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PREFACE
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Stokoe II, and John L. Tassoulas, UT, Mr. Ronald E. Wahl and Dr. John Peters,

WES, and Mr. George Smith, Silicon Graphics, Inc. Messrs. Willie McGeehee and

Daniel Habeeb, WES, created the figures in Parts I, II, and III.

The authors are grateful to Professor Eduardo Kausel, Massachusetts
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computer code PUNCH used to conduct validation studies. Ms. Jennifer Davis,

WES, assisted in generating outputs using this program.

Overall direction at WES was provided by Dr. A. G. Franklin, Chief,

EEGD, and Dr. William F. Marcuson III, Director, GL.
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TWO-DIMENSIONAL PLANAR GEOSYSTEMS SUBJECTED TO

THREE-DIMENSIONAL DYNAMIC LOADS

PART I: INTRODUCTION

General

1. Many problems of Elastodynamics -- the study of the response of an

elastic body to dynamic forces -- have been evaluated experimentally, solved

explicitly, or have been properly formulated for implicit solution over a 160

year history dating back to Cauchy, Poisson, Stokes, and Lame' during the

early to mid- 1800's. As each class of problems is solved, more complex

problems are presented or more accurate, more efficient, or simpler means to

solve a problem are desired. Accuracy, efficiency, and simplicity are all

important aspects to the integration of new technology into military systems.

2. The present study is a systems analysis of the forward problem to

estimate the variation of displacements in space and time produced by dynamic

loads in complex isotropic media, consisting of dipping, discontinuous, and/or

irregular layers. using a numerical approximation method. The distinguishing

feature of this study is a formulation that allows three-dimensional (3-D)

problems to be solved using a two-dimensional (2-D) numerical model. To

implement this method, the stratigraphy and material properties of the model

cannot vary in a horizontal direction (2-D stratigraphy). However, the

distribution and extent of loads may vary in both horizontal directions (3-D

load) providing for the analysis of synthetic vibratory sources such as a

Vibroseis truck. Examples of 2-D and 3-D loads are shown in Figure 1. These

types of problems cannot be solved analytically but normally would be solved

using a laborious 3-D numerical approximation.

3. Soil dynamics studies conducted in the 1950's and 1960's using

finite difference and finite element methods, and in the 1970's and 1980's

using Green's functions and boundary element models, generally assumed plane

harmonic waves and horizontally layered media extending to infinity. The

subsurface distribution of materials at most sites is not simple nor is it

conducive to analytical closed-form solutions of wave propagation problems.
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Line [ F/LI]
TWO-DIMENSIONAL LOADS:

Strip [F/L/W]

THREE-DIMENSIONAL LOADS: Point [F]

Rectangular [ F/L2 ]

Figure 1. Comparison between 2-D and 3-D loads
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Sloping strata of finite length, an irregular ground surface, and/or two-

dimensional load distributions are prevalent. The present study describes a

procedure to analyze wave propagation in these more complex systems.

4. This report describes a means to efficiently calculate dynamic

vertical displacements by representing 3-D systems with an equivalent 2-D

model. The finite element method was selected for computational solution to

permit discretization of geosystems with numerous materials of arbitrary

geometry. Initially, only steady-state dynamic loads are considered although

the computer code can be easily adapted to allow the solution for transient

loads by performing an additional Fourier transformation of the load function

from the time to frequency domain.

5. The formulation involves two primary components: the condensation

of 3-D dynamic stiffness matrices to equivalent 2-D matrices and the

representation of the distribution of loads in the out-of-plane direction

using a Fourier expansion. This strategy was explicitly proposed for axi-

symmetric problems by Winnicki and Zienkiewicz (1979) and Lai and Booker

(1991) and for 3-D formulations by Runesson and Booker (1982, 1983) and Lin

and Tassoulas (1987). This strategy was used specifically for wave

propagation studies in horizontally layered pavement systems by Kang (1990)

and Hanazato et al. (1991). The 2-D system of equations are first solved in

the frequency and wave-number domain; inverse Fourier transforms are then

performed to obtain the solution as a function of out-of-plane distance and

time, if so desired.

6. One objective of this study is to examine the potential for

determining elastic moduli (i.e., shear, constrained, and Young's moduli) in

complex systems of soil, rock, and structural materials from measured motions

(the inverse problem). The Spectral-Analysis-of-Surface-Waves (SASW) method

(Nazarian and Stokoe 1985a, 1985b) is one possible existing method of field

measurement and mathematical inversion to determine the moduli of horizontally

layered systems. This method involves the use of signal processing techniques

on two measured vertical components of motion spaced at equal increments from

the vibratory source. A similar procedure of determination is desired for

more complex systems. In addition, the use of artificial neural networks

holds promise to improve inversion schemes (Rix and Leipski 1991).

Therefore, Rayieigh wave propagation will be of primary interest. Rayleigh

waves normally contain most of the energy of wave propagation for the near

9



propagation for the near surface regime and Rayleigh wave energy will

attenuate with distance at a much lower rate than body waves. The response at

the grourd surface is normally cf greatest interest since it provides the

easiest access for measurements.

Terminology

7. It is useful at this point to define some terminology. Geosystems

are systems containing soil, rock, and possibly embedded foundations. Three-

dimensional loads may be either point loads or loads acting over a finite area

in plan (e.g., tires, tracks of vehicles, platen of Vibroseis truck, or

blast). Two-dimensional loads are synonymous with plane waves or line loads

extending to infinity in the direction perpendicular to the analysis plane.

Plane waves refer to conditions where all points on a plane perpendicular to

the direction of wave propagation undergo an identical incident disturbance at

all instants of time during the disturbance. The term "irregular" applied to

surfaces and layers is synonymous with the terms "dipping" (i.e., non-

horizontal) or "discontinuous" (i.e., of finite length), or both, and includes

layers with varying thickness. Contacts between layers can be approximated

with a series of second degree parabolic segments.

Assumptions for Two-Dimensional Systems

8. A common assumption used to reduce the computational effort for

the engineering analysis of stress and strain in boundary value problems of

interest for geotechnical engineering applications is that of plane strain.

Plane strain implies that the displacements in the direction perpendicular to

a two-dimensional plane are equal to zero (Love 1944). This assumption

reduces the scope of a problem from three to two dimensions. Conditions of

plane strain require 2-D geometry and boundary conditions and loads that are

uniform in the direction perpendicular to the plane under consideration

(Timoshenko and Goodier 1970) A plane wave with particle motion only in the

2-D analysis plane is consistent with this assumption.

9. A surface load distributed over a finite surface induces stresses

that vary in three principal directions. If stresses vary in a direction

perpendicular to the analysis plane, displacements and strains will be non-

10



zero. Therefore, three-aimensional loads are inconsistent with plane strain

assumptions. Axi-symmetric modeling is an alternative procedure for one-

dimensional soil profiles. Many synthetic loads applied to the earth are of

small dimensions relative to the extent of the analysis plane. For example,

Rayleigh waves produced by a Vibroseis truck propagate through a layered half-

space in three dimensions invalidate the assumptions of plane strain.

10. Examples of two-dimensional analysis planes and boundary

conditions in systems that may exist in a state of plane strain include planes

perpendicular to the axis of long, straight structures: tunnels (without rock-

bolt reinforcement), emban'-ments, retaining walls (without tiebacks or

anchors), and vertical planes through isotropic soil deposits and geologic

media that have no variation in profile for some arbitrary direction. Uniform

loadings for these examples would include self weight (body.forces) and

hydrostatic (pool) loads for embankments, lateral forces on retaining walls,

roof stresses in tunnels, and surcharges (e.g., highway embankment) in soil

deposits or geologic media. Some examples are shown in Figure 2 and assume

that the soil-structure system extends to a largeý distance relative to the

predominant wavelength and distance from the source.

11. This study deals with the analysis of "planar" geosystems which

proves to be beneficial from a computational standpoint. The primary

assumptions are that the geometry and boundary conditions of the system and

the distribution of material properties are planar (2-D) but the loads are

non-planar (3-D). This set of conditions has a broader range of applications

than that for plane strain while circumventing expensive 3-D solution methods.

Overview of Report

12. This report presents a broad discussion of aspects related to the

analysis of Rayleigh wave propagation in geosystems using numerical methods.

A review of previous studies is presented first. Next, the mathematical

formulation and computer implementation of t:-e finite element method, element

condensation, and Fourier superposition are described. Validation and

parametric analysis of the computer code are presented along with a comparison

of computation times with 3-D finite element codes. The main part of the

report concludes with a summary section. A listing of the primary computer

program, vIb3, and a sample problem are included in the appendices.
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Figure 2. Examples of wave propagation problems in planar systems
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PART II: EXISTING SOLUTIONS FOR DYNAMIC LOADS

Introduction

13. The evolution and the state of knowledge for dynamic loads acting

on elastic media, particularly that involving coupled compression (P), in-

plane shear (SV), and Rayleigh (R) waves, was reviewed to provide insight into

which problems have been solved, what approaches were used, what conclusions

have been reached, and which studies provide a proper basis for comparison or

validation of the proposed formulation. Some general conclusions are:

L. Almost all the studies for layered systems considered plane wave
propagation.

b. Many of the earlier studies that examined R-wave energy did not
include in-plane P-SV waves,

S. Experimental studies generally focused on "thin plate" tests that
have plane stress boundary conditions which are inconsistent with
stress conditions for most geosystems, and

d. Plane strain conditions were generally assumed for theoretical and
numerical studies.

The distribution of stresses caused by static point loads were also compared

using closed-form solutions to quantify the errors associated with incorrectly

modelling 2-D and 3-D loads. A presentation of these findings is made in

Appendix A.

14. The literature reviewed has been categorized for purposes of

explanation into four groups: fundamental studies (point loads in full or

half-spaces), exact solutions for layered systems, experimental studies

(laboratory and field measurements), and numerical and theoretical

approximations.

Fundamental Studies

15. The study of dynamic displacements and wave propagation began in

the early 19th century with Poisson and Kelvin. Stokes, Love, Rayleigh, and

Lamb in the late 19th century further defined fundamental aspects of wave

propagation in layered media and spheres. A summary of consequent studies

that pertain to in-plane surface waves is presented in Table 1. Research

studies as recent as Vardoulakis and Vrettos (1988) and Banerjee and Mamoon

(1990) still consider the solution and formulation for three-dimensional

13



(point) load acting on or in an elastic half space. The studies listed in

Table 1 are not directly applicable to the analyses and comparisons in this

study because most deal with non-dispersive media or impulsive sources, or

both. Many studies consider 3-D loads but the medium is too simple to use for

validation.

Table 1

Initial Studies of In-Plane Surface Waves

Produced by Dynamic Loads

Load Load
Study Distribution Type Solution

Mindlin (1936) Internal point Harmonic Exact
load integrals

Pinney (1954) Impulsive Exact
(Pure P or S) integrals

Pekeris (1955) Surficial point Impulsive Contour
load integration

Mooney (1974) Surficial point Impulsive Elliptic
load integrals

Vardoulakis and Line load Harmonic Numerical
Vrettos (1988) (planar) solution

eigenvalue
problem

Closed-Form Solutions for Layered Systems

16. Numerous studies have been conducted since the 1950's to develop

different means to solve wave propagation problems considering the wide range

of conditions that would affect wave propagation. The response of

horizontally layered media extending to infinity and overlying a half-space

was first addressed by Thomson (1950) and corrected by Haskell (1953). Dunkin

(1965) also added a correction to this formulation to maintain an acceptable

degree of accuracy at high frequencies. Other studies since that time have

considered refinements or have broadened the range of solvable conditions

(e.g., Pestel and Leckie, 1963; Harkrider, 1964; Waas, 1972b; and Kausel and

Roesset, 1981). Green's functions were evaluated numerically by Apsel (1979)

and Kausel (1981). Studies utilizing closed-form solutions are listed in

Table 2.
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Table 2

Theoretical Solutions for Rayleigh Plane Wave

ProDagation in Layered Systems

Load Load
Study Distribution Type Approach

Thomson (1950) & Plane wave Harmonic Transfer
Haskell (1953) Matrix

Pestel and Leckie
(1963)

Harkrider (1964) Point or Explosive, Matrices to
line load Point, or derive

Strike-slip fault integrals

Dunkin (1965) Plane wave Harmonic Transfer
Matrix

Waas (1972b) it

Apsel (1979) Point or Green's
disk load functions

Kausel and Roesset Plane wave Stiffness
(1981) Matrix

Kausel (1981) Point, disk, Harmonic Green's
or ring load functions

17. The studies lumped into this category represent a significant

capability to calculate the dynamic displacements in an ideally layered

system. These studies are still used successfully in various applications.

Although the assumptions for an ideal layered system are unrealistic for many

actual conditions, reasonable results can be obtained for simple soil and rock

systems. The matrix solutions can be applied to plane wave propagation

problems which are not of interest here. The Green's function solutions allow

analysis of axi-symmetric problems which means 3-D loads (point and disk) in

2-D geometry (function of depth and radius).

18. The computer program developed as part of this study was

validated using a solution method reported by Kausel (1981) for axi-symmetric

problems with horizontally layered systems extending to infinity. The method

by Kausel involves evaluating discrete Green's functions numerically and

approaches the exact solution as the number of layers increases. More

complicated problems cannot be solved accurately with this method. As a

15



consequence, researchers have had to extract information from experimental

measurements and numerical and theoretical approximations.

ExDerimental Studies

19. Experimental studies, consisting of laboratory thin plate tests

and field vibration tests, were predominant in the late 1950's and 1960's both

in the laboratory and in the field. This thrust seems to correspond to a

proliferation in the availability and use of electronic equipment and analog

recording devices. This period is marked by the general absence of

theoretical studies and generally pre-dates the solution of these problems via

numerical techniques using computers.

20. Measured values provide realistic assessment of usefulness and

applicability of a method but are not accurate and consistent enough for

validation. A sufficient signal-to-noise ratio must be obtained and

repeatable measurements must be available. Measurements made in the

laboratory produce a wide range of possible values. Field measurements have

inherent scatter and uncertainties because of the natural (unknown)

variabilities of soil deposits. However, these same conditions must be

recognized when proposing or fielding a new system for field measurement.

Laboratory studies

21. Several laboratory studies reported in the literature are listed

in Table 3. Most laboratory studies examined the propagation of waves along

the edge of thin plates. This type of test consists of cutting shapes from

plates of material on the order of 0.16 cm in thickness, standing the plate on

edge and placing receivers at various locations, producing an impulse across

the thickness of the plate at some point, and then recording the wave as it

propagates through the irregularity. A simple schematic of the system used

by most researches in the laboratory is shown in Figure 3. Circular disks and

concentric rings were used rather than quadrilateral shapes in one study.

Some of the first studies of this type were reported by Kato atnd Takagi (1956)

and Viktorov (1958) although little is known about the experimental system or

the materials used.

22. The studies listed in Table 3 are subdivided into two categories:

irregular surface (wedges) and irregular layers (step changes or material

interfaces). The data for irregular surfaces is compared in a series of plots
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shown in Figures 4 through 7 along with a first-order-theory approximation

(Hudson and Knopoff 1964). The measured coefficients for transmitted and

reflected energy are compared in Figures 4 and 5, respectively. The phase

shifts for transmitted and reflected Rayleigh wave energy reported by Pilant,

Knopoff, and Schwab (1964) are shown in Figures 6 and 7 and compared with

first-order theory (Hudson and Knopoff 1964).

Figure 3. Schematic of "thin plate" test

23. The transmission coefficients for irregular surfaces from the

four experimental studies are shown in Figure 4. In general, the measured

values are considerably different although some general trends exist. The

18
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energy transmitted fluctuates considerably over the range of surface angles of

0 (free end) to 180 degrees (continuous herizontal surface). For troughs, the

percentage of energy transmitted ranges from 2 to 20 at surface angles of 55

to 60 degrees and 15 to 50 at angles of 110 to 120 degrees (multiple of first

set). Peaks occur at angles of 75 to 80 with percentages ranging from 50 to

95 and somewhere between 10 and 30 degrees. The pattern of peaks and troughs

is relatively uniform, changing about every 30 degrees up to a surface angle

of 120 degrees.

24. The reflection coefficients for irregular surfaces from the four

experimental studies are shown in Figure 5. As expected, there is a strong

correspondence between peak reflect 4 on coefficients and trough transmissiop

coefficients in Figure 4 (angles of about 55 and 100 degrees). The peak

energy reflected ranges between 35 and 82 percent at 50 to 60 degrees and 20

to 70 percent at 100 degrees.

25. The phase relationships for transmission and reflection presented

by Pilant, Knopoff, and Schwab (1964) are shown in Figures 6 and 7. An

observation by deBremaecker (1958) is also shown in Figure 6. The

relationships for first-order theory by Hudson and Knopoff (1964) are also

shown. The experimental values tend to show poor agreement with the first-

order theory at surface angles less than 70 to 80 degrees.

Field studies

26. Field measurements focused on the propagation of surface waves

through trenches in soil and rock. A few of these studies include: Barkan

(1962), Dolling (1965 and 1970), and Woods (1968). The effect of trench

dimensions normalized to the predominant wavelength, such as trench width,

height, and length, were examined.

Numerical and Theoretical Approximations

27. The bulk of the studies that examine surface wave propagation in

complex geosystems are numerical or theoretical approximations. Numerical

approximations include the use of the finite difference (FD) method, the

finite element (FE) method, the boundary element (BE) method, or a combination

of these methods. Some of the early studies used wavefunction expansion to

define body wave propagation in the media and then tried to solve for points

along the boundary (an early form of BE). Other methods include: the ray path
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method, the Aki-Larner method, and Alsop's method. Some of these studies are

conveniently described and compared in general and specific terms by Knopoff

(1969) and Yanovskaya (1989).

28. Theoretical approximations to determine reflection and

transmission coefficients of surface waves can be categorized into three

groups: Green's functions, vertical boundary approximations, and superposition

of waves. Nearly all of the early studies used a Green's function solution

(GF) which is a mathematical formulation of the Huygens-Fresnel principle.

Some assumptions must be used in conjunction with this approach (thereby

making it an approximation) because of the unknown stresses and displacements

in complex media. For instance, Hudson and Knopoff (1964) neglected the

reflected Rayleigh wave; Alsop (1966) assumed that body waves generated by

surface waves impacting a surficial step change are small compared to the

Rayleigh waves and could be neglected. Several others used this assumption to

examine surface wave propagation through media with other geometric shapes.

The number and severity of assumptions tended to decrease as the studies

progressed chronologically.

29. The studies researched were divided intxu three categories for

convenience. Studies examining the ef-ects of irregular surfaces (e.g., step

changes, vertical contacts, and wedges) on Rayleigh wave propagation are

presented in Table 4. Studies examining the eff.ezL6 of canyons (e.g., empty

and filled canyons with elliptical, circular, and arbitrary shapes) on

Rayleigh wave propagation are presented in Table 5. Studies examining the

effects of irregular subsurface layers (e.g., dipping layers and curved

contacts) on Rayleigh wave propagation are presented in Table 6. General

configurations for these categories are shown in Figure 8. This collection of

studies allows tor the analysis of most configurations of -naterial geometry.

However, the loads considered by nearly all of these studies are 2-D (plane

waves). The problem of 3-D loads is more difficult to solve.
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Table 4

Studies Examining Rayleigh Plane Wave Propagation

Through Irregular Surfaces for 2-D Geometries

Study Case(s) Approach

Kane & Spence (1963) Wedge; wave from - Iterate sol'n at
boundaries

Hudson & Knopoff (1964 & Wedge; source at apex GF; neglected
1967) reflected waves

Mal & Knopoff (1965) Step change GF

Mal & Knopoff (1966) Wedge; wave from - GF

Lopez-Soto (1967) (unknown) GF; with body waves

McGarr & Alsop (1967) Step change GF; no body waves
Discontinuous layers generated

Gutdeutsch (1969) Wedge; source at apex Empirical theory

Waas (1 9 72a) Trench FE

Malischewski (1974 & Vertical contact GF; no body waves
1976) generated

Its & Yanovskaya (1977 & Curved sub-vertical GF
1979' interface

Segol, Lee, & Abel (1978) Trench FE

Lutikov (1979) Vertical interface GF

Fujii et al (1980) Trench FD

Fuyuki & Matsumoto (1980) Trench FD

Sanchez-Sesma (1983) Ridge BE

Fujii et al (1984) Wedge FD

Fuyuki & Nakano (1984) Upward step change FD

Ohtsuki & Yamahara (1984) Wedge; source at - FE/FD

Sanchez-Sesma, Chavez- 3-D surf-ce irreg. BE
Perez, & Aviles (1984)

Gautesen (1985) Right-angle wedge Numerical integration

Sanchez-Sesma, Bravo, & Topographic irreg. BE
Herrera (1985)

Sanchez-Sesma, Perez- 3-D surface irreg. BE
Rocha, & Chavez-Perez
(1985)

Milder (1991) Rough surface Series of Helmholtz
equations
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Table 5

Studies Examining Ravleigh Plane Wave

Provagation Through Canyons

Study Case(s) Approach

Lee (1978) Hemi-spherical canyon WFE

Bard & Bouchon (1980) Bi-dimensional valleys Aki-Larner method

Dravinski (1980) Alluvial valley, (unknown)
arbitrary shape

Wong (1982) Semi-elliptical & semi- BE
circular canyons

Lee & Langston (1983) 3-D circular basins* Ray path

Sanchez-Sesma (1983) 3-D basins BE

Lee (1984) Hemi-spherical alluvial BE
valley

Kawase (1988) Semi-circular canyon BE

Eshraghi & Dravinski 3-D canyons BE
(1989a)

Khair, Datta, & Shah Cylindrical alluvial FE/BE
(1991) valley

Transient source
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Table 6

Studies Examininy Rayleigh Plane Wave Propagation

Through DioDing or Irregular Layers

Study Case(s) Approach

Kuo & Nafe (1962) Sinusoidal contact Pertubation of
boundary conditions

Herrera (1964) Non-parallel layers Pertubation of GF

Drake (1972) Continental boundary FE

Malischewski (1974) Vertical curved interface Alsop's method

Scheidl & Ziegler (1977) Rigid cylindrical Fourier series
inclusion

Uberall (1977) Buried elastic cylinder Complex poles
or sphere

Lutikov (1979) Oblique interface GF

Its & Yanovskaya (1983) Subsurface curved profile GF

Ohtsuki & Yamahara (1984) Valley edge FE/FD

Dravinski & Mossessian Dipping layers; arbitrary BE
(1987) shape

Eshraghi & Dravinski Dipping layers; arbitrary BE
(1989b) shape

Yanovskaya (1989) Dipping layers and curved GF
interfaces

Li & Achenbach (1991) Vertical interface zone BE
between two materials

Eshraghi & Dravinski 3-D dipping layers BE
(1991)
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Step change Vertical contact

p, v, G Wedge P1' Vl' G1

p, v, G! ( :
0 < 0 < 360

a. Irregular surface

v, p,G G VpG
P1, v1, Gi

Sp2, v, G2
P2' V2' G 2-& 'e PlVlG

b. Trenches, canyons, or valley fill

P1, ,-,G 2,v2

P1, v' 1 G1 .. . . .. pi, vi, Gi

Q \ p p2,,Gp' 1' Gl,2 12 pl' -v'1 G 1 (2' 2'2

I Sp2, v', G

c. Irregular layers or inclusions

Figure 8. Schematic drawings for classification of system geometry
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PART III: MATHEMATICAL FORMULATION AND COMPUTER CODE

Introduction

30. The mathematical formulation is based on simple principles of

Elastodynamics, superposition, Fourier series expansion, and numerical

discretization and solution procedures using the finite element method. A

thorough description of the formulation, including computer implementation, is

presented for completeness in this part of the report and is supplemented with

derivations in Appendix B. The set of assumptions is intended to be small, to

broaden the class of problems that can be solved. The primary assumption

required for the condensation method described herein is that the geometry oi

the system and material properties are planar (do not vary in some horizontal

direction). A number of other assumptions were used to derive the first

generation computer code:

A., Media are isotropic,

b. Hysteretic behavior is represented by complex moduli relation,

c. Source produces vertical, steady-state excitation at one
frequency,

d. Base is rigid, and

S. Distribution of loads is symmetric about y-axis.

These assumptions are not necessary and some will be phased out in future

versions of the code. In addition, the computer code does not allow for

transmitting boundaries in the 2-D analysis plane. Rather, the domain must be

discretized to include enough area for the motions to attenuate sufficiently

before being reflected back to the area of interest.

Field Eouations

31. Two primary sets of variables adequately describe the effect of

forces acting on linear systems -- stresses and displacements. These

variables exist in the following field equations: stress equilibrium, strain-

displacement, and constitutive equations. These three sets of equations are

combined in terms of displacements to derive the governing equations for the

problem. Wave propagation involves the effects of inertia and deformation of

the media. The effects of inertia result from masses being accelerated. The

derivations below apply to isotropic materials.
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Stress eguilibrium equations

32. The summation of stresses acting on small rectangular

parallelepiped in three-dimensional Cartesian space x - x(x, y, z) and

Newton's second law of motion neglecting body forces are used to derive the

stress equilibrium equations. The equations of motion using the soil

mechanics convention of compressive forces as positive and accounting for the

symmetry of the Cauchy stress tensor are:

Ba BaV Ba

-- M <,, _Y~ a• _PO. •?)
ax By +az

a 1, + 0M + a-- , a -P, (3)
Tx By az

where

a - stress components [F/L 2 ]

p - mass density [F-s 2 /L]

- _ a2 /at 2 
[is/2 ]

These equations can be written in a much more compact form using indicial

notation as:

.-Pal (4)

Strain-displacement equations

33. The strain-displacement equations (in some technical fields

referred to as compatibility equations) are derived from small strain theory.

The equations for a displacement field u - u(u, v, w) are:

aua xLI (5)

32 B-y (6)

C33 zIW (7 )

1 Bu By
C12 CN- + a (8)B y Tx
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923 1 ( v +w (9)

913 " -_ ( -U + c ) (10)

and are often referred to as engineering measures of strain. These equations

can be written in more compact form using indicial notation as:

jj -I (U,j+ (ii)

Constitutive eauations

34. The constitutive equations provide the means to relate stress and

strain; they define the deformability of the material. Individual material

layers are assumed to be homogeneous, isotropic, and visco-elastic. To begin

the formulation of constitutive relations, consider the simplest case of

linear elasticity proposed by Hooke. For homogeneous and isotropic

conditions, there are two independent material constants I and G (Lame's

constants):

o= Ae + 2G e.• (12)

Oa,, -Xe + 2G e., (13)

OSu a 1e + 2G 0,, (14)

-2 W 2 ,G0 (15)

sc, - 2 G ey, (16)

- 2 G e,, (17)

where

G - shear modulus
e -- e" + 9•.j + exx

Using indicial notation, these six equations reduce to:

oi, - .et,. 81, + 2G ell (18)
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where

se is the indicial equivalent of e defined above

8LJ is the Kronecker delta: f&U-0 if ij
I bli-I if i-j!

The constitutive relations for linear-elastic materials may also be written

as:

aj 2 ) ' 8ij + 2Gei (19)

where

v - Poisson's ratio

35. Soil is an inelastic material -- energy dissipates from friction

as waves travel through it. This phenomenon is called material damping and

mathematical models are used to approximate it in governing equations. One

form of damping, called hysteretic, is frequency independent. Clough and

Penzien (1975) describe it as a (damping) force in phase with the velocity but

proportional to the displacements. This form of damping can be introduced

into the formulation for frequency-domain analyses through the Correspondence

Principle (Wolf 1985). This principle states that the elastic stiffness (in

this case shear modulus) is replaced by a complex stiffness to obtain the

damped solution. The following relationship is commonly used to model linear-

hysteretic behavior for small shear strains (and small values of damping):

G° = G(I + 2i4) (20)

where

G* is complex shear modulus
Sis the damping ratio [-]

For large shear strains and values of damping, a better approximation proposed

by Udaka and Lysmer (1973) is:

G - G (1 - 2p 2 ÷ 2i P .67--p) (21)

The results of this study are expected to be applied at distances greater than

one wavelength from the source (e.g., Nazarian and Stokoe, 1985a; Kang, 1990)

where shear strains are small for synthetic sources. Therefore, Equation 20
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was used. The magnitude of damping is considered to be independent of strain

(Hardin and Drnevich 1972; Johnston, Toksoz, and Timur 1979; and Toksoz,

Johnston, Timur 1979) for the levels of shear strains expected.

Eauations of Eauilibrium

36. The three sets of field equations are combined to obtain the

governing equations. A stiffness formulation was chosen, that is, a relation

in terms of displacemer. s (also referred to as displacement approach). These
equations are associated with Navier and can be derived by substituting the

strain-displacement equations into the constitutive equations, then,

substituting the resulting equations into the equilibrium equations. Assuming

that the body forces are zero and applying Newton's second law, the result is:

GO ae * ' -p'3 (22)

Go y + G* V 2v _ -p'0 (23)

Go ( 1 )2!+ G' V2w Z -p* (24)

where

aX2 ay2 aZ2

Using indicial notation:

G' _ u,,_, + u•, -- Poi (25)

These are the partial differential equations that govern wave propagation in

three-dimensional Cartesian space for homogeneous, isotropic materials with no

body forces. The partial differential equation is classified as hyperbolic

leading to an initial value problem.
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Finite Element Method in Three-Dimensional Cartesian Space

37. The finite element method is a numerical analysis technique used

to approximate the response of a continuous body by dividing the domain of

interest into a discrete number of subdomains. Boundary conditions and

external forces are imposed at discrete nodes where the displacements are

calculated. Results can be interpolated at any point in the body through the

use of interpolation functions. In general, as the subdomains become smaller,

the solution converges to that of the continuum. Many textbooks describing

the finite element method are available with different sets of notation. The

notation used below most closely follows that used by Zienkiewicz and Taylor

(1989) and Bathe (1982) although some minor additions and modifications have

been made.

38. There are two basic approaches to formulating a problem using the

finite element method: the (direct) displacement method and the variational

method. The displacement iethod is the most popular and most easily

understood procedure (7.enkiewicz and Taylor 1989) and was selected for this

study. The displareeent method can be easily used with Fourier superposition

analysis in the frequency domain for the solution of elastodynamic problems.

DisDlacement method

39. Displacements are specified as the unknowns for the displacement

method. Letting u represent the vector of displacements (u, v, w) at any

point (x, y, z) and U the vector of displacements at the nodes of a finite

element:

U - N U (26)

where N is the matrix of interpolation functions. The strains at any point

can be represented as:

a -Z u (27)

where e is a vector with six strain components:
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es (28)

Yyg

and

aT-• 0 0

Sa 0

0
0 0a

8o*Fi (29)

0 aa
az ax

Then,

3 =3U =NNU =BU (30)

where B is a matrix containing the corresponding derivatives of the

interpolation functions.

40. The Correspondence Principal allows the constitutive model to

represent hysteretic behavior using complex moduli for solutions in the

frequency domain. Superposition is valid because of this linear

representation. A frequency domain solution implies that the excitation

function must be periodic. Calling D the complex constitutive matrix of the

material:

1-v V V 0 0 0

V 1-v V 0 0 0

v v 1-v 0 0 0

2G" 0 0 0 1-2v 0 0
1-2v

0 0 0 0 1-2v 0
2

0 0 0 0 0 1-2v
2

35



The stress vector at any point is:

U - D a (32)

with:

a 1 0.i (33)
TjW

41. Applying the principle of virtual work (for derivation refer to

Appendix B) and making use of the above relations, the equations of motion

become:

MO + KU P (34)

where M is the mass density matrix defined by:

K -f p T N dv (35)

where

p - mass density

and K is the (static) stiffness matrix defined by:

= f V B7'D B dv (36)

42. The relationships for nodal acceleration, U , and displacement,

U , are derived by imposing the steady state condition. First considering the

load vector:

P P eit (37)

where

p - vector of amplitudes of nodal forces
w - frequency of excitation (rads/sec)
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Then the displacement vector, U , can be written as:

u U eiwt (38)

where

U - vector of amplitudes of nodal displacements

and the velocity and acceleration vectors are:

U = i wi U ei-t (39)

u = _02 j eiwt (40)

By substituting Equations 38 and 40 into Equation 34 and canceling the

exponential term, the equations of motion are:

(K - (02 M) U =5 U = P (41)

where 1 is the dynamic stiffness matrix of the system defined by:

S= X - (2 M (42)

The dynamic stiffness matrix is complex and a function of frequency.

Equation 41 can be solved using matrix operations incorporated in various

solution algorithms ("solvers").

43. The formulation to this point is specific to steady-state,

frequency-domain analyses for homogeneous and isotropic materials. The

formulation is applicable to analyses in one, two, and three dimensions and

any element configuration. Henceforth, the formulation will be specific to

the remaining assumptions and requirements of this study.

3-D finite element

44. A three-dimensional, isoparametric, finite element with 16 nodes

was chosen to implement the condensation formulation described in the next

section. A schematic of this finite element are shown in Figure 9. Each node

has three degrees of freedom. The element has 8 nodes on the two x-z planes

-- one at each corner and one at the mid-points on the edges -- and six nodes
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on the x-y and y-z planes. Therefore, quadratic interpolation exists in the

x- and z-directions ( • and C in isoparametric space) and linear

interpolation exists in the y-direction ( q ). One of the variables in the

formulation is the discretization distance in the y-direction for the Fourier

expansion, Ay , which can be varied without need to rediscretize the

geosystem.

12

JI J1! = 1
3 IT

155
1311• 16

Figure 9. Specialized 16-node isoparametric finite element

45. Equations 35 and 36 can now be stated in more specific terms

using the transformed space:

K UfT.fN_ N dtdidC (43)

X _- fJ_,. I 3B IJI dB i dd (44)
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where I J I is the determinant of the Jacobian matrix for the 3-D finite

element.

Fourier suoerposition

46. Fourier superposition is a three-step solution process for linear

systems that involves a forward transformation into a wavenumber domain, the

calculation of a solution to Equation 41 at a number of increments, and the

determination of the total solution through an inverse transformation of all

incremental solutions. A time-temporal frequency transform pair of a load

function p are:

P(W) f fp t) e -'t dt (45)

p(t) " I () e'ht dw (46)

Similarly, the distance-spatial frequency (wavenumber) transform pair for

expansion in the y-direction are:

p m) = J p(y) e dy (47)

P(y) E 1 Wmj e'-J dm (48)
2z J

where

m - wavenumber (spatial circular frequenc-y) in y-direction

Fourier superposition applied in both the time and y-spatial domains leads to:

p(m,' W) = f_" L p(y,t) e-iCot'y) dtdy (49)

p(yt) = --- i f f_*-p(mw) et"t-M' dwcdm (50)

The corresponding transformation equation for displacements is:

4yXt 2 u)m,w el(w) dwdm (51)
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47. Making the load vector specific to steady-state vibrations with

constant amplitude, the time-temporal frequency transform pair reduce to:

p(W) - 1 (52)

p (t) - ? e iwt (53)

where j is used to represent amplitude which allows Equations 49 and 50 to

be reduced to:

p(m), fp(Y) eil dy (54)

p(y,t) = - fp(m) e-' dm (55)

for a specific w. The corresponding equations for displacements are:

u~m). =U f" uy) ei' dy (56)

u(y,t) = i 1W u(m). e"Y dm (57)

Element condensation

48. The process of element condensation is the key aspect of the

reduction of computational effort. Element condensation refers to the process

of reducing the number of degrees of freedom by relating points adjacent in

the y-direction using the functional relationship of the Fourier expansion.

The dependent degrees of freedom are then eliminated by expressing them in

terms of the in-plane degrees of freedom. In this case, the degrees of

freedom corresponding to the nodes outside of the x-z plane are eliminated.

Each node in the two-dimensional mesh maintains three degrees-of-freedom.

49. Consider an arbitrary discretized model of a physical system that

meets the requirement of uniform geometry and material properties in one

40



direction such as that shown in Figure 10. The coordinate system is chosen to

have the z-direction positive down and the other in-plane direction to be x.

Consider three vertical planes separated by a distance of Ay at some arbitrary

location along the geosystem. The 3-D dynamic stiffness matrix for any

element between the slices, such as that shown in Figure lla, is calculated

using Equations 43, 44, and then 42. The dynamic stiffness matrix for a

single element can be partitioned as:

"= s11 si 212s1 (58)

where the subscripts "1" and "2" refer to the degrees of freedom on the

positive and negative face in the y-direction, respectively. The assemblage

of the dynamic equations for any two finite elements adjacent in the y-

direction, as shown in Figure llb, can be reduced by canceling the time-

dependent exponential term on each side to:

~12 0 1'bIu

821 i2-7S- 12)U (59)

I.0 'g21 ii2 j{b

where

"+" denotes element in positive y-direction (from Ay to 0)
"-" denotes element in negative y-direction (from 0 to -Ay)
"a" denotes the degrees of freedom on face a (i.e., at y- 0)
"b" denotes the degrees of freedom on face b (i.e., at y- +Ay)
"c" denotes the degrees of freedom on face c (i.e., at y- -Ay)

50. Using the Fourier expansion described earlier (Equations 54 and

56), forces and displacements are expressed as:

P (M) =f- i(y) e dy (60)

0 (m) =fc (y) eidy (61)

where 9 and 8 are used to represent vectors of nodal forces and

displacements, respectively, in m space. Rewriting Equation 59 to incorporate

the Fourier expansion of loads:
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SFace b
S• Face a

Face b!z
Face b

Figure 10. Example of a physical system for purposes of
extracting a slice of finite elements
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Face 1

Face 2

(a)

Am Y

Ayz

Face b

Face a
Face c

(b)Y- x

Z

- ,•-'-----y = 0

Ax

(c) 4= 6 "

727 Az z
27

3 5 8

Figure 11. Condensation of finite elements adjacent in
out-of-plane (y) direction
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a ll 812 • (m ) ( 62(m))
.. ..~ 81 (m) J o (m)

0 8i2 1322

In the transform (m) space, the displacements on the "b" and "c" faces are

related to the displacements on the "a" face at any instant in time by the

simple relationships:

, (W) -U3 (m) e'-"y (63)

O. (m) = UW.(m) e"*Y (64)

Defining:

O(m) - s--2, e-z'•Y + ( 'gll + s-22 + 'g,, el"Y (65)

Equations 63 and 64 can be substituted into Equation 62 to get the system of

equations for the equivalent two-dimensional system shown in Figure llc:

a(m) O0(m) - %(m) (66)

This formulation, then, allows the three-dimensional element with a two-

dimensional geometry to be represented with an equivalent two-dimensional

element. The representation of surface loads are described below.

Surface loads

51. This study focuses on the preparation for analysis of waves

propagating from a synthetic, 3-D source. Vibroseis trucks generally use a

rectangular platen with plan dimensions on the order of 1 by 2 m ( 3 by 7 ft).

At large distances from the source and with large wavelengths, this area

approaches a point source. Therefore, the horizontal distributions of the

load considered for this study were a point load and a rectangular load of

various sizes. A point source is not a physical reality and is difficult to

replicate with finite elements. Kang (1990) used a point load and circular

load as these were appropriate vibration source for pavement systems.
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52. The formulation for equivalent nodal forces in the x-direction

for point and rectangular loads are described below. The application of a

point source in the finite element method is trivial. The formulation of

equivalent nodal forces for rectangular loads involves integration of the

force distribution in light of the interpolation function:

7 f HT V dx (67)

For the endpoints of the 8-noded, 2-D element where z - 0 (nodes 1 and 6),

this reduces to:

,=-1 (.1 E - 1t2) (A) (68)

where the subscript for P refers to the node number and:

C, - right-most extent of load in isoparametric space
- left-most extent of load in isoparametric space

and

1(_113 + 1(2) 2~ (69)

For the midpoints of the 8-noded element, this reduces to:

P. - i(t - -3t3) (6 "x) (0

The distribution of forces applied to the platen is assumed to be uniform and

therefore the integration reduces to simple algebra. For example, a

continuous, uniform load with a total magnitude of unity (p • Ax - 1), the

equivalent nodal forces are 1/6 for the endpoints and 4/6 for the midpoint.

53. The process of converting loads from the time-spatial domain to

the frequency-wavenumber domain is depicted in Figures 12 through 14. In

Figure 12a, an arbitrary rectangular pressure is applied vertically at the

ground surface. The distribution in the x- and y-directions are shown in

Figures 12b and 12c, respectively. The distribution in the y-direction is
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Figure 12. Distribution of arbitrary rectangular pressure
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assumed to be symmetric to reduce the number of operations by nearly a factor

of two. The equivalent nodal forces in the finite elements on the x-z plane

are shown in Figure 13. After the Fourier transformation in the y-direction,

the distribution of forces in the x-m space is shown in Figure 14.

Time-dependent displacements

54. The real-valued, time-dependent displacements may be obtained

from the calculated complex displacements, U. If the forcing function is of

the form sin wt, then:

Ui = AiSIN(wt) + BiCOS(wt) (71)

If the forcing function is of the form cos wt, then:

ui = AICOS(at) - BISIN(wt) (72)

where

AL - real part of complex displacement amplitude at node i

Bi - imaginary part of complex displacement amplitude at node i

For the analysis of the vibrations produced by a Vibroseis, Equation 72 is

more appropriate. The phase angle of motion, * , is calculated by:

* = tan-' A, (73)

Computer Implementation

55. The system of computer programs written for the solution of the

dynamic displacements in planar geosystems includes (pre-prccessing) mesh

generation and visualization routines, the primary finite element code, and

visualization (post-processing) routines to analyze the results. Computer

codes were written using the Fortran 77 and C computer languages running on

the U.S. Army CRAY Y-MP supercomputer and Silicon Graphics workstations

supported at WES. A listing of FORTRAN computer code vib3 is contained in

Appendix C. A sample input and corresponding output file are provided in

Appendices D and E, respectively. Basics of the implementation in the primary

computer code, vib3, are presented below.
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Com~uter code vib3

56. The function of vrb3 is to read in the parameters defining the

mesh, material properties, load, and Fourier expansion parameters and solve

for the corresponding complex displacements. This program evolved from an

unnamed finite element code used for instructional purposes in a graduate

engineering course entitled "The Finite Element Method" taught by

Prof. John Tassoulas in 1988 at the University of Texas at Austin. The basic

framework of variable storage in a massive single-scripted array and solution

using a frontal solver were kept as well as a subroutine to modify element

stiffness for boundary conditions. The remainder of the subroutines were

written specifically for this study.

57. The interaction of subroutines in vib3 is represented using the

flowchart presented in Figure 15. The subroutines are called consecutively

from the MAIN program. MAIN contains one DO LOOP to allow for the analysis of

multiple frequencies and a DO LOOP that creates the matrices and solves for

displacements at each increment of m. General descriptions of each of the

subroutines listed are provided below.

InDut of mesh and problem parameters

58. The subroutines MAIN, DATAIN, and ELP3D read information from the

input file regarding system geometry, boundary conditions, material

properties, Fourier expansion, and code operation (input/output). At first,

MAIN is used to read a problem title and basic variables that affect the

allocation of array space and define the scope of calculations. Once the key

parameters have been read and the array lengths are established, the allocated

program memory for the real and complex arrays are checked prior to execution.

Then, subroutine DATAIN is used to read the 2-D nodal coordinates (the third

dimension, Ay, is constant) and boundary conditions, the nodes of primary

interest for analysis, and the element connectivities and material

correspondence. Boundary conditions in the x- and z-directions are specified

in the input file. Subroutine ELP3D is used to read the material properties

of each of the materials designated and calculate the components of the

constitutive matrix (Equation 31).

Load vector

59. Subroutines YLOAD and XLOAD are used to define the extent of the

load distribution and create the load vector, P The option for either a

point load or a rectangular load exists. The magnitude of the load is an
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input value and is assumed to be constant over the specified area and

symmetric about the x-z plane (y - 0 axis). This assumption reduces the time

to solution by a factor of two by taking the solution of displacements in the

+m direction and mirroring them in the -m direction in the wavenumber space.

60. The subroutine YLOAD is called first because these operations are

independent of most other operations and must be done before the Fourier

expansion. This subroutine reads the magnitude of the load and horizontal

extent from the point y - 0. The distribution is stored in terms of a

discretized set -- a single value of magnitude at each Ay within the extent of

the load distribution. This set is used directly by the Fourier transform

algorithm described later. Next, the subroutine XLOAD calculates the vertical

nodal forces using Equations 68 through 70. The extent of the load is

specified by the smallest and largest values of x. Algorithms determine the

affected elements and nodes.

61. An option to use normalized loads is available which is valuable

for validation study and parametric analysis. Comparisons between results

from different load geometries and configurations are aided by normalizing the

load thus producing the magnitudes of displacements that are independent of

the distribution of the load. Normalization refers to producing a total lCad

(pressure times uniformly loaded area) of unity. This option is enacted by

two steps:

a Specifying a magnitude of load that equals the inverse of the
width of the load in the x-direction, and

b. Using a single FORTRAN statement in subroutine YLOAD that
divides the magnitude by the number of non-zero pre-expansion
terms in the y-direction.

The statement in subroutine YLOAD is included in the computer code but must be

switched on and off manually through the use of a FORTRAN comment statement.

Fourier expansion

62. A Fourier expansion of the distribution of load in the

y-direction follows the specification of the load parameters in subroutine

YLOAD. The inverse transformation of displacements to the spatial domain is

conducted after the solution process is completed for each value of m. The

3-D load vector is created after the forward transform by multiplying the

equivalent nodal forces (from XLOAD) and the m-independent, complex transform

(from YLOAD and FOUR2). This vector is dependent on the value of m so this

52



operation is performed within the DO LOOP on m. The multiplication of these

values creates a load distribution that can be visualized by looking at

Figure 14. Nodal forces on elements outside the extent of the load are zero.

63. The Fourier transformations are pefformed using the Fast Fourier

Transform (FFT) algorithm proposed by Cooley and Tukey (1965) in the

subroutine FOUR2 and other dependent subroutines established in the 1970's at

the Massachusetts Institute of Technology. The discrete values of the

transform are:

N-I
P(m.) = Ay Z0p(yj)e (74)

where

n - 0, 1, 2, .... N-1

and:

p (yj) r am N- )e-,, N
2--x • m) (75)

nuO

where

J - 0, 1,2 ..2., N-1

and

N - number of sampling points (power of 2)
yj - j -Ay
YTOT - N-Ay
m- nAm
Am - 2%/YTOT

Element stiffZ,-:ss

64. The finite element stiffness and mass matrix are created through

the use of subroutines DNISO16Y and STIFF. Subroutine STIFF calls subroutines

ISO16, MODIF, and CONDENSE. Subroutine DNISO16Y is used to calculate the

interpolation functions and their derivatives at each of the integration

points. Since the same finite element is used throughout and these values are

independent of Cartesian coordinates, this routine is called once. Subroutine

STIFF collects the nodal coordinates, constitutive matrix, and other

parameters for the element being considered and calls the subroutine IS016 to

perform the numerical integration and convert the static stiffness matrix into
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a dynamic stiffness matrix. Subroutine MODIF is called by STIFF to modify the

stiffness matrix and load vector in the case of rigid boundary conditions.

65. A numerical integration technique is used to calculate the 3-D

dynamic stiffness matrix for each finite element. This technique begins with

a transformation of the spatial coordinates from Cartesian space

x - f (x, y, z) to a normalized coordinate system X - f ( E , q , C )

centered within the range of integration (refer to Figure 9). Integrals are

replaced by summations computed at specific (integration) points and are

scaled by appropriate weighting factors. Equations 43 and 44 used to

calculate mass and stiffness are rewritten as:

3 2 3
M -•i• N"N ,Jrl )ilk (76)

3 2 3
K'•3" B3 W )i'D llk (77)

66. Eighteen integration points were used to derive the element

stiffness. The exact location of these points are defined by coordinates of 0

and + VT/ VT in the x- and z-directions and with ± i / VS for the

y-direction. The weighting factors are 8/9 for the midpoint, 5/9 for the

endpoints, ane 1 for the y-direction (Stroud and Secrest 1966).

Condensation

67. The 3-D dynamic stiffness matrix and load vector for the element

are condensed to the equivalent 2-D matrix and vector, respectively, using

Equation 63 as coded in subroutine CONDENSE. The size of the stiffness matrix

changes from 48 by 48 components to 24 by 24; the load vector changes from

48 by 3 to 24 by 3. After CONDENSE, these element-dependent components are

transferred to the solver.

Frontal solver

68. The solution algorithm used is called a frontal solver. This

process involves gathering the dependent equations necessary to determine the

value of a particular degree of freedom. A detailed presentation of frontal

solvers for positive-definite matrices was made by Irons (1970).

69. The solver used for this study, SOLVE, was created and refined

over several years through the efforts of Profs. C. P. Johnson and

Eric B. Becker at the University of Texas at Austin. This solver can
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accommodate symmetric and non-symmetric matrices although the option for non-

symmetric matrices is not necessary when using the displacement-based approach

with elastic materials. The UT solver was modified slightly to allow for the

solution of matrices with complex-valued components.

Other subroutines

70. Other subroutines were written to perform various systematic

operations that ensured conformity and print portions of stiffness matrices

and load vectors. The subroutine SYMSH is used to check the symmetry of the

stiffness matrix at any stage of the calculation and is a useful tool for

recognizing and debugging errors in parameters defining the mesh. A symmetry

tolerance is specified in the input file. The subroutines PRNTRHS and PRNTSM

allow the load vector and stiffness matrix, respectively, for any element and

"m" step to be saved.

Oter options

71. Symmetric problems (in the x-direction) may be solved with the

present formulation to reduce the computation time by greater than a factor of

two. The boundary conditions along the line of symmetry should be fixed in

the x-direction (IBC-1) and free in the z-direction. The load width is now

the half-width with the same magnitude (unless a normalized load is used in

which case the magnitude equals the inverse of the half-width). No other

special considerations are required. Symmetric problems were considered for

validation and parametric analyses as described in the next two parts of this

report.
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PART IV: VALIDATION STUDIES

General

72. Validation studies and parametric analyses were used to prove

that the formulation and computer implementation are sound, accurate, and

stable for the limited problem class to which accurate solutions are

available. The findings of validation studies are not mutually exclusive from

the parametric analyses because the definition of the problems for validation

should conform somewhat to the findings of parametric analyses. The results

of the validation studies are described below; the parametric analyses are

described separately in Part V.

73. The best form of validation consists of comparing the results

between a subject program and exact mathematical relationships for several

different problems. Comparisons with measured data or prototype testing

provide a constructive means to confirm findings when conducted under certain

controlled conditions. These comparisons are not appropriate as the primary

means of validation, however. Comparisons with other numerical approximations

are even less appropriate for validation. Validation of vib3 through

comparisons with analytical results is possible only for the simplest class of

planar geometry -- a horizontally layered system extending to infinity.

Green's function solutions formulated for axi-symmetric problems by Kausel

(1981) were used exclusively. Some minor differences in displacements may

exist between the Green's function solutions and the 2-D approximations

because the shape of the load is different -- disk loads were used for the

axi-symmetric problem and square loads were used for this study. The same

total area and total load of unity were used to minimize these differences.

The model systems used to validate the computer code are described in the next

section.

74. The validation studies described in this part pertain to

variations in system geometry, material properties, and frequency of

excitation. The dynamic vertical displacements are of primary interest

because they predominate in surface motions caused by vertical excitations.

Moreover, vertical vibrations are normally measured in non-destructive te~ting

techniques such as the SASW method. Measurements are likely to be made both

perpendicular and parallel to the structure of the system (x- and
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y-directions, respectively). Therefore, the results are presented in terms of

the variations of real and imaginary components of dynamic displacement in

both the x-direction (calculated at nodes on the y - 0 plane) and the y-

direction (calculated at node beneath the centroid of the load and expanded

out in the y-direction). Most comparisons are made at the free (ground)

surface although a few comparisons are also made below the surface. Distances

are normalized to the wavelength of Rayleigh waves, I , for Model 1. (Note

that the definition for the Greek letter I has changed from that used

previously.) The displacements are oriented positive-down to be consistent

with the convention used in the formulation and correspond to the top surface

(z - 0).

Test Models and Discretization Schemes

75. Four hypothetical models were created for validation studies and

are shown with unit-less dimensions in Figure 16. These models were designed

to represent ideal site conditions of horizentally layered soil overlying rock

and realistic material properties (considering units of ft-lb-sec) while

conforming to limitations of the analytical solutions. All models have the

same total height (1000 units) and are assumed to overlay a rigid material.

Model I is the simplest system -- a homogeneous medium overlying rock. The

range of material properties for this medium used in the following comparisons

are shown in Figure 16. The other three models consist of four homogeneous

layers overlying rock with different combinations of stiffness.

76. A domain with dimensions 1000 units high and 2500 units wide was

chosen, along with the material properties and frequency of excitation, to be

large enough to ignore the effects of reflections and correspond to about 31

high by 81 wide. Three different finite element meshes were created to

represent this domain and are shown in Figure 17. The domain was discretized

using 4 by 10, 8 by 20, and 16 by 40 square elements. The size of these

elements corresponds to 0.81, 0.41, and 0.21, respectively. A plane of

symmetry at the left boundary, defined by x - 0, was utilized to reduce the

degrees of freedom by nearly one-half.
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MODEL 1:

SG =4 x106

v = 0.33, 0.40, 0.49

p 4.00

= 0.02, 0.05, 0.10, 0.15

MODEL 2:

2 125. G = 4 .1005

121; 1 G 6 x • 102 V = 0.4
250 G= 8 x 10

1000 G 1, p = 4.00

500 G =12 x 106

rxP O.O5~MODEL 3:
S125 .1 G = 12 1

J24' G=H 0 v =0.4
100250 -7G = 6 x 106 p = 40

1000 4 = 0.00

1 G x160 = 4.052500 G =61 x 10 6 = 00

Figure 16. Test models used for validation studies
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Figure 17. Discretized models used for validation
studies and parametric analyses
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Analytical Solutions

77. The Green's function solutions formulated by Kausel (1981) were

calculated with the computer code PUNCH (Kausel 1989) using a personal

computer. The calculated solution approaches the exact solution as the number

of layers increases. The displacements calculated using PUNCH correspond to a

disk load with radius r and total load, P, of 1 ( -p1r 2 ) or a point load

with magnitude of unity. The only limitation of PUNCH that impacted the

analysis is that a maximum of 30 layers can be used. The effect of this

limitation was examined using Model 1 and is reported below using a frequency

of excitation of 3 Hz, system damping of 2 percent, and a radius of load of

5.64 (total area of 100).

78. The effect of the number of layers on Kausel's solution for

Model 1 was evaluated using four different layered systems (4, 8, 16, and 24

layers). The variation of the real and imaginary components of the complex

dynamic displacement (refer to Equations 71 and 72) with (horizontal) distance

(in this case radial) from the center of the load are shown in Figure 18 for

these four cases. The maximum horizontal distance considered, 51, corresponds

to about 1500 units. The results plotted in Figure 18 indicate that the

number of layers can have a significant impact on the amplitude of both

components. As the number of layers increases and displacements approach the

true solution, the amplitudes increase. The peaks also tend to occur closer

together as the true solution is approached.

79. The results have not completely converged with 24 layers, but the

changes from 16 to 24 layers are small, especially at distances less than

about 41. It appears that 24 layers is an adequate number to represent this

system with the realization that the exact solution is likely to have slightly

larger displacements at the peaks and possibly a more compact waveform.

Twenty-five layers were used to represent Model 1 for further comparisons and

validation to provide a uniform thickness of 40 units for each layer.

80. The effect of the radius of the load, r, was also examined while

keeping the total load equal to unity. A point load and a distributed load

with normalized radii of 0.0361, 0.0721, and 0.1441 (areas of 400, 1,600, and

6,400, respectively) were used and the results are shown in Figure 19. The

dynamic displacements are nearly equivalent for the four cases. Perceptible
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Figure 18. Comparison of dynamic displacements from Green's
function solutions for various numbers of layers
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Figure 19. Comparison of dynamic displacements from Green's
function solutions for various radii of loads
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differences exist only for data corresponding to the largest radius,

r - 0.1441. Therefore, it is safe to conclude that the radius of the load has

little effect on the dynamic displacements normalized to the total load for

ratios of r < 0.101. A radius of loading equal to 0.0181 was used for the

remaining comparisons which essentially represents a point load.

81. The effects of varying Poisson's ratio and the damping ratio on

the dynamic vertical displacement were examined using Model I to facilitate

some of the comparisons made later for parametric analyses. The effect of

varying Poisson's ratio from 0.33 to 0.49 is shown in Figure 20. The general

trend of the three relationships is that the peak values of displacement

decrease and the distances between peak values increase as Poisson's ratio

increases. The effect of varying damping ratio from 0.02 to 0.15 is shown in

Figure 21. The general trend of the four relationships is that the peak

values of displacement decrease as damping ratio increases; there is little

change in the radial distance at which the peak values of real and imaginary

parts occur.

82. The comparisons shown in Figures 20 and 21 bring about an

important consideration for geosystems -- Poisson's ratio and damping ratio

are two material properties that are difficult to determine for soils.

Oftentimes, these two properties are estimated using empirical relations or

data bases of measured values. Estimated values may possibly be different

from true values which is a potential source of error. Errors in estimating v

and damping ratio can be significant for reasonable ranges of these

properties. Variations in v affect both the amplitude and location of peak

amplitudes of the real part whereas variations in damping ratio affect

primarily the amplitude.

Element Performance to Static Loads

83. The specialized 3-D finite element was evaluated for the ability

to represent static response to various loads. This evaluation was

accomplished by comparing the results of two approaches with analytical

solutions. One approach was to place the algorithms defining the element

stiffness into a static finite element computer code and examine the response

of a cantilever beam. The other approach was to use vib3 with a point load
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Figure 20. Comparison of dynamic displacements from Green's
function solutions for various Poisson's ratios
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Figure 21. Comparison of dynamic displacements from Green's
function solutions for various damping ratios
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acting on a homogeneous body with the frequency equal to 0. Each of these are

described below.

Static finite element code

84. A static finite element code was used to evaluate the specialized

finite element. This program evolved from an unnamed finite element code used

for instructional lurposes in a graduate engineering course entitled "The

Finite Element Method" taught by Prof. John Tassoulas in 1988 at the

University of Texas at Austin. A cantilever beam was discretized with 2, 5,

10, 40, and 80 elements and subjected to tension, compression, and shear-

induced bending loads. The effect of element shape was also evaluated by

considering square, rectangular, parallelogram, and trapezoidal

configurations. Comparisons between calculated and closed-form solutions for

displacements and stresses were good and indicate that the algorithms defining

the element stiffness are accurate for conditions of static loading.

2yamic code

85. The static vertical displacements calculated using vib3 with

Model 1 at depths of 0, 125, 250, and 500 units (0.01, 0.401, 0.801, and 1.61,

respectively) are shown in Figures 22 through 25 using the finest of the three

meshes. The comparisons with Green's function solutions in the y-direction

are excellent for the real part and very good for the imaginary part at

distances slightly removed from the point of load (greater than 100 units).

Comparisons are similar at all depths. The imaginary part should be zero at

all distances but vib3 produces non-zero values at locations close to the

load. The less favorable comparisons near the point of loading are common

when modeling a point load using the finite element method. These errors are

normally minimized through mesh refinement near the point of loading but

accurazy close to the source is not of interest for this study. The variation

of vertical displacements in the x-direction calculated using vib3 represent

the exact same relationship as the variation of vertical displacements in the

y-direction at all depths except z - 0. The real part at distances less than

150 units oscillates considerably about the other solutions.

ADproximations for Dynamic Loads

86. The computer code vib3 was used to calculate dynamic

displacements for each of the four models described previously. These results
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Figure 22. Vertical displacements at z - 0 for static point load
and comparison with Green's function solution
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Figure 23. Vertical displacements at z - 125 for static point load
and comparison with Green's function solution
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f = 0.0 Hz
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Figure 24. Vertical disp'acements at z - 250 for static point load
and comparison with Green's function solution
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f= 0.0 Hz Ay/X= 0.05
fl = 0.02 NM = 256
A = 313. YTOT/A = ± 6.40
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Figure 25. Vertical displacements at z - 500 for static point load
and comparison with Green's function solution
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were then compared with the Green's function solutions presented in the

previous section. All four models were discretized using the finest mesh. A

square load with plan dimensions of 5 by 5 centered about the origin with a

total load of 1 w- applied at a frequency of 3 Hz. Th.. wavelength for

Rayleigh waves is then about 313 and the dimension of the square elements are

62.5 units or about 0.2k. The material properties are listed in Figure 16.

87. The parameters defining the condensation and Fourier expansion

for the validation were selected based on the findings of Kang (1990). Values

of Ay - 0.051 and the number of Fourier discretization points, NM, equal to

256 were fixed for the comparisons and the finest finite element mesh was used

unless otherwise specified. This provided for a discretized extent (in the

y-direction) of -131 (t 6.4k), slightly less than the total extent discretized

in the x-direction (± 81). Displacements at distances up to 51, or about 1500

units, are used for comparison because the amplitudes are rather small beyond

this distance.

Model 1: Homogeneous system

88. The results for Model 1 at z - 0 and z - 0.401 (125 units) are

shown in Figures 26 and 27, respectively, and compared with the Green's

function solutions. The variation of the real part of the complex

displacements in the y-direction compares favorably to the Green's function

solution. The variation of the imaginary part in the y-direction closely

follows the Green's function solutions. Both parts of the calculated

solutions compare more favorably at distances less than 31, about half the

distance expanded in the y-direction. The comparisons are also slightly

better at z - 0.41 as compared to z - 0. The variation of vertical

displacements in the x-direction at z - 0 and z - 0.40k generally compare

favorably. These displacements differ somewhat from the variation in the

y-direction with the imaginary part deviating more.

89. The effects of varying Poisson's ratio and damping ratio on the

displacements for Model 1 were also examined and the results are shown in

Figures 28 and 29, respectively. A compari.ion between the calculated and tl,;'

Green's function solutions in Figure 20 for variations in v indicates that the

2-D approximation provides a reasonable means of representing different v.

The best comparison is for v - 0.40 and the poorest comparison is for

v - 0.49. Generally, the imaginary part compares well and the real part has

amplitudes that are consistently too small. The 2-D approximation provides an
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fl = 0.02 NM = 256
A = 313. YTOT/\ = ± 6.40

= 0.0 XLOAD = ± 0.008

KouseL (198 9 )
-Q -AdLrectLon

IA x-dtr-eetLOn

-1.0

a 0.0

VERTICAL

2.0

KauseL (19891

0 A y-dCrectLona
L ~-drect~t.Or..

- 1.0

.'1 A

F -- 
"4

0.0

- 1.0

"VERTICAL

2.0 . . . -, , , , , 1 J • • ' • . .

0.0 1.0 2.0 3.0 4.0 5.0

HORIZONTAL DISTANCE (in X)

Figure 26. Comparison of dynamic displacements at z - 0.0

for Model 1 with v - 0.40
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Figure 27. Comparison of dynamic displacements at z - 0.401
for Model 1 with v - 0.40
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f= 3.0 Hz Ay/A = 0.05
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Figure 28. Comparison of dynamic displacements

for Model 1 using various Poisson's ratios
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o A = 313. YTOT/A = + 6.40
-2 .0 XAAz/\= 0.20 XLOAD/X = ± 0.008

• - 2 .0 ..... .

(Nj 2 -. dompng.

S! Z dompng "

10 da. ,p,- o 9

-1.0 15 . dompLng

N \ / . Nz
0.0 ! / -• '-.:,-

N ,,-
LLJ

jVERTICAL
2.0 I I I

-0-- -2.0 .•*t
2 % dampLng_

5 V. dom*n\~ _ ____ _9_
1 7. dompLng

-- 1.01 domp~ng

:z 0.

<r. t

VERTICAL

2.0 . . .-. . ..l . . . . 1 . .

0.0 1.0 2.0 3.0 4.0 5.0

HORIZONTAL DISTANCE (in ý\ )

Figure 29. Comparison of dynamic displacements
for Model 1 using various damping ratios
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accurate means of representing damping as seen by comparing relations in

Figures 21 and 29. The accuracy of calculated displacements improves somewhat

as the damping ratio increases. The results for 5 percent damping compare

much better with the Green's function solution than the results for 2 percent.

Both 2 and 5 percent damping levels are used for comparisons hereafter.

Other models: Stiffness varving with depth

90. The results for Models 2, 3 and 4 are shown in Figures 30 through

32 and compared with the Green's function solutions. Total distances are used

rather than normalized distances since considerable dispersion is expected.

The results for vertical displacements in the x- and y-direction are nearly

equivalent to the Green's function solutions except at the first peak in tile

real part for all three cases.

Conclusions

91. Comparisons made between vertical displacements calculated using

vib3 and Green's function solutions (Kausel 1981; Kausel 1989) for the simple

case of layered axi-symmetric geosystems suggest that the formulation for the

specialized element and the implementation in vib3 are sound, accurate, and

stable. Comparisons were made for static and dynamic loads and for reasonable

ranges of Poisson's ratio and damping ratio. Both of these factors were found

to have significant effect on dynamic displacements which emphasizes the

importance of obtaining adequate values. The calculated displacements were

shown to be more accurate as damping ratio was increased from 2 to 5 percent.

The variations of dynamic vertical displacements in the x- and y-directions

generally differ reflecting differences in interpolation orders, spatial

discretization, and possibly other effects. More specific examinations of

these differences are contaiTed in Part V.
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Figure 30. Vertical displacements for Model 2
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f = 3.0 Hz
P = 0.05 NM = 256
Ay = 15.65 YTOT =±2003
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Figure 31. Vertical displacements for Model 3
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f=3.0 Hz
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Figure 32. Vertical displacements for Model 4
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PART V: PARAMETRIC ANALYSES

92. Parametric analyses were conducted to assess the sensitivity of

the formulation and computer code vrb3 to anticipated ranges of system

variables. Calculations were made using Model 1 and the finest mesh (refer to

Figures 16 and 17) except in the case of examining sensitivity to mesh size.

Green's functýon solutions calculated using PUNCH (Kausel 1989) and presented

in Part IV are used for comparison. Some minor differences may be expected

for comparisons between the Green's function solutions and the 2-D

approximations since the shape of the load is different; the same total area

(and load) were used to minimize these differences.

Effect of Ay

93. The effect of the spatial increment of discretization in the

y-direction was evaluated by comparing the results using three values of Ay

between 0.051 and 0.201 (0.051 used for validation in Part IV). The number of

FFT points, NM, was also varied to keep the total discretized distance in the

y-direction, YTOT, constant. This distance is defined by:

YTOT = NM-Ay (78)

Keeping YTOT constant serves to isolate the effects of Ay. The dynamic

displacements for each Ay are presented in Figures 33 through 35 along with

the Green's function solution. The variation of vertical displacements in the

y-direction among the values of Ay are compared in Figure 36.

94. The large difference among relationships presented in Figure 36

indicate that Ay has a significant effect on the ability of vib3 to accurately

calculate dynamic displacements. Comparisons between the calculated

displacements and Green's function solutions are favorable when Ay • 0.10O

although some improvement is noticedble by decreasing Ay to 0.051. These

results are consistent with Kang's (1990) who recommended that Ay S 0.101.

The results for Ay > 0.201 are considered to be too inaccurate. The

calculated variations of vertical displacements in the x-direction are very

similar for all Ay which suggests that the solution in the x-direction is

insensitive to Ay within tne rarge of values considered.
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Figure 33. Vertical displacements at Ay - 0.051 and NM - 512
and Green's function solution
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Figure 34. Vertical displacements at Ay - 0.101 and NM - 256
and Green's function solution
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Figure 35. Vertical displacements at Ay - 0.201 and NM -128
and Green' s function solution
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f - 3.0 Ilz Ay//\ = 0.05 to 0.20
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Figure 36. Comparison of vertical displacements showing effect of
Ay with Green's function solution
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95. The parametric analysis of Ay with respect to I indirectly

addresses the effect of frequency of excitation on the results. For a

homogeneous system (with constant stiffness), I is inversely proportional to

frequency. So, the spatial increment Ay can also be put in terms of

frequency:

nY V 0--¥ (79)
10 f

where

V - phase velocity
f - frequency (Hz)

The phase velocity can be taken equal to the Rayleigh wave velocity as a first

approximation. Similar relationships to Equation 79 have been observed in

other types of discretized solutions for dynamic loading.

Effect of Extent of Fourier Expansion

96. The comparisons for the effect of Ay were made using a constant

value of YTOT. The effect of varying YTOT was examined next. The total

distance was varied at three values between 3.21 and 12.81 (corresponding to

± 1.61 and + 6.41, respectively) by keeping Ay constant at 0.05) and varying

NM between 128 and 512. The dynamic displacements for each YTOT are presented

in Figures 37 through 39 along with the Green's function solution. The

variation of vertical displacements in the y-direction for the three values of

YTOT are compared in Figure 40. The results for the vertical displacements

are very good for the case of YTOT - + 12.81. The results for YTOT - + 6.41

are also good, especially for distances less than 31, and the results for

YTOT - + 3.21 are considered to be too inaccurate. A threshold of 101 is

likely to be appropriate.

97. The variation of vertical displacements in the x-direction

improves as YTOT increases. The most significant improvement occurred as YTOT

increased from + 3.21 to + 6.4). The solution in the x-direction was shown to

be independent of Ay so the dependence can be attributed to either NM or YTOT.

The dependency is most likely caused by YTOT resulting from reflections off

the free end(s) in the y-direction. Less reflected energy returns to the

y - 0 plane as the total discretized length in the y-direction increases. The

threshold for YTOT defined for the solution in the y-direction appears to be
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Figure 37. Vertical displacements at YTOT - + 3.21.
and Green's function solution

86
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Figure 38. Vertical displacements at YTOT - 6.4
and Creen's function solution
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f= 3.0 Hz Ay/A = 0.05
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Figure 39. Vertical displacements at YTOT - + 12.8•.
and Green's function solution
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Figure 40. Comparison of vertical displacements showing effect of
YTOT with Green's function solution
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suitable for the solutions in the x-direction based upon the results shown in

Figures 37 through 39.

Effect of Element Size

98. The effect of varying the size of the finite elements on the

dynamic displacements was determined by using the three different meshes shown

in Figure 17. The values of Ax (- Az) corresponding to these three meshes are

0.201, 0.401, and 0.801. The vertical displacements for the finest mesh was

presented previously in Figure 26 ano the displacements for the other two

meshes are shown in Figures 41 and 42 along with the Green's function

solution. The results for the variation in the y-direction for the three

meshes are compared in Figure 43.

99. The variation of vertical displacements in the y-direction
impare well with the Green's function solutions except for the coarsest mesh
.4 by 10 elements). The results for the coarsest mesh are unacceptable. The

finest mesh produces peak values of displacement slightly greater than the
Green's function solution and the original mesh. (This solution may be more

accurate than the Green's function solution which had not entirel, converged.)

100. The variation of vertical displacements in the x-direction also

compare well with the Green's function solutions except for the displacements

corresponding to the coarsest mesh which are unacceptable. The solutions in

the x-direction are generally different from the solutions in the y-direction

and deviate slightly more from the Green's function solution. The real part

of dynamic oisplacements for the finest mesh shown in Figure 26 has an

anomalous inversion at the first peak which tends to occur only for

displacements in the x-direction calculated using the finest mesh.

101. The variations of displacements in both the x- and y-direction

are dependent on the discretization in the x-direction. The dimensions of

finite elements with quadratic interpolation functions can be 0.401 although

some improvement is expected as Ax is decreased further. This value is
consistent with the conclusion of Kang (1990). A better threshold is probably

equal to 0.301.
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Figure 41. Vertical displacements discretized with
40 elements and Green's function solution
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Figure 42. Vertical displacements discretized with
160 elements and Green's function solution
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Figure 43. Comparison of vcrtical displacements showing effect of
size of finite elements with Green's function solution
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Effect of Width of Load

102. The load width in the x- and y-directions, XLOAD, ranges from a

point load to ± 0.0641 (80 by 80 in total plan dimensions at 3 Hz). For all

practical purposes at these distances and depths, these loads are essentially

point loads. The dynamic displacements for each condition are presented in

Figures 44 through 47 along with the Green's function solution. The results

for the variation in the y-direction for the different load widths are

compared in Figure 48.

103. Little noticeable effect is evident as XLOAD is varied over the

specified range. The results for the largest width considered (± 0.0641) are

slightly different from the other three sets and the Green's function

solutions shown in Figure 19. A threshold of load < ± 0.101 appears to be

reasonable to maintain good accuracy.

104. The small difference between the results for the point load and

the smallest square load is somewhat surprising. Kang (1990) noticed a larger

difference and researchers have recognized the difficulty in calculating an

accurate distribution of displacements from a point load using the finite

element procedure without a refined mesh in the vicinity of the load.

Computational Effort

105. The amount of time necessary to run the program with different

system parameters was reviewed. The two parameters considered to have the

greatest effect are the number of FFT points, NM, and the number of degrees of

freedom, dof. (Recall that the equations are solved for only half of the NM

and the results mirrored prior to the inverse Fourier transform.) Comparisons

of user CPU (central processing unit) times versus NM are shown in Figure 49.

The three finite element meshes described earlier were used to provide a range

in degrees of freedom. The solution times are of the same order as NM (linear

relationship) for a fixed number of dof. The slopes of these lines range from

1.3 to 26. Using the relationship representing 6099 dof as an example, the

increase in time to raise the total NM from 64 to 128 is 64 x 26 - 1664 sec.

Comparisons of user CPU times versus dof for various NM are shown in

Figure 50. The relationship is slightly non-linear for a fixed NM; the

exponent of dof is about 1.12 and increases slightly as NM increases.
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106. The amount of time saved in using the present formulation over a

conventional 3-D finite element formulation was estimated by solving the

problem for Model 1 using the commercial software package ABAQUS. Two planes

of symmetry were used such that only a 3-D quarter space was required to be

discretized. A total discretized space of 81 by 31 in plan by 31 deep was

used and the element size was equal to that used in the 8 by 20 mesh

(Ax - Ay - Az - 0.401). A 3-D isoparametric element with 20 nodes (quadratic

interpolation functions in all three directions) was selected. The extent and

accuracy of discretization in the y-direction is roughly equivalent to NM - 64

and Ay - 0.101 which were used with vib3. Free end conditions were used for

non-symmetric boundaries. The calculated results were not of particular

interest. The user CPU time required by ABAQUS to solve for dynamic

displacements was about 2820 sec compared to 370 sec using vib3. A comparison

of times is shown in Figure 49. Moreover, almost 8 Mwords of memory were

required to solve the problem using ABAQUS whereas about 3.6 Mwords were used

by vib3.

Conclusions

107. The proposed formulation as implemented in tL.e computer code

vib3 has been found to be sensitive to the following system parameters: the

spatial increments of discretization in the y- and x-directions ( Az always

set equal to Ax ) and the total length of discretized space in the

y-direction. However, the solutions in the x-direction are independent of Ay.

The results are also moderately sensitive to reasonabla ranges of Poisson's

ratio and damping ratio. The solutions are not very sensitive to the width of

the load using reasonable bounds for synthetic loads. The calculated

displacements were again shown to be more accurate as damping ratio was

increased from 2 to 5 percent.

108. The parametric analyses provided guidelines for the selection of

system parameters to ensure acceptable performance. Thresholds generally

confirming the results of findings by others are: Ay < 0.051 and Ax < 0.301.

Thresholds established as a consequence of this work are: YTOT > + 101 and

XLOAD < + 0.101.
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PART VI: SUMMARY

109. A method to calculate dynamic displacements in 2-D geosystems

produced by a harmonic point or rectangular load has been formulated and

implemented in a two-dimensional finite element computer code and supporting

pre- and post-processing programs that function on the US Army CRAY

supercomputer at WES. This code has been validated with analytical solutions

for the case of axi-symmetric geosystems subjected to static and dynamic

loads. Parametric studies were performed to determine how the accuracy of the

calculated displacements are affected by the various input parameters. All

comparisons indicate that this method is a viable alternative to more time

consuming 3-D numerical solution methods.

110. Pre-existing studies about Rayleigh wave propagation were

reviewed to determine if alternative means are available to calculate dynamic

displacements for the stated assumptions. None of the studies reviewed

provided a solution to solve the stated problem. Some of the experimental

studies provide insight into the propagation characteristics of surface waves

around discontinuities and changes in ground slope. One study by Kausel

(1981) was found to be appropriate to validate the code for the simplest case

of axi-symmetric problems.

111. The formulation involves creating a 3-D dynamic stiffness matrix

and then condensing the components into an equivalent 2-D dynamic stiffness

matrix. The out-of-plane loads are represented by a Fourier expansion and

applied as nodal forces. The solution to the system of equations is made for

each spatial wavenumber and then the inverse Fourier transform produces the

complex dynamic displacements.

112. The 2-D formulation implemented into the computer code, vib3,

has been proven to provide accurate values of static and dynamic vertical

displacements. Validation studies were performed for cases of static and

dynamic loads generally using reasonable values of system parameters. The

effects of static loads were examined in terms of displacement and stress

field for cantilever beams in tension, compression, and torsion using the

specialized 16-node, 3-D, finite element incorporated into a static 3-D finite

element computer code. Calculated values were compared with closed-form

elastic solutions. The displacements produced by static and dynamic point and

square loads were examined for cases of a homogeneous medium and three
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combinations of four-layered media using vib3 and compared with Green's

function solutions proposed by Kausel (1981).

113. The analysis of parameters necessary to the program indicates

that once threshold values are met, the formulation is stable to variations in

parameters defining the discretization, condensation, and Fourier expansion of

the problem. These thresholds are: Ay • 0.051, YTOT > + 101, Ax - Az < 0.301

(for quadratic interpolation), and XLOAD < + 0.10.. Additional improvements

may be realized by using even smaller values of Ax, Ay, and Az. Displacements

can be calculated about 8 times faster using the new formulation when compared

to the 3-D finite element code ABAQUS.

114. The results of this study allow engineers to efficiently

evaluate wave propagation for problems of vibration (e.g., effect of vehicular

vibrations on sensitive equipment) and tunnel detection using a relatively

simple representation of the system. Little knowledge about the a.athematical

formulation, or even the finite element method, are required.
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PART VII: RECOMMENDATIONS

115. The next step in this research area should be the parametric

numerical analysis of more complex systems and evaluation of dynamic

displacements. This effort will be used to infer the best method and

procedures for field measurements and develop a strategy for formulation of

the inverse model. Following that analysis, calculated values should be

compared with field measurements in real geotechnical systems One of the

primary objectives of this comparison is to examine jpical levels of signal-

to-noise ratio and confirm that the desired signal is distinguishable within

the desired range of distance. Other objectives are to measure the frequency

band width of energy produced by a Vibroseis truck and evaluate its effect on

measured signals and to determine the distance beyond which the assumption of

plane geometry extending tv infinity is no longer required.
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APPENDIX A:

STATIC LOADS ON SEMI-INFINITE MEDIA



Al. Closed-form solutions for (static) vertical and horizontal loads

acting on the surface of semi-infinite, elastic media are manipulated to show

the importance of properly formulating a two-dimensional ("planar") problem

subjected to three-dimensional loads. The explicit solutions by Boussinesq

and Cerutti form the basis for this demonstration. The vertical point load

represents a 3-D load and the line load represents the equivalent 2-D load.

The conventions used for definitions of variables are shown in Figure A-1.

Solutions presented by Boussinesq and Cerutti for point loads were evaluated

on the plane y - 0 (in-plane solution). Unit-less dimensions are used

throughout; consistent units should be used when involving the equations

presented. (The form of units is shown in square brackets where F - force,

L - length, and T - time.)

Vertical loads

A2. Boussinesq published explicit solutions for the determination of

stresses and displacements in semi-infinite media caused by a vertical point

load acting at the surface. The medium is assumed to be homogeneous,

isotropic, and linear elastic. The closed-form Boussinesq solutions, as

reported by Gray (1936), for vertical stress, av, horizontal stress, Gh, and

shear stress on a vertical plane, T.. , all in the form [F/L 2 ] produced by a

vertical point load are:

UPR. (Al)

P [-3x2z . (1-2v)0R (A2)

2 7XR 5 R3  R+z

=v = 3Pxz 2  (A3)

where

P - magnitude of vertical point load [F]
v - Poisson's ratio [-]

Notice that oPt and c2 P' are independent of material properties; only axPt

(Equation 2) is a function of a material property, v.

A3. Equations 1 through 3 can be integrated to obtain explicit

solutions caused by an infinite vertical line load as reported by Gray (1936).

The closed-form solutions for a vertical line load acting on the surface are:
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Figure A-I. Definition of variables for point and line load problemus
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,.n 2pz 3  A)
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In 2px2Z
Ox= -xz (A5)i•R'

i 2pxz 2
TX RR (A6)

where

p - magnitude of vertical line load (F/L]

All three equations presented for line loads are independent of material

properties. Solutions for line loads of finite length can be obtained in the

form of tabulated influence factors by Lysmer and Duncan (1969).

A4. The explicit solutions for vertical point and line loads can be

readily compared by forming the ratios of the respective stresses. The ratios

of stresses acting on a vertical plane for vertical point and lines loads are:

or 3 P
- - (A7)

g 4R p

UP e R3 3x_ (1-2v)1 P
1n 4 3  z (R z) (A8)ax

T-P-' 3 P
In 4 4p (A9)

Notice that the ratios formed in Equations A7 and A9 are equivalent.

AS. The functions defined for the ratios shown in Equations A7 (or

A9) and A8 are plotted as three-dimensional surfaces in Figures A-2 and A-3

and Figures A-4 and A-5, respectively, for different combinations of load to

facilitate comparison. These surfaces are also represented with two-

dimensional contours subimposed with the surface.

A6. The sensitivity of the load ratio, P/p, on the ratio for vertical

stresses can be observed by comparing the surfaces shown in Figures A-2 and

A-3. Two ratios of load are considered: P/p - 50 and 100 [L], which

correspond to one-half and one times the length of the x- and z-axes

(horizontal and vertical distances, respectively) in Figures A-2 and A-3. The

ratio of vertical (or shear) stresses extends from between 0 and 1 at great

distances from the source and approaches infinity at locations near the

A4
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P/p 50.0 L

.• 0.6-

0-

• 0.2

• 0.-0--

Figure A-2. Ratio of vert;.ca1 stresses for vertical point and

line loads for P/p - 50
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IBOUSSINESQ SOLUTION RATIO

HORIZONTAL (IN-PLANE) STRESSES

P/p 100.0 L v 0.33
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C~o Hon' IS

Figure A-4. Ratio of horizontal stresses for vertical point and

li-e loads for P/p - 100 and v - 0.33
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BOUSSINESQ SOLUTION RATIO

HORIZONTAL (IN-PLANE) STRESSES

P/p 100.0 L = 0.49
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'•• -0.4"

Q) -0.65

Figure A-5. Ratio of horizontal stresses for vertical point and

line loads for P/p - 100 and v - 0.49
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source. For the load ratio of 50 [L] shown in Figure A-2, the ratio

approaches infinity near the surface as the distance to the point of

application approaches zero and approaches 0.38 at a distance of 100. So,

within a range of distance of two orders of magnitude (1 to 100), the vertical

stress for a point load varies two orders of magnitude (point load is 38 times

to 0.38 times the vertical stress for a line load). The calculated stresses

are equal at a radial distance on the vertical plane of 38. For a load ratio

of 100 [L] shown in Figure A-3, the ratio ranges from 75 to 0.75 for distances

of 1 to 100 with unity at a radial distance of 75.

A7. The gradient of the surfaces shown in Figures A-2 and A-3 is a

function of the inverse of the square root of distance, R-0- 5 . The gradien- of

the surface approaches infinity as R -4 0. Beyond the point where the ratio is

unity, the gradient is low and approaches zero as R . P/p. A lower or zero

gradient is desirable for a stable matching of solutions. This suggests that

if a load ratio were to be selected to best represent a point load using a

two-dimensional solution for estimation purposes only, a large ratio of P/p be

used while the radial distances of interest should be slightly less than,

equal, or somewhat exceed the radial distance corresponding to unity.

AS. The sensitivity of v on the ratio for horizontal stresses can be

observed by comparing Figures A-4 and A-5. Two values of Poisson's ratio were

used: 0.33 and 0.49. The surfaces representing horizontal stresses acting on

a vertical plane indicate that the ratio extends to both positive and negative

infinity. The ratio approaches positive infinity near the surface (as

vertical distance approaches zero) near the point of application (as the

horizontal distance approaches zero), negative infinity as the vertical or

horizontal distance approaches zero, and a finite value between 0 and 1 for

the remainder. The surface has lower gradients as v increases.

A9. It should be clear that the stre .es acting on a vertical 2-D

plane produced by concentrated (point) loads are much different from those

produced by a line load oriented perpendicular to the analysis plane for semi-

infinite media. The results of numerical analyses that incorporate

assumptions of plane strain to solve 3-D problems can be erroneous if solving

for 3-D loads.
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Horizontal loads

A10. Cerutti published explicit solutions to the stresses and

displacements in a semi-infinite medium caused by a horizontal point load.

The closed-form solutions for vertical stress, ao, horizontal stress, oh, and

shear stress on a vertical plane, T , produced by a horizontal point load

acting on the surface are:

30xz2 (AlO)
2icR 5

S-OX [-3X2 , (1-2v)R 2 1(All)
iR 3 R2  (R+z )2

Pr 3Qx 2z
T= 27R5 (A12)

where
Q - magnitude of horizontal point load [F]
v - Poisson's ratio

Notice that only Equation All is a function of a material property, v.

All. Equations A1O through A12 can be integrated to obtain explicit

solutions caused by an infinite horizontal line load as reported by Poulos and

Davis (1972). The variables of the problem are shown in Figure A-1. The

closed-form solutions for a horizontal line load acting on the surface are:

S2qX2Z (A13)

in. 2qX__3
Ox xR4 (A14)

in 2qxazT xR 4 (A15)

where

q - magnitude of horizontal line load [F/L]

None of the three equations presented for horizontal line loads is a function

of material properties.

A12. The explicit solutions for horizontal point and line loads were

used to show the importance of correctly matching the type of load to the tje-

of problem. The ratios of stresses acting on a vertical plane for point and

lines loads are:
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CFP~t= 3 0(A16)
1. 4R q

UP R 3 
[3X2 _(1-20]) Q A7

,,I- R' R4  (R+Z)2  (Aq7)

___.' 3Q0 (Al8)In 4R qTxZ

The ratios for vertical stress and shear stress are again equivalent and are

also equivalent to the stress ratios for vertical loads (Equations 7 and 9 and

Figures A-2 and A-3). The relation produced from the ratio for horizontal

stresses (Equation 17) caused by the horizontal load is only slightly

different from that for vertical loads (Equation 8) and is plotted in

Figure A-6 for v - 0.33.
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Figure A-6. Ratio of horizontal stresses for horizontal point and

line loads for Q/q - 100 and v - 0.33
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APPENDIX B:

DERIVATION OF SYSTEM OF EQUATIONS

FOR THE FINITE ELEMENT METHOD



Bi. The stress equilibrium equations are satisfied through the

principle of virtual work (Zienkiewicz and Taylor 1989). Assuming that small

virtual displacements, 8U, occur at the nodes, virtual displacements within

the element are obtained by:

au = N 8U (0l)

where

N - matrix of interpolation functions

Corresponding virtual strains are obtained by:

8e - B 8U (B2)

where

B - matrix of partial derivatives of shape functions

And the virtual strain energy, 8U, is evaluated as:

8U = fStTo dv (B3)

where

8 T is the transpose (vector) matrix of t

"v" designates integration over the volume

The external virtual work, 6W, done by the nodal forces, P, and body forces,

b, can be defined as:

&W _&UT P + f "u b dv (B4)

Applying the principle of virtual work (internal virtual work equals external

virtual work):

au = 6w (B5)

substituting:

f8tT adv _ 8UT P + f bu*b dv (M)

B2



Through substitution and the use of transpose vectors, the following is

obtained:

aUJ T 'DBdv)U- 6UTp + UT f NT b dv (B7)

and

Sa' D B dv) U a p + f NT b dv (B8)

B2. Assuming that the only contribution of the body force is from the
inertial effects and using d'Alembert's principle:

b - -p 0 (B9)

where

p - mass density

ii - are accelerations for Cartesian components

Substituting equation Bl into B9:

b -p NO (BIO)

Further substitution leads to:

(fV ' D B dv) U- P - Vv p NT N dv) (Bll)
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APPENDIX C:

FINITE ELEMENT PROGRAM vib3



Cl. The following text is a listing of the computer program vib3

written in FORTRAN.

PROGRAM VIB34
CC C CC C CC CCC CC C C CC CC CC CCC C CC C C C CC C C C

C C

C Program VIB3 is a finite element code written to solve the C
C the problem of wave propagation produced by 3-D loads acting C

C in 2-D aoil/geolo&ic systems. The stiffness matrix for C
C each 3-D element is condensed into an equivalent 2-D C
C (dynamic) stiffness. C
C C
C The methodology f'r solving the problem was provided by C
C Prof. Jose Roes-- and Dr. Vincent Ran& at the University C
C of TEXAS at Aust~n as part of their research to solve a C

C similar problem for pavement systems (completed May 1990). C
C The basic structure and frontal solver used C

C were initially provided by Professor John Tassoulas at C
C the University of TEXAS at Austin for a graduate course on C
C the finite element method. C
C C

C The program has been specialized for a 16-node isoparametric C
C element that is quadratic in the x and z directions and linear C
C in the y direction (direction of condensation). C
C C
C At the present, this code is written for single frequency C

C harmonic excitations. Transient and multi-frequency exci- C
C tations will require a FF? from the time domain to th- C
C temporal frequency domain. C

C C
C VIB336.F designates memory requirements consistent with C

C batch queue "prime _ . C
C C
C VT1, 4.P uses two single-subscripted arrays to store all C
C massive information (A&C). Zndlcies point to the beginning of C

C various arrays. C
C C
C This program was last updated on 26 August 1992. C
C C
C C C C CCC CCCC CCC CCC CC CC CCCC CCC CCC CCC C C

C C
C V7B3.F ... V133.F ... V7B3.F ... V'B3.F ... VIB3.F C

C C
CC CC C C CC C C C C C C CCC CCC CCC C CCC CC C C CC C C C C
C C
C The limitations on the program input are: C

C C

C Use with 3-D, 16-node element only C
C No (static) surface loads (see 14001F) C

C Zero body forces (see 1OD0F) C
C M~aximum of 50 (select) nodes (Dim. in MAIN & DATAIN) C
C Maxi-m of 3000 nodes for multi-D plotting (4 Sword limit) C
C Maximum of 10 frequencies of interest C
C Maximu of 512-SM (Dimension and IND(17)) C

C C
C C C C C C C C C C C CCC C CC C CCCCC CCC C CCC C C C C C C
C C
C VIB3.F .. V133.? ... V'133. ... VrB3.F ... VIB3.F C
C C
C C CCCCCCCCCCC C CC C C C C C C C C C C CCCCCCC C CCC C C
C C

C The input parameter list (in general) is: C
C C
C Location Variables C

C C
C MAIN TITLE1 (Up to 50 characters) C
C MAIN TITLE2 (Up to 50 characters) C

C MAIN TITLE3 (Up to 50 characters) C

C2



C MAIN INCnECK, INOUT, IPRINT, INPLOT C

C where: INCEECK-0 check input only C

C 1 full execution C

C INOUT-0 minimal output C
C 1 full output C

C IPRINT-O no solver information C
C 1 minimal solver info. C
C ->2 full solver info. C
C IPLOT-0 no dynamic plot files C
C 1 dynamic plot files C
C MAIN 3N2, NUMEL NOKAT C
C MAIN MA C
C MAIN NF,DYNMNSLCT C
C MAIN (loop) FR (3z) C
C MAIN TOLSM(SM) C
C DATAIN (loop) NODU, X,Y,Z C
C DATAIN (loop) NS,IDIR,.VAR C
C DATAIN NELXIELZ C
C DATAIN (loop) Z,.,MATICONN C
C ELP3D (loop) MAT,G,PR,DAMP,RO C
C where: DAMP (decimal) C
C YLOAD PHAG,YLDIS C
C where: PMAG*YLDIS-0.5 for normalized C

C load (total load - 1) C
C MAIN )OL,XU C

C C
CCC CCCCC CCCCCCC CCC CC CCCCCCC CC CCC CCC C
C C
C V133.P . V13.F ... VIB3.F ... VVB3.F ... VIB3.F C
C C
C C CCCCCCCCCCCCCCCCCCCC CC CCC CCC CCCCCC
C C
C The units for this program are universal. Consistent units C
C are as follows: C
C C
C Il7TZC SI C
C C
C Shear modulus Pa psf C
C Mass density kgsm**3 (lb-s**2)Ift C

C - sluss/ft**3 C
C - pofI32.17 C
C Displacement * ft C
C C
C Damping ratio is in decimal form. C
C Frequency must be in Hz. C
C C
C The following conversion factors are provided for convenience: C
C C
C multiply by to get C
C C
C psf 47.88026 Pa (N/m**2) C
C bar 0.00001 Pa C
C slugs/ft**3 515.3 kh1m**3 C
C ft 0.3048 m C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C VIB3.F ... VI33.F ... VIB3.F ... V133.F ... VIB3.F C
C C
C C C CCC CCC CCCCCC CCCCCC CCC CCCC C CCC CCC C
C Tape (unformatted) Library: C
C C
C No. Contents C

C ****e- eaeeeelae aeeeteieee'aee C
C 7 (TAPED) C
C a Displacement vector (TAPEU) C
C 9 Load vector (TAPEL) C
C 10 LOS & RBS for solution C
C 12 Original load vector C

C3



C Tape (formatted) library: C

C C

C 15 Real components of select stiffness matrices C

C 16 imaginary components of select stiffness matrices C

C 20 Primary output file (CTAPEO) C

C 22 Non-sero components of load vector(s) C

C 23 Input file for dynamic 2-D plotting (dviev) C

C 25 Input file for static plotting (yplot & pltvave) C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C
C C

C V133.F ... V1S3.F ... VIS3.P ... VIB3.F ... VI33.F C
C C
CCCC CC CCCCCCCCCCCC CCCCCC CCC CCC C CCC CC
C C
C PRIMARY VARIABLE LIST: C
C (Variables used for solver Listed under Subroutine SOLVE.) C
C C

C A Realllnteser (1-D) array used for most data. C
C AI L C
C C Complex/Integer (1-D) array used for SOLVER C

C CFOR Wavenumber-domain description of load in y-dlrection C
C CRHS Complex RHS from dynamic, surface, & body forces C
C CRHSC Condensed, complex RBS C
C CSM Complex stiffness matrix (3-D) C

C CSHC Condensed, complex stiffness matrix (2-D) C
C CV Complex amplitude of select nodes in z-direction C
C CWIM Complex amplitude of select nodes for specific Lm C

C DM•P Damping ratio (-) C
C DAMPC Complex damping ratio C
C DM Increment of vavenumber * (delta a) C

C DY Increment of spatial variable y (delta y) C
C FACT Factor for inverse "FT C
C FR Frequencies of interest C
C FOR Spatial-domain description of load in y-direction C

C F2 Conversion factor (radians to degrees) C
C G Shear modulus (real) C
C GC Complex shear modulus C
C ICOUN Element connectivity for 3-D mash C
C MA Memory allocation for solver C

C MAT Material type index C
C NCB NM4+2 C
C NDOf2 No. of degrees of freedom per *low., cond. mesh C
C NDOFN2 No. of degrees of freedom per node, cond. mash C

c NDOFT2 No. of degrees of freedom (load vector), cond. mesh C
C NELX No. of elements in x-direction, 3-D mash C

C NELZ No. of elements in z-directLon. 3-D mash C
C NY No. of frequencies of interest C
C NSLCT No. of select nodes C

C NM No. of m's for FFT C
C NM2 Half the NM's C
C NM2PL NM2+1 C
C NM2P2 NM2+2 C

C NN Number of nodes, 3-D mesh (1-element thick) C
C NNE2 Number of nodes per element, condensed mesh C
C NNT2 Number of nodes (total), condensed mesh C

C NOWAT Number of material types C
C uS Nodes of interests C
C NUMEL Number of elements, 3-D mash C

C NUMEL2 Number of elements, condensed mash (-NIMEL) C
C ON Operating frequency (rads/sec) C

C P Surface loads (zero) C
C PMAG Magnitude of dynamic load C
C PR Poisson's ratio C
C RBS Body forces (real) C
C NO Mass density C

C TM Value of m (real) in DO loop c
C TOLSM Tolerance for symmetry of stiffness matrices C
C X Coordinates of nodes (3-D) C
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C )CL X-coordintate at left edge of Load C

C XR X-coordiniate at right edge of Load C

C 2OKAX Max. extent of 3-D mesh in rn-direction (-XKAX to XKMAX)C

C YhDIS Extent of load in y-direction from y..O C
C 1707 Distance for Fourier expansion (DY*NM) C

C ZHAX Max. extent of 3-D mesh in a-direction (0 to ZMAX) C

C C
C C C CCC CC C C CCCCC CC C CCC C CC C CC CCC CC CCC C

DIMENSION ZAC70000),A(70000),IC(200000).FR(IO),NYL(8),IVAR(50)
COMPLEX C(200000) ,CWC51A,3000) ,CWIH(514)

C

C Dimension changes to arrays C end IC must also be made to

C DATA NC, and arrays A and IA in SUBROUTINE SOLOUT.

C
COMPLEX E1,E2.AI,AI1,CPD
EQUIVALENCE (A(l).IA(i)),(C(l),IC(l))
CHARACTER-

5 0 TITLE , TITLE2 ,TITLE3

COMMON /BIG/ BIG
cosMlON/CNTLI ISYM, 3UHL2, IRESOL , NUNS, NTAE , NTAPEU,* NAPEL ,MA,

* f~IWRT, IPINT,*IERR,3NZP ,NPOSP ,NRBSF,

* IBIU,IL,IFB,IFU,IFLIGUF,MW.MEP,

* )(~~ELDE .MPR,IG ,MDOF ,MP6.I .41.015
COMMDN /CO3DSI 3)62, 300F12,N3)62, 3DOE2 * 30012

COMMO /FLAGS/IND3(22)
COMM) 113701 33,NOKAT.NF,NSLCT,I13f.1, IKPLOT

COM /MAX/ 204AXZKAX

COMM0 IMESBI NEL.XNELZ
COMMo /REALA/ A
COMM0 1701./ TOLSH
COHM)N /UNIT/ 37APE,NTAPEO
COHMN /WORK/ C
DATA MAI70000I
DATA NC1200000l
DATA MYLIJ..8.16,32,64,128,256,S12I

C

C Constants for FRONTAL SOLVER:

C ISYH-1: Syeotric stiffness matrix

C -2: Unsyinnetric resolution inactivated
C -3: Unsyuaetric resolution

C IRESOLO:- CALL CCMQL (lover triangle of stiffness matrix)I

C -1: CALL UESD1 (full stiffness matrix)I

C URHS-0: Resolution with zero UBS

C -1: One RBS

C iL: i ROS's

C

C Solver output index-

C IPRINT-0: no solver output

C IPRINT-1: general output

C IPRINT>-2: full information (pivot infor.)I

C
ISYN-1

IRESOIL-O
NUNS-i

C IPRINT-1

C
KTAPEB-7
NTAPEU-8

C
C KTAPEL is used only forNRNS > 1
C

KTAPEL-9
NTAPE-1 0
KTAPEO-20
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OPEN(15.FILE-'STIFFR',STATUS-'UNKNOWN')
OPEI(16,FILE-'STIFF_I',STATUS-'UNKNOWN')
OPEN(MTAPEO, FI B-'OUTPUT',STATUS. ' UNCKN N')

OPEN(22,FIIJ-'LOADlT' ,STATUS-' UNKNOWN')

OPEN(23,FILI•'dplot 2d. Ln',STATUS-'UNKNOWN')
OPEN(25,FILE-'plot. in', STATUS-'UNKNOWN')

C
C Basic information about the analysis

C
NDIM-3
MNNE-16
MNDIOFN-3
NDOFE-48
BIG-i.0E50
WRITE(NTAPEO,5)

5 FORIMAT( '***********P******* ROGIRA VI33 *******************, //
"* lx,' This program was written to solve for dynamic displace-',/,
"* lx,'ments in complex soillgeologLc media using a 2-D finite ',/,
"* ".,'element formulation. The formulation assumes planar ',
"* lx, 'geometry a~d material properties in the out-of-plane ',/,

"* 1x,'dLrectLon and a harmonic source acting on the surface. ',//,
"* lx,' This program was written by David Sykora, at US Army',/,
"* lx,'Engineer Waterways Experiment Station (WES), Vicksburg,',/,
"* 1x,'MS, under sponsorship of ILIR program (FY90-92). ',I/,
"* lx,' Prof. Jose Roesset, Univ. of Texas at Austin, developed',/,
"* Ix,'the cundensation procedure used in the formulation as '.,

"* lx,'successfully Implemented by Dr. Kan& (1990) for pave- '.,/,

"* lx,'ment systems. Solver subroutines, the FFT routines, and ",/,
"* lx,'the basic framework of the finite element program were ',
"* lx,'obtained from Profs. Roesset and Tassoulas, UT. ',//,
"* lx,'TEIS SOFTWARE IS DISTRIBUTED AS IS AND WITHOUT WARRANTY',1,
"* Ix,'AS TO PERFORMANCE. THE USER MUST ASSUME THE RISK OF',I,
"a lx,'USING THIS SOFTWARE1',II)

READ(5,6) TITLE1
READ(5,6) TITLE2
READ(5,6) TITLE3

READ(5,*) INCHECK, INOUT, IPRINT,INPLOT
READ(5,*) NINT2,NUMEL,NOKAT
NN-.NT2*2
REA(5t*) MA

READ(5,*) NF,DYNH,NSLCT
DO 2 1-1,8

IF(NM.EQ.NYL(I)) GOTO 3
IF(I.EQ.8) THEN

WRITE(6,*)'INCORRECT INPUT VALUE OF NHM'

STOP
ENDIF

2 CONTINUE
3 CONTINUE

WRITE(NTAPEO. 6)TITLE1
WRITE(PTAPEO, 6)TITLE2
WRITE(NTAPEO, 6)TITLE3
WRITE(NTAPEO,15) NM,DY,NOKAT,NSLCTBIG.,A
WRITE(NTAPEO.16) NDIMNUHEL,NN,)•NE, MNDOFNMDOFE

6 FORKAT(A50)

15 FORMAT(//,'*****PROBLED PARANETERS:',I/,

1 1X,'NUMBER OF TERMS FOR VFT: -,16,1,
2 1X,'INrREMENT OF Y (DY): ',F6.2,1,
1 1X,'NUKBER OF MATERIAL TYPES: 'I16,1,
2 IX,'NUMBER OF NODES OF INTEREST: ',16,1,
3 1X,'BIG*: ',E12.7,/,
4 1X,'MAXIHMU ARRAY ALLOCATION: ',17,//)

16 FORMAT(I,' 3-D MESH:'*,l,
1 1X,'NUMBER OF DIMENSIONS: ',16,/,
2 1X,'NUMBER OF ELEMENTS: 'P16,1,
3 1X,'NUI•ER O NODES: ',16,1,

4 1X,'NUMBER OF NOOESIELEMNT: ',16,/,

5 1X,'DEGREES OF FREEDOMINOOE: ',I10I,
6 1X,'DEGREES OF FREEDMIELD4ENT: ',16,1/)
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C Parameters for condensed elements
C

NUMEL2-NUMEL
NNE2-IOINEI2
NDOFN2-IOIDOFN

ND0FE2-NNE2aNDOFN2
NDOFT2-NUMEL2*NDOFE2
WRITE(NTAPEO,17) NDIX,NUMEL2,NNT2,NNE2,NDOFN2,NDOFE2
IF(INPLOT.NE.0) THEN

WRITE(23,- )NNT2,NtJMEL2
ELSEIF(INPLOT.EQ. 0) THEN
WRITE(23,*)'No 2-D dynamic plot file created (INPLOT-O).'

ENDIF
17 FORMAT(/,' CONDENSED MESH:'.//,

1 IX. 'EWOHE OF DIMENSIONS: ',16,1,
2 1X,2NUIHER OF ELEMENTS: '.16,/,
3 IX,'NIHHER 0? NODES: '.16.,1
4 1X,'NUMBER OF NODESIELEMENT: ',16,/,
5 IX,'DEGREES OF FREEDOM/NOOE: ',110,/,
6 1X, 'DEGREES OF FREEDOMIELEMENT: '.16.//)

C >>>>>>>>>>>>>>> STORAGE ALLOCATION >>>>>>>>>>>>>» >~>>>>

C
Ca*a****aa BELOW CORRESPOND TO ARRAY A (real/integer) a**C***f

C

IND(l)-l

C....X (3-D nod~al coordinates)
IND(2)-IND(1 )+3CKN

C....G (real shear modulus)
IND(3)-ZND(2)+NOKAT

C....IS (boundary conditions)
IND(A )=IND( 3)+3*NN

C....FR (frequencies of Interest)
IND(5)-IND(4)+NT

C....NS (nodes of interest)
IND(6)-IND(5)+NSLCT+7

C....IDrR

IND(7)-IND(6)+NSLCT
C....ICONN (element connactivities)

IND(S)-IND(7 )+NUMEL'IOINE
.... MAT (material type Index)

IND(9)-IND(S)+NUNEL
C....RO (mass density)

IND( 10)-IND(g)4NOKAT

C
C****** BELOW CORRESPOND TO ARRAY C (complexiinteger) *C*C*C*I

IND(11)-l

C....IPREP (used in PREFUT)

IND(12)-INDC11)+2*(NUMEL2*NNE2+NNE2)

C....IDEST (used in DESVEC)
IND( 13)-IND( 12)4NUKEL2*NNE2

C....COMPLEX ARRAY FOR SUBROUTINE SOLVE

!ND(14)-IND(13)4NA
C....COMPLEX ARRAY FOR 2-D SOLUTION (awpLitude-f(x,m,z,ON))

IND( 15)-IND( 1A)+NDOFN2*NNfT2
C....Complex load vector components

IND(16)-IND(15)+NDOFT2
C....Material constants

IND(17)-IND(16)+3*NCKAT
C....CFOR

IND(18)-IKD(17)+513I
C ...

IND(19)-IND(18)
C ...

IND(20)-IND(29)

C ...

IND'21)-IND(20)
C ...

IND(22)-1IND(21)
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

C7



WRITE(6, 29)
29 FORNAT(5CI),25X. 'V v I IBID 33333'd,,

+ 25X, -V V I B B d

+ 25X, V V 1 3 B 3 'd.
+ 25X, 'V V I BIDE 333'I
+ 23X, V VY I B B 'I
+ 25X, V VV 1 B B

+ 25X, ' V I BIBBI 333 .1)
C
C Check Maxim storage (for Array A)
C

MAXA-IND(10)-1
IF(MAXA.GT.NA) THEN

WRITE(6.30) MAXA
IFCINOUT.EQ.1) IIRITE(NTAPEO.30) MAXA

30 WORMATC1X.'INSUFFICIENT MEMORY LOCATIONS'd,I
I X,*REQUIRED LENGTH OF ARRAY A:',1X,17,j)

STOP
ELSE

IFCINOUT.EQ.1) WRITE(NTAPEO,35) RA-NAXA
IaITE(6, 35) NA-MAXA

35 FORKAITiX,
+ 'NUMBER OF UNUSED MEMORY WORDS IN ARRAY A:*,1X,!7,I)

END!?
C
C Check mazim- storage (for Array C)

C
MAXC=IND(22)-l
IF(MAXC.GT.NC) THEN

IIRITS(6,31) MAXC
IF(INOUT.EQ.1)WRITE(NTAPEO,31) 14AXC

31 FORI4AT(1X,'!NSUFFICIENT MEMORY LOCATIONS',/,,
*1X,'REQUIRED LENGTH OF ARRAY C:'.1X,17.I)

STOP
ELSE

IF(INfOUT.EQ. 1)WRITE(NTAPZ0, 36) NC-NAXC
WR.XTE(6.36) NC-I4AXC

36 FORMATOIX,
+ 'NUMBER OF UNUSED MEMORY WORDS IN ARRAY C:I, 1X, 17,I

ENDI?
C >>>>>>>»»>>>>>>>>>>>>>>))»)>>»»)»» »»)»» >)»»»>>>>>>>>

WUITE(NTAPEO, 49)

49 FORMAT(I,lX,'FREQUENCIES OF INTEREST (Hz): 'I
DO 50 IF-1,NF

50 READ(5,*) FR(IF)

DO 51 IF-1,N?,6
51 WRITE(NTAPEO,55) (FR(I),I-IF,IF+5)

55 FORKAT(IX,6F10.3)
READ(5,*) TOLSN

I?(INOUT.EQ. 1)WRITE(NTAPEO,59)

I?(INOUT.EQ. 1)WRITE(NTAPEO,60) TOLSN

59 FOU.NAT(II,1X,-SPECIFIED TOLERANCES- -,l)
60 FORMAT(1X,'STIFFNESS MATRIX SYMMETRY: l,E15.4.3X,'tFILI',/I)

CALL DATAIN(NUMEL,A(IND(l)),IAC!ND(7)),IA(IND(3)),IA(IND(8)),
2 IA(IND(5)),IA(IND(6)).IC(INDC11)),DY,IVAR)
CALL ELP3D(C(IND(16)) ,A(IND(9)) .A(IND(2)))

NMP2-NM+2
MUNN2R12
NM2Pl-NN2+1
11M2P2.NM2P1+1
NBCH2*NM2P1
YTOT-NM*DY
PI-A.O*ATAN(I(10)
DM-2.*PIlYTOT

IF(INPLOT.EQ.1) THEN
WRITE(23,*)NM2PlDY

END!?
WRITE(25,*)NM2P1 ,DY,NSLCT
AI-~-(0 1)
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CALL YI.OAD(C(IND(17)),DY,NN)
CALL FOUR2(C(IUD(I7)),NPM,l,-1,1)

C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
READ(5 ,*)L

WRITE(NTAPEO,80) XL.,M
so yoW4AT(J/.1IX,Left -uat extent of Load in x-dLrection -',F7.2,/,

2 lXRlght-most extent of load In x-direction - ,F6.2,//)

C
C login Do loop for each frequency (radslsec) of interest
C

CALL DNIS016YF
D0 100 IF-l,NP

DO 101 1-1,514
DO 101 J-1,3000

101 CW(Zj)-(0.,0.)
ON.2.*PI*FR(IF)
WRITE(6,105) OM,FR(IF)

WRITE(22,105) OI4,FR(IF)

IFCINPLOT.EQ.1) THEN
WftITE(23.*) ON

ENDI?
WRITE(25,*) FR(IF)

105 FORKAT(1X.'FREQUENCY- '.F6.2,' radslsec -',F6.2,' Hz',/)
C

C Begin DO loop for each vavenumber, m (y-direction)
C Since the loading and goeome try are sy ame tric about y-0,
C the dispiac seuents In the spate domain should be sy netrlc
C about y-0. Therefore, only non-negative waveflimbers need
C be considered end negative vavonumbers will be duplicated
C later.
C

CALL XLOAD(A(IND(1)),IA(IND(7)),XL,XR,NUMEL,C(7.ND(15)))

IF(INPLOT.EQ.1) THEN
WRITE(23,*)XL,)M

ENDI?
URITE(25, CflL,3in
DO 200 IH-1.NH2P1

C

C Read load information in u-dIrect~on &calculate nodal forces
C

TN- CIN-I)*'1M
All.AI*TM*DY
l-EXPc(-1. 'All)

E2-CMX(All)

C

C Create load vector

C
REWI!ND 10

REWIND 12
DO 210 I-1,NDOPT2

WRITE(12) C(IND(1S)+I-1)'C(IND(17)+IM-1)

210 CONTINUE
CALL STIFFCA(IND(1)),IACIND(3)),IA(IND(7)),

2 IA(IND(8)),C(IND(16)),A(INDC9)),A(IND(2)),

3 NUIEL,0K,El,E2,IM)
IF(INCHECX.EQ.0) STOP
REWIND 10

REWIND 12
CALL PREFNT(NNE2,IC(IND(11)),MS,MU MR)

C

C Solve for maximum amplitudes at each node -f(x~m.z~om)
C

CALL SOLVE(C(IND(13)),IM)

C
C Store amplitudes at select nodes for Inverse F?!

C (Always store XSLCT plus necessary values for dview)
C
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DO 300 J-l,NSLCT
K-K+l
CIE(IH,K)-C(IWD(24)+3*(IA(IMD(5)+J-l)-l)+IA(IND(6)+J-1).1)

300 CONTINUE

DO 501 J-1.2*NEL+l
K-K+l

CW(IM.K)-C(IffD(14)*3-(J-l)) I x

K-I+l
CW(IMI,K)-C(IUD(14)+3*(J-I)+l) I Y

501 CONTINUE

ELSZIF(XIIPWT.IQ. 2) TEMN

DO 502 J-l,NNT2

K-K-Il
CW(fIMK)-C(I3D(l4)+3*(J-l)) I X

K-K-Il

CI(IM.K)-CCIND(14)+3*(J--1)+2) I Z

502 CONTINUE
KLSEIF(IMPLOT.ZQ. 3) THEN

DO 503 J-1,2*NELZ+l

K-K+1
CWd(I3I,K)-C(IND(l1s)+3*(l+MOD((J-1) ,2)*(2*NELX+l)

2 ICJ/2)*(3*NELX+2))+l) I y

K-K+1
CV(IM,K)=C(IND(14)+3*Cl+NOD( (J-1) .2)*(2*NELXI~1)

2 +(J/2)*(3*NELX+2)),2) I 2

503 CONTINUE
mNIzF

NIFTS-K

200 CONTINUE

C
C Calculate complex aMplitudes at each node - f(x,y,z,am)
C

%IKITECNTAPEO, A01)FR(IF)

401 FORMAT(((. '*****OUTPUT (DrSPL~cACEMETS) .,11

1 IX,'CALCUIATED AMPLITUDES ATý ',F8.2.' Hz')
FACT-I. IFLOAT(MM)
72-180.111

C
C Begin loop to ITT displacemments for each node of interest
C

DO 600 1-1,NSLCT

DO 601 11-1,514

601 CWIN(II)-(0. .0.)

C
C Duplicate amplitudes for m's from 0 to NM2Pl (negative m's).
C

DO 620 IH-NM2P2,NM

IIM-NCU-IH

620 CU(IM,I)-CN(IIH,I)

C

DO 625 114-1,NM

625 CWIN(IM)-CV( 114.)

C
C Inverse FIT leaving aMplitudes complex.
C

CALL FOUR2(CWIN.NN,l,+l,l)

%IRITE(NTAPEO.635) IA(IND(5)+I-l),

+ REAL(A(IND(1)+(IA(IND(5)+1-1))-3-3)),

+ REAL(A(IND(1)+(IA(IND(S),I-1))-3-1))

IF(IACIND(6)+I-1) .EQ-1) WRITECNTAPEO.627)

IF(IA(IND(6)+I-l).EQ.2) IIRITE(iITAPEO.628)

IF(IA(IND(6)+I-l).ZQ.3) WRITE(NTAPEO.629)

URITE(NTAPZO, 636)
IERITEC25,*) IA(INDC5)+I-1),

+ REAL(A(IND(l)4-(IA(IND(5)+I-l))*3-3)).

+I REAL(A(IND(2)+CIA(IND(5)+I-1))e3l1)).

+ IA(IND(6)+I-1) .IVAR(I)
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DO 61.0 IN6-1,3(2P
Y-(IN-l)*DY

OdIM( IN)-FACT*CWIN(IN)
ANPL-sQRT(REAL(CCUI(IM) )**2,AIMAC(CWIM(IN) )**2)

PMAS-ATANZCAIKAO(CCVINCIN)) ,REAL(CWIH( IN)) )F2

WUITE(25,61.S) Y,CWIN(IM) ,AMPL.PIAS

WIJTEUNTAPEO.645) Y.CWIM(IM) .AHPL,PEAS

MPIVAM(I.ZQ.0) GOTO 641.

64.0 CONTINUE
64.1 CONTINUE

600 CONTINUE

627 FORAUJA(,X,'VARIATION OF BORIZONTAL X COMPONENTS IN Y,

+ 'DIRECTION:',/)
628 FORMAT (/, IX, 'VARIATION OF HORIZONTAL Y COMPONENTS IN Y '

+ 'DIRECTION:1, 1)

629 FORMAT/,1X.-VARIATION OF VERTICAL (Z) COMPONENTS IN Y

+ 'DIUZCTION:', 1)
635 FORM4AT (f1 - - - -- - - - - -- - - - - - -- - - - - -- - - - - -

+' /IX,'ANPLITUDES CORRESPONDING TO NODE: '.15,1.
+ SX,'(X- ',E1O.3, ) (Z- ',110.3,' )

636 FONNAT(1X, Y '
+ IX,' REAL PART '
+ IX, -INAG. PART *

+* IX,' MAGNITUDE

+M.' PHASE ')
61.5 FORMATOU(XE1O.3))

C
C Begin loop to IFT displacements for dvlev
C

DO 700 I-USLCT+1,NIFTS

DO 701 11-1,514
701 CWdIN(II)-C0.,0.)

C
C Duplicate amplitudes for m's from. 0 to NM2P (negative m's).

C
DO 720 IN-XKZ2,dNN

UIHN-CD-IN
720 CV(INI)-CWd(IIHI)

C
DO 725 flE-1,7NM

725 C1IIN(IN)-CII(IN,I)
C
C Inverse FFT leaving amplitudes complex.

C
CALL FOUR2(CWIH,NM,1,+1,1)

WR.ITE(23.*)IA(IND(5)+I-1).
+ REAL(A(INDC1)+(IA(IND(5)+I-1))*3-3)).

+ REAL(A(IND(1)+CIA(IND(5)+I-1))*3-1))

C
DO 71.0 IN-1,NK2P1

Y-C IN-I )DY
CWIC IM)-FACT*CWIN( IM)

AMPL-SQRT(UEAL(CWIN(IM) )**2+AII4A(CWCVM(IN) )**2)
PEAS-ATAD2(AINAG(CWIM(Irl)) ,REAL(CwN(im) ) )*F2

WRITE(23,61.5) Y,CWIM(IN) ,ANPL.PRAS

IF(INPLOVT.BQ.2) GOTO 741.
71.0 CONTINUE
71.1 CONTINUE

700 CONTINUE

100 CONTINUE
CLOSE (I5,STATUS..'KEEW

CLOSE (16.STATUS-'K EEP)

CLOSE (NTAPEO, STATUS- 'KEEP')
CLOSE (22,STATUS-'EECEP')

CLOSE (23,STATUS-'rJEEP')
CLOSE (25,STATUS"'% REP)

STOP
END

C
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C~eea**e~ee~C*~NODE & ELEMENT 110 SUBROUTINE *********

C
SUBROUTINE DATAIN(NUMEL,X,ICONN.IS,MAT,NS,IDIR,IPRUEP,DY,IVAR)

C CC CCC CC C C CCC CC CC CCC CC CC CC C CCC C CC CC C
C C
C Subroutine DATAIN reads in boundary, nodal, and element data. C

C C
C Subroutine DATAIN is called by :MAIN C
C C
C Subroutine DATAIN makes no external calls. C
C C

C CC C CC C C CCCC C CC CC C CC C C C CC C CC C CC C CC C C
DIMENSION X(3,NN) .IS(3,NN) ,ICONN(16,NWMEL) .MAT(NUMEL)

DIMENSION IDIR(5O) ,IVAR(50)
DIMENSION NS(l),IPRRP(l)
COIMON ICONDS/ NNE2,NDOFN2,NNT2,NDOIE2,NDOFT2
COMM /NFO/10 NN,NOI(AT,NT,NSLCT ,INOUT *INPLOT

COMMO flAXi ~X. XZKAX
COMMON /MESH/ XELXNELZ
COM14ON IUNITI NTAPEN'IAPEO
IZERO-0
DO 5 1-1,NN

IS(2,I)-0.

DO 5 J-1,3

5 IS(J.I)-IZERO
IF(INOUT.EQ.1) IIRITE(NTAPEO,50)

50 FORMAT(I,lX,'NODAL COORDINATES' .//,
2 3X,'NODE',9X,'X-,14X,'Y'.14X.'Z',SX,'IS1V,3X,'IS2',
3 3X,'II3'.II)

C
ZMAX-0.

DO 400 I-1,NNT2
READ(5.*)K,X(1,1).X(3,I),ISCI1),IS(153,I)
X(2,I)-0.
IF(K.NE.I) THEN
URITE(6,4 02)
STOP

ELSE

ENDIF

ZMAX- AX(ZMAX,X(3,I))

400 CONTINUE
C
C Duplicate face of nodes at y..-dy

C
DO 410 1-l,NNT2

II-I+NNT2

X(2,1I)--DY

XC 3,11 )-X( 3,I)
410 CONTINUE

C
C Set boundary conditions

C
Do 420 1-1,NN

IF(ABS(X(3,I)-ZMAX).LT.0.01) THEN
IS(11I)-i

IS(2,1)-l

IS(3,I)-l
ELSE

ENDIF
1#20 CONTINUE

IF(INPLOT.EQ.1) TEEN
DO 425 I-l.NNT2

425 CONTINUE
ENDIF
MFIN OUT.-EQ.1) THEN

DO 430 1-1,33
430 IIRITE(NTAPBO,*01) I, (X(J,I),J-1,3). CIS(JI),J-l,3)
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ELSE
ENDI?

401 FOW4A?(2X,15,3(3X.112.4),3(33C,I3))

*02 FORNAT(/!,1X. UNCM: SUBROUTINE DATAIN'd.1
2 *NOOES NOT IN SEQUENTIAL, ORDER',//)

C Nodes of interest (increasing order)

C
WRITE(NTAPEO,60)

60 PORMAT(/,1X.NPOOES OF INTEREST:-,I)
DO 499 I-l,NSLCT+7

499 VS(I)-O
DO 500 I-l1NSLCT

U*ADC5.
5

) NSCI),IDIR(I).IVAR(X)
500 CONTINUE

DO 510 I-l,NSLCT,S
510 IJRITE(NTAPEO,501) (*S(J),J-1.1+7)

501 FORMAT (1X,816)
READ(5,*) NELX,NELZ

C
C Element Connectivities
C

IF(IN OUT.EQ.1) VRITE(UTAPEO.105)
105 FORMAT(1XlI.IJX,'CONNECTIVITIES .1)

IF(INOUT.EQ.1) IIRITE(NTAPEO,107)
107 FOW.NAT(1X,I.30X. ---- ELEMENT NUMBERING ---

Z?(rNOUT.EQ.1) VRITE(NTAPEO,109)

IF(INOUT.EQ.1) WRITE(KrAPEO,110) (j,j-1.8)

109 FORIAT(7X, KAT.')

110 FOW4AT(1X,'RZLU4.2X.'TyPE'.2X,'WODESO',1X,8I6)
IP(INOUT .EQ. 1) U3ITECNTAPEO. 111)

111 FOWJ4AT(1X.'****',2X,'*C**.2X,
2 *****************************I

DO 200 IEL-1,NUMEL
RIAD(5.*)K,KAT(IEL). (ICOUN(J,E),J.31.6)

DO 210 J-9,16

210 ICOUN(J,E)-ICOUN(J-S,K)+NNT2
IP(R.NE.IEL) THEN

WIRITEC6,201)
STOP

ELSE
END!?
IF C INOUT. EQ. 1)

2 WRITE(NTAPBO.202) IEL,HAT(IEL) *(ICONN(JIEL) .3-1.8)

IF(IN OUT.ESQ.1) WRITE(NTAPEO,203) (ICONN(J,IEL).J-9,16)

IF (INPLOT. EQ. 1) THEN
WRITE(23,202) IZL.MATCIEL),

2 ICONN(1,IEL),ICONN(3.IEL),ICONNCS.IEL),IC0UNN6,IEL)
ENDIF

200 CONTINUE
201 ?OPJ4AT(II.1X,'ERROR: SUBROUTINE DATAIN',I,

2 ' ELEMENT CONNECTIVITY NOT IN SEQUENCE',/ )
202 FORMAT(1X,I3,SX,I3.10X,816)
203 ?OWIATC20X,816)

C
C Old Subroutine PREP
C Fix to 8 for 16-node alesme nt in 2-D

C
L-0
DO 120 IEL-1,NUH6L

DO 115 J-1,NNE2
L-L+1
NODS,-ICONN(3,IZL)
IPREP(L)-1O*N0OE+3

115 CONTINUE

C
120 CONTINUE

RETURN

END
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SUBROUTINE EI.93D(D.RO,G)

C CCC CC CC CC CC C CCC C CCC CC CC CC CC CC C CC CC C CC C
C C

C SubroutLas EL?3D is used to read and store material information. C

C C
C Subroutine ZLPSD to called by: MAIN C

C C

C Subroutine ELP3D makes, no external calls. C

C C

C C C C CC C C CC C CC CC C CC C CC C CC C C CC C CC C C C C C CC C
DIMESION ROCIOMAT) ,G(NOMAT) ,MCU((NOKAT)
REAL DAM4? .P

COMPLEX D(3,NOMAT),GC,DANPC.ZFACTOR
COMMON 1131701 NN. NOMAT .N7,NSLCTZ NOUT,*IUPLOT
COMMON /UNIT/ NTAPE.NTAPZO

2-CO. .0.)
WRITE CUTAPEO, 100)

WRITE(NrAPEO, 101)
100 FOP.MATCII,ee*C5*MATZRIAL PROPERTIES .I

101 PORMATCT13,*SEBAR ,T28,'POISSONS',T43.'DAMINIM,T60,'MASS',/.
2 T2,'NAT',Tl2,'NOOULUS-,T29,'RATIO',T4I,-RATIO.,T58,'DENSITY',I,

C
DO 50 1-1,NOMAT

READ(5.*) t1.GCI),PR,DANPRO(I)
NCHKIC )-H
IF(I.GT.1) THEN
DO 51 J-1,1-1

IPCM.EQ.NCEKCj)) THIN
WRITE(NTAPEO,*)'ERROR IN ELP3Dz MATERIAL NUMBERING'

ENDIF
51 CONTINUE

1702?
WIRITECNTAPEO,102) M,GCI) ,PR,DAM4,ROCI)

102 FORKAT(T2.13.29.E12.5,T30.F4.2.743.F4.2.TSB.F6.2)
C
C Choose form of damping

C
DANPC-CMPLX( 1. .2. *DAMP)

c DAMPC-Q4PLX(1. -2.*DAMP**2. ,2.*DANP*SQRT(1 .-DAMP**2.))
GC-GCI)*DAM4C
7ACTOR-2.*GC/C1.-2.*fl)

D(l,M)-WACTOR
5
C1.-fl)

D(2,M)-FACTOR*PR

D 3 ,M)-GC
50 CONTINUE

MIN OUJTEQ.0) WRITE(NTAPZO,*)
IFCINOUT.EQ.1) TU

DO 60 I-1,HO4AT
WRITE(NTAPEO,190) I

190 FORMATCII.1X,'THE D MATRIX POR MATERIAL '.13,' IS: '1
WRITECNTAPEO,210) DCl1.),DC2,I) ,DC2,1),Z,Z,Z

WRITE(NTAPEO,210) D(2,I),D(I,I),D(2,I),Z.Z,Z
WRITECNTAPEO,210) D(2,I),D(Z,I),D(1,1).Z,ZZ

WRITECNTAPZO,210) Z,Z,Z,D(3.I),Z,Z

WRITECNTAP5O.210) Z,Z,Z,Z,D(3,I).Z

WRITECNTAPEO,210) Z.Z.Z,ZZ.D(3.I)
210 ?ORMATC1X,6C'C',ElO.3,' ',E10.3,'i)',2X))

60 CONTINUE

ELSE

KNOX?
RETURN

END
C
C

C
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MATRIX SUBROUTINES
C

SUBROUTINE XLOAD(X. ICOUN ,X ,]XR.NUMELCPD)
C c C C C Ccc C CCccCc cc cc cc cc cc cc C c cc
C C
C Subroutine X1,OAD is used to quantify the extent of the distri- C
C butLon of load in the X-dimension. The extent is specified C

C by endpoints assuming uniform distribut ion between the C
C endpoints. C
C C
C Model forces are calculated ONLY for a 2-D plano, the central C
C plane of the woash (automiatic condensation). C
C C
C Subroutine 20.OAD is called by: MAIN C
C C
C Subroutine XLOAD imakes no external calls. C

C C
C Subroutine checked ok for uniform loads 12/18190. C
C C
CCCCCCCCCCCCcC cccc C CCcCccC C C C CCCCCccc C CccCcC C C

DIMENSION X(3,NN) ICONNI(16,NUMEL) ,PD(NDOFT2)
COMPLXX CPD(NDOrT2)
COMMON /CORDS/ NNE2 .NDOPN2 ,NNT2 .NDOFE2 ,NDOFT2
COMMON I INFO / NNNONAT."7, NSLCT. INOUT, IIPLOT
COMMON IEsuI NELX.NELZ
COMMON /UNIT/ NTAPE,NTAPSO

NUME1L2-N1JMELI2
DO 10 I-l.NDOFT2

CPD(l)-(O. .0.)
10 PD(I)-O.

C
C find the range of elements affected by load in x-dLrection

C
NELIT-O
NELRT-O
IF(ABS(XL-XR) .LT.O.0O0lJ TEMW

C
C Point Load (match to closest node)

DO 95 I-2,NELX

WRITE(22.a)'DO 95, POINT LOAD-
NDOFCNTCI1-1)*2A

IFCX(1,ICONN(6.I)).GE.X.) THEN
XRPI-X(1,ICOUN(6,1))-XCL

XCP-A3S(XCX,ICOWN(h,I))-XL)

iF(ENP .LE.XCP .AJSD .XP.LE .20.) TEEN

IFIX-ICOON(6. I)
NELPT-I

NELRT-I+l
PD(NDO CWT +18)-l./12.

PD(NDOPCNT+27)-1. 12.

ELSEIF(XLP.LE.XCP.AND.2U.P.LE.XRP) THEN

IFIX-IOONNUl.I)
NELF .-1-

NEL.R?-Z
PD(NDOFcNT+3)-l. 12.
IF(NDOFONT+3.LE.6) PD(NDOFCNT+3)-1 .0

PD(NDOFCNT-6i)-l. 2.
ELSEIF(XCP.LT.20.P.AND.XCP.LT.ENP) THEN

IPIX-ICONN(A .1)
NELF?- I

NELRT-I
PD(NDOFCNT+12)-l.

END!?
GOTO, 96

ENDIF
95 CONTINUE

96 CONTINUE
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NELLD-NmRR-MELrT.1

WRITE(6.-) 'POINT LOAD AT NODE: ',IFIX
WRITE(NTAPEO.

5
)'POIN'? LOAD AT NODE: ',IFIX

ELSE
C
C Distributed load
C

WRITE(22.*) 'DISTRIDUTED LOAD'
%1RITE(NTAEO,') 'DISTRISUTED LOAD'
DO 100 1-l,NELX

UR!TE(22,*)'DO 100'

IFCNELFT.EQ.0.AJID.X(1ICONN(6,I)).GE.nC) NELFT-I
l?(NELrr.NE.O.AND.Xc1,ICOUNu6,1)) .GE.XR) THEN
NELRT-I
GmT 101

ELSE

END'?
100 CONTINUE
101 CONTINUE

NELLD-NELRT-NELT~i-
C
C Calculate nodal forces
C

XEND.fXL

DO 200 I-ICOUNT+1 ,ICOUNT+NELLD
NDOFCNT-(I-1)*24

EU-tX(1.ICOIN(6,1))-X(1,ICONN(1,1))

E1EL=X(1,ICONN(6.I))-X(1,ICONNC1,I))

WR2ZTE(22,*) '31j' ev
WRZTE(22,*) 'EZL-',EWL
WRITE(22.*)*EWR-' ,EWR
IF(1 .Q. ICOUNT+1 .OR. I.EQ. XCOUNT+NELLD) THEN

C
C End element(s)
C

jWRI'rgC22,*)' END ELEMENT,
IF(X(1,ICONN(4,I)).EQ.XEND) THEN
%IRITE(22.C)' center node'

C
C At center nods
C

ETA-0.
ELSEI?(XEND.LT.X(l.ICOIIN(4,I))) TEEN
WRITEC22,*)' left segment,

C
C In left segment
C

IF(NELLD.EQ. 1)XEND-XR
ETA-CXEND-X(1,!CONN(4,I) ) )

2 CX(1.ICONN(A,I))-X(1I.COKNN.1I)))
ELSE
WRITE(22,*)' right segment'

C
C In right segment
C

ETA-OX1XD-XC1, ICOfN(4, 1)) )
2 (X(1,ICONN(6,I))-X(1.ICONN(4,I)))

ENDI?

V3.ITE(22,*)' ETA-',eta

rF(xzLLD.EQ.1) xzND-XRt
IF(ABS(XU-XEND).LT.0.-1.-OR.(NE.LD.-EQ.l.AND.-ETA. LT. 0. THEN

WNITEC22,*)' forces for right end element'
C
C Porces for right end element
C
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IF(ETA.LT.0. )EWR-EWI.
PDCNDOFQST+3)-((1.16.*ETA**3.)-(0.25*ETA**2. ))*EWR

2 4-5.112.-EWL
?D(NDOCNT+12)-(ETA-C1. 13.*ETA**3. ))

5
EWR+2. j3.EWL

PD(NDOOT+18)-((1. /6.*gyA**3. ),(0.25*ETA*
5
2. ))*EiJ

2 -l./12.'IWL
ELSEICA3S(XL-XIIND).LT.O.1.Ol&.(NELLD.EQ.l.AiID.ETA.GT.0.))

2 THEN
W!ITE(22,*)' forces for left end element,

C
C Force* for left and *Ileme nt

C
!?(ZA.GT.O. )EVL-EVR

PD(NDOFCNT+3)--(C1.16.*1A**3.)-(O.25*ETA**2. ))*EWL
2 -1.-112. 'EWR

?D(NDOCNT+12)--(ETA- Cl. 3.*'ETA**3. ) *EL /3.*W

PD(NDOFCNT+1U)--((l./6.*ETA**3.)+(O.25*ETA**2.))*EWL
2 +3.112. *EIR

END!?
mIND-U(

ELSE

IERITE(22,*') forces for center *Ilemeýnt'

C

C Center element
C

PD(NDOCNT+3)--l. Il2.*E1IRi-5. 12.CEWL

PD(NDOFCIIT+12)-2. 13.*EMR+2. 13.*EW!-

PD(NDOFCNT+18)-5. /12.eEWR-l./12.*EWL
END!?

200 CONTINUE

201 CONTINUE
END!?

C
C Write load vector to fort.22 for optional inspection
C

Z?(INOUT.ZQ.1) THEN
WRXTE(NTAPEO. *)
WRITE(NTAPEO,*) NEU3J- *,NELFT

WRITE(ETAEBO,*)*NELT- 1,XELRT

WRTE(NTAPBO,*)
WRITE(NTAPEO,*)*Number of elements in x-direction '

2 'affected by load: ',nelld

END!?
WRITE(22, 301)

DO 300 I-1,NDOFT213

IF(AJS(PD(3-I-2)) .CT.1.E-5.OR.ABS(PD(3-I-1)) .GT.1.E-5.Oft.

2 ABS(PD(3*1)).GT.1.E-S)
3 WR!T3C22.302) INT(?LOAT(I)ILOAT(NNE2))+l,

4 INTCLOATCNOOC!,N M ))) ,?D(3*I-2) ,?D(3*I-1) ,PD(3*I)

300 CONTINUE

301 7ONIIATI,MIXNon-sere, nodal forces (from XLOAD):',II,

2 IX,' ElE -, NOOE,13X,'X'.16X,'Y',16X.'Z',l)

302 ?PORMAT(lX,16,1X.16,3(5X,712.5))
399 CONTINUE

DO 400 1-1,ND07T2
400 CPD(X)- CMPLX(PD(!))

RETURN
END

C
C

C
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SUBROUTINE YLOAD(CFOR,DY, N3)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CCC

C C

C Subroutine YLOAD is used to quantify the extent of the distri- C

C bution of load in the y-dimension. The load is assumed to be C

C symmetric (centered about the x-axis). C

C C

C At present, the load is assumed to be C
C constant over a distance YLDIS from the line of symmetry. C
C C
C Subroutine YLOAD is called by: MAIN C

C C
C Subroutine YLOAD makes no external calls. C
C C
CCC CCC CCCC CCCC CCC CCCC CC CCC CCC CCC CCC C

DIMENSION PM(NM)
COMPLEX CFOR(N!41t2)

COMMON I INFO/ NN,NO4AT,NF,NSLCT, INOUT, INPLOT
COMMON /UNIT/ NTAPE,NTAPEO
READ(5, *)P7AG.YLDIS
YTOT-DY*FLOAT(NM)
WRITE(25,*)YLDIS

C
C Define distribution of loads is y-direction.
C At present, uniform loadi load duplicated at end of y-space
C

IF(YLDIS.LE.0.0001) THEN
DO 50 1-1,04+2

50 PM(I)-0.

PM( 1 )-PMAG
DO 60 I-1,104+2

60 CFOR(I)-CIPLX(PN(I))

ELSE
ICOUNT-0
DO 100 I-1,10.+2

IF((I-1)*DY.LE.YLDLS) TEN

UCOUNT-ICOUNT+l
P1(I)-PHAG

ELSE
Pm(I)-0.

ENDIF
100 CONTINUE

DO 200 I-1,ICOUNT-1
J-NM+l-I
PM(J)-PMAG

200 CONTINUE

DO 300 I-1,N4
C
C THE FOLLOWING LINE IS USED ONLY WHEN CONSIDERING
C NORMALIZED LOAD (TOTAL LOAD - 1)m

C
PH(I)-PM(I)1I(2.* (FLOAT(ICOUINT-1))+l. )

300 CFOR(I)-Q4PLX(PM (I))
CYOR(N34+l)-(0. ,0.)

ENDIF

WRITE(NTAPEO, 301)
301 FORMAT(I I,'****LOADS:',//,

V SUBROUTINE YLOAD ASSUMES TEAT A NORMALIZED LOAD IS BEING USEDI',

2 /)
RETURN
END

C
C
C
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SUBROUTINE STIP7(X, IS, ICONN,MAT,D, ELRO,ELO,NUMEL,014,E1 ,E2, IM)

C C CCCC C CCC CC C CC CC CC C CCCC C CC CC CC C CCC C
C C
C SUBROUTINE STIFT FORMS5 THE STITFNss MATRIX AND ADJUSTS THE RHS C
C VECTOR TO ACCOUNT FOR BOUNDARY CONiDITIONS. C
C C
C Since al emsenta adjacent in the y-direction have the same stiff- C
C ness, the stiffness matrices for one front set are calculated. C

C Then in CONDENSE, the stiffness matrices of the ive elements C

C adjacent in the y-direction are combined. C
C C
C Subroutine STIFF is called by : MAIN C

C C
C Subroutine STIFF calls: ODOIF, 1S016. &. CONDENSE C
C C
C CC CC CC CC C CC C CC C CC C CC CC C C C CC C C C CC CC C

DIMENSION X(3,NN) ,Y(3,16) ,ICONN(16,NUMEL) ,MAT(NUMEL) .15(3,111)
DIMENSION ELUOCHOKAT) ,ELG(NOMAT) ,RHS(48)
COMPLEX D(3,NOIAT),DDC6,6),CSN(48,48),CSI4CCNDOFE2,NDOFE2),E1,E2
COMPLEXC FDEL(NDOFE2)
COMMON ICONDSI NNE2 ,NDOFN2 NNT2 .00112 ,NDOFT2

COMMON 1111101 NN,NOgIAT, N7,NSLCT, INOUT, INPLOT
COMMON /UNIT/ NTAPE.NTAPEO

REWIND 10
REWIND 12
NUMEL2-NUMEL

D0 10 IEL-1,NUMEL2
C
C PICK coordinates for element nodes from X array

C
DO 15 J-1,16
NODE-ICONN(JIEL)

DO 15 1-1,3
Y(X, J)-X(K,NOOE)

15 CONTINUE

C

C DO is material array for specific element
C

DO 305 UK-1.6
DO 305 LL-1.6

305 DD(KK,LL)-(O.0.0.0)
C

00(1, 1)-D(1 ,MAT(IEL))
00(1, 2)-D(2 .MAT( IlL))
D0(1, 3)-D(2,MATC IZL))
DD(2,1)-D(2.NATCIEL))
DD(2.2)-0(1.MAT(IEL))
00(2. 3)-D(2,MAT(IEL))
00(3,1)-D 2 ,MAT CIlL))
DD(3,2)-D(2,KAT(IZL))
00(3,3)-DC 1,MAT( IEL))
DD(4,A)-D(3,MAT(IE.))

DD(5,5)-D(3,MAT(IEL))
DDC6.6)-D(3 ,MATCIEL))

C

FAC-KLRO(MAT(IZL) )*aI*C8
CALL 15016(Y.DD,CSPM,RBS,FAC)

IF(IM.LE.1)
2 CAL.L PRNTRBS(CPDEL,24.IEL,IM,A,ELG(MATCIEL)))

DO 301 11-1,NDOFE2

RZAD(12) CPDELCII)
301 CONTINUE

C

CALL sYNSN(DUM,CSM,ha,IEL,ELG(MAT(IEL)) .1,5)

CALL COffDENSE(CSM.CSHC,I1,12.IM,IEL)

11(11. L9. 1)
2 CALL PUNTRS(CPDEL,24,IELIM,6,ELG(MAT(IEL)))
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IF(IEL.ZQ.2.AffD.fl4.LE.3)
2 CALL PRNTSK(CSMC.21.,IEL,IH,6,ELG(HATCIELj))

CALL SYKSH(DUH,CSXC,24,IEL,ELG(MAT(IEL)),1,6)

WRITE(10)((CSMC(IJ),1-1,J),J1.,NDOFE2) ,(CPDEL(I) ,I-1,NDOFE2)
10 CONTINUE

RETURN
END

C
C

C
SUBROUTINE WOOIF(CSN,IS.CPDEL,ICONN. IN)

C CCCC C CC C CCC C CC C CC CCC C C CCCC C CCC C CC CC
C C
C Subroutine MODlF is used to modify the stiffness matrix and C
C RES vector to account for boundary conditions. The matrix C
C is than chocked for symmetry. The matrix can be printed if C
C desired. The RBS vector is changed from real to complex. C
C C
C Subroutine MODIF is called by: STIFF C
C C
C Subroutine NODIF calls: PRNTSN (optional) C
C C
C CC C C CC C C C CC C CC C CC C CC C CC C CC C CC C CC CC C

DIMENS1ON IS(3.NN),ICONN(16)

COMPLEX C51(4(8,A8) ,CPDEL(21A)
COMMION /BIG/IBIG
COMMO /INhFO/ NN,POKAT,NT .RSLCT ,INOUT, IMLOT
COMO /MAX/ XKAX,ZNAX
COMMON /UNIT/ NTAPE ,NTAPEO

K-0
C
C ICONN is vith respect to an element
C

DO 10 1-1,16

NODE-ICONNI(I)
DO 10 J-1,3
1-K+1

IP(IS(J,NODE).EQ.1) ThEN
CSN(K,K)-CSH(K,R)+BIG

ELSEIF(IS(J,fODE) .31.0) THEN
WRITE(6,20)

STOP
ELSE

ENDIF
20 FORMAT(/I,1X,'C**ERROR IN MODIF (with IS)***',//)
10 CONTINUE

C
C No (sattic) forces
C Zero body forces
C

K-0
DO 25 1-1,8

NODE-ICONN( I)

DO 25 J-1,3
K-K+1

IF(IS(J,NODE) .EQ.1) CPDEL(K)-CPDEL(K)*BIG
25 CONTINUE

RETURN

END

C

C

C
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SUBROUTINE COUDENSE(CSM,CSNC,1l,22,IM, iei)

CCCCC CCCCccCCccCCcC CCCCCCC CCCC C CC CCCC C C

C C

C Subroutine CONDENSE is used to derive an equivalent 2-D C

C stiffness matrix from a three-dimensional stiffness matrix. C

C A 16-node isoparametric element quadratic In the y and z C

C directions and linear in the x direction is assumed. C

C C

C The RBS vector does not require condensation because only C
C loads on the central plane are used. C
C C
C Subroutine CONDENSE is called by STIFF. C

C C
C Subroutine CONDENSE makes no external calls. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C

COMMON /CORDSI NNE2,NDOFN2,NNT2,NDOFE2,NDOFT2
COMMON ITOLI TOL94
COMPLEX CSM(48,48) .CSMC(NDOFE2,NDOFE2)
COMPLEX El,E2,AI
DO 10 I-l,NDOFE2

DO 10 J-1,NDOFP2

10 CSMC(I,J)-(0. ,0.)
C

DO 20 I-1,NDOFZ2
II-I+NDOF12

DO 20 J-l,NDOFE2
JJ-J+NDOFl2
CSMC(I,J)-CSM(II,J)*E2+CSM(I,J)+CSM(II ,JJ)+CSM(I,JJ)-E1

20 CONTINUE
C
C Make matrix syametric through division and multiplication by 1.
C

IF(IM.EQl) GOTO 31
AI-(O., .)
1I-1
DO 40 I-l,NDOFE2

JJ-1
DO 30 J-1,NDOFE2

IF(I.EQ.II'3-1) CSIC(I,J),CSMC(I,J)*AI
IF(J.EQ.JJ*3-l) THEN

JJ-JJ+l
CSMC(I,J)-CSMC(I,J) IAI

ENDIF
30 CONTINUE

IF(I .EQ.IIC3-1) -II +1

40 CONTINUE
31 CONTINUE

RETURN
END

C
C
C
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zUa0r SUBRUTINEuS
C

SUBROUTINE IS016(Y,D,CSM.SBS,FAC)

CCCCCCCCCCCCCCCCC cCC CcCCCCCCCCCCCCCC
C C
C Subroutine 1S016 calculates the stiffness matrix for a 3-D, C
C 16-node isoparametric finite element. C
C C
C Subroutine IS016 vas validated (ISO16S) along vith DNISO16Y in C
C gon fem. C
C C
C Subroutine 1S016 ta called by: MAIN. C
C C
C Subroutine 1S016 calls subroutines: DNISO16 C
C C
C Variable list: C
C C
C AJACS Volume of element (det. of Jacobian) C
C AN Interpolation functions matrix C
C ANT Transpose of Lntearpolation functions matrix C
C AUIX Temporary matrix of AUXC C
C AUXB Matrices B transpose and D multiplied C
C AUXC Matrices B transposeD, and B multiplied C
C AUXR Consistent mass matrix C
C B C
C ST Transpose of ??? matrix C
C CSN Complex stiffness matrix (additive) C
C D Material property matrix C
C DNDXI Matrix of dernv, of interpolation functions C
C vith respect to XI C
C RHS Matrix of body forces (zero) C
C C
CCC C CCCCCCC CCC CCCCCCCCC CC CCC CC CCCC CC

COMMON I/ITERPFI ANID(16,18),DNDXI(3,16,18).W(18)
REAL Y(3,16),B(6,48),BT(48,6),URS(48),DXX(3.3),DXI(3,3),DNDX(3)

REAL AN(3,48),ANT(48,3),AUXR(48,48)
INTEER LOOP3(9)
DATA LOOP3 11,2,3,1,3,1,2,31
COMPLEX CSM(48,48),D(6,6),AUXM(4S.6),AUXC(48,48)°AUX(48)

C0P•%J[ CSUM
C

C Zero arrays
C RHS-0: Zero body forces
C

DO 10 1-1,48
AUX(I)-(0.,0.)
RKS(I)-0.
DO 20 3-1,6

AUXI(I,J)-(0.,0.)

B(J,I)-0.
20 BT(I,J)-0.

DO 25 3-1,48
AUXR(IJ)-0.
AUXC(I,J)-(0.,0.)

25 CSM(I,J)-(0.,0.)
10 CONTINUE

DO 30 1-1,3
DNDX(Z)-O.
DO 30 J-1,3

30 DXI(I,J)-O.
C
C Loop on integration points to create e*ement stiff, matrix
C

DO 1000 IP-1,18
DO 39 1-1.3

DO 39 3-1,48
AN(IJ)-0.0
ANT(J,I)-O.O

39 CONTINUE
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DO 40 1-1,16
K-3*I
AN(3,1)-AND(I.IP)
AII(2.K-1)-AN1D(I .1?)

AN(.1,-2)-ANID(I,IP)

40 CONTINUE
DO 50 1-1,3
DO 50 J1-1,3

50 D20C(I,J)-C.

C
C Perform a s as t ion to got the components of the
C Jacobian Matrix
C

DO 100 IN003-1.16
DO 100 II-1,3

DO 100 JJ.-1,3
100 D20((JJ,II)-D1CK(JJ,II)+DNDXI(1I,INOOE,IP)*Y(JJ,INODE)

C
C Calculate determinant of 01CX
C

SU3P-0.
SIMI-0.

1--i
DO 120 11-1,3

1-1+2
120 SUWP-S1JMP+D1O(LOOP3(II) ,LOOP3(K))*DICCCLOOP3(11+1) ,LOOP3(K+1))

2 *DXX(LQOP3(II+2) ,LOOP3(K+2))
DO 130 11-1,3

130 SUMI-SUM441CX(LOOP3(II),3)*DXX(LOOP3(II+1),2)
2 *CDX(LDOP3(II+2),1)

DST-SUIQ-SUI(

AJACS-hBS(DET)*W( IP)

C

C Calculate the inverse of the Jacobian Matrix
C

DO 140 11-1.3
DO 140 JJ-1,3

FAC2-1.
IF(JJ.IQ.2.0R.II.EQ.2) FAC2--1.
IF(JJ.IQ.2.AND.II.EQ.2) PAC2-l.

140 DXI(JJ,II)-(7AC2ID3T)*(-1.)**(II+JJ)
2 *(MDI((L00P3(11+1) ,LOO?3(JJ,1))*DICC(LOOP3(II,2) .LOOP3(JJ+2))
3 -D20C(LOOP3(II+1),L0OP3(JJ+2))*D2O((LOOP3(II+2),LOOP3(JJ+1)))

C
C Loop on nodes to calculate 3 matrix
C

DO 195 11-1,3

195 DNDX(KK)-0.
DO 200 INODI-1,16

DO 210 11-1,3

SUN-a.

DO 210 JJ-1,3
SUM-SUM4.DXI(JJ.II)*DNDXI(JJ,INO0E, IP)

210 DNDX(II)-SUM
J1-3*IN00E-2

J2-3*I0ODE-l

J3-3*1NODE
3(1, .71)-DNDXC 1)
3(4, .11)-DNDX(2)

B(6, .11)-DNDXC3)
3(2*.12 )-DNDX(2)

3(4, J2 )-DNDX( 1)
3(5,J.2 )-DNDX( 3)
3(3,J3)-DNDX(3)
B(5,J3)-DNDX(2)
3(6,J3)-DNDX(1)

200 CONTINUE

C
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DO 55 X4-1,3
DO 55 L-1,48

55 ANT(LM)"AN(ML)

C
DO 60 M,-1,6

DO 60 L-1,48
60 BT(L,M)-B(M,L)

C
DO 70 L-1,48

DO 70 M-1,48

SUM-O.
DO 71 N-1,3

71 SUI-SUDI+ANT(L,3)*AK(N,M)
70 AUXi(L,M)-SUM

C
DO 80 L-1,4a

DO so li-1,6

CSUM-(0. ,0.)

DO 81 W-1,6
81 CSUM-CSI +BT (L,N)*D(N,M)
80 AUXB(L,M)-CSU•

C
DO 90 L-1,48

DO 91 14-1,48
CSUM-(0.,0.)
DO 92 P-1,6

92 CSUM-CSUM+AUXB(L,N)*B(N,M)

91 AUX(N)-CSUN
DO 90 M-1,48

90 AUXC(L,M)-AUX(M)
C

DO 110 L-1,48
DO 110 4-1,48

110 CSM(L,M)-CSM(L,M)+AJACS*(AUXC(LM)-FAC*AUXR(L,M))
1000 CONTINUE

RETURN
END

C
C
C
c**********a********* NUMERICAL INTERMOLATION SUBROUTINES *******************

C
C

SUBROUTINE DRIS016YF

CCCCCCCCCCCC CCCCCcCCCCCc CccC CCC CCCCC CCC
C C
C This subroutine calculates the values of interpolation functions C
C and differentiated interpolation functions at numerical integration C

C points. C
C This subroutine uses Gauss weight factors for 3 x 3 x 2 integration C

C C

C This routine $sumes the following orientation: C
C C
C ----------- > + X C

C C
C 1 ------ 6 9--12 -- 14 C

C I I I I C
C \ 2 (+Y) 7 and 10 (-Y) 15 C

C I I I I C
C + 2 3 --- 5 --- 8 11 -- 13 -- 16 C
C C
C 

C

C INTEGRATION POINTS: C
C C
C C
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C ---- > XC
C C

C -- - - - - - - - - - - - - - - - -- C

C C

C 1I 2 :5 3 ANSD 11 14 :17 C

C 3 :6 x9 12 x 15 :1is C

C +Z C

C -- - - - - - - - - - - - - - - - -- C

C C

C C

C Subroutine DUIS016YF may be called by: IS016 C

C C

C Subroutine DRIS016YF makes no reference calls. C

C C

CIOMMO JINTIRPWJ AJI1D(16,18),DNDXI(3,16,18),W(18)

3-8.19.

Wl(7)-WC1)
W(9)-eA(1)

W(2)-A*B

W(4)A-3C
W( 6) -A

5
3

W(5).3C3
D0 10 1-10,18

10 V(I)-Ia(I-9)
C

L-0
C
C Loop on Y (s) from positive to negative

C
ST3MP1. /SQRT(3.)

RTDQP-SQRT( 3. ) ISRT( 5.)
TTR2P-SQRT(3.)/SQRT(5.)
DO 100 1-1,2

S=STMV-wLOAT(I-l)*2 . OSTZ4P

C

C Loop on X (r) from negative to positive

C

R--2 .*RTDIP
DO 200 J-1.3

R-R+RTDEP
C
C Loop on Z Ct) from negative to positive

C
T--2 . *TTEM
DO 300 X-1.3

T-T+TTDIP

C
L-L+l
R2-R*R
T2-T*T
RT-R*T

C
A31DC1,L).0.125*C1.+S)*C-1.+RT+R2C1l.-T)+T2*(1.-R))

AU1DC4,L).0.25eC1.-R2)eC1.+5)*C1.-T)
AJS1DC5,L).0.25*C1.-R2)*C1.+S)*C1.+T)

A~lDt7 ,L)-0 .25 (1. +R)'C 1. S)' 1. -T2)

A~lDCIl,L)-0.125*C1.+S)*C-1.+RT+R2*C1.+T)+T2*(1 .+R))

AN1DC9.L)-0.125*(1.-S)'(-1.+RT+R2*(l.-T)+T2'(l.-R))
AN1DC10,L)-0.25*C1.-R)*(1.-S)'CX.-T2)

AMlOC 11,L)0.O.125' Cl. -S)'C -1. .R.+R2e(l. +1) +T2*(1. -R))
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ANJDC13,L)-0.25*(l..12)*(l.-S)*(l.+T)
AZ1D( 14.L 0125*(l.-S) *( -l. 17+R2* (1. T)+T2* (1.+R))
ANIDC15,L)-0.2*(1.#R)Cl.-S)*(1.-T2)
ANIDC16,L).0.125*(1.-s)*(1.+RT+R2*(1.+T)+T2*(1 .+R))

C
DNDXI(1,1,L)-0.125*(2.*R+T)*(l.>T)*(l.+S)

DNX(1,2, L)--0.25* (1.9S )*(1. -T2)
DNfl(1,3,L)-.0.125*(2.*R-T)*(1.+S)*C1.+T)

DM(1,5 ,L)--R/2.*(l. 4S)'( 1.+T)
DNDKI(1,6,L)..O.125*(2.*'PT)*(1.+S)'(1.7T)
DNDXI(1,7,L)-O.25*(1.4S)'(l.-T2)
DNDXI(lS,L)-0.125*(2.*R+T)*(1.+S)*(1.+T)

DNDXI(1,1O,L)-O.125*(2.RT1(.-S)'(1.-T2)

DNDXI(l,11,L)-O.125*(2.-R-T)*(1.-S)-(1.+T)
DNDXI(I,12,L).-112.*(1.-S)*C1.-T)
DNDXI(1.13,L)--R/2.*C1.-S)*(l.+T)
DNDXX(1,1i.L)0..O.23*(2.'1-T)*(l.-S)*C1.7T)
DUD X(1,15,L).0.25S(I.-S)*(1.-?2)

DNDXI(2,1,L)-0.125*(-l.+RT+R2C1I.-T)+T2*(l.-R))
DNDXI(2,2,L)-0.25*(l.-R)*C1.-T2)
DNDXI(2,3,L)-O.125*(-1.O-RT+R2*(1.+T)+T2*(l.-R))
DNDXI(2,4,L)-O.25*(l.-12)*(1.-T)
DNDXI(2,5,L)-0.25*(l.+T)*(l.-R2)
DNDXI(2,6,L)-0.125*(-(1.+RT)+R2*(1.-T)+T2*(l.+R))
DNDXI(2,7,L)-0.25*(1.+R)*Cl.-T2)
DNDXI(2,8.L)-O.125*(-1 .+RT+3L2'(l.+T)+T2'(l.+R))
DNDXI(2,9,L)-O.125*(l.-RT-R2'(1.-T)-T2*(l.-R))
DNDXI(2,1O,L)--0.25*(1.-E'*(l.-T2)
DNDXI(2,11,L)-0.125*(1.+RT-P.2'(1.+T)-T2-(1.-R))
DNMXI(2,12,L)--O.25*(l.-T)*(1.-R2)
DNDXI(2,13,L)--O.25'(1.+T)*(1.-R2)
DNDXI(2,14,L)-0.125*(I.f-1-R2*(2.-7)-T2*(l.+X))
DNDXI(2,15,L)--O. 25* (1 .+R)*(l. -T2)
DNDXI(2,16,L)-0.125C1I.-R?-R2*(1.+T)-T2*(l.+R))
DNDXX(3, 1,L)-O. 125*C2. *T4R)* (2..S) (I. -R)
DNDXI(3,2,L)--T/2.*(l.-R)'(1.4S)
DNDXI(3.3,L)=0.125-(2.-T-R)*(1.4S)*(l.-R)
DNDXI(3,4,L)--O.25'C1.-R2)'(1.4S)
DNDXI(3.5,L)-0.25*(l.+S)*(l.-32)
DNDXI(36,6L)-O.125*(2.*T-R)*(1.+R)*C1.+S)
DNDXI(3,7.L)--T/2.*(1.+R)'(1.+S)
DNDXI(3,8.L)-O.125*(2.*T+a)*(1 .+R)'C1.+S)
DNDXIC3,9,L)..0.125'C2.*T+E')(1.-X)Cl.-S)
DNDXI(3,1O.L)--T/2.*(1.-R)*(I.-S)

DNDXI(3,11,L)-O.125'(2.*T-R)*(1.-R)*(1.-S)
DNDXI(3,12,L)--0.25*(l.-S)*C1.-f2)
DIIDXI(3,13,L)-0.25'(l.-S)*(l.-R2)
DNDXI(3,14,L)-0.12S*(2T-R)*(l.*R)*(1.S)
DNDXIC3,15.L)--T/2.*(l.+R)'C1.-S)

DNDXI(3,16,L)-0.125*(2.*T4E*(l.4R)*(l.-S)
300 CONTINUE
200 CONTINUE
100 CONTINUE

RETURN
END

C
C
C
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NISCZLLAE3O4S SUZROUTIKES
C

SUBROUTINE DESVEC(ENMINIIM.fUZIDC)

C C
C Subroutine DESYIC calculates the destination vectors from C
C nicknames. Arguments MVE, NIE, eod array lIRZP (defined C
C in old PREP now contained in DATAXE) come in. The length of C
C IPREP (IED(11)) is long enough for 13 and IC. C
C C
C Subroutine DESYIC is called by: PRYNT C
C C
C Subroutine DISTEC calls PREOUT. C
C C
C All argumnts coming in. C
C C

COMMON ICNfLJ ISYMEUMEL.IDtD(4) ,EDoF,rw.IU.DEST
DIISION IPRZP(1),15C1),IC(1)

C
C The following stat imenat appears to be a function.
C The calculation is not necessary for vib3 because
C the EDO? is always 3.
C

NOOR(I.J) - I-IIJ*J
HOF - 0

MW- 0
IDES - 1
IP - 0
MyE - 0

DO 10 I-1,EU
10 IBM1 - 0

DO 100 IEL-1.EWEKL

x - NIE
NT - 0

rs- I?
IPC - 1
WE - 0
NTT - 0
DO 60 ID-i.E

IP - IP+l
INIC - IPRE?(I?)
EDO? - )IOKIN!C1l0)

V3ITE(6,a)'PR03LD4 WI1TH EDO? IN DESVEC (.EE.3)'
STOP

ELSE
ZNDI?

ET - ET4EDO
XVCIIBIP) .GT. 0) GO TO 20
JDES - IDES
ID(I?) - IDES*100+EDOC10
IDES - IDXS+EDO?
IF(IDZS-l .GT. 3q11) MFW - IDES-i
GO TO 30

20 JDES - M3(1)
ID(1?) - II(IP)*I00+EDO?*10

30 JP - XPS+E+i
I?(JP CGT. EVE) GO TO 45
DO 40 JD-JP,EE

MICIC ZIQ. TPREP(JD)) GO TO 50
40 CONTINUE
45 13(1?) -13(XP)+i

IC(IPC) -JDES

IC(IPC+i) - EDO?
IPC - IPC.2
NER - NE
N?? - ETT+EDO?
GO TO 60
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50 II(JD) - IDES
11JD .GT. .JDN) JDN-JD

60 CONTINUE
IF(YT .GT. MD01) 3601 - 3T
IF(11. .Zq. 38411.2 O0R. HE .EQ. 0) GO TO 90

IDES - IDES-NT

.1? - 1154*4.1

IF(JP .6T. JDX) GO TO 90
DO S0 JD-J,JDUM

IF(Ih(JD) .EQ. 0) GO TO 80

IPC - I

NT - 0

DO 70 1-1,31
I1(I3(D) LT.. IC(IPC)) GO TO 70
XT -NTIC(IPC+1)

70 IPC -IPC+2

I3(JD) - IN(JD)-NfT

so CONTINUE

90 CALL PUEOUTIELN.IPRRC(IPS+1).IBCIPS+1))

100 CONTINUE
RETURN
END

C

SUBROUTINE PREINT(NIN. IA, MS,MU ,MR)

C C

C Subroutine PRlUM! initiates pretront. C

C Since SOLVE is in a DO loop, PR11W also zeros some parameters. C

C C

C Subroutine P11111! is called by: MAIN C

C C

C Subroutine PlUFM? calls: SECOND & DESVEC C

C C

C WIN end IA coming in, KS, MU, end MR going out C

C C

C CCC C C CC CCC CCC C CC C CCC C CC C CCCC CC CC CC C

CIIONMICNTIMISYM, 31141.2*IRESOL ,NRHS ,NYAPEN ,NTAPEUN TAPEL ,MA.

* 1111! * 1113!T, IERR,NNUGP * 3105? .3315
* ~1.,IUIL.I73IP,I71,IESMUP.MU,MKF,
* ~~MELD(,MMV,MB 3601 PWV ,MLDEST

DIMENSION IAMi
CALL SECOND(T0)
MLDEST-WIN
NIM-NUMEL2*NIM
CALL DZSVEC(NIN.NIN.IA.IA(MN7N1) .IA(2N1N+1))
MR - 360144611+

MS - NUMEL24ItDZST+2*1601+(3607eC3601I+1) ) 2+(IQ1I*OMiJ+1) ) 2+M0W

HU - NUMEL20MLDEST+2*36O1436O1*IDO144UW*MRFi+#GF
IVRT-0

15-0
HBU1-0
MR-0

111-0
394-0

IERR-0

IL-0
411-0
KNEGNO
Ill-a
MSLDO0

NPOSPO0
IIU-0
MMV-0
N1151-0
IlL-0

CALL SECOND(TI)

RETURN
END
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SUBROUJTINE PUEOUT(IEL.N, IA, 15)

CCCcccC c CCC c c C CcC CcCcC c CC CcC C CC C CC C CC C C
C C
C Subroutine PRE00? is used to write destination vectors. C

C C

C Subroutine 11100? is called by: DESVEC C

C C
C Subroutine PR100? makes no external calls. C

C C
CC C C CC CCCC CC C CC C C CC CC CCCC CC C CC CC C CC

DINESION IA~i) .13(1)
COMM4O ICOUDSI 3312,NDOFN2 * 3T2 ,NDOE2,.31)012
COMMON /WORK/ IDES?(1)
COMM /FLAGS/IX1D(22)
J-IND(12)4+NNI2*(1EL-l) -1

DO 10 1-1,3
J-J+1
IDES? (J)-IB( I)

10 CONTINUE
RETURN
END

C
C
C

SUBRUTUINE PRNTRNS(CRHS .33*IEL,*IM, ICODE)
C CC C C C C C CC CC C C CC C CC CC C CC C C C C C CC C CC C C
C C
C Subroutine PRNTRRS is an optional routine to print the RES C
C matrix (48 x 1) or (16 x 3). For default. PRNTRHS prints C

C the UBS matrix of element 1 to file (ThPE22). C
C c

C Subroutine PRNTRHS is called by: IwiF C

C C
C Subroutine PRNTRHS makes no external calls. C

C C
C CC CC CCC C CC CCC C CC CCC CC C CC CC CC C CCC CC C

DIMESION RHS(33)
COMPLEX CRES(33)
DO 10 1-1,NN

10 RBS(l)-SQRT(11AL(CRBS(I))**2.+ArnAG(CuuS(l))**2.)
WRITE(22,*)
IF(ICOOE.IQ.4)W3XTRC22,*) 'APYR IS016:*

IF(ICODE.EQ.5)33.ITE(22.e)'APE MODIF:'

IF(ICODE.&Q.6)WRXT3(22,*)-AF=E CONDENSE:'

IF(ICODE.EQ.7)IWRITE(22.*)'AFME SOLVE:'
WRITE(22,15)IEL,IN-l

15 FORHAT(lX. 'MODULUS OF COMPLEX lBS VECTOR- '1/.
1 1X,'ELZ3ENT: '.15,' WAVENUNEER: ',13.,/
2' *ODE X Y 2' ,I
DO 25 I-1.NN13

25 11RITRC22,20)IRBSC3-I-2) ,RBS(3*I-1),CRBS(3-I)
20 FORMAT(1X,15,SX.2(E11.6.4X).2X,EII.A,1 + ',EI1.4.' L-)

RETURN
END

C
C
C

SUBROUTINE PRNTSM(CSN,NN,IEL,IN,ICODE,G)

C CC CC CC C CCC CC CC CC CC CC C CCC CC CC C CCC C CC
C C
C Subroutine FRWTSM is an optional routine to print the stiffness C

C matrix (NN a 33). At default. PRMTSN prints the stiffness C
C matrix of element 1 to tape (TAPE15). C

C C

C Subroutine ?RWTSN is called by: NODI? and CONDENSE C

C C
C Subroutine FRXISE makes no external calls. C

C C
C C C CC C CC CC CC C CC C CC C C C C C C C CC C C CC C C C C C
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DIMENSION AMAC(NN.3N) ,CSR(NN,NN) .CSI(NN,NN)
COMPLEX CSM(NN.NN)

WRITE(15,5)
WRITE(16.6)

5 FORMAT(/.REAL PARTS: ',l)

6 POU.MAT(IWI,'AGINAI'f PARTS: '.1)
D0 10 I-1,NN

DO 10 3-1.33

CSR(I,J)-REAL(CSM(I,J))
CSI(I.J)-AIMAG(CSM(I.J))
A4AG(I,J)-SQRT(REAL(CSN(I,J))**2.+AIMAG(CSN(I.3))**2.)
IF(ABS(CSX(I,J)).LT.G*0.0001) CSR(I,J)-0.
IF(AB5(CSI(I,J)).LT.G*O.O00001) CSICI.J)-0.

10 CONTINUE
WRITE (15.')
WRITEC 15.')

IF(IECODE.EQ.4) WRITNC15,*)'A1TE ISO16:*
IF(ICOOE.ZQ.5) WRITE (15, WAFTER M0017:'

IF(ICOOE.EQ.6) WRXTE(15,*)'AITER CONDENSE:'

WRITE(15,14)NNNN,IEL,IN-1
WRITE(16.')
WRITEC 16,')
IF(ICODE.EQ.4) WRITE(16,*)'APTER ISO16:'

IF(ZCODE.ZQ.3) WRITE(26.*')APTERt MOD!?:'

IF(ICODE.SQ.6) WRITE(16,*)'ATr= CONDENSE:'
WRITE(16. 14)33.33.11., IN-1

14 PORMAT(1X,*STI7?NESS MATRIX C'.12,' x ',12,') FOR ELEMENT',13,

2 ' AT WAVENIJNSER '.12,':')

WRITEC 15.15)
WRITE(16, 15)

15 POEMlAT(/.1X,'STIFNESS MATRIX COILS. 1-8:',l)
DO 25 1-1,NN
WRXTE(15,20) (CSR(I.Ji).J1,8)

25 WRITE(16,Z0) (CSI(I,J),J-1,8)

20 FORMAT(1X,S(E1S.6,2X))
WRITE(15,22)

WRITE(16,22)

22 FORMAT(/,1X,'STIF1IESS MATRIX. COLS. 9-16:',/1)

DO 21 1-1.33

WRITE(15,20) (CSR(I,J).J-9,16)

21 WRITE(16,20) (CSI(IJ),J-9,16)
WRITE(15,31)
WRITE(16.31)

31 FORMAT(/.1X,'STIFFNESS MATRIX. COLS. 17-24:',/)
DO 23 1-1,33
WRITE(15,20) (CSR(I,J),J-17,24)

23 WRITEC16.20) (CSI(I,J).J-17,24)

IF(NN.EQ.24) COTO 99

WRITEC 15. 32)
WRITE(16,32)

32 PORMAT(/,1X,'STIFFNZSS MATRIX. COLS. 25-32:'./)
DO 24 1-1,33
WRITEC15.20) (CSR(I.J),J-25,32)

24 WRITE(16,20) (CSI(I,J),J-25,32)

WRITE(15,33)

WRITE(16,33)

33 ?ORMAT(I,1X.'STIFNESS MATRIX. COLS. 33-40:'.1)

DO 26 1-1,33

WRITE(15,20) (CSRCI,J).J-33,40)

26 WRITE(16.20) (CSI(I,J),J-33,40)
WRITE (15 ,34)

WRITE(16,34)

34 FORMAT(/IX,1'STIFFNESS MATRIX. COLS. 14,I
DO 27 I-1,33
WRITE(15,20) (CSR(I,J),J341,48)

27 WRITE(16,20) (CSI(I,J),J-41,48)
99 CONTINUE

RETURN
END
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SUIROUTIE SYMSH(A,C,NN,IELELG,IC1,1C2)

C C
C Subroutine SYNSM is used to check the symmetry of stiffn, j C
C matrices at any desired step in the execution. C
C C
C IC1 - 0: Real matrix C
C I.- Complex matrix C
C C
C IC2 - 4: After IS016 C
C 5: After MOD!? C
C 6: After CONDENSE C
C C
C Subroutine SYNH4 is called by: MODIF. & CONDENSE C
C C
C Subroutine SYNDI makes no external calls. C
C C
C C CC CC CC C CC CC CCC C CC CC CC C CC C CC CC C CC C C

DIMENSION A(NU.NN)
COMPLEX CC(NN.INN)
cCOMMN /TOLI TOLSM

C
C Real Matrices
C

IF(1C1.EQ.0) TEEN

DO 100 I-1.3K
DO 100 J-1,XN

I7CI.EQ.J) COTO 100
ADIFl-ABS(A(I.J)-A(J,I))
IF(AD!FFIA3S(ACI,J)) .GT.TOLSM.AJID.A(X.J).GT.TOLSN*ELG)THEN

WRITE(6.* )

WRITE(6,*)
IFC1C2.EQ.4) WRITEC6,*)'AIFM IS016:'
IFC1C2.EQ.S) WRITE(6.*)'AITER MOO!?:'
IFC1C2.EQ.6) WRITE(6,*) ATER CONDENSE:'

ELSE
ENDI?

100 CONTINUE
ELSEIF(IC1.EQ.l) TUEN

C
C Complex matrices
C

DO 200 I-1,NN
DO 200 J-1,NN

IF(I.EQ.J) COTO 200
C

AMAGI=SQRT(REAL(C(IJ))**2.+AIMAG(C(I,J))**2.)
Ai4AG2-SQRT(3ELAL(C(J,I))**2.+AlMAG(C(J,I))**2.)
DIfll-AS(REAL(CCI,J))-RUAL(C(JI)))
DI?72-ARS(AIMAG(C(I.J))-AIMAG(C(JI)))

DIFF3-ABSCAMAG1-ANAG2)
C
C Disregard components vith lov magnitudes
C

IF(AM4A1.LE.TOLSN*ELG) COTO 200
C
C Check real parts
C

IF(REAL(C(I,J)).LE.ELG*T0LSN) COTO 198
I?(D!F?1/AIS(REAL(C(I.J))) .GT.TOLSM)TUEN
VRITE(6,*)
WRITEC6,*)

IF(IC2.EQ.A) WRITEC6,*)ATE 1S016:*
IF(IC2.EQ.5) WRITE(6*)'AITER MOO!?:'
IF(1C2.IQ.6) WRITE(6.*)'APTER CONDENSE;
WRXTRC6,101)IEL,I,J.RLAL(C(I,J)) ,J.I,

2 REAL(C(J,I)),DIF1
STOP
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ENDIF

198 CONTINUE
C

C Check imaginary parts
C

I?(ABS(AIXAG(C(I,J))) .LE.ILG*TOLSM) GOTO 199
IF(DIF?21AES(AIMAGCC(I,J))) .GT.TOLSM)TUNN

VRITE(6, *)
VP.1TRC6,')

IFC1C2.ZQ.4) WRITE(6,*)'ATER 15016:'

I?(1C2.ZQ.5) URITE(6,*)'APTfl MODIO*
IF(IC2.EQ.6) WRITE(6,*) 'AFTE CONDENSE:'
WRXTE(6.102)IELI,J.AIMAG(C(I,J)) ,J.!,

2 AINAG(C(J,I)),DIFl2
STOP

KDID!
199 CONTINUE

C
C Check magnitudes
C

IF(DI??3IAMAG1 .GT.TOLSIOTUII
WRITE(6,*)

WRITE (6, *)

IF(IC2.EQ.4) WRITE(6,*)'AFTER I5016:'
IF(IC2.EQ.5) WRITE(6.*)'A7TER MIDIF:'
IF(IC2.EQ.6) WRITE(6.*)'AJTER CONDENSE:'
WRITE(6,103)IEL,I,J,AMAGI,J,I,AMAG2,DIFF3

STOP

ENDI?
200 CONTINUE

ELSE
WRITE(6,')'PROBLDI IN SYmsM WITH IC1'

STOP
ENDI?

101 ?OPJ4AT(1I.1X,'**UNSYM1METRIC REAL PART OF 3-D,
I 'STIFMNSS MATRZX.',Il,
2 'ELEMENT: ',15,10X,
3 S(.2.,2)- E.S' M(.2'',2)' E.BI
4 'DI??ERZNCE-',E1O.3.//)

102 FORMAT(/I,1X,1*'UUS'fl4ETRIC INKAGINARY PART OF 3-D '

1 'STIFFNESS MATRIX:',//,
2 'ELEM ENT : ',15.IOX.
3 'S?((*,12,'.1,',I.)-,El5.8,'L SM(',12.' ,',I2.')-' ,El5.8,

4 ' i',I.'DI??ERENCE-.,E1O.3,II)
103 FOR14AT(ii,1X,'**UNSYMIE TRI C MAGNITUDES OF 3-D

I 'STI??RE SS KAThIX:',II,
2 'ELDEMENT: '.15.10X.
3 'S(1,,1,)'E5a' SM(',12,-,-j12,-)-'-,E15.8,/,

4 'DIVDIENCE-'.EXO.3,/I)
RETURN
END

C

C

C
r~aas~sa~s~*aa~aaFRONTAL SOLVER SUBROUTINES

C
C
C

SUBROUTINE SOLVE (A, IN)
C CC C CCC CC CC C CC C CCCCC CC CC CC C CC C CC CC CC

C C

C Subroutine SOLVE is a frontal solver originally vritten by C
C Prof. Johnson at the University of Texas at Austin. Since C
C that time , the solver vas modified by several graduate C
C students, some under the direction of Prof. Decker in EM. C
C C
C Subroutine SOLVE begins the frontal solution technique by C
C calling one of the independent solvers for a full or upper C
C triangle stiffness matrix. C
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C C

C Subroutine SOLVE is called by: 1AIN C

C C

C Subroutine SOLVE calls: CG4PLT for a symmetric matrix C

C (upper triangle) C

C RESOL for an non-symmetrLc matrix C
C (full matrix) C
C Variable list: C

C LAB Sub-index for (A(IND(13))) C
C IAZ Sub-index for (A(IND(13))) C
C LAY Sub-index for (A(IND(13))) C
C IAL Sub-Lndex for (A(WID(13))) C

C IAN Sub-index for (A(IND(13))) C
C IAN Sub-index for (A(IND(13))) C
C I1 C
C IFB Number of vrites to ITAPEB C
C IFL Number of writes to ETAPIL C

C 1713 Number of writes to WTAPBU C
C IL C
C 1U C
C ITRR Error code C
C ZI7 Solution status code C
C I 3RINT Print code C
C ZUSOL Solution code C
C 1S1 Symmetry code C
C IhRT C

C MA Total msmory allocated for solution C
C MR Memory length for NOS buffer C
C MDOF Hasim number of DOF's per element (-DOFE2) C
C 1BUF Memory length for LBS buffer C

C ELMD Memory length for Element C
C MU% C
C MFWR Memory length for Front C
C mC c
C MLDEST Memory length for destination vector C

C MW C
C N Integer array C
C NN3GP Number of negative pivot points (real part) C
C NPOSP Number of positive pivot points (real part) C
C NRHSF C
C M•N-.2 Number of elements (condensed) C
C N3S lNumber of RES's C
C WTAPEB Tape number for I C

C NTAPEL Tape number for L (loads) C
C STAPEU Tape number for U (displacements) C
C C

C CC CC C CC CCC CC CC C C CCC CCC C CC C C CCCC C CC C
COMIONICWYTL ISYIMNUML2, IUESOL .3RRS,3NTAP7 ,hTAPEU ,NTAPEL ,MA,

*IRT , 1PRINT1 IERR, N33KG, POSP, 3RHSF7,
I1. IU. IL, ITS.I IU, IFL,MB3UFWW.IKF,
MI'ELDI, uljG r , .F ,MLDIST

COMPLEX A(2)
33KG? - 0
3POSP - 0
CALL COMPLT(A,IM)
RETURN

END

C

C
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C -* SYMMETRIC MATRIX ROUTINES (LOWEER TRIANGLE)
C

SUBROUTINE COMPLTCA, IN)
CcC c c CC cCcc C ccCcCcC C C C C C CC C C CC C CC C C
C C
C Subroutine 00a'LT initiates the solut ion technique for a C
C SyiNerric stiffness matrix. Only the top half of the C
C stiffnbss matrix in read. Forward eliminat ion of the LBS C
C and RBS are performed followed by backsubstitution. C
C C
C Fixed parameter.: C
C ISYM C
C IRBSOL 0 C
C URIS - I C
C C
C Subroutine COMPLT is called by: SOLVE C
C C
C Subroutine COMPLT calls: SECOND, FRWCP, and BCIWRD C
C C

cCSIONICNTL/ISYM, NUlEL2, IRSOL ,NURS , TAPEB.,NTAPEU ,NTAPEL,
* A, IWRT, IPRINT, IEUR, NUEC P,NPOSP *NRESF,

ID 13IU, IL, In IFn, In, mF, mw, mxl,
H1" )EEMFWR,MB, ,NDOF, MF, MLDEST

COMPLEX A(1)
CALL SEOOND(TO)
IERR - 1
N - NUMEL244ELDEST+2a1.OF
IF(SYM .GT. 1) GO TO 10
NELEM - (MDOF*aQ4DOF+l))124.IDFCNBss

MK - gIFW*(iJ+1))/2
GO TO 20

10 HELEN - MDOF*(MDOF+NRBS)

20 MYWR - NKP.GFWaNRHs
MW . MELDE4+jfR

KOU? - MA-MW-N
IF(ISYM .GT. 1) GO TO 40
IM(PRINT -NE. 0 -AND. IM. EQ. 1) PRINT 1000
GO TO 50

40 IM(PRINT .NE. 0 -AND. IM. EQ. 1) PRINT 1010
IF(ISYM.EQ.2.AND.IPRINT.NE.0.AND.IM.EQ.1) PRINT 1020

50 IM(PRINT .NE. 0.AND.IM.EQ.1) PRINT 1030,N,MELEM,RF,MBUF,MA
IF(MBUF .LT. MFW+NRES) GO TO 70
IAL - 1+NUMEL2

IAN - IAL+MLDEST
IAN - !A14+MDOF
LAE - IANHMDOF
IA? - IAE4NELEN
IAB - IAP44IFVR
CALL PRWCP(A(1) ,A(IAL) .A(IAM) ,A(IAN) ,A(IA4E) ,A(IAF) ,A(IAB))
CALL SECOND(TP)

DT - if-TO
IF(IPRINT MNE. 0. AND. IM. EQ. 1) PRINT 1040,DT
IF(IPRINT.NE.0.AND.IFU.NE.0.AND.IM.EQ.1) PRIF,~ 1043.1113
ir(IpRiiNT.NE.0.AND.iL.NE.0.AND.IM.EQ.1) PRINT 1045,IFL
IF(IflR .NZ. 1) RETURN
IF(NRBS ZEQ. 0) GO TO 60
CALL BCKWRD(AC1),A(IAL),A(IAN).A(IAN).A(IAE),A(IAF),A(IAB),

* A(IAB))
CALL SECOND(TB)

DT - TB-if

60 RETURN
70 IERR - 6

PRINT 1060
STOP
RETURN

C

C34



1000 FOSJ4AT(I X, 'FRONTAL SOLVER INFORM(ATION: ',/,
+ SX,298SYMMETRIC FORWARD ELIMNIATION6 .1

1010 ?OIMATC I AX, 'FRONTAL SOLVER INFORMATION:',/,
+ !X, 3!---SY1NETRIC FORWARD ELIMINATION *I)

1020 FORMAT( C X. 22HRZSOLUTION INACTIVATED .0I

1030 FORMAT( 4X,213 INTEGER ARRAY: .71
* 4X,215 REAL ARRAY 1
* ~4X,219 ELIM EST:.71

* ~4X,219 FRONT: .71
A X,21H BUFFER: .17.,/

*4X,219 TOTAL STORAGE: J17)
1040 FORMAT( 1OX,29BTIME IN FORWARD ELIMINATION: F19.3,/)

1043 FORMAT( 10X,1SUIERITES TO NTAEU: ,14,/)
1045 FORMAT( IOX,1UUWRITES TO UTAPEL: 11411)

1060 FORtMAT(2(/), 5X,32inflOR: NOT ENOUGH ROOM IN BUFFER,/,
+ 5X,'FROGRAM TERMINATED*,/)

END
C
C
C

SUBROUTINE FRWCP (LELM, WEST, 35)ST, UDEST , ELD, FUT,B513)

C C

C Subroutine FRWCP performs the forward elimination of both the C
C LBS and RES. C
C C
C Subroutine FRWCP is called by: COMPLT C
C C
C Subroutine FRWCP calls: SOLIN, DEST, SYhASM, UNSASM, SEMRES, C
C TOUT, UNSELJC, SYMELM, end ELMRHS C
C C

C C C CC C CC C C CC C C CC C CC CC C C C C CC C CC C CC C
CONION/CNTLI ISYM,NUMEL2, IRESOL ,NRES * TAPES NTAPEU ,NTAPELKA,

* f~IWRT, IPRINT, IERR,UNNIGP, N POSP ,NRHSF,

* ~IB,IU,ILIFB,IFU,IFL,MBU7,MII,MXF,

DIMENSION LDEST(l),35)ESTC1),UDEST(1),LEL.MC1)
COMPLEX ZELN(1),FRNT(1).IUF(1)
REWIND NTAPEU
IF(ISYM .EQ. 3) REWIND NTAPEL
IFU - 0
inL - 0

URHSF - URHS
113 - 1
IL - 16137

UNW : 0
LFW -0

DO 200 IEL-1,UUMEL2
CALL SOLINCIEL, 3 ,NRBSNU3ES,LDEST,ELE()
CALL DEST(NU3QES ,LDEST ,NFW,NDOFNE ,MEST ,NDEST)
IF(LFW .GT. 37W) UNW - LNW

IF( ISYM .EQ. 1) CALL SYMASM(N3)OF ,LFW,NFW ,HDEST ,ELEM,FRIIT)

IF(ISYM .GT. 1) CALL UNSASM(NDOF,LFW,NFW,NDEST,ELEM,FRNT)
M.7 - NFW

IF(NRBS .EQ. 0) GO TO 30
IF(ISYM .GT. 1) GO TO 10
HKE - (NDOF*(UDOF+1))/2
GO TO 20

10 MKE - NDOP*UDOF

20 CALL SDIBSCLFWNW,UNDOF ,NRBS ,IqV,MDEST ,r EN(PIRE+1) ,FRNT(MEF+1))
30 IF(UE *EQ. 0) GO TO 155

DO 150 11-lURE
U - IU+NN+UNRHS-1
IF(U .1E. IL) GO TO 40
CALL TOVT(1,IU.IFU,NTAPEU,BUF)
113 I

40 H-It.
IF(15Th .EQ. 3) GO TO 50
IF(ISYM .EQ. 2) CALL UNSELM(IRL,KFW,UNF,NDEST(IE), FRNT,
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* 3U7(IU))

IFCISYM .9Q. 1) CALL SYNELMCZELNFW,NDEST(ZE),FRIET,BUF(IU))

Iii - IU+NRDS+NFW
GO TO 70

50 N4 - IU+147W+URES-1
IF(W .1E. IL) GO TO 60
CALL TOUT(IL.IIKJF,IFL,NTAPEL,IWF(IL+1))
IL - MIUF

60 CALL UNSELM(IEL,KIW,NFW,NDEST(IE) ,FRNT,BUF(IU))
Iii - IU+NRUS+147W

70 I7(IDR .IQ. 1) GO TO 75
PRINT 1000,IZL
RETURN

75 IF(NRRS .EQ. 0) GO TO 90
IF(ISYM .GT.1) GO TO 80
CALL ELMIBS(NFW,IMl,NRBSNDZST(IE) .1,7RNTCIMP+1) .14(34),

1437(34137))

GO TO 120
s0 CALL B ERS(NPW,IUW, IDS,* DRST(IE) , 1W, FRNT(HKF+1) ,FRNT(NFW),

1437(3411W))
IM(SYM .EQ. 2) GO TO 120

90 IF(ISYh NE4. 3) GO TO 120
IF(IL-N7W+l .GE. N) GO TO 100
CALL TOUT(1,IU,IFU,NTAPEU,DUF)
143 - 1

100 H - 37W

N - 147W-i
DO 110 J-11N

BU7(IL) - ?RIIT(M)
IL - IL-i

110 M - Mi+1FW

120 CONTINUE
150 NFW - N7W-i

155 CONTINUE
LFW - 147W

LELN(IEL) - 1.7W
IP(ISYK .EQ. 1 ORK. NE AEQ. 0) GO TO 200
N - 1.7W
M - N7W+1

DO 170 1-2,M7
DO 160 J-1,N7W

flNT(4) - PRNT(N+J)
160 M - 411

170 N - N+17W

200 CONTINUE
IB - IU
IF(IWRT -EQ. 0 .AND. 1743 AQ. 0) GO TO 210

CALL TOUT(1,IU,IlPU,NTAPEU,1437)
RACKSPACE NTAPEU

210 IF(ISYh KE!. 3) RETURN
IF(IWRT .EQ. 0 ANID. 171. EQ. 0) RETURN
CALL TOUT (IL ,BU7, IlL, NTAPEL * 143(11.1))
RETURN

1000 FORMAT(2(I, SX,A2E[ERROR: ZERO PIVOT IN ELEMENT:
.15)

END
C
C
C

SUBROUTINE SYNASN(NDO , L7WX ,NFWX , PCEST ,ELLBS , LHS)

C C CCC C CC CC C CCC C CCC CC C CCCC C CC CC C CC CC C

C C
C Subroutine SYhASN assembles the LBS for syme trLc matrices. C

C C

C Subroutine SYhASH is called by: FRWCP C

C C

C Subroutine SYhASH makes no external calls. C

C C

C CC CC CC CC CC CC CC C CCC CC CC CC C CCC CC CC CC C
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DIMENSIONI )QBST(1)

COM4PLEC ILS1,LS1
1.1W - LIWX
31W - NNWX

I1(N1W .KQ. 1.1W) GO TO 20
XI - CLIW*(L13+1))124.1
Xi - (U1W'(N1W+I))/2
DO 10 1-XIMJ

10 FLUS(I) - (0.,0.)

20 N - 1
DO 50 I-1,NW?

MI - XDEST(I)
DO 50 J-1.1

xi - lDEST(J)
"K- HAXOCMI,X3)

NJ - MIRO(MI,XJ)

ME- (IK*(3K-1))I24NJ
FLRS(HK) - PLBS(NK)+ELLBSC3)

50 N - 34.1

END
C
C
C

SUBROUTINEE S!NELX( ZEL, NFIXIDX, FLES *U)
C C C CC C CC C CC C CC CC C CC CC C CC C C C C C CC C CC C C
C C
C Subroutine SYMELM eliminates one equation (ID) for sy.mtric C
C matrices. C
C C
C Subroutine SYMELM ia called by: FRUCP C
C C
C Subroutine SYMELM makes no external calls. C
C C
CCCCCCCCCCCCCcCC C CC cccC C C CCcC CC CC CC cccC CcC c

COMMON /01714 IDUN(9) ,IPRIlIT,IERR.3NRGP,NPOSP,IIDUM(16)
COMPLEX 1LBS(l),U(1).PIVOTC,S
ID -IDX
31W -NFWX

MP-(ID*(ID+1))12
IDN - ID-1
IDP - ID+l

M - I-IDtl
K-I

C
C OK to use real part for comparisons???
C

PIVOT - REAL(FLUS(HP))
PIVOTC - 11.55CM?)
I?(IPRINT .GE. 2) PRINT 200,IEL,NFWID,PIVOTC

200 IO1MAT(5X.l7BIZLNJWID.PIVOTC *315,E13.4,'+' ,El3.4. 'i)
U(ID) - ?IVOTC
IF(ABS(PIVOT) .1E. 1.E-30) GO TO 90
I1(PIVOT LT.. 0.) NNXGP - NNZG?+1

I(P(IVOT .GT. 0.) 3POSP - NPOSP41
I1(IDM -EQ. 0) GO TO 30

DO 20 I-l.IDM
S - FLHS(M)
UCI) - SIPIVOTC
DO 10 J-1,I

71.95(K) - 1LBS(K)-S*UCJ)
10 K-%+1

20 H#44~1
30 M-HP

IK-0

IF(IDP .GT. UNW) GO TO 100

DO 60 I-IDP,N1W
113 - -ID

M - +ID>+K
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N - H-ID

S - 11.15(M)
13(I) - SIPrfrJTc
IF(IDM SZQ. 0) GO TO 50
DO 40 J-1,IDH

40 71.1(#5+3) - FLBS(NI4J)-S*U(J)
50 NN - uia-1

DO 55 3-IDP,I

55 FLHS(NN+J) - 1LUS(X+J)-S*U(J)
60 I-K+1

GO TO 100
90 IERR - 2

100 RETUiRN
END

C
C
C

SUBROUTINE UNSASM(NDOF,*LFWX, NWWX,*MDEST ,ELLIS, ILBS)

C C

C Subroutine UNSASH assemnbles the LES for unsyzetric matrices. C

C C
C Subroutine UNSASM is called by: FRWCP C
C C
C Subroutine UNSASM makes no external calls. C

C C
C C CCC CCC C C CCC CC CC C CC CcC C C CC C CC C CC C CC

DIMENSION MDEST(1)
COMPLEX ELLIRS(1),FLHS(1)

1.1W - LIWX
MNW - NWWX

IF(N1W .EQ. 1.1W) GO TO 40
MI - L1W*NIW+1
MJ - N1W*NFW
MEK - LFW*LPW+l

D0 10 I-HI,HJ

IF(1.1W .EQ. 0) GO TO 40
MJ - NFW-LFW
DO 30 I-1.1.1W

DO 20 J-1,MJ.
MI - MI-i

20 FLBS(MI) - (0.,0.)

DO 30 J-1,1.1W
MI -MI-i

ME - ME-i

30 71.15(14) - FLUS(ME)

MI - NYW*N1W
60 N - 1

DO 50 1-1,NDOF

MI - MDEST(I)
ME - (MI-1)*N1W
DO 50 J-l,NDOF

MJ - MDEST(J)
ML. - XMENJ

11.15(141) - 1LHS(ML)+E1-1BS(N)
50 N - N+1

RETURN
END

C
C
C
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SUBROUTINE OUSELM( IEL ,Kf, UnX. IDX,FLUS.*U)
C CC CC CCC C CC CC C CC CC CCC CC CC C CCC CC CC C CC
C C
C Subroutive UNSELM eliminates one equation (ID) for unsymmetric C
C matrices. C
C C
C Subroutine UWSILM is called by- FRWCP C
C C
C Subroutine UNSEUE makes no external calls. C
C C
CCCCCCCCCCCCCCCCCcCCCCcCcc cC C CCCCCcC CC CCcCcCcCcC C

cCOMM 1CUTLI IDWM(9) ,IPRIITIW.NEGMP,muposp,IIDUMC16)
~COMLEX nwm~i,u(),PIvoTc,s
ID - IDX

KFI - UnIX
NFu - UNIX
ION - ID-i

IDP - ID4'1
K - IVMKFW
MP- KOID

PIVOTC - ?LDS(MP)
PIVOT - REAL(FLNS(36'))
IF(IPRINT .GE. 2) PRINT 200, IEL,.UnI4DPIVOTC

200 FORMAT(5X.i7HIELNPV.IDPIVOTC *315,EI3.4,'+',El3.4,iL)
IF(ABSCI VOT ) .1.. 1.1-30) GO To 90
IF(PIVOT .LT. 0.) UISEP - NNEGPii
IF(PIVOT .GT. 0.) NPOSP - NPOSP+l
DO 5 1-1,31 N1

5 U(I) - FLBS(1iI)
K - 0
IF(IDM .EQ. 0) GO TO 40
DO 30 I-i,IDM

S - FLUS(IDOK)IPIVOTC
DO 10 3-1,1DM

M - J4K
10 FLHS(M) - FLffS(M)-S*U(J)

M - K-i
IF(IDP .GT, 3111) GO TO 25
DO 20 J-ID?,NFI

20 FLHS(34N) - 1LNS(J+K)-S*U(J)
25 K -K+KflW
30 FLUSCK-KPFl+N1%I) - S
40 K-KgKFW

IF(IDP .GT. 313) GO TO 100
DO 70 I-IDPUFtd

S - FLNS(Ir*K)IPI VOT C
M - K-K17
I1(104 .EQ. 0) GO TO 55
DO 50 J1l,IDM

50 FLHS(J+N) - FLES(K+J)-S*U(J)
55 NM-i-

DO 60 J-IDP,N13
60 FLBSO4+J) - ILHS(K+J)-S*U(J)

FLHS(K-KFWiNFW) - S
70 K - X+KFW

GO TO 100
90 lIRR - 2

100 CONTINUE
RETURN
END

C
C
C ROUTINES FOR NON-SYNKETRIC MATRICES (FULL MATRIX)
C
C
C **(REMOVED SINCE NOT USED)
C
C
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C *** ROUTINES COMMW TO BOTH SOLUTION METHODS

C
C

SUBROUTINE ICKWRDCLELMLDEST,.IEST ,NDEST,ELm4, PRNT .3, U)

C C

C Subroutine BCDWD is used to perfom the backsubstitution. C

C C

C Subroutine BCKWRD is called by: COMPLT. RESOL C

C C

C Subroutine NCKWUD calls: SOLIN, DEST, ELMSOL, SOLOUT C

C C

COMMON ICNTLI ISYh, NUMEL2,*IRESOLN RIS,* TAPE , NTAPEIJ *NTAPEL ,MA,
* 133?WR, IPRINT * IRRNNEGP .3705, 31SF,

* IN, IUU, IL, in3I, iIL,M3UP,MW.MKF,m
HLMEID,37WR,)> ,NDOF .313 ,IILEST

DIMENSION LDIST(l),I0EST(1),NDEST(l),LELMC1)

IU - IUU
JlL - NUMEI.2+l
IN - Il-URIS
DO 100 IEL-lNUMEL2

JEL - IlL-1
CALL SOLIN(JEL,1,NUBS,NUUDES,LDZST,ELDI
CALL1 DEST(3U)MES,LDEST,U7W,NDOF,NE,3OESTUDEST)
IF(JlL .EQ. 1) 00 TO 7
133 - LELM(JEL-l)
IF(13W .GT. N1W) 37W - 13W

7 CONTINUE
N7W - 373-31+1

I1(NE .EQ. 0) GO TO 35
j - 31+1

DO 30 1-1,NE

j - J-1

I?(ZV *GT. 1) GO TO 20

BACKSPACE NTAPEU
READ(NTAPEU) IU,(U(11),II-1.IU)
BACKSPACE UTAPEU
Iii - 113+1

10 113 - IU-31W-NRNSF
IF(IRESOL .EQ. 1) GO TO 20
N - 113+N7W
CALL ELMSOL(NIWIeW,NRHS,NDEST(J),U(IU),U(N),FRNT(l))
GO TO 30

20 I1(13 .GE. 1) GO TO 25
BACKSPACE NTAPEB

READ(NTAPEB) 1,3I)I-,B
BACKSPACE UFTAPED

IN - 13-NRH5+1
25 CONTINUE

CALL EUESOL(NFW,37W,NRBS,NDEST(J) .1(113) .(13) ,FRNT(1))

IN - IB-URIS
30 N1W - NFW+l
35 DO 40 I1-UDO?

1-C

L- 0
M - DEST(I)
DO 460 J-1,NRES

LELDIK+I) - IRNT(L+N)
K - K+NDOFP

*0 L -L+NFW

CALL SOLOUT (IlL, WDOOF, NRBS, ELEN)
100 CONTINUE

RETURN
END

C

C

C
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SUBROUTINE DESTCND,LDEST,NPW.NDOF,NEEIEST,NDEST)

C C
C Subroutine D19ST converts DEST vectors to DOT DEST. vectors. C

C The equations to be eliminated are written to WDES? giving C

C the current location in the front. C

C C
C Subroutine DEST is called by: IRWCP, FRWRS, & SEURD C

C C
C Subroutine DIST makes no external calls. C

C C

COMMON IdYTLl IDENEC9) .IPRXNTIIDUMC 19)

DIMESION LDRST(l).N.0EST(l),NDEST(l)

C
C The followin& statement appears to be a function. It therefore

C has been replaced with the equation where called.
C

NOOR(IJ) - I-11J3j

WOOF - 0

NE - 0

DO 50 I-1,30
H - M0ORCLDEST(I).10)
K12 - LDESTCI)-LDEST(I)l10*10
* - NOOR(LDEST(I),100)l10
22 - (LDEST(I)-LDEST(I)I100*100)ll0

IF(A3SCH-N2).GT.0.5.OR.AJS(N-N2).GT.0.5) TEEN
W93.TEC6,*')PROBLDI IN DES? WITH MODRI

STOP

ELSE
ENDI?

NDO? - NDO?+N
17CM .GE. 1) NE - N3+15

L - LDEST(I)/100-1
DO 10 .1-1,3

MDEST(DI) - L+J

lIF( -SQ. 0) GO TO 10
NDESTCEN) - L+J

EN - KN+1

10 IN-DI+1

L - DESTCEM-l)
IF(L .GT. M1) UNF - L

50 CONTINUE

I7(NE SEQ. 0) 00 TO 80
DO 70 1-1,33

.1 - 1+1
DO 70 L-JIVE

IF(XDEST(I) .LT. 3DEST(L)) NDEST(L) K DEST(L)-l

70 CONTINUE

80 3EE - NE

IF(IPRINT U1.. 2) RETURN

PRINT 1000,(LDEST(I),I-l.ND)

PRINT 1010,(NDEST(I),I-1,NDO?)

PRINT 1020.(NDEST(I) .1-1.33)

1000 FONMAT(/XCIN DEST: NODAL DESTINATION VECTORS*,1017,10(/,35X,l017))

1010 FOSMAT(11X,*DO? DESTINATION VECTORS*1OI7.10(/.35X,1017))
1020 FORKATC9X*ELIN. DESTINATION VXCTORS-1OI7,10(/.35X,l0I7))

RETURN

EFD

C
C
C
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SUBIROUTINE EUUES(hPV.MWV.URBSID.INC.FRBS,U.3)

C C

C Subroutine IIJRBS eliminates RBSa for equation (ID). C

C C

C Subroutine ILIENS is called by: 1RWCP & 7RWRS C
C C

C Subroutine ELMRHS makes no external calls. C
C C

COMMON iCNTm ISYh,IIDUK(2a)

IDN ID-1
IDP -ID+l

IN -0

DO 50 IN - 1,VRHS

S - IRES(IM+ID)
B(IN) - S
11(11*1 SQ. 0) GO TO 25
DO 20 I-1,IDM

11 - 1)4+
1335(II) - FlflS(II)-S*U(!U)

20 IU-IU+ZNC
25 IFCISYh .ZQ. 1) IU - 111+l

Z7(IDP .GT. JWV) GO TO 50
DO 30 I-IDP,WFW
II - 114+1
FRHS(II-1) - ?R3SCIl)-S*U(IU)

30 ZU - IU+INC
50 IN - M1N44@V

RETURN
END

C

C

C

SUBROUTINE EIJ4SOL(NFWVWV,NRS, lOx. U,,3x)

C C
C Subroutine ELISOL calculates the solution for one DOF as C
C specified by (ID). C

C C

C Subroutine ELISOL is called by: BIWRD C

C C
C Subroutine ELI4SOL makes no external calls. C

C C

C CC C CC C CC C CCC CC CC C CC C CC C C C CC C C CC C CC C

COMMON /CVTL/ ISYN,IIDUM(28)

ID - lX
ION -ID-1
IDP -ID-+1

IF(ISYM .GT. 1) 0O TO 5
Fl - U(ID)
F2 - (1.,.0.)

GO TO 7

F2 -U(ID)

7 CONTINUE
DO 40 IN-l,NRES

IU - NWV
JA - (IN-1)CMWV
IA - JA+NFW-2
S - 3(1w)/F1
IF(IDP .0T. WV) GO TO 20
DO 10 I-IDP, M
X(IA+l) - V(IA)
S -S-U(IU)*X(IA)
IA -IA-i
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10 XIV - ZU-1

20 113 - IU-1

IF(IDM .LT. 1) GO TO 40

DO 30 I-1,XDN

S - S-U(fIU)X(IA)

IA - IA-i
30 II) - 113-1

40 XCJA+ID) - S172
RETURN
END

C
C

C
SUBROUTINE SDUBS(LFW NF, NDOF , URS ,IFW~,DEST ,ELJLIS, IRIS)

C CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC C

C C

C Subroutine SNURBS assembles the UHS for a full sy me tric C

C matrix. C

C C

C Subroutine SNURBS Is called by: IRWCP & IRWRS C

C C

C Subroutine SENRBS makes no external ýalls. C

C C

C CC C C C C CC CC C C CC C CC C CC C CC C C C CC C C C CC C C

DIMENSION IQEST(i)

COMP'LEX ELRBS(i),FNBS(i)

N-i1

DO 70 IN-i,NRBS
IA - (IN-i)£IUW

IF(NFW .EQ. LIFi) GO TO 15
M - LIIE+1
DO 13 I-I4,NIW

13 FRBS(IA+I) - (0.,.0.)
15 CONTINUE

DO 50 I-i,XDOF
J - ZA+MES?(Z)
1315(J) - FlBS(J)+EL.RBS(N)

50 N - 5+1
70 CONTINUE

RETURN
END

C

C

C

SUBROUTINE SOLID CIII, IFG .5315,UUES ,LDEST *ELD4

C C C C C CC C CC C CCC C CC CC CC C C CC C C C CC C C C CC C

C C

C Subroutine SOLIN is used to read in necessary LBS and URS C

C data from TapelO. Data is returned through ElDI C

C Lengths WEST end NUI60ES are also returned. C

C C

C Subroutine SOLIN is called by: ZCKWRD, IRWCP, IXWRS C

C C

C Subroutine SOLIN makes no external calls. C

C C

C C C C C C C CC C CC C CC C C C C CC C C C CC C CC C C CC C C C

DIMENSION LDIST(2)

COMPLEX ZEMli)
COMMN ICOJUDS1 3312,N DOFN2 * 132, NDFE2 , 110072

COMMU /FLAGS/ 1160(22)
COMMU /UNIT/ NTAPE.NTAPEO

CObMMON /WORK/ IDEST(i)

NUMDES-KN162

J=IIID(12)+UNE2*(IEL-i) -i

DO 10 I-iNUUDES
J-3+1
LDEST(l)-IDESTCJ)

10 001NTINUE

C
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C Sort by ZIG (catl Index)-
C ZIG-i: Used for 3CKWRD
C IFG-2: Used for 1RWRS
C ZFG-3: Used for FRWCP
C

ZI(ZFG.EQ.l) RETURN
c NDOF-24

ZFCIIG.EQ.2) THEN

LENGTH-NDOIE2*NRHS
ELSE

LENGTH-C CNDOIE2*(NDOWE2+l) )12)+NDOFE2
5NRUS

C
C Read appropriate data from NTAPE (TapelO)
C

READ(NTAPE) (11.4(l) ,Z-1,LZNGTU)
RETURN
END

C
C

C

SUBROUTINE SOLOUT( IEL * DOF,NRUSES * I
C CC C CC C CC C CC C CC C CC C C C CC C C CC C C C CC C.C C C

C C

C Subroutine SOLOUT is used to vrite the displacement vector C

C to C(IND(14)). C

C C

C Subroutine SOLOUT is called by: $CKWRD C

C C

C Subroutine SOLOUT makes no external calls. C

C C
C CC C C CC C CC C C CC CCC CrCC CC C CC C CC C C C C C Ccc C C

DZMENSZON IA(200000) ,IAA(70000) ,AA(70000)
COMPLEX A(200000),LEKDIC)
EQUIVALENCE (A(l),IA(l)),(AA(1),ZAA(l))
COMMONI /CORDS/ NNE2 , NDFN2 *NNM NDOE2 * DFr2
COMMON /FLAGS/ IND(22)
COMMON IREALAI hA
COMMN /WORK./ A

MUNE-16

J-ZNDC 7)4400115 (IlL-i) -1
M-0
DO 20 Z-1,NNE2

C Use front face of front vail to get proper Indexing in A

C

MODE-ZAA(J+Z)
I-IND(14)+NDOIU2*(NOOE-i)-1
DO 10 L-1.NDOFN2

A(K+L)-lL34(M+L)
10 CONTINUE

11-114iNDOIN2

20 CONTINUE
RETURN

END

C

C

C
SUBROUTINE TZN(LoI.JRT,3)

C CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC C C CCC

C C

C Subroutine TIN reads the RUS buffer tape. C

C C

C Subroutine TIN is called by: FRWRS C

C C

C Subroutine TIN makes no external calls. C

C C

C CC CC C CC C CC CC CC CC CC C CCC CC CC C CCC CC CC C
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COMPLEX 3(1)

READ(NT) K,C((II)oII-1.K)
IF(L .GT. 0) GO TO 5
I-i
J-K

RETURN
5I-K

J-l

RETURN
END

C
C
C

SUBROUTINE TOUT(IJIFNTB)
C CCCCCCCC CCCCCCCCCCCCCCCC CCCC CC CCC CC
C C
C Subroutine TOUT vrites all buffers to tape. C
C C
C Subroutine TOUT is called by: FRWCP & FRWRS C
C C
C Subroutine TOUT makes no external calls. C

C C
CCC CCCCCCCCCCC CC CCC CCCCCCC CC CCC C CCC C

COMPLEX B(1)

IF(J .EQ. I) RETURN
K -J-I

IF - IF+1
WRITE(NT) K, (B(II) 11-1,1)

RETURN
END

C
C
C

CCC *C*** ******e*** leFT SUBROUTINES eeee**e***** ee*e*ee*e*eae****
C

SUBROUTINE FOUR2 (DATA,N, NDZ•, ZSZGNM *10R)

CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C Subroutine FOUR2 is a "T program originally written at MIT. C
C The arauments for WOUR2 are- C
C C
C DATA: array name C

C N: array used in the subroutine with the C
C digitization rates (power of 2) for each C
C dimensions heading the array C
C NDIM: number of dimensions C
C ISIGN: SIGN of transform C
C IFORM- C
C -- 1: convert from camplex to real C

C - 0: convert from real to complex C
C - 1: stay same (real-real or complex-complex C

C C

C Subroutine FOUR2 is called by: MAIN C
C C

C Subroutine FOUR2 calls: BITRV, COOL2, FIXRL C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC

DIMENSION DATA(l), N(1)
NTOT-1
DO 10 IDIM-1,NDIM

10 NTOT-NTOT*N(IDIM)
IF (IFORM) 70,2,,20

C
C Convert from real to complex (iform >- 0)
C

20 NRUD-NTOT
DO 60 IDIM-1,NDIM

NREM-N REM N(IDIM)
NPREVJWTOT/ (N(IDIM)*NRDE)
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NCIJRR-N(IDIM)
IF (IDIN-1+IF OEN) 30,30,40

30 NCURR-NCURRI12
40 CALL BITRY (DATA. NPREV. NCURRNX MRD)

CALL COOL2 (DATA.NPREV,NCURR,NREM,ISIGN)

IF (IDIM-1+IF ORM) 50,50,60

s0 CALL FDWRL (DATA,N(l),NUNEMISIGN,IFOIJ4)
E TOT-(N TOT 1E(1) )*(N(1) 12+1)

60 CONITINUE

C
C Convert from complex to real (lifr. 0)
C
70 NTOT-CUTOTINC1))*(N(1)j2+l)

NREN-1
DO 100 JDIN4-1.NDIM

IDIM1-KDI]M+l-JDIM

NCIZR-N( IDlE)
1F (IDlE-i) 30,80,90

so NCURR-NCURRI2
CALL FIXRL (DATA,* (1), NREK. ISIGN, IVORM)

KTOT-MTOTI(N(l)I2+l)*N~i)
90 NPREV..MTOTI CM(IDIE)*NREM)

CALL BITRY (DATA, MPREV,NCURR,11124)
CALL COOL2 (DATA,NPRErVNCURRNRE4, ISIGN)

100 NRE4M-REMCN(IDIM)

RETURN

EN

C
C

SUBROUTINE BITRV (DATA.MPREV.N,R REM)
C CC C CC C C C CC C C CC C C CC CC CC C C C CC C CC C CC C C
C C
C Subroutine BITRV is part of the FF program. It shuffles C
C the data by 'bit reversal.' C
C C
C DIMENSION DATA(NPRErVN,NREM) C
C DATA(llI2REV,I3) - DATA(IlI2,13). FOR ALL Ii FROM 1 TO NPREV, C
C ALL 12 FROM 1 TO N (WHICH MUST BE A POWER OF TWO), AND ALL 13 C

C FROM 1 TO NREM, WHEE 12REV-1 IS THE BITWISE REVERSAL OF 12-1. C
C FOR EXAMPLE, N - 32, 12-1 - 10011 AID r2REV-i - 11001. C
C C
C Subroutine BITRV is called by: FOUR2 C
C C
C Subroutine BITRV makes no external calls. C

C C
C C C C C C C CC C CC C C CC CC C C C CC C CC C CC C C CC C C C

DIMENSION DATA~i)
IPO-2

IP1-IPO*NPREV
IP4-IPl*N

IP5=IP4*NREM

14REV-1

DO 60 I4-l,IP4.IP1

IF (I4-14REV) 10,30,30

10 I1MAX-14+IP1-IPO

DO 20 1i-14,11MAXIPO
DO 20 I5-IliPS,IP4

15REV-I4RErV+15-14
TEMPR-DATAC 15)

TZMPI-DATA( 15+1)

DATA( 15)-DATAC 15REV)
DATA(15+1)-DATA(1I5REV+l)

DATA( I5REFV)-TE4PR

20 DATA(15RErV+I)-TEDPI

30 IP2-1P4I2
40 IF (iAREv-1P) 60,60,50

50 IAREV-14REV-1P2
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IP2-IP212
IF CIP2-IPI) 60,40,40

60 I4RffV-IAUEV+I?2
RETURN
END

C
C
C

SUBROUTINE 0001.2 (DATA. EPREY * N .3, ISIGH)
C C CCCCCCCCCCCCCCCCCCCCCCCcc c c c c c c ~ c c C CCcc CccC cC CC
C C

C Subroutine 0001.2 is part of the IF? program. C

C C
C C
C Subroutine 0001.2 is called by: 104332 C
C C
C Subroutine COOL2 makes no external calls. C
C C
CcC C C c CCCCCCCCCC Cc c c cc Cc C ccCcC c cc cc C c C

DIMENSION DATAMX
TWOPI-2.-(4.*ATAD(l. ))*ISIGN

IPO-2

IPl-IPO*NPREV
IP'-IP1*N
IPSITP4*NRE4

IP2-IP1
NPA*T-N

10 IF (NPART-2) 50,30,20
20 NPART-NPART/4

GO TO 10
C
O DO A FOURIER TRANSFORM OF LENGTH TWO
C

30 IP3-IP2*2
DO 40 11-1,1P1,IPO

DO 40 15-I1.IP5,I?3
JO-I5
Jl-JO+IP2
TDEPR-DATA(J1)

T EMPI-DATA(Jl+l)
DATA(J1 )-DATA(JO) -TDEPR
DATA(Jl+1 )-DATA( 0+1) -TE411
DATA(J0)-DATA(J0)+TEMPR

40 DATA(JO+1)-DATA(JO+1 )+TDQPI
GO TO 140

C
C DO A FOURIER TRANSFORM OF LENGTH FOUR (FROM BIT REVERSED ORDER)
C
50 IP3-I?2*4

THETA-TWOPI/ (1P3 1111)
SINTH- SIN(TUETAI2.)
WSTPR--2.*SINTECSINrXU

C COSCTEETA)-1, FOR ACCURACY.
WSTI- SIN(TUETA)
WR-l.
WI-0.
DO 130 12-1,I12,I11

IT (12-1) 70.70.60
60 W2R-WR*WR-WI*WI

W21-2.*WR*Wl
W3R-W2R*WR-W21*Wl
W31-?d2R*WI+W21 5 WR

70 IiNAX-I2+IPi-IP0
DO 120 Ii-12,IiJ4AX.IPO

DO 120 15-Ii,1P5,IP3
JO-I5

Ji-J011P2

J2-31+112
J3-J2+112

C4 7



IF (12-1) 90,90,80
C
C APPLY TEE PHASE SHIFT FACTORS

C
so TEMPR-DATA(Jl)

DATA(Jl )-I2R*TEIPR-W21*DATA(Jl+l)

DATA(J1+l)4121t*DATA(J1+1 )+IE2*TEMPR

TDIPK-DATA(J2)
DATA(J2 ) -I*TEHPR-IZ*DATACJ2+1)

DATA(J2el).IER*DATA(J2+1 )4M2*TDQPR

TEMPR-DATA(J3)

DATA(J3)-W3R*T~ERM-31*DATA(J3+1)
DATA(J3+1)-113R*DATA(33+1 )+W31*TDKPR

90 TOR-DATA(JO)+DATA(J1)
TOI-DATA(JO+1)+DATACjl+1)

TlR-DATA(J0) -DATAC ii)
TIIsDATA(JO+1)-DATA(jX+l)
T2R-DATACJ2)+DATACJ3)

T21-DATA(J2+1 )+DATA(j3+1)
T3R-DATA(J2) -DATA(J3)

T3I-DATA( J2+1) -DATA( j3+1)

DATA( JO)-TOR+T2R

DATA(J0+1 )-TOI+T21
DATA(J2)-TOR-T2R

DATA(J2+1 )-TOI-T2I

IF (ISIGN) 100,100,110

100 T3R--7'3R
T31--T3I

110 DATA(Jl)-TIR-T31

DATA(jl+1 ).T1I+T3R

DATA(J3)-T1R+T3I

120 DATA(J3+1)-T1I-T3R

TEUPR-41R
VR-IiSTPR*TEIPR-WSTPI*WI+TDIPR

130 WI-WSTPR*Wl+WSTPI*TEDPR+WII
140 ZP2-ZP3

IF (1P3-IPA) 50,150.150
150 RETURN

END
C
C

SUBROUTINE FIXRL (DATA,N,NREM,ISIGN, IFORM)

CCCCCCCc c C CCcccC C C CCCCCCCcCCcc.CcC CCcC CC ~C C
C C

C Subroutine FIXRL is part of the FIT program. It calculates C

C the Fourier transefc.- of length N by the Cooley-Tukey C

C algorithm. The bits are reversed to normal order. C

C C
C FOR IFORM - 0, CONVERT THE TRANSFORM OF A DOUBLED-UP REAL ARRAY, C

C CONSIDERED COMPLEX, INTO ITS TRUE TRANSFORM. SUPPLY ONLY THE C

C FIRST HALF OF TIE COMPLEX TRANSFORM, AS THE SECOND HALF HAS C

C CONJUGATE SYMMEETRY. FOR IhORN - -1, CONVERT THE FIRST HALF C

C OF THE TRUE TRANSFORM INTO THE TRANSFORM OF A DOUBLED-UP REAL C

C ARRAY. N MUST BE EVEN . C

C USING COMPLEX NOTATION AND SUBSCRIPTS STARTING AT ZERO, THE C

C TRANSFORMATION IS-- C

C DIMENSION DATA(N.NRDI) C

C ZSTP - EXCP(ISIGN$2'PI*I/N) C

C DO 10 12-0,NR'4-1 C

C DATA(0,I2) - :bNJ(DATA(0,I2))*(1+I. C

C DO 10 Il-I .N/4 C

C Z - C1+(2*IFORMI4+)I*ZSTP**I1)12 C

C 11CNJ - N12-I1 C

C DIP - DATA(Il1,2)-CONJ(DATA(11CNJ,-2)) C

C TEMP - Z*DIF C
C DATA(I1,12) - (DATA(Il,I2)-TEDP)C(l.IFORN) C

C 10 DATA(IlCNJ.12) - (DATA(I1CNJ,12)+CONJ(TDE'))-(1-IFORM) C

C IF 11-IICNJ, THE CALCULATION FOR THAT VALUE COLLAPSES INTO C

C A SIMPLE CONJUGATION OF DATA(Il,I2). C
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C C
C Subroutine Ffl Loi called by: YOUR2 C
C C
C Subroutine FIMR makes no external calls. C
C C
CCcCcC C CCCCCCCCCCCCCCCC c ccCCCcc cc CccC cc CccCccC C

DIMENSION DATA(I)
DOUBLE PRECISION ZRZIZSTP,ZSTPI,SINU.TUETA,TWOPI
TWOFX-2.*(4.*AThN~l. ))*ISIGN

IPO-2

IPl-IPOa(N/2)
IP2-IPI*NRN(
IF (IPONM) 10,70.70

C
C PACK THE REAL INPUT VALUES (TW9O PER COLUMNI)

C

10 J1-IP1+1
1112-2
DATA(1112)-DATA(Jl)
IF (NREN-i) 70,70,20

20 Ji-Ji+IPO

I2KIN-IP1+l
DO 60 12-12MIN,IP2,IP1

DATA( 12)-DATA(Jl)
Jl-Jl+IPO

IF (N-2) 50,50.30

30 IlMIN-I2+IPO
I1MAX-I2+IP1-IPO
DO 40 I1-IIMIN,I1MAX,IPO

DATAC Ii)-DATA(J1)

DATA(I1+1 )-DATA(J1+1)
40 J1-J1+IPO

50 DATA(12+i)-DATA(J1)

60 J1-JX+IPO
70 DO 80 12-1,1P2,1?i

TEMPR-DATA( 12)
DATA(12)-DATA(I2)+DATA(I2+1)

80 DATA(12+1)-TEMPR-DATA(I2+1)

IF (N-2) 200,200,90
90 TUETA-TWOPI IFLOAT(N)

SINTH- DSIX(THETA/2.)

ZSTPR--2.aSIIM*uSINTH
ZSTPI- DSIN(TUETA)
ZR-(1.-ZSTPI)i2.
ZI-(i .+ZSTPR) 12.
IF (IFORN) 100,110,120

100 ZR-i.-ZR
ZI--ZI

110 IlMIN-IPO+l
IlMAX-IPO*(N/4)+1

DO 190 12II-14N,I1MAX,IPO

DO 180 12-II,IP2,IPl
12CNJ.IPO* (N/2+1 )-2*Il+I2

IF (I2-I2CNJ) 150,120,120

120 IF (ISIGN*(2*IFORM+1)) 130,140,140
2i0 DATA(12+2)--DATA(12+1)

140 IF (IFORN) 170,180,180

150 DIFR-DATA( 12) -DATA( 12CNJ)
DIFI-DATAC 12+1 )+DATA( I2CNJ+1)

TEKPR-DIR*ZR-DIFI*ZI
TENPI-DIFR*ZI+DIFI*ZR
DATA( 12)-DATA(I12) -TEPR
DATA( 12+1 )-DATA(I12+1) -TEMPI

DATA( 12CNJ)-DATAC 12CNJ)+TEMPR

DATA(1I2CNJ+1 )-DATA(1I2CNJ+1 )-TEMPI

IF (IFORM) 160,180,180

160 DATA(12CNJ)-DATA(I2CNJ)+DATA(I2CNJ)

DATA( I2CNJ+1 )-DATA( I2CNJ+1 )+DATA( I2CNJ+1)

170 DATA(12)-DATA(12)+DATA(12)
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DATA( 12+1 )-DATA(I2+1)+OATA( 12+1)

1o0 CONTINUE
TDEPR-ZR- .5
ZR-ZSTPR*TZ MPR ZSTPI*ZI+zR

190 ZIZTRZ+STITMRZ

C RECURSION SAVES TIME, AT A SLIGHT LOSS IN ACCURACY. IF AVAILABLE.
C USE DOUBLE PRECISION TO COMPUTE ZR AND ZI.
C

200 IF (IFORM) 270,210,210
C UNPACK THE REAL TRANSFORM VALUES (TWO PER COLUMN)
210 12-IP2+1

I1-I2

J1-IP0*(NI2+1 )*NREN+l
GO TO 250

220 DATA(J1)-DATA(I1)
DATAC J1+1)-DATA( 11+1)

Il-Il-IPO

Ji-Ji-IPO
230 IF (12-11) 220,240,240

240 DATA(Jl)-DATA(Il)
DATACJl+1)-0.

250 12-I2-lPl

J1-J1-IPO

DATA(J31)-DATA( 12+1)
DATA(J1+1 )-0.
1l-Il-IPO

Ji-Ji-IPO
IF (12-1) 260.260,230

260 1112-2

DATA(II12)-0.
270 RETURN

END
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APPENDIX D:

SAMPLE INPUT FILE



Dl. The following text is an example input file for use with vib3.

The set of parameters described does not necessarily produce accurate results.

Rather, it was chosen for its short length and the size of the output file

that it produced. The corresponding output file is listed in Appendix E.

Homogeneous system (Model 1)
4 by 10 mesh, square normalized load (5 by 5)
August 20, 1992
1 0 0 0
149 40 1
100000
1 15.65 256 13
3.00
0.1OOE-04

1 0.00000 0.00000 1 0
2 125.00000 0.00000 0 0
3 250.00000 0.00000 0 0
4 375.00000 0.00000 0 0
5 500.00000 0.00000 0 0
6 625.00000 0.00000 0 0
7 750.00000 0.00000 0 0
8 875.00000 0.00000 0 0
9 1000.00000 0.00000 0 0

10 1125.00000 0.00000 0 0
11 1250.00000 0.00000 0 0
12 1375.00000 0.00000 0 0
13 1500.00000 0.00000 0 0
14 1625.00000 0.00000 0 0
15 1750.00000 0.00000 0 0
16 1875.00000 0.00000 0 0
17 2000.00000 0.00000 0 0
18 2125.00000 0.00000 0 0
19 2250.00000 0.00000 0 0
20 2375.00000 0.00000 0 0
21 2500.00000 0.00000 0 0
22 0.00000 125.00000 1 0
23 250.00000 125.00000 0 0
24 500.00000 125.00000 0 0
25 750.00000 125.00000 0 0
26 1000.00000 125.00000 0 0
27 1250.00000 125.00000 0 0
28 1500.00000 125.00000 0 0
29 1750.00000 125.00000 0 0
30 2000.00000 125.00000 0 0
31 2250.00000 125.00000 0 0
32 2500.00000 125.00000 0 0
33 0.00000 250.00000 1 0
34 125.00000 250.00000 0 0
35 250.00000 250.00000 0 0
36 375.00000 250.00000 0 0
37 500.00000 250.00000 0 0
38 625.00000 250.00000 0 0
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39 750.00000 250.00000 0 0
40 875.00000 250.00000 0 0
41 1000.00000 250.00000 0 0
42 1125.00000 250.00000 0 0
43 1250.00000 250.00000 0 0
44 1375.00000 250.00000 0 0
45 1500.00000 250.00000 0 0
46 1625.00000 250.00000 0 0
47 1750.00000 250.00000 0 0
48 1875.00000 250.00000 0 0
49 2000.00000 250.00000 0 0
50 2125.00000 250.00000 0 0
51 2250.00000 250.00000 0 0
52 2375.00000 250.00000 0 0
53 2500.00000 250.00000 0 0
54 0.00000 375.00000 1 0
55 250.00000 375.00000 0 0
56 500.00000 375.00000 0 0
57 750.00000 375.00000 0 0
58 1000.00000 375.00000 0 0
59 1250.00000 375.00000 0 0
60 1500.00000 375.00000 0 0
61 1750.00000 375.00000 0 0
62 2000.00000 375.00000 0 0
63 2250.00000 375.00000 0 0
64 2500.00000 375.00000 0 0
65 0.00000 500.00000 1 0
66 125.00000 500.00000 0 0
67 250.00000 500.00000 0 0
68 375.00000 500.00000 0 0
69 500.00000 500.00000 0 0
70 625.00000 500.00000 0 0
71 750.00000 500.00000 0 0
72 875.00000 500.00000 0 0
73 1000.00000 500.00000 0 0
74 1125.00000 500.00000 0 0
75 1250.00000 500.00000 0 0
76 1375.00000 500.00000 0 0
77 1500.00000 500.00000 0 0
78 1625.00000 500.00000 0 0
79 1750.OOGOO 500.00000 0 0
80 1875.00000 500.00000 0 0
81 2000.00000 500.00000 0 0
82 2125.00000 500.00000 0 0
83 2250.00000 500.00000 0 0
84 2375.00000 500.00000 0 0
85 2500.00000 500.00000 0 0
86 0.00000 625.00000 1 0
87 250.00000 625.00000 0 0
88 500.00000 625.00000 0 0
89 750.00000 625.00000 0 0
90 1000.00000 625.00000 0 0
91 1250.00000 625.00000 0 0
92 1500.00000 625.00000 0 0
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93 1750.00000 625.00000 0 0

94 2000.00000 625.00000 0 0

95 2250.00000 625.00000 0 0

96 2500.00000 625.00000 0 0

97 0.00000 750.00000 1 0

98 125.00000 750.00000 0 0

99 250.00000 750.00000 0 0

100 375.00000 750.00000 0 0
101 500.00000 750.00000 0 0
102 625.00000 750.00000 0 0
103 750.00000 750.00000 0 0
104 875.00000 750.00000 0 0
105 1000.00000 750.00000 0 0
106 1125.00000 750.00000 0 0
107 1250.00000 750.00000 0 0
108 1375.00000 750.00000 0 0
109 1500.00000 750.00000 0 0
110 1625.00000 750.00000 0 0
111 1750.00000 750.00000 0 0
112 1875.00000 750.00000 0 0
113 2000.00000 750.00000 0 0
114 2125.00000 750.00000 0 0

115 2250.00000 750.00000 0 0
116 2375.00000 750.00000 0 0
117 2500.00000 750.00000 0 0
118 0.00000 875.00000 1 0
119 250.00000 875.00000 0 0
120 500.00000 875.00000 0 0
121 750.00000 875.00000 0 0
122 1000.00000 875.00000 0 0
123 1250.00000 875.00000 0 0
124 1500.00000 875.00000 0 0
125 1750.00000 875.00000 0 0
126 2000.00000 875.00000 0 0
127 2250.00000 875.00000 0 0
128 2500.00000 875.00000 0 0
129 0.00000 1000.00000 1 1
130 125.00000 1000.00000 1 1
131 250.00000 1000.00000 1 1
132 375.00000 1000.00000 1 1
133 500.00000 1000.00000 1 1
134 625.00000 1000.00000 1 1
135 750.00000 1000.00000 1 1
136 875.00000 1000.00000 1 1

137 1000.00000 1000.00000 1 1

138 1125.00000 1000.00000 1 1
139 1250.00000 1000.00000 1 1
140 1375.00000 1000.00000 1 1
141 1500.00000 1000.00000 1 1
142 1625.00000 1000.00000 1 1
143 1750.00000 1000.00000 1 1
144 1875.00000 1000.00000 1 1
145 2000.00000 1000.00000 1 1

146 2125.00000 1000.00000 1 1
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147 2250.00000 1000.00000 1 1
148 2375.00000 1000.00000 1 1
149 2500.00000 1000.00000 1 1

1 3 1
2 3 0
3 3 0
4 3 0
5 3 0
6 3 0
7 3 0
8 3 0
9 3 0

10 3 0
11 3 0
12 3 0
13 3 0
10 4

1 1 1 22 33 2 34 3 23 35
2 1 3 23 35 4 36 5 24 37
3 1 5 24 37 6 38 7 25 39
4 1 7 25 39 8 40 9 26 41
5 1 9 26 41 10 42 11 27 43
6 1 11 27 43 12 44 13 28 45
7 1 13 28 45 14 46 15 29 47

8 1 15 29 47 16 48 17 30 49
9 1 17 30 49 18 50 19 31 51

10 1 19 31 51 20 52 21 32 53
11 1 33 54 65 34 66 35 55 67
12 1 35 55 67 36 68 37 56 69
13 1 37 56 69 38 70 39 57 71
14 1 39 57 71 40 72 41 58 73
15 1 41 58 73 42 74 43 59 75
16 1 43 59 75 44 76 45 60 77
17 1 45 60 77 46 78 47 61 79
18 1 47 61 79 48 80 49 62 81
19 1 49 62 81 50 82 51 63 83
20 1 51 63 83 52 84 53 64 85
21 1 65 86 97 66 98 67 87 99
22 1 67 87 99 68 100 69 88 101
23 1 69 88 101 70 102 71 89 103
24 1 71 89 103 72 104 73 90 105
25 1 73 90 105 74 106 75 91 107
26 1 75 91 107 76 108 77 92 109
27 1 77 92 109 78 110 79 93 111
28 1 79 93 111 80 112 81 94 113
29 1 81 94 113 82 114 83 95 115
30 1 83 95 115 84 116 85 96 117
31 1 97 118 129 98 130 99 119 131

32 1 99 119 131 100 132 101 120 133
33 1 101 120 133 102 131, 103 121 135
34 1 103 121 135 104 136 105 122 137
35 1 105 122 137 106 138 107 123 139

36 1 107 123 139 108 140 109 124 141

37 1 109 124 141 110 142 11 125 143
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38 1 ill 125 143 112 144 113 126 145

39 1 113 126 145 114 146 115 127 147

40 1 115 127 147 116 148 117 128 149

1 4.0E06 0.40 0.02 4.
0.2 2.5
0. 2.5
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APPENDIX E:

SAMPLE OUTPUT FILE



El. The following text is an example output file produced by vib3

using the input file listed in Appendix D. The results are not particularly

accurate but shown how the data are presented using the minimal output

options. The distribution of vertical displacements in the y-direction from

the center of the load are shown in Figure E-1 along with the Green's function

solution.

******************* PROGRAM VIB3 ********************

This program was written to solve for dynamic displace-
ments in complex soil/geologic media using a 2-D finite
element formulation. The formulation assumes planar
geometry and material properties in the out-of-plane
direction and a harmonic source acting on the surface.

This program was written by David Sykora, at US Army
Engineer Waterways Experiment Station (WES), Vicksburg,
MS, under sponsorship of ILIR program (FY90-92).

Prof. Jose Roesset, Univ. of Texas at Austin, developed
the condensation procedure used in the formulation as
successfully implemented by Dr. Kang (1990) for pave-
ment systems. Solver subroutines, the FFT routines, and
the basic framework of the finite element program were
obtained from Profs. Roesset and Tassoulas, UT.

THIS SOFTWARE IS DISTRIBUTED AS IS AND WITHOUT WARRANTY
AS TO PERFORMANCE. THE USER MUST ASSUME THE RISK OF
USING THIS SOFTWARE!

Homogeneous system (Model 1)
4 by 10 mesh, square normalized load (5 by 5)
August 20, 1992

*****GENERAL PARAMETERS:

NUMBER OF TERMS FOR FFT: 256
INCREMENT OF Y (DY): 15.65
NUMBER OF MATERIAL TYPES: 1
NUMBER OF NODES OF INTEREST: 1
"BIG": .1000000E+51
MAXIMUM ARRAY ALLOCATION: 100000
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*****PARAMETERS FOR 3-D MESH:

NUMBER OF DIMENSIONS: 3
NUMBER OF ELEMENTS: 40
NUMBER OF NODES: 298
NUMBER OF NODES/ELEMENT: 16
DEGREES OF FREEDOM/NODE: 3
DEGREES OF FREEDOM/ELEMENT: 48

*****PARAMETERS FOR CONDENSED MESH:

NUMBER OF DIMENSIONS: 3
NUMBER OF ELEMENTS: 40
NUMBER OF NODES: 149
NUMBER OF NODES/ELEMENT: 8
DEGREES OF FREEDOM/NODE: 3
DEGREES OF FREEDOM/ELEMENT: 24

FREQUENCIES OF INTEREST (Hz):

3.000 0.000 0.000 0.000 0.000 0.000

NODES OF INTEREST:

1 0 0 0 0 0 0 0

*****MATERIAL PROPERTIES :

SHEAR POISSONS DAMPING MASS
MAT MODULUS RATIO RATIO DENSITY

1 0.40000E+07 0.40 0.02 4.00

*****LOADS:

SUBROUTINE YLOAD ASSUMES THAT A NORMALIZED LOAD IS BEING USED!

Left-most extent of load in x-direction - 0.00
Right-most extent of load in x-direction - 2.50

DISTRIBUTED LOAD
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*****OUJTPUTf (DISPLACEMENTS)

CALCULATED AMPLITUDES AT: 3.00 Hz

AMPLITUDES CORRESPONDING TO NODE: 1

(X- O.OOOE+O0 ) (Z- O.OOOE+O0

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+OO 0.154E-08 -0.475E-09 0.161E-08 -0.171E+02
0.156E+02 0.978E-09 -0.445E-09 0.107E-08 -0.245E+02
0.313E+02 0.619E-09 -0.409E-09 0.742E-09 -0.335E+02
0.469E+02 0.378E-09 -0.367E-09 0.526E-09 -0.442E+02
0.626E+02 0.210E-09 -0.318E-09 0.381E-09 -0.566E+02
0.782E+02 0.922E-10 -0.264E-09 0.279E-09 -0.707E+02
0.939E+02 O.118E-10 -0.207E-09 0.208E-09 -0.867E+02
0.110E+03 -0.401E-10 -0.151E-09 0.156E-09 -0.105E+03
0.125E+03 -0.696E-10 -0.969E-10 0.119E-09 -0.126E+03
0.141E+03 -0.812E-10 -0.478E-10 0.943E-10 -0.150E+03
0.156E+03 -0.791E-10 -0.557E-11 0.793E-10 -0.176E+03
0.172E+03 -0.667E-10 0.284E-10 0.725E-10 0.1.57E+03
0.188E+03 -0.476E-10 0.531E-10 0.713E-10 0.132E+i03
0.203E+03 -0.247E-10 0.684E-10 0.728E-10 0.110E+03
0.219E+03 -0.832E-12 0.746E-10 0.746E-10 0.906E+02
0.235E+03 0.217E-10 0.727E-10 0.758E-10 0.733E+02
0.250E+03 0.412E-10 0.638E-10 0.759E-10 0.572E+02
0.266E+03 0.562E-10 0.498E-10 0.751E-10 0.415E+02
0.282E+03 O.661E-10 0.324E-10 0.736E-10 0.261E+02
0.297E+03 0.706E-10 0.136E-10 0.719E-10 0.109E+02
0.313E+03 0.701E-10 -0.481E-11 0.703E-10 -0.393E+01
0.329E+03 0.653E-10 -0.213E-10 0.687E-10 -0.181E+02
0.344E+03 0.572E-10 -0.347E-10 0.669E-10 -0.313E+02
0.360E+03 0.469E-10 -0.442E-10 0.645E-10 -0.433E+02
0.376E+03 0.357E-10 -0.493E-10 0.609E-10 -0.541E+02
0.391E+03 0.249E-10 -0.502E-10 0.560E-10 -0.637E+02
0.407E+03 0..153E-10 -0.472E-10 0.496E-10 -0.721E+02
0.423E+03 0.780E-11 -0.412E-10 0.419E-10 -0.793E+02
0.438E+03 0.288E-11 -0.331E-10 0.332E-10 -0.850E+02
0.454E+03 0.677E-12 -0.239E-10 0.240E-10 -0.884E+01
0.469E+03 0.105E-11 -0.150E-10 0.150E-10 -0.860L+02
0.485E+03 0.358E-11 -0.716E-11 0.800E-11 -0.635E+02
0.501E+03 0,761E-11 -0.135E-11 0.773E-11 *0.101E+02
0.516E+03 0.124E-10 0.186E-11 0.125E-10 0.856E+01
0.532E+03 0.171E-10 0.220E-11 0.172E-10 0.736E+01
0.548E+03 0.209E-10 -0.313E-12 0.209E-10 -0O.859E+00
0.563E+03 0.231E-10 -0.536E-11 0.237E-10 -0.131E+02
0.579E+03 0.233E-10 -0.123E-10 0.264E-10 -0.279E+02
0.595E+03 0.212E-10 -0.205E-10 0.295E-10 -0.441E+02
0.610E+03 0.167E-10 -0.289E-10 0.334E-10 -0.600E+02
0.626E+03 0.102E-10 -0.367E-10 0.381E-10 -0.745E+02
0.642E+03 0.193E-11 -0.430E-10 0.430E-10 -0.874E+02
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0.657E+03 -0.736E-11 -0.470E-I0 0.475E-10 -0.989E+02
0.673E+03 -O.170E-1O -0.482E-10 0.511E-1O -0.109E+03
0.689E+03 -0.261E-10 -0.464E-10 0.532E-10 -0.119E+03
O.704E+03 -0.340E-10 -0.415E-10 0.536E-10 -0.129E+03
0.720E+03 -0.400E-1O -0.338E-10 0.523E-10 -0.140E+03
0.736E+03 -0.436E-10 -0.238E-10 0.497E-10 -0.151E+03
0.751E+03 -0.445E-10 -0.123E-10 0.461E-10 -0.165E+03
0.767E+03 -0.426E-10 -0.173E-13 0.426E-10 -0.180E+03
0.783E+03 -0.381E-10 O.121E-1O 0.399E-10 0.162E+03
0.798E+03 -0.312E-10 0.231E-10 0.388E-10 0.144E+03
0.814E+03 -0.226E-10 0.322E-10 0.393E-10 0.12AE+03
0.829E+03 -0.129E-10 0.388E-10 0.409E-10 0.108E+03
0.845E+03 -0.276E-11 0.425E-10 0.426E-10 0.937E+02
0.861E+03 0.69hE-11 0.431E-10 0.436E-10 0.808E+02
0.876E+03 0.157E-10 0.406E-10 0.435E-10 0.688E+02
0.892E+03 0.228E-10 0.354E-10 0.421E-10 0.572E+02
0.908E+03 0.278E-10 0.280E-10 0.395E-10 0.452E+02
0.923E+03 0.306E-10 0.192E-10 0.361E-10 O.321E+02
0.939E+03 0.310E-1O 0.963E-11 0.324E-10 0.173E+02
0.955E+03 0.291E-10 0.239E-12 0.291E-10 0.469E+00
0.970E+03 0.254E-10 -0.821E-11 0.267E-10 -0.179E+02
0.986E+03 0.203E-10 -O.150E-1O 0.252E-10 -0.366E+02
0O.100E+04 0.142E-10 -0.197E-10 0.242E-10 -0.543E+02
0.102E+04 0.771E-11 -0.218E-10 0.231E-10 -0.705E+02
0.103E+04 0.147E-11 -0.214E-10 0.214E-10 -0.861E+02
0.105E+04 -O.404E-11 -0.184E-10 0.189E-10 -0.102E+03
0.106E+04 -0.843E-11 -0.134E-10 0.158E-10 -0.122E-C3
0.108E+04 -0.114E-1O -0.670E-11 0.132E-10 -0.150E+03
0.110E+04 -0.128E-10 0.950E-12 0.129E-10 0.176E+03
0.111E+04 -0.127E-10 0.885E-11 0.155E-10 0.145E+03
0.113E+04 -0.113E-1O 0.163E-10 0.198E-10 0.125E+03
0.114E+04 -0.863E-11 0.225E-10 0.241E-10 0.11lE+03
0.116E+04 -0.522E-11 0.270E-10 0.275E-10 0.1O1E+03
0.117E+04 -0.140E-11 0.294E-1.0 0.295E-10 0.927E+02
0.119E+04 0.245E-11 0.294E-10 0.295E-10 0.852E+02
0.121E+04 0.596E-11 0.270E-10 0.277E-10 0.776E+02
0.122E+04 0.884E-11 0.224E-10 0.241E-10 0.685E+02
0.124E+04 0.109E-1O 0.159E-10 0.193E-10 0.557E+02
0.125E+04 0.120E-1O 0.810E-11 0.145E-10 0.340E+02
0.127E+04 0.122E-10 -0.482E-12 0.122E-10 -0.227E+01
0.128E+04 0.115E-1O -0.915E-11 0.147E-10 -0.386E+02
0.130E+04 0.101E-10 -0.173E-10 0.200E-1O -0.596E+02
0.131E+04 0.830E-11 -0.242E-10 0.256E-10 -0.711E+02
0.133E+04 0.628E-11 -0.296E-10 0.303E-10 -0.780E+02
0.135E+04 0.430E-11 -0.330E-10 0.333E-10 -0.826E+02
0.136E+04 0.257E-11 -0.343E-10 0.344E-10 -0.857E+02
0.138E+04 0.125E-11 -0.335E-10 0.335E-10 -0.879E+02
0.139E+04 0.431E-12 -0.308E-10 0.308E-10 -0,892E+02
0.141E+04 0.115E-12 -0.265E-10 0.265E-10 -0.898E+02
0.142E+04 0.237E-12 -0.210E-1O 0.210E-1O -0.894E+02
0.144E+04 0.665E-12 -0.149E-10 0.149E-10 -0.874E+02
0.146E+04 0.122E-11 -3.869E-11 0.878E-11 -0.820E+02
0.147E+04 0.169E-11 -0.285E-11 0.331E-11 -0.594E+02
0.149E+04 0.187E-11 0.218E-11 0.287E-11 0.494E+02
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0.150E+04 0.159E-11 0.608E-11 0.628E-11 0.754E+02

0.152E+04 0.713E-12 0.866E-11 0.869E-11 0.853E+02

0.153E+04 -0.813E-12 0.989E-11 0.993E-11 0.947E+02

0.155E+04 -0.297E-11 0.987E-11 0.103E-10 0.107E+03

0.156E+04 -0.567E-11 0.883E-11 0.105E-10 0.123E+03

0.158E+04 -0.873E-11 0.711E-11 0.113E-10 0.141E+03

0.160E+04 -0.119E-10 0.510E-11 0.130E-10 0.157E+03

0.161E+04 -0.150E-10 0.322E-11 0.153E-10 0.168E+0O3

0.163E+04 -0,176E-10 0.187E-11 0.177E-10 0.174E+03

0.164E+04 -0.195E-10 0.139E-11 C.196E-1O 0.176E+03

0.166E+04 -0.206E-10 0.200E-11 0.207E-10 0.174E+03

0.167E+04 -0.205E-10 0.381E-11 0.209E-10 0.169E+03

0.169E+04 -0.194E-10 0.679E-11 0.205E-10 0.161E+03

0.171E+04 -0.171E-10 0.107E-10 0.202E-10 0.148E+03

0.172E+t04 -0.139E-10 0.154E-10 0.207E-10 0.132E+03

0.174E+04 -0.981E-11 0.203E-10 0.225E-10 0.116E+03
0.175E+04 -0.525E-11 0.250E 10 0.255E-10 0.102E+03
0.177E+04 -0.510E-12 0.289E-10 0.290E-10 0.910E+02

0.178Ei-04 0.408E-11 0.317E-10 0.320E-10 0.827E+02

0.180E+04 0 818E-11 0.328E-10 0.338E-10 0.760E+02

0.182E+04 0.115E-10 0.320E-10 0.340E-10 0.702E+02
0.183E+04 0.138E-10 0.291E-10 0.322E-10 0.645E+02
0.185E+04 0.151E-10 u.240E-l0 0.283E-10 0.579E+402
0.186E+04 0.151E-10 0.170E-10 0.227E-10 0.483E+02

0.188E+04 0.141E-10 0.829E-11 0.163E-10 0.305E+02
0.189E+04 0.121E-10 -0.156E-11 0.122E-10 -0.733E+01

0.191E+04 0.945E-11 -0.120E-10 0.153E-10 0.518E+02

0.192E+04 0.642E-11 -0.224E-10 0.233E-10 -0.740E+02

0.194E+04 0.334E-11 -0.320E-10 0.322E-10 -0.840E+02

0.196E+04 0.530E-12 -0.403E-10 0.403E-10 -0.892E+02

0.197E+04 -0.171E-11 -0.466E-10 0.467E-10 -0.921E+02

0.199E+04 -0.316E-11 -0.506E-10 0.507E-10 -0.936E+02

0.200E+04 -0.365E-11 -0.520E-10 0,521E-1O -0.940E+02

----- ----------------------------------------

AMPLITUDES CORRESPONDING TO NODE: 2
(X- 0.125E+03 ) (Z- O.OOOE+OO

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE

0.OOOE+OO -0.794E-10 -0.123E-09 0.146E-09 -0.123E+03

-------------------------------- ------------

AMPLITUDES CORRESPONDING TO NODE: 3

(X- 0.250E+03 ) (Z- O.OOOE+OO

VARIATION OF VERTICAL (Z) COMPONr.NTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE

O.OOOE+OO -0.629E-10 0.120E-09 0.136E-09 0.118E+03
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---.- -- - - - - -- - - ---------. . . . .. . . .. . . . ---- --...-- °- ---
AMPLITUDES CORRESPONDING TO NODE: 4

(X- 0.375E+03 ) (Z- O.OOOE+O0 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 0.363E-10 -0.160E-10 0.397E-10 -0.238E+02

AMPLITUDES CORRESPONDING TO NODE: 5
(X- 0.500E+03 ) (Z- O.OOOE+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+00 0.419E-11 -0.266E-10 0.270E-10 -0.811E+Q2

AMPLITUDES CORRESPONDING TO NODE: 6

(X- 0.625E+03 ) (Z- O.OOOE+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 -0.578E-11 0.448E-10 0.451E-10 O.974E+02

AMPLITUDES CORRESPONDING TO NODE: 7
(X- 0.750E+03 ) (Z- O.OOOE+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 0.412E-10 -0.455E-10 0.614E-10 -0.478E+02

AMPLITUDES CORRESPONDING TO NODE: 8
(X- 0.875E+03 ) (Z- O.OOOE+O0 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 -0.214E-10 -0.252E-10 0.330E-10 -0.133E+03

AMPLITUDES CORRESPONDING TO NODE: 9
(X- 0.100E+04 ) (Z- O.OOOE+00 )
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VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 -0.216E-10 0.758E-10 0.78BE-10 0.106E+03

AMPLITUDES CORRESPONDING TO NODE: 10

(X- 0.112E+04 ) (Z- O.OOOE+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 0.278E-10 0.432E-11 0.281E-10 0.884E+01

AMPLITUDES CORRESPONDING TO NODE: 11
(X- 0.125E+04 ) (Z- O.OOOE+O0 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 0.976E-11 -0.483E-10 0.493E-10 -0.786E+02

AMPLITUDES CORRESPONDING TO NODE: 12
(X- 0.137E+04 ) (Z- O.OOOE+O0 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 -0.580E-11 0.781E-11 0.973E-11 0.127E+03

AMPLITUDES CORRESPONDING TO NODE: 13
(X- O.150E+04 ) (Z- O.OOOE+O0 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
O.OOOE+O0 -0.628E-11 -0.575E-11 0.852E-11 -0.138E+03
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f= 3.0 Hz Ay/X= 0.05
f = 0.02 NM = 256

oX = 313. YTOT/X = ± 6.40
-2.0 Ax/X=Az/= 0.80 XLOAD/X = ± 0.008

KauseL (1989)

<-dt."LctLon -

-&rect'.On
-1.0

2.0 iVERTICAL

2.
0

--- 2.0 t

KouseL (1989)
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<c 1.0

VERTICAL
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Figure E-l. Variation of dynamic vertical displacements for example
problem shoving Greenrs function solutions
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