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Abstract

Current adaptive optical telescope designs use a single deformable mirror (DM), usually con-

jugated to the telescope pupil, to compensate for the cumulative effects of optical turbulence along

a single observation direction. The corrected field of view (FOV) of an adaptive optics system could

theoretically be increased through the use of multiple DMs optically conjugated to a like number of

corresponding planes which sample the turbulence region in altitude. Often, the atmospheric tur-

bulence responsible for the degradation of long-exposure telescope images is concentrated in several

relatively strong layers. The logical location for the conjugate planes in a multiconjugate adaptive

optics (MCAO) system would be the same as these "seeing layers." Each DM would correct for the

component of the total wavefront in the pupil contributed by its corresponding turbulent layer. If

the atmosphere does not possess a distinctly layered structure, the best fit of the turbulence profile

can be made to a layered model, with the number of layers in the model equal to the number of

DMs. This dissertation describes and analyzes two novel methods for estimating the proper DM

surfaces which would result in wide-FOV compensation. Both methods take advantage of spatial

diversity in multiple wavefront sensor (WFS) measurements in order to reconstruct an estimate of

the three-dimensional turbulence structure. The wavefront measurements are made using an array

of artificial guide stars created by scattered laser light. The analysis includes the integrated ef-

fects of measurement noise, realistic models of systems components, and the limitations of artificial

guide stars. It is shown that multiple-DM, multiple-guide-star systems can significantly increase

the compensated FOV relative to single-DM, single-guide star systems.

xii



INCREASING THE CORRECTED FIELD OF VIEW

OF AN ADAPTIVE OPTICAL TELESCOPE

I. Introduction

1.1 Problem Statement

Nearly 40 years after Horace Babcock suggested "the possibility of compensating astronomical

seeing" (2), the development of adaptive optics technology has enabled the production of binary

star images which have been substantially corrected for atmospheric distortion (20, 46, 55). We

have not yet seen, however, similar high-resolution images of planets, galaxies, or nebulae. The

reason is that the high level of compensation achieved by adaptive optical telescopes is effective

only over a small field area called the isoplanatic patch. At visible wavelengths, even in excellent

observing conditions, the isoplanatic patch is only a few arcseconds (i.e. a few tens of microradians)

in diameter (49). Many interesting astronomical objects, however, extend from several tens of

arcseconds to arcminutes in apparent size. The desire to obtain high-resolution images of these

objects from ground-based telescopes is one motivation for solving the problem addressed in this

dissertation:

Develop a method for increasing the corrected field of view (FOV) of an adaptive optical
telescope for astronomical imaging and conduct a performance analysis of an adaptive
telescope which incorporates this technique.

Adaptive optics literature contains statements of the need for developing a method for increasing

the corrected FOV, and informal reports have advanced heuristic suggestions as to how to approach

the problem, but no detailed work on corrected FOV widening has been published. The result of the

proposed research is a detailed performance analysis of a new adaptive optics system design. The
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goal of the analysis was to quantify both the benefits and the costs of increasing the corrected FOV,

as compared with other adaptive telescope designs found in the literature. The outcome of this

research includes the first in-depth contributions in the area of adaptive optics FOV widening (38,

39).

This dissertation is organized into five chapters. Chapter I presents the justification for pur-

suing the suggested study and details the problem to be solved. Chapter II is background material,

intended to familiarize the reader with the current state of the art and summarize information

about optical systems analysis, atmospheric turbulence effects on imaging, and adaptive optics.

Chapter III contains an approximate frequency domain analysis of the FOV widening problem

while Chapter IV, the main work of the dissertation, describes a rigorous spatial domain analy-

sis. Conclusions and recommendations for further research are found in chapter V. Mathematical

details and results not included in the main text are compiled in the Appendices.

1.2 Justification for Conducting the Proposed Research

In 1989, astronomers at the Observatoir de Haute Provence, France, were the first non-

military researchers to obtain astronomical photographic images corrected to the diffraction limit

of the telescope with adaptive optics (55). This experiment was conducted at infrared wavelengths

(2.2-5 pim); adaptive optics is considerably more difficult to implement in the visible region of the

spectrum where the effects of atmospheric turbulence are more pronounced and hence, harder to

correct. Recently, the U.S. Air Force has revealed the existence of a 1.5-meter adaptive telescope

at the Starfire Optical Range (SOR) in New Mexico, with which they have obtained a number of

strikingly resolved astronomical images with visible light (20). Prior to these May, 1991, Air Force

announcements, Welsn and Gardner had predicted the performance of an adaptive optical telescope

based on a detailed theoretical analysis (64). They show that the corrected FOV of this telescope

will be only a few arcseconds in diameter. Many interesting astronomical objects, such as planets
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(47" for Jupiter), nebulae (up to 20'), and the sun (32'), subtend angles significantly larger than

this expected FOV.

The military's interest in adaptive telescopes stems from intelligence gathering requirements

such as imaging earth-orbiting satellites (1). Air Force researchers at the SOR list "wide-FOV

adaptive optics" on their agenda of future research (21). Beckers (5), Fried (19), and Hardy (30),

prominent researchers in the field of adaptive optics, have written papers discussing the requirement

for FOV widening of adaptive optical systems. Although they suggested ways to look for a solution,

neither they nor any other researcher has published a detailed study of this problem.

1.3 Approach

The small size of the compensated field of an adaptive optical telescope does not result

from component limitations such as measurement noise but from a more fundamental source: the

vertical extent of the atmospheric turbulence structure. Although atmospheric refractive index

inhomogeneities, which are the source of astronomical image distortion, form a three-dimensional

spatial random process, a conventional adaptive optical telescope applies only a two-dimensional

spatial correction using a single deformable mirror (DM). The DM surface is intended to undo

the optical phase distortion caused by the atmosphere, but it can only do so for the cumulative

phase distortion along one propagation direction. This direction of optimum compensation will

correspond to the location of the reference source, or guide star, which is used for the atmospheric

distortion measurements. The correlation between the surface of the DM and the cumulative phase

distortion along other propagation directions drops off rapidly with the offset angle between the

reference and observation directions.

One approach to increase the corrected field of view of an adaptive optical telescope is to devise

a method of applying a three-dimensional correction for atmospheric distortion. An example of a

three-dimensional phase correction system would be a series of DMs in the optical train of the
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adaptive telescope. Dicke was the first to suggest this idea (11), proposing a two-DM system to

correct for low and high altitude contributions to atmospheric distortion. More recently, Beckers

has considered this concept, coining the term "multiconjugate adaptive optics (MCAO)." Beckers

suggested optically conjugating each DM to a plane at a specified distance from the telescope

aperture (5). Ideally, these conjugate planes would be located at altitudes where the atmospheric

turbulence strength is chiefly concentrated.

To illustrate the idea of MCAO, Figure 1.1 depicts a schematic comparison between single-DM

and two-DM correction when the atmospheric phase distortion is confined to two thin turbulent

layers. The phases, Oi (rad), in the figure represent the contribution to the phase distortion by

the indicated point in the turbulent layer. In Figure 1.1(a), a ray from object point 1 to the

indicated point in the aperture plane undergoes a cumulative phase distortion of 01 + 03 rad. If

this object point is used as the reference, a phase compensation 4 c = -01 - 03 rad is applied

in the aperture plane. (Usually, the DM is optically conjugated to the aperture plane, so we

can imagine the phase correction taking place in this plane.) A ray from object point 2 to the

same point in the aperture plane has accumulated a phase deviation of 02 + .4 rad. Depending

on the spatial correlation of the layers, the phase compensation 0,, appropriate for object point

1, may be of little benefit in compensating a wavefront propagating from object point 2. This

decorrelation of the phase correction with offset angle is known as angular anisoplanatism. Even

for a "perfect" adaptive optical telescope, having no measurement noise or DM figuring error,

angular anisoplanatism presents a fundamental limit to performance.

Now consider Figure 1.1(b). Instead of a single phase correction in the aperture plane, this

figure shows two separate phase corrections made in the conjugate planes of the turbulent layers.

The surface of DM 1 is figured to negate the phase aberration caused by turbulent layer 1, while

DM 2 compensates for turbulent layer 2. In this case, the rays from both object points receive

the correct phase compensation. Assuming the availability of ideal adaptive optical components,
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Figure 1.1. Schematic comparison between single-DM correction and 2-DM correction when at-

mospheric distortion is caused by 2 thin turbulent layers.
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angular anisoplanatism could be completely eliminated when the number of thin turbulent layers

equals the number of DMs.

We have seen in the preceding example that. MCAO can eliminate angular anisoplanatism

when optical turbulence can be accurately modeled by a small number of thin phase-changing

screens. Ultimately, we would like to know if MCAO can significantly widen the corrected FOV of

an adaptive optical telescope over a variety of realistic turbulence conditions. Before this question

can be answered, however, we need to determine a means of estimating che individual contribu-

tions of different layers of the atmosphere to the total wavefront aberration in the aperture of the

telescope. An estimate of the contribution of the individual layers is required in order to properly

figure the conjugated DMs. Dicke first suggested that high and low altitude turbulence effects could

be distinguished using the difference in the wind speed at the two altitudes. By comparing phase

distortion measurements made approximately 0.01 sec apart, he presumed that the low and high

altitude phase distortion contributions could be separated (11). It is not known if Dicke's scheme

was ever implemented, but his concept of processing multiple linearly independent wavefront mea-

surements to estimate the phase contributions of different parts of the atmosphere is the key to the

approach presented in this dissertation.

Fried suggested obtaining the multiple wavefront measurements by projecting through the

turbulence region at a variety of angles using multiple reference sources (19). The measurements

are linearly independent in this case because they are separated spatially, rather than temporally

as in Dicke's proposal. To determine what phase function to put on the surface of the DMs, Fried

suggested interpreting the measurements as arising from propagation through a series of phase

screens, the number of phase screens equal to the number of DMs. Even if the turbulence does not

have a layered structure, one could make the best fit of a layered structure to the measured data.

Although angular anisoplanatism may not be completely eliminated, it is hoped that it could be

substantially mitigated.
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The advent of the laser guide star, or synthetic beacon, has raised the practical possibility

of multiple linearly independent wavefront measurements in astronomical applications of adaptive

optics (15, 20, 35, 50, 58, 65). Artificial reference sources are necessary because there are too

few natural stars bright enough to use as reference sources for the wavefront sensor (WFS) mea-

surements. Beckers (5) and Tallon and Foy (57) have proposed ways to combine the wavefront

measurements from each reference source to obtain the correct phase perturbation values to asso-

ciate with each phase screen in the propagation path. Beckers' idea involves spatially shifting each

measurement to "line up" the contribution of a particular phase screen across the ensemble. The

contributions of the other phase screens will be misaligned. An average of the measurements would

then presumably be weighted toward the contribution of the desired phase screen, while the other

contributions will tend to average out. Tallon and Foy suggest modeling each phase screen as a

mosaic of coherence areas. Two rays passing through the same coherence area are considered to

have experienced the same phase perturbation. A constellation of artificial guide stars is arranged

so that all the coherence areas in all the phase screens are probed. To obtain the phase map asso-

ciated with each phase screen, Tallon and Foy suggest constructing and solving a system of linear

equations, with the phase perturbations associated with each coherence area as the unknowns and

the Hartmann WFS measurements as the known quantities. A detailed analysis of either of these

proposed methods for estimating the phase screen functions has not been published.

In this dissertation, two novel methods of obtaining the phase screen contributions from WFS

measurements are proposed. The first method involves transforming the phase functions into the

spatial frequency domain. .The transforms of the WFS measurements are linearly combined to

obtain estimates of the transforms of the phase screen contributions. In computing the linear

combination of measurements, an optimum set of complex weights is derived in order to minimize

the mean-squared error in the estimated phase screen contribution. Since complex weights in the

spatial frequency domain correspond to amplitude weighting and shifting in the spatial domain,
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this estimation approach is similar to, but more general than that proposed by Beckers. Details of

this frequency domain approach are the subject of Chapter III.

The second approach, detailed in Chapter IV, is to work in the spatial domain and estimate

the phase screen contributions as a linear combination of wavefront slope measurements. This

approach is an extension of the method presented by Wallner in (62). Whereas Wallner only used a

single guide star to estimate the total wavefront phase, this dissertation describes for the first time

how to combine multiple wavefront measurements to estimate the contribution of different parts of

the atmosphere to the total wavefront phase. Both approaches assume a priori knowledge of the

atmospheric turbulence conditions, which must be obtained from a remote sensing instrument.

Before construction of an MCAO system can be considered, a theoretical analysis of the

concept is in order. Such an analysis is necessary to answer several questions concerning practical

issues. For example, how accurately can we estimate each phase perturbation function? How

much improvement in the corrected FOV may be expected for a particular atmospheric turbulence

structure, given a specified number of DMs? What is the effect of WFS noise and DM figuring

error on such a system? The purpose of this dissertation is to present analysis methods which can

be used to study these questions.

1.4 Assumptions

Three major assumptions are made in this dissertation: 1) geometrical optics is adequate to

describe propagation down through the atmosphere at a good observatory site, 2) the atmospheric

turbulence structure at such a site may be modeled as a series of phase-changing screens, and 3)

multiple reference sources, less than one arcminute apart, are available for WFS measurements. By

assuming geometrical optics propagation, any refraction or diffraction of optical waves traversing

the atmosphere is ignored. In other words, the only atmospheric effect considered is phase delay

due to optical path length changes caused by variations in the index of refraction. The validity
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of this assumption can only be established experimentally-doing so is beyond the scope of this

dissertation. Regardless of the results of this research, successful practical implementation of MCAC

depends on how closely the near field criterion approximates reality. Most researchers consider this

assumption to be valid for a good observatory site (5, 26, 63). A theoretical argument in support

of the validity of this assumption is presented in Section 2.3.5.

Several factors motivated the use of a layered atmosphere model for an initial analysis of

MCAO. One reason is that experimental evidence indicates that the optical turbulence in the

atmosphere is often concentrated in a small number of layers (52, 61). However, we could approx-

imate any turbulence distribution by using a sufficient number of layers. Since an MCAO system

approximates a layered atmospheric structure, the use of such a model is convenient for analysis

purposes. In addition, it allows the mathematical results to be expressed in terms of the phase

statistics instead of refractive index statistics.

Earlier it was pointed out that, due to the lack of adequate natural stars, the multiple

WFS reference sources in an MCAO system must be artificially generated by laser backscatter.

Practical issues not addressed in this dissertation include accurate calibration of the synthetic

beacon projection system and associating wavefront measurements with the correct reference source.

It is assumed that the beacons can be projected with offset angles on the order of a few arcseconds

and that all phase perturbation measurements can be made within the atmosphere's correlation

time (27) so that time multiplexing can be used to associate the measurements and reference

stars. This requirement clearly limits the number of measurements, but researchers have already

demonstrated adaptive optics using sequential wavefront measurements from two artificial guide

stars (47).
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1.5 Scope

The analysis in this dissertation involves only spatial, not temporal, quantities and the scope

of the analysis is limited to open-loop operation (i.e., the system measures and reconstructs the

incoming wavefronts individually vs. nulling the residual phase error via a feedback loop). Optical

design issues (materials, losses, etc.) are not considered. This dissertation concentrates on studying

signal processing techniques as opposed to the design of wavefront sensing devices and methods.

1.6 Significant Results

Two novel methods for obtaining the correct DM surface functions are developed. Addition-

ally, thorough analysis demonstrates for the first time that MCAO is a promising technology for

increasing the compensated FOV of an adaptive optical telescope. However, the inability of artificial

guide star systems to sense overall tilt limits the theoretical performance of MCAO systems.

1.7 Summary

In this chapter we have described the dissertation problem, which is to analyze a method for

increasing the corrected FOV of an adaptive optical telescope. The approach is to add additional

wavefront correcting elements (DMs) in the optical train of the telescope. To obtain the commands

for multiple DMs, multiple linearly independent measurements of the atmospheric phase distortion

are needed. The main work of this dissertation involves proposing and analyzing methods for

obtaining the DM commands from the measurements. Before describing this analysis in chapters III

and IV, the next chapter presents some background material on atmospheric and adaptive optics.
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I. Background

2.1 Introduction

It is well known that the atmosphere degrades the performance of optical imaging systems

such as ground-based astronomical telescopes. This atmospheric distortion is the result of inhomo-

geneities in the index of refraction, n, of the air, randomized by the turbulent mixing which results

from solar heating. During the past several decades, great progress has been made in describing

and measuring the effects of turbulence on light passing through the atmosphere and in devising

methods of correcting for these effects (29, 31, 43, 60). Such image compensation methods fall into

two categories: predetection and post-detection compensation. Post-detection compensation en-

tails processing already blurred images to reduce the degradation due to the interfering atmosphere.

This post-processing usually involves multiple short-exposure images, that is, images obtained using

an integration time sufficiently short to "freeze" a particular realization of the random atmospheric

turbulence structure. Predetection compensation, also known as adaptive optics, involves nulling

the phase component of the distortion in real-time using a servo loop. This dissertation is concerned

with predetection compensation systems.

In chapters III and IV, the performance of adaptive optics systems will be evaluated in terms

of the variance of the phase aberration function in the pupil plane of the telescope. In the context

of adaptive optics system analysis, the error that remains after compensation is of interest. Thus

this criterion is often referred to as "mean-square residual phase error." The reason this criterion

is chosen is because it is directly related to optical system performance. Specifically, as shown in

Section 2.2, the phase aberration function determines the system optical transfer function (OTF),

point spread function, and Strehl ratio. Other concepts underlying the analysis in chapters III

and IV include the refractive index structure constant, C,, phase structure function, Dp, and the

atmospheric coherence diameter, ro. Section 2.3 defines these terms and relates them to each other.
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Finally sections 2.4 and 2.5 provide background on adaptive optical telescopes and laser guide stars,

respectively.

2 1 Incoherent Optical Systems Analysis

2.2.1 Optical Transfer Function. Consider Goodman's generalized model of an imaging sys-

tem shown in Figure 2.1. The object being imaged lies in the xoyo plane. The coordinates of the

object plane are normalized by the magnification of the imaging system such that if the physical

coordinates of a point on the object are (X0, YO), then its coordinates in the xoyo plane are given by

x0 = MXo, yo = MY 0 , where M is the system magnification. Note that M can be either negative

or positive; negative M indicating that the image is inverted. With this normalization, an object

point and its corresponding point in the image (Xiyi) plane will have the same coordinate values.

Entrance Exit

pupil -- --------- - - - - -- - - - -- - --- upil

Yoo r Y
YA YA

X0 ,X X Xi

L------------------------------ J

"Black box"

Figure 2.1. Generalized model of an imaging system (25).

The imaging system may be mathematically modeled by a transmission function (7), also

known as the impulse response function (37), represented by h(z., yo: xi, y-; A) with A representing

wavelength and bold type indicating a complex quantity. Born and Wolf define h as the normalized
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complex amplitude at image point (xi, Yi), due to a unit amplitude. zeru phase disturbance at obje't

point (x,,, yo) (7). In many cases, optical systems analysis is performed using the form of h derived

for monochromatic light, therefore the wavelength dependence will be dropped from this point on.

From the I-iuygens-Fresnel principle and electromagnetic theory, it is known that the propa-

gation of light is a linear phenomenon. Hence, if u. is the complex amplitude of the optical field

emitted from the object, the complex amplitude of the optical field in the image plane can be found

by means of a superposition integral (7):

uJid, It) = u d2;Fo Uo(i-' t)h(i., i) (2.1)

where t indicates a time varying object and image field and ;F = (x, y) is a twc-dimensional position

vector. The limits of integration are formally infinite but effectively defined by h. For the finite

region of the object plane known as the isoplanatic region, the transmission function of a good

optical system will be shift invariant. Hence, for objects smaller than the isoplanatic region,

equation (2.1) can be written as a convolution integral (7):

= d 2o Uo(i., t)h(;Fi - i.) (2.2)

A practical imaging system records the image intensity, Ii, which is defined as the time average of

the magnitude squared of the complex field amplitude. Using angle brackets to denote averaging

in time and z* for the complex conjugate of z, the image intensity can be written as (37)

Ii(ii) d 2iI d2i. (u.(4,t)u-(ii))h(Fý - i0 )h*(ii -4) (2.3)
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For the case of an object radiating incoherent light, the image intensity can be easily related to the

object intensity. For the incoherent imaging case, the object mutual intensity is given by (37)

1Uo(o, t)Uo(-4o, t)) = luo(io)l 26(_o - ) =I(;F)6(io - io) (2.4)

Substituting equation (2.4) into equation (2.3) and using the sifting property of the Dirac delta

function, 6(Z), it is found that the image intensity for an optical system in the presence of incoherent

light is described by the following expression, in which the operator * stands for convolution (37):

Ii(ii) = Io(ii) * Ih(i) 12  (2.5)

The Fourier transform of the preceding relationship may be used to analyze the optical system

in the spatial frequency domain. Typically, the Fourier transforms of each of the quantities in

equation (2.5) are normalized by their zero-frequency values. Using script letters to indicate these

normalized Fourier transforms, the frequency domain representation of incoherent imaging is (37)

i(f) = 1o(f y(f) (2.6)

where f = (f,, fs,) is a spatial frequency vector. 7' in equation (2.6) is the optical transfer function,

given by (37)

= f{Ih(ii)12} (2.7)

where '{.} represents the Fourier transform.

The form of the optical transfer function can be derived if a point source object is used in

equation (2.2). For a point source object, the resulting image will be the system impulse response.

Referring again to the generalized imaging system model of Figure 2.1, the usual procedure is to

assume that geometrical optics applies to the contents of the "black box." Under this assumption,
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diffraction effects are entirely due to the entrance or exit pupil, whichever is smaller. Here it is

assumed that the exit pupil is the smaller aperture, described by the pupil function Wa(i). If the

exit pupil is preceded by a converging lens, and the distance di to the image plane satisfies the lens

law, point source illumination will produce an image which is the Fraunhofer diffraction pattern of

the exit pupil. This image is the impulse response function (25):

h(i - 4) = xd2]Wa()ex) {-- ii - io) . i] (2.8)

In the preceding equation, a constant multiplicative factor, which is of no consequence due to

the normalized form of the OTF definition, has been neglected. With the following change of

variables (25):

(2.9)

in equation (2.8), the impulse response function becomes, apart from constants (25):

h(ii - i.) = if d 2 f Wj ( \dif ) exp {-j21r[(ij - i). .fi] } (2.10)

Thus, the Fourier transform of h is Wa(Adif). Applying the Fourier autocorrelation theorem to

equation (2.7) leads to the well-known formula for the optical transfer function of a diffraction-

limited imaging system (26):

7t(f) =W-(\dif *(Adi) (2.11)
Sd 2iWa()j)2

where the operator * indicates correlation. This formula can also be used for systems that are

not diffraction-limited by modifying the pupil function to account for aberrations in the optics or

inhomogeneities in the intervening medium. For example, to obtain an OTF for a system consisting

2-5



of both atmosphere and optics, it is necessary to start with a new pupil function (26),

W, (i) = Wa(i)t(i) (2.12)

where the transmittance function t(lF) accounts for the effects of the atmosphere. For astronomical

imaging at a good observatory site, it may be assumed that the turbulence is close to the aperture,

relative to the object distance, and sufficiently weak that diffraction and refraction may be ignored.

Because of this assumption, phase delay is considered the only atmospheric effect of consequence,

and the transmittance function is chosen to model phase disturbances only. Hence, t(;) can be

written (26)

t(;F) = exp[jUV,(•F)] (2.13)

where 0 is the random phase perturbation.

Substituting equations (2.12) and (2.13) into the OTF formula leads to an expression for the

instantaneous OTF of the turbulence-degraded system:

J/ d2£W a(i)W *(;F _ Adif) exp[j( iPl - 02)]

/IWa(i)l 2 dx dy

where

01 = 'OV)

'02 = '(V- Adif) (2.15)

To get the long exposure OTF, the usual procedure is to assume that Vk(f) is an ergodic random

process and find the ensemble average OTF, which is defined as the expected value of the numerator

of equation (2.14) divided by the expected value of the denominator of equation (2.14) (26). Note

that this definition is not the same as (W(f)), but it contains the same information and is easier
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to compute. With this definition, it is noted that the average OTF of the aberrated system can be

written as the product of the OTF for the diffraction-limited system times

W7L(f) = (exp[j(Vli - V'2)]) (2.16)

which is called the long exposure OTF of the atmosphere (26). Here the angle brackets denote

expectation.

The Rytov solution for propagation of an electromagnetic wave in a medium of inhomogeneous

n (with the variation contained in the permittivity) predicts that V;(i) has Gaussian statistics.

Based on this fact, and the fact that the phase fluctuations are zero-mean, it can be shown that

"WL(f) = exp [I VvD(Adif)] (2.17)

where f= I!I and

Vr+(r) = ([¢(i)- v(i+')]2 (2.18)

is the phase structure function discussed in Section 2.3. In writing 'Do as a function of r, isotropic

turbulence was assumed with r = IFI.

As pointed out in the introduction to this chapter, the performance of an adaptive optical

system, as measured by the OTF, is a function of the phase aberration function, 4(g), in the pupil

plane. The objective of an adaptive optical telescope is to reduce ik(;) to 0 at all points in the

aperture, thereby achieving the diffraction limited OTF. Other measures of optical system quality,

the point spread function, resolution, and the Strehl ratio, are derivable from the OTF and thus

also functions of tk(i).

2.2.2 Point Spread Function. The point spread function (PSF) is the inverse Fourier trans-

form of the optical transfer function. The PSF describes the incoherent image of a point source.
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For a diffraction-limited optical system with a cirular exit pupil, the PSF is the familiar Airy

pattern, [2J 1(r)/r]
2, where Ji(.) is the Bessel function of the first kind, order 1 (25).

2.2.3 Resolution. Optical system resolution may be evaluated in either the spatial or the

spatial frequency domain. In the spatial domain, the Rayleigh criterion is often used. By this

criterion, if the peak of the Airy pattern resulting from one object point is located on the first

zero of the Airy pattern resulting from another object point, the two points are considered "barely

resolved" by the system (25). Another spatial domain parameter is the full width at half maximum

(FWHM) of the point spread function. Frequency domain measures of resolution include the cutoff

frequency of the optical transfer function as well as the volume under the OTF (26).

2.2.4 Strehl Ratio. The Strehl ratio is defined as the ratio of the peak of the point spread

function of an actual optical system to that of a diffraction-limited system. It is a measure of the

additional spreading of the image intensity distribution due to aberrations in the optical system. To

show how the Strehl ratio is related to the wavefront phase, Born and Wolf's derivation is presented

in this section, with the aid of Hardy (7, 29).

Figure 2.2 depicts a perfectly spherical wave converging to an image point P. A diffraction-

limited system woui. create such a wave from a perfectly spherical diverging wave that was received

by its entrance pupil. The free-space Green's function describes this wave (25):

G(R) = R (2.19)

where R is the radius of the sphere and k = 27r/\ is the wave number. Figure 2.2 also shows an

aberrated wavefront which is displaced from the reference sphere by an amount 0 (rad), which is a

function of position. If 1 is so small that the amplitude of the aberrated wave may be considered
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Aberrated
wavefront

"Spherical reference
wave

P

Figure 2.2. Aberrated wavefront (29).

constant, an expression for the field follows directly from equation (2.19):

GI(R) = Aexp[-j(kR - )](2.20)
R

where A is the constant amplitude at unit distance from the source. The Huygens-Fresnel principle

states that the field at point P may be considered as the resultant of an infinite number of point

sources located on the portion of the aberrated wavefront enclosed by the exit pupil of the optical

system. Hence, the field at P (the center of the reference sphere) may be found using the Rayleigh-

Sommerfeld diffraction formula (25):

U(P) - jA exp(jkR) d2.W(.) {[kR - (9)]} (2.21)

the integration takes place over the exit pupil. From this point on in the dissertation, the pupil will

be modeled by a real aperture weighting function W4a(f) normalized for mathematical convenience
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such that

J d2 i g(, ) a 1 (2.22)

Note in equation (2.21) that. the diffraction angles are assumed small enough that the obliquity

factor may be neglected. From equation (2.21), the intensity at point P follows (29):

( A )2 iW.' exp[jV,(i)]2

I(P) = J 2 id Wa1)(2.23)

The intensity of an unaberrated system, I(P), may be found by setting 0(;) = 0 (29):

Ii(P) = (A) 2  (2.24)

Earlier in this section, the Strehl ratio was defined as the ratio of the intensity of the aberrated

system to that of the diffraction-limited system,

SNI) I(P) = ] d2 i Wa( ) exp[j¢O(i)] (2.25)S[¢()]- i(P)-

Using the power series expansion for exp[jU(V)], the above expression can be rewritten (7):

= J 2 iW '(i) -I V,2() ) +...] (2.26)

For small tb(i) (7),

S[¢(9)]O [1 + jý - 1] 12 (2.27)

where the overbar indicates the averages of 0(i) and V,2(j) over the exit pupil (7):

Id d2iW(G")/,p(i) (2.28)
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Expanding equation (2.27), and continuing to drop terms of higher than quadratic order, the Strehl

ratio approximation becomes (7)

S[V,(f )1 1 - - (2.29)

Defining c 2 as the aperture average variance of the phase aberration function:

E2 d J2Wa(i) [,/)(iF) _]2

= (2.30)

the Strehl ratio can be written

S(C2 ) = 1 -2 (2.31)

A second application of the series expansion for exp(x) yields the further approximation for small

c (22):

S(C2 ) _ exp(-C 2) (2.32)

with c2 (rad2 ) being the total phase error variance of the optical system. Tyson points out that

this formula is valid for c < 1.25 rad - A/5 (59).

2.3 Atmospheric Optics

The previous section showed that several important measures of optical systrem quality are

functions of the phase of the wavefront in the pupil plane. Consequently, the results of the adaptive

optics system analysis of chapters III and IV are in terms of statistical averages of the random

process V,(f). This section discusses the statistical properties of atmospheric phase distortion

following a geometrical optics approach.
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A wavefront, a useful concept in the discussion of atmospheric optics, is defined as a surface

of constant optical path length orthogonal to a collection of rays (29). The light emanating from

a source located in a medium of constant n propagates with spherical wavefronts. At a sufficient

distance from the source, the wavefront may be considered planar.

The index of refraction of the atmosphere is a random function of position, as well as time

and wavelength. Since, in a geometrical optics framework, optical path length between two points

A and B is equal to the path integral of n (7),

(O.P.L.) = L ds n(s) (2.33)

it is found that initially planar wavefronts become distorted as they pass through the atmosphere.

This distortion is described by a two-dimensional function of position, 'k(i), which goes by various

names in the literature such as wavefront aberration function (4) or waveheight function (45).

Following most authors, this dissertation will frequently use the term "phase" as a shorthand

nomenclature for 10(i), since it is understood that an absolute phase measurement is never implied.

The following sections present the statistical quantities used to characterize optical turbulence and

aberrated wavefronts.

2.3.1 Refractive Index Power Spectrum. The refractive index power spectrum, 4pn(w), is

a measure of the strength of the optical turbulence at a point in space as a function of spatial

frequency. The argument W = (2r/ls, 27r/iy, 27r/1,) is a wave number vector indicating the scale

size of pockets of air, with dimensions 1., x Iy x 1, inside which n is considered to be approximately

constant. These pockets of air are called eddies; large eddies correspond to small values of W while

small scale turbulence implies large 9. On may be interpreted as the relative abundance of different

size eddies (26).
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The formation of these eddies begins with uneven heating of large volumes of air due to

the position of the sun and different types of underlying terrain. These large volumes of air are

broken up into eddies of various sizes by mechanical turbulence. The resulting random distribution

of pockets of air having slightly different temperatures is the underlying cause of atmospheric

distortion. The reason for this phenomenon is that the index of refraction, while a function of

temperature, pressure, humidity, and wavelength, is more sensitive to variations in temperature

than to changes in the other parameters (33). When the term turbulence is used in the context of

optical imaging, it is the three-dimeiisional random process of temperature (or index of refraction)

that is being referred to. Mechanical turbulence itself actually has relatively little effect on imaging.

The most commonly used form of 4D', based on the work of Kolmogorov (42), is given by (26):

0= 0.33CnC"' 3  (2.34)

where Cn, is the structure constant discussed in the next section and isotropic turbulence is assumed

(P = 1 1). This expression is valid for an intermediate range of scale sizes called the inertial

subrange; it does not describe the refractive index structure that results from very large or very

small inhomogeneities because the physical laws used to derive equation (2.34) do not govern the

formation of eddies of these sizes. The inertial subrange is the region in which energy is transferred

from large to small eddies without appreciable loss. The boundaries for which the Kolmogorov

spectrum is valid are known as the inner scale, on the order of a few millimeters, and the outer

scale, which may be as large as 100 meters (26). This range of validity is not of great concern, since

scale sizes larger than the optical aperture will cause a uniform, as opposed to randomly varying,

optical path length change across the area of the wavefront intercepted by the aperture. A uniform

value of phase across the aperture has no effect on the imaging system, since it does not represent a

deformation of the received wavefront. As for the inner scale of the turbulence, even if the ability to
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correct for the very high spatial frequency, but low power, deformations that result from microscale

turbulence were available, it would yield a virtually indiscernible improvement in image quality.

2.3.2 Refractive Index Structure Constant. The term "refractive index structure constant"

can lead to confusion, since C2 is in fact a function of geographical location and altitude. An indi-

cation of the strength of the optical turbulence, the refractive index structure constant is measured

in units of meters-2/ 3 (26). Experimental data reveals that the value of C'2 is highly variable with

altitude. For this reason, combined with its dependence on geographical location, the structure

constant is difficult to characterize. For analytical purposes, however, C2 is often set to a uniform

value over a finite altitude range.

Hufnagel presents two additional C2 profiles to aid in propagation calculations in cases where

a uniform model would be too simplistic (33). A simple model, in terms of altitude h in meters

above local ground, is

C(h) = h101 3  below 20,000 m above sea level (2.35)

0 above 20,000 m above sea level

In the preceding profile, local ground is assumed to be < 2500 m above sea level. Equation (2.35)

models one of the notable features of empirical C.2 data, which show that the turbulence is strongest

near the ground and generally decreases with altitude. A more complicated formula, known as the

Hufnagel model, captures a second C,2 characteristic-a peak in the turbulence strength in the

neighborhood of the tropopause:

C•(z) = 8.2 x 10 5 6 v2 z1°exp(-z/1000) + 2.7 x 10- 6 exp(-z/1500) (2.36)

where v (m/sec) is -the rms wind speed averaged between 5000 and 20,000 meters and z (m) is the

altitude above sea level. Strictly speaking, the Hufuagel model is only valid above the first strong
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inversion layer (33), however it is often used as a sea level to 20,000 meter profile as shown in the

plot in Figure 2.3.

20 I I

15

(km) 10

5

0
0 0.2 0.4 0.6 0.8 1

Figure 2.3. Hufnagel model for v = 27 m/sec.

2.3.3 Phase Structure Function. According to equation (2.34), the functional form of the

Kolmogorov refractive index power spectrum has a nonintegrable pole at the origin, implying an

infinite variance. Hence, a corresponding autocorrelation function cannot be defined. For this

reason, structure functions are often used to describe statistical quantities in atmospheric optics.

The structure function of a general random process Z(F) is defined as (26)

Vz(IF, 2) = ([Z('I,) - Z( )]2) (2.37)

For homogeneous and isotropic Kolmogorov turbulence and vertical viewing, the refractive index

structure function, V, is found to be (26)

V,.(r) = (2.38)
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Note that DV, is finite for path length separations near zero.

In this dissertation, the phase structure function, D,,, is used in the analysis of Chapter IV.

The derivation of the phase structure function is mathematically complex (26). The procedure,

shown in Figure 2.4, is to calculate the optical path length for two parallel rays traversing the

atmosphere and separated by a distance r. The formula (2.33) is used to obtain expressions for the

Turbulence Aperture
region

Figure 2.4. Procedure used to calculate phase structure function (26)

two phases, 01i and 02, in terms of the random index of refraction. Using these results, DO can be

found in terms of D,, which in turn is obtainable from $n. For isotropic Kolmogorov turbulence,

the final result is (26)

"DO(r) = 2.91k2r51-/3 d C(2) (2.39)

where k is the average wave number of the light and z is the thickness of the turbulence region.

The above result is valid for path separations r within the inertial subrange, a restriction that

is usually of no consequence for the reasons mentioned at the end of Section 2.3.1. Also notice

that equation (2.39) shows that it is the integrated turbulence strength which is of importance for

propagation calculations.
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By substituting equation (2.39) into equation (2.17), the formula for the average long exposure

OTF of the atmosphere for Kolmogorov turbulence is obtained (26):

L(f) = exp [-57.4(dif)5/3•-I/ dJ Cn()] (2.40)

2.3.4 Atmospherw Coherence Diameter. As illustrated in Figuie 2.5, optical rays separated

laterally by more than a few centimeters cross different collections of turbulent eddies, resulting

in deformation in the wavefront. As might be expected, the turbulence scale size results in the

wavefront phase at two points being correlated to some degree if the points are close together and

uncorrelated if the points are widely separated. Fried derived a measure of the area over which

the phase is nominally corr-lated (17, 18). This quantity, designated 7"0 , is known as the Fried

parameter or atmospheric coherence diameter.

The analysis which leads to the definition of r0 begins with the calculation of the long exposure

transfer function of a circular aperture imaging through turbulence. The diffraction-limited OTF

of a circular aperture of diameter D is given by (18):

(= {02 [cos'(dif/D) - (Adif/D) 1 - (Adif/D)2] Adif <- D (2.41)

0 ~Ad,! > D

By multiplying transfer function (2.4U) by (2.41), the long exposure OTF of a circular aperture

imaging through Kolmogorov turbulence is obtained. One measure of resolution for the turbulence-

degraded system is the volume under the OTF. (By Fourier theory, it is also equal to the peak

of the PSF, which is equivalent to a Strehl ratio measure.) Fried found that by taking the limit

of the integrated OTF as D goes to infinity, this resolution approached a maximum value. Fried

then defined r0 as the diameter of an equivalent diffraction-limited telescope with this same value

of resolution. It is a function of wavelength and the optical turbulence strength integrated over the
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Figure 2.5. Optical paths separated by an amount greater than the scale size of the turbulence tra-
verse different collections of eddies. Hence, the degree of correlation between the phase
change experienced by two different rays depends on their path length separation.
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optical path (26): 3/5

A2r0 = 0.185 f 3/,2 (2.42)

where the overbar indicates an average value and z is the thickness of the turbulence region. Thus,

r0 is often more useful than 4b, or C,2, in that, as a single number, it characterizes atmospheric

turbulence conditions. Fried has shown how ro can be interpreted as a measure of the limiting

resolution of an optical system imaging through a random medium (18). Specifcally, regardless

of the actual aperture size, the resolution of a telescope looking through the atmosphere is ap-

proximately that of a diffraction-limited telescope of diameter r0 . (Astronomers still build large

telescopes to gather more light from the object of interest, thereby increasing signal to noise ratio.)

This limitation is quite severe, typical values of r0 range from less than 5 cm for poor observing

or "seeing" conditions to 20 cm if the seeing is "exceptionally good (26)." Measurement of r0 is a

useful parameter for evaluation of potential observatory sites. With the preceding definition of r0 ,

the formula for the Kolmogorov phase structure function simplifies:

(r 5/3

VDO(r) = 6.8839 (- (2.43)

2.3.5 Phase Power Spectrum. The frequency domain analogue to the phase structure func-

tion is the phase power spectrum (48):

0.023

D(f)= 0.02/3 (2.44)
5/3f11/3

This function is plotted in Figure 2.6 for several values of r0 . From inspection of the figure, it is clear

that most of the power in the phase fluctuations is contained in the lowest spatial frequencies. At a

good observatory site, one would expect r0 to be > 0.05 most of the time. Even for this "moderately

poor" value of r0 , there is very little power in the phase fluctuations at spatial frequencies above

2-19



5 cycles per meter. This observation provides support for the assumption that geometrical optics

adequately models propagation down through the atmosphere at a good observatory site. It has

been shown that Fresnel propagation can be described by a transfer function (25):

H(f) = exp(-jirAzf 2 ) (2.45)

where k is the wave number, z is the propagation distance, and a constant phase delay term has been

suppressed. If the argument of this transfer function is plotted out to a spatial frequency of 5 cycles

per meter, as shown in Figure 2.7, it is seen that the quadratic phase dispersion is insignificant for

the spatial frequencies and propagation distances of interest. In studying Figure 2.7, keep in mind

that the strongest turbulence is at the lowest altitudes, usually within - 1 km of the telescope. For

this propagation distance, the phase dispersion is of the order of A/100 or less. For this reason, as

well as the demonstrated success of phase-only correction in adaptive optics systems, virtually all

adaptive optics calculations in the literature are based on geometrical optics.

2.4 Adaptive Optics Imaging Systems

An adaptive optics system performs two main functions: wavefront sensing and wavefront

correction. The next two sections discuss these functions in the context of a telescope aperture

with diameter D larger than the atmospheric coherence diameter r0 . For such a telescope, one may

think of the aperture as divided up into -, D2/r' subapertures. In each of these subapertures, the

wavefront deviates from a plane, having a nonzero slope (tilt), curvature, and higher derivatives.

The objective of current wavefront sensing and correction techniques is to sample the wavefront

in the aperture with a period < ro, measure the subaperture tilts, and reconstruct an estimated

wavefront which would produce the measured slopes.
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Following the sections on wavefront sensing and correction, Section 2.4.3 describes some of

the sources of error in adaptive optics systems. Finally, Section 2.4.4 reviews some of the latest

experiments.

2.4.1 Wavefront Sensing. For a phase correcting adaptive optics system, the WFS must

determine the wavefront deviation from an ideal plane. There is no need to determine the mean

phase (known in the adaptive optics community as "piston") since it has no effect on the image.

The most common WFS discussed in the literaturc is the Hartmann-Shack (H-S) WFS. Shown

in Figure 2.8, the H-S WFS consists of a lenslet array and a charge-coupled device (CCD) grid in

the focal plane of the lenslets. The H-S WFS requires an unresolved point source for best results.

Lenslet Photodector
Array Grid

Figure 2.8. Hartmann-Shack WFS.

If the lenslets are of smaller diameter than r0 , they will focus a diffraction-limited spot on the CCD

photodetectors. From the displacement of the spot from its ideal position, the local wavefront slope

can be calculated.
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2.4.2 Wavefront Correction. At this time, the most common high-bandwidth wavefront.

correction device is the continuously deformable mirror. The surface of the DM is perturbed t.o

fit, as much as possible, the original aberrated wavefront. The relative amount of mirror surface

deflection caused by a single aperture, as a function of distance from the actuator's position, is

called the actuator influence function (29) or mirror response function (63).

The simplest type of DM is a thin plate which is deformed using an arrangement of electrome-

chanical, electromagnetic, or piezoelectric actuators. Thin plate DMs have a wide influence function

which may overlap that of several other actuators, complicating the mirror control problem (29).

A type of mirror with a narrower influence function is a monolithic mirror which incorporates

the reflector surface, actuators, and rigid backplate in one block of material (29). In fact, the

interactuator coupling for Litton/Itek's monolithic piezoelectric mirror (MPM), used at the Air

Force Maui Optical Site (AMOS), can be adjusted from 0 to 20% (12).

A third type of DM with a continuous reflecting surface is the membrane mirror. Tension

is maintained on the membrane to keep it flat, and its surface is deformed with electrostatic

forces. The interesting property of the membrane mirror is that the force F necessary to achieve

a given displacement Z at a distance r from the center is proportional to the Laplacian of the

displacement (10):

V2Z F(r, t) (2.46)
T

where V2 is the Laplacian operator, t is time, and T is the tension/length. Roddier has proposed

a wavefront curvature sensor which measures the Laplacian of the wavefront over a subaperture

instead of its slope (53). Its output could be applied directly to a membrane mirror with no

wavefront reconstruction necessary. The mirror itself would perform the reconstruction sirce it

solves Poisson's equation (equation (2.46)). Such a scheme is also possible with bimorph mirrors,

which are constructed by gluing the reflective surface to a piece of piezoelectric material sandwiched

between electrodes (56).
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In addition to continuous facesheet DMs, there is renewed interest in segmented mirrors. Each

segment of this type of mirror is independently controllable with three degrees of freedom: tip, tilt,

and piston; there is no problem with influence functions cross coupling with other segments (34).

2.4.3 Sources of Error in Adaptive Optics Systems. The four chief causes of systemic error

in adaptive optics systems are measurement noise and sampling error, associated with the WFS;

fitting error, associated with the DM; and time delay error, associated with the control loop. The

residual aperture-average phase variance associated with each of these error sources (rad2 or waves2 )

is designated on, or•, o•, and o, respectively. If these errors are uncorrelated, the total error due

to system imperfections, or, , can be found by summing the variances:

02=a2 +o 2 (2.47)

Ot2 -- "n - S f T

Some integrated system analyses have shown that the combined effect of various error sources is less

than that indicated by the quadrature sum (14). This systemic wavefront variance is in addition

to residual phase error due to anisoplanatism (59).

2.4.3.1 Measurement Noise. WFS measurement noise arises from two primary sources:

photon noise and detector noise. Photon noise is a problem when WFS measurements are made

at low signal levels. The fewer the number of photons collected by the subaperture per integration

time, the less accurate will Le the estimate of the centroid of the focused spot. In fact, the wavefront

phase measurement error variance due to photon noise is inversely proportional to the number of

photons per subaperture per integration time, Nph:

S= Nph ((rad/subaperture)2 ) (2.48)
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Researchers differ as to the exact value of the proportionality constant kn for a H-S WFS. Lincoln

Laboratory researchers give 26.1 as a typical value (46), Kern ct al. use 19.7 (41), Genrui d al.

report 12.2 (24), which is close to the value of 13.4 used by Gardner et al. in their calculations (22).

Previous analyses of adaptive optics often assumed photon-limited detectors, that is, they

assumed that photon noise dominates. However, in practice, Lincoln Laboratory researchers have

found that detector noise dominates. Detector noise may be accounted for by adding a second

term, proportional to Nh 2 to equation (2.48).

2.4.3.2 Sampling Error. If the WFS subapertures were vanishingly small, the wave-

front could be measured with perfect accuracy, assuming no measurement noise. However, due to

the finite size of actual subapertures, coupled with the fact that only the wavefront tilt is mea-

sured, there will be residual wavefront error resulting from the sampling process even in noise-free

conditions. The appropriate Zernike-Kolnogorov residual error formula derived by Noll gives o-'

for a WFS that measures tilt (48):

2 1 d 5/3
0; 0. 134 - (rad2 ) (2.49)

where d (m) is the subaperture diameter.

2.4.3.3 Fitting Error. The term "fitting error" describes the inability of the DM to

perfectly match the reference wavefront, due to the mirror's finite number of degrees of freedom.

Hudgin gives a general expression for this type of error (32):

2 = kf -- (rad2 ) (2.50)
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where L (m) is the distance between actuators. The constant kf depends on actuator geometry

and influence functions. Hudgin calculated a value of kf = 1.302 for a square array of piston-only

segments while Tyson lists a value of 0.2 for a new type of DM (59).

2.4.3.4 Tunc Delay Error. During the WFS integration time, combined with the time

required for wavefront reconstruction and mirror response, the optical turbulence structure changes

slightly. A rule of thumb for time delay error is

2 Vr 5/3 2

01 = kT (rad2 ) (2.51)
( roJ)

where v (m/s) is the transverse wind velocity and T (s) is the time delay. In this case, the propor-

tionality constant is a function of the control algorithm (59).

2.4.4 Experimental Results. Evidently, the first diffraction-limited images obtained with an

adaptive optics system were made in January, 1976, using a technique called image sharpening (8, 9).

The device used was a 30 x 5 cm aperture telescope which employed a linear arrangement of six

piston-adjustable mirrors to maximize the intensity of light passing through a narrow slit. The

system required bright objects and atmospheric coherence times > 7-8 ms. One dimensional

images of the stars Sirius and Arcturus were recorded at visible wavelengths.

Conducting research for the U.S. military, the Massachusetts Institute of Technology Lincoln

Laboratory began adaptive optics research in the 1970s. In 1982, the first compensated star im-

ages were made using the Compensated Imaging System at AMOS, which employs a 168-actuator

MPM (28). Performance details for this system have still not been published (31).

It was not until October, 1989, that the first diffraction-limited photographs of an astronom-

ical object were produced by civilian astronomers (55). The components of this prototype system

included a 1.52 m aperture, an H-S WFS with 5x5 subapertures, a DM with 19 actuators, and a
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tip-tilt mirror for overall tilt compensation. Images of Polaris, binary stars, and a satellite were

made using infrared light, with the best results at wavelengths > 2.2pm.

2.5 Laser Guide Stars

As discussed in Section 2.4.3.1, WFS measurement noise for a photon-limited detector is

inversely proportional to the number of detected photons per subaperture. This result implies

that there is a minimum required level of brightness for a reference source to be suitable for WFS

measurements. An additional requirement for a WFS reference source is that. it be located very close

to the object of interest, so that the light from the reference travels through the same atmospheric

turbulence structure as the light from the object. It turns out that these two requirements are

so stringent at visible wavelengths that adaptive optics can only be used to compensate a few of

the brightest natural stars. For adaptive optics to be useful to astronomers, a means of generating

a suitable WFS reference source at any desired location is necessary. A layer of sodium (Na)

atoms, evidently the result of meteoric ablation, resides in a region of the atmosphere known as

the mesosphere at an altitude of approximately 92 km (58). These atoms can be made to fluoresce

when stimulated by a laser operating at a wavelength of 589 nm. In 1985, Foy and Labeyrie,

unaware of ongoing (at the time, classified) military research, first proposed to the astronomical

community the concept of using laser stimulation of the Na layer to generate reference beacons for

wavefront sensing (15). They also suggested using Rayleigh scattered laser light from molecules in

denser, lower altitude regions of the atmosphere.

There are three problems, directly related to the guide stars themselves, facing the designer

of a laser guided adaptive telescope: guide star brightness, guide star size, and anisoplanatism.

The brightness requirement translates to a laser power requirement, which is currently the most

significant technological limiting factor for this type of telescope. For the most accurate WFS

measurements, the laser guide stars should be as small as natural stars, that is, they should be
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appear to the telescope as an unresolved point source (angular radius < 1.22A/ro) (58). In order

to approach this goal as close as possible, the laser itself may be projected through the adaptive

telescope where it is precompensated by the DM (22).

Anisoplanatism causes two deleterious effects which must be accounted for in the design of a

laser-guided adaptive optics system. The first. effect results from the finite height of the reference

stars. As shown in Figure 2.9, there is an angular separation, a, between the optical paths from the

reference and object for virtually all points in the aperture. (In this figure, the object is assumed to

be a point source.) This effect is known as focus anisoplanatism, because the rays from the beacon

and object seem to focus at different points. It is anticipated, but not yet demonstrated, that focus

Light from point source object

Ref.
Star

if • Aperture

Figure 2.9. Focus anisoplanatism due to finite height of guide stars.

anisoplanatism can be mitigated through the use of multiple guide stars; the required number is

determined via an analysis such as that recently completed by Welsh and Gardner (64). The second
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problem, which is investigated in this dissertation, is depicted in Figure 2.10. In this case, plane

Light from object
point A

Light from object
point B

-- 9 g ; K)Turbulent
D 01ýeddies

Aperture

Figure 2.10. Illustration of FOV problem: Two object points are separated by an angle/1, which
may be greater than the isoplanatic angle.

waves from the object, now an extended source, arrive from various angles, thus traversing different

regions of turbulence than the plane wave perpendicular to the telescope axis. Hence, even though

an adaptive optics system with a single DM may employ a constellation of guide stars to correct the

entire aperture, such correction is only effective for the on-axis plane wave and those from points

2-29



with zenith angles less than appriximately the isoplanatic angle. Note that this FOV problem is

also applicable to adaptive telescopes which use natural stars for wavefront sensing.

2.5.1 Experimental Results. As of April, 1991, as far as the general optics and astronomical

communities knew, a laser guide star adaptive telescope for visible light was still a futuristic concept.

Thompson and Gardner had demonstrated the laser guide star concept in 1987 (58), while, as

discussed in Section 2.2, European astronomers had obtained diffraction-limited infrared imagery

in 1989 (55). These two accomplishments represented the state of the art until, in May, 1991, the

Air Force declassified the results of a decade of research (20, 50). They announced the development

of a 1.5-mneter laser guided adaptive telescope with which a number of turbulence-compensated

astronomical images have been obtained.

In 1983, researchers at the USAF Phillips Laboratory made the first wavefront measurements

using Rayleigh backscattered laser light (20). By comparing the wavefront measurements using the

laser guide star with those made simultaneously with the star Polaris, the utility of the laser guide

star concept was demonstrated. These experiments were also used to validate the theory which

predicted the magnitude of the focus anisoplanatism error.

In 1984-1985, similar experiments were conducted by Lincoln Laboratory using sodium guide

stars (35). This experiment provided the first empirical data showing that focus anisoplanatism is

less severe for a sodium guide star than for a lower-altitude Rayleigh guide star.

Thumpson and Gardner were the first civilian researchers to field test the laser guide star

concept (58). In 1987, they produced and imaged a Na guide star with an apparent brightness

of M, = 14.4 on the visual magnitude scale used by astronomers. This guide star was not bright

enough for wavefront sensing and no attempt was made to achieve the guide star size criterion.

The first astronomical images compensated using a laser guide star were produced in 1988

by Lincoln Laboratory at AMOS (50). They compensated a 60 cm telescope with an open-loop

adaptive optics system consisting of 256-suhaperture Hartmann WFS, a 241 actuator DM, and a
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Rayleigh guide star at an altitude of 4-8 km. The column of air used for the synthetic beacon was

0.75-1.5 km long. Measured Strehl ratios for the star Procyon averaged - 0.3 at visible wavelengths

vs. - 0.05 with no adaptive optics compensation.

In 1989, researchers at the Phillips Laboratory aciieved closed loop adaptive optics com-

pensation on a 1.5 m telescope using a guide star range of 10 km (20). Full-width-half-maximum

resolution of 0.18 arcsec at visible wavelengths was achieved in 2 arcsec seeing conditions. This

level of improvement allowed the two stars of the binary star system 53 ý Ursa Majoris (separation

1.3 arcsec) to be resolved in a 1-second exposure.

The latest significant development occurred in 1990, when the first multiple synthetic beacon

adaptive optics system was demonstrated (65). In this experiment, the wavefront measurements

from two Rayleigh guide stars were combined to compensate an image of the star Pollux. Because

only a 60-cm aperture was used, the reduction in focus anisoplanatism was not apparent. However,

this experiment served to demonstrate the feasibility of multiple guide star systems.

2.6 Summary

Over the past several decades, techniques for rigorous amlysis of the problem of imaging

through the atmosphere have been developed, refined, and validated with experimental results.

Meanwhile, advances in electronic and optical hardware have resulted in successful application

of this theory to obtain nearly diffraction-limited resolution, over small fields, with ground-based

telescopes. Increasing the corrected field of view of these telescopes is one of the next major

problems of interest to the community. A detailed analysis of this problem begins with the next

chapter.
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Ill. Frequency Domain Analysis

3.1 Introducton

In this chapter the problem of estimating the contributions of different parts of the atmosphere

to optical wavefront aberration is addressed from a frequency domain point of view. Motivation for

a frequency domain analysis stems from Beckers' suggestion that the contribution of a particular

layer of the atmosphere to the total phase may be estimated as a linear combination of weighted and

shifted wavefront measurements (5). By transforming into the frequency domain, the spatial shifts

become multiplicative complex exponentials. The result is a linear system of equations with the

layer contributions as unknowns. If the number of measurements equals the number of turbulent

layers, the system may be inverted to obtain the layer contributions. Using Figure 3.1, this approach

will be illustrated for the case of a 2-layer atmosphere with noise-free measurements.

In this chapter, it is assumed that the WFS can directly measure the total phase aberration

function in the aperture plane, t_,,(i), where in indicates the reference source (guide star). In

the example illustrated in Figure 3.1, two such measurements are made, first with guide star 1 and

then with guide star 2. It is assumed that the atmosphere does not change at all during the time

it takes to make the two measurements. Using geometrical optics and assuming the guide stars are

at an infinite altitude, the two measurements may be written

ti) =- 1 (+ zi 1O1) ± ¢ki2(x+ zl 2O1) (3.1)

ot 2 () = ? zj 1 2 ) + 4l3(i+ Z1,02) (3.2)

where On is the angular position of guide star m, z1, is the altitude of turbulent layer i, and V%'i, (i)

is the contribution of turbulent layer i to the total phase aberration. Throughout this dissertation,

this contribution is referred to as wavefront "component" i. Note that a small angle approximation

was used in writing the preceding equations. Transforming the this system of equations into the
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Figure 3.1. Atmosphere modeled by 2 phase screens and probed with 2 guide stars.
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frequency domain:

ýt,(.) = exp(a2rzif-,) ,1,(f)+exp(j27rz,,f- l). ,)(f) (3.3)

bt2(f) = exp(j21rzif. -)WI,(f) + exp(j27rzi,f. 2).q',,,(f) (3.4)

where the tilde indicates the Fourier transform. By inverting the preceding system, the transform of

the turbulent layer contributions may be obtained in terms of the transforms of the measurements.

For turbulent layer 1 the result is

V%' (f) h= 1 (f )Vt 1 (f ) + hw 2(fj)Ot 2 (f) (3.5)

where

hw,1 (f) = exp(j2rZl 2 f . 02) (3.6)
exp[j27rf. (zj,, " + zl,. 2 )] - exp[j27rf. (z,, W02 + z-")

hw,• (f) = -exp(j21rzi2 f. 0"1)(.7

exp[j2rf. (ziWj + zl,-i 2)] - exp[j2rf. (zJ2 + z1,61)] (37)

The magnitude of these complex weights is

Ihwl= Ih"12l =2 sin {7r [(zI2 - z41)f" ( - (3.8)

From the preceding equation, it is seen that these weighting functions, , (f), have a singularity

at the origin. As a result, the low frequency components of any noise in the measurements will be

amplified and the estimates of the turbulent layer contributions will be poor. To deal with noisy

measurements, a minimum mean square error filtering approach is taken in this chapter. Assumed

a priori knowledge statistics of the phase and noise random processes are used to obtain optimum

weights.
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Several simplifying assumptions are necessary in order to analyze this problem in the fre-

quency domain. As in the preceding example, it is assumed throughout this chapter that measure-

ments of the total phase are available, which is not usually true in practice. Also, the finite size of

the telescope aperture is not taken into account. Adaptive optical components such as the WFS

and tilt removal system are modeled approximately as linear spatial filters. Finally, phase statistics

are described with a Gaussian correlation function instead of the Kolmogorov structure function.

Because of these assumptions, and because the analysis is mathematically cumbersome, the results

of this frequency domain analysis are more suitable for qualitative understanding of the estimation

problem rather than for quantitative performance predictions. All of the simplifying -'sumptions

listed in this paragraph are dropped in the spatial domain analysis of Chapter IV.

In Section 3.2, the atmospheric model used in this chapter is presented while Section 3.3

outlines the geometry of the problem. Section 3.4 defines linear models for wavefront propagation,

piston and overall tilt removal, wavefront measurement, and wavefront component estimation. The

analysis is performed in Sections 3.5 and 3.6, while the performance of the estimator is evaluated for

several choices of parameters in Section 3.7. Finally, an example problem is worked in Section 3.8

and a summary is in Section 3.9.

3.2 Atmospheric Model

Experimental evidence indicates that optical turbulence in the atmosphere is often concen-

trated in a small number of layers (52, 61). In a recent paper, McKechnie presented a theoretical

framework for a layered atmospheric model, in which he collapsed the effects of each layer into a

phase screen (45). Based on these experimental and theoretical results, the validity of an atmo-

spheric model consisting of I statistically independent phase screens is assumed. As indicated in

Chapter I, it is assumed that geometrical optics may be used to describe the propagation of light

through down through the atmosphere at the observatory site.
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As described in the previous section, a phase perturbation function b1,(7i) is associated with

each phase screen in this atmospheric model. This function is assumed to be a sample function of

a zero-mean, spatially stationary random process, described by a phase variance, U2 (rad2 ), and

spatial correlation function

rj,(r) = (ik,(F)W1,("+ F)) (3.9)

where r = fV' (m) is the distance between two points in the plane and angle brackets indicate

ensemble averaging. Following Barakat and Beletic (3), it is assumed that the spatial statistics of

the phase screens may be described by Gaussian correlation functions:

F,, (r) = o". exp 2- (rad2 ) (3.10)
p1 1

The parameter pl, (in) is the wavefront correlation length associated with each phase screen. Also

of interest is the power spectral density (PSD) of the phase screen,

p,,Mf) = 7roll,,Po.exp(-r 2 pIf,) ((rad-m) 2 ) (3.11)

which is the Fourier transform of the autocorrelation function with f (m-') being the spatial

frequency variable.

Some researchers may question the validity of the Gaussian autocorrelation function (3.10)

in describing atmospheric statistics. Normally the Kolmogorov structure function, equation (2.43)

is used, because it is well supported by experimental data. However, for proper choice of the

parameters ah, and pi, the structure function which corresponds to the Gaussian correlation

function of equation (3.10),

DG 2= 01 [ - exp 2 (3.12)
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is similar in shape except it approaches a finite variance, in contrast to the infinite variance as-

sociated with Kolmogorov statistics. In this sense, the Gaussian autocorrelation function is more

physically intuitive. By equating expressions (2.43) and (3.12) at, the point r = p,, the following

formula relates r0 and pl,:

r0 = 2.76 Pl, (3.13)6/5
01'.

Figure 3.2 is a representative plot of the two structure functions related by equation (3.13), out to

an approximate outer scale of 1 meter. Strictly speaking, the Kolmogorov structure function is not

valid for points separated by a distance greater than the outer scale. It may be argued that the

Gaussian structure function is as good a model as any for larger scale sizes, given the present state

of knowledge. It should be noted that the correlation length, p1,, and the atmospheric coherence

diameter, r 0 , describe different wavefront characteristics (60).

100 1 1 1 1 1

80 DK (r),ro = 0.2m m
DG(r), o, = 7.75 rad, p = 0.845 m-

60

(rad)2

40

20

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r (m)

Figure 3.2. Comparison of Kolmogorov and Gaussian structure functions

It is useful to relate the strength of each turbulent layer to r0 , the most common measure

of overall seeing conditions. In Chapter II it was shown that for zenith viewing at a particular
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wavelength,

ro5/3 d (3.14)

where 7 is a constant and z is the upper bound of the turbulence region. If the turbulence region

is divided into K contiguous slabs,the preceding equation may be rewritten as follows:

K

o 5/3 dý C.2~k=1

K

r" r- 5 / 3  (3.15)
k=1

where slab k lies between the altitudes zk-j and zk. The definition

rk= [7 d. C,2) (3.16)

is due to Beckers (5). In addition, McKechnie showed that the total wavefront correlation function is

equal to the sum of the individual correlation functions (45). Using this result and equation (3.15),

the statistical averages of of the overall Atmosphere can be related to those of the component layers.

3.3 Geometry

Figure 3.3(a) shows two of M reference sources located well above the optical turbulence

region of the atmosphere, of which two of I turbulent layers are depicted. It is assumed that

the altitude of the reference sources is high enough that the waves emanating from them can be

considered planar. The reference stars are somehow multiplexed so that all M phase perturbation

measurements are made within the atmosphere's correlation time (27), using a single WFS. The

problem is, based on such measurements, to determine the phase perturbation function, 4',(i),

associated with each layer. The coordinate system used for this analysis is shown in Figure 3.3(b).

The position of each reference star is described by a two-dimensional vector 0m = (0m: . 0,m,). The
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components of this vector are angular offsets from the telescope (z) axis in the x and y directions

and are related to the zenith angle 0 by

0 = tan-' (tan2 0, + tan2 0Y) 1/2 (3.17)

z Guide z Guide star

star----- str2- ---- --G uide. - - z- - -- - -------- ---- --- _z9
star 1 9-'-.

S "- -- ---.. Z11 Yt

- I]

Y aperture I

T plane

(a) (b)
Figure 3.3. Location and geometry of reference sources.

Recall that in this chapter the implications of a finite telescope aperture are not being ad-

dressed. As discussed in Chapter IV, an important consideration is that the guide stars must be

close enough together to project a large common portion of each turbulent layer onto the aperture.

3.4 Signal Processing

In the following sections, a linear model for wavefront propagation, overall tilt removal, wave-

front measurement, and wavefront component estimation is presented. The model assumes that

the wavefront sensor output is a continuous representation of the wavefront rather than a discrete

array of slope measurements. This approach avoids the numerical complexities of large matrix cal-
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culations ((13, 63) and Chapter IV) and allows intuitive understanding of the wavefront component

estimation problem. The various functions performed by the adaptive optics system are modeled

as spatial filtering operations (59), allowing insight to be gained into the effect of different system

parameters on the accuracy of the estimates. The analysis of Chapter IV follows a more rigorous

formalism along the lines of reference (63).

3.4.1 Wavefront Propagation. Using a small angle approximation and referring to Fig-

ure 3.3, it can be seen that the plane wave from reference source m projects 4',(x) onto the

aperture plane, shifted by an amount dependent on the layer altitude and guide star position. As-

suming the validity of the geometrical optics approach, the total perturbation, Ot, (i), of a plane

wave from reference source m propagating through I layers is

I

Ot -V 01 V +Z1.(3.18)
i=1

3.4.2 Piston and Overall Tilt Removal. The average value of the phase aberration function

over the area of the telescope aperture is known as the piston mode of the wavefront. The piston

mode is not considered an aberration and does not need to be estimated and compensated by

an adaptive optics system. To obtain accurate results in adaptive optics calculations, the piston

mode must be removed from all wavefront models. Otherwise, adaptive optics system performance

predictions may be too pessimistic because piston estimation and correction errors are included.

In addition to the piston mode, the wavefront intercepted by the telescope aperture will almost

always have a significant nonzero aperture-averaged gradient. Usually, an adaptive optics system

removes this overall tilt with a separate feedback mechanism from the DM. One reason for this

approach is that most deformable mirrors lack the dynamic range to remove substantial overall

tilt components. In keeping with the linear systems approach, overall piston and tilt removal is

approximated by attenuation of the lowest spatial frequencies in the wavefront. Tyson finds that in
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such a spatial filtering method, tilt is seen as having a spatial frequency content. of "about 1/2 cycle

per mirror diameter (59)." Since the amount of piston and overall tilt. depends on the aperture

size, the piston and tilt removal operation is modeled as a convolution of the total wavefront with

an impulse response function ha(Z) which depends on the effective telescope aperture. Letting the

notation ýp(f) represent a tilt-removed wavefront,

•t•() Ot, (i) h+(z), h.I

i=

I

= i(;+ zi, (3.19)

where * indicates two-dimensional convolution and Vj,(i) = 01,(;F) * ha(i) is the piston- and tilt-

removed phase of the ith layer. The function Vt_(;) represents the wavefront to be measured.

The remainder of the analysis deals only with piston- and tilt-removed wavefronts.

3.4-3 Wavefront Measurement. Typically, wavefront sensors used in practical adaptive op-

tics systems measure the gradient of the total wavefront instead of the actual phase. The estimate

of the wavefront is then reconstructed on the surface of the DM via a summation of the influence

functions which describe the spatial response of each mirror actuator. In this chapter, these two

processes are combined and the adaptive optics system is modeled as measuring the wavefront

phase directly. This wavefront "measurement" will have two chief sources of error: sampling error

and measurement noise. Both of these error sources are related to the size of the WFS subapertures

in an adaptive optics system.

3.4.3.1 Sampling Error. Actual wavefront sensors usually divide the telescope aper-

ture into an array of subapertures, and the wavefront slope is measured over each subaperture.

Because of the finite size of the subaperture, the WFS cannot measure the phase gradient at a
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single point. Instead, the WFS determines the average gradieit over the subaperture. Similarly,

the DM cannot reconstruct the highest spatial frequencies in the wavefront due to the spatial sepa-

ration of the actuator positions, which is approximately equal to the size of the WFS subapertures.

These inaccuracies are modeled as a sampling error in the wavefront measurement process. In this

analysis these spatial limitations are described with an impulse response function, hsa(;F), related

to the subaperture size, so that the output of the wavefront measurement/reconstruction system

can be written

()= P,( * hsa(F) (3.20)

Because of the fact that actual wavefront sensors measure the average wavefront gradient over the

subaperture, the form of hsa(i) is chosen to implement subaperture wavefront averaging. Hence,

pt_(;) represents the measured wavefront, with the overbar indicating the average phase over the

subaperture. In this model, the subapertures are not fixed to a grid of points, rather, a continuous

output is assumed. As indicated previously, this approximation simplifies the analysis by allowing

the analysis to be conducted in terms of continuous functions.

3.4.3.2 Measurement Noise. Due primarily to photon noise, the WFS measurements

will be somewhat in error. This effect is modeled with a continuous, zero mean random process,

n(i) (rad), which is independent of the random processes 1j,(i). In an actual wavefront sensor,

the measurement noise is uncorrelated from subaperture to subaperture (62). For this reason, the

noise is not expected to contribute significantly to the lowest spatial frequencies in the wavefront

aberration function. Hence, the noise is modeled as white, except for attenuation of the lowest

spatial frequencies according to the size of the telescope aperture:

r1(e) = n( *) ha(i) (3.21)

where Y1(i) (rad) is the "tilt-removed" noise.
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To complete the model of the wavefront sensor, the second order statistics of the noise need

to be further specified by selecting an appropriate value, .A, for the constant noise power spectral

density. If the mean square error in the WFS measurements is a 2 (rad-2 ), then the corresponding

noise power density level is

A - 1 (3.22)
Jdflh&(f)121hsh( f)12

where h indicates the Fourier transform of h and f= (f1 , fy) (m-) is a spatial frequency vector.

The tilt-removed noise PSD is then

t,(f= KIh8 (f)1 2  ((rad-m) 2 ) (3.23)

The final output of the measurement system, (o't(i), is the average noise-contaminated

wavefront over a subaperture:

( = [t,,,(") + 77m(i)] * h. 8(;F) (3.24)

where qm(f) is the noise in the mth wavefront measurement.

3.4.4 Component Estimation. Beckers suggested collecting an ensemble of wavefront mea-

surements given by equation (3.24), spatially shifting them so that the component from a particular

turbulent layer will be properly aligned in each measurement, and then averaging the ensemble.

He expected that the result of such an averaging process will be strongly weighted toward the

contribution from the turbulent layer of interest, with contributions from other layers tending to

average out. This idea is generalized to a goal of finding the optimum combination of amplitude

weighting and shifting which needs to be applied to each measurement in the linear combination.

Since amplitude weighting and spatial shifting are linear shift-invariant operations, the estimate of
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1,(i) takes the following form:

M

m=1

= y, p.,(i+ zl, ) + im(•)] *hhsa()* _ (i) (3.25)

where hw,_(i) represents the amplitude weighting and shifting applied to wavefront sensor mea-

s'irement in in the estimate of wavefront component V'% (ix). The task at hand is to find the optimum

set of functions hw,, (X).

3.5 Mean Square Error Calculation

The goal is to minimize the mean square error in the estimate. Using angle brackets to signify

expectation, the mean square difference between the estimated and actual wavefront phase from

the ith turbulent layer is defined as:

C 2(i) =

(V (i~()) + (02i) 2(@(ii(F)

= + 2 (0)

The double subscripts indicate cross correlation functions or cross power spectra, as appropriate.

If it assumed that the second order statistics (i.e. rp,,) of each phase screen are known a priori,

then the quantities in equation (3.26) can be calculated (i.e. rF,,, o,, r2,, , r•,•,, and
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•P,,¢ ). Using equation (3.25), the autocorrelation function of ,,(i) is found:

P1. (P + 0)n,(''))

=~ ~ XU. + ' 1,{+i~9
m= -m-1 i'-1

17,i) *h (.F)*hw ( hsa(-)hsa(-) (3.27)

In arriving at equation (3.27), the mutual independence of the random process 1 and nr 1(i)

was used. The derivation of this expression is found in Appendix A.

The Fourier transform of equation (3.27) is the power spectral density of 1j,(j):

Ih,.(f) =

Iisa,(f)12  [ _ 4•,(f)hi'm(f)h:,m,(f)hw,(f)hw, (f) + t,-(f) )Ih-W (f)12.

M=l m'=1 i'=1 J

(3.28)

In the above equation, h4m = expU27zI,(lm,, f)], and h* is the complex conjugate of h. Having

derived equation (3.28), it is less difficult to obtain the cross power spectrum , (f):

M

(f= ,, (f )hs,(f ) hi-(f)hw.(f) (3.29)
m=I

The power spectra in (3.28) and (3.29) mziy be substituted in equation (3.26) to obtain a general

expression for the mean squared error in estimating the wavefront contribution of one of I turbulent

layers using measurements made from M different reference sources.

3.6 Derivation of Optimum Weights

For illustration purposes, the case of two turbulent layers and two reference sources is con-

sidered. The calculations can be generalized for M > I > 2, but, as the previous section indicates,
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lengthy expr-ssions are involved. [ett ing Al = / = 2, the general res.ults of the prec,.diig sect M

are used to obt.ain the i nvaii-square ,rror ii th.he e'sthniat.ion for thiis cast:

= 1r1 , + df"dff I lh. ii- Ihw,,) + .,,I-+t 
1 1 i, , i1,,1,f_ -

C hj(~i = Tw. W11)] 12 +

"ff (if,. [1, +-2(h., 1i,2) + ] ,,, +, 2l{Q.I - -- 11})1 .+

JJ(if, ('fy [il.sa12 (Oh., 1, + Ii1 4 12)]:m

liere, the fact, that II'- I was used, and the (f,1 ,f) dependence wa.,; supprresse•, to shorten

the expression. 'hIe goal is t~o fiil([ hw, and h•v, to mininirize (2. yo simplify the iiiat'l(iuiat;ics five

assiitions are iiiade:

q•h= •, (3.31)

O1 = -0 (3.32)

zt, = 2.j, (3.33)

1 f, f < fsa
((3.34)

0 otherwise

0 f.". , Kfy f
hk(f (3.35)

1 otherwise

Assumption (3.31) is not realistic for typical atmospheric conditions. Usually, the turbulent layer

nearest. the ground is stronger than the one at higher altitude. However, using this assumption, the

results should represent a nmedian value for (. That is, the results are expected to he better than

if one were trying to estimate the wavefront due to the weaker of a pair of turbulent, layers, but

worse than if one were estimating that of the stronger of the two. Assumptions (3.32) and (3.33)

allow the use of trigonometric identities to simplify the mathematics. Physically, these assumptions
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specify that the guide stars are placed symmetrically about the optical axis and that the highest

turbulent layer is located at twice the altitude of the lowest. A consequence of assumption (3.34)

is that the impulse response of the WFS is

42 sin(2rfsarx) sin(2irfsay) (3.36)

hs(x, y) = fsa 27rfsx 2 7rfsay

A measure of the width of hsa(i) is

1 (d = (3.37)
2fsýa

The parameter d is equivalent to the subaperture spacing in a WFS. Assumption (3.35), models

piston and tilt removal as the attenuation of the lowest spatial frequencies in the wavefront random

process. The cutoff frequency fa is related to the aperture diameter D in a manner similar to

equation (3.37):
1

fa = (3.38)2D

Using the assumptions given in (3.31) through (3.35), a somewhat simpler expression for the

mean square error is obtained:

2= o;2 + df. df, l[W,, +lhww1+ +•l -fsa f-sa I

+ h.i)]+ (IA.ý.1I2 + 11W12 12)1,} (3.39)

Appendix A contains the details of this simplification. Having simplified the mean square error

expression, the next step is to look for hw,, and hw, 2 to minimize C2.

From inspection of equation (3.39), it is seen that it is necessary that

Im{h,,w hl + hw, 2h 1 j} = 0 (3.40)
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since the mean square error calculation must result in a real number. The above requirement leads

to a coupling between the functions hw,, and hw12 :

Rejhw,, I = Re{hwj } Re~hll}Im{i hWl + hW121 (3.41)lrn{hll}{ 1+h 1 }

To obtain the optimum functions, equation (3.41) is substituted into (3.39), and the following

system of equations is solved to get the real and imaginary parts of each weight:

- = = 0 (3.42)0Iml hw t, I 9Rejhwj2 a 0Imhwt2

where I represents the term inside the large curly braces in equation (3.39). The real part of hwl,

is then obtained from (3.41). A symbolic mathematics software package was extremely useful in

performing the calculations and simplifying the results (44). With its aid, the real and imaginary

parts of the optimum weights are found to be

Re{hj,,I} = Rejhw1 2 = Re{hij} [2, h, + 4Im2ihll}•4 ] (3.43),p2 + 4$,t O + 41m 2 {hii}4I

- Im{ j = Im{hwt} = Imr{hi} [sIW, I) + (2- 4Re{h ) I,(3.44)

Substitution of equations (3.43) and (3.44) into (3.39) and further use of computer algebra

software leads to the final expression for the mean square error in estimating the wavefront. due to

one of tt'.o turbulent layers under assumptions (3.31) through (3.35):

fra flsa 2.t2 -t, + 41m2{hl}a,

C2 = aw J df. dr, 4m2{hl p2$ , (3.45)
-7 4,, + 41m
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3.7 Performance Plots

The performance of the estimator may be evaluated by substituting different values of wave-

front variance c, measurement noise variance or2 wavefront correlation length pj, wavefront

sensor spatial bandwidth fsa, tilt bandwidth fa, turbulent layer altitude zl,, and guide star posi-

tion 01 into equation (3.45). Results of the computations are plotted in Figures 3.4 through 3.8.

Each figure is intended to illustrate the effect of varying a different parameter on the accuracy of

the estimate, with the other parameters held constant. The curves are plotted against a "seeing-

to-error" (SER) ratio:

SER = 20 log OP-ý- (3.46)

The SER ir intended to show how much of the measured phase fluctuations are due to the seeing

layer vs. the measurement error. The term "signal-to-noise" ratio is avoided since intensity levels

are not being compared; however the SER plays a similar role in this estimation problem.

3.7.1 Tilt Removal. Tyson modeled an adaptive optics system as a two-dimensional spatial

filter. As mentioned previously, he found that tilt may be viewed as having a spatial frequency

content up to about 1/2 cycle per telescope diameter (59). With this guideline, a range of values for

tilt bandwidth, fa was selected and the results plotted in Figures 3.4 and 3.5. For the correlation

length, the value pl, = 0.845 m was used. This value was employed in Section 3.2 to match the

Gaussian structure function to the Kolmogorov structure function with ro = 0.2 m and outer scale

of 1 m. As illustrated in Figure 3.4, eliminating the lowest spatial frequencies helps because the

weighting functions liw,, have large magnitudes for low spatial frequencies, since most of the power

in the phase fluctuations is concentrated in this region. Note that Figure 3.4 shows the rms error in

the estimate normalized by the tilt-removed rms variation, ao,,,. As the lowest spatial frequencies

are filtered out, the rms phase variation decreases. This normalization shows the improvement in

the performance of the estimator alone, since it compares the rms error in the estimate to the rms

phase deviation in the wavefront component that is actually in the measurement. Figure 3.5 shows
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the same data normalized by the non-tilt-removed rms variation, ao,,. This second plot is included

to illustrate the benefits of tilt removal to overall system performance. In this dissertation, the

primary interest is in the performance of the wavefront component estimator, so the plots discussed

in the next section are normalized by the tilt-removed rms variation, o,.

0 .7 , I , , , , I ,

0.6

0.5

0.4 fa=0.12' ,n-'
40.25 m-1

0.3 0.5 m-1

0.2

0.1

0 5 10 15 20 25 30 35 40 45 50
SER (dB)

Figure 3.4. Estimator performance as function of tilt bandwidth (Pl = 0.845 m, , = (10-5, 0)
rad, fsa = 5 m-1, zi, = 5000 m). Results normalized by tilt-removed phase variance.

3.7.2 WFS Bandwidth. Figure 3.6 shows that the error performance improves as the spa-

tial bandwidth of the wavefront sensor is increased. An increase in the WFS spatial bandwidth

corresponds to a decrease in the size of the subaperture according to equation (3.37). As the wave-

front is sampled with smaller apertures, the high frequency components in the random process

are measured more accurately. The performance improvement is asymptotic because as the WFS

bandwidth increases, eventually all of the significant power in the V1, random process is contained

within the passband.

3.7.3 Phase Correlation Length. Figure 3.7 shows how the performance of the estimator

varies as the width of the wavefront autocorrelation function is varied. Performance improves

as pl, increases since a wider autocorrelation function corresponds to a narrower power spectrum.
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Figure 3.5. Estimator performance as function of tilt bandwidth (pl, = 0.845 m, 1 = (10-5,0)
rad, fA = 5 m-1, zi, = 5000 m). Results normalized by non-tilt-removed phase
variance.

0.7 , , i

2.5 m-1
0.6 fsa = 5 m-1

10 m-1
0.5

0.4

0.3
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0 5 10 15 20 25 30 35 40 45 50
SER (dB)

Figure 3.6. Estimator performance as function of WFS spatial bandwidth (P, = 0.845 m, =

(10',0) rad, f& = 0.5 m-1, zj, = 5000 m)
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Hence, as Pl, increases more of the significant power in the random process falls within the passband

of the WFS transfer function hsa(f). This effect is asymptotic for the same reason as discussed in

the previous paragraph.

0 .6 I , I I I , I

0.4 m

0.5 P= 0. 8 m

1.6 m-

0.4

E /O 0 i0.3

0.2

0.1

0 5 10 15 20 25 30 35 40 45 50
SER (dB)

Figure 3.7. Estimator performance as function of wavefront correlation length (01 = (10-', 0)
rad, fa = 0.5 m- 1 , fA = 5 m-1, zi, = 5000 m)

3.7.4 Guide Star Separation. Figure 3.8 shows that estimator performance improves as

the reference stars are spread more widely apart. Wider reference star separation means that

the optimum weights must shift the measurements a greater distance in order to correlate the

contribution from the turbulent layer of interest in each wavefront measurement. Such large spatial

shifts also have the beneficial effect of decorrelating the contributions from the other layers more

than small spatial shifts. This improvement is also asymptotic; after a point, the additional benefit

of further decorrelation is negligible since after a point the shift of the competing layers is so large

as to be on the skirts of the correlation functions. The finite size of the telescope aperture, not yet

taken into account, would restrict guide star separation in a practical system.
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Figure 3.8. Estimator performance as function of reference star angular separation (Pl, = 0.845
m, fa = 0.5 m-1, fsa = 5 m-1, zi, = 5000 m)

3.8 Example

The results of the previous section are now applied to the analysis of the performance of a

multiconjugate adaptive optics system. For this example, it is assumed that the seeing conditions

are characterized by Kolmogorov turbulence with r0 = 20 cm. The Kolmogorov structure function

is approximated with a Gaussian structure function, as shown in Figure 3.2, and it is found that

a = 7.75 rad and p = 0.845 m are good choices of parameters.

It is assumed that the turbulence is characterized by two identical layers, one at altitude

zj, = 5000 m and the other at zi, = 10000 m, so the final result of the last Section (3.45) can be

used in the calculations for this example. Using formula (3.15), it is seen that r, = r 2 - 30 cm. Also,

the variance of the phase divides equally between the two turbulent layers, hence ,, = = 5.5

rad.

Consistent with assumption (3.32) the guide stars are positioned symmetrically, with 01 =

-02 = (I0-',0) rad. For an effective aperture size of I m, and assuming tilt accounts for up to

1/2 cycle per effective telescope aperture, f& = 0.5 m- 1 is obtained. This leads to a value of a,
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of - 1.9 rad, implying that - 88%. of the power in the ol random process is contained in the

tilt component, which is about right for Kolmogorov turbulence. For subapertures that are 10 cm

square, equation (3.37) may be used to approximate fsa as 5 m- 1. Using these parameters in (3.45)

the plot shown in Figure 3.9 is obtained, which gives the error in estimating the contribution of

one of the two turbulent layers to the total wavefront.

0.6

0.5 . '

0.4

f (rad) 0.3 "

0.2 -- _

0.1

0
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

o, (rad)

Figure 3.9. Estimator performance for ap,, = 5.5 rad, pl, = 0.845 m, OW = (10',0) rad, fsa = 5
m-', f, = 0.5 m- 1 , zi, = 5000 m

A typical goal for an adaptive optics system is to remove the rms wavefront phase distortion

to < 0.5 rad (19). The error in the estimated wavefront component will be one of several factors

contributing to the inability of the adaptive optics system to perfectly remove phase distortion.

Some of the possible factors for a two-DM MCAO system include: 1) wavefront estimation error

for two wavefront components, 2) overall tilt removal error, and 3) error due to the change in the

state of the atmosphere during processing time (time delay error). In order to achieve a system

design goal of 0.5 rad rms residual phase error, the variance of each of the 4 aforementioned error

sources must be a factor of 4 less than the goal. This consideration leads to a desired wavefront
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component estimation error of - 0.25 rad rms. From Figure 3.9, it is seen that this level of

perf:-rmance requires the wavefront measurement error to be < 0.08 rad rms.

Wavefront sensor measurement noise power is inversely related to the number of photons

entering the subaperture per integration time, Nph:

On = k (rad) (3.47)

where k,, is a constant which depends on wavefront sensor characteristics. In their recent analysis

of a laser guide star adaptive optical telescope, Gardner et al. used kn = 1.30 (22). From the

above formula and Figure 3.9, it is seen that 264 photons per subaperture per wavefront sensor

integration time would be necessary to estimate •o, (i) to the required accuracy. This flux level is

about 14 times that specified by Gardner et al. for a single-DM adaptive optics system to achieve

a rms wavefront error of - 0.57 rad when ro = 20 cm.

3.9 Summary

In this chapter, a frequency domain approach was taken to solve the problem of estimating

the contribution of different parts of the atmosphere to total wavefront aberration. This approach

provides some insight into the problem, but the approximations involved make the quantitative

results somewhat questionable. The next chapter describes a spatial domain analysis which involves

considerably fewer approximations.
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IV. Spatial Domain Analysis

4.1 Introduction

In this chapter, a statistical approach is used determine the proper commands for each DM.

The approach is based on Wallner's general adaptive optics system analysis method (62), which is

extended to include systems with multiple guide stars and DMs. In Section 4.2, the atmosphere

model used in this chapter is described, while Section 4.3 outlines the adaptive optics system model,

The main analytical results are in Section 4.4, in which expressions for two types of mean square

residual wavefront phase error are derived: 1) averaged over the surface of each DM and 2) averaged

over the area of an object wavefront. The DM control commands are chosen to minimize the first

type of error, while the second type of error is the criterion used to evaluate performance of the

MCAO system. In Section 4.5, specific system and atmosphere characteristics are assumed in order

to make numerical computations. In Section 4.6, the results of such computations are shown and

a summary is in Section 4.7.

4.2 Atmospheric Model

As discussed in previous chapters, several factors motivate the consideration of a layered

atmosphere model for an analysis of MCAO. One reason is that experimental evidence indicates that

the optical turbulence in the atmosphere is often concentrated in a small number of layers (52, 61).

However, any turbulence distribution could be approximated by using a sufficient number of layers.

Since an MCAO system approximates a layered atmospheric structure, the use of such a model is

convenient for analysis purposes.

To build a layered atmospheric model, it is first assumed that the refractive index structure

constant, Cn(z) (m- 2 /), is known as a function of altitude, z. This information could come from

a remote sensing instrument. This continuous profile is discretized into I thin turbulent layers at

altitudes zi, (m). Each layer is modeled with a random phase screen, V*,(i) (rad). The phase
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screen i (i) describes how the phase of an optical wave propagating through the horizontal plane

z = zj, is altered as a two-dimensional function of position i (m). This function is assumed to be

a sample function of a random process characterized by a structure function D)i (rad2 ):

T), (i,;il ) = ([V),,(i) _ ý,'l,(Z )] 2) (4.1)

where the angle brackets indicate an ensemble average. The turbulent layers are assumed to be

statistically independent (26, 45).

As in Chapter III, geometrical optics propagation is assumed between the turbulent layers.

This layered turbulence model is now used to write an expression for the total phase aberration

on an optical wave emanating from a point source at an arbitrary position. Figure 4.1 shows

a ray traced from the source through turbulent layer 4j,(i) to point ;F in the aperture plane.

The location of the source is given by the position vector F. = (zs=s•, ;sO,, z,) (using a small

angle approximation). The position vector / denotes the point where the ray crosses the plane of

turbulent layer i. From the geometry, / is found to be

S= j+ ) {[(f - i) - i + [m - i) - m o (4.2)
\Zs/

where i and y are unit vectors in the z and y directions. This expression can be simplified to

+21,85 (4.3)

Using this result, along with the geometrical optics assumption, the total wavefront in the

aperture plane, Obt(.F), from a source located at position O4 (rad) and altitude z. (m) is the sum of
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the I turbulent layer (phase screen) contributions.

I

i=1 Z

where V'1,(i) is the contribution of turbulent layer i. In this model, the spherical surface of the

wavefront from a finite altitude source is ignored. In practice, it must be accurately determined (36).

4.3 System Model

The adaptive optics system model described in this section is based on the model presented

by Wallner in (62). His model was also used by Welsh and Gardner to study the single-DM, open

loop adaptive telescope schematically diagrammed in Figure 4.2. In this illustration, a reference

wavefront propagates through a region of optical turbulence and arrives at the telescope aperture

as an aberrated wavefront described by the phase perturbation function, V't(i) (rad). A WFS

in a conjugate plane to the aperture measures the average wavefront gradient over an array of

subapertures. The control matrix, M, linearly combines the slope measurements, s, to obtain a

set of command voltages, c, to be applied to the actuators on the DM. Typically, the DM is also

conjugated to the aperture plane. The matrix M is chosen to minimize some functional of the

.esidual wavefront error, c(;F) (rad).

In this chapter, this model is generalized so that adaptive telescopes with K DMs can be

studied. As shown in Figure 4.3 (K = 2), the light reflects off each DM in series. In this approach,

the DMs are conjugated to planes at a range of distances from the aperture. Appropriate command

vectors Ck (or, equivalently, control matrices Mk) are chosen so that the DMs replicate, as closely as

possible, the three dimensional turbulence structure. Although not shown in Figure 4.2 for clarity,

this multiple-DM system still ha- a single WFS conjugated to the aperture plane.

4-4



Reference wavefront(-I

-I Turbulent layers

Aberrated wavefront
wj(x) in aperture plane

SWFS at image

/\of aperture

(slopes)

M Control

matrix
E(x)

/-- DMat image
/- of aperture

,• •J /(DM commands)

Compensated
wavefront (a)

Figure 4.2. Single-DM, open-loop adaptive optical telescope.
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Figure 4.3. Two-DM, open-loop adaptive optical telescope.
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4.3.1 Guide stars Multiple guide stars are required for an MCAO telescope for two reasons:

1) to completely sample the turbulence structure throughout the FOV to be compensated (57),

and 2) to combine multiple measurements to improve the quality of the estimate of the turbulent

layer contributions (5). With M guide stars positioned to project through the turbulence region at

different angles, the adaptive optical system will collect an ensemble of Al wavefront measurements.

In Section 4.4, it is shown that the spatial diversity in the measured wavefronts, along with the

geometrical optics assumption, will enable determination of the DM control matrices, Mk, using

standard minimum-variance techniques.

Since very few natural stars are bright enough to be used for WFS measurements at visible

wavelengths, the guide star array for a multiple-guide-star system must be artificially generated. As

discussed in Chapter II, laser beams have already been used to make practical WFS light sources

using Rayleigh scattering from air molecules in the troposphere (20) and stimulation of resonance

fluorescence in a naturally occurring layer of sodium atoms in the mesosphere (35). Overall tilt

information cannot be obtained from the artificial guide stars, since the laser projection system

also requires tilt compensation. Rather, natural guide stars are used to provide a reference for tilt-

correction with a two-degree-of-freedom, or "tip-tilt" mirror. Since the full aperture may be used

for overall tilt sensing, the brightness requirements are not as stringent for the tilt compensation

guide star as for the WFS reference. However, to obtain the full benefits of high-order correction,

commensurately accurate tilt compensation is required. For this reason, the brightness of the tilt

guide star and its proximity to the object are limiting factors on the performance of any laser guide

star adaptive optics system, including an MCAO system (16, 51, 54).

The position of each of the M reference stars is described by a two-dimensional vector 0, =

(ems, Om,). The altitude of the guide stars is designated zg. Using equation (4.4), an expression for
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the total wavefront phase perturbation in the aperture plane due to guide star ?n car) be written:

I Vt (;F) -1, [i 1 - Z- + ZO (4.5)

One way to associate the measured wavefronts with their reference sources is by time multi-

plexing the guide stars. However, it is required that all M phase perturbation measurements be

made within the atmosphere's correlation time (27). This requirement clearly limits the number of

measurements. Researchers have already demonstrated adaptive optics using sequential wavefront

measurements from two artificial guide stars (47). In this experiment, the guide stars were created

via Rayleigh backscattered laser light. It is speculated that wavelength multiplexing could be a.

other possible means of distinguishing the measurements when using Rayleigh guide stars. Sodium

guide stars have the advantage of having a much higher altitude, thus reducing the effects of focus

anisoplanatism (22). However, since all sodium guide stars have the same wavelength, they cannot

be distinguished chromatically.

4.3.2 Wavefront sensor Recall that the proposed MCAO system, although having several

DMs, has only one WFS optically conjugated to the telescope pupil. In this section, the WFS is

modeled after a Hartmann sensor. This type of WFS outputs the average wavefront gradient over

a grid of subapertures. Before modeling the output of the WFS, the aperture-average phase is

removed from the mth reference wavefront, Ot, (;) to obtain a piston-removed wavefront, ot_ (i):

Vt-(V) = tý V)- lktý, (4.6)

where the piston mode of the wavefront from the mth guide star, Ct,, is given by

d= d2i .( z(i)Vt, (i) (4.7)
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and Wa(i) (m- 2 ) is the weighting function of the telescope aperture, which for convenience is

normalized such that

j d (2 iWa) = 1 (4.8)

Throughout this chapter, the notation o indicates a wavefront with piston removed over the area

of the telescope aperture.

To model the WFS, the telescope aperture is divided into N/2 subapertures. Assuming small

wavefront deviation over the subaperture, the WFS output can be approximated as the average

wavefront gradient over each subaperture (62). Thus, the wavefront sensor output consists of an

N-dimensional vector of slope values-the slope in the x and y directions over each subaperture.

The nth slope measurement from the mth guide star s (rad/m), is described by (62)

sm,., d [i ( f]S•t,.A)L m. + an. (4.9)

where

Wn(i) (m- 2 ) is the weighting function of the subaperture used for slope measurement n,

Pt_, (i) (rad) is the piston-removed wavefront from guide star m,

di is the direction of sensitivity of the nth slope sensor (. for odd n and y for even n),

vm. is the overall tilt in the d direction during upward propagation,

•mn (rad/m) is the noise in the measurement,

and V is the gradient operator.

As shown in Appendix B, the first term of equation (4.9) is obtained by integrating by parts

an expression for the aperture averaged wavefront gradient. It represents the true value of the

average slope of ýpt_(f) over the subaperture Wn(i) while the last term represents measurement

noise effects. The second term of equation (4.9) desprves a more detailed discussion. The overall tilt

term, vrn., is modeled as the best fit plane to the laser beam wavefront after upward propagation to
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the scattering layer, given by vm, x+vmy. This term is present because, due to optical reciprocity,

the overall tilt experienced by the laser beam on the way up partially cancels that experienced

by the guide star wavefront on the downward propagation. The amount of cancellation depends

on the size of the laser projection aperture relative to the pupil. It is important to include this

"blindness" to overall tilt to obtain accurate results from this analysis. Not including this term is

equivalent to assuming that overall tilt information is available in the direction of each guide star,

which is unrealistic. Letting a equal x or y, as appropriate, the tilt coefficient is found to be

/d'i Wp(i )a~pt_(Fb'rna=(4.10)

f d2£ Wp(i)a2

where IWp(i) (m- 2 ) is the weighting function of the laser projection aperture.

Following the usual practice, the slope measurement noise, am,, is modeled as zero mean

and uncorrelated with the turbulence (62). Also, the noise is uncorrelated from subaperture to

subaperture and measurement to measurement. Furthermore, the noise added to the x-directed

slope is uncorrelated with that added to the y-directed slope, even when measured in the same

subaperture. Mathematically,

(cmnCam',')= 7- ,,,bm, ,,,, (4.11)

S- 0 (4.12)

where o', ((rad/m)2 ) is the variance of the slope measurement noise and qq,' is the Kronecker delta.

4.3.3 Deformable mirrors The mathematical model for the kth DM consists of a collection

of Jk two-dimensional actuator influence functions r~k(V) (M). Physically, these functions represent

the shape of the mirror surface when a unit command voltage is applied to the jth actuator on the

kth DM, with the other actuators held at their quiescent position. The spatial extent, of DM k is

indicated by a weighting function, Wd,(i) (m- 2 ), which is normalized in the same manner as the
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pupil weighting function, W4a(i). Unlike the case of the single-DM adaptive telescope studied by

Welsh and Gardner (63), the DM weighting function is not, in general, the same as the aperture

weighting function. As shown in Figure 4.4, to widen the corrected FOV the DM must compensate

an area larger than the aperture. The extent of Wd,J(i) is determined by the altitude of the plane

conjugate to the kth mirror, zd, (m), and the FOV of the telescope, 3 (rad).

4.4 Analysts

The previous sections defined a layered atmospheric model and generalized Wallner's adaptive

optics system models to allow for an arbitrary number of guide stars and DMs. This section presents

a method which uses the ensemble of wavefront measurements to obtain K sets of DM command

voltages. The intent is to construct a three-dimensional correction for atmospheric distortion in

the optical train of the telescope. The general approach is to divide the atmosphere into K slabs,

corresponding to the available K DMs. The contribution of the kth slab to the total wavefront is

called the kth wavefront "component" and designated Odj(i). The surface of DM k is figured to

compensate for the wavefront bdi(z), where 'd, is the piston- and tilt-removed phase

Od,(XV) =- Odk(a") - i Wdk(i )1Pdk V) - (vdx + a,,y) (4.13)

where vd•" is defined in the same way as v,,,. (equation (4.10)) except the DM weighting function

is used. (It is desirable to place a piston- and tilt-removed wavefront on the surface of the DM to

help ensure that the actuators are not driven beyond the limits of their dynamic range. Recall that

overall tilt is compensated by a separate correction system, not by the DMs.) In analyzing the

performance of an MCAO system, two types of errors are of interest. The first type is the mean

square difference between the desired and actual surfaces of the kth DM. Then an optimum matrix,

M;, is chosen to minimize this difference using the phase screen statistics. This reconstruction

method is known as the minimum variance approach. To evaluate the performance of the MCAO
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system, the second type of error is computed: the average residual phase error in the object

wavefront after compensation by all K DMs and the tip-tilt mirror. First, consider the error in the

reconstructed wavefront on the individual DMs.

4.4.1 Error in the reconstructed wavefront component Recall that the goal is to have each

DM in the MCAO system compensate for the phase distortion effects for a certain portion of

the atmosphere. That contribution, or wavefront component, must be reconstructed using the

information in the slope measurements from M guide stars and a priori knowledge of phase and

noise statistics. The analysis in this section results in expression for the reconstructed wavefront

component placed on the kth DM. As discussed previously, each wavefront measurement consists of

an N-dimensional vector of subaperture slopes, smn, collected in the aperture plane using guide star

m. If there are M guide stars, then altogether there are MN slope measurements. The command

voltage cjk, to be applied to actuator j on DM k, is computed from a linear combination of these

slope measurements:
M N

Cjk = E E MjkmnSmn (4.14)
m=1 n=1

where Mjkmn is the weight of the nth slope measurement from the ruth guide star in the jth

actuator command for DM k. In matrix notation,

Ck = Mks (4.15)

where the vector Ck has the individual cjk as its elements and the vector s contains all MN slope

measurements. The matrix Mk is a Jk x MN reconstruction matrix for DM k.

After figuring, the surface of DM k may be mathematically described by a linear combination

of actuator influence functions rjk(i). With the actuator commands given by equation (4.15),

the surface of the DM forms an estimate of the wavefront component Odj(f). Designating this
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estimated wavefront, 'Pd,(i), it may be written as

(d.,(') = Ck rk(;)

= Mks -rk(i) (4.16)

where rk(y) is a Jk-dimensional vector of actuator influence functions for DM k.

The error in the reconstructed wavefront component placed on the kth DM, Ek(ir), may be

written

d ) - d( ) (4.17)

The mean square error averaged over the surface of the kth DM is

2 dr[ 2)=

= d2iWdk'i)Ký2 ()) +fd2iWdk(g)(02(i))

-2 d2j Wd( (i) (l()¢dk(•)) (4.18)

where Wd, (;) is the aperture weighting function for DM k. Implicitly, (kC) is a function of system

parameters such as the number and positions of the guide stars, DM actuator density, etc.

By substituting equation (4.16) in equation (.1.18), (d) can be computed in terms of phase

correlations that can be computed using Kolmogorov statistics. The first term of equation (4.18)

is the average variance of the kth reconstructed wavefront component:

J d .iW4 (i) (d, (1)) - tr [MTRkMkE,,] (4.19)

where tr[-] indicates the trace of the matrix, E,, is the slope measurement covariance matrix:

E,, = (sS T) (4.20)
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and Rk is the actuator correlation matrix of the kth DM:

= Jd2 (Wdi()rk(i)rT(k) (4.21)

The second term of equation (4.18) is the mean square uncorrected phase error of the kth wavefront

component, (C,):

CO = Jd2'Wd ( d)(¢i(F)) (4.22)

Finally, the third term of equation (4.18) can be written

/ 2iWdk (i)< d X¢k() r[T

J ) = tr [AkMk] (4.23)

where the matrix Ak is given by

Ak d 2 (4.24)

The final result for the mean square residual phase error in the reconstructed wavefront

component on the kth DM is

(4) --- (0)+ tr [MkRkMk ESS] - 2tr [ATMk] (4.25)

Note that detailed derivations of the expressions in this section are in Appendix B.

4.4.2 Minimum variance reconstruction method One could suggest a number of ways to

derive control matrices for an MCAO system. The method used in this chapter is to independently

minimize the mean square residual phase error averaged over the surface of each DM. In other

words, equation (4.25) is minimized with respect to the control matrix Mk to obtain an optimum
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control matrix M; for each DM. As shown in Appendix B, this minimization results in

M; = Rk Ak•-sl (4.26)

which is of exactly the same form as Wallner's optimum matrix for a single-DM system (62).

Wallner's discussion of the existence conditions for the matrix inverses in equation (4.26) also

applies here.

Substitution of equation (4.26) into equation (4.25) yields an expression for the minimum

component reconstruction error:

(C)min = (C2) - tr [EM- 1ATR-IAk] (4.27)

4.4.3 Residual phase error in the compensated object wavefront In the preceding section

the mean-square residual error in each wavefront component estimate (i.e. the figured surface of

each DM) was derived. This quantity, (C ) is minimized by proper selection of control matrices,

Mk. The main interest, however, is not how well each wavefront component is estimated, but

how well an object wavefront is compensated as a function of its position in the telescope's FOV.

Theoretically, if the individual wavefront components ar? well estimated the object wavefront will

be well compensated. In this section, the compensated object wavefront error is evaluated by

deriving an expression for the mean-square residual phase error averaged over an object wavefront,

after compensation by all K DMs and the tip-tilt mirror. For calculation purposes, it is assumed

that the object is a far-field point source. (This is not to imply that the utility of MCAO is limited

to point sources. The goal of the MCAO system described in this chapter is to compensate nearby

or extended sources as well. For analysis purposes, it is simpler to decompose the object field into

a superposition of point sources and evaluate the system performance at selected points.) Using

4-16



equation (4.4), the piston-removed wavefront from the object can be written

1

qa,• fo vW,( + ifo)(4.28)

i= I

where 0W is the angular position of the object. This wavefront propagates through the optical train

of the telescope, reflecting off the tip-tilt mirror and the K DMs in series. The system can be

analyzed as if the compensation provided by each DM takes place in its corresponding conjugate

plane. Thus, the residual phase error, c(;, Wo) (rad), of the compensated wavefront can be written:

I K

( Z ((/- zV1 0°) -+ E Z dk(Z+ zdk °) - ( (4.29)
k=1

where ý,(;) is the overall tilt correction using a natural star located in the telescope's FOV. Recall

that the DMs do not provide overall tilt correction. In the preceding equation, it is important to

note that the average phase over the area of the telescope aperture must be removed from the DM

terms to get accurate results. This is because an arbitrary aperture-sized area on the surface of

the DM may have a non-zero average value even though the entire DM surface has zero piston. Of

interest is the average mean F tuare residual error for a particular observation angle,

(EId) Jia (aDC(i,) (4.30)

Using a procedure similar to that outlined in the previous section, the following expression is

obtained:

K K I K

0 k(R)) (Z)(0o))E,,] - 2 tr [Ai.0o)M;]
k=lk1=1 i=1 k=1

I ~ I=

K

+2F1 d2  (iF)M;4 rk(1+ Zd ) (4.31)
k=1
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The first term in the preceding equation is the error in the uncompensated objCct wavefront:

(•(2,)) = d2.Ftia()( ; (i. 00) (4.32)

The matrix Rkk'(Oo) is of dimension Jk x Jk, and is given by

Rkk'(O.) Jd-i wa(i) [rk(i + zdk, o)rk,(z+ Zd,,o)] -z(o)r kko') (4.33)

where

S d2iWa(i)rk(i+ Zdk, 0o) (4.31)

The second term in 'quation (4.33) results from removing the average phase from an aperture-sized

area on the surface of the DM. The Aik(0o), (dimension JA x MN) matrix is defined as

Aik(9) = J d2 i 47a(i)rk(i+ zd&Oo) (sT ' 1i( 9 + Zi.O' )) (4.35)

Having derived an expression foi the object wavefront error in terms of phase correlations

and system parameters, it is now possible to make numerical ccmputatioiis in order to evaluate

system performance. No.- that Appendix B contains the detailed derivations of the results of this

section.

4.5 Numerical Computatio,.s

In the preceding sections, a general framework for analyzing a multiple-DM, multiple-guide-

star adaptive telescope was developed. The analysis is not completely general in that a particular

method for obtaining control matrices was chosen and the amplitude effects of atmospheric tur-

bulence were neglected. However, specifics of the telescope hardware and configuration, as well

as noise and phase statistics, have yet to be specified. In this section, a particular telescope is
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selected and commonly accepted turbulence and noise statistics are used to perform numerical

computations.

4.5.1 Example system To simplify the computations, the telescope is specified to have a

square aperture of dimension D (m) divided into a rectangular grid of square subapertures of

dimension d (m) where N = 2(D/d)2 is the number of slope measurements. The WFS measures

the wavefront gradient averaged over each of these subapertures. Figure 4.5 illustrates the WFS

grid for the case of D/d = 6. The subaperture size is set equal to the atmospheric coherence

diameter, r0 (17). Similarly, the DMs are square and the DM actuators are arranged in a square

grid, with the interactuator spacing on all mirrors equal to r0 . All the actuator response functions

are Gaussian-shaped:

rjk(xY) 0 exp { [(X--Xjk)2+(Y--YJk)2p (4.36)

where xjk and yjk are the actuator coordinates in the DM k plane. The mirror influence radius,

Pm, is also set equal to ro. Two different guide star arrangements are examined: 1) a single guide

star located on the optical axis and 2) 4 guide stars positioned symmetrically. The 4-guide-star

constellation is illustrated in Figure 4.6.

All guide stars are located in the plane z = zg. The coordinates of the guide star positions

in this plane are

xg = zgOm (4.37)

yg = ZgOm, (4.38)

To generalize the results, the guide star positions are normalized by the subaperture dimension d
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to obtain the dimensionless quantities xig, Yg,:

=_ Xg- (4.39)
Yg"- d440

ýgm = -9-(.0
d

In the case of the 4-guide-star array, the guide stars are located at the points (;ig, gg), (ig, -g),

(-ig, -. g), (-xg, pg). A similar set of normalized coordinates, (fr, Yr), is defined for the natural

tilt reference star. Finally, the normalized object coordinates are

Zgoo- 
(4.41)

d

Y0 -- d (4.42)

where 0o. and 0. (rad) are the x and y components of the object angle vector. As illustrated in

Figure 4.6, the mean square residual phase error of the compensate object wavefront is evaluated

as a function of position along a diagonal line from the optical axis toward one of the corners. The

maximum allowed object coordinates are determined by the FOV of the telescope which is specified

by the angle 0 (see Figure 4.7). These maximum coordinates are designated (i,, Po):

Zg/3 (4.43)S=d

For the 4-guide-star array to probe the entire FOV, the normalized guide star locations need to be

DXg = Td + - (4.44)

= D -(45)

g = T-d +4
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The conjugate plane to DM k is defined to be at the altitude z = Zdk (m). This altitude is

normalized by the guide star altitude to obtain the dimensionless quantity zdk :

zd-- _ dk (,.46)

As illustrated in Figure 4.7, the size of DM k, Dk (m), is given by

Dk = D + 2didki (4.47)

where small angle approximations have been used.

The final system specification is the determination of the wavefront components, Od' (V). As

explained earlier, d, (V) is that portion of the total wavefront aberration which DM k is intended

to compensate. As shown in Figure 4.8, DM k is assigned the wavefront phase contribution of a

slab of atmosphere, Sk. (In this dissertation, the problems of how to best divide the atmosphere

into slabs and how the conjugate planes are chosen are not addressed.) The wavefront component

Od,(x ) is defined to be the sum of the turbulent layers 01,,(;F) contained within slab Sk:

-d,(Z) = E 0 (4.48)
iESk

4.5.2 Phase statistics As explained previously, the ith turbulent layer alters the phase of

a plane wave propagating through it according to a phase perturbation function tklj() (rad),

where i = (z, y) (m) is a position vector in the plane of the layer. For computational purposes,

this function is assumed to be a sample function of a random process which is described by the

Kolmogorov structure function Di (, i' ) (rad2) (64):

= - =6.88 (4.49)
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where the angle brackets indicate an ensemble average. The parameter ri (in) is the turbulent

!ayer's coherence diameter. The ri are related to r0 , the overall atmospheric coherence diameter,

by the formula (5)
I

ro5/ 3 = 5/3 (4.50)

It is also convenient to characterize the turbulent layer as having a fraction, qj, of the total turbu-

lence strength:

qi = (4.51)

and to define a normalized layer altitude 71,:

= - (4.52)
Zg

4.5.3 Noise statistics Welsh and Gardner quantified the slope measurement error due to

photon noise associated with a Hartmann-Shack WFS (63):

0.867ril d> r0

Nph 0o

Ole= rad/m (4.53)

04 d<r0N I/"d d<-
ph

where Nph is the total subaperture photon count and rl is a detector efficiency factor which is

> 1. In the computations in this chapter, 7 = 1.35 was used. Kane et al. give this value as that

associated with an efficient charge-coupled device array preceded by an image intensifier (40).

4.6 Results

In this section, the analysis method described in Section 4.4 and the assumptions in Section 4.5

are used to present numerical results for single-DM and multiple-DM adaptive optics systems
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imaging through a 2-layer atmosphere. The 2-layer model is composed of a low-altitude turbulent.

layer containing 90% of the turbulence strength located at 1% of the guide star altitude, and an

upper layer having the remaining 10% of the turbulence at, 10% of Zg. The MCAO system used for

these computations is composed of a WFS, 2 DMs and 4 guide stars. The WFS is a 6 x 6 grid of

square subapertures, with subaperture dimension d = r0 . For all compu*ations, a photon count of

Nph = 50 photons per subaperture was assumed. The 4 guide stars are arranged in the constellation

shown in Figure 4.6, with ig = ýg = 22.5. (This value was chosen because it corresponds to 50

prad when d = 0.2 m and zg = 90 km, the nominal altitude of the sodium layer.) The tilt reference

star is located at the origin. A side view of the geometry is depicted in Figure 4.9. As shown in the

figure, DM 1 must cover an area 1.065 times as large as the telescope aperture, while DM 2 is 1.65

times the size of the pupil. Due to the fact that the DM areas are larger than the aperture area, as

well as the finite height of the guide stars, each guide star probes only a fraction of each turbulent

layer. Figures 4.10 and 4.11 illustrate how a portion of each layer will be sampled by all 4 guide

stars, other sections will contribute to 2 guide star wavefronts, and some areas are probed by only

one of the guide stars. In the case of layer 1, each guide star probes 86% of the area of DM 1,

with 74% of the area common to all 4 measurements and 24% common to 2 of the 4 measurements.

Figure 4.11 shows that the larger area of DM 2 is not probed as thoroughly by the 4-guide-star

array: only 1% of the area is common to all 4 measurements and 16% common to 2 measurements.

Table 4.1 summarizes the atmospheric and system parameters used in the computations of this

section.

Using the parameters in Table 4.1, the optimum control matrices for the 2-DM system were

found using equation (4.26). Then the object wavefront error was evaluated at 5 points in the FOV

along the diagonal line shown in Figure 4.6. The results are shown in Figure 4.12. For comparison,

the object error at the same points for a single-DM, single-guide-star system is also plotted. For

this "conventional" adaptive optical telescope, the DM is optically conjugated to the pupil and the

guide star is located on the optical axis. To allow a fair comparison with the 4-guide-star system,
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Figure 4.9. DM sizes when conjugated to the turbulent layers described in Table 4.1.
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Figure 4.10. Areas of turbulent layer ! probed by each guide star in 4-guide-star array. The
double-cross-hatched area is probed by all 4 guide stars, the single cross-hatched
area is probed by 2 guide stars, while the small non-cross-hatched square areas in
each corner are probed by only one guide star.
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Figure 4.11. Areas of layer 2 probed by each guide star in 4-guide-star array. Tlhe double-cross-
hatched area is probed by all 4 guide stars, the single cross-hatched area is probed
by 2 guide stars, while the non-cross-hatched square areas in each corner are probed

* only one guide star.
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Parameter Symbol[Value

Number of turbulent layers I 2
Normalized altitude of turbulent layer 1 Z11 0.01
Fraction of turbulence strength in !a)er 1 q1 0.90
Normalized altitude of turbulent layer 2 fi2  0.10
Fraction of turbulence strength in layer 2 q2 0.10
Ratio of aperture to subaperture size Did 6.0
Ratio of subaperture to seeing cell size d/ro 1.0
WFS efficiency factor 77 1.35
Detected photons per subaperture Nph 50
Number of DMs K 2
Normalized altitude of conjugate plane 1 5d 0.01
Normalized altitude of conjugate plane 2 idý 0.10
Guide star positions ig, ýg 22.5
Maximum object coordinates i,, # 19.5
Tilt reference star position ir, Pr G.

Table 4.1. Parameters for MCAO problem.

4 measurements from the single guide star were combined (which reduces the measurement noise

power by a factor of 4). FPr both systems, overall tilt was compensated by removing the best-fit

plane from an on-axis natural guide star from the object wavefront (errors in the tilt compensation

system were not modeled, but tilt anisoplanatism is properly accounted for since the tilt reference

star and object point are not necessarily in the same location). The figure indicates that the MCAO

system is able to compensat-e its entire FOV to an rms residual phase error of A/7. However, the

single-DM system outperforms the MCAO system for object points out to about 1/3 of the way from

the optical axis to the corner of the FOV. The single-DM system does very well in the neighborhood

of the optical axis since its single guide star is located there. In effect, the single-DM system is

designed to optimize performance along a single observation direction-in the direction of the single

reference. By comparison, the multiconjugate system, in this implementation, does not optimize for

a particular observation direction but attempts to compensate the entire FOV as well as possible.

As a result, a system which has an optimum observation direction has better performance in that

direction, at the expense of worse performance in other directions.
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Figure 4.12. RMS residual phase error averaged over object wavefront vs. object position for 2-
DM adaptive telescope with 4 guide stars compared with "conventional" single-DM
system.
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Figure 4.13 illustrates the effect of laser guide star tilt blindness. In this figure, tile perfor-

mance of the 2-DM, 4-laser-guide-star system is compared with a hypothetical system employing

4 reference sources (e.g. 4 sufficiently bright natural stars in just the right locations) that also

provide overall tilt information. This hypothetical system does not use a separate tip-tilt mirror,

but corrects the tilt, component using the DMs. From examination of the figure, we see that tilt

anisoplanatism significantly limits the performance of a realistic MCAO system.

0.9

0.85

0.8

0 0.75 • •laser guide stars

04 0.7 5 - 9

System using WFS references

0.65 -that provide tilt information07-------------------------------------------------------------A19O

0.6 ' I I

0 5 10 15 20 25 30

Object position, z50,Id

Figure 4.13. Performance of 2-DM system with multiple WFS reference sources that provide
overall tilt information compared with system using laser guide stars providing only
higher-order phase information.

One might expect that we could improve on a "conventional" adaptive telescope design,

by conjugating the mirror to a plane closer to the turbulence. In Figure 4.14, three cases are

compared corresponding to the DM conjugated to 1) the aperture 2) the strongest turbulent layer,

and 3) the center of gravity (CG) of the turbulence profile. The results show that, for this 2-layer
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atmosphere, slightly better performance is obtained if the DM is conjugated to the aperture when

the FOV criterion is average rms residual phase error < A/8. However, conjugating the mirror to

the strongest turbulent layer is better for object points more than one-third of the way to the edge

of the FOV. In this case, conjugating the DM to the center of gravity of the turbulence profile is

the least effective choice. The 2-DM system appears to work better than either of the single-DM

alternatives.

1.3

1.2

Single DM conjugate CG

1.1 to aperture

•" Strong layer

o 0.9

"50.8

0.7

0.6 -I10

0.5
0 5 10 15 20 25 30

Object position, z3Ojld

Figure 4.14. RMS residual phase error averaged over object wavefront vs. object position for
single-DM adaptive telescope and various choices of DM position, compared with
2-DM system. For the single-DM cases with the DM conjugated to the strongest
layer and the turbulence center of gravity, the 4 guide star constellation was used.

4.7 Summary

Wallner's adaptive optics system analysis method has been generalized to allow for an arbi-

trary number of guide stars, DMs, and atmospheric layers. This method can be used to compute
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analytical performance predictions for a variety of adaptive optics problems. The chief limita-

tion is the impracticality of computing results for large telescopes due to excessive computation

time. However, the technique does provide further insight into the performance of various adap-

tive telescope system configurations imaging through different atmospheres. The results show that

multiple-DM systems do hold promise for widening the compensated FOV, provided that multiple

wavefront measurements from different guide star locations can be made before the atmosphere

changes significantly. Performance of an MCAO system is still limited by tilt anisoplanatism, since

tilt information is not obtainable from the artificial guide stars.
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V. Conclusions and Recommendations

5.1 Major Results

The major results of this research effort are tle following:

1) Development of an analytical method for estimating the contribution of a portion of the

turbulent atmosphere to the total optical wavefront distortion resulting from propagation

through the entire atmosphere.

2) Development of a practical method of controlling an arbitrary number of DMs in an adaptive

optical telescope to achieve a useful level of phase compensation over a wide FOV.

3) The first analytical performance prediction for a multiple-DM, multiple-laser-guide star tele-

scope imaging through a layered atmosphere incorporating the integrated effects of WFS

noise; angular, focus, and tilt anisoplanatism; finite aperture sizes; DM influence functions;

and laser guide star tilt blindness.

4) Quantitative results showing that multiple DMs and multiple artificial guide stars can be

used to increase the compensated FOV of an adaptive optical telescope under good observing

conditions.

5) Quantitative results showing the effect of conjugating a single DM to various choices for

correction planes, as compared with the addition of a second DM.

6) Quantitative results showing the effect of laser guide star tilt blindness on the performance

of a wide-FOV adaptive optics system.

5.2 Discussion

One way to quantify the compensated FOV for an adaptive optical telescope is to specify

the area over which a particular level of residual phase error is achieved. Two examples of such
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FOV criteria are residual phase error levels less than A/7 or A/8. Figure 4.12 shows that, for the

2-layer atmosphere studied in Chapter IV, a 2-DM system increases the compensated area by a

factor of 4 for either of these FOV criteria. If d = ro = 0.2 mn these results show that a 1.2 meter

2-DM adaptive optical telescope with 4 sodium-layer guide stars can compensate a square FOV 90

microradians (18 arcsec) on a side to a level of residual phase error < A/8, vs. 45 microradians (9

arcsec) for the single-DM system. If the FOV criterion is A/7, the MCAO system can compensate a

FOV 135 microradians (28 arcsec) vs. 70 microradians (14 arcsec) for the single-DM system. This

value of r0 might be seen under excellent observing conditions at visible wavelengths. At infrared

wavelengths, a typical value of r0 is 0.5 meters. Hence, the plots in Chapter IV apply to a 3 meter

telescope imaging in the infrared and the compensated areas increase accordingly.

Continuing this example, the importance of laser guide star tilt blindness may be illustrated.

According to Figure 4.13, if laser guide stars did not have this limitation, the 2-DM telescope

could compensate the larger area (i.e. 135 microradians on a side) to A/9 instead of A/7. This

corresponds to an increase in the Strehl ratio from 0.45 to 0.61.

5.2.1 Recommendations for Future Work Several areas remain to be investigated in the

study of MCAO systems.

5.2.2 Wave Optics Diffraction alters the phase aberration function in the telescope aperture

due to turbulence at a distance. Also, propagation over a significant distance causes some of the

phase effects to convert to amplitude effects (scintillation). An interesting question remaining to

be answered is whether conjugating the DMs in an adaptive telescope to correction planes close to

the turbulence can reduce scintillation in the telescope aperture.

5.2.3 Temporal Effects The refractive index of the atmosphere is a temporal as well as a

spatial random process. Since a finite amount of time elapses between wavefront measurement and

correction, degradation in the level of compensation results. In a multiple guide star system that
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collects the WFS measurements sequentially, the different guide star measurements in the ensemble

will be slightly different due to the time delay between measurements.

5.2.4 Closed Loop Control Closed loop control has been successfully achieved for single-

DM, single-guide-star adaptive optics systems. Closed loop control of multiple-DM systems could

be troublesome due to the optical coupling among the DMs.

5.2.5 Wzde Field Till Compensation The results of this dissertation show if we are to ap-

proach the full theoretical potential of MCAO systems, a means of sensing the overall tilt component

from a variety of directions in the FOV is required.
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Appendix A. Derivation of Equations in Chapter IH

A.I Expected Value of Product of Convolutions

In the following section, the expected value of the product of two-dimensional convolutions is

needed. In the subsequent derivation, all random processes are assumed to be wide sense stationary.

((fl (XI, YO * *91l(XI, Y0)] [f2(X2, Y2) * *92(X'-, Y2)])

I- 1 J d 771j d t-e2fjd712 f,(xi -fi, Y1 - 77)f24(X2 - ý2,Y2 - 712)) 91 (ýI, 7792(ý2,102

1< idyld'lP ~2 Jd172 rf ,f (x I - l X2 + 2, Yl -7ll - Y2 + 12)

x gl(t, 170g2(6,72, ) (A. 1)

Letting Ax = X1 - X2 and Ay = Yl - Y2,

([fl (X , Yl) * *91(=X, Yl)] [f2(X2, Y2) * *92(X.-, Y2)])

=-P J d~ild d42 Jd?72rf17ffA + 6 - 6, AY+ 172 - '101)g ,1G71,7)g2Gý2,772)

= Jd 72 Jd' [r .(A + 6, AY+172) **9.g(AX + b, -Ay+ 72 )]1g2 (6,772 )

= Fh,1 2 (AX, Ay) * *g1(AX, Ay) * *g 2 (-Ax, -AY) (A.2)

A.2 Equation (3.27)

In this section the autocorrelation function of the wavefront component estimate, rbl (z), is

derived. The development begins with equation (3.25), which is the expression for the wavefront
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component estimate.

= _ __' y(+ +Zm+1n +)**ha 1 +.)* h,,('+)

x W + zi,,,Om ') + ?I.,(i w *ha(Y/) *hw.,_,f) A3

E ~ 1K IZ'Oi.'('+i~+ zIOm) +flm(x + i)][ +!,,m)+imG))

* * * it' * zlW , + *I' (A.3)

Using teqmuatuio nd(.)frmtepen encedoirndo poesestionni~i) ndtefctta cnou

M (MI

I: +~1  i+ ZI,,O - m ')] + ?I. ,,(Z *r +hF) (-if

**h i)* *hZ.,.j(i) * *h,._ i)} * *hw sa,(-fl hs~ (A.4)

Usngth utalideeneceofrndm rcese Vj) ndim~).ad hefctthtcovou



A.3 Equation (3.39)

Substituting equations (3.31) and (3.34) into equation (3.30), the mean square error expression

becomes

•2 21~o, + fs sadfr dfy 2q,t vI [jh'.ý. 12+ 1hw. + Refhil~h, ,h
e w isa -sa

+Re f 21ih 2h-wJ1 , 1 2 }- (hiiIwi +•hl1 2 hw, 2 )] +-) (1hw12- - 1hw, 2 12)} (A.6)

Assumption (3.32) means that

h12 = hI, (A.7)

h;2 = h 21  (A.8)

=i = hi1  (A.9)

With these substitutions, the integrand of equation (A.6) becomes

2(4~h [IW/' 2 + &AW
2 
'212 Ref{hl21hw1 1 hw 2 } + Re{h12 1 hw, 12 }- + hiihW1 2 )]

+ 4N (1hi 12 + IhW2 12 ) (A.10)

Assumption (3.33) means that

h21 = 1 (A.11)

This final substitution leads to equation (3.39).
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Appendix B. Derivation of Equations in Chapter IV

B. 1 Equation $J.9)

The derivation of the first term of equation 4.9 is shown for x-directed slopes. The procedure

is exactly the same for the y-slope. The x-directed slope from the ruth guide star measured in the

nth subaperture is the gradient of the total phase in the x-direction averaged over the subaperture:

- dy dx Wn(x, y) at -(x, ) (B.1)

Using integration by parts on the x integral with

u = W.(x, Y)

du a 8W"(xY) dx
ax

dv = a uOf.xd

equation (B.1) becomes

smn,. = jdy, 1W,(,y)X t.('(,y) dx ax (X t)(X, Y) (B.2)

The first term of the preceding equation is 0 since the subaperture has finite size, which implies

W, (z, y) = 0 at infinity. Thus,

dmn, = - dy dz aw (,Y)Vt- ,A(, y)

- Jd2j [VW"(i) ip o(i) (B.3)
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B.2 Equation (4.19)

Substituting equation (4.16) into the first term of equation (4.18),

Jd•2W dki)(4 )) I d2i Id(F)(Mks rk(i)Mks rk(i))

I d2 2ldk(F) (rk(ia) - MksMks rk(i))

= Jd Vd- (i) (rT(F)MkssTMT rk(i))

= Jd2Wy dk(i)r T(i)Mk (ss T ) MTrk(F)

= J d"Wdj (i )rT(k)Mk k EMrk(y) (B.4)

For two vectors b and c having the same number of elements (6):

cTb = tr [bcT] (B.5)

Letting

b = E5 8MTrk(F)

cT = T()Mk

equation (B.4) becomes

J/d2 i Wdk(i) ()) = J/d2 Wdk(f)tr [•s MT rk(<)rT(F )Mkj

= tr [EMTRkMk]

= tr [MTRkMkE00u (B.6)

since for any square matrix B

tr [B] = tr [BT] (B.7)
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In the final step of equation (B.6), the symmetry of the E, ind Rk matrices was used.

B.3 Equation (4.23)

Substituting equation (4.16) into the third term of equation (4.18),

J iW" j d (!d () id 2i ý, ,.(;F)(M k S-rk (Z) d,(;F))

J 1d214,'ý() (STMTr(;j) 4ý(j))

d (tr [rk(i)6dj( k)s'M•])

J d-•Wd(f)tr [rk(i?) (¢d,(i )sT) MT]

- tr [AkiT] (B.8)

If a matrix B is of order (i x j) and a matrix C is of order (j x i) then (6):

tr [BC] = tr [CB] (B.9)

Hence, equation (B.8) may be written in several forms:

J 2i Wdý (i) Kýdk(V)Od,(f)) = tr [MT Ak]

= tr [ATMk] (B.10)

B.4 Equation (4.26)

The derivation of the minimizing control matrix starts with equation (4.25) in its summation

form:

(4) = (2) + - ZZAnM,. (B.11)
j j, Va'
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The minimizing control matrix is found by setting the first derivative of the preceding equation.

with respect, to an arbitrary element of the matrix, equal to zero. Consider elemtent Mki:

(C2) = (C2" + E3 A3 MkIRj'kMj'n,'!,i' + 1. Y MjRRj.kikX,', - 2AkIIkI
n7 I' j 7

+[terms nut multiplied by MkiI (B.12)

The derivative with respect to MkI is

a ' > >3R'Mk7I2 7 q Z>
j - , kMj',En, + Rjk:jn~,E, - 2Akt (B.13)

a j, 1) j r

Setting the preceding equation equal to zero and writing in matrix form results in

RME = A (B.14)

Solving for M*:

M* = R-'AE- 1  (B.15)

To show that this stationary point is a minimum, the second derivative may be examined:

92 ( =k2) = 2 RkkE2 I > 0 (B.16)M2`

Since equation (4.25) is quadratic in Mk, it is a global minimum.
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B.5 Equation (4.33)

Substituting equation (4.16) into equation (4.29) (with the tilt correction term dropped) and

removing the piston in the wavefront estimate yields

I K2

44 0.~) ZPl. (i + zi.Oo)- [Mk S -rk (;F+zd o-Jd,, d a(i)Mk S -rk (;F+ zdk, )]
i= k=1

1 K

" " l(:+ Z1,-,o)- ZMks [rk(V+zdOo)--rk( o)] (B.17)

i=1 k=1

Substituting the preceding equation into equa:,.on (4.30) and following the same procedure as in

Sections B.2 and B.3:

(2(i) (ý s- 2 Fa~

K K,, E 1: (Mks.-Ir [•(i+..,- .Wo) - ,,k(Zo,] Mk,, .[r,,(;.-+-zd,,:o-,,(o
k=1 k'=1

I K

-2]d d2;W"(i) E Mkr { Irk(i + Zdk,, - r ~(0 )I A (Pi(+ Z1 ,,0 s)

i=1 k=1

d2iýWa,;F) tr E"iT [rk(i+zd,,*o,--Jrk(Wo) [rk.,:!+Zdk. ,Z--ik.,fio) T Mk}

I K

i=1 k=1

(B.18)

Defining the Rkk'(W,") matrix:

Rkk'(a) d J2iWa(Z) [rk(i+ Zdo) - ,k(Wo)] [rk,(i± Zd,Oo) - rk'(W)]T

= d2iW,(i)rk(: + zdo)rW( Zdo 2rk(ok)'W(o) + ik(*o)rW,(O )

= fd2iWa(:)rk(i+ Zd,0of)rT,(J+ Zd,,0o) -- 'k("o)F',(0) (B.19)
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B.6 Equation (4.35)

Defining the Aik(Co) matrix from the third term of equation (B.18):

Aik(9O) Jd ~~(i) [rk (;F+zd,.)-rk ( 0)J (oi+ -1, Z)ST)

Id2° 2i W,, a(+F)r -(i + zd, -)(i•ol•(+I)T)

f d2 ~W( ikO)K~~ zO)ST) (B.20)

The second term of the preceding equation is equal to 0 because of the definition of 1, (), hence

Ak(ýo) - Jd2i Wa(i)r( z(+dW.)o(P.(+ z1,,)SoT) (3.21)
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Appendix C. Additional Results

In this appendix, some additional computational results using the analysis of Chapter IV are

presented and discussed. Unless otherwise indicated. the geometry of Figure 4.6 and the parameters

in Table 4.1 were used in the computations.

C. 1 Photon Noise

Figure C.I shows that the residual phase error in the object wavefront decreases asymptoti-

cally as the light level is increased. With a larger number of photons per subaperture, the WFS is

able to obtain a better estimate of the centroid of the laser guide star image in each subaperture.

This improved centroid estimate results in more accurate slope measurements. The values for Nph

in the figure are based on the photon-limited noise model presented in Chapter IV. Higher light

levels are required to obtain similar results if readout noise is significant.

C.2 Guide Star Separation

The designer of an MCAO system may also be interested in the answer to the following

question: Given the available resources (number of guide stars and DMs) and a known atmospheric

turbulence profile, how large a field of view may be compensated while maintaining a specified level

of residual phase error? Figure C.2 addresses this question for the MCAO system described by

Figure 4.6 and Table 4.1. The figure plots the maximum level of residual phase error in the FOV

vs. guide star separation. If the maximum allowed RMS error for any point in the FOV is A/7,

then the separation between the guide stars is limited to about 9 times the aperture dimension for

this 2-layer atmospheric profile.
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Figure C.1. RMS residual phase error averaged over object wavefront vs. object position for
2-DM adaptive telescope with 4 guide stars with light level as a parameter.
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Figure C.2. Maximum RMS residual phase error averaged over object wavefront vs. guide star
separation for 2-DM adaptive telescope with 4 guide stars.
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C.3 Guide Star Projection Aperture

Figure 4.13 shows how the performance of an MCAO system is limited due to the inability

to measure overall tilt using laser guide stars. However, suppose the telescope aperture we wish to

compensate is smaller than the laser guide star projection aperture. As shown in Figure C.3, the

overall tilt could be measured across the telescope aperture, since it is seen as part of a higher-order

component from the point of view of the projection aperture. This point is illustrated quantitatively

in Figure C.4, which shows how the performance of the MCAO system improves as the laser guide

star projection aperture increases in size. The curves labeled Dp/D = 1 and Dp/D = 0c, correspond

to the two curves in Figure 4.13.

C.4 Upper DM Actuator Density

In the results shown in Chapter IV, the same interactuator spacing was used for both DMs.

Because of the larger size of the upper DM, as shown in Figure 4.9, it requires an array of 100

actuators vs. 49 for the lower DM when the same interactuator spacing is used. However, the upper

DM is compensating for the weaker of the two turbulent layers. Since the upper layer accounts for

only 10% of the total turbulence strength, it has very little power at high spatial frequencies. Thus,

the DM assigned to this layer should be able to effectively compensate for the aberrations due to

this layer with fewer actuators. In other words, since the upper DM reconstructs lower spatial

frequency surfaces than the lower DM, it can allow a wider interactuator spacing. In Figure C.5,

the interactuator spacing was increased on the upper DM to 2 x ro (25 actuators), 3 x ro (16

actuators), and 4 x r0 (9 actuators). The figure shows that performance initially improves as the

interactuator spacing increases. It is actually detrimental to use too many actuators, since good

information about the high spatial frequencies achievable by a dense actuator array is not available

for the weak turbulent layer. As the number of actuators is further decreased toward the limit of

0, the performance curve in Figure C.5 begins to tip up toward the single-DM performance curve.
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for a large aperture.

C-5



0.82 I

0.8 pD=

0.78 - 2

S0.76
I-.

0
0.74

S0.72

6
0.7 -• - ------- -- - -- - - - ---- ý/9

00

0.68

0.66 ' I I I I
0 5 10 15 20 25 30

Object position, z5 ,L/d

Figure C.4. RMS residual phase error averaged over object wavefront vs. object position for 2-
DM adaptive telescope with 4 guide stars with projection aperture dimension as a
parameter.
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