
AD-A258 782
NPS-AS-93-006AD A 5 78(%

NAVAL POSTGRADUATE SCHOOL
Monterey, CaliforniaDTIC

S ELECTED
*,D TAt JAN 6 1993J

'?G'R A D13

A Clearinghouse for Software Reuse:
Lessons Learned from the(. 0
RAPIDIDSRS Initiatives

Tung Bui
James C. Emery 0

Gerald Harms, Tina VanHook -

Myung Suh

October 1992

Approved for public release; distribution is unlimited.

Prepared for: Director of Information, OASI (C31),
Washington, D.C. 20301-3040

98 o 0 5'

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM R. W. West, Jr. Harrison Shull
Superintendent Provost

The report was prepared for the Director of Defense
Information, OASI (C31), Washington, D.C.. This research was funded
by DoD Washington Headquarters Services, IAD, The Pentagon,
Washington, D.C.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Tung X. Bui
Dept of Admin. Sciences

Reviewed by:

David R. Whipple, Chairman
Department of Administrative Sciences

Released by:

Paul J. 4rto, Dean of Research

REPORT DOCUMENTATION PAGE Fes AO. idSOMI N. 0U'd.-010

kfmuiomOu, Kl0g•om, for Mu. •burden, 1o Wal'riont Hu*pnn SUv for hsbk**dw Cpwsion ''d Repoek. 12151 Jn • H•wa,*su Ito4..4mk+• VA 4t3C2z..:Zmxlb toe c• scMst gmml Budgi, Pw Rm•w Pwcam 704.Ol8, w*it.+ DC •I

1. AGENCY USE ONLY tlv&.1k) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1992 Technical Report, 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Clearinghouse for Software Reuse: Lessons Learned from the RAPID/DSRS
Initiatives

6. AUTHOR(S) MIPR DXAM 20001

Tung X. Bul, James C. Emery, Gerald Harms, Myung Suh Tina VanHook

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
REPORT NUMBER

Administrative Sciences Department
Naval Postgraduate School NPS-AS-93-006
Monterey, Ca 93943

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1U. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Director of Information
OASI (C31)
Washington, D.C. 20301-3040

'I. SUPPLEMENTARY NOTES

Software Reuse, Information Engineering, Domain Analysis

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT $4umpiam.wads)

This study reports the lessons learned from the recent establishment of the Defense Software Repository
Service (DSRS) to provede government agencies and authorized contractors. with reusable software
components (RSCs). DSRS is based on a pilot operation initiated by the Army's Reusable Ada Product for
Information System Development (RAPID). The study concludes that a clearinghouse is a necessary
condition for software reuse in DoD. To become a software productivity multiplier, the clearninghouse must
populate its repository with quality RSCs, and incentives for reuse must originate from high-level DoD
management.

14. SUBJECT TERMS 15. NUMBER OF PAGES

48
16. PRICE CODE

17. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540.01.280.5500 Standard Form 298 (Rev 2.89)
Prmorbed by ANSI W 2I X
29&8102

CASE STUDY SERIES
ON IMPLEMENTATION PRACTICES OF
MANAGEMENT INFORMATION SYSTEMS
IN THE DEPARTMENT OF DEFENSE

A Clearinghouse for Software Reuse:
Lessons Learned from the
RAPID/DSRS Initiatives

Tung X. Bui lTIC QIAI~Frz

James C. Emery
Gerald Harms
Myung Suh ". -...
Tina VanHook NTIS ,•

P]iCTy. B __.____

D"IC Q'uALIr'Y DCSti /

[Aveil~~C
'ist I SPeciala-x/

Department of Administrative Sciences
Information Technology Management Curriculum
Monterey, California

October 1992

Acknowledgments

The authors would like to thank Mr. Paul Strassnr.,nn, Director of Defense

Information, OASD (C31), for sponsoring the Case Study Series on implementation

practices of information systems in DoD. The case study on software reuse could not

have been realized without the support of the Army Reuse Center and the DISA Center

for Software Reuse Operations. We appreciate the support of Ms. Ginny Parsons at the

Center for Software Reuse Operations.

We would also like to thank the faculty members and students at the Naval

Postgraduate School who participated in the study and gave much support. Many thanks

go to Professor Dani Zweig whose expertise in software reuse was very much needed.

Also our thanks to LCDR Gilliam Duvall, USN; LT Cheryl Blake, USN; Professor

Daniel R. Dolk, LT Greg Hayes, USN; Professor Sterling Sessions, and especially LT

Christine Donohue and LT MaryJo Elliott who spent much of their time assisting in the

format. We appreciate the support from all who helped us in this effort.

C

ii

Table of Contents

I. Executive Summary 1

II. Software Reuse: Doing More With Less 3

A. Productivity Gains with Reuse 3

B. Beyond Code Reuse 4

C. Domain Analysis: The Foundation of Reuse 7

III. A Clearinghouse for Software Reuse 11

A. Toward the Concept of a Clearinghouse for Reuse 11
1. The RSC Donor-Recipient Cycle 11

a. Mechanism for Creating RSCs - the Donor's
Perspective 11

b. Mechanism for Retrieving and Using an RSC - the
User's Perspective 12

2. Motivations for a Clearinghouse 12
a. Economic Incentive 12
b. Managerial Incentive 12

B. Activities of the Clearinghouse 15
1. Defining Reusable Domains 15
2. Searching for RSCs 16
3. Certifying RSCs 16
4. Creating a User-Friendly Library 16
5. Supporting RSC Users 17

IV. DSRS - A Clearinghouse for Software Reuse 19

A. CIM and Reuse 19

B. RAPID - The Army's Software Broker 21
1. History and Mission 21

2. RAPID Implementation Plan 22

iii

3. RAPID Staff Organization 23
a. The RAPID Manager 22
b. Technical Consultants 22
c. System Analysts and Software Engineers 23
d. Configuration Management Specialists 23
e. Quality Assurance Specialists 23
f. Administrative Assistants 23
g. The Librarian 24

4. RAPID Activities as a Clearinghouse 24
a. Defining Reusable Domains 24
b. Searching for RSC Donors 24
c. Certifying RSCs 25
d. Creating a User-Friendly Library 26
e. Supporting the User 27

C. DSRS - Toward a the DoD-wide Reuse Program 28
1. The DoD Reuse Organizational Structure 28
2. Current Status of the DSRS Effort 29

V. Lessons Learned 31

A. A Clearinghouse is a Necessary Condition for Software Reuse in
DoD .. 31

B. A Clearinghouse is a Productivity Multiplier 31

C. The Clearinghouse Must Populate its Repository with Quality
RSCs 32

D. Domain Analysis is the Foundation for a Successful Software
Reuse Program 33

E. High-Level DoD Management Must Provide Incentives for
Reuse 33

Glossary of Terms 35

References ... 37

iv

I. Executive Summary

To be successful in meeting the challenges of today's rapidly changing world,

Information Technology managers must become proficient at doing more with less. As

information resources become strategic assets for many organizations, IT managers are

asked to deliver more software, more quickly and with lower fault tolerances than ever

before. As the demand for new software steadily increases, so does the demand for

maintaining and improving the systems in operation.

DoD program managers have long recognized the benefits of software reuse to

face the software challenge. In 1991, the Office of the Director of Defense Information

set the following goals for software reuse:'

* 100% reusable data with an infinite life for data definitions

* More than 80% reusable code with more than a 20 year life on software elements

* 80/20 development/maintenance ratio

* Technology asset life two to three times larger than the technology innovation

cycle.

The goal of implementing a DoD-wide clearinghouse of reusable components has

culminated in the recent establishment of the Defense Software Repository Service

(DSRS). Under the administration of the Center for Software Reuse Operations (CSRO),

DSRS currently provides automated access to more than 1550 government or

commercially owned/developed reusable software components. This repository is

available to all DoD, other government agencies, and authorized contractors.

Strassmann, 1991

=:1

The design and implementation of DSRS is based on a pilot operation initiated by

the Army's Reusable Ada Product for Information System Development (RAPID).

RAPID's goal was to establish a library of RSCs for application developers. To achieve

this goal, RAPID has focused on defining reusable domains, searching for RSC donors,

certifying RSCs, and creating a user-friendly library.

Though software reuse practices in DoD are still in their early stages of growth,

the lessons learned from the RAPID and DSRS experiences provide some valuable

insights:

A clearinghouse Is a necessary condition for software reuse in DoD: Given that
RSC donors and recipients are separated by organizational and geographical
boundaries, there must be a marketplace, such as DSRS, to facilitate the exchange
of RSCs. Without a clearinghouse bridging the gap between donors and
recipients, the software reuse effort would fall apart.

0 A clearinghouse is a productivity multiplier. As the DSRS initiative has started
to show signs of success, the demand and supply of RSCs are expected to
increase. With a well-populated repository, the clearinghouse can be expected to
multiply software development productivity.

0 The clearinghouse must populate its repository with quality RSCs: The
clearinghouse must ensure that RSC quality is not compromised. RSC users are
reluctant to utilize components of uncertain quality developed by unknown
sources; they want nothing but "error-free* RSCs. The clearinghouse must
carefully weigh the benefits of accelerating the population growth of RSCs against
the potential damage that might be caused if users experience problems with
RSCs.

* Domain analysis is the foundation for a successful software reuse program:
Domain analysis enables the clearinghouse to identilfy components that are
commonly used within a given application domain and which therefore provide
a higher payoff as a standardized RSC.

* High-level DoD management must provide incentives for reuse: A fully
functioning repository populated with useful components is a necessary but not
sufficient condition to promote a successful reuse program; some inducement to
reuse software is required as well. To carry sufficient weight and visibility, these
incentives must be promulgated from the highest authority within DoD.

2

II. Software Reuse: Doing More With Less

Reuse of prior work is certainly not a new concept. When electrical engineers

set out to develop a new circuit board, they often reuse pre-fabricated integrated circuits,

made available to them through technical catalogs, to accelerate the development process.

Likewise, corporate executives rely heavily on standard text documents to prepare legal

and business documents. In the software environment, with billions of lines of codes and

thousands of implemented information systems, existing software modules could be

recycled to avoid the exorbitant costs of "re-inventing the wheel."

Software reuse can be define& as the application of one or more previously

developed software component(s) to a new systeni or to an expansion of an existing

system. Software developers for large organizations are just beginning to appreciate the

potential benefits of reuse and are now seriously integrating reuse practices into the

software development process.

A. Productivity Gains with Reuse

Software reusability is viewed widely as a major opportunity for improving

software productivity.2 With software costs estimated to have reached $125 billion in

1991 for the U.S. alone, even a modest productivity gain through reuse translates into

a tremendous savings. At the industry's present rate of growth, a 20% improvement in

productivity is projected to result in a savings of $45 billion in 1995 for the U.S. alone.3

Reuse can contribute to productivity gains in the following ways:

2 Biggerstaff and Richer, 1987; Banker and Kauffmann, 1991

3 Boehm, 1937

3

Achieve shorter development time: When a developer is able to reuse previously

generated software in a new application, he/she frees up assets that can be

devoted instead to development of the system's unique modules. The savings in

time and resources creates a development environment that is more responsive to

the requirements of a dynamic world.

• Increase software reliability: Preexisting software, if it has been employed to any

extent, has already been field tested and fine tuned. This offers the opportunity

of deploying modules whose expected error rate is significantly lower than that

of a newly developed module.

* Ensure enhanced maintainability: Reuse of well-structured and well-documented

software will also lead to improved maintainability and portability in that

alterations will be required only on the source component loc~t-A in the central

repository. With studies indicating a significant number of companies spending

between 60 and 80 percent of their software dollars on maintenance, 4 this

benefit may well generate the most significant dollar savings.

B. Beyond Code Reuse

To date, efforts to reuse software have been primarily focused at the code level.

Code reuse is the simplest form of reuse. A reusable code component consists of

functions, procedures, or packages. Once developed, a component is tested, certified,

and stored in a repository so that it can be utilized by programmers for new software

development projects.

Savings associated with code reuse can be realized in two ways: (a) each time

a portion of code is reused, resources otherwise devoted to coding can be saved, and (b)

'Biggerstaff and Lubars, 1991

4

further savings are also realized by forgoing the testing of this pre-tested code

component.

Reuse granularity is an important issue in setting reuse procedures. In general,

the larger the size of the chunk of reuse code, the higher its "payoff." However, as the

size of the code segment increases, it may become more difficult for the developer to

identify a good match with specified functions. A large segment of code usually offers

many functionalities. The greater the functionalities embodied in the segment, the more

difficult it is for the developer to succinctly describe the segment's functional

spercifications. Larger components also tend to be more specialized or idiosyncratic, and

are therefore less likely to be compatible with a given set of requirements specifications.

Reuse at the analysis and design level allows the developer to ignore coding

details awd focus on the computational intent of larger chunks of code that compose the

system. Instead of looking at coding style, the developer can deal with functional

specifications. Reusable components at higher levels include logical data models,

functional descriptions, and diagrams (e.g., data flow diagrams or entity relationship

diagrams). Although component reuse at the code level is better understood and by far

the most prevalent form of reuse, there appears to be an acceleration in the reuse of the

other types of software components.

For a given organization, there tends to be a family of applicatdon software that

shares some common design characteristics. If these similar software, design components

could be reused, the developer would be free to concentrate on implementation of the

unique functionalities of the software. Since design does not yet contain detailed

decisions for implementation, a design component's potential for reuse is greater.I

Reusable design should provide pointers to the appropriate pieces of reusable code,

reusable test cases, and documentation. As a result, design reusability tends to p.vide

much higher leverage than simply reusing code.'

Lenz, 1987

6 Biggerstaff and Lubars, 1991

5

Technically, existing software can be reused in a variety of ways. The spectrum

includes sharing of code, algorithms, routines in application families, and subsystems.7

Reuse can be applied to all phases of the software development life-cycle, including:

* Requirements specifications

* High-level design

* Detailed design

• Coding and unit testing

* Integrating testing

* Documentation

* Maintenance

RSCs can be either developed from scratch or extracted from public domain

software, commercial off-the-shelf software, contractors, and government sources. A

desirable reusable software component should include the following characteristics:

* Flexibility: The developer should be able to adapt/modify an RSC to fit in with
the overall architecture of the software to be built. The smaller the component
in terms of functionality, the more flexible it is but the less functionality it
provides.

* Expendability: The developer should be able to tailor RSCs to specific
requirements that might surface well after initial requirements were defined.

* Portability: The RSCs should be able to operate under multiple operating
environments (physical hardware, operating systems, and runtime environments)

• Language Independence: The components above the implementation level should
be programming language independent so that they are reusable in any
programming language environment.

SLenz, 1987

6

C. Domain Analysis: The Foundation for Reuse

The investment for an RSC is justified only if the expected benefit outweighs the

cost. A dominant factor that determines the expected benefit of an RSC is how often the

component is likely to be reused. If a particular software component is never to be

reused, any effort to make the component reusable would be a wasted investment. In

constast, a software component that would be reused frequently can yeild worthwhile

benefits. The frequency with which a software component can be reused depends on

whether the component's functionality is unique or common across a range of

applications. For example, a reusable component providing date/calendar functions is

likely be reused over and over again because this function is commonly needed in a wide

variety of applications. A successful reuse program must therefore be preceded by an

analysis phase that identifies application domains to be supported and the functionalities

commonly required in these selected areas. This analysis is often referred to as domain

analysis.

The role played by domain analysis is illustrated in Figures 1 and 2. Figure 1

shows the way applications are typically developed in the absence of domain analysis and

reuse program. All applications go through their own requirement analysis, design, and

coding phases independently, although they share certain common requirements. The lack

of a mechanism exists to exploit such commonality will almost certainly lead to little

reuse of sharable design and code components. In contrast, Figure 2 suggests how

domain analysis enables a developer to identify reusable components that can be

assembled as part of an applications design or code.

Research has shown that the adaptability or reuse potential of a software

component depends a great deal on the degree to which analysts understand their

application domain.' Since domain analyses are application specific, people who know

best about the application domain should perform this analysis. The analysis can be

performed by applying a process modeling method (e.g., IDEF) or an object-oriented

* Tracz, 1987

7

analysis method. The former helps identify the essential processes or functionalities that

are commonly used in the domain's applications, while the latter attempts to identify the

essential "objects" that compose the domain. An object is an encapsulation of data

structure and a multitude of functions that operate on this common data structure. For

example, in the application domain of inventory management, one may find such objects

as parts, requisitions, customers, and warehouses. Since all applications in the inventory

management domain will need these objects, the reusability effort should be concentrated

on these objects.

There are a number of issues that need to be addressed:

An assumption underlying domain analysis is that a sharable component is free

from semantic inconsistencies. For example, in comparing the Army and Navy

inventory management systems, both would contain an object called "part" that

in turn would possess the attribute "part id" at the domain model level. In the

Army system, however, a 13-digit alpha numeric field is used to define inventory,

while Navy conventions dictate a 9-digit number. Therefore, domain analysis

must be supplemented with mechanisms that can resolve such semantic

inconsistencies.'

'Identifying such semantic differences can sometimes be helpful in moving to greater standardization

across the services, but software reuse does not force such standardization.

8

Appkodmaf I APPWIo~n 2 Appftdon a Now APpOsMWa

Dwg M* U

0Compmiloodeeg Gome dch

Figure 1. "Stovepipe" Systems Development of similar
applications within a domain

Appadllco Appkln 2 Applostln 3 Now Applrto

LI ~ ~ ~ ~ mi OaMum wysWapIi

* -~h u~ AgiaM

D&p4~w~

Figure 2. Systems Development using Domain Analysis to identify
RSCs from existing applications

9

Another issue is how to define the scope of a domain. Differences in the way

organizations conduct business point to the need for domains that are more

narrowly defined. For example, both the Air Force and Navy have procedures

in place to ensure that repair part inventories are maintained at certain minimum

levels. However, the Navy model defining reorder levels for parts supporting

submarine launched ballistic missiles is driven by functionally different business

practices and standards than the Air Force model addressing ICBM support.

Thus, in this instance, the "DOD Logistics" domain should be broken into more

narrowly defined domains such as "Navy Logistics" and "Air Force Logistics".

It is important to note that, as a requisite for reuse, a domain candidate must be

well understood, fully operational, and stable in nature. Once established, a

domain model should not be subject to change. A modification to the domain

implies a fundamental shift of the way business is conducted, making it virtually

impossible to identify sharable components. Thus, performing analysis on

domains that are unstable is not productive.

Domain analysis, by assuring that essential building blocks are identified and

developed into RSCs, promotes an environment in which the major portion of a new

application can be completed by simply selecting and putting together existing building

blocks.

10

III. A Clearinghouse for Software Reuse

A. Toward the Concept of a Clearinghouse for Reuse

To effectively reuse software, RSC donors and recipients must incur non-trivial

technical and administrative overheads. They need a central organization or

clearinghouse to relieve them of these overhead costs. It is only through the

clearinghouse that interactions between the users and donors are likely to be sustained.

1. The RSC Donor-Recipient Cycle

In many instances, an RSC will come from existing systems or systems currently

under development. For an RSC to be reusable beyond its development site, it is

important to distinguish the point of view of the donor from that of the recipient. A

donor is one who identifies reusability of an RSC, develops the RSC that satisfies

reusability specifications, and makes the RSC available in a library or repository. A

recipient is a developer who reviews RSC available in the library and selects those that

most closely support his requirements. Mechanisms for implementation as well as issues

involving incentives or technical problems will vary depending on the orientation as

donor or recipient.

a. Mechanism for Creating RSCs - the Donor's Perspective

When a program manager participates in the process of contributing software, he

assumes a donor's perspective to reuse. He needs to identify and describe the

11

functionalities embedded in candidate RSCs. He also needs to carry out testing and

documentation for those RSCs.

A willing donor is one who is able to look beyond the immediate costs both in

time and resources and commit to the long-range reuse strategy. To alleviate this effort,

help from external source(s) is usually required unless the donor himself is in the

business of software production and can reap the benefits of donated RSCs.

b. Mechanism for Retrieving and Using an RSC - the User's Perspective

In contrast to the donor's orientation where benefits from reuse can only be

anticipated at some point in the future, RSC users realize an immediate advantage. To

maximize the benefits of reuse, the user must possess skills and experience to:

* Find RSCs (cataloging, search, and retrieval mechanisms)

* Understand RSCs characteristics

* Adapt RSCs to his functional requirements

From the user's perspective, reuse will be attractive only if the overall effort to

reuse a piece of software is less than the effort required to create it from scratch. If a

user has to invest an unacceptable amount of time in searching and evaluating repository

components, he will likely opt to develop the component himself instead. Thus, it is

critical that an RSC library be made readily assessable to the users. This repository has

to contain RSCs that correspond to the user's requirements and needs.

2. Motivations for a Clearinghouse

Although reuse is an appealing concept, its implementation requires a sustained

economic and managerial effort that goes beyond that of an individual participating

software developer. The creation of a clearinghouse for reuse is required to direct much

of this effort, perform centralized services, provide broader visibility of useful software,

12

and promote standardization. It is expected that RSC users will yield greater savings of

maintenance dollars.

a. Economic Incentive

Before software reuse can begin to pay off, an up-front investment is required.

There will generally be costs involved in the preparation of the software prior to its

induction into the library. Whether software is written for future reuse or taken from

somewhere else, it requires formatting, testing, and documentation. Providing untested

and undocumented RSCs is counterproductive. If the user needs to perform significant

modifications to adapt the component, the benefit of reuse may be lost.

In the short run, management of organizations that desire to donate software

cannot be expected to support up-front costs for making RSCs. The fear that reusability

will lead to reduction in their budget and staff is also a source of resistance among

managers and programmers.10 Programmers are often penalized for taking the extra

time to make software reusable.

It is thus important that a clearinghouse for reuse be built to absorb the cost of

establishing RSCs and - more importantly - maintaining a library of reusable software

components. The cost of a library depends on its size and the tools used to populate,

organize, access, and maintain RSCs.

A clearinghouse for reusable software has significant advantages. With its

resources dedicated to reuse, the clearinghouse can assume the essential and unique role

of networking multiple libraries owned by various participating organizations developing

similar software, thus yielding economies of scale. It can also develop its own RSCs if

they cannot be found anywhere else.

It is expected that the cost savings of reusing thoroughly tested and documented

software will be even more significant in the long-run. However, the long-term benefits

1W Wong, 1987

13

of reuse are often hampered by short-sightedness of many RSC donors and users. It is

the mission of the clearinghouse to correct this short-term perspective, and play an active

role in reconciling conflicting interests between individual RSC donors and recipients."1

b. Managerial Incentive

Researchers tend to agree that the lack of a clear reuse strategy has been one of

the major factors inhibiting widespread software reusability." The absence of an

appropriate high-level reuse strategy reduces the motivations of project managers and

programmers to reuse software. Reuse will not happen by itself; it needs to be promoted

with incentives.

Top management of participating organizations must understand management's

critical role in addressing non-technical issues such as legal and proprietary rights,

compensation for RSC developers, and internal cost apportionment methods for

purchasing reusable components associated with software reuse.13 Contract issues

concerning ownership and rights to the developed software arise. Contracts must be

tailored to meet the needs of both donors and users in order to provide an incentive for

reuse.

Management that invests in the development of a meaningful incentives program

will enhance their organization's chances of implementing a successful reuse

environment. For example, the National Aeronautics and Space Administration (NASA),

"11 Who pays the added development cost involved in designing the software for reuse? Ideally, the
organization that profits from the reuse should pay for it, but it does not always work this way. For
example, a contractor might be asked to make his software reusable with little recognition of the added
cost required. As a consequence, he earns a lower profit. Furthermore, the software component could
then be given to a competitor to be reused, thus allowing the competitor to capitalize on the initial
contractor's efforts. It can work in the contractor's favor as well: the customer might pay an added cost
for highly reusable software without realizing it, so that the contractor can reuse the software in his own
future programs.

12 Biggerstaff and Richer, 1987

n Banker and Kauffmann, 1990

14

in a move to encourage development of higher quality software by contractors, has

instituted financial rewards for certain types of library resident routines. Developers are

compensated for extracting software from the library instead of being paid solely by the

quantity of new code they create. This provides the contractor with incentive to utilize

the methodologies of reusable code."4

GTE provides another example. GTE Data Services places major emphasis on

incentives and has introduced a program that rewards authors, project managers, and

reusers. Programmers receive both cash bonuses (when an asset was accepted into the

repository) and royalties each time an asset is reused in a new application. Budget

increases and promotions for project i" gers are directly linked to high percentage

reuse in deliverables under their cognizance. GTE considers the incentive program a key

factor in their reuse success, which translates into an estimated savings of $1.5 million

during the program's first year of operation and a projection of $10 million by the end

of the fifth year.15

B. Activities of the Clearinghouse

The following are the main activities that the clearinghouse should perform on

behalf on the reuse community:

1. Defining Reusable Domains

Since software comes from a variety of domains, there is a need to identify

software components that share basic functionalities. This can be achieved by a process

known as domain analysis. The purpose of domain analysis is to determine

commonalities within the application domain, focusing on areas with the greatest potential

for reuse and in greatest demand by future software developers. It is an iterative process

14 Cashin, 1991

IS Prieto-Diaz, 1987

15

involving an intense examination of the domain of interest. 16 Without a well-performed

domain analysis, RSCs cannot properly be identified.

2. Searching for RSCs

The search for RSCs is a non-trivial effort. Potential sources (e.g., existing

governmental systems, public domain software, or commercial off-the-shelf software)

have to be identified. Of particular concern during this component search is a donor's

reputation or track record for producing quality software.

3. Certifying RSCs

Certification refers to the process designed to solve and eliminate concerns

programmers and managers have about using RSCs that originate from outside their own

work. Such concerns include quality, maintainability, liability for defects, and

testability. A certified RSC must function as it is intended to function. Evaluation is a

very important part of the certification process. It begins as candidate RSCs are

identified and continues through the remainder of the life cycle. Evaluation can eliminate

unsatisfactory components, identify re-engineering needs, produce documentation, and

initiate essential metrics.17

4. Creating a User-Friendly Library

A library system is needed for users to identify, retrieve, and use RSCs.

Software selected for incorporation in the library must be integrated with other repository

s Softech, RAPID Center Reusable Software Component Procedures, June 1990

17 Metrics assist managers in measuring various things and allow engineers to apply predictive
algorithms. Metrics include size, productivity, efficiency, and quality characteristics such as portability,
maintainability, and reusability. Metrics also provide a prediction of problem areas and alternative
solutions.

16

components via an identification scheme. The cataloging system implemented should be

easy for the user to understand, and should provide alternative search patterns for the

user to search for the perfect component. Lastly, the indexing system should be

adaptable in the event that future components are not easily tailored to existing

categories.

5. Supporting RSC Users

A productive reuse environment cannot be maintained without the confidence of

the user. This confidence is achieved in several ways. Most notably, the RSC

certification process contributes to this end by ensuring both the quality and

standardization of each component in the repository. Additionally, RSC users' concerns
and needs should be periodically surveyed to ensure efforts are continually focused on

the needs of the customer.

In summary, the implementation of a clearinghouse offers several advantages:

"* The clearinghouse can perform domain analysis over a broad range of
applications, which will likely increase the accuracy of the domain model and its
relevance for future application development.

"* With its central position, the clearinghouse has the authority and expertise to
enforce a strict reuse discipline. Certification procedures can be put in place to
ensure uniform quality of RSCs. This directly influences user confidence in the
clearinghouse.

"* As the clearinghouse imposes a standardized reuse procedure, it offers the
opportunity to serve a larger community.

17

18

18

IV. DSRS - A Clearinghouse for Software Reuse

A

A. CIM and Reuse

Launched in October 1989, the DoD Corporate Information Management (CIM)

initiative seeks to improve DoD business processes and the management of information

resources. To achieve this goal, CIM is calling for functional interoperability between

systems, standards compliance, and efficiency in software development through reliance

on reusable software components, commercial off-the-shelf products, and computerized

application development aids.

CIM promotes two types of repositories: software reuse repository and hardware

reuse repository."8 The objectives of software reuse repository are to:

* Develop a central DoD-wide RSC clearinghouse

* Establish a data dictionary for DoD

* Build an integrated repository for C31 software

The hardware reuse repository seeks to:

* Shorten acquisition cycle by leasing

* Introduce a standard bus architecture for scalable processors

* Provide for central technology renovation

• Rationalize capacity and security management practices

• Distribute capacity by means of survivable networks

S, Strassmann, 1991

19

Software reuse is considered to be one of the key strategies intended to help DoD

in responding to variable threats in a rapidly changing environment with less resources.

The Office of the Director of Defense Information sets the following goals for software

reuse: 19

* 100% reusable data with an infinite life for data definitions

0 More than 80% reusable code with more than a 20 year life on software elements

0 80/20 development/maintenance ratio

0 Technology asset life two to three times larger than the technology innovation
cycle.

The goal of implementing a DoD-wide repository of reusable components has

culminated in the recent establishment of the Defense Software Repository Service

(DSRS). Under the administration of the Center for Software Reuse Operations

(CSRO), 20 the DSRS provides automated access to more than 1550 government or

commercially owned/developed RSCs. This repository is available to all DoD, other

government agencies, and authorized contractors.

The design and implementation of DSRS is based on a pilot operation initiated by

the Army's Reusable Ada Product for Information System Development (RAPID). This

chapter reports some of the experiences gained by RAPID, and subsequently DSRS.

' Strassmann, 1991

o CSRO has been set up within the Defense Information System Agency's Center for Information
Management.

20

B. RAPID - The Army's Software Broker

1. History and Mission

The Army initiated the RAPID project in 1987 in recognition of the tremendous

potential of software reuse. The army established a software reuse clearinghouse offering

Army/DoD users a centralized repository of reuse components."1

With Ada as the programming language mandated by Congress, RAPID sought

to promote the reuse of Ada software to reduce the cost of system development and

maintenance through the use of previously developed, tested, and implemented

components. Ada is a prognamming language designed to facilitate reusability because

its reusability guidelines are structured to include design for reuse, parameterization, and

domain analysis.' Ada code is portable in that code written anywhere is potentially

reusable for another system. It is well suited to the integration of system components

from multiple sources.

RAPID defines its missions as follows:

Achieve the Department of Defense (DoD) initiative of reusable, maintainable,
and reliable software

Develop, maintain, and administer a comprehensive reuse program

Lower software lifecycle costs by increasing productivity and quality.

Initially intended for management information systems (e.g., financial, logistics,

and personnel applications), RAPID expanded its domain to additional application areas

(e.g., telecommunications). In 1991, it had more than 960 reusable components stored

in a central repository available to all Army/DoD units. RAPID issues software to both

DoD users and contractors working on DoD projects as government-furnished equipment

(GFE).

21 RAPID was located at the U.S. Army Information Systems Software Development Center,

Washington (SDC-W).

SBanker and Kauffmann, 1990

21

2. RAPID Implementation Plan

RAPID was initiated at SDC-W as a pilot prototype reuse program in July 1987

when the Phase I contract was awarded. This initial phase produced the foundation

RAPID PROJECT PHASES

PHASE I: Design and Development (July 1987 - April 1989)

* RAPID Center Concepts and Organization
* Reuse Policies and Procedures
• RAPID Center Library System

PHASE II: Pilot Operation (May 1989 - December 1990)

* Operate Active RAPID Center
• Support SAC-W Customers
0 Policy and Procedure Refinement
• Library Population
• Training Program
* Domain Analysis

PHASE III: Implementation (January 1991 - September 1991)

* Expand to all ISEC Development Centers
* Expand to Other Organizations
• Continue Library Population and Enhancements

PHASE IV: CIM Operation (October 1991 - October 1996)

* Individual Service focused Support
* Expand Domain Analysis Customers
* Continue Library Population

Table 1. RAPID Project Phases

22

needed to provide a reusability program within SDC-W. Table 1 depicts the chronology

of the phases of the RAPID project.

3. RAPID Staff Organization

Under the supervision of a center manager, the RAPID staff is composed of

technical consultants, systems analysts, software engineers, configuration management

specialists, quality assurance personnel, administrative assistants, and librarians. The

staff's mission is to encourage design methods and architectures that build from reusable

components. Systems analysts and software engineers provide vital support for RAPID's

role as a software clearinghouse while other positions, such as RAPID's administrative

assistants, are more heavily weighted towards user assistance or RSC cultivation.

Support personnel for the program consisted of 16 government employees and

eight contractor personnel. The following describes some specific positions of these staff

members:

a. The RAPID Manager: Continually monitors the success of the RAPID program

and the results of specific operations. He keeps extensive reports that help evaluate the

costs of the program as well as the savings to developers.

b. Technical Consultants: Perform the domain analysis, attend design reviews, stay

abreast of projects, advise project staffs, and assist the developer in identifying potential

areas of reuse. They help search for RSCs, and provide guidance, support, and

documentation to programmers.

c. System Analysts and Software Engineers: Identify high-value RSCs that are to be

added to the library. They evaluate, test, and document all RSCs before being added to

the library. They also provide maintenance and enhancements to the RCL (Rapid Center

Library) software system.

d. Configuration Management Specialists: Ensure that all configuration activities are

performed for each library component, including problem report tracking, controlling

changes, and releasing new versions or enhancements.

23

e. Quality Assurance Specialists: Ensure that all RSCs are of high quality through

frequent reviews. They develop and administer testing as well as establish and enforce

metrics.

f Administrative Assistants: Prepare all RAPID Center Library System reports and

perform follow-up interviews with the users.

g. The Librarian: Maintains the RSC data base and performs normal operator

functions.

4. RAPID Activities as a Clearinghouse

a. Defining Reusable Domains

For a clearinghouse to operate effectively, domain analysis must be performed.

As a continuing process, it not only identifies components that may be reused, but also

directs developers to areas where reuse emphasis should be placed so that new

components can be found during post-deployment support.

As part of the initial steps to establish RAPID, a high-level domain analysis was

done in 1987 that covered management information systems. During the pilot operation,

RAPID realized the need to support multiple domains. Therefore, policies, procedures,

and guidelines were revised to extend their potential applicability beyond MIS.

Standardized object-oriented methods were adopted for domain analysis. As a

standardized method, they proved to be effective in identifying reuse opportunities, and

for grouping RSCs according to the level of abstraction or functional category.

b. Searching for RSC Donors

Once the reusable types of software components are identified through domain

analysis, RAPID engineers must determine where those components will come from.

These personnel review a variety of sources to identify potential candidates, including:

24

* COTS Software

* Government-owned Software

* Public Domain Software

Of the 960 RSCs currently in the repository, more than 780 have been developed

commercially. Of the 170 government-owned components, less than 30 were developed

by the RAPID in-house engineers.

CGTS software tends to be a more fruitful source for several reasons. It is well-

tested before release, and is often accompanied by substantial documentation. Typically,

the software has been in use for a substantial period of time befoxe it is identified as a

candidate RSC. It is thus likely to be highly reliable.

Roughly 85 % of the RSCs in the Army repository are code. The remaining

component types include such things as design components, documentation components,

and functional specifications. Although originally conceived to house Ada code, the

repository does contain RSCs written in other languages, such as COBOL, C, and

FORTRAN.

c. Certifying RSCs

The certification process begins with a quality evaluation of the candidate RSC

once it is identified. The evaluation process not only determines basic attributes such as

the lines of code or number of packages but also estimates the reuse potential for the

component and the level of re-engineering needed to ensure a quality standard.

The certification includes testing on a variety of platforms. Re-engineering is not

done for commercial off-the-shelf components whenever code changes may invalidate the

license. COTS RSCs are entered into the RAPID Center library after the applicable

RAPID Center documentation standards are met.

The RAPID Center assigns a certification level as "the level of confidence" in the

quality of the RSC; it ranges from level I to level V, as follows:

25

Level I: Depository - No formal testing and documentation

Level II: Reviewed - Some testing and documentation

Level MI: Tested - Test Suites Validated and some documentation

Level IV: Documented - Fully tested and documented; meets all standards and
guidelines

Level V: Secure - Currently not used

Level V certification is reserved for future use to cover secure components in

accordance with DoD CSC-SMD-001-83, Trusted Computer System Evaluation Criteria.

Policies and procedures for secure components will be developed whenever such RSC

become available.

Ideally, every component in the library should be brought to a Level IV

certification. This has not been the case, however, and a significant number of RSCs

have been accepted into the library at the lower certification levels. Of the more than

780 COTS components in the repository, only 285 were certified at Level HI, while the

remaining ones are Level IV. A similar breakout of government-owned components

could not be obtained, but it was confirmed that a number of these components are

certified at Levels I and U1.

d. Creating a User-Friendly Library

RAPID uses a flexiblefaceted classification scheme to store and retrieve RSCs.

Using the PC-based, menu-driven system, the user can initiate a search for an RSC by

entering parameters or "facets" that describe the RSC. The nine facet classification

descriptors listed below allow the user substantial control over the repository search:

* Component Type

* Language

* Unit Type

* Function

26

* Algorithm

* Environment

• Object

• Data Representation

* Certification Level

To conduct a search, the Function, Language, and Certification Level descriptors

must be provided. The use of the other facet terms is optional. To enhance the search

capability, the RAPID search mechanism also provides the user a "thesaurus list" that

helps identify facet terms (known as "synonym terms") that appears to be comparable to

the user's description. The system also gives links (i.e., "Relationships") between RSCs

so that the user can browse or extract related components.

RAPID maintains RSC metrics on reusability, maintainability, reliability,

portability, actual usage, and outstanding problem reports. Based on these metrics, the

users can choose to rank components and select the most appropriate ones.

e. Supporting the User

User support and feedback is an essential aspect of clearinghouse activities. In

addition to the assistance from its central office, RAPID offers a remote site program

where its personnel spend a period of time at the user's site to assist in establishing a

local reuse repository infrastructure (e.g., reuse planning, hardware and software

selection, RSC creation and population).

Formal training is also part of RAPID's support of the users. Programs have

been developed at three levels: Executive, Management and Software Engineering. This

training is available at both the Army Reuse Center and remote sites.

The RAPID librarian solicits the RSC recipient's feedback, approximately 90 days

after the RSC extraction. The inquiry is intended to check whether or not the RSC was

used or if any problem was encountered. The expectation is that such user feedback

27

provided on a continuous basis would ultimately result in a more responsive library.

This feedback provides some clues in assessing the effectiveness and the costs of reuse,

C. DSRS - Toward a DoD-wide Reuse Program

The DoD surveyed software reuse efforts within the Department and keyed on the

Army's RAPID initiative. It was clear that this program, though still in its early stages

of development, was built upon a methodology that closely aligned with DoD's vision

for the future regarding reuse, and the mechanisms to ",chieve it. Tapping on this

positive learning experience, DoD established in 1991 the Defense Software Repository

Service (DSRS).

1. The DoD Reuse Organizational Structure

As described in Figure 1, DSRS is under the management and supervision of the

Center for Software Reuse Operations (CSRO). CSRO is a component of the Defense

Information Systems Agency (DISA). DSRS is a distributed operation with four remote

centers supporting DoD services and the Defense Logistics Agency.? DSRS supports

reuse efforts at remote centers, and ensures that these efforts are complementary and not

duplicative. Predominantly staffed by contractor employees, seven contract personnel

fill billets in project management (1), engineering (4), configuration management (1), and

librarian (1). Government personnel fill positions in customer service (1) and liaison

with other government sites (1).

" The reuse remote centers are located at the following sites: Army Reuse Center is located in the
Information Systems Command, Falls Church, VA; Navy Reuse Center at the Naval Computers and
Telecommunications Station, Washington Navy Yard, D.C.; Air Force Reuse Center at the Standard
Systems Center at Gunter Air Force Base, Ala.; Marine Corps Reuse Center at the Development Center,
Quantico, Va.

28

CIM Reuse Organization

CIM Exec CSRO
Agent Reuse'"CIM

Central Program Software Tools and Policy,
Reuss Admin & Ware- Methods Plans and
Activity Budget house Advocacy

Navy USAF USMC Army DLA
Reuse Ctr Reuse Ctr Reuse Ctr Reuse Ctr Reuse Ctr

On site Reuse Support,

Fig 1: CIM Reuse Organization

2. Current Status of the DSRS Effort

DSRS has adopted as its core not only RAPID's library of RSCs (at the time

about 840 components), but its infrastructure as well (i.e., classification/retrieval system,
RSC certification methodology, etc.). At the same time, DSRS also accepted RSCs from

previously established Navy and Air Force repositories. To date, DSRS more than 1550
components comprising over two million lines of code. RSCs are composed of

communications packages, graphics programs, man-machine interfaces, Ada bindings,

data structures, and Ada development tools.

29

DSRS operates on a MicroVax 4000-300 running VMS operating system.2

Users can access DSRS from a terminal with VT100 emulation through dial-up modem

or via the Defense Data Network (DDN), although full networking capability via DDN

is not expected until January 1993. Currently, when a user searches for an RSC, he has

to access not only the DSRS central repository but also the ones located at the services.

It is planned that all repositories will be interconnected to form an integrated DSRS

repository by the end of 1993.

CSRO seeks to improve the user-friendliness of the DSRS interface. Currently,

on-line help is made available to familiarize the user with the system. DSRS also has

a feature called "Session Maintenance" that allows the users to keep track of his/her

interaction with the repository system. A graphical user interface is being studied to

replace the character-based and menu-driven interface. Finally, CSRO puts in place a

Customer Assistance Office (CAO) to support users.

=

Il The DSRS hardware platform is an upgrade of the RAPID configuration.

30

V. Lessons Learned

A. A Clearinghouse is a Necessary Condition for Software Reuse in
DoD

DSRS has been established to respond to a widely recognized need for a

centralized repository of reusable components in DoD. Given that donors and recipients

are separated by organizational and geographical boundaries, there must be a marketplace

to facilitate the exchange of RSCs. A DoD clearinghouse that allows networking of all

of its remote sites is expected to further enhance RSC usability. As such, a

clearinghouse contributes to the proliferation of software reuse. Without a clearinghouse

bridging the gap between RSC donors and recipients, the software reuse effort would fall

apart.

B. A Clearinghouse is a Productivity Multiplier

Early signs of success can already be observed, as evidenced by the

implementation of the Retired Army Personnel System (RAPS) and the Air Force

Logistics Material Automated Retrieval System IH (LOGMARS).

The Retired Army Personnel System (RAPS) is a report generator system that was

a pilot study by developers and the Army Reuse Center. The goal from a reuse

standpoint was to integrate reusable software components into the systems development

life-cycle and create a reusable system. Although the lines of code (LOC) in RAPS are

not substantial, the fact is that reusable modules accounted for a significant percentage.

Also of significance is the use of design components as well as implementation RSCs:

In the design phase four of ten system components were reused.

31

0 Implementation activity involved the reuse of 88 of 130 subunits. This accounted
for 63.9% of LOC dedicated to implementation.

0 Reuse of the testing packages for reused modules was also employed.

The time savings calculated as a result of reuse in RAPS development amounted to more

than 125 days.

Similar success was obtained by the Air Force with its LOGMARS-il:

* Released worldwide in February 92, LOGMARS-11 is a PC-based inventory
control system used in supply warehouses. The system consists of 18,600 lines
of Ada code, of which 5,600 LOC were extracted from DSRS. An additional
6,300 LOC came from existing in-house modules.

0 Also developed was a bar-coded label printing subsystem used for warehouse
material and benchstock. Two modules consisting of over 2,500 LOC (28% of
total system code) were extracted from DSRS. Five other modules, including
those for screens and forms generation, were reused from LOGMARS-II.
Overall, 73% of the subsystem code consisted of reused code.

As the utilization of the clearinghouse's RSCs has started to show signs of

success, it is expected that more RSCs will be demanded in the future. With a well-

populated repository, the clearinghouse would serve as a productivity multiplier.

C. The Clearinghouse Must Populate its Repository with Quality
RSCs

In response to the growing appreciation of reuse, RSCs are being inducted into

the repository at a rapid pace. The clearinghouse must ensure that RSC quality is not

compromised in the process. RSC users are reluctant to utilize components of uncertain

quality developed by unknown sources; they want nothing but "error-free" RSCs. The

clearinghouse must carefully weigh the benefits of accelerating the population growth of

RSCs against the potential damage that might be caused if users experience problems

with RSCs.

32

D. Domain Analysis is the Foundation for a Successful Software
Reuse Program

The software reuse program must be preceded by an analysis phase in which (a)

the application domain to be supported by the reuse program is determined, and (b) the

functionalities commonly required in the applications belonging to that domain are

identified. Domain analysis, by assuring that every essential building block is identified

and developed into an RSC, promotes an environment in which the major portion of a

niew application can be completed by simply selecting and putting together existing

building blocks.

E. High-Level DoD Management Must Provide Incentives for Reuse

A fully functioning repository populated with pertinent components is a necessary

but not sufficient condition to promote a successful reuse program. Some inducement

to reuse software is required as well. To carry the necessary weight and visibility, these

incentives must be promulgated from the highest authority within DoD.

While many DoD organizations2l involved in software reuse have recognized this

issue, there is no policy regarding financial incentives. It is imperative that incentives

research continue and these critical issues be resolved in order to implement a competent

reuse. strategy.

3i
:' CSRO recognizes the critical issue of reward, and is working closely with organizations

such as the Joint Avionics Working Group (JIAWG), and the Ada Joint User's Group (AdaJUG)
both of which are conducting extensive research on incentive issues.

33

34

34

Glossary of Terms

ADA - Programming language that facilitates reuse. Ada is the primary programming
language in the Department of Defense.

ADAMAT - A static source code analyzer that produces 150+ metrics on the quality of
Ada code as it pertains to reliability, maintainability, and portability.

CASE (Computer Aided Software Engineering) - Collective resource to a family of
software productivity tools.

CODE REUSE - The most common form of software reuse in which source code is
reused.

DESIGN REUSE - Reuse of a type of reusable software component such as logical data
models, functional descriptions, and diagrams.

DOMAIN - A group or family of related systems that share a set of common capabilities
and/or data.

DOMAIN ANALYSIS - The thorough examination of a domain that produces a
representation of the domain and identifies common domain characteristics, primary
functions, and objects.

FACETED CLASSIFICATION SCHEME - Components are classified by selecting the
most appropriate terms from each facet to best describe the component.

FOURTH GENERATION LANGUAGE - Programming language that uses high-level
human-like instructions to retrieve and format data for inquiries and reports

GRANULARITY - The size of the chunk of code.

IMPLEMENTATION REUSE - Reuse of a type of reusable software component such
as package specifications, package bodies, subsystems, and test suites.

METRICS - Numeric measures that characterize RSCs.

OBJECT-ORIENTED DESIGN - Method for geneiating reusable software components.
It uses data types as the base for m-odularization and defining objects.

35

REPOSITORY - Storage area for reusable software component.

REUSABLE SOFTWARE COMPONENT - Originally a source code component
consisting of functions, procedures, or packages. Now it includes requirements, design,
implementation, templates, and generic architectures.

REUSABILITY - Ability for a software component to be reused.

36

References

I

Apte, U; Sanker, C.S.; Thakur, M; and Turner, J "Reusability Based Strategy for
Development of Information Systems:Implementation Experience of a
Bank" MIS Quarterly, December, 1990, pp 421-433.

Banker, Rajiv and Kauffmann, Robert "Reuse and Productivity in an Integrated
Computer Aided Software Engineering (CASE) Environment: An Empirical
Study" MIS Quarterly, September 1991 pp 375-395.

Banker, Rajiv and Kauffmarin, Robert "Factors Affecting Code Reuse:
Implications for a Morel of Computer Aided Software Engineering
Development Performanie", December 1990.

Basii, Victor and Musa, John "The Future Engineering of Software: A
Management Perspective", IEEE Computer, September 1991, pp 90-96.

Biggerstaff, Ted and Lubars, Mitchell "Recovering and Reusing Software
Designs", American Programmer, March, 1991, pp 3-11.

Biggerstaff, Ted "Reusability Framework, Assessment, and Directions", IEEE

Software, March, 1987, pp 44-49.

Biggerstaff, Ted "An Assessment and Analysis of Software Reuse", July, 1991.

Burton, Bruce "The Reusable Software Library%, IEEE Software, July, 1987, pp
25-32.

Caldiera, Gianluig. and Basili, Victor "Identifying and Qualifying Reusable
Software Components", IEEE Computer, February, 1991, pp 61-69.

Cashin, Jerry, "To Move Beyond a Metaphor, Reusability Needs to Get Real",
Software Magazine, October, 1991, pp 10L !.06.

37

Ferguson, Glover "Reuse and Reengineering", American Programmer, March,
1991, pp 39-43.

Fischer, Gerard "A Cognitive View of Reuse and Redesign", IEEE Software, July,
1987, pp 60-72.

Gargaro, Anthony "Reusability Issues in ADA", IEEE Software, July, 1987, pp
43-51.

Horowitz, Ellis "An Expansive View of Reusable Software" IEEE Transactions
in Software Engineering, September 1984, pp 477- 487.

Jones, T. Capers "Reusability in Programming: A Survey of the State of the Art",
IEEE Transactions in Software Engineering, September 1984, pp 488-493.

Jones, Gerald and Prieto-Diaz, Ruben "Building and Managing Software
Libraries", IEEE Software, February 1988, pp 228-236.

Kaiser, Gail "Melding Software Systems from Reusable Building Blocks", IEEE
Software, July, 1987, pp 17- 24.

Lanergan, Robert and Grasso, Charles "Software Engineering with Reusable
Designs and Code", IEEE Transactions in Software Engineering, September
1984, pp 498-501.

Meyer, Berstrand "Reusability: The Case for Object Oriented Design", IEEE

Software, March 1987, pp 50-63.

Nieder, "RAPID: Implementing a Comprehensive Reuse Program", Dec 1987

Prieto-Diaz, Ruben "Classifying Software for Reusability" IEEE Software, January
1987, pp 6-16

Prieto-Diaz, Ruben, "Implementing Faceted Classification for Software Reuse",
Communications of the ACM May 1991 International Conference on
Software Engineering Special Report (ICSE-12),

SOFTECH, "RAPID Center Standards for Reusable Software", Jan 1989

SOFTECH, "ISEC Reusability Guidelines", December 1985

38

Standish, Thomas "An Essay on Software Reuse" IEEE Software Engineering,
September 1984, pp 494-497.

Syms, Trevor and Braun, Christine "Software Reuse: Customer vs. Contractor
Point-Counterpoint", March 1991, pp 326-337.

Tracz, William "Reusability Comes Of Age", IEEE Software, July 1987, pp 6-8.

Tracz, William "Legal Obligations for Software Reuse", American Programmer,
March 1987, pp 12-17.

Vogelsong, and Rothrock, "RAPID, Lessons Learned during Pilot Operations",
December 1988.

Vogelsong, "RAPID, An Operational Center of Excellence for Software
Reuse", December 1988.

Wartik, Steven "Filling: A Reusable Tool for Object Oriented Software", IEEE
Software, March 1986, pp 61-69.

39

Distribution List

Agrn No. of copies

Defense Technical Information Center 2 a

Cameron Station
Alexandria, VA 22314.

Dudley Knox Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration 1
Code 08
Naval Postgraduate School
Monterey, CA 93943

Library, Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Department of Administrative Sciences Library 1
Code AS
Naval Postgraduate School.
Monterey, CA 93943

Director of Information 10
OASI (C31)
Washington, D.C. 20301-3040

Tung X. Bul 10
Code AS/Bd
Naval Postgraduate School
Monterey, CA 93943

