node tests. This difference is due to the delwash computational load

now spread over more nodes, thus reducing the impact of the filter algorithm processing.

In the safewash filter, it is seen that it sends more messages than the first two filters,

yet is constantly faster for 8 nodes. In this case, like the one node case, although the

safewash algorithm sends more messages, the computational load is spread over more nodes
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Figure 24. 8 Node Wall Times - 8 LPs (secs)

causing the simulation to proceed in a mor- effl'cent manner, and ultimately speeding up

the simulation.

Looking at only the SRADwash messages seat, it is again seen that this filter sends

hundreds of more messages relative to the other filters. And again, this causes the filter

to be slower than the others tested.
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Appendix D. 8 LP Carwash, Without Feedback, Experimental Data

In this experiment, two cases werc considered:

1) Modifying the carwash application code not to "rewash" any cars, th•is destroying

all cars, but not modifying the arcs file so it still allows non-real messages to be sert to

LPs 0 and 2 from LP7.

2) Modifying the carwash application code not to "rewash" any cars, and modifying

the arcs file so it does not allow messages to be sent to LPs 0 and 2 from LP7.

D.1 Without Feedback Case 1 Configurations

Wall times for the 1 node case ar. presented Table 22 and Figure 25. At the start,

the safewash filter performs the best, then as the run tiwe is increased, the delwash filter

becomes the best. In all cases, the nullwash and SRADwash filter were always the third

and fourth fastest respectively, while the delwash and SRADwash failed to complete all the

rui time tests. These results are different than in the configuration with feedback, in that

tl.e nullwvash and delwash filters were then always competing as the best filter.

Table 22. 1 Node Wall Times, Arcs Feedback - 8 LPs (secs)

Run Time Nullwash Delwash Safewash SRADwash
500 2.00 1.74 1.65 6.41
1000 3.74 2.91 3.08 No Data
2000 7.79 6.38 7.09 No DataL.000 24.95 No Data 21.39 No Data
10000 76.59 No Data 68.61 No Data

The case 1 wa'l times for 1 node were faster than with ft-dback, with the difference

in wall times between the Chandy-Misia filters being smaller as compared to those with

feedback. For all intents and purposes, unless run times are extremely long, the Chandy-

Misra filters performed the same. The minor speedup encountered is attributable to three

things:

1) No real messages, and corresponding NULL messages. sent to LPs 0 and 2.
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Figure 25. 1 Node Wall Times, Arcs Feedback - 8 LPs (secs)

2) Reduction in the number of real messages "rewashed" and sent from LPs 0 and 2.

3) Reduction in, and now less complex application code to process real messages,

since no real messages are sent from LP7.

For the 8 node case, wall times are presented in Table 23 and Figure 28. The wall

times for the nullwash, delwash, and SRADwash filter, were faster when the run time was

greater than 1000, as compared to the feedback version, while the safewash filter showed

virtually no change. But unlike the 1 node case, the 8 node case filter wall times compared

the same against the feedback case, with safewash generally executing the fastest, followed

by delwash, nullwash, and SRADwash. Again, delwash and SRADwash failed to complete

the tests.

For the 2 and 4 node configurations, identical optimal and non-optimal configurations

were obtained, and are explained from the fact that the only difference from the feedback

version is the lack of real messages sent, those from LP7 to LPs 0 and 2. Since the ratio of

real messages to NULL messages is small, removing the real messages sent from LP7 did

not effect the overall simulation message counts, ratios, and load balance since LP7 still

sent the same general numbers of messages.
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Figure 26. Safewash Messages Sent, Arcs Feedback - 8 LPs, t =1000
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Figure 27. Safewash Messages Posted and Received, Arcs Feedback - 8 LPs, t = 1000
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Table 23. 8 Node Wall Times, Arcs Feedback - 8 UPs (secs)

Run Time Nuliwash Delwash Safewash SRADwash

500 0.85 0.84 0.78 0.63

1000 1.25 1.21 1.06 2.27

2000 2.51 2.54 2.34 7.17
5000 9.87 No Data 8.58 No Data

10000 33.09 No Data 28.97 No Data
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Figure 28. 8 Node Wall Times, Arcs Feedback - 8 LPs (secs)
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D.2 Without Feedback Case 2 Configurations

During the 1 node tests (Tables 24 and Figures 29) up through t = 10000, only one

general difference resulted over the feedback tests. Here the safewash filter, now with four

less arcs to track (2 output arcs from LP7 and I input arc each into LPO and 2) and process,

showed to be the fastest, followed by delwash, nullwash, and SRADwash, which was the

only filter not to complete the test. Compared to the feedback version, both the safewash

and SRADwash filters always outperformed the feedback version, while the nullwash and

delwash filters always performed worse when the run time was greater than 1000.

Table 24. 1 Node Wall Times, w/o Feedback - 8 LPs (secs)

Run Time Nullwash Delwash Safewash SRADwash
500 1.67 1.26 1.25 3.78
1000 4.18 3.38 3.16 15.50
2000 9.44 8.44 7.09 No Data
5000 57.41 52.05 26.35 No Data
10000 308.48 194.69 86.03 No Data
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Figure 29. 1 Node Wall Times, w/o Feedback - 8 LPs (secs)
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Figure 30. Safewash Messages Sent, w/o Feedback - 8 LPs, t = 1000
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Figure 31. Safewash Messages Posted and Received, w/o Feedback - 8 LPs, t = 1000
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During the 8 node tests (Tables 25 and Figures 32) up through t = 10000, the

safe wash filter again performed the best, followed by the deiwash, nuliwash, and SRADwash

filters, respectively. This time, compared to the feedback version, both the safewash and

SRADwash filters were better. The nullwash and deiwash filters performed better without

feedback up to t = 5000, at which point they slowed down and became worse. The

SRADwash filter failed to complete all the tests, but attained higher comparable run times

than with the feedback version.

Table 25. 8 Node Wall Times, w/o Feedback - 8 LPs (secs)

Run Time Nullwash Deiwash Safewash SRA Dwash

500 0.27 0.23 0.17 0.43

1000 0.82 0.69 0.36 1.07

2000 2.70 2.36 0.99 3.53

5000 13.38 13.72 4.43 No Data

10000 65.33 53.11 10.21 No Data

100
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Figure 32. 8 Node Wall Times, w/o Feedback - 8 LPs (secs)

For both the 2 and 4 node configurations, wall time results followed the 8 node case,

and the same best and worst partitions showed up as in the feedback case. The identical
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partitions are explained from the fact that the only difference from the feedback version is

the lack of two arcs, those from LP7 to LPs 0 and 2. To reiterate, referring back to Figure 8

in Chapter III, LPs 4, 5, and 7 are each merge LPs with multiple incoming communication

paths. LP1 only communicates, and thus sends all its messages to LPs 4 and 5, which are

also getting messages from LPs 0 and 2. LPs 4 and 5, in turn, only communicate with

LP7, which is also receiving messages from LPs 3 and 6. The LPs 4, 5, and 7, can be

considered the simulation's critical LPs since a majority of the communication paths are

to one of these three LPs.

Since the deletion of the feedback arcs did not effect the critical LPs, or the overall

message production and loading of each LP, the same partitions repeated themselves again.

For example, looking at Figures 30 and 31, even though LP7 did not send any messages,

it still received the same number of messages as the feedback version, thus it still had to

process a large number of messages even though LP7 deleted all of them, and giving rise

to the same processing load, communication load, and partitionings as the 2 and 4 node

feedback results.
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Appendix E. 7 LP Carwash, With Feedback, Experimental Data

E.1 1 Node Configuration

As seen in Table 26 and Figure 33, simulation wall times with the four filters, at

least through t = 10000, are fairly cor'istent. The delwash filter is the fastest, followed by

the nullwash, safewash and SRADwash filters, respectively. Both safewash and SRADwash

failed to complete the 1 node timing tests for all run times.

Table 26. 1 Node Wall Times - 7 LPs (secs)

Run Time Nullwash Delwash Safewash SRADwash
510 1.76 1.24 1.80 4.98
1000 3.71 2.91 3.82 No Data
2000 9.01 7.27 12.77 No Data
5000 46.97 31.86 No Data No Data
10000 157.26 111.90 No Data No Data
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Figure 33. 1 Node Wall Times - 7 LPs (secs)

Looking at Figures 34 and 36, for the nullwash and delwash filters, it appears from

the graphs that the delwash filter should always perform equal to the nullwash filter. But
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again, the biggest difference is in the number of messages posted and received (Figures 35

and 37). It can be seen that in the delwash filter, all three source LPs posted and received

significantly fewer messages than in the nullwash filter. This is due, of course, to the del-

wash filter deleting NULL messages addressed back to the originator. Also, unlike the 8

LP carwash, even though the delwash filter has the added code to check for posted NULL

messages, it appears that because of the fewer number of LPs, the added processing over-

head is not canceling the benefits gained by the deletion of the unneeded NULL messages

during the higher run times.
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1000 Nulls Sent -o--

900 Reals Sent -F--

800 Total Sent -

Msg 600-
Count 500400

3001

100 ]•
0(<

0 1 2 3 4 5 6
LP

Figure 34. Nullwash Messages Sent - 7 LPs, t 1000

Overall, the safewash filter performed worse than both the nullwash and delwash

filters. And althoug-h it posted and received fewer messages (Figure 39) than both the

delwash and nullwash filters, it did send out more messages (LP7 in Figure 38) than both

the filters. Combine this with the fact that the safewash filter also has some added code

to track and update channel times, all detrimentally add to the wall time when executed

on 1 node.
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Figure 35. Nullwash Messages Posted and Received - 7 LPs, t 1000
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Figure 36. Delwash Messages Sent - 7 LPs, t = 1000
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Figure 37. Delwash Messages Posted and Received - 7 LPs, t 1000
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Figure 38. Safewash Messages Sent - 7 LPs, t 1000
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Figure 39. Safewash Messages Posted and Received - 7 LPs, t 1000

Looking at the number of messages sent (Figure 40), the SRADwash filter sent hun-

dreds of more messages (LPs 4 and 6) than all the other filters. Thus, it is no surprise to

find this filter the worst of the four tested. But looking at the numbers of messages posted

and received (Figure 41), it shows again that the SRADwash filter processed hundreds of

fewer messages. But since the number of messages sent were so overwhelming, the numbers

of messages posted and received were inconsequential.

E. 2 2 Node Configurations

"Fable 19 again shows those LP combinations that indicated a cause-effect relationship

to the wall tirni. The x's in the table signify that any of the other unmentioned LPs can

be placed at Inat node, being sure not to violate previous or successive combinations.

As seen from the 2 node experiments, LPs 4 and 6 have the greatest impact on the

simulation wall time. The reason behind this is the way that the 7 LP carwash model

is set up. Ref-,ring back to Figure 9 in Chapter III, LPs 4 and 6 are both merge LPs

with multiple incoming communication paths. This tends to form much more complex

communication paths than the LP 1, 3, and 6 path, which is basically a single input, single

95



1100 , I I

1000 Polls Sent -e

900 Acks Sent -+--

800 - Reals Sent -]--
Total Sent -X--700

Msg 600
Count 500

400

300
200,<
100

0 1 2 3 4 5 6
LP

Figure 40. SRADwash Messages Sent - 7 LPs, t = 1000
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Figure 41. SRADwash Messages Posted and Received - 7 LPs, t =1000
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Table 27. 2 Node Wall Time Ranges - 7 UPs (secs), t = 1000

Filter Node 0 LPs Node 1 LPs Time (secs)
Nullwash x,4,6 x,x,x,x 1.61-1.91

x,4,x x,x,x,6 1.95-2.07

x,x,x x,x,4,6 2.08-2.22
x,x,6 x,x,4,x 2.24-2.62

Delwash x,4,6 x,x,x,x 1.43-1.60
x,4,x x,x,x,6 1.61-1.70
x,x,x x,x,4,6 1.72-1.80
x,x,6 x,x,4,x 1.83-2.05

Safewash x,4,x x,x,x,6 1.57-2.36
x,x,x x,x,4,6 2.51-3.34
x,4,6 x,x,x,x 2.51-3.34
x,x,6 x,x,4,x 3.37-4.78

SRADwash x,4,x x,xx,6 5.71-8.29
x,x,6 x,x,4,x 8.33-9.93
x,4,6 x,x,x,x 8.33-9.93
x,x,x x,x,4,6 10.15-14.54

output path. LPi communicates, and thus sends all its messages to LPs 3, 4 and 5, while

LPs 0 and 2 only communicate with LP4. LP4 in turn, only communicates with LP6,

which is also receiving messages from LPs 3 and 5. LPs 4 and 6 can be considered the

simulation's critical LPs, since a majority of the communication paths are to one of those

two LPs.

As seen in Table 27, for the nullwash and delwash filters, the optimum LP combi-

nations occur anytime LPs 4 and 6 are resident on the 3 LP node. The wall time then

increases as LP4 is resident on the 3 LP node and LP6 is resi~1ent on the 4 LP node, and

UPs 4 and 6 resident together on the 4 LP node, concluding with the worst combinations

when LP4 is resident on the 4 LP node, and LP6 on the 3 IP node.

By looking at Figures 34 - 37, when the worst combinations occur, LP4, sending

more than three times the number of messages, and receiving, more than twice the number

of messages than LP6, is also combined with three other LPs. Comparing this with LP6

resident on the 3 LP node, which uses significantly less processing power, creates a load
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imbalance and slows down the simulation. In the best configurations, both of the critical

LPs are resident on the 3 LP node, allowing for more intra-node processing.

For the safewash filter (Table 27), the best combinations occur when LP4 is resident

on the 3 LP node, while LP6 is on the 4 LP node. This progresses through with LPs 4

and 6 resident together on the 4 LP node, then on the 3 LP node, finally to the worst case

when LP6 is resident on the 3 LP node, and LP4 on the 4 LP node. In Figures 38 and 39,

it can be seen that the same argument above can be used here for the worst case since they

are the same, but why did the nullwash and delwash best case configuration become one

of safewash's worst cases? That is the case when LPs 4 and 6 are combined on the 3 LP

node. Looking at the figures, the biggest difference is that LP6 sends out about four times

the number of messages in the safewash filter. At this point, even though the two critical

LPs are on the 3 LP node, and intra-node communication is reduced, it appears that the

node is starting to become saturated with messages to the point of getting imbalanced

against the 4 LP node. Thus, placing the critical LPs on the node with fewer LPs may

not always give the best results.

The SRADwash filter is again a different case, but mirrors slightly the safewash filter

since both LPs 4 and 6 are highly active. As noticed in Table 27, the best combinations

are those with LP4 resident on the 3 LP node, and LP6 on the 4 LP node, while the

worst combinations are those with LPs 4 and 6 on the 4 LP node. Looking at Figure 40,

when LPs 4 and 6 are combined, the both highly active critical LPs are on the same node,

which sends a tremendous amount of messages intra-node. Here is an extreme case, when

both very active critical LPs are resident on the 4 LP node, making the node's workload

extremely unbalanced as compared to the now lightly loaded 3 LP node. When LP4 and

LP6 are separated, as in the best cases, the two nodes now share more equally, with the

more active LP4 on the less worked 3 LP node, and the less active LP6 on the 4 LP node,

the total messages sent intra-node, resulting in a faster wall time. In addition, it appears

since the nodes processing load was primarily in sending messages, processing messages

posted and received (Figure 41) tended to be overshadowed again.
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E.3 4 Node Configurations

Like the 2 node configurations, LPs 4 and 6 again showed the greatest influence on

the simulation wall time (Table 28). All four filters produced the best results when LP6 was

resident on a 2 LP node, while LP4 was resident on the 1 LP node. The worst combinations

for the safewash and SRADwash filters, when LPs 4 and 6 were resident on a 2 LP node,

again produced one of the best configurations for the nullwash and delwash filters. Similar

arguments, from the 2 node configurations for the best and worst combinations, can apply

here as well for the 4 node configurations.

Table 28. 4 Node Wall Time Ranges - 7 LPs (secs), t = 2000

Filter Node 0 LPs Node 1 LPs Node 2 LPs Node 3 LPs Time (secs)
Nullwash x,x x,6 4 x,x 2.66-3.75
t = 2000 x,x 4,6 x x,x 3.79-4.04

x,4 x,6 x x,x 4.06-5.33

Delwash x,x x,6 4 xx 3.79-3.89
t = 2000 x,x 4,6 x x,x 3.91-3.98

x,4 x,6 x x,x 4.00-4.76

Safewash x,x x,6 4 x,x 2.14-3.10
t = 2000 x,4 x,6 x x,x 3.16-5.73

x,4 x,x 6 x,x 5.97-6.19
x,x 4,6 x x,x 6.25-7.63

SRADwash x,x x,6 4 x,x 2.58-3.57
t = 1000 x,4 x,x 6 x,x 3.62-3.99

x,4 x,6 x x,x 3.99-5.12
x,x 4,6 x x,x 5.17-6.34

Looking at the Figures 34 - 37, during the worst combinations when LPs 4 and 6 are

located on separate 2 LP nodes, the messages LP4 sends and receives are much greater than

those from LP6, increasing the workload on the node and creating a simulation imbalance.

In the best combinations when LP4 is on the 1 LP node, the node processing load decreases,

and distributes the processing load more evenly.

From Table 28, the worst cases for SRADwash and safewash are when LPs 4 and 6

are resident on the same 2 LP node. While the best combinations are when LPs 4 or 6 are

on the 1 LP node. Looking at Figures 38, 39, and 40, it is seen that when LPs 4 and 6
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are resident together, the total messages sent on that node is the greatest over all the LPs,

and makes the simulation unbalanced. In these cases, LP6 is also very active, compared

to the other Chandy-Misra filters, and combinations with LP6 resident on the 1 LP node

stands out as one of the middle configurations. Whereas, when LPs 4 or 6 are on the 1

LP node, the node only has one LP to be concerned with, thus again balancing the overall

simulation.

E.4 7 Node Configuration

As seen in Table 29 and Figure 42, simulation wall times with the four filters, at least

through t = 10000, are consistent with safewash always executing the fastest, and SRAD-

wash always executing the slowest. The delwash and nullwash filters reverse themselves

when the run time is greater than 2000, with delwash performing the best at the lower run

times, and nullwash performing the best during the longer run times. Only SRADwash

failed to complete the 7 node timing tests for all run times.

Table 29. 7 Node Wall Times - 7 LPs (secs)

Run Time Nullwash Delwash Safewash SRADwash
500 0.43 0.36 0.30 0.55
1000 1.19 1.09 0.67 1.62
2000 3.52 3.43 1.83 5.49
5000 14.59 17.91 8.92 No Data
10000 44.88 67.99 22.54 No Data

As in the 1 node case, the nullwash filter should perform slightly below the delwash

filter, since the nullwash filter sends and posts more messages than the delwash filter, and

in this case it does in the lower run times, although the differences in wall times between

the two filters were closer than in the 1 node tests. The real difference is during the higher

run times when the delwash filter starts performing worse than the nullwash filter. This

difference is apparently due to the delwash computational load, even though now spread

over more nodes, still increasing the impact of the filter algorithm processing.
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Figure 42. 7 Node Wall Times - 7 LPs (secs)

In the safewash filter, it is seen that it sends more messages than the first two filters,

yet is constantly faster for 7 nodes. In this case, like the one node case, although the

safewash algorithm sends more messages, the computational load is now spread over more

nodes, causes the simulation to proceed at a more efficient manner, and ultimately speeding

up the simulation.

Looking at only the SRADwash messages sent, it is again seen that this filter sends

hundreds of more messages relative to the other filters (LPs 4 and 6). Again, this causes

the filter to be slower than the others tested.
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