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PART I: INTRODUCTION

General

1. Many problems of Elastodynamics -- the study of the response of an
elastic body to dynamic forces -- have been evaluated experimentally, solved
explicitly, or have been properly formulated for implicit solution over a 160
year history dating back to Cauchy, Poisson, Stokes, and Lame’ during the
early to mid- 1800’s. As each class of problems is solved, more complex
problems are presented or more accurate, more efficient, or simpler means to
solve a problem are desired. Accuracy, efficiency, and simplicity are all
important aspects to the integration of new technology into military systems.

2. The present study is a systems analysis of the forward problem to
estimate the variation of displacements in space and time produced by dynamic
loads in complex isotropic media, consisting of dipping, discontinuous, and/or
irregular layers. using a numerical approximation method. The distinguishing
feature of this study is a formulation that allows three-dimensional (3-D)
problems to be solved using a two-dimensional (2-D) numerical model. To
implement this method, the stratigraphy and material properties of the model
cannot vary in a horizontal direction (2-D stratigraphy). However, the
distribution and extent of loads may vary in both horizontal directions (3-D
load) providing for the analysis of synthetic vibratory sources such as a
Vibroseis truck. Examples of 2-D and 3-D loads are shown in Figure 1. These
types of problems cannot be solved analytically but normally would be solved
using a laborious 3-D numerical approximation.

3. So0il dynamics studies conducted in the 1950°'s and 1960's using
finite difference and finite element methods, and in the 1970‘s and 1980's
using Green's functions and boundary element models, generally assumed plane
harmonic waves and horizontally layered media extending to infinity. The
subsurface distribution of materials at most sites is not simple nor is it

conducive to analytical closed-form solutions of wave propagation problems.
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Sloping strata of finite length, an irregular ground surface, and/or two-
dimensional load distributions are prevalent. The present study describes a
procedure to analyze wave propagation in these more complex systems.

4. This report describes a means to efficiently calculate dynmamic
vertical displacements by representing 3-D systems with an equivalent 2-D
model. The finite element method was selected for computational solution to
permit discretization of geosystems with numerous materials of arbitrary
geometry. Initially, only steady-state dynamic loads are considered although
the computer code can be easily adapted to allow the solution for transient
loads by performing an additional Fourier transformation of the load function
from the time to frequency domain.

5. The formulation involves two primary components: the condensation
of 3-D dynamic stiffness matrices to equivalent 2-D matrices and the
representation of the distribution of loads in the out-of-plane direction
using a Fourier expansion. This strategy was explicitly proposed for axi-
symmetric problems by Winnicki and Zienkiewicz (1979) and Lai and Booker
(1991) and for 3-D formulations by Runesson and Booker (1982, 1983) and Lin
and Tassoulas (1987). This strategy was used specifically for wave
propagation studies in horizontally layered pavement systems by Kang (1990)
and Hanazato et al. (1991). The 2-D system of equations are first solved in
the frequency and wave-number domain; inverse Fourier transforms are then
performed to obtain the solution as a function of out-of-plane distance and
time, if so desired.

6. One objective of this study is to examine the potential for
determining elastic moduli (i.e., shear, constrained, and Young’s moduli) in
complex systems of soil, rock, and structural materials from measured motions
(the inverse problem). The Spectral-Analysis-of-Surface-Waves (SASW) method
(Nazarian and Stokoe 1985a, 1985b) is one possible existing method of field
measurement and mathematical inversion to determine the moduli of horizontally
layered systems. This method involves the use of signal processing techniques
on two measured vertical components of motion spaced at equal increments from
the vibratory source. A similar procedure of determination is desired for
more complex systems. In addition, the use of artificial neural networks
holds promise to improve inversion schemes (Rix and Leipski 1991).

Therefore, Rayieigh wave propagation will be of primary interest. Rayleigh

waves normally contain most of the energy of wave propagation for the near




propagation for the near surface regime and Rayleigh wave energy will
attenuate with distance at a much lower rate than body waves. The response at
the grourd surface is normally cf greatest interest since it provides the

easiest access for measurements.

Terminology

7. It is useful at this point to define some terminology. Geosystems
are systems containing soil, rock, and possibly embedded foundations. Three-
dimensional loads may be either point loads or loads acting over a finite area
in plan (e.g., tires, tracks of vehicles, platen of Vibroseis truck, or
blast). Two-dimensional loads are synonymous with plane waves cor line loads
extending to infinity in the direction perpendicular to the analysis plane.
Plane waves refer to conditions where all points on a plane perpendicular to
the direction of wave propagation undergo an identical incident disturbance at
all instants of time during the disturbance. The term "irregular" applied to
surfaces and layers is synonymous with the terms "dipping" (i.e., non-
horizontal) or "discontinuous" (i.e., of finite length), or both, and includes
layers with varying thickness. Contacts between layers can be approximated

with a series of second degree parabolic segments.

Assumptions for Two-Dimensional Systems

8. A common assumption used to reduce the computational effort for
the engineering analysis of stress and strain in boundary value problems of
interest for geotechnical engineering applications is that of plane strain.
Plane strain implies that the displacements in the direction perpendicular to
a two-dimensional plane are equal to zero (Love 1944). This assumption
reduces the scope of a problem from three to two dimensions. Conditions of
plane strain require 2-D geometry and boundary conditions and loads that are
uniform in the direction perpendicular to the plane under consideration
(Timoshenko and Goodier 1970) A plane wave with particle motion only in the
2-D analysis plane is consistent with this assumption.

9. A surface load distributed over a finite surface induces stresses
that vary in three principal directions. 1If stresses vary in a direction

perpendicular to the analysis plane, displacements and strains will be non-
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zero. Therefore, three-dimensional loads are inconsistent with plane strain
assumptions. Axi-symmetric modeling is an alternative procedure for one-
dimensional soil profiles. Many synthetic loads applied to the earth are of
small dimensions relative to the extent of the analysis plane. For example,
Rayleigh waves produced by a Vibroseis truck propagate through a layered half-
space in three dimensions invalidate the assumptions of plane strain.

10. Examples of two-dimensional analysis planes and boundary
conditions in systems that may exist in a state of plane strain include planes
perpendicular to the axis of long, straight structures: tunnels (without rock-
bolt reinforcement), emban“ments, retaining walls (without tiebacks or
anchors), and vertical planes through isotropic soii deposits and geologic
media that have no variation in profile for some arbitrary direction. Uniform
loadings for these examples would include self weight (body-forces) and
hydrostatic (pool) loads for embankments, lateral forces on retaining walls,
roof stresses in tunnels, and surcharges (e.g., highway embankment) in soil
deposits or geologic media. Some examples are shown in Figure 2 and assume
that the soil-structure system extends to a large distance relative to the
predominant wavelength and distance from the source.

11. This study deals with the analysis of "planar" geosystems which
proves to be beneficial from a computational standpoint. The primary
assumptions are that the geometry and boundary conditions of the system and
the distribution of material properties are planar (2-D) but the loads are
non-planar (3-D). This set of conditions has a broader range of applications

than that for plane strain while circumventing expensive 3-D solution methods.

Overview of Report

12. This report presents a broad discussion of aspects related to the
analysis of Rayleigh wave propagation in geosystems using numerical methods.
A review of previous studies is presented first. Next, the mathematical
formulation and computer implementation of tiie finite element method, element
cordensation, and Fourier superposition are described. Validation and
parametric analysis of the computer code are presented along with a comparison
of computation times with 3-D finite element codes. The main part of the
report concludes with a summary section. A listing of the primary computer

program, vib3, and a sample problem are included in the appendices.

11
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Figure 2. Examples of wave propagation problems in planar systems
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PART 1I: EXISTING SOLUTIONS FOR DYNAMIC LOADS

Introduction

13. The evolution and the state of knowledge for dynamic loads acting
on elastic media, particularly that involving coupled compression (P), in-
plane shear (SV), and Rayleigh (R) waves, was reviewed to provide insight into
which problems have been solved, what approaches were used, what conclusions
have been reached, and which studies provide a proper basis for comparison or
validation of the proposed formulation. Some general conclusions are:

8. Almost all the studies for layered systems considered plane wave
propagation.

b. Many of the earlier studies that examined R-wave energy did not
include in-plane P-SV waves,

¢. Experimental studies generally focused on "thin plate"” tests that
have plane stress boundary conditions which are inconsistent with
stress conditions for most geosystems, and

d. Plane strain conditions were generally assumed for theoretical and
numerical studies.
The distribution of stresses caused by static point loads were also compared
using closed-form solutions to quantify the errors associated with incorrectly
modelling 2-D and 3-D loads. A presentation of these findings is made in
Appendix A.

14. The literature reviewed has been categorized for purposes of
explanation into four groups: fundamental studies (point loads in full or
half-spaces), exact solutfons for layered systems, experimental studies
(laboratory and field measurements), and numerical and theoretical

approximations.

Fundamental Studies

15. The study of dynamic displacements and wave propagation began in
the early 19th century with Poisson and Kelvin. Stokes, Love, Rayleigh, and
Lamb in the late 19th century further defined fundamental aspects of wave
propagation in layered media and spheres. A summary of consequent studies
that pertain to in-plane surface waves is presented in Table 1. Research
studies as recent as Vardoulakis and Vrettos (1988) and Banerjee and Mamoon

(1990) still consider the solution and formulation for three-dimensional

13




(point) load acting on or in an elastic half space. The studies listed in
Table 1 are not directly applicable to the analyses and comparisons in this
study because most deal with non-dispersive media or impulsive sources, or

both. Many studies consider 3-D loads but the medium is too simple to use for

validation.
Table 1
Initial Studies of In-Plane Surface Waves
Produced by Dynamic lLoads
Load Load
Study Distribution Type Solution
Mindlin (1936) Internal point Harmonic Exact
load integrals
Pinney (1954) " Impulsive Exact
(Pure P or S) integrals
Pekeris (1955) Surficial point Impulsive Contour
load integration
Mooney (1974) Surficial point Impulsive Elliptic
load integrals
Vardoulakis and Line load Harmonic Numerical
Vrettos (1988) (planar) solution
eigenvalue
problem

Closed-Form Solutions for Layered Systems

16. Numerous studies have been conducted since the 1950’s to develop
different means to solve wave propagation problems considering the wide range
of conditions that would affect wave propagation. The response of
horizontally layered media extending to infinity and overlying a half-space
was first addressed by Thomson (1950) and corrected by Haskell (1953). Dunkin
(1965) also added a correction to this formulation to maintain an acceptable
degree of accuracy at high frequencies. Other studies since that time have
considered refinements or have broadened the range of solvable conditions
(e.g., Pestel and Leckie, 1963; Harkrider, 1964; Waas, 1972b; and Kausel and
Roesset, 1981). Green’'s functions were evaluated numerically by Apsel (1979)

and Kausel (1981). Studies utilizing closed-form solutions are listed in

Table 2.
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Table 2
Theoretical Solutions for Rayleigh Plane Wave
Propagation in Lavered Systems
Load Load
Study Distribution Type Approach
Thomson (1950) & Plane wave Harmonic Transfer
Haskell (1953) Matrix
Pestel and Leckie " . "
(1963)
Harkrider (1964) Point or Explosive, Matrices to
line load Point, or derive
Strike-slip fault integrals
Dunkin (1965) Plane wave Harmonic Transfer
Matrix
Waas (1972b) " " "
Apsel (1979) Point or " Green's
disk load functions
Kausel and Roesset Plane wave . Stiffness
(1981) Matrix
Kausel (1981) Peint, disk, Harmonic Green’'s
or ring load functions

17. The studies lumped into this category represent a significant

capability to calculate the dynamic displacements in an ideally layered

system. These studies are still used successfully in various applications.

Although the assumptions for an ideal layered system are unrealistic for many

actual conditions, reasonable results can be obtained for simple soil and rock

systems. The matrix solutions can be applied to plane wave propagation

problems which are not of interest here.

The Creen’'s function solutions allow

analysis of axi-symmetric problems which means 3-D loads (point and disk) in

2-D geometry (function of depth and radius).

18. The computer program developed as part of this study was

validated using a solution method reported by Kausel (1981) for axi-symmetric

problems with horizontally layered systems extending to infinity.

The method

by Kausel involves evaluating discrete Green’s functions numerically and

approaches the exact solution as the number of layers increases.

complicated problems cannot be solved accurately with this method.

15
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consequence, researchers have had to extract information from experimental

measurements and numerical and theoretical approximations.
erime tudies

19. Experimental studies, consisting of laboratory thin plate tests
and field vibration tests, were predominant in the late 1950's and 1960’s both
in the laboratory and in the field. This thrust seems to correspond to a
proliferation in the availability and use of electronic equipment and analog
recording devices. This period is marked by the general absence of
theoretical studies and generally pre-dates the solution of these problems via
numerical techniques using computers.

20. Measured values provide realistic assessment of usefulness and
applicability of a method but are not accurate and consistent enough for
validation. A sufficient signal-to-noise ratio must be obtained and
repeatable measurements must be available. Measurements made in the
laboratory produce a wide range of possible values. Field measurements have
inherent scatter and uncertainties because of the natural (unknown)
variabilities of soil deposits. However, these same conditions must be
recognized when proposing or fielding a new system for field measurement.
Laboratory studies

21. Several laboratory studies reported in the literature are listed
in Table 3. Most laboratory studies examined the propagation of waves along
the edge of thin plates. This type of test consists of cutting shapes from
plates of material on the order of 0.16 cm in thickness, standing the plate on
edge and placing receivers at various locations, producing an impulse across
the thickness of the plate at some point, and then recording the wave as it
propagates through the irregularity. A simple schematic of the system used
by most researches in the laboratory is shown in Figure 3. Circular disks and
concentric rings were used rather than quadrilateral shapes in one study.

Some of the first studies of this type were reported by Kato and Takagi (1956)
and Viktorov (1958) although little is known about the experimental system or
the materials used.

22. The studies listed in Table 3 are subdivided into two categories:
irregular surface (wedges) and irregular layers (step changes or material

interfaces). The data for irregular surfaces is compared in a series of plots
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shown in Figures 4 through 7 along with a first-order-theory approximation
(Hudson and Knopoff 1964). The measured coefficients for transmitted and
reflected energy are compared in Figures 4 and 5, respectively. The phase
shifts for transmitted and reflected Rayleigh wave energy reported by Pilant,
Knopoff, and Schwab (1964) are shown in Figures 6 and 7 and compared with
first-order theory (Hudson and Knopoff 1964).

Figure 3. Schematic of "thin plate" test

23. The transmission coefficients for irregular surfaces from the
four experimental studies are shown in Figure 4. 1In general, the measured

values are considerably different although some general trends exist. The

18
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energy transmitted fluctuates considerably over the range of surface angles of
0 (free end) to 180 degrees (continuous herizontal surface). For troughs, the
percentage of energy transmitted ranges from 2 to 20 at surface angles of 55
to 60 degrees and 15 to 50 at angles of 110 to 120 degrees (multiple of first
set). Peaks occur at angles of 75 to 80 with percentages ranging from 50 to
95 and somewhere between 10 and 30 degrees. The pattern of peaks and troughs
is relatively uniform, changing about every 30 degrees up to a surface angle
of 120 degrees.

24. The reflection coefficients for irregular surfaces from the four
experimental studies are shown in Figure 5. As expected, there is a strong
correspondence between peak refiection coefficients and trough transmissior
coefficients in Figure 4 (angles of about 55 and 100 degrees). The peak
energy reflected ranges between 35 and 82 percent at 50 to 60 degrees and 20
to 70 percent at 100 degrees.

25. The phase relationships for transmission and reflection presented
by Pilant, Knopoff, and Schwab (1964) are shown in Figures 6 and 7. An
observation by deBremaecker (1958) is also shown in Figure 6. The
relationships for first-order theory by Hudson and Knopoff (1964) are also
shown. The experimental values tend to show poor agreement with the first-
order theory at surface angles less than 70 to 80 degrees.

Field studies

26. Field measurements focused on the propagation of surface waves
through trenches ip soil and rock. A few of these studies include: Barkan
(1962), Dolling (1965 and 1970), and Woods (1968). The effect of trench
dimensions normalized to the predominant wavelength, such as trench width,

height, and length, were examined.

Numerical and Theoretical Approximations

27. The bulk of the studies that examine surface wave propagation in
complex geosystems are numerical or theoretical approximations. Numerical
approximations include the use of the finite difference (FD) method, the
finite element (FE) method, the boundary element (BE) method, or a combination
of these methods. Some of the early studies used wavefunction expansion to
define body wave propagation in the media and then tried to solve for points

along the boundary (an early form of BE). Other methods include: the ray path
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method, the Aki-Larner method, and Alsop’s method. Some of these studies are
conveniently described and compared in general and specific terms by Knopoff
(1969) and Yanovskaya (1989).

28. Theoretical approximations to determine reflection and
transmission coefficients of surface waves can be categorized into three
groups: Green's functions, vertical boundary approximations, and superposition
of waves. Nearly all of the early studies used a Green’s function solution
(GF) which is a mathematical formulation of the Huygens-Fresnel principle.
Some assumptions must be used in conjunction with this approach (thereby
making it an approximation) because of the unknown stresses and displacements
in complex media. For instance, Hudson and Knopoff (1964) neglected the
reflected Rayleigh wave; Alsop (1966) assumed that body waves generated by
surface waves impacting a surficial step change are small compared to the
Rayleigh waves and could be neglected. Several others used this assumption to
examine surface wave propagation through media with other geometric shapes.
The number and severity of assumptions tended to decrease as the studies
progressed chronologically.

29. The studies researched were divided int. three categories for
convenience. Studies examining the ef-ects of irregular surfaces (e.g., step
changes, vertical contacts, and wedges) on Rayleigh wave propagation are
presented in Table 4. Studies examining the effezus of canyons (e.g., empty
and filled canyons with elliptical, circular, and arbitrary shapes) on
Rayleigh wave propagation are presented in Table 5. Studies examining the
effects of irregular subsurface layers (e.g., dipping layers and curved
contacts) on Rayleigh wave propagation are presented in Table 6. General
configurations for these categories are shown in Figure 8. This collection of
studies allows for the analysis of most configurations of naterial geometry.
However, the loads considered by nearly all of these studies are 2-D (plane

waves) . The problem of 3-D loads is more difficult to solve.
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Studies Exami

Table 4

Ravleigh Plane Wave Propagation

Through Irregular Surfaces for 2-D Geometries

Study

Case(s)

Approach

Kane & Spence (1963)

Hudson & Knopoff (1964 &
1967)

Mal & Knopoff (1365)
Mal & Knopoff (1966)
Lopez-Soto (1967)
McGarr & Alsop (1967)

Gutdeutsch (1969)
Waas (1972a)

Malischewski (1974 &
1976)

Its & Yanovskaya (1977 &
1379

Segol, Lee, & Abel (1978)
Lutikov (1979}

Fujii et al (1980)

Fuyuki & Matsumoto (1980)
Sanchez-Sesma (1983)
Fujii et al (1984)

Fuyuki & Nakano (1984)
Ohtsuki & Yamahara (1984)

Sanchez-Sesma, Chavez-
Perez, & Aviles (1984)

Gautesen (1985)

Sanchez-Sesma, Bravo, &
Herrera (1985)

Sanchez-Sesma, Perez-
Rocha, & Chavez-Perez
(1985)

Milder (1991)

Wedge; wave from =

Wedge; source at apex

Step change
Wedge; wave from
(unknown)

Step change
Discontinuous layers

Wedge; source at apex

Trench

Vertical contact

Curved sub-vertical
interface

Trench

Vertical interface
Trench

Trench

Ridge

Wedge

Upward step change
Wedge; source at =

3-D sur-asce irreg.

Right-angle wedge

Topographic irreg.

3-D surface irreg.

Rough surface

Iterate sol’n at
boundaries

GF; neglected
reflected waves

GF
GF
GF; with body waves

GF; no body waves
generated

Empirical theory
FE

GF; no body waves
generated

GF

FE
GF
FD
FD
BE
FD
FD
FE/FD
BE

Numerical integration

BE

BE

Series of Helmholtz
equations
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Table 5

Stu e Wave
atio ough Canyons
Study Case(s) Approach
Lee (1978) Hemi-spherical canyon WFE

Bard & Bouchon (1980)
Dravinski (1980)

Wong (1982)

Lee & Langston (1983)
Sanchez-Sesma (1983)
Lee (1984)

Kawase (1988)

Eshraghi & Dravinski
(1989a)

Khair, Datta, & Shah
(1991)

Bi-dimensional valleys

Alluvial valley,
arbitrary shape

Semi-elliptical & semi-
circular canyons

3-D circular basins®
3-D basins

Hemi-spherical alluvial
valley

Semi-circular canyon

3-D canyons

Cylindrical alluvial
valley

Aki-Larner method

(unknown)

BE

Ray path
BE
BE

BE
BE

FE/BE

Transient source
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Table 6
e e Wave

uta

opagation

S

Study

Case(s)

Approach

Kuo & Nafe (1962)

Herrera (1964)

Drake (1972)
Malischewski (1974)
Scheidl & Ziegler (1977)

Uberall (1977)

Lutikov (1979)
Its & Yanovskaya (1983)
Ohtsuki & Yamahara (1984)

Dravinski & Mossessian
(1987)

Eshraghi & Dravinski
(1989b)

Yanovskaya (1989)

Li & Achenbach (1991)

Eshraghi & Dravinski
(1991)

Sinusoidal contact

Non-parallel layers
Continental boundary
Vertical curved interface

Rigid cylindrical
inclusion

Buried elastic cylinder
or sphere

Oblique interface
Subsurface curved profile
Valley edge

Dipping layers; arbitrary
shape

Dipping layers; arbitrary
shape

Dipping layers and curved
interfaces

Vertical interface zone
between two materials

3-D dipping layers

Pertubation of
boundary conditions

Pertubation of GF
FE
Alsop’'s method

Fourier series

Complex poles

GF
GF
FE/FD
BE

BE

GF

BE

BE

27




Step change Vertical contact
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Figure 8. Schematic drawings for classification of system geometry
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PART III: MATHEMATICAL FORMULATION AND COMPUTER CODE

Introduction

30. The mathematical formulation is based on simple principles of
Elastodynamics, superposition, Fourier series expansion, and numerical
discretization and solution procedures using the finite element method. A
thorough description of the formulation, including computer implementation, is
presented for completeness in this part of the report and is supplemented with
derivations in Appendix B. The set of assumptions is intended to be small, to
broaden the class of problems that can be solved. The primary assumption
required for the condensation method described herein is that the geometry of
the system and material properties are planar (do not vary in some horizontal
direction). A number of other assumptions were used to derive the first
generation computer code:

a. Media are isotropic,

b, Hysteretic behavior is represented by complex moduli relation,

€. Source produces vertical, steady-state excitation at one
frequency,

d. Base is rigid, and

¢, Distribution of loads is symmetric about y-axis.
These assumptions are not necessary and some will be phased out in future
versions of the code. In addition, the computer code does not allow for
transmitting boundaries in the 2-D analysis plane. Rather, the domain must be
discretized to include enough area for the motions to attenuate sufficiently

before being reflected back to the area of interest.

31. Two primary sets of variables adequately describe the effect of
forces acting on linear systems -- stresses and displacements. These
variables exist in the following field equations: stress equilibrium, strain-
displacement, and constitutive equations. These three sets of equations are
combined in terms of displacements to derive the governing equations for the
problem. Wave propagation involves the effects of inertia and deformation of
the media. The effects of inertia result from masses being accelerated. The

derivations below apply to isotropic materials.
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Stress equilibrium equations

32. The summation of stresses acting on small rectangular
parallelepiped in three-dimensional Cartesian space x = x(x, y, 2) and
Newton’s second law of motion neglecting body forces are used to derive the
stress equilibrium equations. The equations of motion using the soil
mechanics convention of compressive forces as positive and accounting for the

symmetry of the Cauchy stress tensor are:

do,, Jo do
x "oy * e - Pt (1)
do,, do, 3o
—X¥ -y = -
x "o Tz - P? \2)
do,, Oo do
3 32 . -
% ‘e ez PP 3)

where
o0 = stress components [F/L?]
p =~ mass density [F-sZ/L)
© - 3% fot?  [1/s5?)
These equations can be written in a much more compact form using indicial

notation as:

Oi3.5 = ~PLy (4)

-d ement equatjons
33. The strain-displacement equations (in some technical fields
referred to as compatibility equations) are derived from small strain theory.

The equations for a displacement field u = u(u, v, w) are:

du

e * 3x (5
d
e: = g, (6)
d
€y = jg (7
€2 * % (%}’E + %:_:) (8)
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e = 3 (32 + D (9)
1 ,du dw
LT 3 (‘a; Y 3x (10)

and are often referred to as engineering measures of strain. These equations

can be written in more compact form using indicial notation as:

eij = —;' (ui,j + uj:i) (11)

Constitutive equatjons

34. The constitutive equations provide the means to relate stress and
strain; they define the deformability of the material. Individual material
layers are assumed to be homogeneous, isotropic, and visco-elastic. To begin
the formulation of constitutive relations, consider the simplest case of
linear elasticity proposed by Hooke. For homogeneous and isotropic

conditions, there are two independent material constants A and G (Lame's

constants):
0, = Ae + 2G ¢, (12)
o, = Ae + 2G ¢, (13)
o, = Ae + 2G ¢,, (14)
Ty =2Ge, (15)
T =2Ge, (16)
T, =2Ge, (17)
where

G = shear modulus
e=c, +e  +e,

Using indicial notation, these six equations reduce to:

011 = lln 611 + 2G c,, (18)
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where
e, is the indicial equivalent of e defined above

3,, is the Kronecker delta: 8,,=0 if iej
8,,=1 if i=-j

The constitutive relations for linear-elastic materials may also be written

as:
oy = (__12_"; ey 8,5 + 2G ¢y (19)
where
v = Poisson's ratio
35. Soil is an inelastic material -- energy dissipates from friction

as waves travel through it. This phenomenon is called material damping and
mathematical models are used to approximate it in governing equations. One
form of damping, called hysteretic, is frequency independent. Clough and
Penzien (1975) describe it as a (damping) force in phase with the velocity but
proportional to the displacements. This form of damping can be introduced
into the formulation for frequency-domain analyses through the Correspondence
Principle (Wolf 1985). This principle states that the elastic stiffness (in
this case shear modulus) is replaced by a complex stiffness to obtain the
damped solution. The following relationship is commonly used to model linear-

hysteretic behavior for small shear strains (and small values of damping):

G* = G(1 + 2if) (20)
where
G*' is complex shear modulus
p is the damping ratio [-]
i=y~1

For large shear strains and values of damping, a better approximation proposed
by Udaka and Lysmer (1973) is:

G* =G (1 - 2B + 2ip y1-B?) (21)

The results of this study are expected to be applied at distances greater than
one wavelength from the source (e.g., Nazarian and Stokoe, 1985a; Kang, 1990)

where shear strains are small for synthetic sources. Therefore, Equation 20
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was used. The magnitude of damping is considered to be independent of strain
(Hardin and Drnevich 1972; Johnston, Toksoz, and Timur 1979: and Toksoz,

Johnston, Timur 1979) for the levels of shear strains expected.

uatlo rium

36. The three sets of field equations are combined to obtain the
governing equations. A stiffness formulation was chosen, that is, a relation
in terms of displacemer s (also referred to as displacement approach). These
equations are associated with Navier and can be derived by substituting the
strain-displacement equations into the constitutive equations, then,
substituting the resulting equations into the equilibrium equations. Assuming

that the body forces are zero and applying Newton's second law, the result is:

G* (1-12\')% +G* V3u = -pi (22)
G* (1—_12-;)% +G*"Viv = -pO (23)
o (1355)55 & Vv - ew (24)
where
Vi = i + s + i
ax2 ayz azl
Using indicial notation:
N 1
G [( 1_.2\,) Uy 51 * ui,jj] = -pl; (25)

These are the partial differential equations that govern wave propagation in
three-dimensional Cartesian space for homogeneous, isotropic materials with no
body forces. The partial differential equation is classified as hyperbolic
leading to an initial value problem.
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Finite Element Method in Three-Dimensional Cartesian Space

37. The finite element method is a numerical analysis technique used
to approximate the response of a continuous body by dividing the domain of
interest into a discrete number of subdomains. Boundary conditions and
external forces are imposed at discrete nodes where the displacements are
calculated. Results can be interpolated at any point in the body through the
use of interpolation functions. In general, as the subdomains become smaller,
the solution converges to that of the continuum. Many textbooks describing
the finite element method are available with different sets of notation. The
notation used below most closely follows that used by'Zienkiewicz and Taylcr
(1989} and Bathe (1982) although some minor additions and modifications have
been made. .

38. There are two basic approaches to formulating a problem using the
finite element method: the (direct) displacement method and the variational
method. The displacement 7cthod is the most popular and most easily
understood procedure (7 :nkiewicz and Taylor 1989) and was selected for this
study. The displaceuwent method can be easily used with Fourier superposition
analysis in the frequency domain for the solution of elastodynamic problems.
Displacement method

39. Displacements are specified as the unknowns for the displacement
method. Letting u represent the vector of displacements (u, v, w) at any
point (x, y, 2) and U the vector of displacements at the nodes of a finite

element:

u=NUT (26)

where N is the matrix of interpolation functions. The strains at any point

can be represented as:

e=Eu (27)

where ¢ is a vector with six strain components:

34




= 28)
s e (
Yys
YXS

and
a3
3 0 0
d
0 0
3y
3
0o o
z- 3z (29)
9 9 ,
oy Ox
d 0
0 %
d d
2z ° x|
Then,
e=Eu=ENU=BU (30)

where B is a matrix containing the corresponding derivatives of the
interpolation functions.

40. The Correspondence Principal allows the constitutive model to
represent hysteretic behavior using complex moduli for solutions in the
frequency domain. Superposition is valid because of this linear
representation. A frequency domain solution implies that the excitation

function must be periodic. Calling D the complex constitutive matrix of the

material:

1-v v v 0 0 o ]

v 1-v v 0 0 0

v v 1l-v 0 0 0

1-2v
.2 | o o o 0 0 3
D 1-2v 2 1-2 1)
) A A
0 0 5
o 0o o o 0 1'22"
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The stress vector at any point is:

g = D e (32)
with:
ox
a)'
P ;’:y (33)
ty.
tx:

41, Applying the principle of virtual work (for derivation refer to
Appendix B) and making use of the above relations, the equations of motion

become:

MO +xUO=pP (34)

where M 1is the mass density matrix defined by:

u=fvpn'fudv (35)

where
p = mass density

and K 1is the (static) stiffness matrix defined by:

x=fva"n3dv (36)

42. The relationships for nodal acceleration, U , and displacement,
U , are derived by imposing the steady state condition. First considering the

load vector:

P =P eivt 37

where

P - vector of amplitudes of nodal forces
w = frequency of excitation (rads/sec)
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Then the displacement vector, U , can be written as:

U =T eivt (38)

where
U = vector of amplitudes of nodal displacements

and the velocity and acceleration vectors are:

U=-iw0elst (39)

T = -020 el (40)

By substituting Equations 38 and 40 into Equation 34 and canceling the

exponential term, the equations of motion are:

(K-w*M)T=80=PF (41)

where 8 is the dynamic stiffness matrix of the system defined by:

8=K-w’M (42)

The dynamic stiffness matrix is complex and a function of frequency.
Equation 41 can be solved using matrix operations incorporated in various
solution algorithms ("solvers").

43. The formulation to this point is specific to steady-state,
frequency-domain analyses for homogeneous and isotropic materials. The
formulation is applicable to analyses in one, two, and three dimensions and
any element configuration. Henceforth, the formulation will be specific to
the remaining assumptions and requirements of this study.

-D finjte element

44, A three-dimensional, isoparametric, finite element with 16 nodes
was chosen to implement the condensation formulation described in the next
section. A schematic of this finite element are shown in Figure 9. Each node
has three degrees of freedom. The element has 8 nodes on the two x-z planes

-- one at each corner and one at the mid-points on the edges -- and six nodes
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on the x-y and y-z planes. Therefore, quadratic interpolation exists in the
x- and z-directions ( § and { 1in isoparametric space) and linear
interpolation exists in the y-direction ( % ). One of the variables in the
formulation is the discretization distance in the y-direction for the Fourier
expansion, Ay , which can be varied without need to rediscretize the

geosystem.

Figure 9. Specialized 16-node isoparametric finite element

45. Equations 35 and 36 can now be stated in more specific terms

using the transformed space:

o [ atonae @)

K- f_’lf_:f_’lnf D B [J] dfdnd( (44)
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where | J | is the determinant of the Jacobian matrix for the 3-D finite
element,

o e erposit

46. Fourier superposition is a three-step solution process for linear

systems that involves a forward transformation into a wavenumber domain, the
calculation of a solution to Equation 41 at a number of increments, anc the
determination of the total solution through an inverse transformation of all
incremental solutions. A time-temporal frequency transform pair of a load

function p are:

plw) = f’: p(t) e-ivt gt (45)
p(t) = 2—11!- f: pl(w) el®t do (46)

Similarly, the distance-spatial frequency (wavenumber) transform pair for

expansion in the y-direction are:

pim = ["ply) '™ ay (47)

p(y) = 5= [ p(m e dm (48)

where
m ~ wavenumber (spatial circular frequen~y) in y-direction

Fourier superposition applied in both the time and y-spatial domains leads to:

pimw) = f_" f"p(y,t) e-ilot-m) gedy (49)
1 >m *e ot~
ply,t) = yyr f_. f__ pim ) et ™ dwdm (50)

The corresponding transformation equation for displacements is:

uly,e) = 57 [Tum ) el dodn (51)
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47. Making the load vector specific to steady-state vibrations with

constant amplitude, the time-temporal frequency transform pair reduce to:

plw) =p (52)

p(t) =D eivt (53)

where P 1is used to represent amplitude which allows Equations 49 and 50 to

be reduced to:

pim, =D f:p(y) ei™ dy (54)
— iat e
Py, v) =5 S L p(m), e™ dm (55)

for a specific w. The corresponding equations for displacements are:

ulm, = Ef" uly) e'® dy (56)
- jut ‘o
uly,t) =T e2n f_- u(m), e '™ dm (57)

Element condensatjon

48. The process of element condensation is the key aspect of the
reduction of computational effort. Element condensation refers to the process
of reducing the number of degrees of freedom by relating points adjacent in
the y-direction using the functional relationship of the Fourier expansion.
The dependent degrees of freedom are then eliminated by expressing them in
terms of the in-plane degrees of freedom. In this case, the degrees of
freedom corresponding to the nodes outside of the x-z plane are eliminated.
Each node in the two-dimensional mesh maintains three degrees-of-freedom.

49, Consider an arbitrary discretized model of a physical system that

meets the requirement of uniform geometry and material properties in one
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direction such as that shown in Figure 10. The coordinate system is chosen to
have the z-direction positive down and the other in-plane direction to be x.
Consider three vertical planes separated by a distance of Ay at some arbitrary
location along the geosystem. The 3-D dynamic stiffness matrix for any
element between the slices, such as that shown in Figure lla, is calculated
using Equations 43, 44, and then 42. The dynamic stiffness matrix for a

single element can be partitioned as:

8 - [ e f"] (58)
531 53

where the subscripts "1" and "2" refer to the degrees of freedom on the

positive and negative face in the y-direction, respectively. The assemblage

of the dynamic equations for any two finite elements adjacent in the y-

direction, as shown in Figure 11b, can be reduced by canceling the time-

dependent exponential term on each side to:

— —
8;; 83 0

-4
-

(39)

— =t —— =
831 822+811 832

={K=1K=]]
1}
wi ol vl

a
n

0 821 832

where

"+" denotes element in positive y-direction (from Ay to 0)

"-" denotes element in negative y-direction (from 0 to -Ay)
"a" denotes the degrees of freedom on face a (i.e., at y= 0)
"b" denotes the degrees of freedom on face b (i.e., at y= +Ay)
"c" denotes the degrees of freedom on face ¢ (i.e., at y= -Ay)

50. Using the Fourier expansion described earlier (Equations 54 and

56), forces and displacements are expressed as:

B (m = f: Ply) ei™ dy (60)

& (m = f_: O(y) ei™ dy (61)

where $ and O are used to represent vectors of nodal forces and
displacements, respectively, in m space. Rewriting Equation 59 to incorporate

the Fourier expansion of loads:
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Faceb

Figure 10. Example of a physical system for purposes of
extracting a slice of finite elements
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Face 1
Face 2

(a)

Figure 11. Condensation of finite elements adjacent in
out-of-plane (y) direction
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8u B 0 (@ (m B, (m)
831 813+8;; 852 8,(m) } = {8, (m) (62)
8, (m) B, (m)

0 B8;n B8
In the transform (m) space, the displacements on the "b" and "c" faces are
related to the displacements on the "a" face at any instant in time by the

simple relationships:

8, (m) = T, (m) e-imav (63)
B, (m) =T, (m) e*may (64)

Defining:
B(m) =5, ey + (5, +35,,) +5,, el2d (65)

Equations 63 and 64 can be substituted into Equation 62 to get the system of

equations for the equivalent two-dimensional system shown in Figure llc:

8(m) O, (m) =, (m) (66)

This formulation, then, allows the three-dimensional element with a two-
dimensional geometry to be represented with an equivalent two-dimensional
element. The representation of surface loads are described below.
sSurface loads

51. This study focuses on the preparation for analysis of waves
propagating from a synthetic, 3-D source. Vibroseis trucks generally use a
rectangular platen with plan dimensions on the order of 1 by 2 m ( 3 by 7 ft).
At large distances from the source and with large wavelengths, this area
approaches a point source. Therefore, the horizontal distributions of the
load considered for this study were a point load and a rectangular load of
various sizes. A point source is not a physical reality and is difficult to
replicate with finite elements. Kang (1990) used a point load and circular

load as these were appropriate vibration source for pavement systems.
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52. The formulation for equivalent nodal forces in the x-direction
for point and rectangular loads are described below. The application of a
point source in the finite element method is trivial. The formulation of
equivalent nodal forces for rectangular loads involves integration of the

force distribution in light of the interpolation function:

3=fxﬁ'5dx (67)

For the endpoints of the 8-noded, 2-D element where z = 0 (nodes 1 and 6),

this reduces to:

- 430 - 39

1o (B2 @

where the subscript for P refers to the node number and:

§; = right-most extent of load in isoparametric space
£, = left-most extent of load in isoparametric space

and

a2
1

Pe = '%(%53 * %E’) 2

For the midpoints of the 8-noded element, this reduces to:

v - 3(e- 2| (B2
The distribution of forces applied to the platen is assumed to be uniform and
therefore the integration reduces to simple algebra. For example, a
continuous, uniform load with a total magnitude of unity (p - 8x = 1), the
equivalent nodal forces are 1/6 for the endpoints and 4/6 for the midpoint.
53. The process of converting loads from the time-spatial domain to
the frequency-wavenumber domain is depicted in Figures 12 through 14. 1In
Figure 12a, an arbitrary rectangular pressure is applied vertically at the
ground surface. The distribution in the x- and y-directions are shown in

Figures 12b and 12c, respectively. The distribution in the y-direction is
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Figure 12. Distribution of arbitrary rectangular pressure
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c. Profile at x = 0

Figure 13. Distributions of nodal forces resulting from
arbitrary rectangular pressure
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Distributions of Fourier expansion of loads resulting
from arbitrary rectangular pressure
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assumed to be symmetric to reduce the number of operations by nearly a factor
of two. The equivalent nodal forces in the finite elements on the x-z plane
are shown in Figure 13. After the Fourier transformation in the y-direction,
the distribution of forces in the x-m space is shown in Figure 14.
e-d displacements
54. The real-valued, time-dependent displacements may be obtained
from the calculated complex displacements, U. If the forcing function is of

the form sin eot, then:

u; = A;SIN(wt) + B,COS(wt) (71)

If the forcing function is of the form cos ot, then:

u; = A,COS(wt) - B;SIN(wt) (72)

where

A, = real part of complex displacement amplitude at node i

B, = imaginary part of complex displacement amplitude at node i
For the analysis of the vibrations produced by a Vibroseis, Equation 72 is
more appropriate. The phase angle of motion, ¢ , is calculated by:

¢ = tan" (%:) (73)

Computer Implementation

55. The system of computer programs written for the solution of the
dynamic displacements in planar geosystems includes (pre-prccessing) mesh
generation and visualization routines, the primary finite element code, and
visualization (post-processing) routines to analyze the results. Computer
codes were written using the Fortran 77 and C computer languages running on
the U.S. Army CRAY Y-MP supercomputer and Silicon Graphics workstations
supported at WES. A listing of FORTRAN computer code vib3 is contained in
Appendix C. A sample input and corresponding output file are provided in
Appendices D and E, respectively. Basics of the implementation in the primary

computer code, vib3, are presented below.
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Computer code vib3

56. The function of vib3 is to read in the parameters defining the
mesh, material properties, load, and Fourier expansion parameters and solve
for the corresponding complex displacements. This program evolved from an
unnamed finite element code used for instructional purposes in a graduate
engineering course entitled "The Finite Element Method" taught by
Prof. John Tassoulas in 1988 at the University of Texas at Austin. The basic
framework of variable storage in a massive single-scripted array and solution
using a frontal solver were kept as well as a subroutine to modify element
stiffness for boundary conditions. The remainder of the subroutines were
written specifically for this study.

57. The interaction of subroutines in vib3 is represented using the
flowchart presented in Figure 15. The subroutines are called consecutively
from the MAIN program. MAIN contains one DO LOOP to allow for the analysis of
multiple frequencies and a DO LOOP that creates the matrices and solves for
displacements at each increment of m. General descriptions of each of the
subroutines listed are provided below.

Input of mesh and problem parameters

58. The subroutines MAIN, DATAIN, and ELP3D read information from the
input file regarding system geometry, boundary conditions, material
properties, Fourier expansion, and code operation (input/output). At first,
MAIN is used to read a problem title and basic variables that affect the
allocation of array space and define the scope of calculations. Once the key
parameters have been read and the array lengths are established, the allocated
program memorv for the real and complex arrays are checked prior to execution.
Then, subroutine DATAIN is used to read the 2-D nodal coordinates (the third
dimension, Ay, is constant) and boundary conditions, the nodes of primary
interest for analysis, and the element connectivities and material
correspondence. Boundary conditions in the x- and z-directions are specified
in the input file. Subroutine ELP3D is used to read the material properties
of each of the materials designated and calculate the components of the
constitutive matrix (Equation 31).

Load vector

59. Subroutines YLOAD and XLOAD are used to define the extent of the

load distribution and create the load vector, P . The option for either a

point load or a rectangular load exists. The magnitude of the load is an
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Figure 15.
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Flowchart of primary subroutines in vib3
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input value and is assumed to be constant over the specified area and
symmetric about the x-z plane (y = 0 axis). This assumption reduces the time
to solution by a factor of two by taking the solution of displacements in the
+m direction and mirroring them in the -m direction in the wavenumber space.

60. The subroutine YLOAD is called first because these operations are
independent of most other operations and must be done before the Fourier
expansion. This subroutine reads the magnitude of the load and horizontal
extent from the point y = 0. The distribution is stored in terms of a
discretized set -- a single value of magnitude at each Ay within the extent of
the load distribution. This set is used directly by the Fourier transform
algorithm described later. Next, the subroutine XLOAD calculates the vertical
nodal forces using Equations 68 through 70. The extent of the load is
specified by the smallest and largest values of x. Algorithms determine the
affected elements and nodes.

61l. An option to use normalized loads is available which is wvaluable
for validation study and parametric analysis. Comparisons between results
from different load geometries and configurations are aided by normalizing the
load thus producing tne magnitudes of displacements that are independent of
the distribution of the load. Normalization refers to producing a total lcad
(pressure times uniformly loaded area) of unity. This option is enacted by

two steps:

a,. Specifying a magnitude of load that equals the inverse of the
width of the load in the x-direction, and

b, Using a single FORTRAN statement in subroutine YLOAD that
divides the magnitude by the number of non-zero pre-expansion
terms in the y-direction.

The statement in subroutine YLOAD is included in the computer code but must be
switched on and off manually through the use of a FORTRAN comment statement.

Fourier expansion

62. A Fourier expansion of the distribution of load in the
y-direction follows the specification of the load parameters in subroutine
YLOAD. The inverse transformation of displacements to the spatial domain is
conducted after the solution process is completed for each value of m. The
3-D load vector is created after the forward transform by multiplying the
equivalent nodal forces (from XLOAD) and the m-independent, complex transform

(from YLOAD and FOUR2). This vector is dependent on the value of m so this
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operation is performed within the DO LOOP on m. The multiplication of these
values creates a load distribution that can be visualized by looking at
Figure l4. Nodal forces on elements outside the extent of the load are zero.

63. The Fourier transformations are performed using the Fast Fourier
Transform (FFT) algorithm proposed by Cooley and Tukey (1965) in the
subroutine FOUR2 and other dependent subroutines established in the 1970's at
the Massachusetts Institute of Technology. The discrete values of the

transform are:

_ N-1 il
Bim,) =4y ¥ plype™ (74)
. 3=0
where
n=-0,1, 2, ..., N-1
and:
N~1 ami
plyy) = 28 3 Bim)e (75)
* n=o
where
j=0,1, 2, ..., N-1
and
N = number of sampling points (power of 2)
yy = j-ay
YIOT = N -Ay
m, =~ nAm
Am = 2x/YTOT
Element stiffr.ss

64. The finite element stiffness and mass matrix are created through
the use of subroutines DNIS016Y and STIFF. Subroutine STIFF calls subroutines
IS016, MODIF, and CONDENSE. Subroutine DNISOl6Y is used to calculate the
interpolation functions and their derivatives at each of the integration
points. Since the same finite element is used throughout and these values are
independent of Cartesian coordinates, this routine is called once. Subroutine
STIFF collects the nodal coordinates, constitutive matrix, and other
parameters for the element being considered and calls the subroutine IS016 to

perform the numerical integration and convert the static stiffness matrix into
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a dynamic stiffness matrix. Subroutine MODIF is called by STIFF to modify the
stiffness matrix and load vector in the case of rigid boundary conditions.

65. A numerical integration technique is used to calculate the 3-D
dynamic stiffness matrix for each finite element. This technique begins with
a transformation of the spatial coordinates from Cartesian space
x = f (x, y, z) to a normalized coordinate systemx = £ ( & , n , {)
centered within the range of integration (refer to Figure 9). Integrals are
replaced by summations computed at specific (integration) points and are
scaled by appropriate weighting factors. Equations 43 and 44 used to

calculate mass and stiffness are rewritten as:
3 2 3
=3 3y }'ki (WTH |3] )5 (76)
1 )

3 2 3

x-zl:zjjg(n*nnlal)m 7

66. Eighteen integration points were used to derive the element
stiffness. The exact location of these points are defined by coordinates of 0
and + 3/ /5 1in the x- and z-directions and with + 1 / /3 for the
y-direction. The weighting factors are 8/9 for the midpoint, 5/9 for the
endpoints, anc¢ 1 for the y-direction (Stroud and Secrest 1966).

Condensation

67. The 3-D dynamic stiffness matrix and load vector for the element
are condensed to the equivalent 2-D matrix and vector, respectively, using
Equation 65 as coded in subroutine CONDENSE. The size of the stiffness matrix
changes from 48 by 48 components to 24 by 24; the load vector changes from
48 by 3 to 24 by 3. After CONDENSE, these element-dependent components are
transferred to the solver.

o ve

68. The solution algorithm used is called a frontal solver. This
process involves gathering the dependent equations necessary to determine the
value of a particular degree of freedom. A detailed presentation of frontal
solvers for positive-definite matrices was made by Irons (1970).

69. The solver used for this study, SOLVE, was created and refined
over several years through the efforts of Profs. C. P. Johnson and

Eric B. Becker at the University of Texas at Austin. This solver can
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accommodate symmetric and non-symmetric matrices although the option for non-
symmetric matrices is not necessary when using the displacement-based approach
with elastic materials. The UT solver was modified slightly to allow for the
solution of matrices with complex-valued components.
Other subroutines

70. Other subroutines were written to perform various systematic
operations that ensured conformity and print portions of stiffness matrices
and load vectors. The subroutine SYMSM is used to check the symmetry of the
stiffness matrix at any stage of the calculation and is a useful tool for
recognizing and debugging errors in parameters defining the mesh. A symmetry
tolerance is specified in the input file. The subroutines PRNTRHS and PRNTSM
allow the load vector and stiffness matrix, respectively, for any element and
"m" step to be saved.
Qther options

71. Symmetric problems (in the x-direction) may be solved with the
present formulation to reduce the computation time by greater than a factor of
two. The boundary conditions along the line of symmetry should be fixed in
the x-direction (IBC=1) and free in the z-direction. The load width is now
the half-width with the same magnitude (unless a normalized load is used in
which case the magnitude equals the inverse of the half-width). No other
special considerations are required. Symmetric problems were considered for
validation and parametric analyses as described in the next two parts of this

report.
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PART IV: VALIDATION STUDIES

General

72. Validation studies and parametric analyses were used to prove
that the formulation and computer implementation are sound, accurate, and
stable for the limited problem class to which accurate solutions are
available. The findings of validation studies are not mutually exclusive from
the parametric analyses because the definition of the problems for validation
should conform somewhat to the findings of parametric analyses. The results
of the validation studies are described below; the parametric analyses are
described separately in Part V.

73. The best form of validation consists of comparihg the results
between a subject program and exact mathematical relationships for several
different problems. Comparisons with measured data or prototype testing
provide a constructive means to confirm findings when conducted under certain
controlled conditions. These comparisons are not appropriate as the primary
means of validation, however. Comparisons with other numerical approximations
are even less appropriate for validation. Validation of vib3 through
comparisons with analytical results is possible only for the simplest class of
planar geometry -- a horizontally layered system extending to infinity.
Green’'s function solutions formulated for axi-symmetric problems by Kausel
(1981) were used exclusively. Some minor differences in displacements may
exist between the Green’s function solutions and the 2-D approximations
because the shape of the load is different -- disk loads were used for the
axi-symmetric problem and square loads were used for this study. The same
total area and total load of unity were used to minimize these differences.
The model systems used to validate the computer code are described in the next
section.

74. The validation studies described in this part pertain to
variations in system geometry, material properties, and frequency of
excitation. The dynamic vertical displacements are of primary interest
because they predominate in surface motions caused by vertical excitations.
Moreover, vertical vibrations are normally measured in non-destructive te:ting
techniques such uas the SASW method. Measurements are likely to be made both

perpendicular and parallel to the structure of the system (x- and
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y-directions, respectively). Therefore, the results are presented in terms of
the variations of real and imaginary components of dynamic displacement in
both the x-direction (calculated at nodes on the y = 0 plane) and the y-
direction (calculated at node beneath the centroid of the load and expanded
out in the y-direction). Most comparisons are made at the free (ground)
surface although a few comparisons are also made below the surface. Distances
are normalized to the wavelength of Rayleigh waves, A , for Model 1. (Note
that the definition for the Greek letter A has changed from that used
previously.) The displacements are oriented positive-down to be consistent
with the convention used in the formulation and correspond to the top surface
(z = 0).

Test Models d Discretization Schemes

75. Four hypothetical models were created for validation studies and
are shown with unit-less dimensions in Figure 16. These models were designed
to represent ideal site conditions of horizcntally layered soil overlying rock
and realistic material properties (considering units of ft-1lb-sec) while
conforming to limitations of the analytical solutions. All models have the
same total height (1000 units) and are assumed to overlay a rigid material.
Model 1 is the simplest system -- a homogeneous medium overlying rock. The
range of material properties for this medium used in the following comparisons
are shown in Figure 16. The other three models consist of four homogeneous
layers overlying rock with different combinations of stiffness.

76. A domain with dimensions 1000 units high and 2500 units wide was
chosen, along with the material properties and frequency of excitation, to be
large enough to ignore the effects of reflections and correspond to about 34
high by 8i wide. Three different finite element meshes were created to
represent this domain and are shown in Figure 17. The domain was discretized
using 4 by 10, 8 by 20, and 16 by 40 square elements. The size of these
elements corresponds to 0.8%, 0.41, and 0.2, respectively. A plane of
symmetry at the left boundary, defined by x = 0, was utilized to reduce the

degrees of freedom by nearly one-half.
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MODEL 1:

} G=4x10°
1000 Vv = 0.33, 0.40, 0.49
p = 4.00
B = 0.02, 0.05, 0.10, 0.15
7 X\ @ N\
MODEL 2:
G:=4x10§
G= 106 v=04
ro00 .20 G=8x10 - 4.00
* 500 6o 12 x 108 B = 0.05
F 7R 7RSS
MODEL 3:
" G=12x 10?5
125 cerrl Y
=6x10
1000 X o = 4.00
* 500 G=4x10° B = 0.05
RN 78 S
MODEL 4:
-I_ZZF G=85 10
0 =6x1
1000 p = 4.00
+ 500 G=12x10° B = 0.05
’ XN\

Figure 16. Test models used for validation studies
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Figure 17. Discretized models used for validation

studies and parametric analyses
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Analytical Solutjons

77. The Green's function solutions formulated by Kausel (1981) were
calculated with the computer code PUNCH (Kausel 1989) using a personal
computer. The calculated solution approaches the exact solution as the number
of layers increases. The displacements calculated using PUNCH correspond to a
disk load with radius r and total load, P, of 1 ( = prr?) or a point load
with magnitude of unity. The only limitation of PUNCH that impacted the
analysis is that a maximum of 30 layers can be used. The effect of this
limitation was examined using Model 1 and is reported below using a frequency
of excitation of 3 Hz, system damping of 2 percent, and a radius of load of
5.64 (total area of 100).

78. The effect of the number of layers on Kausel'’'s solution for
Model 1 was evaluated using four different layered systems (4, 8, 16, and 24
layers). The variation of the real and imaginary components of the complex
dynamic displacement (refer to Equations 71 and 72) with (horizontal) distance
(in this case radial) from the center of the load are shown in Figure 18 for
these four cases. The maximum horizontal distance considered, 5i, corresponds
to about 1500 units. The results plotted in Figure 18 indicate that the
number of layers can have a significant impact on the amplitude of both
components. As the number of layers increases and displacements approach the
true solution, the amplitudes increase. The peaks also tend to occur closer
together as the true solution is approached.

79. The results have not completely converged with 24 layers, but the
changes from 16 to 24 layers are small, especially at distances less than
about 4. It appears that 24 layers is an adequate number to represent this
system with the realization that the exact solution is likely to have slightly
larger displacements at the peaks and possibly a more compact waveform.
Twenty-five layers were used to represent Model 1 for further comparisons and
validation to provide a uniform thickness of 40 units for each layer.

80. The effect of the radius of the load, r, was also examined while
keeping the total load equal to unity. A point load and a distributed load
with normalized radii of 0.036A, 0.0721, and 0.1441 (areas of 400, 1,600, and
6,400, respectively) were used and the results are shown in Figure 19. The

dynamic displacements are nearly equivalent for the four cases. Perceptible
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differences exist only for data corresponding to the largest radius,

r = 0.1444. Therefore, it is safe to conclude that the radius of the load has
little effect on the dynamic displacements normalized to the total load for
ratios of r £ 0.10A. A radius of loading equal to 0.0181 was used for the
remaining comparisons which essentially represents a point load.

8l1. The effects of varying Poisson’s ratio and the damping ratio on
the dynamic vertical displacement were examined using Model 1 to facilitate
some of the comparisons made later for parametric analyses. The effect of
varying Poisson’'s ratio from 0.33 to 0.49 is shown in Figure 20. The general
trend of the three relationships is that the peak values of displacement
decrease and the distances between peak values increase as Poisson’'s ratio
increases. The effect of varying damping ratio from 0.02 to 0.15 is shown in
Figure 21. The general trend of the four relationships is that the peak
values of displacement decrease as damping ratio increases; there is little
change in the radial distance at which the peak values of real and imaginary
parts occur.

82. The comparisons shown in Figures 20 and 21 bring about an
important consideration for geosystems -- Poisson’s ratio and damping ratio
are two material properties that are difficult to determine for soils.
Oftentimes, these two properties are estimated using empirical relations or
data bases of measured values. Estimated values may possibly be different
from true values which is a potential source of error. Errors in estimating v
and damping ratio can be significant for reasonable ranges of these
properties. Variations in v affect both the amplitude and location of peak
amplitudes of the real part whereas variations in damping ratio affect

primarily the amplitude.

Element Performance to Static Loads

83. The specialized 3-D finite element was evaluated for the ability
to represent static response to various loads. This evaluation was
accomplished by comparing the results of two approaches with analytical
solutions. One approach was to place the algorithms defining the element
stiffness into a static finite element computer code and examine the response

of a cantilever beam. The other approach was to use vib3 with a point load
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acting on a homogeneous body with the frequency equal to 0. Each of these are
described below.
Static finjte element code

84. A static finite element code was used to evaluate the specialized
finite element. This program evolved from an unnamed finite element code used
for instructional vurposes in a graduate engineering course entitled "The
Finite Element Method" taught by Prof. John Tassoulas in 1988 at the
University of Texas at Austin. A cantilever beam was discretized with 2, 5,
10, 40, and 80 elements and subjected to tension, compression, and shear-
induced bending loads. The effect of element shape was also evaluated by
considering square, rectangular, parallelogram, and trapezoidal
configurations. Comparisons between calculated and closed-form solutions for
displacements and stresses were good and indicate that the algorithms defining
the element stiffness are accurate for conditions of static loading.

Dynamic code

85. The static vertical displacements calculated using vib3 with
Model 1 at depths of 0, 125, 250, and 500 units (0.0A, 0.40X, 0.80i, and 1.641,
respectively) are shown in Figures 22 through 25 using the finest of the three
meshes. The comparisons with Green's function solutions in the y-direction
are excellent for the real part and very good for the imaginary part at
distances slightly removed from the point of load (greater than 100 units).
Comparisons are similar at all depths. The imaginary part should be zero at
all distances but vib3 produces non-zero values at locations close to the
load. The less favorable comparisons near the point of loading are common
when modeling a point load using the finite element method. These errors are
normally minimized through mesh refinement near the point of loading but
accuracy close to the source is not of interest for this study. The variation
of vertical displacements in the x-direction calculated using vib3 represent
the exact same relationship as the variation of vertical displacements in the
y-direction at all depths except z = 0. The real part at distances less than

150 units oscillates considerably about the other solutions.

Approximations for Dynamic loads

86. The computer code vib3 was used to calculate dynamic

displacements for each of the four models described previously. These results
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were then compared with the Green’'s function solutions presented in the
previous section. All four models were discretized using the finest mesh. A
square load with plan dimensions of 5 by 5 centered about the origin with a
total load of 1 w.. applied at a frequency of 3 Hz. Th. wavelength for
Rayleigh waves is then about 313 and the dimension of the square elements are
62.5 units or about 0.2X. The material properties are listed in Figure 16.

87. The parameters defining the condensation and Fourier expansion
for the validation were selected based on the findings of Kang (1990). Values
of Ay = 0.052 and the number of Fourier discretization points, NM, equal to
256 were fixed for the comparisons and the finest finite element mesh was used
unless otherwise specified. This provided for a discretized extent (in the
y-direction) of -134 (z 6.44), slightly less than the total extent discretized
in the x-direction (+ 81). Displacements at distances up to 5i, or about 1500
units, are used for comparison because the amplitudes are rather small beyond
this distance.

Model 1: Homogeneous system

88. The results for Model 1 at z = 0 and z = 0.40A (125 units) are
shown in Figures 26 and 27, respectively, and compared with the Green's
function solutions. The variation of the real part of the complex
displacements in the y-direction compares favorably to the Green's function
solution. The variation of the imaginary part in the y-direction closely
follows the Green's function solutions. Both parts of the calculated
solutions compare more favorably at distances less than 31, about half the
distance expanded in the y-direction. The comparisons are also slightly
better at z = 0.44 as compared to z = Q. The variation of vertical
displacements in the x-direction at z = 0 and z = 0.40) generally compare
favorably. These displacements differ somewhat from the variation in the
y-direction with the imaginary part deviating more.

89. The effects of varying Poisson’'s ratio and damping ratio on the
displacements for Model 1 were also examined and the results are shown in
Figures 28 and 29, respectively. A comparison between the calculated and tl.e
Green's function solutions in Figure 20 for variations in v indicates that the
2-D approximation provides a reasonable means of representing different v.

The best comparison is for v = 0.40 and the poorest comparison is for
v = 0.49. Generally, the imaginary part compares well and the real part has

amplitudes that are consistently too small. The 2-D approximation provides an
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accurate means of representing damping as seen by comparing relations in
Figures 21 and 29. The accuracy of calculated displacements improves somewhat
as the damping ratio increases. The results for 5 percent damping compare
much better with the Green’s function solution than the results for 2 percent.
Both 2 and 5 percent damping levels are used for comparisons hereafter.
mod . Stiffness va with depth

90. The results for Models 2, 3 and 4 are shown in Figures 30 through
32 and compared with the Green's function solutions. Total distances are used
rather than normalized distances since considerable dispersion is expected.
The results for vertical displacements in the x- and y-direction are nearly
equivalent to the Green's function solutions except At the first peak in the

real part for all three cases.
Conclusions

91. Comparisons made between vertical displacements calculated using
vib3 and Green's function solutions (Kausel 1981; Kausel 1989) for the simple
case of layered axi-symmetric geosystems suggest that the formulation for the
specialized element and the implementation in vib3 are sound, accurate, and
stable. Comparisons were made for static and dynamic loads and for reasonable
ranges of Poisson’s ratio and damping ratio. Both of these factors were found
to have significant effect on dynamic displacements which emphasizes the
importance of obtaining adequate values. The calculated displacements were
shown to be more accurate as damping ratio was increased from 2 to 5 percent.
The variations of dynamic vertical displacements in thie x- and y-directions
generally differ reflecting differences in interpolation orders, spatial
discretization, and possibly other effects. More specific examinations of

these differences are contaired in Part V.
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PART V: PARAMETRIC ANALYSES

92. Parametric analyses were conducted to assess the sensitivity of
the formulation and computer code vib3 to anticipated ranges of system
variables. Calculations were made using Model 1 and the finest mesh (refer to
Figures 16 and 17) except in the case of examining sensitivity to mesh size.
Green’s functi.on solutions calculated using PUNCH (Kausel 1989) and presented
in Part IV are used for comparison. Some minor differences may be expected
for comparisons between the Green’s function solutions and the 2-D
approximations since the shape of the load is different; the same total area

(and load) were used to minimize these differences.

Effect of A

93. The effect of the spatial increment of discretization in the
y-direction was evaluated by comparing the results using three values of Ay
between 0.054 and 0.20% (0.05X used for validation in Part IV). The number of
FFT points, NM, was also varied to keep the total discretized distance in the

y-direction, YTOT, constant. This distance is defined by:

YTOT = NM - Ay (78)

Keeping YTOT constant serves to isolate the effects of Ay. The dynamic
displacements for each Ay are presented in Figures 33 through 35 along with
the Green's function solution. The variation of vertical displacements in the
y-direction among the values of 4y are compared in Figure 36.

94. The large difference among rela.ionships presented in Figure 36
indicate that Ay has a significant effect on the ability of vib3 to accurately
calculate dynamic displacements. Comparisons between the calculated
displacements and Green’'s function solutions are favorable when Ay < 0.10A
althougl some improvement is noticeable by decreasing Ay to 0.05i. These
results are consistent with Kang'’s (1990) who recommended that Ay < 0.10A.

The results for Ay > 0.20)1 are considered to be too inaccurate. The
calculated variations of vertical displacements in the x-direction are very
similar for all Ay which suggests that the solution in the x-direction is

insensitive to Ay within tne range of values considered.
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95. The parametric analysis of Ay with respect to A indirectly
addresses the effect of frequency of excitation on the results. For a
homogeneous system (with constant stiffness), A is inversely proportional to

frequency. So, the spatial increment Ay can also be put in terms of

frequency:
\'
where

V = phase velocity
f = frequency (Hz)

The phase velocity can be taken equal to the Rayleigh wave velocity as a first
approximation. Similar relationships to Equation 79 have been observed in

other types of discretized solutions for dynamic loading.

Effect of Extent of Fourier Expansion

96. The comparisons for the effect of Ay were made using a constant
value of YTOT. The effect of varying YTOT was examined next. The total
distance was varied at three values between 3.21 and 12.84 (corresponding to
+ 1.6 and + 6.41, respectively) by keeping Ay constant at 0.051 and varying
NM between 128 and 512. The dynamic displacements for each YTOT are presented
in Figures 37 through 39 along with the Green's function solution. The
variation of vertical displacements in the y-direction for the three values of
YTOT are compared in Figure 40. The results for the vertical displacements
are very good for the case of YIOT = + 12.84. The results for YIOT = + 6.42
are also good, especially for distances less than 34, and the results for
YTOT = + 3.2)1 are considered to be too inaccurate. A threshold of 104 is
likely to be appropriate.

97. The variation of vertical displacements in the x-direction
improves as YIOT increases. The most significant improvement occurred as YTOT
increased from + 3.2 to + 6.412. The solution in the x-direction was shown to
be independent of Ay so the dependence can be attributed to either NM or YTOT.
The dependency is most likely caused by YTOT resulting from reflections off
the free end(s) in the y-direction. Less reflected energy returns to the
y = O plane as the total discretized length in the y-direction increases. The

threshold for YTOT defined for the solution in the y-direction appears to be
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suitable for the solutions in the x-direction based upon the results shown in

Figures 37 through 39.

Effect of Element Size

98. The effect of varying the size of the finite elements on the
dynamic displacements was determined by using the three different meshes shown
in Figure 17. The values of Ax (= Az) corresponding to these three meshes are
0.204, 0.40A, and 0.80A. The vertical displacements for the finest mesh was
presented previously in Figure 26 ana the displacements for the other two
meshes are shown in Figures 41 and 42 along with the Green’s function
solution. The results for the variation in the y-direction for the three
meshes are compared in Figure 43. ‘

99. The variation of vertical displacements in the y-direction

ompare well with the Green’s function solutions except for the coarsest mesh
\4 by 10 elements). The results for the coarsest mesh are unacceptable. The
finest mesh produces peak values of displacement slightly greater than the
Green's function solution and the original mesh. (This solution may be more
accurate than the Green’'s function solution which had not entirel, converged.)

100. The variation of vertical displacements in the x-direction also
compare well with the Green's function solutions except for the displacements
corresponding to the coarsest mesh which are unacceptable. The solutions in
the x-direction are generally different from the solutions in the y-direction
and deviate slightly more from the Green's function solution. The real part
of dynamic uisplacements for the finest mesh shown in Figure 26 has an
anomalous inversion at the first peak which tends to occur only for
displacements in the x-direction calculated using the finest mesh.

101. The variations of displacements in both the x- and y-direction
are dependent on the discretization in the x-direction. The dimensions of
finite elements with quadratic interpolation functions can be 0.40% although
some improvement is expected as Ax is decreased further. This value is
consistent with the conclusion of Kang (1990). A better threshold is probably
equal to 0.304.
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Effect of Width of load

102. The load width in the x- and y-directions, XLOAD, ranges from a
point load to + 0.064) (80 by 80 in total plan dimensions at 3 Hz). For all
practical purposes at these distances and depths, these loads are essentially
point loads. The dynamic displacements for each condition are presented in
Figures 44 through 47 along with the Green’s function solution. The results
for the variation in the y-direction for the different load widths are
compared in Figure 48.

103. Little noticeable effect is evident as XLOAD is varied over the
specified range. The results for the largest width considered (& 0.0641) are
slightly different from the other three sets and the Green's function
solutions shown in Figure 19. A threshold of load < # 0.104 appears to be
reasonable to maintain good accuracy.

104. The small difference between the results for the point load and
the smallest square load is somewhat surprising. Kang (1990) noticed a larger
difference and researchers have recognized the difficulty in calculating an
accurate distribution of displacements from a point load using the finite

element procedure without a refined mesh in the vicinity of the load.

Computational Effort

105. The amount of time necessary to run the program with different
system parameters was reviewed. The two parameters considered to have the
greatest effect are the number of FFT points, NM, and the number of degrees of
freedom, dof. (Recall that the equations are solved for only half of the NM
and the results mirrored prior to the inverse Fourier transform.) Comparisons
of user CPU (central processing unit) times versus NM are shown in Figure 49,
The three finite element meshes described earlier were used to provide a range
in degrees of freedom. The solution times are of the same order as NM (linear
relationship) for a fixed number of dof. The slopes of these lines range from
1.3 to 26. Using the relationship representing 6099 dof as an example, the
increase in time to raise the total NM from 64 to 128 is 64 x 26 = 1664 sec.
Comparisons of user CPU times versus dof for various NM are shown in
Figure 50. The relationship is slightly non-linear for a fixed NM; the

exponent of dof is about 1.12 and increases slightly as NM increases.
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106. The amount of time saved in using the present formulation over a
conventional 3-D finite element formulation was estimated by solving the
problem for Model 1 using the commercial software package ABAQUS. Two planes
of symmetry were used such that only a 3-D quarter space was required to be
discretized. A total discretized space of 81 by 34 in plan by 31 deep was
used and the element size was equal to that used in the 8 by 20 mesh
(Ax = Ay = Az = 0.401). A 3-D isoparametric element with 20 nodes (quadratic
interpolation functions in all three directions) was selected. The extent and
accuracy of discretization in the y-direction is roughly equivalent to NM = 64
and 4y = 0.104 which were used with vib3., Free end conditions were used for
non-symmetric boundaries. The calculated results were not of particular
interest. The user CPU time required by ABAQUS to solve for dynamic
displacements was about 2820 sec compared to 370 sec using vib3. A comparison
of times is shown in Figure 49. Moreover, almost 8 Mwords of memory were
required to solve the problem using ABAQUS whereas about 3.6 Mwords were used

by vib3.

Conclusions

107. The proposed formulation as implemented in ti.e computer code
vib3 has been found to be sensitive to the following system parameters: the
spatial increments of discretization in the y- and x-directions ( Az always
set equal to Ax ) and the total length of discretized space in the
y-direction. However, the solutions in the x-direction are independent of Ay.
The results are also moderately sensitive to reasonable ranges of Poisson's
ratio and damping ratio. The solutions are not very sensitive to the width of
the load using reasonable bounds for synthetic loads. The calculated
displacements were again shown to be more accurate as damping ratio was
increased from 2 to 5 percent.

108. The parametric analyses provided guidelines for the selection of
system parameters to ensure acceptable performance. Thresholds generally
confirming the results of findings by others are: Ay < 0.054 and Ax < 0.30a.
Thresholds established as a consequence of this work are: YIOT > + 10A and

XLOAD < + 0.104.
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PART VI: SUMMARY

109. A method to calculate dynamic displacements in 2-D geosystems
produced by a harmonic point or rectangular load has been formulated and
implemented in a two-dimensional finite element computer code and supporting
pre- and post-processing programs that function on the US Army CRAY
supercomputer at WES. This code has been validated with analytical solutions
for the case of axi-symmetric geosystems subjected to static and dynamic
loads. Parametric studies were performed to determine how the accuracy of the
calculated displacements are affected by the various input parameters. All
comparisons indicate that this method is a viable alternative to more time
consuming 3-D numerical solution methods.

110. Pre-existing studies about Rayleigh wave propagation were
reviewed to determine if alternative means are available to calculate dynamic
displacements for the stated assumptions. None of the studies reviewed
provided a solution to solve the stated problem. Some of the experimental
studies provide insight into the propagation characteristics of surface waves
around discontinuities and changes in ground slope. One study by Kausel
(1981) was found to be appropriate to validate the code for the simplest case
of axi-symmetric problems.

111. The formulation involves creating a 3-D dynamic stiffness matrix
and then condensing the components into an equivalent 2-D dynamic stiffness
matrix. The out-of-plane loads are represented by a Fourier expansion and
applied as nodal forces. The solution to the system of equations is made for
each spatial wavenumber and then the inverse Fourier transform produces the
complex dynamic displacements.

112. The 2-D formulation implemented into the computer code, vib3,
has been proven to provide accurate values of static and dynamic vertical
displacements. Validation studies were performed for cases of static and
dynamic loads generally using reasonable values of system parameters. The
effects of static loads were examined in terms of displacement and stress
field for cantilever beams in tension, compression, and torsion using the
specialized 16-node, 3-D, finite element incorporated into a static 3-D finite
element computer code. Calculated values were compared with closed-form
elastic solutions. The displacements produced by static and dynamic point and

square loads were examined for cases of a homogeneous medium and three

103




combinations of four-layered media using vib3 and compared with Green's
function solutions proposed by Kausel (1981).

113. The analysis of parameters necessary to the program indicates
that once threshold values are met, the formulation is stable to variations in
parameters defining the discretization, condensation, and Fourier expansion of
the problem. These thresholds are: Ay < 0.054, YTOT > + 10A, Ax = Az < 0.304
(for quadratic interpolation), and XLOAD < + 0.10A. Additional improvements
may be realized by using even smaller values of Ax, Ay, and Az. Displacements
can be calculated about 8 times faster using the new formulation when compared
to the 3-D finite element code ABAQUS.

114. The results of this study allow engineers to efficiently
evaluate wave propagation for problems of vibration (e.g., effect of vehicular
vibrations on sensitive equipment) and tunnel detection using a relatively
simple representation of the system. Little knowledge about the .athematical

formulation, or even the finite element method, are required.
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PART VII: RECOMMENDATIONS

115. The next step in this research area should be the parametric
numerical analysis of more complex systems and evaluation of dynamic
displacements. This effort will be used to infer the best method and
procedures for field measurements and develop a strategy for formulation of
the inverse model. Following that analysis, calculated values should be
compared with field measurements in real geotechnical systems Ore of the
primary objectives of this comparison is to examine . pical levels of signal-
to-noise ratio and confirm that the desired signal is distinguishable within
the desired range of distance. Other objectives are to measure the frequency
band width of energy produced by a Vibroseis truck and evaluate its effect on
measured signals and to determine the distance beyond which the assumption of

plane geometry extending tv infinity is no longer required.
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APPENDIX A:
STATIC LOADS ON SEMI-INFINITE MEDIA




Al. Closed-form solutions for (static) vertical and horizontal loads
acting on the surface of semi-infinite, elastic media are manipulated to show
the importance of properly formulating a two-dimensional ("planar") problem
subjected to three-dimensional loads. The explicit solutions by Boussinesq
and Cerutti form the basis for this demonstration. The vertical point load
represents a 3-D load and the line load represents the eguivalent 2-D load.
The conventions used for definitions of variables are shovn in Figure A-1.
Solutions presented by Boussinesq and Cerutti for point loads were evaluated
on the plane y = 0 (in-plane solution). Unit-less dimensions are used
throughout; consistent units should be used when involving the equations
presented. (The form of units is shown in square bfackets where F = force.

L = length, and T = time.)

Vertical loads

A2. Boussinesq published explicit solutions for the determination of
stresses and displacements in semi-infinite media caused by a vertical point
load acting at the surface. The medium is assumed to be homogeneous,
isotropic, and linear elastic. The closed-form Boussinesq solutions, as

reported by Gray (1936), for vertical stress, o,, horizontal stress, o,, and

v

shear stress on a vertical plane, t,, , all in the form [F/L?] produced by a

vertical point load are:

3
o®t = 3Pz
2%R3 (A1)
e . -P [-3x2z _ (1-2v)R
ox 2xR3 R? > R+2 (A2)
Pt - 3Pxz?
2nR3 (43)

where

P = magnitude of vertical point load [F]
v = Poisson'’s ratio [-]}

Notice that o,P® and t,P* are independent of material properties; only o/P"
(Equation 2) is a function of a material property, v.

A3. Equations 1 through 3 can be integrated to obtain explicit
solutions caused by an infinite vertical line load as reported by Gray (1936).

The closed-form solutions for a vertical line load acting on the surface are:

A2
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Figure A-1. Definition of variables for point and line load problems

Al




3
oln = 2PZ (A4)

nR*
2
i = ___2,1::‘2 (A5)
2
- __2!::f (46)

where
p = magnitude of vertical line load (F/L]
All three equations presented for line loads are independent of material
properties. Solutions for line loads of finite length can be obtained in the
form of tabulated influence factors by Lysmer and Duncan (i969).
A4. The explicit solutions for vertical point and line loads can be
readily compared by forming the ratios of the respective stresses. The ratios

of stresses acting on a vertical plane for vertical point and lines loads are:

o _ 3P

oF T 4Ep (A7)
or . R [3x2 _ (-2w] e (a8)
o ax*|R' Z(R+2)| D

T _ 3P

—_ e 22 A9

= " ®Dp (49

Notice that the ratios formed in Equations A7 and A9 are equivalent.

A5. The functions defined for the ratios shown in Equations A7 (or
A9) and A8 are plotted as three-dimensional surfaces in Figures A-2 and A-3
and Figures A-4 and A-5, respectively, for different combinations of load to
facilitate comparison. These surfaces are also represented with two-
dimensional contours subimposed with the surface.

A6. The sensitivity of the load ratio, P/p, on the ratio for vertical
stresses can be observed by comparing the surfaces shown in Figures A-2 and
A-3. Two ratios of load are considered: P/p = 50 and 100 [L], which
correspond to one-half and one times the length of the x- and z-axes
(horizontal and vertical distances, respectively) in Figures A-2 and A-3. The
ratio of vertical (or shear) stresses extends from between 0 and 1 at great

distances from the source and approaches infinity at locations near the
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Figure A-4. Ratio of horizontal stresses for vertical point and
li~2 loads for P/p = 100 and v = 0.33

A7




BOUSSINESQ SOLUTION RATIO
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source. For the load ratio of 50 {L] shown in Figure A-2, the ratio
approaches infinity near the surface as the distance to the point of
application approaches zero and approaches 0.38 at a distance of 100. So,
within a range of distance of two orders of magnitude (1 to 100), the vertical
stress for a point load varies two orders of magnitude (point load is 38 times
to 0.38 times the vertical stress for a line load). The calculated stresses
are equal at a radial distance on the vertical plane of 38. For a load ratio
of 100 [L] shown in Figure A-3, the ratio ranges from 75 to 0.75 for distances
of 1 to 100 with unity at a radial distance of 75.

A7. The gradient of the surfaces shown in Figures A-2 and A-3 is a
function of the inverse of the square root of distance, R™°3. The gradien* of
the surface approaches infinity as R + 0. Beyond the point where the ratio is
unity, the gradient is low and approaches zerec as R - P/p. A lower or zero
gradient is desirable for a stable matching of solutions. This suggests that
if a load ratio were to be selected to best represent a point load using a
two-dimensional solution for estimation purposes only, a large ratio of P/p be
used while the radial distances of interest should be slightly less than,
equal, or somewhat exceed the radial distance corresponding to unity.

A8. The sensitivity of v on the ratio for horizontal stresses can be
observed by comparing Figures A-4 and A-5. Two values of Poisson’s ratio were
used: 0.33 and 0.49. The surfaces representing horizontal stresses acting on
a vertical plane indicate that the ratio extends to both positive and negative
infinity. The ratio approaches positive infinity near the surface (as
vertical distance approaches zero) near the point of application (as the
horizontal distance approaches zero), negative infinity as the vertical or
horizontal distance approaches zero, and a finite value between 0 and 1 for
the remainder. The surface has lower gradients as v increases.

A9. It should be clear that the stre ;es acting on a vertical 2-D
plane produced by concentrated (point) loads are much different from those
produced by a line load oriented perpendicular to the analysis plane for semi-
infinite media. The results of numerical analyses that incorporate
assumptions of plane strain to solve 3-D problems can be erroneous if solving

for 3-D loads.

A9
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Al0. Cerutti published explicit solutions to the stresses and
displacements in a semi-infinite medium caused by a horizontal point load.
The closed-form solutions for vertical stress, o,, horizontal stress, o,, and
shear stress on a vertical plane, t,, , produced by a horizontal point load

acting on the surface are:

ot = 3oxz? 0
* 2nR? (A10)
ot = -Ox | -3x? {(1-2v)R? All ‘
x 2nR | R? (R+z)? (A1) }
30x2%z '

where

Q = magnitude of horizontal point load [F]
v = Poisson’s ratio

Notice that only Equation All is a function of a material property, v.

All. Equations AlQ0 through Al2 can be integrated to obtain explicit
solutions caused by an infinite horizontal line load as reported by Poulos and
Davis (1972). The variables of the problem are shown in Figure A-1. The

closed-form solutions for a horizontal line load acting on the surface are:

2

o = 2ZZ (A13)
3

ol® « 2:; (Al4)
2

up - 2z (A15)

where

q = magnitude of horizontal line load [F/L]

None of the three equations presented for horizontal line loads is a function
of material properties.

Al2. The explicit solutions for horizontal point and line loads were
used to show the importance of correctly matching the type of load to the type
of problem. The ratios of stresses acting on a vertical plane for point and

lines loads are:

AlO




oF _ 30
o T Eq (AL6)
ok R [3x® _ (1-2wv)] @
= - = Al7
o 4x? | R¢ (R+z)2] q (A17)
e . 30
e =¥ Al8
B T Rq (M8

The ratios for vertical stress and shear stress are again equivalent and are
also equivalent to the stress ratios for vertical loads (Equations 7 and 9 and
Figures A-2 and A-3). The relation produced from the ratio for horizontal
stresses (Equation 17) caused by the horizontal load is only slightly
different from that for vertical loads (Equation 8) and is plotted in

Figure A-6 for v = 0.33.

All
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APPENDIX B:
DERIVATION OF SYSTEM OF EQUATIONS
FOR THE FINITE ELEMENT METHOD




Bl. The stress equilibrium equations are satisfied through the
principle of virtual work (Zienkiewicz and Taylor 1989). Assuming that small
virtual displacements, 38U, occur at the nodes, virtual displacements within

the element are obtained by:

Su = B 30 (BL)

where
N = matrix of interpolation functions

Corresponding virtual strains are obtained by:

3¢ = B 43U (B2)

where
B -~ matrix of partial derivatives of shape functions

And the virtual strain energy, 8U, is evaluated as:

83U = fvbe"'a dv (B3)

where
eT is the transpose (vector) matrix of e
"v" designates integration over the volume
The external virtual work, 8W, done by the nodal forces, P, and body forces,

b, can be defined as:

W =80T P + fv 8uT b dv (B4)

Applying the principle of virtual work (internal virtual work equals external

virtual work):

dU = OW (B5)

substituting:

fvbz, odv =30TpP + fv $u?b dv (B6)

B2




Through substitution and the use of transpose vectors, the following is

obtained:

&u’Uva' DB dv) U=-30TP 80T [ NTD v (B7)

and

T = T
(fvn nndv)u P+ [ Wbav (B8)
B2. Assuming that the only contribution of the body force is from the

inertial effects and using d’Alembert’s principle:

b=-pt ' (B9)

where
p = mass density
U = are accelerations for Cartesian components

Substituting equation Bl into B9:

b=-pub (B10)

Further substitution leads to:

Uvs’nndv)v-r-([vpn’ndv)ﬁ (B11)
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APPENDIX C:
FINITE ELEMENT PROGRAM vib3




Cl. The following text is a listing of the computer program vib3

written in FORTRAN.

PROGRAM VIB3_4
CCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCC

(o]
4]

Program VIB3 is a finite element code written to solve the
the problem of wave propagation produced by 3-D loads acting
in 2-D soil/geclogic systems. The stiffness matrix for
each 3-D el is d d into an equivalent 2-D
(dynamic) stiffness.

The methodology f- v solving the problem wvas provided by
Prof. Jose Roes--  and Dr. Vincent Kang at the University
of TEXAS at Aust.n as part of their research to solve a
similar problem for pavement systems (completed May 1990).
The basic structure and frontal solver used

were initially provided by Professor John Tassoulas at

the University of TEXAS at Austin for a graduate course on
the finite element method.

The program has been specialized for a 16-node isoparametric
element that is quadratic in the x and z directions and linear
in the y direction (direction of condensation).

At the present, this code is written for single frequency
harmonic excitations. Transient and multi-frequency exci-
tations will require a FPT from the time domain to the
temporal frequency domain.

VIB3_A.F designates Yy requir ts consistent with
batch queue “"prime 4_."

VIR 4.F uses two single-subscripted arrays to store all
massive information (A&C). Indlcies point to the beginning of
various arrays.
This program was last updated on 24 August 1992.
ccccececececececececececececececececececececececececccecccecce
VIB3.F . VIB3.F ‘e VIB3.F e VIB3.F Cen VIB3.F
cceccececececececceccecececececcecececececcececceccecececccecccce
The limitations on the program input are:
Use with 3-D, 16-node slement only
No (static) surface loads (see MODIF)
Zero body forces (see MODIF)
Maximum of 50 (select) nodes (Dim. in MAIN & DATAIN)
Maximun of 3000 nodes for multi-D plotting (4 Mword limit)
Maximum of 10 frequencies of interest
Maximum of 512«NM (Dimension and IND(17))
cceccececececececececececececececececececececcececcceccecccceccecc
VIB3.F BN VIB3.P? Ce VIB3.¥ . VIB3.F Cee VIB3.F
gccececececcecececececcecececcececceccecececcececececececccecceccecccecce

The input parsmeter list (in general) is:

OO0 OO000O00O0O00O0OO0OODOOOODOOOOODO0O0DO00O0DO00ODOO0OODOO0O
N 0A0O00O00000NO0O00NN0ND0NOO0000000N00DN00D0000O0O0O00000000000O000O0O0000O0

Location Variables

MAIN TITLE1l (Up to 50 characters)
MAIN TITLE2 (Up to 50 characters)
MAIN TITLE3 (Up to 50 characters)
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o000 OO0 OO000OO0O00O0OOOD0O0ON0OOOOO0OOOO0OO00OO0O0O00O0OO0O

MAIN INCHECK, INOUT, IPRINT, INPLOT
where: INCHECK=0 check input only
1 full sxscutrion
INOUT=0 minimal output
1 full output
IPRINT=0 no solver information
1 minimal solver info.
=>2 full solver info.
IPLOT=0 no dynamic plot files
1 dynamic plot files
MAIN NN2,NUMEL , NOMAT
MAIN MA
MAIN NF,DY,NM,NSLCT
MAIN (loop) FR (Bz)
MAIN TOLSM(SM)
DATAIN (loop) NODE#, X,Y,Z
DATAIN (Loop) NS,IDIR,IVAR
DATAIR NELX,NELZ
DATAIN (loop) EL#,MAT,ICONN
ELP3D (loop) MAT,G,PR,DAMP,RO
vhere: DAMP (decimal)
YLOAD PMAG,YLDIS
vhere: PMAG*YLDIS=0.5 for normalized
load (toral load = 1)
MAIN XL, XR
cgcececececececececececececececcecececcecececegccececececceccceccc
VIB3.F VIB3.F VIB3.FP VIB3.F VIB3.F
gegcececececececgececeececececececececcecececececceccececececceccccecc
The units for this program are universal. Consistent units
are as follows:
METRIC Ss1
Shear modulus Pa psf
Mass density kg/m**3 (Lb-s®*2) /fr
= slugs/frew3
- pcf/32.17
Displacement ] fe

Damping ratio is in decimal form.
Prequency sust be in Hz.

The following conversion factors are provided for convenience:

wmultiply by to get
psf 47.88026 Pa (N/m**2)
bar 0.00001 Pa
slugs/frtew3 515.3 kg/m**3
fe 0.3048 o

ccecececeececececececececececececececececececcecececcecceccecceccec

VIB3

.r . vVIiRi.¥? . VIB3.P v VIB3.F

VIB3.F

cgcecececececececececececececececececececccecececcececcceccecceccce
Tape (unformatted) Library:

No. Contents
L2212 ) £33 1221221122222 3222211727172 %
7 (TAPEB)
8 Displacement vector (TAPEU)
9 Load wvector (TAPEL)
10 LAS & RAS for solution
12 Original load wvector

C3
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OO0 OO0 O000000O000000000000O000000O0O0000D000O0O00O00

Tape (formatted) library:

15 Real components of select stiffness matrices

16 Imaginary components of select stiffness matrices
20 Primary output file (NTAPEO)

22 Non-zero components of losd vector(s)

23 Input file for dynamic 2-D plotting (dview)

25 Input file for static plotting (y _plot & pltwave)

ccececececececececececcececececcececcececececececcceccecccce
VIB3.¥ VIB3.F VIB3.¥ VIB3.F VIB3.F
cgcececcececececececececececcecececececcecececececcececcecccecceccc

PRIMARY VARIABLE LIST:
(Variables used for solver listed under Subroutine SOLVE.)

A Real/Integer (1-D) array used for most data.
Al 1
c Complex/Integer (1-D) array used for SOLVER

CFOR Wavenumber-domain description of load in y-direction
CRHS Complex RES from dynamic, surface, & body forces
CRHSC Condensed, complex RHS

CSM Complex stiffness matrix (3-D)
CSMC Condensed, complex stiffness matrix (2-D)
cw Complex amplitude of select nodes in z-direction

CWIM Complex amplitude of select nodes for specific im
DAMP Damping ratio (-)
DAMPC Complex damping ratioc

DM Increment of wavenumber m (delta m)

DY Increment of spatisl variable y (delta y)
FACT Factor for inverse FFT

FR Frequencies of interest

FOR Spatisl-domain description of load in y-direction
F2 Conversion factor (radians to degrees)

G Shear modulus (real)

GC Complex shear modulus

ICONN Element connectivity for 3-D mesh

MA Memory allocation for solver

MAT Material type index

RCH NM+2

NDOPE2 No. of degrees of freedom per elem., cond. mesh
NDOFN2 Ko. of degrees of freedom per node, cond. mesh
NDOFT2 No. of degrees of freedom (losd vector), cond. mesh
NELX No. of elements in x-direction, 3-D mesh

NELZ No. of elements in z-direction, 3-D mesh

NF No. of frequencies of interest
NSLCT No. of select nodes

NM No. of m’s for FFT

NM2 Half the NM's

NM2P1  NM2+1

NM2P2 NM2+2

NN Number of nodes, 3-D wesh (l-element thick)
NNE2 Number of nodes per element, condensed mesh
NNT2 Number of nodes (total), condensed mesh
NOMAT Number of material types

NS Nodes of interests

NUMEL Number of elements, 3-D mesh

NUMEL2 Number of el s, densed mesh (=NUMEL)
oM Opersting frequency (rads/sec)

P Surface loads (zero)

PMAG Magnitude of dynamic load

PR Poisson’s ratio

RHS Body forces (real)

RO Mass density

™ Value of @ (real) in DO loop

TOLSM Tolerance for symmetry of stiffness matrices
X Coordinates of nodes (3-D)

C4
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X-coordinate at left ¢dge of load
X~coordinate at right edge of load

c
c

Max. extent of 3-D mesh in x-direction (-XMAX to XMAX)C

S Extent of load in y-direction from y=0

Distance for Fourisr expansion (DY*NM)
Max. extent of 3-D mesh in s-direction (0 to ZMAX)

cgcececececececececececececececececccecececececccecceccecccecccc

DIMENSION IA(70000),A(?70000),1C(200000),FR(10),6NYL(8), IVAR(50)
COMPLEX C(200000),CW(514,3000),CWIM(514)

c XL
[+ xR
[+ XMAX
c YLDI
[+ YTOT
Cc ZMAX
[~

c

c

[

c

[

Dimension changes to arrays C and IC must also be made to
DATA NC, and arrays A and IA in SUBROUTINE SOLOUT.

COMPLEX E1,E2,AI,AIl,CPD
EQUIVALENCE (A(1),IA(1)),(C(1),IC(1))
CHARACTER*50 TITLEL,TITLE2,TITLE3

COMMON

/BIG/ BIG

COMMON /CNTL/ISYM,NUMEL2, IRESOL , KRHS , NTAPEB , NTAPEU ,NTAPEL \MA,

COMMON

IWRT, IPRINT, IERR, NREGP ,NPOSP, NRHSF,
IB,1U,IL,IFB,IFV,IFL MBUY MW MKPF,
MELEM,MFWR ,MB ,MDOF ,MPW ,MLDEST
/CONDS/ NNE2,NDOFN2,NNTI2,NDOFE2,NDOFT2
/FPLAGS/ IND(22)
/INFO/ WN,NOMAT,NF,NSLCT,INOUT, INPLOT
/INTERPF/ AN1D(16,18),DNDXI(3,16,18),W(18)
/MAX/ XMAX, ZMAX
/MESB/ NELX,NELZ
/REALA/ A
/TOL/ TOLSM
/UNIT/ NTAPE,NTAPEO
/WORK/ C

DATA KA/70000/

DATA NC/200000/

DATA NYL/4,8,16,32,64,128,256,512/
CO3333333333333333II333I3333333D3333333333333533333333333>>333>>>>>>>>

Cc
c Constants for FRONTAL SOLVER:
[ ISYM=1: Symmetric stiffness matrix
[+ =2: Unsymmetric resolution inactivated
[ =3: Unsymmetric resolution
[ IRESOL=0: CALL COMPL (lower triangle of stiffness matrix)
[ =1: CALL RESOL (full stiffness matrix)
[ NRHES=0: Resolution with zero RHS
Cc =1: One RHS
Cc =y: | RHS's
[+
c Solver output index-
c IPRINT=0: no solver output
[+ IPRINT=1: gensral output
Cc IPRINT>=2: full information (pivot infor.)
Cc
ISYM=1
IRESOL=0
NRES=1
[+ IPRINT=1
Cc
NTAPEB=7
NTAPEU=8
[
[ NTAPEL 1is used only for NRHS > 1
C
NTAPEL=9
NTAPE=10
NTAPEO=20

!
!
!
!
1
!
1
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1
!
l§

COO333322233233533333 3323333333333 3353535353333 3333333333555 5355553555 355)>
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OPEN(1S,FILE="STIFF_R’,STATUS='UNKNOWN®)
OPEN(16,FILE='STIFF_I',STATUS='UNKNOWN’)
OPEN(NTAPEQ,FILE="QUTPUT" , STATUS="UNKNCWN' )
OPEN(22,FILE="LOADFFT’ ,STATUS='URKNOWN')
OPEN(23,FILE="dplot_2d.in’,STATUS="UNKNOWN')
OPEN(25,FILE='plot.in’,STATUS="UNKNOWN')

Basic information about the analysis

Qa0

NDIM=3
MNNE=16
MNDOFN=3
MDOFE=4B
BIG=1.0E50
WRITE(NTAPEO, 5)
5 FORMAT ('’ #a#danadaawashandw® PROGRAM VIB3 weewnuadsanwdwadwdnn’ [/

1x,’ Thias program was vritten to solve for dynamic displace-',/,
ix,'ments in complex soil/geologic media using a 2-D finite °',/,
1:, 'element formulation. The formulation assumes planar i,
1x,’geometry aid material properties in the out-of-plane ',

1x,’direction and a harmonic source acting on the surface.’,//,
1x,’ This program wvas written by David Sykora, at US Army',/,
ix, ’Engineer Warerwvays Experiment Station (WES), Vicksburg,’,/,
1x,’MS, under sponsorship of ILIR program (FY90-92).’,//,
1x,’ Prof. Jose Roesset, Univ. of Texas at Austin, developed’,/,
ix,’the densation pr dure used in the formulation as ',/,
1x,’successfully implemented by Dr. Kang (1990) for pave- ',/,
1x, 'ment systems. Solver subroutines, the PFT routines, and ’,/,
1x,’the basic framevork of the finite element program were °',/,
1x,’obtained from Profs. Roesset and Tassoulas, UT. °',//,
1x,”THIS SOFTWARE IS DISTRIBUTED AS IS AND WITHOUT WARRANTY’,K /,
1x,’AS TO PERFORMANCE. THE USER MUST ASSUME TBE RISK OF',/,
1x, 'USING TBIS SOFTWARE!’,//)
READ(S5,6) TITLE1
READ(5,6) TITLE2
READ(5,6) TITLE3
READ(S,*) INCHECK, INOUT,IPRINT, INPLOT
READ(S5,*) NNT2,NUMEL, NOMAT
NN=NNT2+2
READ(S5,*) MA
READ(S5,*) NF,DY,NM,NSLCT
DO 2 I=1,8
IF(NM.EQ.NYL(I)) GOTO 3
IF(1.EQ.8) THEN
WRITE(6,*)’ INCORRECT INPUT VALUE OF NM'
STOP
ENDIF
2 CONTINUE
3 CONTINUE
WRITE(NTAPEO,6)TITLEL
WRITE(NTAPEO,6)TITLE2
WRITE(NTAPEO,6)TITLE3
WRITE(NTAPEO,15) NM,DY,NOMAT,NSLCT,BIG,MA
WRITE(NTAPEO,16) KDIM,NUMEL,NN,MNNE, MNDOFN,MDOFE
6 FORMAT(AS50)
15 FORMAT(//,®»***~PROBLEM PARAMETERS:',//,

* * 2 % % 3 % F % F F 3SR

1 1X, 'NUMBER OF TERMS FOR FPT: ',16,/,
2 1X,’INTREMENT OF Y (DY): '.p6.2,/,
1 1X, 'NUMBER OF MATERIAL TYPES: ',16,/,
2 1X, *NUMBER OF NODES OF INTEREST: °’,l6,/,
3 1X,°"BIG": ',B12.7,/,

4 1X, *MAXIMUM ARRAY ALLOCATION: LITID

16 FORMAT(/,' 3-D MESH:',//,

1 1X, 'NUMBER OF DIMENSIONS: *,16,/,
2 1X, "NUMBER OF ELEMENTS: *,16,1,
3 1X, "NUMBER O. NODES: ',16,17,
) 1X, *NUMBER OF RODES/ELEMENT: *,16,/,
5 1X, 'DEGREES OF FREEDOM/NODE: ',Il10,/,

6 1X, 'DEGREES OF FREEDOM/ELEMENT: °',16,//)

cé




c Parameters for condensed slements

NUMEL2«NUMEL
NNE2=MNNE/2
NDOFN2=MNDOFN
NDOFE2=NNE2*NDOFN2
NDOFT2=NUMEL2*NDOFE2
WRITE(NTAPEO,17) NDIM,NUMEL2,NNT2,NNE2,NDOFN2,NDOFE2
IF(INPLOT.NE.O) THEN
WRITE(23,*)NNT2,NUMEL2
ELSEIF(INPLOY.EQ.O0) THEN
WRITE(23,*)’No 2-D dynamic plot file created (INPLOT=0).’

ENDIF
17 PORMAT(/,’ CONDENSED MESH:',//,

1 1X, "NUMBER OF DIMENSIONS: '.16,/,
2 1X, 'NUMBER OF ELEMENTS: ', 16,1/,
3 1X, "NUMBER OF NODES: ', 16,1,
) 1X, "NUMBER OF NODES/ELEMENT: *,16,/,
5 1X, "DEGREES OF FREEDOM/NODE: ',I10,/,

6 1X, 'DEGREES OF FREEDOM/ELEMENT: ',16,//)

C >>>>>>>>>>>>>>>>>>>>> STORAGE ALLOCATION >>>>>>>>>>3>33>>3>>>>>>>>>>>>
c !
Cenwwnenss BEILOW CORRESPOND TO ARRAY A (real/integer) whvawanwwawhwnan)

c t
IND(1)=l 1
C..... X (3-D nodal coordinates) !
IND(2)=IND(1)+3*NN !
C..... G (real shear modulus) !
IND(3)=IND(2)+NOMAT !
C..... IS (boundary conditions) !
IND(4)=IND(3)+3*NN !
C..... FR (frequencies of interest) !
IND(5)=IND(4)+NF !
C..... NS (nodes of interest) !
IND(6)=IND(S)+NSLCT+7 1
C..... IDIR !
IND(7)=IRD(6)+NSLCT !
C..... ICONN (element connectivities) t
IND(8)=IND(7)+NUMEL*MNNE 1
C..... MAT (material type index) !
IND(9)=IND(8)+NUMEL 1
C..... RO (mass density) !
IND(10)=IND(9)+NOMAT 1
C !
Cwaanax BELOW CORRESPOND TO ARRAY C (complex/integer) #we#dawskduwwnhwns|
IND(11)=1 1
c..... IPREP (used in PREFNT) !
IND(12)=IND(11)+2*(NUMEL2*NNE2+NNE2) !
cC..... IDEST (used in DESVEC) !
IND(13)=IND(12)+NUMEL2*NNE2 !
C..... COMPLEX ARRAY FOR SUBROUTINE SOLVE !
IND(14)=IND(13)+MA 1
c..... COMPLEX ARRAY FOR 2-D SOLUTION (amplitude=f(x,m,z,0M)) t
IND(15)=IND(14)+NDOFN2*NNT2 1
C..... Complex load vector components 1
IND(16)=IKD(15)+NDOFT2 !
C..... Material constants !
IND(17)=IND(16)+3*NOMAT !
C..... CFOR !
IND(18)=IND(17)+4513 !
C..... !
IRD(19)=IND(18) !
c..... !
IND(20)=IND(19) !
C..... t
IND/21)=IND(20) 1
c..... 1
IND(22)=IKD(21) !

€ 5353333333333 332333333333333333233333333D3I33I33X3333333335555>3553>>>
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WRITE(6,29)
29 PFORMAT(S(/),25X, 'V v
25X, 'V v
25X, 'V VvV
25X,
25X,
25X,
25X,

BBBB 33333°,/,

3 B 3,1,

B B 3,4,
BBBB 333 '/,

B B 3/,

3 B 31,
BBBB 333 'L 11D

+ 4+ 4+t
. s ..
<
<
<
<
O b e

[+ Check maximum storage (for Array A)

MAXA=IND(10)-1
IF(MAXA.GT.NA) THEN
WRITE(6,30) MAXA
IF(INOUT.EQ.1) WRITE(NTAPEO,30) MAXA
30 FORMAT(1X,'INSUPFICIENT MEMORY LOCATIONS’,/,
- 1X, *REQUIRED LENGTH OF ARRAY A:’,1X,17,/)
sTOP
ELSE
IF(INOUT.EQ.1) WRITE(NTAPEO,35) NA-MAXA
WRITE(6,35) NA-MAXA
35 FPORMAT(1X,
+ 'NUMBER OF UNUSED MEMORY WORDS IN ARRAY A:*,1X,17,/)
ENDIF

Check maximum storage (for Arrsy C)

[+ W eNe]

MAXC=IND(22)-1
IF(MAXC.GT.NC) THEN
WRITE(6,31) MAXC
IF(INOUT.EQ.1)WRITE(NTAPEO,31) MAXC
31  PORMAT(1X, ' INSUFFICIENT MEMORY LOCATIONS’,/,
A 1X, *REQUIRED LENGTH OF ARRAY C:’,1X,17,/)
STOP
ELSE
IF(INOUT.EQ.1)WRITE(NTAPEC, 36) NC-MAXC
WRITE(6,36) NC-MAXC
36 FORMAT(1X,
+ *NUMBER OF UNUSED MEMORY WORDS IN ARRAY C:’,1X,I17,/)
ENDIF
C 33353333333333D333353333535353333333D335333I3D3332353553I2535555055>>5>
WRITE(NTAPEO, 49)
49 FORMAT(/,1X,'FREQUENCIES OF INTEREST (Bz): ’,/)
DO 50 IF=],NF
50 READ(5,*) FR(IF)
DO 51 IF=1,NF,6
51 WRITE(NTAPEO,S55) (FR(I),I=IF,IF+S)
55 FORMAT(1X,6F10.3)
READ(S5,*) TOLSM
IF(INOUT.EQ.1)WRITE(NTAPEO, 59)
IF(INOUT.EQ.1)WRITE(NTAPEO,60) TOLSM
59 FORMAT(//,1X,'SPECIFIED TOLERANCES- °*,/)
60 FORMAT(1X,'STIFFNESS MATRIX SYMMETRY: °,E15.4,3X,°(F/L)’,/])
CALL DATAIN(NUMEL,A(IND(1)),IA(IND(7)),IA(IND(3)),IA(IND(8)),
2 IA(IND(S)),IA(IKD(6)),IC(IND(11)),DY,IVAR)
CALL ELP3D(C(IND(16)),A(IND(9)),A(IND(2)))
NMP2=NM+2
RM2=NM/2
NM2P1=NM2+1
NM2P2=NM2P1+1
NCH=2#NM2P1
YTOT=NM*DY
PI=4 . 0*ATAN(1.0)
DM=2 . *PI/YTOT
IF(INPLOT.EQ.1) THEN
WRITE(23,*)NM2P1,DY
ENDIF
WRITE(25,*)NM2P1,DY,RSLCT
Al=(0.,1.)
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CALL YLOAD(C(IND(17)),DY,NM)
CALL FOUR2(C(IND(17)),NM,1,-1,1)
READ(5,*)XL ,XR
WRITE(NTAPEO,80) XL,XR
80 FORMAT(//,1X,’Left-most extent of load in x-direction = °',F7.2,/,
2 1X, 'Right-most extent of load in x-direction = ' ,F6.2,//)

Begin Do loop for each frequency (rads/sec) of interest

CALL DNISO16YF
DO 100 IF=1,NF
DO 101 I=1,514
DO 101 J=1,3000
101 CW(I,J)=(0.,0.)
OM=2 . *PI*FR(IF)
WRITE(6,105) OM,FR(IF)
WRITE(22,105) OM,FR(IF)
IF(INPLOT.EQ.1) THEN
WRITE(23,*) OM
ENDIF
WRITE(25,*) FR(IF)
105 FORMAT(1X, 'FREQUENCY= ’ ,F6.2,' rads/sec = ',F6.2,’ Hz',/)

Begin DO loop for each wavenumber, m (y-direction)

Since the loading and geometry are symmetric about y=0,
the displacements in the space domain should be symmetric
about y=0. Therefore, only non-negative wavenumbers need
be considered and negative vavenumbers will be duplicated
later.

CALL XLOAD(A(IND(1)),IA(IND(?7)),XL,XR,NUMEL,C(IND(15)))
IF(INPLOT.EQ.1) THEN
WRITE(23,*)XL,XR
ENDIF
WRITE(25,*)XL,XR
DO 20C IM=1,KM2P1

Read load information in x~direction & calculate nodal forces

TH=(IM-1)*DM
AIl=AI*TM*DY
E1=CEXP(-1.%AIl)
E2=CEXP(AIl)

Create load vector

REWIND 10
REWIND 12
DO 210 I=1,RDOFI2
WRITE(12) C(IND(15)+I-1)*C(IND(17)+IM-1)
210 CONTINUE
CALL STIFF(A(IND(1)),IA(IND(3)),IA(IND(7)},

2 IA(IND(8)),C(IND(16)),A(IND(9)),A(IND(2)),
3 NUMEL ,OM,E1,E2,IM)

IFP(INCHECK.EQ.0) STOP

REWIND 10

REWIND 12

CALL PREFNT(NNE2,IC(IND(11)),MS,MU,MR)
Solve for maximum amplitudes at each node «f(x.,m,z,om)
CALL SOLVE(C(IND(13)),IM)

Store amplitudes at select nodes for inverse FFT
(Always store NSLCT plus necessary values for dview)
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K=0
DO 500 J=1,NSLCT
K=K+1
CW(IM,K)=C(IND(14)+3*(IA(IND(S5)+J-1)~1)+IA(IND(6)+J-1)~1)
500 CONTINUE
IF(INPLOT.EQ.1) THEN
DO 501 Jwl,2¢NELX+1
K=K+1
CW(IM,K)=C(IND(14)+3*(J-1))
KeK+1
CHW(IM,K)=C(IND(14)+3*%(J-1)+1)
501 CONTINUE
ELSEIP(INPLOT.EQ.2) THEN
DO 502 J=1,NKT2
K=K+1
CW(IM,K)=C(IND(14)+3%(J-1))
K=K+1
CW(IM,K)=C(IND(14)+3*(J-1)+2)
502 CONTINUE
ELSEIF(INPLOT.EQ.3) TEEN
DO 503 J=1,2+NELZ+1

K=K+1
CW(IM,K)=C(IND(14)+3*(1+MOD((J-1),2)*(2*NELX+1)
2 +(J/2)*(I*NELX+2))+1)
KeuK+1
CW(IM,K)=C(IND(14)+3*(1+MOD((J-1),2)*(2*NELX+1)
2 +(J/2)*(3I*NELX+2))+2)
503 CONTINUE
ENDIF
NIFTS=K
200 CONTINUE
C
c Calculate complex amplitudes at each node = f(x,y,z,om)
[

WRITE(NTAPEO, 401)FR(IF)
401 FORMAT(//, ' ##**4OUTPUT (DISPLACEMENTS)®,//,
11X, 'CALCULATED AMPLITUDES AT: ’',F8.2,' He')
FACT=1./FLOAT(NM)

¥2=180./PI
C
Cc Begin loop to IFT displacements for esch node of interest
c
DO 600 I=1,NSLCT
DO 601 II=1,514
601 CWIM(II)=(0.,0.)
c
[+ Duplicate amplitudes for m's from 0 to NM2P1l (negative m’s).
[+
DO 620 IM=NM2P2,NM
IIM=NCH-IM
620 CW(IM,I)=CW(IIM,I)
c
DO 625 IM=1,NM
625 CWIM(IM)=CW(IM,I)
[¢]
c Inverse YFT leaving amplitudes complex.
(o}

CALL FOUR2(CWIM,NM,1,+1,1)
WRITE(NTAPEO,635) IACIND(S)+I-1),
+ REAL(ACIND(1)+(IA(IND(5)+I-1))*3-3)),
+ REAL (A(IND(1)+(IA(IND(5)+I-1))*3~1))
IF(IACIND(6)+I-1).EQ.1) WRITE(NTAPEO,627)
IP(IACIND(6)+1-1).EQ.2) WRITE(NTAPEO, 628)
IF(IACIND(6)+1-1).EQ.3) WRITE(NTAPEO,629)

WRITE (NTAPEO, 636)

WRITE(25,*) IACIND(S)+I-1),
+ REAL(A(IND(1)+(IA(IND(5)+I-1))*3-3)),
+ REAL(A(IND(1)+(IA(IND(5)+I-1))*3-1)),

+

IACIND(6)+1-1),IVAR(I)

C10




640
641
600
627
628
629

635

+ 4+

636

+ 4+ +

645

aaoon

701

ano

720

725

aan

740
741
700
100

DO 640 IM=1,6NM2P1
Y~ (IN-1)*DY
CNIM(IM)=PACT*CWIM(IM)
AMPL=SQRT (REAL (CWIM(IM) ) *#2+AIMAG (CWIM(IM))**2)
PHAS=ATAN2 (AIMAG (CWIM(IM)) ,REAL(CWIM(IM)))*F2
WRITE(25,645) Y,CWIM(IM),AMPL,PHAS
WRITE(NTAPEO, 645) Y,CWIM(IM), AMPL,PHAS
IFP(IVAR(I).EQ.O0) GOTO 641
CONTINUE
CONTINUE
CONTINUE
FORMAT (/,1X, "VARIATION OF BORIZONTAL X COMPONENTS IN Y °,
'DIRECTION:',/)
PORMAT(/,1X, *VARIATION OF BORIZONTAL Y COMPONENTS IN Y °,
*DIRECTION:',/)
FORMAT(/,1X, "VARIATION OF VERTICAL (Z) COMPONENTS IN Y °,

*DIRECTION:’,/)

FORMAT(//, " ~-===wmmmmmmmmmme T e S e ',
/,1X, " AMPLITUDES CORRESPONDING TO NODE: ',IS,/,
3X,*(X= *,E10.3,' ) (I= *',E10.3,' )")

FORMAT(1X, * Yy -,

1X,' REAL PART ',
1X,*IMAG. PART °,
1X,’ MAGNITUDE °,
1X,* PBASE ')
FORMAT(5(2X,E10.3))

Begin loop to IFT displacements for dview

DO 700 I=NSLCT+1,NIFIS
DO 701 II=1,514
CWIM(II)=(0.,0.)

Duplicate amplitudes for m's from 0 to NM2P1 (negative m's).

DO 720 IM=NM2PZ,NM
IIM=NCB-IM
CW(IM,I)=CW(IIM,I)

DO 725 IM=1,NM
CWIM(IM)=CW(IM,I)

Inverse FPFY leaving amplitudes complex.

CALL FOUR2(CWIM,NM,1,+1,1)

WRITE(23,*)IA(IND(5)+I-1),
REAL(ACIND(1)+(IA(IND(5)+I-1))*3-3)),
REAL(A(IND(1)+(IACIND(S)+I-1))*3-1})

DO 740 IM=},NM2P1
Y=(IM-1)*DY
CWIM(IM)=FACT*CWIM(IM)
AMPL=SQRT (REAL (CWIM(IM) ) #*2+ATMAG (CWIM(IM))**2)
PHAS=ATAN2 (AIMAG (CWIM(IM) ) ,REAL(CWIM(IM)))*F2
WRITE(23,645) Y,CWIM(IM),AMPL,PEAS
IP(INPLOT.EQ.2) GOTO 741
CONTINVE
CONTINUE
CONT1INUE
CONTINUE
CLOSE (15,STATUS="KEEP’)
CLOSE (16,STATUS='KEEP’)
CLOSE (NTAPEO,STATUS="KEEP’)
CLOSE (22,STATUS="KEEP’)
CLOSE (23,STATUS='KEEP’)
CLOSE (25,STATUS="KEEP’)
STOP
END

()
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SUBROUTINE DATAIN(NUMEL,X,ICONN,IS,MAT,NS,IDIR, IPREP,DY, IVAR)

ccegccecceccececcecececcececcececcececcecececcecececceccce

Subroutine DATAIN reads in boundary, nodal, and slement data.
Subroutine DATAIN 1s called by : MAIN

Subroutine DATAIN makes no external calls.

cgcecececececeecececececcececcececcecccececcececcccecccce

DIMENSION X(3,NN),IS(3,NN),ICONN(16,NUMEL),MAT(NUMEL)
DIMENSION IDIR(S50),IVAR(50)
DIMENSION NS(1),IPREP(1)
COMMON /CONDS/ BNE2,NDOFN2,NRT2,NDOFE2,NDOFT2
COMMON /INFO/ WN,NOMAT,NF,NSLCT, INOUT, INPLOT
COMMON /MAX/ XMAX, ZMAX
COMMON /MESH/ NELX,NELZ
COMMON /UNIT/ NTAPE,KTAPEO
I1ZERO=0
DO 5 I=1,NN
18(2,1)=0.
DO 5 J=1,3
IS(J,I)=IZERO
IF(INOUT.EQ.1) WRITE(NTAPEO,S50)
FORMAT(/,1X, "NODAL COORDINATES’,//,
3X,’NODE’, 9X,'X",14X,'Y*,14X,"2’ ,8X, IS1’,3X, IS2°,
3X,°183°,11)

ZMAX=0 .

DO 400 I=1,NNT2
READ(5,*)K,X(1,1),X(3,1),15(1,1),1I8(3,1)
X(2,1I)=0.

IF(K.NE.I) THEN
WRITE(6,402)
STOP
ELSE
ENDIF
ZMAX=MAX (ZMAX,X(3,1))
CONTINUE

Duplicate face of nodes at y=-dy

DO 410 I=1,NNT2
II=I+NNT2
X(1,11)=X(1,I)
X(2,I1)=-DY
X(3,1IX1)=X(3,I)

CONTINUE

Set boundary conditions

DO 420 I=1,NN
IF(ABS(X(3,I)-ZMAX).LT.0.01) THEN
IS(1,I)=1
I15(2,1I)=1
I8(3,1)=1
ELSE
ENDIF
CONTINUE
IF(INPLOT.EQ.1) THEN
DO 425 I=1,NNT2
WRITE(23,#)I1,X(1,1),X(3,1),158(1,1),18(3,I)
CONTINUE
ERDIF
IF(INOUT.EQ.1) THEN
DO 430 I=1,NN
WRITE(NTAPEOD,401) I,(X(J,1),J=1,3),(15¢(J,1),J=1,3)

Cl2
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ELSE
ENDIF
401 PORMAT(2X,I5,3(3X,B12.4),3(3X,13;)
402 FORMAT(//,1X, ERROR: SUBROUTINE DATAIN',/,
2 ' NODES NOT IN SEQUENTIAL ORDER’,//)

Nodes of interest (increasing order)

[+ s s]

WRITE(NTAPEO,60)
60 FORMAT(/,1X, NODES OF INTEREST:',/)

DO 499 I=1 NSLCT+7
499 NS(I)=0

DO 500 I=1,NSLCT

READ(5,*) NS(I),IDIR(I),IVAR(I)

500 CONTINUE

DO 510 I=1,MSLCT,8
510 WRITE(NTAPEO,S501) (NS(J),J=1,1+7)
501 FORMAT (1X,816)

READ(5,*) NELX,NELZ

(2]

Element Connectivities

IF(INOUT.EQ.1) WRITE(NTAPEO,105)
105 FORMAT(1X,///,1X,’CONNECTIVITIES',/)

IF(INOUT.EQ.1) WRITE(NTAPEO,107)

107 PFORMAT(1X,/,30X,’--~-~ ELEMENT NUMBERING ----- %)

IF(INOUT.EQ.1) WRITE(NTAPEO,109)

IF(INQUT.EQ.1) WRITE(NTAPEO,110) (J,J=1,8)

109 FORMAT(7X, 'MAT.’)
110 TFORMAT(1X, ’'ELEM’,2X, "TYPE’,2X, "RODES:',1X,8I6)

IF(INOUT.EQ.1) WRITE(NTAPEO,111)

111 FORMAT(1X,*#wew’® X *wawe’ OX,

PR L e L L T T L T P e e e 2 T L Y

DO 200 IEL=},NUMEL
READ(S,*)K,MAT(IEL), (ICONN(J,K),J=1,8)

DO 210 J=9,16

210  ICONN(J,K)=ICONN(J-8,K)+NNT2

IF(K.KRE.IEL) THEN
WRITE(6,201)
sTOP

ELSE

ENDIF

IF(INOUT.EQ.1)

2 WRITE(NTAPEO,202) IEL,MAT(IEL),(ICONN(J,IEL),J~1,8)
IF(INOUT.EQ.1) WRITE(NTAPEO,203) (ICONN(J,LIEL),J=9,16)
IF(INPLOT.EQ.1) THEN

WRITE(23,202) IEL,MAT(IEL), :
2 ICONM(1,IEL),ICONN(3, IEL), ICONN(S,IEL), ICONN(6,1EL)
ENDIF
200 CONTINUE
201 FORMAT(//,1X, ERROR: SUBROUTINE DATAIN’,/,
2 * ELEMENT CONNECTIVITY NOT IN SEQUENCE’,/)
202 FORMAT(1X,I13,3X,13,10X,816)
203 FORMAT(20X,816)

Old Subroutine PREP
Fix to 8 for 16-node element in 2-D

anooaon

L=0
DO 120 IEL=1,NWUMEL
DO 115 J=1,NNE2
LaL+l
NODE=ICONN(J, IEL)
IPREP(L)=10*NODE+3
115 CONTINUE
C
120 CONTINUE
RETURN
END

C13




SUBROUTIME ELP3ID(D,RO,G)

gcecececececececececececececeecececececececececcececcecececececececccecccce
[ c
[ Subroutine ELP3D i3 used to resd and store material information. [
[ c
[ Subroutine ELP3D 1is called by: MAIN Cc
c c
c Subroutine ELP3D makes no external calls. (o4
[ c
ccececececececececececececececeececececececececececececcecceccececccecceccce

DIMENSION RO(NOMAT),G(NOMAT), MCHK (NOMAT)

REAL DAMP,PR

COMPLEX D(3,MOMAT),GC,DAMPC,2,FACTOR
COMMON /INFO/ NN,NOMAT,NF,WSLCT, INOUT, INPLOT
COMMON /UNIT/ NTAPE,NTAPEO
I=(0.,0.)
WRITE(NTAPEO, 100)
WRITE(NTAPEO,101)

100 FORMAT(//, ' ****sMATERIAL PROPERTIES : ',/)

101 FORMAT(T13, 'SHEAR’,T28, 'POISSONS',T43, DAMPING’,T60, MASS’,/,
2 T2,°MAT’,T12, *MODULUS®,T29, "RATIO’ ,T44,"RATIO’,TS8, "DENSITY’,/,
3 T2,0N%N" T10, weatnaneswnr T8 wnssedn’ T4), Cewanwen’ T58,
4 "enaennnr)

DO 50 I=1, NOMAT
READ(S,*) M,G(1),PR,DAMP,RO(I)
MCHK (I )=M
IF(I.GT.1) THEN
DO 51 J=1,I-1
IF(M.EQ.MCHK(J)) THEN
WRITE(NTAPEQ,*) ERROR IN ELP3D: MATERIAL NUMBERING’
ENDIF
51 CONTINUE
ENDIF
WRITE(NTAPEO,102) M,G(I),PR,DAMP,RO(I)
102  FORMAT(T2,13,T9,E12.5,T30,F4.2,745,F4.2,758,F6.2)

[
[ Choose form of damping
Cc
DAMPC=CMPLX(1.,2.*DAMP)
c DAMPC=CMPLX(1.-2.*DAMP**2.,2. . *DAMP*SQRT(1.~-DAMP**2 . ))

GC=G (1) *DAMPC
FACTOR=2.%GC/(1.-2.%PR)
D(1,M)=FACTOR*(1.-PR)
D(2,M)=FACTOR*PR
D(3,M)=GC
50 CONTINUE
IF(INOUT.EQ.0) WRITE(NTAPEO,*)
IF(INOUT.EQ.1) THEN
DO 60 I=1,NOMAT
WRITE(NTAPEO,190) I
190 FORMAT(//,1X,"THE D MATRIX POR MATERIAL ’,I3,’ IS: °*,/)
WRITE(NTAPEO,210) D(1,1),D(2,I),D(2,1),2,2,2
WRITE(NTAPEO,210) D(2,I),D(1,I),D(2,1),2,2,2
WRITE(NTAPEO,210) D(2,I),D(2,I1),D0(1,1),2,2,2
WRITE(NTAPEO,210) 2,2,2,D(3,1),2,2
WRITE(NTAPEO,210) 2,2,2,2,D(3,1),2
WRITE(NTAPEO,210) 2,2,2,2,2,D(3,I)
210 PORMAT(1X,6(°("*,E10.3," +',E10.3,"1)",2X))
60  CONTINUE
ELSE
ENDIF
RETURN
END

a0

Cla
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SUBROUTINE XLOAD(X, ICONN,XL ,XR, NUMEL,CPD)
cgegececececececececececececcececececececececccceccceccecccc

[+]
[¢]

Subroutine XLOAD is used to quantify the extent of the distri-
bution of load in the x-dimension. The extent 1s specified
by endpoints assuming uniform distribution betwesn the
endpoints.

Nodal forces are calculated ONLY for s 2-D plane, the central
plane of the mosh (sutomstic condensation).

Subroutine XLOAD is called by: MAIN
Subroutine XLOAD makes no external calls.

Subroutine checked ok for uniform loads 12/18/90.

aoocoooo000O0OO00O00nOO0000
QOO0 O00O000000

[¢]
(2]

ccegcegececececeececececececcececececcecceccececececcecccccc
DIMERSION X(3,WN),ICONN(16,NUMEL),PD(NDOFT2)
COMPLEX CPD(NDOFT2)
COMMON /CONDS/ NNE2,NDOFN2,NNT2 K NDOFE2,NDOFT2
COMMON /INFO/ WN,NOMAT,NF,NSLCT, INOUT, INPLOT
COMMON /MESH/ NELX,NEL2
COMMON /URIT/ NTAPE,NTAPEOQ
NUMEL2=NUMEL/2
DO 10 I=1,NDOFT2

CPD(I)=(0.,0.)
10 PD(I)=0.

(2]

Find the range of elements affected by load in x-direction
NELFT=0

NELRT=0

IF(ABS(XL-XR)}.LT.0.0001) THEN

Point load (match to closest node)

a0on

DO 93 I=1,NELX
WRITE(22,*)°DO 95, POINT LQAD’
RDOFCNT=(I-1)%24
IP(X(1,ICONN(6,1)).GE.XL) THEN
XRP=X(1,ICONN(6,I))-XL
XCP=ABS(X(1,ICONN(4,I))-XL)
XLP=XL-X(1,ICONN(1,I))-XL
IF(XRP.LE.XCP.AND.XRP.LE.XLP) THEN
IFIX=ICONN(6,I)
NELFT=1
NELRT=I+1
PD(NDOFCNT+18)=1./2.
PD(NDOFCRT+27)=1./2.
ELSEIF(XLP.LE.XCP.AND.XLP.LE.XRP) THEN
IFIX«ICONN(1,I)
WELFT=I-1
NELRT=I
PD(NDOFCNT+3)=1./2.
IP(NDOFCNT+3.LE.6) PD(NDOFPCNT+3)=1.0
PD(NDOFCNT-6)=1./2.
ELSEIP(XCP.LT.XLP.ARD.XCP.LT.XRP) THEN
IFIX=ICONN(4,X)
NELFT=I
NELRTwI
PD(NDOFCNT+12)=1.
ENDIF
GOTO 96
ENDIF
95  CONTINUE
96 CONTINUE

Cl15
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100
101

NELLD=NELRT-NELFT+1
WRITE(6,*)’pOINT LOAD AT NODE: °,IFIX
WRITE(NTAPEO,*) 'POINT LOAD AT NODE: ',IFIX

ELSE

Distributed load

WRITE(22,*) DISTRIBUTED LOAD'
WRITE(NTAPEO,*) *DISTRIBUTED LOAD’

Do

100 Is=1,NELX

WRITE(22,%)°'DO 100’

IF(NELFT.EQ.0.AND.X(1,ICONN(6,1)).GE.XL) NELPT=I

IF(NELFT.NE.0.AND.X(1,ICONN(6,1)).GE.XR) THEN

NELRT=I
GOTO 101

ELSE

ENDIF
CONTINUE
CONTINUE
NELLD=NELRT-NELFT+1

Calculate nodal forces

ICOUNT=NELFT-1
XEND=XL

DO

200 I=ICOUNT+1, ICOUNT+NELLD

NDOFCNT=(I-1)%24
EWeX(1,ICONN(6,I))-X(1,ICONN(1,1))
EWL=X(1,ICONN(4,I))-X(1,ICORN(1,1))
EWR=X(1,ICONN(6,1))-X(1,ICONN(4,I))
WRITE(22,*)’EWe’,ev

WRITE(22,*) 'EWL="',EWL

WRITE(22,*) EWR=',EWR
IF(I.EQ.ICOUNT+1.0R.1.EQ.ICOUNT+NELLD) THEN

End element(s)

WRITE(22,+)° END ELEMENT'
IF(X(1,ICONN(4,1)).EQ.XEND) THEN
WRITE(22,*)* center node’

At center node

ETA=0.
ELSEIF(XEND.LT.X(1,ICONN(4,I))) THEN
WRITE(22,*)’ left segment’

In left segment

IF(NELLD.EQ. 1)XEND=XR
ETA=(XEND-X(1,ICONN(4,I)))/
(X(1,ICONN(4,1))-X(1,ICONN(1,1)))
ELSE
WRITE(22,%)’ right segment’

In right segment

ETA=(XEND-X(1,ICONN(4,1)))/
(X(1,ICONN(6,1))-X(1,ICONN(4,1)))
ERDIF
WRITE(22,%)°' ETA=’ ,eta
IF(KELLD.EQ.1) XEND=XR
IF(ABS(XR-XEND).LT.0.1.0R. (NELLD.EQ.1.AND.ETA.LT.0.)) THEN
WRITE(22,*)’ forces for right end element’

Porces for right end elemant

Clé6
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o000

o000

IF(ETA.LT.0.)EWR=EWL
PD(NDOFPCNT+3)m((1./6.*ETA%*3_ )-(0.25*ETA%**2 ))*EWR
2 +5./12.*EML
PD{NDOFCKT+12)=(ETA-(1./3 . #*ETA%*3.))*EWR+2./3.*EWL
PD(NDOPCNT+18)=((1./6.*ETA**3, )+ (0.25*ETA**2, ) )*EWR
2 -1./12.*EWL
ELSEIF(ABS(XL-XEND).LT.0.1.0R.(NELLD.EQ.1.AND.ETA.GT.0.))
2 THEN
WRITE(22,*)’ forces for left end element’

Forces for left end slement

IF(ETA.GT.0.)EWL=EWR

PD(NDOFCNT+3)=-((1./6.%ETA**3,)-(0.254ETA**2.))*EWL
2 -1./12.*EWR

PD(NDOFCNT+12)=-(ETA-(1./3 . *ETA**3.))*EWL+2. /3. *EWR

PD(NDOFCNT+18)=-((1./6.%ETA**3 )+ (0.25%ETA**2 ) )*EWL

2 +5./12.*EWR
ENDIF
XEND=XR
ELSE
WRITE(22,*)’ forces for center element’

Center slement

PD(NDOFCNT+3)=-1./12.*EWR+5./12. *EWL
PD(NDOFCNT+12)=2./3.*EWR+2./3.*EWL
PD(NDOFCNT+18)=5./12.*EWR-1./12. *EWL
ENDIF
200 CONTINUE
201  CONTINUE

ENDIF
Write locad wector to fort.22 for optional inspection
IFP(INOUT.EQ.1) THEN
WRITE(NTAPEQ, *)
WRITE (NTAPEO,*) "NELFT= ° NELFT
WRITE(NTAFEO,*) 'NELRT= ', NELRT
WRITE(NTAPEO, *)
WRITE(NTAPEO,*) 'Number of elements in x-direction ’,
2 ‘affected by load: ’,nelld
ENDIF
WRITE(22,301)
DO 300 I=1,NDOFT2/3
IF(ABS(PD(3%1-2)).GT.1.E-5.0R.ABS(PD(3*1-1)).GT.1.E~-5.0R.
2 ABS(PD(3*I)).GT.1.E-5)
3 WRITE(22,302) INT(FLOAT(I)/FLOAT(MNNE2))+1,
4 INT(FLOAT (MOD(I,NNE2))),PD(3*1-2),PD(3*1-1),PD(3*])
300 CONTINUE
301 FPORMAT(/,1X,'Non-zero nodal forces (from XLOAD):',//,
2 1X,*' ELEM ’,* MNODE’,13X,°X’,16X,°Y’,16X,°2',/)
302 FORMAT(1X,16,1X,16,3(5X,F12.5))
399 CONTINUE

DO 400 I=1,NDOFT2
400 CPD(I)=CMPLX(PD(I))

RETURN

END

Ccl17
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SUBROUTINE YLOAD(CFOR,DY,NM)
gccecgcececececeecececececececececececececcecccecccecc

(2]
(2]

Subroutine YLOAD is used to quantify the extent of the distri-
bution of load in the y-dimension. The load is assumed to be
symmetric (centered abour the x-axis).

At presant, the load is assumed to be
constant over a distance YLDIS from the line of symmetry.

Subroutine YLOAD is called by: MAIN

Subroutine YLOAD makes no external calls.

OO0 O000000 0

(9]
[¢]

ggcegcecegcececececececcecececcececcecececcececececccccecce
DIMENSION PM(NM)

COMPLEX CFOR(NM+2)

COMMON /INFO/ RN,NOMAT,NF,NSLCT, INOUT,INPLOT

COMMON /UNIT/ NTAPE,RTAPEO

READ(S, *)PMAG, YLDIS

YTOT=DY*FLOAT(RM)

WRITE(25,*)YLDIS

Define distribution of losds is y-direction.
At present, uniform load; load duplicated at end of y-space

IF(YLDIS.LE.0.0001) THEN
DO 50 I=1,NM+2
50 PM(I)=0.
PM(1)=PMAG
DO 60 I=1,NM+2
60 CFOR(I)=CMPLX(PM(I1))
ELSE
ICOUNT=0
DO 100 I=1,NM+2
IF((I-1)*DY.LE.YLDIS) THEN
ICOUNT=ICOUNT+1
PM(I)=PMAG
ELSE
PM(I)=0.
ENDIF
100 CONTINUE
DO 200 I=1,ICOUNT-1
JuNM+1-1
PM(J)=PMAG
200 CONTINUE
DO 300 I=1,MNM

THE FOLLOWING LINE IS USED ONLY WHEN CONSIDERING
NORMALIZED LOAD (TOTAL LOAD = 1)!1

PM(I)=PM(I)/(2.*(FLOAT(ICOUNT-1))+1.)
300 CFOR(I)=CMPLX(PM(I))
CFOR(MM+1)=(0.,0.)
ENDIF
WRITE(RTAPEO, 301)
301 FORMAT(//, ' ****#LOADS:",//,
1’ SUBROUTINE YLOAD ASSUMES THAT A NORMALIZED LOAD IS BEING USED!’,
2N
RETURN
END

Cc18
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SUBROUTINE STIFF(X,IS,ICONN,MAT,D,ELRO,ELG,NUMEL,OM,E1,E2,IM)
cceccecececececececececcecceccec

cccececececececececcecceccecceccecce
SUBROUTINE STIFF FORMS THE STIFFNESS MATRIX AND ADJUSTS THE RHS
VECTOR TO ACCOUNT POR BOUNDARY CONDITIONS.
Since elements adjacent in the y-direction have the same stiff-
ness, the atiffness matrices for one front set are calculated.
Then in CONDENSE, the stiffness matrices of the twvo elements
adjacent in the y-direction are combined.
Subroutine STIFF is called by : MAIN
Subroutine STIFF calls: MODIF, 1S016, & CONDENSE

ccccecececececececececececececcececececcececececcecceccecccce
DIMERSION X(3,NN),Y(3,16),ICONN(16,NUMEL) ,MAT(NUMEL),1S(3,NN)
DIMENSION ELRO(NOMAT),ELG(NOMAT) ,RHS(48)
COMPLEX D(3,MOMAT),DD(6,6),CSM(48,48),CSMC(NDOFE2 ,NDOFE2) ,E1,E2
COMPLEX CPDEL(KDOFE2)
COMMON /CONDS/ MNE2,NDOFN2,NNT2, NDOYFE2,NDOFT2
COMMON /INFO/ NN,ROMAT,NF,NSLCT, INOUT, INPLOT
COMMON /UNIT/ NTAPE,NTAPEO
REWIND 10
REWIND 12
NUMEL2=NUMEL
DO 10 IEL=1,NUMEL2

PICK coordinates for element nodes from X array

DO 15 J=1,16
NODE=ICONN(J,IEL)
DO 15 K=1,3
Y(X,J)=X(K,NODE)
15 CONTINUE

DD is material array for specific element

DO 305 KK=1,6
DO 305 LL=1,6
305 DD(KK,LL)=(0.0,0.0)

DD(1,1)=D(1,MAT(IEL))
DD(1,2)=D(2,MAT(IEL))
DD(1,3)=D(2,MAT(IEL))
DD(2,1)=D(2,MAT(IEL))
DD(2,2)=D(1,MAT(1EL))
DD(2,3)=D(2,MAT(IEL))
DD(3,1)=D(2,MAT(IEL))
DD(3,2)=D(2,MAT(IEL))
DD(3,3)=D(1,MAT(IEL))
DD(4,4)=D(3,MAT(IEL))
DD(5,5)=D(3,MAT(IEL))
DD(6,6)=D(3,MAT(IEL))

FAC=ELRO(MAT (IEL) ) *OM*OM
CALL I5016(Y,DD,CSM,RHS,FAC)
IF(IM.LE.1)
2 CALL PRNTRHS(CPDEL,24,IEL,IM,4,ELG(MAT(IEL)))
DO 301 II=1,NDOFE2
READ(12) CPDEL(II)
301 CONTINUE

CALL MODIF(CSM,IS,CPDEL,ICONN(1,IEL),IM)
CALL SYMSM(DUM,CSM,48,1EL,ELG(MAT(IEL)),1,5)
CALL CONDENSE(CSM,CSMC,E1,E2,IM,IEL)
IF(IM.LE.1)
2 CALL PRNTRBS(CPDEL,24,IEL,INM,6,ELG(MAT(IEL)))

C19
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IFP(IEL.EQ.2.AND.IM.LE.3)

CALL PRNTSM(CSMC,24,IEL,IM,6,ELG(MAT(IEL;))

CALL SYMSM(DUM,CSMC,24,1EL,ELG(MAT(IEL)),1,6)
WRITE(10) ((CSMC(I,J), I=1,J),J=1,NDOPE2), (CPDEL(I),I~1,NDOFE2)

ccccccecccc

The matrix
be printed Lf
to complex.

ccccccecccc

()]

10 CONTINUE
RETURN
END
[
c
c
SUBROUTINE MODIF(CSM,IS,CPDEL,ICONN, IM)
cccgcececececececececececeecccecceccgccecececceccecc
Cc
Cc Subroutine MODIF is used to modify the stiffness matrix and
[ RHS vector to for b dary conditions.
c is then checked for symmetry. The matrix can
[ desired. The RHS vector 1s changed from real
[
Cc Subroutine MODIF is called by: STIFP
[of
4 Subroutine MODIF calls: PRNTSM (optional)
[
ccecegcecececcecececececcececccececececceccccecccce
DIMENS1ON IS(3,RN),ICONN(16)
COMPLEX CSM(48,48),CPDEL(24)
COMMON /BIG/ BIG
COMMON /INFO/ NN,NOMAT,NF,NSLCT, INOUT, INPLOT
COMMON /MAX/ XMAX, ZMAX
COMMON /UNIT/ NTAPE,RTAPEO
K=0
[+
c ICONN is with respect to an element
Cc
DO 10 I=1,16
NODE=ICONN(I)
DO 10 J=1,3
K=K+1
IF(IS(J,NODE).EQ.1) THEN
CSM(K ,K)=CSM(K,K)+BIG
ELSEIF(IS(J,RODE).RE.O0) THEN
WRITE(6,20)
STOP
ELSE
ENDIF
20 FORMAT(//,1X,"#**~ERROR IN MODIF (with IS)#ws’
10 CONTINUE
c
c No (static) forces
c 2ero body forces
(o
K0
DO 25 I=1,8
NODE=ICONN(I)
DO 25 J=1,3
KaK+1
IF(IS(J,RODE) .EQ.1) CPDEL(K)=CPDEL(K)*BIG
25 CONTINUE
RETURN
END
C
Cc
Cc
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SUBROUTIRE CONDENSE(CSM,CSMC
cc

IM,iel)
cceccececcececcceccce c

1
cccececececcececcccecc

Subroutine CONDENSE i3 used to derive an equivalent 2-D
stiffness matrix from a three-dimensional stiffness matrix.
A 16-node isoparametric element quadratic in the y and z
dirsctions and linear in the x direction is assumed.

The RHS vector does not require condensation because only
loads on the central plane are used.

Subroutine CONDENSE is called by STIFF.
Subroutine CONDENSE makes no external calls.

ccececececececececeececececececcecececececececececcecceccecccc
COMMON /CONDS/ NNE2,KDOFN2,NNT2,NDOFE2,NDOFT2
COMMON /TOL/ TOLSM
COMPLEX CSM(48,48),CSMC(NDOFE2,NDOFE2)
COMPLEX E1,E2,Al
DO 10 I=1,NDOFE2
DO 10 J=1,NDOFE2
CSMC(I,J)=(0.,0.)

DO 20 I=1,NDOFZ2
II=I+NDOFE2
DO 20 J=1,RDOFE2
JJ=J+NDOFE2
CSMC(I,J)=CSM(II,J)*E2+CSM(1,J)+CSM(1I,JJI)+CSM(I,JJ)*EL
CONTINUE

Make matrix symmetric through division and multiplication by i.

IF(IM.EQ.1) GOTO 31
Al=(0.,1.)
II=1
DO 40 1=),NDOFE2
JJ=1
DO 30 J=1,NDOFE2
IF(1.EQ.II*3-1) CSMC(I,J)=CSMC(I,J)*Al
IF(J.EQ.JJ*3-1) THEN
JIwlJ+1
CSMC(I,J)=CSMC(I,J)/Al
ENDIF
CONTINUE
IF(I.EQ.II*3-1) II=II+l
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE IS016(Y,D,CSM,RBS,FAC)
ggcecececececeecececececececececececececceccececceccecccecceccc

[+]
[+]

Subroutine IS016 calculates the stiffness matrix for a 3-D,
16-node isoparametric finite element.

Subroutine ISO16 was validated (1S016S) slong with DNISO16Y in
gen_fem.

Subroutine IS5016 is called by: MAIN.
Subroutine IS016 calls subroutines: DNISO16

Variable list:

AJACS Volume of element (det. of Jacobian)

AR Interpolation functions matrix

ANT Transpose of interpolation functions matrix

AUX Temporary matrix of AUXC

AUXB Matrices B transpose and D multiplied

AUXC Matrices B transpose,D, and B multiplied

AUXR Consistent mass matrix

B

BT Transpose of 77? matrix

CSM Complex stiffness matrix (additive)

D Material property matrix

DNDXI Matrix of deriv. of interpolation functions
with respect to XI

RHS Matrix of body forces (zero)

OO0 NODOO00
0OO00O0O00O0000000O00000D00000D0O0O0O0O0O0

0
[¢]

cccccecececeeccececececececececececcececcececececcecccce
COMMON /INTERPF/ AN1D(16,18),DNDXI(3,16,18),W(18)

REAL Y(3,16),B(6,48),BT(48,6),RHS(48),DXX(3,3),DXI(3,3),DNDX(3)
REAL AN(3,48),ANT(48,3),AUXR(48,48)

INTEGER LOOP3(9)

DATA LOOP3 /1,2,3,1,2,3,1,2,3/

COMPLEX CSM(48,48),D(6,6),AUXB(48,6),AUXC(48,48),AUX(48)
COMPLEX CSUM

Zero arrays
RHS=0: Zero body forces

o000

DO 10 I=1,48
AUX(I)=(0.,0.)
RHS(I)=0.

DO 20 J=1,6
AUXB(I,J)=(0.,0.)
B(J,I)=0.

20 BT(I,J)=0.

DO 25 J=1,48
AUXR(I,J)=0.
AUXC(I,J)=(0.,0.)

25 CSM(I,J)=(0.,0.)
10 CONTINUE

DO 30 I=1,3
DNDX(I)=0.

DO 30 Jw1,3

30 DXI(I,J)=0.

aon

Loop on integration points to create element stiff. matrix

DO 1000 IP=1,18
DO 39 I=1,3
DO 39 J=1,48
AN(1,J)=0.0
ANT(J,1)=0.0
39 CONTINUE

Cc22
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DO 40 I=1,16
Ka3*]
AN(3,K)=AN1D(I,IP)
AN(2,K-1)=AN1D(I,IP)
AN(1,K-2)=AN1D(I,IP)
CONTINUE
DO 50 I=1,3
DO 50 J=1,3
DXX(I,J)=0.

Perform a sumaation to get the components of the
Jacobian Matrix

DO 100 INODE=1,16
DO 100 II=1,3
DO 100 JJ=1,3
DXX(JJ,II)=DXX(JJ,II)+DNDXI(IX,INODE,IP)*Y(JJ,INODE)

Calculate determinant of DXX

SUMP=0.
SUMM=0 .
Ke=-1
DO 120 II=1,3
K=K+2
SUMP=SUMP+DXX (LOOP3(II),LOOP3(K) )*DXX(LOOP3(II+1),LOOP3(K+1))
*DXX(LOOP3(II+2),LOOP3(K+2))
DO 130 II=1,3
SUMM=SUMM+DXX (LOOP3(II),3)*DXX(LOOP3(II+1),2)
*DXX(LOOP3(II1+2),1)
DET=SUMP-SUMM
AJACS=ABS (DET)*W(IP)

Calculate the inverse of the Jacoblan Matrix

DO 140 II=1,3
DO 140 JJ=1,3

FAC2=1.
IF(JJ.EQ.2.0R.I1.EQ.2) FAC2=-1.
IF(JJ.EQ.2.AND.II.EQ.2) FAC2=1.

DXI(JJ,II)=(FACZ2/DET)*(-1.)**(I1+JJ)
*(DXX(LOOP3(II+1),LOOP3(JJ+1))*DXX(LOOP3(I1I+2),LOOP3(JJ+2))
-DXX(LOOP3(II+1),LO0OP3(JJ+2))*DXX(LOOP3(1I+2),LO0P3(JJ+1)))

Loop on nodes to calculate B matrix

DO 195 KK=1,3

DNDX(KK)=0.

DO 200 INODE=1,16
DO 210 II=1,3

SUM=0.
DO 210 JJ=1,3
SUM=SUM+DXI (JJ, II)*DNDXI(JJ, INODE, IP)

DNDX(II)=SUM
J1=3*INODE-2
J2=3*INODE-1
J3=3+INODE
B(1,J1)=DNDX(1)
B(4,J1)=DNDX(2)
B(6,J1)=DNDX(3)
B(2,J2)=DNDX(2)
B(4,J2)=DNDX(1)
B(5,J2)=DNDX(3)
B(3,J3)=DNDX(3)
B(5,J3)=DNDX(2)
B(6,J3)=DNDX(1)

CONTINUE
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DO 55 M=1,3
DO 55 Le=1,48
ANT(L,M)=AN(NM,L)

DO 60 M=1,6
DO 60 L=1,48
BT(L,M)=B(M,L)

DO 70 L=1,48
DO 70 M=1,48
SUM=0.
DO 71 F=1,3
SUM=SUM+ANT (L, N) *AN(N, M)
AUXR(L,M)=8UM

DO 80 L=1,48
DO 80 M=1,6
CSUM=(0.,0.)
DO 81 N=1,6
CSUM=CSUM+BT (L, K)*D(N,M)
AUXB(L ,M)=CSUM

DO 90 L=1,48
DO 91 M=1,48
CSUM=(0.,0.)
DO 92 N=1,6
CSUM=CSUM+AUXB (L ,N)*B(N,M)
AUX (M)=CSUM
DO 90 M=1,48
AUXC(L,M)=AUX(M)

DO 110 L=1,48
DO 110 M=1,48
CSM(L ,M)=CSM(L ,M)+AJACS* (AUXC(L ,M) -FAC*AUXR(L,M))
CONTINUE
RETURN
END

Conantwdvahntsanrendd NUMERICAL INTERPOLATION SUBROUTINES Wh*aawwwaddhwasdddd
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SUBROUTINE DNISO16YF
gcceccececcecececececececececececcecececececececceccceccceccc

This subroutine calculates the values of interpolation functions
and differentiated interpolation functions at numerical integration
points.

This subroutine uses Gauss weight factors for 3 x 3 x 2 integration

This routine assumes the following orlentation:

INTEGRATION POINTS:

0000000000000 OO000O0
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10

x1l x4 x7 x 10 x 13 x 16
v/ x2 x5 x8 AND x 11 x 14 x 17
. x3 x6 x9 x 12 x 15 x 18
+2

Subroutine DNISO16YF may be called by: 15016

Subroutine DNISO16YF makes no reference calls.

COMMON /INTERPF/ AN1D(16,18),DNDXI(3,16,18),W(18)
A=S. /9.
B=8./9.
W(1)=A*A
W(3)=H(1)
W(7)=W(1)
W(9)=H(1)
W(2)=A*B
W(4)=A*B
W(6)=A*B
W(8)mA*B
W(5)=B*B

DO 10 I=10,18
W(I)=W(I-9)

L=0
Loop on Y (s) from positive to negative

STEMP=1./SQRT(3.)

RTEMP=SQRT (3. ) /SQRT(5.)

TTEMP=SQRT(3.) /SQRT(5.)

DO 100 I=1,2
S=STEMP-FLOAT(I-1)%2.0%STEMP

Loop on X (r) from negative to positive

Re=-2. *RTEMP
DO 200 J=1,3
R=R+RTEMP

Loop on Z (t) from negative to positive

Te-2.*TTEMP
DO 300 K=1,3
T=T+TTEMP

LaL+l

R2=R*R
T2=T*T
RT=R*T

ANID(1,L)=0.125%(1.+5)*(-1.4RT+R2#(1.-T)4+T2*(1.-R))
AN1D(2,L)=0.25%(1.-R)*(1.45)*(1.-T2)
ANID(3,L)=0.125%(1.45)*(~1.-RT4R2%(1.+T)+T2*(1.-R))
ANID(4,L)=0.25%(1.-R2)*(1.+8)*(1.-T)
ANID(S,L)=0.25%(1.-R2)*(1.48)%(1.4T)
ARAN(6,L)=0.125%(1.45)* (-1, ~RT+R2%(1.-T)+T2%(1.4R))
AN1D(7,L)=0,25%(1.+R)*(1.48)*(1.-T2)
ANID(3,L)=0.125%(1.+8)%(~1 . +RT+R2%(1.4T)+T2*(1.4R))
ANID(9,L)=0.125%(1.-S)*(~1.+RT+R2%(1.-T)4T2¢(1.-R))
AN1D(10,L)=0.25%(1.-R)*(1.-5)*(1.-T2)
AN1ID(11,L)=0.325%(1.-5)*(-1.-RT+R2*(1.4T)+T2#(1.-R))

C25
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AN1D(12,L)=0.25%(1.-R2)*(1.~8)*(1.-T)
AN1ID(13,L)=0.25%(1.-R2)*(1.~S)*(1.4T)
AN1D(14,L)=0.125%(1.-S)*(-1.-RT+R2*(1.-T)+T2*(1.4R))
AN1D(15,L)=0.25%(1.+R)*(1.-8§)*(1.-T2)
AN1D(16,L)=0.125%(1.-S)*(-1.+RT+R2*(1.4T)+T2*%(1.4R))

DNDXI(1,1,L)=0.

125%(2. *R4T)*(1.-T)*(1.4S)

DNDXI(1,2,L)=-0.25*(1.45)*(1.-12)

DNDXI(1,3,L)=0.

125%(2.*R-T)*(1.45)*(1.+T)

DNDXI(1,4,L)=-R/2.%(1.48)*(1.-T)
DNDXI(1,5,L)=-R/2.%(1.45)%(1.4T)

DNDXI(1,6,L)=0.
DNDXI(1,7,L)=0.
DNDXI(1,8,L)=0.
DNDXI(1,9,L)=0.

125%(2.*R-T)*(1.48)*(1.-T)
25%(1.48)*(1.-T2)

125%(2.*R+T)I*(1.48)#(1.+T)
125%(2.*R+T)*(1.-8)*(1.-T)

DNDXI(1,10,L)=-0.25%(1.-5)*(1.-T2)
DNDXI(1,11,L)=0.125%(2.*R-T)*(1.-8)%(1.+T)
DNDXI(1,12,L)=-R/2.%(1.-8)%(1.-T)
DNDXI(1,13,L)=-R/2.%(1.-S)*(1.4T)
DNDXI(1,14,L)»0.125%(2 ®R-T)*(1.-S)*(1.-~T)
DNDXI(1,15,L)=0.25%(1.-5)*(1.-T2)
DNDXI(1,16,L)=0.125#(2.*R+T)*(1.-S)*(1.4T)

DNDXI(2,1,L)=0.
DNDXI(2,2,L)=0.
DNDXI(2,3,L)=0.
DNDXI(2,4,L)=0.
DNDXI(2,5,L)=0.
DNDXI(2,6,L)=0.
DNDXI(2,7,L)=0.
DNDXI(2,8,L)=0.
DNDX1(2,9,L)=0.

125%(-1.+RT+R2%(1.-T)+T2%(1.-R))
25%(1.-R)*(1.-T2)
125*(-1.0-RT+R2*(1.4T)+T2%(1.-R))
25%(1.-R2)*(1.-T)
25%(1.4T)*(1.-R2)
125%(-(1.4+RT)+R2*(1.-T)+T2*(1.4R))
25%(1.4R)*(1.-T2)
125%(-1.+RT4+R2%(1.4T)+T2%(1.4R))
125%(1.-RT-R2#%(1.~T)-T2*(1.-R))

DNDXI(2,10,L)=-0.25%(1.-R)*(1.-T2)
DNDXI(2,11,L)=0.125+(1.+RT-R2#(1.4T)-T2*%(1.-R))
DNDXI1(2,12,L)=-0.25%(1.-T)*(1.-R2)
DNDXI(2,13,L)=-0.25*(1.4T)*(1.-R2)
DNDXI(2,14,L)=0.125%(1.4RY-R2#(2.-T)-T2*(1.4R))
DNDXI(2,15,L)=-0.25%(1.4R)*(1.-T2)
DNDXI(2,16,L)=0.125*(1.-RT~-R2*(1.+4T)-T2%(1.4R))

DNDXI(3,1,L)=0.

125%(2.*TH+R)*(1.45)*(1.-R)

DNDXI(3,2,L)=-T/2.%(1.-R)*(1.4§)

DNDXI(3,3,L)=0.

125%(2.*T-R)*(1.48)*(1.-R)

DNDXI(3,4,L)=-0.25%(1.-R2)*(1.48)

DNDXI(3,5,L)=0.
DNDXI(3,6,L)=0.

25%(1.48)*(1.-R2)
125%(2.*T-R)*(1.4R)*(1.+S)

DNDXI(3,7,L)=~T/2.*(1.4R)*(1.485)

DNDXI(3,8,L)=0.
DNDXI(3,9,L)=0.

125¢(2.*T+R)*(1.4R)*(1.+S)
125%(2.*T+R)*(1.-R)*(1.-S)

DNDXI(3,10,L)=-T/2.%(1.-R)*(1.-§)
DNDXI(3,11,L)=0.125#(2.*T-R)*(1.-R)*(1.-8)
DNDX1(3,12,L)=-0.25%(1.-8)*(1.-R2)
DNDXI(3,13,L)=0.25%(1.-5)*(1.-R2)
DNDXI(3,14,L)=0.125%(2*T-R)*(1.4R)*(1.-S)
DNDXI(3,15,L)=-T/2.#(1.4+R)*(1.-85)
DNDXI(3,16,L)=0.125%(2.*T+R)*(1.4+R)*(1.-8)

300 CONTINUE
200 CONTINUE

100 CONTINUE
RETURN
END
c
[+
c
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PREP,1B,1IC)

SUBROUTINE DESVEC(NFN,NIN,I I8,
cgecececcecececececececececececcecccec

cecececcecececececceccecccc
Subroutine DESVEC calculates the destination vectors from
nicknames. Arguments NFN, NIN, and array IPREP (defined
in old PREP nowv contained in DATAIN) come in. The length of
IPREP (IND(11)) is long enough for 1B and IC.
Subroutine DESVEC is called by: PRFNT
Subroutine DESVEC calls PREOUT.

C
[
C
[
[
Cc
[
[
Cc
Cc
c
All arguments coaing in. [
C
[

onoo0oOoO0OOOQOCODO00O00

gccececececececececececececececececececececececccececececccecccce
COMMON /CNTL/ ISYM,NUMEL2, IDUM(24),MDOF,MFW,MLDEST
DIMENSION IPREP(1),IB(1),IC(1)

The following statement appears to be a function.
The calculation is not necessary for vibl becasuse
the NDOF is alwvays 3.

aOoOo0non

MODR(I,J) = I-1/J%J
MDOF = 0
MFW = 0
IDES = 1
IP = 0
JON = 0
DO 10 I=1,NFN
10 IB(I) = ©
DO 100 IEL=1,NUMEL2
N = NIN
NI =0
IPS = IP
IPC = )
NE = 0
NIT = 0
DO 60 ID=1,N
IP = IP+1
INIC = IPREP(IP)
NDOF = MODR(INIC,10)
IF(NDOF.NE.3) THEN
WRITE(6,*) ' PROBLEM WITH NDOF IN DESVEC (.NE.3)°’
STOP
ELSE
ENDIY
NT = NT+NDOP
IF(IB(IP) .GT. 0) GO TO 20
JDES = IDES
IB(IP) = IDES*100+NDOF*10
IDES = IDES+NDOF
IF(IDES-1 .GT. MFW) MFW = IDES-1

GO TO 30
20 JDES = IB(IP)

IB(IP) = IB(IP)*100+NDOF*10
30 JP = IPS+N+1

IF(JP .CT. NFN) GO TO 45
DO 4C JD=JP,NFN
IF(INIC .EQ. IPREP(JD)) GO TO 50

40 CONTINUE
AS IB(IP) = IB(IP)+1

IC(IPC) = JDES

IC(IPC+1) = NDOF

IPC = IPC+2

NE = NE+1

NTT = NTT+NDOF

GO TO 60
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IB(JD) = JDES
IF(JD .GT. JDN) JDN=JD
CONTINUE
IP(NT .GT. MDOF) MDOF = NT
IP(IEL .EQ. WUMEL2 .OR. NE .EQ. 0) GO TO 90
IDES = IDES-NTT
JP = IPSHi+1
IF(JP .CT. JDR) GO TO 90
DO 80 JD=JP,JDR
IF(IN(JD) .EQ. 0) GO TO 80
IPC =1
KT = 0
DO 70 Is=1,NE
IF(IB(JD) .LT. IC(IPC)) GO TO 70
KT = NT+IC(IPC+1)
IPC = IPC+2
IB(JD) = IB(JD)-NT
CONTINUE
CALL PREOUT(IEL,N,IPREP(IPS+1),IB(IPS+1))
CONTINUE
RETURN
END

SUBROUTINE PREFNT(NIN,IA,MS,MU,MR)
ggceececececeecececeececececeecececececcececececceccccecc
Subroutine PREFNT initiates prefront.

Since SOLVE is in a DO loop, PREFNT also zeros some parameters.

Subroutine PREFNT is called by: MAIN

Subroutine PREFNT calls: SECOND & DESVEC

NIN and IA coming in; MS, MU, and MR going out

gegcecececececeecececececececceecececececcecececcecccecceccc

COMMON /CNTL/1SYM,NUMEL2, IRESOL , NRHS , NTAPEB , NTAPEU ,NTAPEL ,MA,
IWRT, IPRINT, IERR, NNEGP, NPOSP , NRBSF,

IB,IU,IL,IFB,IFU,IFL,MBUF, MW MKF,
MELEM,MFWR ,MB , MDOF , MPW ,MLDEST

DIMENSION IA(1)

CALL SECOND(TO)

MLDEST=NIN

NFN=NUMEL2*NIN

CALL DESVEC(NPN,NIN,IA,IA(NFN+1),IA(2°NFN+1))
MR = MDOF+MFW+1

MS = NUMEL2+MLDEST+2*MDOF+(MDOF* (MDOF+1))/2+ (MFW* (MFW+1))/2+MFW
MU = NUMEL2+MLDEST+2*MDOF +MDOF *MDOF +MFUW *MFW-+MFW
IWRT=0

IB=0

MBUF=0

MB=0

IU=0

Mu=0

IERR=0

IL=0

MKF=0

WNEGP=0

IFB=0

MELEM=0

NPOSP=0

IFU=0

MFWR=0

NREHSF=0

IFL=0

CALL SECOND(T1)

RETURN

END
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SUBROUTINE PREOUT(IEL,N,IA,IB)
cececececeececececececceceececececcececececcececcecccecccc

cc c
Cc
Subroutine PREOUT is used to vrite destination vectors. [+
[
Subroutine PREOUT is called by: DESVEC [
Cc
Subroutine PREOUT makes no external calls. (o}
[
cgegcegcecececegceceececececececcececececcececececececceccecccec
DIMENSION IA(1),IB(1)
COMMON /CONDS/ WNE2,NDOFN2,NNT2,NDOFE2,NDOFT2
COMMON /WORK/ IDEST(1)
COMMON /FLAGS/ IND(22)
J=IND(12)+NNE2*(IEL-1)-~1
DO 10 I=1,N
JuJ+1
IDEST(J)=IB(I)
10 CORTINUE
RETURN
END
SUBROUTINE PRNTRHS(CRHS,NN,IEL,IM, ICODE)
cgcecegcececececececececececececececececececececececececcececceccceccecc
[
Subroutine PRNTRES is an optional routine to print the RHS [+
matrix (48 x 1) or (16 x 3). For default, PRNTRHS prints [
the RHS matrix of element 1 to file (TAPE22). Cc
c
Subroutine PRNTRES is called by: MODIF [of
[
Subroutine PRNTRHS makes no external calls. (o
c
ccecececeececececececececcececcececececececececececececcececceccceccec

DIMENSION RHS(NN)
COMPLEX CRHS(NN)
DO 10 I=1,MN

10 RHS(I)=SQRT(REAL(CRHS(I))**2.+AIMAG(CRES(I))**2.)
WRITE(22,*)
IF(ICODE.EQ.4)WRITE(22,*) AFTER 1S016:°
IP(ICODE.EQ.S5)WRITE(22,*) AFTER MODIF:'
IF(ICODE.EQ.6)WRITE(22,*) 'AFTER CONDENSE:'
IF(ICODE.EQ.7)WRITE(22,*) AFTER SOLVE:'
WRITE(22,15)1EL, IN-1

15 PORMAT(1X, "MODULUS OF COMPLEX RHS VECTOR- ',/,
1 1X, "ELEMENT: °*,I5,° WAVENUMBER: ',I3,/,
2' NODE X Y ', 0
DO 25 I=1,MN/3

25 WRITE(22,20)I,RES(3*1-2),RHS(3*1-1),CRAS(3*I)

20 PFORMAT(1X,I5,5X,2(E11.4,4X),2X,E11.4," + ’,E11.4,’ 1’)
RETURN
END

SUBROUTINE PRNTSM(CSM,NN,IEL,IM, ICODE,G)
cc

I
ccecececececcecececcececccceccceccece cccccecceccccce

Subroutine PRNTSM is an optional routine to print the stiffness
matrix (NN x NN). At default, PRNTSM prints the stiffness
matrix of element 1 to tape (TAPE1S).

Subroutine PRNTSM is called by: MODIF and CONDENSE

Subroutine PRNTSM makes no external calls.

OO0 0O00O00 000
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DIMENSION AMAG(NN,KN),CSR(NN,NN),CSI(NN,6NN)
COMPLEX CSM(NN,NN)
WRITE(15,5)
WRITE(16,6)
5 PORMAT(//,’REAL PARTS: ',/)
6 PORMAT(//,'IMAGINARY PARTS: °,/)
DO 10 I=1,NN
DO 10 J=1,NN
CSR(I,J)=REAL(CSM(I,J))
CSI(I,J)=AIMAG(CSM(I,J))
AMAG(T,J)~SQRT(REAL(CSM(I,J))*#*2 . +AIMAG(CSM(I,J))**2.)
IF(ABS(CSR(I,J)).LT.G*0.0001) CSR(I1,J)=0.
IF(ABS(CSI(I,J)).LT.G*0.00001) CSI(I,J)=0.
10 CONTINUE
WRITE(15,%)
WRITE(15,*)
IF(ICODE.EQ.4) WRITE(15,*)°AFTER IS016:’
IF(ICODE.EQ.5) WRITE(15,*)'AFTER MODIF:'’
IF(ICODE.EQ.6) WRITE(15,*)'AFTER CONDENSE:’
WRITE(1S5,14)NN,NN,IEL, IN-1
WRITE(16,*)
WRITE(16,*)
IP(ICODE.EQ.4) WRITE(16,*)'AFTER 1S016:'
IFP(ICODE.EQ.5) WRITE(16,*) AFTER MODIF:'
IF(ICODE.EQ.6) WRITE(16,*)’AFTER CONDENSE:’
WRITE(16,14)NN, NN, IEL,IN-1
14 PORMAT(1X,'STIFPNESS MATRIX ('.I12," x ',I12,’') FPOR ELEMENT’,I3,
2 ’ AT WAVENUMBER ’,I12,':')
WRITE(15,15)
WRITE(16,13)
15 PORMAT(/,1X,’STIFFNESS MATRIX COLS. 1-8:’,/)
DO 25 Ie=),NN
WRITE(15,20) (CSR(I,J),J=1,8)
25 WRITE(16,20) (CSI(I,J),J=1,8)
20 FORMAT(1X,B(E15.6,2X))
WRITE(15,22)
WRITE(16,22)
22 FPORMAT(/,1X,’'STIFFNESS MATRIX, COLS. 9-16:',/)
DO 21 I=1,NN
WRITE(15,20) (CSR(I,J),J=9,16)
21 WRITE(16,20) (CSI(I,J),J=9,16)
WRITE(15,31)
WRITE(16,31)
31 FORMAT(/,1X,’STIFFNESS MATRIX, COLS. 17-24:°,/)
DO 23 I»1,NN
WRITE(15,20) (CSR(I,J),J=17,24)
23 WRITE(16,20) (CSI(I,J),J=17,24)
IF(NN.EQ.24) GOTO 99
WRITE(15,32)
WRITE(16,32)
32 FORMAT(/,1X,°'STIFFNESS MATRIX, COLS. 25-32:',/)
DO 24 I=1,NN
WRITE(15,20) (CSR(I,J),J=25,32)
24 WRITE(16,20) (CSI(I,J),J=25,32)
WRITE(15,33)
WRITE(16,33)
33 FORMAT(/,1X,’STIFFNESS MATRIX, COLS. 33-40:',/)
DO 26 I=1,NN
WRITE(15,20) (CSR(I,J),J=33,40)
26 WRITE(16,20) (CSI(I,J),J=33,40)
WRITE(15,34)
WRITE(16,34)
34 FPORMAT(/,1X,'STIFFNESS MATRIX, COLS. 41-48:',/)
DO 27 I=1,NN
WRITE(15,20) (CSR(I,J),J=il,48)
27 WRITE(16,20) (CSI(I,J),J=41,48)
99 CONTINUE
RETURN
END
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SUBROUTINE SYMSM(A,C,NN,

IEL,ELG,IC),IC2)
ccccececcececcecceccecccc

cccecececececececececcecccceccc
C
Subroutine SYMSM is used to check the symmetry of stiffns [o}
matrices at any desired step in the execution. [
C
ICl = 0: Real matrix Cc
1: Complex matrix c
Cc
IC2 = 4&4: After IS016 Cc
5: After MODIF Cc
6: After CONDENSE [+f
C
Subroutine SYMSM is called by: MODIF, & CONDENSE c
Cc
Subroutine SYMSM makes no external calls. c
c
ccecececececececececececececcececececececececcececccecceccecccc
DIMENSION A(NN,NN)
COMPLEX C(NN,NN)
COMMON /TOL/ TOLSM
Real Matrices
IF(IC1.EQ.0) THEN
DO 100 I=1,NN
DO 100 J=1,NR
IF(I.EQ.J) GOTO 100
ADIFF=ABS(A(I,J)-A(J,I))
IF{ADIFF/ABS(A(I,J)).GT.TOLSM.AND.A(I,J).GT.TOLSM*ELG)THEN
WRITE(6,*)
WRITE(G,*)
IF(IC2.EQ.4) WRITE(6,*)’AFTER 1S016:°
IF(IC2.EQ.5) WRITE(6,*)’AFTER MODIF:®
IF(IC2.EQ.6) WRITE(6,*)° AFTER CONDENSE:’
WRITE(6,101) IEL,I,J,A(1,0),J,1,A(J,1),ADIFF
ELSE
ENDIF
CONTINUE
ELSEIF(IC1.EQ.1) THEN
Complex matrices
DO 200 I=1,MN
DO 200 J=1,NR
IF(I.EQ.J) GOTO 200
AMAG1=SQRT(REAL(C(I,J))**2 . +AIMAG(C(I,J))**2.)
AMAG2=SQRT (REAL(C(J,I))**2 +AIMAG(C(J,I))**2.)
DIFF1=ABS(REAL(C(I,J))-REAL(C(J,1)))
DIFF2=ABS (AIMAG(C(I,J))~AIMAG(C(J,I)))
DIPF3=ABS (AMAGL-AMAG2)
Disregard components with lov magnitudes
IF (AMAG]1 .LE.TOLSM*ELG) GOTO 200
Check real parts
IF(REAL(C(I,J)).LE.ELG*TOLSM) GOTO 198
IF(DIFP1/ABS(REAL(C(I,J))).GT.TOLSM)TREN
WRITE(6,*)
WRITE(6,*)
IF(IC2.EQ.4) WRITE(G6,*)'AFTER 1SO16:°
IF(IC2.EQ.5) WRITE(6,*)'AFTER MODIF:’
IFP(IC2.EQ.6) WRITE(S6,*) AFTER CONDENSE:’
WRITE(6,101)1EL,I,J, REAL(C(I,J)),J,I,
2 REAL(C(J,1)),DIFF1

sTOP
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ENDIF
198 CONTINUE

(s ]

Check imaginary parts

IP(ABS(AIMAG(C(I,J))).LE.ELG*TOLSM) GOTO 199

IF(DIFF2/ABS(AIMAG(C(I,J))) .GT.TOLSM) THEN
WRITE(6,*)
WRITE(6,*)
IF(IC2.EQ.4) WRITE(6,*) AFTER 1S016:°'
IFP(IC2.BQ.5) WRITE(6,*) 'AFTER MODIF:'
IF(IC2.EQ.6) WRITE(6,%) APTER CONDENSE:’
WRITE(6,102)1EL,I,J,AIMAG(C(I,J)),J,1,

2 AIMAG(C(J,I)),DIFF2

STOP

ENDIF

199 CONTINUE

Check magnitudes

a0

IF(DIFF3/AMAG]1.GT. TOLSM) THEN
WRITE(6,*)
WRITE(6,*)
IF(IC2.EQ.4) WRITE(6,*) AFTER IS016:°
IF(IC2.EQ.5) WRITE(6,*) AFTER MODIF:’
IF(IC2.EQ.6) WRITE(6,*)’AFTER CONDENSE:’
WRITE(6,103)IEL,I,J,AMAG1,J,I,AMAG2,DIFF3
STOP
ENDIF
200 CONTINUE
ELSE
WRITE(6,*) PROBLEM IN SYMSM WITH IC1°
STOP
ENDIF
101 PORMAT(//,1X, ***UNSYMMETRIC REAL PART OF 3-D ',
*STIFFNESS MATRIX:',//,
'ELEMENT: '’,I15,10X,
*SM(’,I2,',',12,")=" ,E15.8," SM(',I2,',’,12,’)=’,E15.8,/,
"DIFFERENCE=",E10.3,//)
102 PORMAT(//,1X, ***UNSYMMETRIC IMMAGINARY PART OF 3-D °,
"STIFFNESS MATRIX:',//,
*ELEMENT: *,I5,10X,
*sM(’,12,’,',12,")=" ,E15.8,"1 SM(’,I12,',",12,")=",E15.8,
* 1',/, DIFFERENCE=" ,E10.3,//)
103 FORMAT(//,1X,* **UNSYMMETRIC MAGNITUDES OF 3-D °,

> W N =

> WN W

1 *'STIFFNESS MATRIX:',//,

2 *ELEMENT: ',I15,10X,

3 *SM(’,12,%,",12,")="E15.8," SM(’,I2,',',I2,')=",E15.8,/,

& *DIFFERENCE=",E10.3,//)

RETURN

END
c
c
[
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c
C
Cc

SUBROUTINE SOLVE(A,INM)
ccgegcecececececececececeececececececcecececececececcecceccecceccecccc
c [+
c Subroutine SOLVE is a frontal solver originally written by [+
[ Prof. Johnson at the University of Texas at Austin. Since c
[ that time, the solver vas modified by several graduate [od
[ students, some under the direction of Prof. Becker in EM. [
c [
[ Subroutine SOLVE begins the frontal solution technique by [
c calling one of the independent solvers for a full or upper c
[+ triangle stiffness matrix. (o}
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c Cc
Cc Subroutine SOLVE is called by: MAIN [
Cc c
c Subroutine SOLVE calls: COMPLT for a symmetric matrix c
[+ (upper triangle) c
c RESOL for an non-symmetric matrix c
c (full matrix) c
[ Variable list: c
c IAB Sub-index for (A(IND(13))) c
c IAE Sub-index for (A(IND(13))) c
c IAF Sub-index for (A(IND(13))) c
c IAL Sub-index for (A(IND(13))) c
c IAM Sub-index for (A(IND(13))) c
c IAN Sub-index for (A(IND(13))) c
[ IB [
c IFB Number of writes to NTAPEB C
[+ IrL Rumber of writes to NTAPEL c
c Iru Mumber of wvrites to NTAPEU c
c IL Cc
[+ 1 c
[~ IERR Error code c
[ IFG Solution status code c
[+ IPRINT Print code C
c IRESOL Solution code Cc
c ISYM Symmetry code [
c IWRT Cc
c MA Total memory allocated for solution c
c MB Memory length for RHS buffer [
c MDOF Maximum number of DOF's per element (=NDOFE2) c
[+ MBUF Memory length for LHS buffer c
[ MELEM Memory length for Element [
c MFW c
c MFWR Memory length for Front c
Cc MKF [
[ MLDEST Memory length for destination vector [
[ MW c
[ N Integer array [
[+ NNEGP Number of negative pivot points (real part) c
C NPOSP Number of positive pivot points (real part) c
c NRHSP [
c NUME.2 Fumber of el s ( d d) c
[ NRHS ¥umber of RBS's Cc
[ NTAPEB Tape number for B [
Cc NTAPEL Tape number for L (loads) [
[ NTAPEU Tape number for U (displacements) [
[+ [+
[ c

ceccecececcececececececececcececececececececececcecceccceccec
COMMON /CNTL/ISYM, NUMEL2, IRESOL , WRES , NTAPEB , NTAPEU,NTAPEL  MA,

IWRT, IPRINT, IERR, NNEGP, NPOSP, NRHSF,

IB,1U,IL,IFB, IFU,IFL,MBUF M, MKF,

MELEM,MFWR ,MB , MDOF ,MFW , MLDEST

COMPLEX A(1)
NNEGP = 0
NPOSP = 0
CALL COMPLT(A,IM)
RETURN

END
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COMMON /CNTL/ISYM, NUMEL2, IRESOL ,NRHS , NTAPEB, NTAPEU , NTAPEL,

SUBROUTINE COMPLT(A,IM)

ccegcegcecececececececececececececececececececceccecceccecccece
Subroutine COMPLT initiates the sclution technique for s
symmetcic stiffness matrix. Only the top half of the
stiffness matrix is read. Forwvard elimination of the LES
and RHS are performed followed by backsubstitution.
Fixed parameters:

ISYM = 1

IRESOL = 0

FRES = 1

Subroutine COMPLT 1s called by: SOLVE

Subroutine COMPLT calls: SECOND, FRWCP, and BCKWRD

gcecgcececcececceccececcecccceccece
MA, IWRT, IPRINT, IERR, NNEGP , NPOSP , NRESF,

IB8,1U,IL,IFB,IFU,IFL, MBUF, MW, MKF,
MELEM,MPWR ,MB , MDOF ,MFW , MLDEST

COMPLEX A(1)

CALL SECOND(TO)

IERR = 1

N = NUMEL2+MLDEST+2*MDOF

IF(ISYM .GT. 1) GO TO 10

MELEM = (MDOF*(MDOF+1))/2+MDOF*NRHS

MKF = (MFW*(MFW+1))/2

GO TO 20

MELEM = MDOF*(MDOP+NRHS)

MKF = MFW*MFW

MFWR = MKF+MFW*NRHS

MW « MELEM+MFWR

MBUF = MA-MW-N

IF(ISYM .GT. 1) GO TO 40

IF(IPRINT .NE. O .AND. IM. EQ. 1) PRINT 1000

GO TO S50

IF(IPRINT .NE. O .AND. IM. EQ. 1) PRINT 1010
IF(ISYM.EQ.2.AND.IPRINT.NE.G.AND.IM.EQ.1) PRINT 1020
IF(IPRINT .NE. O.AND.IM.EQ.1) PRINT 1030,N,MELEM,MFWR,MBUF,MA
IF(MBUF .LT. MFW+KRHS) GO TO 70

IAL = 1+NUMEL2

IAM = IAL+MLDEST
IAN = IAM+MDOF
IAE = IAR+MDOF
IAF = IAE+MELEM

IAB = IAF+MFWR

CALL FRWCP(A(1),A(IAL),A(IAM),A(IAN) ,A(IAE),A(IAF),A(IAB))
CALL SECOND(TF)

DT = TF-TO

IF(IPRINKT .NE. 0. ARD. IM. EQ. 1) PRINT 1040,DT
IF(IPRINT.NE.O.AND.IFU.NE.O.AND.IM.EQ.1) PRIF. 1043,IFU
IF(IPRINT.NE.O.AND . IFL.NE.O.AND.IM.EQ.1) PRINT 1045,IFL

IF(IERR .NE. 1) RETURN

IF(NRES .EQ. 0) GO TO 60

CALL BCRWRD(A(1),A(IAL),A(IAM),A(IAN),A(IAE) ,A(IAF),A(IAB),
A(IAB))

CALL SECOND(TB)

DT ~ TB-TF
RETURN
IERR = 6
PRINT 1060
STOP
RETURN
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DOoOOOOOOOO

1000 FORMAT(/,1X,'FRONTAL SOLVER INFORMATION:',/,

+ 5X,29BSYMMETRIC FORWARD ELIMINATION D
1010 FORMAT(/,1X,’FRONTAL SOLVER INFORMATION:',/,
+ X, 3.TUNSYMMETRIC FORWARD ELIMINATION ,/)
1020 FORMAT( 5X,22HRESOLUTION INACTIVATED )
1030 FORMAT( 4X,218 INTEGER ARRAY: 17,1,
AX,218 REAL ARRAY o,
4X,218 ELEMENT: 17,1,
4X,21H FRONT : 17,1,
4X,21HE BUFFER: 17,14,
. 4X,21HB TOTAL STORAGE: ,17)
1040 FORMAT( 10X,29ETIME IN PORWARD ELIMINATION: ,F9.3,1)
1043 FORMAT( 10X,18HWRITES TO NTAPEU: LJI8,0)
1045 FPORMAT( 10X, 18HBWRITES TO NTAPEL: L14,1)
1060 FORMAT(2(/), 5X,32HERROR: NOT ENOUGH ROOM IN BUFFER,/,
+ 5X, "PROGRAM TERMIRATED',/)
END

T
cgcececececececececcecececceccecccec
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SUBROUTINE FRWCP(LELM,LDEST,MDEST,NDEST,ELEM,FRNT, BUF)
ccececececcceccecce

Subroutine FRWCP performs the forward elimination of both the
LHS and RES.

Subroutine FRWCP is called by: COMPLT

Subroutine FRWCP calls: SOLIN, DEST, SYMASM, UNSASM, SEMREHS,
TOUT, UNSELM, SYMELM, and ELMRHS

cccccc
COMMON/CNTL/1SYM,RUMEL2, IRESOL , KRHS , NTAPEB , NTAPEU, NTAPEL ,MA,
. IWRT, IPRINT, IERR, NNEGP,RPOSP , NRHSF,
IB,1IU,IL,IFB,IFU, IFL ,MBUF , MW MKF,
. MELEM,MPWR ,MB, MDOF ,MPW ,MLDEST
DIMENSION LDEST(1),MDEST(1),NDEST(1),LELM(1)
COMPLEX ELEM(1),FRNT(1),BUF(1)
REWIND NTAPEU
IF(ISYM .EQ. 3) REWIND NTAPEL
IFU = 0
IFL » 0
NRHSF = NRHS
IV =}
IL = MBUF
NFW = 0
LFW = 0
DO 200 IEL=l, NUMEL2
CALL SOLIN(IEL,3,NRHS,NUMDES,LDEST, ELEM)
CALL DEST(NUMDES,LDEST,NFW,NDOF NE,MDEST,NDEST)
IF(LFW .GT. NFW) NPW = LFV
IF(ISYM .EQ. 1) CALL SYMASM(NDOF,LFW,NFW MDEST,ELEM,FRNT)
IF(ISYM .GT. 1) CALL UNSASM(NDOF,LFW,NFW, MDEST,ELEM, FRNT)
KFW = NFW
IF(NRES .EQ. 0) GO TO 30
IF(ISYM .GT. 1) GO TO 10
MKE = (NDOF*(NDOF+1))/2
GO TO 20
MKE = NDOF*NDOF

ccececece

cC

OO0 00n00O00n

CALL SEMRHS(LFW,NFW,NDOF,NRHS MPW,MDEST,ELEM(MKE+1) ,FRNT(MKF+1))

IF(NE .EQ. 0) GO TO 135
DO 150 IEel,NE
KN = IU+NPW+NRES-1
IF(N .LE. IL) GO TO 40
CALL TOUT(1,1U,IFU,NTAPEU,BUT)
IU=1
M= IU
IF(ISYM .EQ. 3) GO TO 50
IF(ISYM .EQ. 2) CALL UNSELM(IEL,KFW,NFW, NDEST(IE),FRNT,
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. BUF(IU))

IF(ISYM .EQ. 1) CALL SYMELM(IEL,NFW, KDEST(IE),FRNT,BUF(IU))
IU = IU+NRHS+NFW
GO TO 70
N = JU+NPW+NRHES-1
IF(N .LE. IL) GO TO 60
CALL TOUT(IL,MBUF,IFL, NTAPEL,BUF(IL+1))
IL = MBUF
CALL UNSELM(IEL,KFW,NFW,NDEST(IE),FRNT,BUF(IU))
IU = IU+NRES+NFW
IF(IERR .EQ. 1) GO TO 75
PRINT 1000,1EL
RETURN
IF(FRES .EQ. 0) GO TO 90
IF(ISYM .GT.1) GO TO 80
CALL ELMRHS(NFW,MFW,NRHS,NDEST(IE),1,FRNT(MKF+1),BUF(M),
BUF (M+NFW))
GO TO 120
CALL ELMRHS(NFW,MFW,NRBS,NDREST(1E) KFW, FRNT(MRF+1),FRNT(NFW),
BUF (M+NFW))
IF(ISYM .EQ. 2) GO T0 120
IF(ISYM .NE. 3) GO TO 120
IF(IL-NFW+1 .GE. N) GO TO 100
CALL TOUT(1,IU,IFU,NTAPEU,BUF)
IV = 1
M = NFW
N = NFW-1
DO 110 J=1,N
BUF(IL) = PRNT(M)
IL = IL-1
M = M+KFW
CONTINUE
NFW = NFwW-1
CONTINUE
LFW = NFW
LELM(IEL) = LFW
IF(ISYM .EQ. 1 .OR. NE .EQ. 0) GO TO 200
N = KFW
M = NFW+l
DO 170 I=2,NFW
DO 160 J=1,NFW
FRNT(M) = FRNT(K+J)
M = M+l
N = N+KFW
CONTINUE
IB = IU
IF(IWRT .EQ. 0 .AND. IFU .EQ. 0) GO TO 210
CALL TOUT(1,1U,IFU,NTAPEU,BUF)
BACKSPACE NTAPEU
IF(ISYM .NE. 3) RETURN
IF(IWRT .EQ. 0 .AND. 1IFL .EQ. 0) RETURN
CALL TOUT(IL,MBUF,IFL,NTAPEL,BUF(IL+1))

RETURN

FORMAT(2(/), 5X,42BERROR: ZERO PIVOT IN ELEMENT:
. ,135)

END

SUBROUTINE SYMASM(NDOF ,LFWX,NFWX MDEST,ELLHS,FLHS)
ccecececececececececececececececcecececcececececcecceccccec

Subroutine SYMASM assembles the LHS for symmetric matrices.

[
C
[
C
Subroutine SYMASM is called by: FRWCP c
Cc
Subroutine SYMASM makes no external calls. c

C

Cc

cgcececeececececececeecececececececececcececececccecceccc

C36




oOaOn

o000 o00O00O0OO0O

(e M 2]

DIMENSION MDEST(1)
COMPLEX ELLHS(1),FLBS(1)
LFV « LFWX
NPW = NFWX
IF(NFW .EQ. LFW) GO TO 20
MI = (LFW*(LFW+1))/2+1
MJ = (NFU*(RFW+1))/2
DO 10 I=MI,MJ
10 FLBS(I) = (0.,0.)
20 N =1
DO 50 I=1,RDOF
MI = MDEST(I)
DO 50 J=1,1
MJ = MDEST(J)
MK = MAXO(MI,MJ)
M) = MIRO(MI,MJ)
MK = (MR*(MK-1))/2+MJ
FLES(MK) = FLBS(MK)+ELLHS(N)

50 N = N+1
RETURN
END
SUBROUTINE SYMELM(IEL,NFWX,1DX,FLHS,U)
ccecccececececececececececececececececececcecececcececcececceccceccc
C
Subroutine SYMELM eliminates one equation (ID) for symmetric c
matrices. Cc
c
Subroutine SYMELM 1s called by: FRWCP [
[
Subroutine SYMELM makes no external calls. c
[
ccececececececececececececececececececececececececececcececceccecce

COMMON /CNTL/ IDUM(9),IPRINT, IERR,NNEGP,NPOSP, IIDUM(16)
COMPLEX FLHS(1),U(1),PIVOIC,S

ID = IDX

NPW = NFWX

MP=(ID*(ID+1))/2

IDM = ID-1

IDP = ID+1

M = MP-ID+1

K=

OK to use real part for comparisons???

PIVOT = REAL(FLES(MP))
PIVOTC = FLES(MP)
IF(IPRINT .GE. 2) PRINT 200,IEL,NFW,ID,PIVOTC
200 FORMAT(5X,17HIEL,NFW,ID,PIVOTC ,315,E13.4,°'+’,E13.4,'L")
U(1D) = PIVOTC
IF(ABS(PIVOT) .LE. 1.E-30) GO 10 90
IF(PIVOT .LT. 0.) NNEGP = NNEGP+1
IF(PIVOT .GT. 0.) NPOSP = NPOSP+1
IF(IDM .EQ. 0) GO TO 30
DO 20 I=1,IDM
S = FLHS(M)
U(I) = S/PIVOIC
DO 10 J=1,I
FLHS(K) = FLBS(K)-S*U(J)
10  KeK+1
20 Mei+l
30 M=MP
K=90
IF(IDP .GT. NFW) GO YO 100
DO 60 I=IDP, NFW
NN = M-ID
M = M+ID4K
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N = M-ID
S = FLHS(M)
U(I) = S/PIVOTC
IF(IDM .EQ. 0) GO TO 50
DO 40 J=1,IDM
FLES(NN+J) = FLES(N+J)-5*U(J)
NN = HN-1
DO 55 J=IDP,1
FLES(NN+J) = FLHS(N+J)-85*U(J)
K=K+1
GO TO 100
IERR = 2
RETURN
END

SUBROUTINE UNSASM(NDOF,LFWX,NFWX, MDEST,ELLHS,FLHS)
cgecegcecececececececececececcecececccecceccecceccececcececccceccc

Subroutine UNSASM assembles the LHS for unsymmetric matrices.
Subroutine UNSASM is called by: FRWCP
Subroutine UNSASM makes no external calls.

gcececgcececececececececececcceccecececcccecececcecceccecccecceccc
DIMENSION MDEST(1)
COMPLEX ELLHS(1),FLHS(1)
LFW = LFWX
NFW = NFWX
IF(NFW .EQ. LFW) GO TO 40
MI = LFW4NFW+1
MJ = NFW*NFW
MK = LFW*LFW+1
DO 10 I=MI,MJ
FLAS(I) = 0.
IP(LFW .EQ. 0) GO TO 40
MJ = NFW-LFW
DO 30 I=1,LFW
DO 20 J=1,MJ
MI = MI-1
FLES(MI) = (0.,0.)
DO 30 J=1,LFVW
MI = MI-1
MK = MK-1
FLES(MI) = FLHS(MK)
MI = NFW*NFW
Ne=1l
DO 50 I=1,NDOF
MI = MDEST(I)
MK = (MI-1)*NFW
DO 50 J=1,NDOF
MJ = MDEST(J)
ML = MK+MJ
FLHS(ML) = FLHES(ML)+ELLHS(N)
N = N+l
RETURN
END
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SUBROUTINE UNSELM(IEL,KFWX,NFWX, IDX,FLHS,U)
gccegceccececececececeececcecceccececececcecceccecceccecceccc

Subroutine UMSELM eliminates ona equation (ID) for unsymmetric
matrices.

Subroutine UNSELM is called by: FRWCP

Subroutine UNSELM makes no external calls.
gcegecececececececececececececececececececececececececceccecccecc
COMMON /CNTL/ IDUM(9), IPRINT,IERR,NNEGP, NPOSP,1IDUM(16)

COMPLEX FLHS(1),U(1),PIVOIC,S
ID = IDX
KFW = KFWX
NFW = NFWX
IDM = ID-1
IDP = ID+1
K = IDM*KFW
MP = K+ID
PIVOIC = FLHS(MP)
PIVOT = REAL(FLES(MP))
IF(IPRINT .GE. 2) PRINT 200, IEL,NFW,ID,PIVOTC
FORMAT(5X,17HIEL ,NFW,ID,PIVOTC ,315,E13.4,°+' ,E13.4,°L")
IF(ABS(PIVOT) .LE. 1.E-30) GO TO 90
IF(PIVOT .LT. 0.) NNEGP = NNEGP+1
IF(PIVOT .GT. 0.) NPOSP = NPOSP+l
DO 5 I=1,NFW
U(I) = FLAS(K+I)
K=0
IF(IDM .EQ. 0) GO TO 40
DO 30 I=1,IDM
S = FLBS(ID+K)/PIVOTC
DO 10 J=1,IDM
M= J+K
FLES(M) = FLHS(M)-S*U(J)
M= K-1
IF(IDP .GT. NFW) GO TO 25
DO 20 J=IDP,NPW
FLES(J+M) = FLHS(J+K)-S*U(J)
K = K+KFW
FLES(K-KFW4NFU) = S
KeK+KFW
IF(IDP .GT. NFW) GO TO 100
DO 70 I=IDP,NFW
S = FLHS(ID+K)/PIVOIC
M =« K-KFW
IF(IDM .EQ. 0) GO TO 55
DO 50 J=1,IDM
FLES(J+M) = FLHS(K+J)-S*U(J)
Map-1
DO 60 J=IDP,NFVW
FLES(M+J) w FLHS(K+J)-S*U(J)
FLAS(K-KFW4NFW) = S
K = K+KFW
GO TO 100
IERR = 2
CORTINUE
RETURN
END

ROUTINES FOR NON-SYMMETRIC MATRICES (FULL MATRIX)

(REMOVED SINCE ROT USED) w#«
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C %e» ROUTINES COMMON TO BOTH SOLUTION METHODS
c
[+
SUBROUTINE BCKWRD(LELM,LDEST,MDEST,NDEST,ELEM,FRNT,B,U)
ccgcececececececececececececcecececececececcececcecececececcccecccec

Subroutine BCKWRD is used to perform the backsubstitution.
Subroutine BCKWRD is called by: COMPLT, RESOL

Subroutine BCKWRD calls: SOLIN, DEST, ELMSOL, SOLOUT

anononononoo0nN0on

cccececececcecececececceecceeceececececececcecceccce
COMMON /CNTL/ ISYM,NUMEL2,IRESOL,NRHS,NTAPEB,NTAPEU,RTAPEL ,MA,
. IWRT, IPRINT, IERR, NNEGP , NPOSP , NRHSF,
18,10V, IL,IFB,IFU, IFL,MBUF MW, MKF,
. MELEM, MFWR , MB , MDOF , MFW , MLDEST
DIMENSION LDEST(1),MDEST(1),NDEST(1),LELM(1)
COMPLEX ELEM(1),FRNT(1),B(1),U(1)
IU = IUU
JEL = NUMEL2+1
IB = IB-NRBS
DO 100 IEL=1,NUMEL2
JEL = JEL-1
CALL SOLIN(JEL,1,NRHS,NUMDES,LDEST,ELEM)
CALL DEST(WUMDES,LDEST,NFW,NDOF,NE,MDEST,NDEST)
IF(JEL .EQ. 1) GO TO 7
LPW = LELM(JEL-1)
IF(LFW .GT. NFW) NFW = LFW
7  CONTINUE
NPW = NFW-NE+1
IF(NE .EQ. 0) GO TO 35
J = NE+1
DO 30 I=1,NE
Ja=J
IPCIV .GI. 1) GO TO 10
BACKSPACE NTAPEU
READ(NTAPEU) 1U,(U(II),II=1,IU)
BACKSPACE NTAPEU
IU = IU+1
10 IV = IU-NPW-NRESF
IP(IRESOL .EQ. 1) GO TO 20
N = IU+NFPW
CALL ELMSOL(NFW,MFW,NRHS,NDEST(J),U(IU),U(N),FRNT(1))
GO TO 30
20 IP(IB .GE. 1) GO TO 25
BACKSPACE NTAPEB
READ(NTAPEB) IB, (B(II),II=1,IB)
BACKSPACE NTAPEB
I8 = IB-NRHS+1
25 CONTINUE
CALL ELMSOL (NFW,MFW,NRHS ,NDEST(J),U(IU),B(IB),FRNT(1))
IB = IB-NRES
30 NPW = NFW+1
35 DO 40 I=1,NDOF
XK=0
L=20
M = MDEST(I)
DO 40 J=1,NRHS
ELEM(X+I) = FRNT(L4+M)
K = K+NDOP
A0 L = L+MPW
CALL SOLOUT(JEL,NDOF,NRES,ELEM)
100 CORTINUE
RETURN
END

(o]
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SUBROUTINE DEST(ND,LDEST,NFW, NDOY,NEE,MDEST,NDEST)
ccececececececccecceccc cc ccecceccceccceccc

[+]
(4]

Subroutine DEST ccaverts DEST vectors to DOF DEST. vectors.
The equations to be eliminated are written to WNDEST giving
the current location in the front.

Subroutine DEST is called by: FRWCP, FRWRS, & BKWRD

Subroutine DEST makes no extermal calls.

o000 0
OO0 0O00O0O0000

(2]
[¢]

cgcecececececececcecececececececececcecceccecececececccecccc
COMMON /CNTL/ IDUM(9),IPRINT,IIDUM(19)
DIMENSION LDEST(1),MDEST(1),NDEST(1)

The folloving statemsnt appears to be s function. It therefore
has been replaced with ths equation vhere called.

o000

MODR(I,J) = I-I/J*J
NFW = O
el
N a1
NDOF = 0
NE = 0
PO 50 I=1,ND
M = MODR(LDEST(I),10)
M2 = LDEST(I)-LDEST(I)/10*10
N = MODR(LDEST(I),100)/10
N2 = (LDEST(I)-LDEST(I)/100*100)/10
IF(ABS(M-M2).GT.0.5.0R.ABS(N-N2) .GT.0.5) THEN
WRITE(6,*) PROBLEM IN DEST WITE MODR’
STOP
ELSE
ENDIF
NDOF = NDOF+N
IP(M .GE. 1) NE = NE+N
L = LDEST(I)/100-1
DO 10 Je=1,N
MDEST(KM) = L+J
IP(M .EQ. 0) GO TO 10
NDEST(EN) = L+J
KN = KN+1
10 KM = K1
L = MDEST(KM-1)
IF(L .GT. NFW) NFW = L
S0 CONTINUE
IF(NE .EQ. 0) GO TO 80
DO 70 I=1,NE
J = I+l
DO 70 L=J,NE
IF(NDEST(I) .LT. NDEST(L)) WDEST(L) = NDEST(L)-1
70 CONTINUE
80 NEE = NE
IF(IPRINT .LE. 2) RETURN
PRINT 1000, (LDEST(I),I=1,ND)
PRINT 1010, (MDEST(I),I=1,NDOF)
PRINT 1020, (NDEST(I),I=1,NE)
1000 FORMAT(/X*IN DEST: NODAL DESTINATION VECTORS*,1017,10(/,35X,1017))
1010 PORMAT(11X,*DOF DESTINATION VECTORS*10I17,10(/,35X,10I7))
1020 FORMAT(9X*ELIM. DESTINATION VECTORS*10I7,10(/,35X,1017))

RETURN
EFD

c

C

C
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NC,FRHS,U,B)

SUBROUTINE ELMRHS(NFW,MFW, NRHS,ID,INC ’
ccececececcecececceccecceccecccece

cecececcececececececcecceccccec

(2]
a

Subroutine ELMRHS eliminates RHS's for equation (ID).

[+
c
[
c
Subroutine ELMRHS 1s called by: FRWCP & FRWRS [
[
Subroutine ELMRHS makes no external calls. c

c

c

OO0 ODHOOD0D

(4]
(2]

cegecececececececececcececececececcecceccecececceccceccccece
COMMON /CNTL/ ISYM,IIDUM(28)
COMPLEX FRES(1),U(1),B{1),8
IDM = ID-1
IDP = ID+1
IM =0
DO 50 IN = 1 ,NRHS
V=]
S = FRHES(IM+ID)
B(IN) = §
IF(IDM .EQ. 0) GO TO 25
DO 20 I=1,IDM
I1 = IM+I
FREAS(II) = FRES(II)-S*U(IU)
20  IU=IU+INC
25 IF(ISYM .EQ. 1) IU = IU41
IF(IDP .GT. NFW) GO TO 50
DO 30 I=IDP,NFW
I1 = IM+I
FRHS(II-1) = FRHS(II)-S*U(IU)
30 IU = JU+INC
50 IM = IM+MPW
RETURN
END

Oaa

SUBROUTINE ELMSOL (NFW,MFW,NRHS, IDX,U,B,X)
cceccececececececcececegcecececececececececcecececcecceccecccece

Subroutine ELMSOL calculates the solution for one DOF as
specified by (ID).

Subroutine ELMSOL is called by: BEWRD

Subroutine ELMSOL makes no external csalls.

o000 nO0000
Ao O00000n

gcecececececececececececececececececececcececececccecceccceccecccc
COMMON /CNTL/ ISYM,IIDUM(28)
COMPLEX U(1),B(1),X(1),F1,72,S
ID = IDX
IDM = ID-1
IDP = ID+1
IF(ISYM .CT. 1) GO TO 5
Fl1 =« U(ID)
F2 = (1.,0.)
GO TO 7
5Pl = (1.,0.)
¥2 = U(ID)
7 CONTINUE
DO 40 IN=],NRHS
IU = NFW
JA = (IN-1)*MFW
IA = JA+NFW-1
s = B(IN)/M1
IF(IDP .GT. NFW) GO TO 20
DO 10 I=IDP,NFW
X(IA+1) = X(IA)
S = S-U(IU)*X(IA)
IA = IA-1
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Y = IU-1
IV = IU-1
IF(IDM .LT. 1) GO TO 40
DO 30 I=1,IDM
S = S-U(IUY*X(IA)
IA = IA-2
IV = IU-1
X(JA+ID) = S§/F2
RETURN
END

SUBROUTIRE SEMRHS(LFW,NFW,NDOF,NRBS,MFW,MDEST, ELRHS ,FRHS)
C

ccecececececceccecceccccecc

cceccccc

cceccccecccc

Subroutine SEMRES assembles the RHS for s full symmetric

matrix.

Subroutine SEMRHS is cslled by: FRWCP & FRWRS

Subroutine SEMRHS makes no extearnal .ails.

cecececececececeecececececececececececcecececcececccecceccce

DIMENSION MDEST(1)
COMPLEX ELRHS(1),FRHS(1)
Nwl
DO 70 IN=1,NRHS
IA = (IN-1)*MFVW
IF(NFW .EQ. LFW) GO TO 15
M = LFW+1
DO 13 I=M,NFVW

FRHS(IA+I) = (0.,0.)
CONTINUE
DO 50 I=1,NDOF
J = IA+MDEST(I)
FRBS(J) = FRHS(J)+ELRHS(N)
N = N+l
CONTINUE
RETURN
END

SUBROUTINE SOLIN(IEL,IFG,NRHS,NUMDES,LDEST,ELEM)
ccC

cccecececceccecceccc

gccecececcecececececececcececceccecce

Subroutine SOLIN is used to read in necessary LHS and RHS
dats from Tapel0. Data is returned through ELEM.
Lengths LDEST and NUMDES are also returned.

Subroutine SOLIN is called by:

BCKWRD, FRWCP, FRWRS

Subroutine SOLIN makes no external calls.

cecegcececececececececececececceccecececececececececccecccc

DIMENSION LDEST(1)
COMPLEX ELEM(1)

COMMOR /CONDS/ WNE2,NDOFN2,NNT2,NDOFE2,NDOFT2

COMMON /FLAGS/ IND(22)
COMMON /UNIT/ NTAPE NTAPEO
COMMON /WORK/ IDEST(1)
NUMDES=NNE2
J=IRD(12)+NRE2*(IEL-1)-1
DO 10 I=1,NUMDES

JuJ4+l

LDEST(1)=IDEST(J)
CONRTINVE
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Sort by IFG (call index)-
IFG=1: Used for BCXWRD
IPG=2: Used for FRWRS
IPG=3: Used for FRWCP

IF(IFG.EQ.1) RETURN
NDOF=24
IF(IFG.EQ.2) THEN
LENGTH=NDOFE2*NRHS
ELSE
LENGTH=( (NDOFE2* (KDOFE2+1) ) / 2) +NDOFE2*NRHS
ENDIF

Read appropriate data from NTAPE (Tapel0)
READ(NTAPE) (ELEM(1),Iw=1,LENGTH)

RETURN
END

SUBROUTINE SOLOUT(IEL,NDOF,NRHS,ELEM)
ccccccececcceccce

Subroutine SOLOUT is used to write the displacement vector

to C(IND(14)).
Subroutine SOLOUT is called by: BCKWRD

Subroutine SOLOUT makes no external calls.

cegececececececececececececrcececcecececececcecececccecccce

DIMENSION IA(200000),IAA(70000),AA(70000)
COMPLEX A(200000) ,ELEM(1)

EQUIVALENCE (A(1),IA(1)),(AA(1),IAA(1))
COMMON /CONDS/ NNE2,NDOFNZ,NNT2,NDOFE2,NDOFT2
COMMON /FLAGS/ IND(22)

COMMON /REALA/ AA

COMMON /WORK/ A

MNNE=16

J=IND(7)+MNNE*(IEL-1)-1

M=0

DO 20 I=1,NNE2

Use front face of front wall to get proper indexing in A

NODE=IAA(J+I)
K=IND(14)+NDOFN2*(RODE-1)-1
DO 10 L=1,RDOFN2
A(K+L)=ELEM(M+L)

CONTINUE
M=M+NDOFN2

CONTINUE

RETURN

END

SUBROUTINE TIN(L,I,J,NT,B)

ccececececececececececececcecececcececececececcecceccceccc

Subroutine TIN reads the RHS buffer tape.
Subroutine TIN is called by: FRWRS

Subroutine TIN makes no external calls.

ccecececececececececececececececececececececcecccecccccce

Ca4

cgcecececegcecececececcecececcccecccecc
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COMPLEX B(1)

READ(NT) K, (B(II), II=1,K)
IF(L .GT. 0) GO TO0 5
Iw]

J ek

a0

SUBROUTINE TOUT(I1,J,IF,NT,B)
cgececegcecececececececececececececececececcecececcecccecccecccc

Subroutine TOUT writes all buffers to tape.

Subroutine TOUT makes no external calls.

aooon0o0O000n00

c
c
c
c
Subroutine TOUT is called by: FRWCP & FRWRS [
[
[
c
[+

gcgcececececcecececececececceccececececccecccecceccce

WRITE(NT) K, (B(II),II=1,K)
RETURN
END
[
c
[+
CHURARRARAARAANARSRAS FPT SUBROUTINES W o adatad st asa vt drdadAdtwadathdhd
[
SUBROUTINE FOUR2 (DATA,N,NDIM,ISIGN,IFORM)

cgcececececececececececececececcececececececceccececececcecceccccecc
c c
[ Subroutine FOUR2 is a FPT program originally written at MIT. c
[ The arguments for FOUR2 are-~ [
c c
Cc DATA: array name [+
Cc N: array used in the subroutine with the o}
[ digitization rates (power of 2) for each [
[+ dimensions heading tlhe array Cc
[+ NDIM: number of dimensions [of
[+ ISIGN: SIGN of transform c
Cc IPORM- [+
c =-1: convert from complex to real c
c = 0: convert from real to complex o]
[ = 1: stay same (real-real or complex-complex c
c [+
[ Subroutine FOUR2 is called by: MAIN [
[+ c
c Subroutine POUR2 calls: BITRV, COOL2, FIXRL [of
c c
ccececececececegececececececececececececececcececcececcecceccecccc

DIMENSION DATA(1), N(1)
NTOT=]
DO 10 IDIM=1,NDIM
10  NTOT=NTOT*N(IDIM)
IF (IFORM) 70,2:,20

Convert from real to complex (iform >= 0)

anon

20  NREM=NTOT
DO 60 IDIM=1,NDIM
NREM=NREM/N(IDIM)
NPREV=NTOT/ (N ( IDIM) *NREM)

C45




NCURR=N(IDIM)
IF (IDIM-1+IFORM) 30,30,40
30 NCURR=NCURR/2
40 CALL BITRV (DATA,NPREV,NCURR,NREM)
CALL COOL2 (DATA,NPREV,NCURR,NREM, ISIGN)
IF (IDIM-1+IFORM) 50,50,60
50 CALL FPIXRL (DATA,N(1),NREM,ISIGN,IFORM)
NTOT=(NTOT/N(1))*(N(1)/2+1)
60  CONTINUE
RETURN

Convert from complex to real (iform < 0)

o000

70  NTOT=(NIOT/N(1))*(R(1)/2+1)
NREM=1
DO 100 JDIM=1,NDIM
IDIM=NDIM+1-JDIM
NCURR=N(IDINM)
IF (IDIM-1) 80,80,90
80 NCURR=NCURR/2
CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM)
NTOT=NTOT/(N(1)/241)*N(1)
90 NPREV=NTOT/ (N(IDIM)*NREM)
CALL BITRV (DATA,RPREV,NCURR, NREM)
CALL COOL2 (DATA,NPREV,NCURR,NREM, ISIGN)
100 NREM=NREM*N(IDIM)

RETURN

END
[+
[

[

SUBROUTINE BITRV (DATA,NPREV,N, NREM)
cceccececcecececececececcecececceccecececcecececececececcecceccececccc
[

Cc Subroutine BITRV 1is part of the FPT program. It shuffles

c the data by 'bit reverssl.'

[+

c DIMENSION DATA(NPREV N,NREM)

Cc DATA(I1,I2REV,I3) = DATA(I1,12,13), FOR ALL I1 FROM 1 TO NPREV,
[+ ALL I2 FROM 1 TO N (WHICH MUST BE A POWER OF TWO), AND ALL I3
Cc FROM 1 TO NREM, WHERE 12REV-1 IS THE BITWISE REVERSAL OF I2-1.
[ FOR EXAMPLE, N = 32, I2-1 = 10011 AND I2REV-1 = 1100]1.

c

[ Subroutine BITRV is called by: FOUR2

[

[ Subroutine BITRV makes no external calls.

[+
cgceccecececececececececececececececececececececcececceccecceccecceccc

DIMENSION DATA(1)

IPO=2

IP1=IPO*NPREV

IPA=IP1*N

IP5=1PA*NREM

IAREV=1

DO 60 I4=1,IP4,IP1
IF (I4-IAREV) 10,30,30
10 I1MAX=I4+IP1-IPO
DO 20 Il1=I4,I1MAX,IPO
DO 20 I5=I1,IP5,IP4
ISREV=IAREV+IS5-14
TEMPR=DATA(IS)
TEMPI=DATA(IS5+1)
DATA(I5)=DATA(ISREV)
DATA(IS+1)=DATA(ISREV+1)
DATA(ISREV)=TEMPR
20 DATA(ISREV+1)=TEMPI
30 IP2=1P4/2
A0 IF (I4REV-IP2) 60,60,50
50 IAREV=IAREV-IP2
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1P2=1IP2/2
IF (IP2-IP1) 60,40,40
60  IAREVSIAREV+IP2
RETURN
END

SUBROUTINE COOL2 (DATA, NPREV,N,NREM,ISIGN)

cegecececececeeccecceccececececceccecececcecceccecececccececceccecccccc

Subroutine COOL2 is part of the FFT program.

Subroutine COOL2 is called by: FOUR2

Subroutine COOL2 makes no external calls.

ggecececcececececececececececececececcecececceccecceccececccecccce

DIMENSION DATA(1)
TWOPI=2.# (4. ®ATAN(1.))*ISIGN
IPO=2
IP1=IPO*NPREV
IPA=IP1*N
IP5=TP4*NREM
IP2=1P1
NPART=N
10 IF (NPART-2) 50,30,20
20  NPART=NPART/4
GO TO 10

DO A FOURIER TRANSFORM OF LENGTH TWO

30 IP3I=IP2*2
DO 40 Il=1,IP1,IPO
DO 40 15=I1,IP5,1P3
JO=15
J1i=JO+IP2
TEMPR=DATA(J1)
TEMPI=DATA(J1+1)
DATA(J1)=DATA{JO)-TEMPR
DATA(J1+41)=DATA(J0+1)-TEMPI
DATA(JO)=DATA(JO)+TEMPR
40  DATA(JO+1)=DATA(JO+1)+TEMPI
GO TO 140

DO A FOURIER TRANSFORM OF LENCTH FOUR (FROM BIT REVERSED ORDER)

30 IP3I=IP2%4
THETA=TWOPI/ (IP3/IP1)
SINTH= SIN(THETA/2.)
WSTPR=-2. *SINTH*SINTH
COS(THETA)-1, FOR ACCURACY.
WSTPI= SIN(THETA)
WRe=1.
Wi=0.
DO 130 I2-1,1P2,1P1
IF (I2-1) 70,70,60
60 W2R=WR*WR-WI*W]
W2I=2 . *WR*W]
WIR=W2R*WR-W2I*W]1
W3I=W2R*WI+W2I*WR
70 I1MAX=I2+IP1-1PO
DO 120 Il1=I2,I1MAX,IPO
DO 120 IS=I1,IP5,IP3
Jo=15
Ji=JO+IP2
J2=J1+41P2
J3=J2+1P2
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IF (I2-1) 90,90,80
APPLY THE PHASE SHIFT FACTORS

TEMPR=DATA(J1)
DATA(J1)=W2R*TEMPR-W2I*DATA(J1+1)
DATA(J1+1)=W2R*DATA(J1+1)+W2I*TEMPR
TEMPR=DATA(J2)
DATA(J2)=WR*TEMPR-WI*DATA(J2+1)
DATA(J2+1)=WR*DATA(J2+1)+WI*TEMPR
TEMPR=DATA(J3)
DATA(J3)=WIR*TEMPR-WII*DATA(J3+41)
DATA(J3+1)=WIR*DATA(J3+1) +WII+TEMPR
TOR=DATA(JO)+DATA(J1)
TOI=DATA(JO+1)+DATA(J1+1)
T1R=DATA(JO)-DATA(J1)
T1I=DATA(JO+1)-DATA(J1+1)
T2R=DATA(J2)+DATA(J3)
T2I=DATA(J2+1)+DATA(J3+1)
T3R=DATA(J2)-DATA(J3)
T31=DATA(J2+1)-DATA(J3+1)
DATA(JO)=TOR+T2R
DATA(J041)=TOI+T2I
DATA(J2)=TOR-T2R
DATA(J2+1)=TO0I-T21
IF (ISIGN) 100,100,110
T3R=-T3R
T3Ie-T3I
DATA(J1)=T1R-T3I
DATA(J1+41)=T1I+T3R
DATA(J3)=T1R+T31
DATA(J3+1)=T1I-T3R
TEMPR=WR
WR=WSTPR*TEMPR-WSTPI*WI+TEMPR
WI=WSTPR*WT+WSTPI*TEMPR+WI
Ip2=IP3
IF (IP3-IP4) 50,150,150
RETURN
END

SUBROUTINE FIXRL (DATA,N,NREM,ISIGN, IFORM)

ccecececececececcececececececececcecececececececececceccec

Subroutine FIXRL is part of the FFT program. It calculates
the Fourier transfc-m of length N by the Cooley-Tukey
algorithm., The bits are reversed to normal order.

FOR IFORM = 0, CONVERT THE TRANSFORM OF A DOUBLED-UP REAL ARRAY
CONSIDERED COMPLEX, INTO ITS TRUE TRANSFORM. SUPPLY ONLY THE

FIRST HALF OF THE COMPLEX TRANSFPORM, AS THE SECOND BALF HAS
CONJUGATE SYMMETRY. FOR IFORM = -1, CONVERT THE FIRST HALF

OF THE TRUE TRANSFORM INTO THE TRANSFORM OF A DOUBLED-UP REAL

ARRAY. N MUST BE EVEN.

USING COMPLEX NOTATION AND SUBSCRIPTS STARTING AT ZERO, THE
TRANSFORMATION IS--

DIMENSIOR DATA(N,NREM)

2STP = EXP(ISIGN*2+PI*I/N)

DO 10 I2=0,NR- 4-1

DATA(0,I2) = NJ(DATA(O,I2))*(1+I.

DO 10 I1=1,N/4

Z = (14(2*IFORM+1)*I*2ZSTP#*+11)/2

I1CNJ = N/2-I1

DIF = DATA(I1,I2)-CONJ(DATA(I1CNJ,2))

TEMP = Z*DIF

DATA(I1,12) = (DATA(I1,I2)-TEMP)*(1-IFORM)

DATA(IICNJ,12) = (DATA(IICNJ,TI2)+CONJ(TEMP))*(1-IFORM)

IF 11=I1CRJ, THE CALCULATION FOR THAT VALUE COLLAPSES INTO
A SIMPLE CONJUGATION OF DATA(I1,12).
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Subroutine FIXRL is called by: PFOUR2

Subroutine FIXRL makes no external calls.

ccececececececcecececececececcececcecceececcecceccccecccc

DIMENSION DATA(1)

DOUBLE PRECISION ZR,ZI,2STPR,ZSTPI,SINTH,THETA, TWOPI
TWOPI=2.%(4.%*ATAN(1.))*ISIGN

IPO=2

IP1=IPO*(N/2)

IP2=IP1*NREM

IF (IFORM) 10,70,70

PACK THE REAL INPUT VALUES (TWO PER COLUMN)

Ji=IP1+1
III2=2
DATA(III2)=DATA(J1)
IF (NREM-1) 70,70,20
J1=J1+IPO
I2MIN=IP1+1
DO 60 I2=I2MIN,IP2,IP1
DATA(I2)=DATA(J1)
Ji=J14IPO
IF (N-2) 50,50,30
I1MIN=I2+IP0O
I1MAX=I12+IP1-1IPO
DO 40 Il=I1MIN,I1MAX,IPO
DATA(I11)=DATA(J1)
DATA(I1+41)=DATA(J1+1)
Ji=J1+IPO
DATA(I12+1)=DATA(J1)
J1=J1+IPO
DO 80 I2=1,IP2,IP1
TEMPR=DATA(I2)
DATA(I2)=DATA(I2)+DATA(I2+1)
DATA(I2+1)=TEMPR-DATA(I2+1)
IF (N-2) 200,200,90
THETA=TWOPI/FLOAT(N)
SINTB= DSIN(THETA/2.)
ZSTPR=~2.*SINTH*SINTH
ZSTPI= DSIN(THETA)
ZR=(1.-2STPI)/2.
ZI=(1.+ZSTPR)/2.
IF (IFORM) 100,110,110
ZR=1.-2ZR
Z1=-21
I1MIN=IPO+1
I1MAX=IPO*(N/4)+1
DO 190 Il=X1MIN,I1MAX,IPO
DO 180 I2=I1,IP2,IP1
I2CRJ=IPO* (N/2+41)-2*11+12
IF (I12-I2CNJ) 150,120,120
IF (ISIGN*(2*IFORM+1)) 130,140,140
DATA(12+1)=-DATA(I2+1)
IF (IFORM) 170,180,180
DIFR=DATA(I2)-DATA(I2CNJ)
DIFI=DATA(I2+1)+DATA(I2CNJ+1)
TEMPR=DIFR*ZR-DIFI*ZI
TEMPI=DIFR*ZI+DIFI*ZR
DATA(I2)=DATA(12)-TEMPR
DATA(I2+1)=DATA(I2+1)~TEMPI
DATA(I2CNJ)=DATA(I2CNJ)+TEMPR
DATA(I2CNJ+1)=DATA(I2CNJ+1)-TEMPI
IF (IFORM) 160,180,180
DATA(I2CNJ)=DATA(I2CNJ)+DATA(I2CNJ)
DATA(I2CNJ+1)=DATA(I2CNJ+1)+DATA(I2CNJ+1)
DATA(I2)=DATA(I2)+DATA(12)
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180

190

200

210

220

230
240

250

260

270

DATA(12+1)=DATA(I2+1)+DATA(I2+1)
CONTINUE
TEMPR=ZR-.5
ZR=ZSTPR*TEMPR-ZSTPI*ZI+ZR
ZI=ZSTPR*ZI+ISTPI*TEMPR+ZI

RECURSION SAVES TIME, AT A SLIGHT LOSS IN ACCURACY. IF AVAILABLE,
USE DOUBLE PRECISION TO COMPUTE ZR AND ZI.

IF (IFORM) 270,210,210
UNPACK THE REAL TRANSFORM VALUES (TWO PER COLUMN)
I2=IP2+1

Il=]2
J1=IPO*(N/2+1)*NREM+1
GO TO 250
DATA(J1)=DATA(I1)
DATA(J1+1)=DATA(I1+1)
Il=I1-IPO

Ji=J1-IPO

IF (I2-I1) 220,240,240
DATA(J1)=DATA(I1)
DATA(J1+1)=0,
I2=12-1IP1

Jl=J1-IPO
DATA(J1)=DATA(I2+1)
DATA(J1+1)=0.
I1=11-IPO

J1l=J1-1IPC

IF (I2-1) 260,260,230
I112=2

DATA(II12)=0.

RETURN

END
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APPENDIX D:
SAMPLE INPUT FILE




D1. The following text is an example input file for use with vib3.
The set of parameters described does not necessarily produce accurate results.
Rather, it was chosen for its short length and the size of the output file

that it produced. The corresponding output file is listed in Appendix E.

Homogeneous system (Model 1)
4 by 10 mesh, square normalized load (5 by 5)
August 20, 1992

1 0 0 0
149 40 1
100000
115.65 256 13
3.00
0.100E-04
1 0.00000 0.00000
2 125.00000 0.00000
3 250.00000 0.00000
4 375.00000 0.00000
5 500.00000 0.00000
6 625.00000 0.00000
7 750.00000 0.00000
8 875.00000 0.00000
9 1000.00000 0.00000
10 1125.00000 0.00000
11 1250.00000 0.00000
12 1375.00000 0.00000
13 1500.00000 0.00000
14  1625.00000 0.00000
15 1750.00000 0.00000
16 1875.00000 0.00000
17  2000.00000 0.00000
18 2125.00000 0.00000
19  2250.00000 0.00000
20  2375.00000 0.00000
21  2500.00000 0.00000
22 0.00000 125.00000

23 250.00000 125.00000
24 500.00000 125.00000
25 750.00000 125.00000
26 1000.00000 125.00000
27 1250.00000 125.00000
28  1500.00000 125.00000
29  1750.00000 125.00000
30  2000.00000 125.00000
31 2250.00000 125.00000
32 2500.00000 125.00000
33 0.00000 250.00000
34 125.00000 250.00000
35 250.00000 250.00000
36 375.00000 250.00000
37 500.00000 250.00000
38 625.00000 250.00000
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

750

875
1000
1125
1250
1375
1500
1625
1750
1875
2000
2125
2250
2375
2500

0.

250

500

750
1000
1250
1500
1750
2000
2250
2500

0.

125
250
375
500
625
750
875
1000
1125
1250
1375
1500
1625
1750
1875
2000
2125
2250
2375
2500
0
250
500
750
1000
1250
1500

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
.00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00600
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

250.
250.

250.

250.

250.

250.
250.
250.
250.
250.
250.

250.

250.
250.
250.
375.
375.
375.

375.

375.
375.
375.
375.
375.
375.
375.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.

500.

500.
500.
500.

500.

500.
500.
500.
500.
500.

500.
625.

625.

625.

625.

625.

625.

625.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

oooooo»—-oooooooooooooooooooowoooooooooowooooooooooooooo

|-}
w

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO




93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

1750.
2000.
2250.
2500.

125.
250.
375.
500.
625.
750.
875.
1000.
1125.
1250.
1375.
1500.
1625.
1750.
1875.
2000.
2125.
2250.
2375.
2500.

250.

500.

750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.

125.
250.
375.
500.
625.
750.
875.

1000
1125
1250
1375
1500
1625
1750
1875
2000
2125

00000
00000
00000
00000
.00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
0000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
.00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
.00000
00000
00000
00000
00000
00000
00000
00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

625.
625.
625.
625.
750.
750,
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750.
750
875.
875.
875.
875.
875.
875.
875.
875.
875.
875.
875.
1000.
1000.
1000.
1000.
1000.
1000,
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

.00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
60000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
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2250.00000
2375.00000
2500.00000
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1000.00000
1000.00000
1000.00000
22 33
23 35
24 37
25 39
26 41
27 43
28 45
29 47
30 49
31 51
54 65
55 67
56 69
57 71
58 73
59 75
60 77
61 79
62 81
63 83
86 97
87 99
88 101
89 103
90 105
91 107
92 109
93 111
94 113
95 115
118 129
119 131
120 133
121 135
122 137
123 139
124 141

1
1

—

34
36
38
40
42
44
46
48
50
52
66
68
70
72
74
76
78
80
82
84
98
100
102
104
106
108
110
112
114
116
130
132
134
136
138
140
142

W~ W

13
15
17
19
21
35
37
39
41
43
45
47
49
51
53
67
69
71
73
75
77
79
81
83
85
99
101
103
105
107
109
111

23
24
25
26
27
28
29
30
31
32
55
56
57
58
59
60
61
62
63
64
87
88
89
90
91
92
93
94
95
96
119
120
121
122
123
124
125

35
37
39
41
43
45
47
49
51
53
67
69
71
73
75
77
79
81
83
85
99
101
103
105
107
109
111
113
115
117
131
133
135
137
139
141
143




38 1 111 125 143 112
39 1 113 126 145 114
40 1 115 127 147 116

1 4.0E06 0.40 0.02 4.

0.2 2.5

0. 2.5
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APPENDIX E:
SAMPLE OUTPUT FILE




El. The following text is an example output file produced by vib3
using the input file listed in Appendix D. The results are not particularly
accurate but shown how the data are presented using the minimal output
options. The distribution of vertical displacements in the y-direction from
the center of the load are shown in Figure E-1 along with the Green’s function

solution.

Fkkdkkkkdkkhkthhkkt PROGRAM VIB3 skdddkdskskdsdkkkskskikkksk

This program was written to solve for dynamic displace-
ments in complex soil/geologic media using a 2-D finite
element formulation. The formulation assumes planar
geometry and material properties in the out-of-plane
direction and a harmonic source acting on the surface.

This program was written by David Sykora, at US Army
Engineer Waterways Experiment Station (WES), Vicksburg,
MS, under sponsorship of ILIR program (FY90-92).

Prof. Jose Roesset, Univ. of Texas at Austin, developed
the condensation procedure used in the formulation as
successfully implemented by Dr. Kang (1990) for pave-
ment systems. Solver subroutines, the FFT routines, and
the basic framework of the finite element program were
obtained from Profs. Roesset and Tassoulas, UT.

THIS SOFTWARE IS DISTRIBUTED AS IS AND WITHOUT WARRANTY
AS TO PERFORMANCE. THE USER MUST ASSUME THE RISK OF
USING THIS SOFTWARE!

Homogeneous system (Model 1)
4 by 10 mesh, square normalized load (5 by 5)
August 20, 1992

**x**GENERAL PARAMETERS:

NUMBER OF TERMS FOR FFT: 256
INCREMENT OF Y (DY): 15.65
NUMBER OF MATERIAL TYPES: 1
NUMBER OF NODES OF INTEREST: 1
"BIG": .1000000E+51
MAXIMUM ARRAY ALLOCATION: 100000

E2




*****PARAMETERS FOR 3-D MESH:

NUMBER OF DIMENSIONS: 3
NUMBER OF ELEMENTS: 40
NUMBER OF NODES: 298
NUMBER OF NODES/ELEMENT: 16
DEGREES OF FREEDOM/NODE: 3
DEGREES OF FREEDOM/ELEMENT: 48

*****PARAMETERS FOR CONDENSED MESH:

NUMBER OF DIMENSIONS: 3
NUMBER OF ELEMENTS: 40
NUMBER OF NODES: 149
NUMBER OF NODES/ELEMENT: 8
DEGREES OF FREEDOM/NODE: 3
DEGREES OF FREEDOM/ELEMENT: 24

FREQUENCIES OF INTEREST (Hz):
3.000 0.000 0.000
NODES OF INTEREST:

1 0 0 0 0

*****MATERIAL PROPERTIES :

SHEAR POISSONS
MAT MODULUS RATIO
*ekek Fkkkdedekdkk ok Fededkdodok
1 0.40000E+07 0.40

*hk*k*kLOADS :

0.000

0.000

DAMPING
RATIO
Fddkkkk

0.02

0.000

MASS
DENSITY
Fekdskdkk

4.00

SUBROUTINE YLOAD ASSUMES THAT A NORMALIZED LOAD IS BEING USED!

Left-most extent of load in x-direction =

0.00

Right-most extent of load in x-direction = 2.50

DISTRIBUTED LOAD

E3




*kkk*QUTPUT (DISPLACEMENTS)

CALCULATED AMPLITUDES AT: 3.00 Hz
AMPLITUDES CORRESPONDING TO NODE: i
(X= 0.000E+00 ) (Z=- 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE PHASE
0.000E+00 0.154E-08 -0.475E-09 0.161E-08 -0.171E+02
0.156E+02 0.978E-09 -0.445E-09 0.107E-08 -0.245E+02
0.313E+02 0.619E-09 -0.409E-09 0.742E-09 -0.335E+02
0.469E+02 0.378E-09 -0.367E-09 0.526E-09 -0.442E+02
0.626E+02 0.210E-09 -0.318E-09 0.381E-09 -0.566E+02
0.782E+02 0.922E-10 -0.264E-09 0.279E-09 -0.707E+02
0.939E+02 0.118E-10 -0.207E-09 0.208E-09 -0.867E+02
0.110E+03 -0.401E-10 -0.151E-09 0.156E-09 -0.105E+03
0.125E+03 -0.696E-10 -0.969E-10 0.119E-09 -0.126E+03
0.141E+03 -0.812E-10 -0.478E-10 0.943E-10 -0.150E+03
0.156E+03 -0.791E-10 -0.557E-11 0.793E-10 -0.176E+03
0.172E+03 -0.667E-10 0.284E-10 0.725E-10 0.157E+03
0.188E+03 -0.476E-10 0.531E-10 0.713E-10 0.132E+03
0.203E+03 -0.247E-10 0.684E-10 0.728E-10 0.110E+03
0.219E+03 -0.832E-12 0.746E-10 0.746E-10 0.906E+02
0.235E4+03 0.217E-10 0.727E-10 0.758E-10 0.733E+02
0.250E+03 0.412E-10 0.638E-10 0.759E-10 0.572E+02
0.266E+03 0.562E-10 0.498E-10 0.751E-10 0.415E+02
0.282E+03 0.661E-10 0.324E-10 0.736E-10 0.261E+02
0.297E+03 0.706E-10 0.136E-10 0.719E-10 0.109E+02
0.313E+03 0.701E-10 -0.481E-11 0.703E-10 -0.393E+01
0.329E+403 0.653E-10 -0.213E-10 0.687E-10 -0.181E+02
0.344E+03 0.572E-10 -0.347E-10 0.669E-10 -0.313E+02
0.360E+03  0.469E-10 -0.442E-10 0.645E-10 -0.433E+02
0.376E+03  0.357E-10 -0.493E-10 0.609E-10 -0.541E+02
0.391E+03  0.249E-10 -0.502E-10 0.560E-10 -0.637E+02
0.407E+03  0.153E-10 -0.472E-10 0.496E-10 -0.721E+02
0.423E4+03 0.780E-11 -0.412E-10 0.419E-10 -0.793E+02
0.438E+03 0.288E-11 -0.331E-10 0.332E-10 -0.850E+02
0.454E+03 0.677E-12 -0.239E-10 0.240E-10 -0.884E+0?
0.469E+03 0.105E-11 -0.150E-10 0.150E-10 -0.860k+02
0.485E+03 0.358E-11 -0.716E-11 0.800E-11 -0.635E+02
0.501E+03 0.761E-11 -0.135E-11 0.773E-11 -0.101E+02
0.516E+03 0.124E-10 0.186E-11 0.125E-10 0.856E+01
0.532E+03 0.171E-10 0.220E-11 0.172E-10 0.736E+01
0.548E+03 0.209E-10 -0.313E-12 0.209E-10 -0.859E+00
0.563E+03 0.231E-10 -0.536E-11 0.237E-10 -0.131E+02
0.579E+03 0.233E-10 -0.123E-10 0.264E-10 -0.279E+02
0.595E+03 0.212E-10 -0.205E-10 0.295E-10 -0.441E+02
0.610E+03 0.167E-10 -0.289E-10 0.334E-10 -0.600E+02
0.626E+03 0.102E-10 -0.367E-10 0.381E-10 -0.745E+02
0.642E+03 0.193E-11 -0.430E-10 0.430E-10 -0.874E+02
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.657E+03
.673E+03
.689E+03
. 704E+03
.720E+03
.736E+03
.751E+03
.767E+03
.783E+03
.798E+03
.814E+403
.829E+03
.845E+03
.861E+03
.876E+03
.892E+03
.908E+03
.923E+03
.939E+03
.955E+03
.970E+03
.986E+03
.100E+04
.102E+04
.103E+04
.105E+04
.106E+04
.108E+04
.110E+04
.111E+04
.113E+04
.114E+04
.116E+04
.117E+04
.119E+04
.121E+04
.122E+04
.124E+04
.125E+04
.127E4+04
.128E+04
.130E+04
.131E+04
.133E+04
.135E+04
.136E+04
.138E+04
.139E4+04
.141E+04
.142E+04
.144E+04
.146E+04
.147E+04
.149E+04

-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
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.736E-11
.170E-10
.261E-10
.340E-10
.400E-10
.436E-10
.445E-10
.426E-10
.381E-10
.312E-10
.226E-10
.129E-10
.276E-11
.697E-11
.157E-10
.228E-10
.278E-10
.306E-10
.310E-10
.291E-10
.254E-10
.203E-10
.142E-10
.771E-11
.147E-11
.404E-11
.843E-11
.114E-10
.128E-10
.127E-10
.113E-10
.863E-11
.522E-11
.140E-11
.245E-11
.596E-11
.884E-11
.109E-10
.120E-10
.122E-10
.115E-10
.101E-10
.830E-11
.628E-11
.430E-11
.257E-11
.125E-11
.431E-12
.115E-12
.237E-12
.665E-12
.122E-11
.169E-11
.187E-11

0
[ NeNeoNeNoNeNo R
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.470E-10
.482E-10
.464E-10
.415E-10
.338E-10
.238E-10
.123E-10
.173E-13
.121E-10
.231E-10
.322E-10
.388E-10
.425E-10
.431E-10
.406E-10
.354E-10
.280E-10
.192E-10
.963E-11
.239E-12
.821E-11
.150E-10
.197E-10
.218E-10
.214E-10
.1B4E-10
.134E-10
.670E-11
.950E-12
.885E-11
.163E-10
.225E-10
.270E-10
.294E-10
.294E-10
.270E-10
.224E-10
.159E-10
.810E-11
.482E-12
.915E-11
.173E-10
.242E-10
.296E-10
.330E-10
.343E-10
.335E-10
.308E-10
.265E-10
.210E-10
.149E-10
.869E-11
.285E-11
.218E-11
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.475E-10
.511E-10
.532E-10
.536E-10
.523E-10
.497E-10
.461E-10
.426E-10
.399E-10
.388E-10
.393E-10
.409E-10
.426E-10
.436E-10
.435E-10
.421E-10
.395E-10
.361E-10
.324E-10
.291E-10
.267E-10
.252E-10
.242E-10
.231E-10
.214E-10
.189E-10
.158E-10
.132E-10
.129E-10
.155E-10
.198E-10
.241E-10
.275E-10
.295E-10
.295E-10
.277E-10
.241E-10
.193E-10
.145E-10
.122E-10
.147E-10
.200E-10
.256E-10
.303E-10
.333E-10
.344E-10
.335E-10
.308E-10
.265E-10
.210E-10
.149E-10
.878BE-11
.331E-11
.287E-11
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-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.

.989E+02
.109E+03
.119E+03
.129E+03
.140E+03
.151E+03
.165E+03
.180E+03
.162E+03
.144E+03
.125E+03
.108E+403
.937E+02
.BO8E+02
.688E+02
.572E+02
.452E+02
.321E+02
.173E+02
.469E+00
.179E+02
.366E+02
.543E+02
.705E+02
.B61E+02
.102E+03
.122E-C3
.15CE+03
.176E+03
.145E+03
.125E+03
.111E+03
.101E+03
.927E+02
.852E+02
.776E+02
.685E4+02
.557E+02
. 340E+02

227E+01
386E+02
596E+02
711E+02
780E+02
826E+02
857E+02
879E+02
892E+02
898E+02
894E+02
874E+02
820E+02
594E+02
494E+02
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0.150E+04 ©0.159E-11 0.608E-11 0.628E-11  0.754E+02
0.152E+04 0.713E-12 0.866E-11 0.869E-11  0.853E+02
0.153E+04 -0.813E-12 0.989E-11  0.993E-11  0.947E+02
0.155E+04 -0.297E-11  0.987E-11  0.103E-10 0.107E+03
0.156E+04 -0.567E-11 0.883E-11 0.105E-10 0.123E+03
0.158E+04 -0.873E-11 0.711E-11 0.113E-10 0.141E+03
0.160E+04 -0.119E-10 0.510E-11 0.130E-10 0.157E+03
0.161E+04 -0.150E-10 0.322E-11 0.153E-10 0.168E+03
0.163E+04 -0.176E-10 0.187E-11 0.177E-10 0.174E+03
0.164E+04 -0.195E-10 0.139E-11 G.196E-10 0.176E+03
0.166E+04 -0.206E-10 0.200E-11 0.207E-10 0.174E+03
0.167E+04 -0.205E-10 0.381E-11 0.209E-10 0.169E+03
0.169E+04 -0.194E-10 0.679E-11 0.205E-10 0.161E+03
0.171E+04 -0.171E-10 0.107E-10 0.202E-10 0.148E+03
0.172E+04 -0.139E-10 0.154E-10 0.207E-10 0.132E+03
0.174E+04 -0.981E-11 0.203E-10 0.225E-10 0.116E+03
0.175E+04 -0.525E-11 0.250E 10 0.255E-10 0.102E+03
0.177E+04 -0.S510E-12 0.289E-10 0.290E-10 0.910E+02
0.178E+04  0.408E-11 0.317E-10 0.320E-10 0.827E+02
0.180E+04 O 818E-11 0.328E-10 0.338E-10 0.760E+02
0.182E+04 0.115E-10 0.320E-10 0.340E-10 0.702E+02
0.183E+04 0.138E-10 0.291E-10 0.322E-10 0.645E+02
0.185E+04 0.151E-10 0.240E-10 0.283E-10 0.579E+02
0.186E+04 0.151E-10 0.170E-10 0.227E-10 0.483E+02
0.188E+04 0.141E-10 0.829E-11 0.163E-10 0.305E+02
0.189E+04 0.121E-10 -0.156E-11 0.122E-10 -0.733E+01
0.191E+04 0.945E-11 -0.120E-10 0.153E-10 0.518E+02
0.192E+04  0.642E-11 -0.224E-10 Q.233E-10 -0.740E+02
0.194E+04  0.334E-11 -0.320E-10 0.322E-10 -0.840E+02
0.196E+04 0.530E-12 -0.403E-10 0.403E-10 -0.892E+02
0.197E4+04 -0.171E-11 -0.466E-10 0.467E-10 -0.921E+02
0.199E+04 -0.316E-11 -0.506E-10 0.507E-10 -0.936E+02
0.200E+04 -0.365E-11 -0.520E-10 0.521E-10 -0.940E+02

AMPLITUDES CORRESPONDING TO NODE: 2
(X= 0.125E+03 ) (2= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
0.000E+00 -0.794E-10 -0.123E-09  0.146E-09 -0.123E+03

...................................................

AMPLITUDES CORRESPONDING TO NODE: 3
(X= 0.250E+03 ) (2= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPON®.NTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
0.000E+00 -0.629E-10 0.120E-09 0.136E-09  0.118E+03
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...................................................

AMPLITUDES CORRESPONDING TO NODE: 4
(X= 0.375E+03 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE

0.000E+00 0.363E-10 -0.160E-10 0.397E-10 -O.

---------------------------------------------------

AMPLITUDES CORRESPONDING TO NODE: 5
(X= 0.500E+03 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE

0.000E+00 0.419E-11 -0.266E-10 0.270E-10 -0.

AMPLITUDES CORRESPONDING TO NODE: 6
(X= 0.625E+03 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE

0.000E+00 -0.578E-11 0.448E-10 0.451E-10 O.

AMPLITUDES CORRESPONDING TO NODE: 7
(X= 0.750E+03 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE

0.000E+00 0.412E-10 -0.455E-10 0.614E-10 -O.

---------------------------------------------------

AMPLITUDES CORRESPONDING TO NODE: 8
(X= 0.875E+03 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE

0.000E+00 -0.214E-10 -0.252E-10 0.330E-10 -O.

...................................................

AMPLITUDES CORRESPONDING TO NODE: 9
(X=0.100E+04 ) (Z= 0.000E+00 )
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VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
0.000E+00 -0.216E-10 0.758E-10 0.788E-10 0.106E+03

...................................................

AMPLITUDES CORRESPONDING TO NODE: 10
(X= 0.112E+04 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
0.000E+00 0.278E-10 0.432E-11 0.281E-10 0.884E+01

---------------------------------------------------

AMPLITUDES CORRESPONDING TO NODE: 11
(X= 0.125E+04 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE PHASE
0.000E+00 0.976E-11 -0.483E-10 0.493E-10 -0.786E+02

AMPLITUDES CORRESPONDING TO NODE: 12
(X= 0.137E+04 ) (Z= 0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART IMAG. PART MAGNITUDE PHASE
0.000E+00 -0.580E-11 0.781E-11 0.973E-11 0.127E+03

---------------------------------------------------

AMPLITUDES CORRESPONDING TO NODE: 13
(X= 0.150E+04 ) (2= O0.000E+00 )

VARIATION OF VERTICAL (Z) COMPONENTS IN Y DIRECTION:

Y REAL PART 1IMAG. PART MAGNITUDE PHASE
0.000E+00 -0.628E-11 -0.575E-11 0.852E-11 -0.138E+03
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Figure E-1.

f = 3.0 Hz Ay/X = 0.05

8 = 0.02 NM = 256

A = 313. YTOT/A = + 6.40
Ax/\=0Az/A=_0.80 XLOAD/A = + 0.008

Kausel (1989}

VERTICAL ]

L e — ket ——————]

0.0 1.0

2.0 3.0 4.0 5.0

HORIZONTAL DISTANCE (in X\)

Variation of dynamic vertical displacements for example
problem showing Green's function solutions
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