
1 Form ApprovedAD-A258 717 :UMENTATION PAGE OMB No. 0704-0o88

l'o et nq 3,a -,,, e e : lon 0? toremat)on Send ýcrnnments tredraing this durden e•_ltmae nor ýten e D e•f ct '•ttnis
r l 19 on 15 1 I?•e Ili 3 nh I qton -eaddaua r.. ee ec(eS C. t-?or3te or r f.D iro•1 ,n Ooerl! O0S e, r! S I 5 o_ e¢14ea%!

2 iinc rc t• %I'÷ ee • ~ t ,jrna •uaget .De' erc'*, C Reducton P'cect 07C4. -3 8), Aasnngton. -ýC 2C503

1. AGENCY USE ONLY (Leave blank) 12. REPORT ATE99 i3. REPORT TYPE AND DATES COVERED TEI

'4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Framework for Cortporate Implementation of Object-
Oriented Software Development

6. AUTHOR(S)

James Mark McVay, Captain

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: Colorado State Univer~ity AFIT/CI/CIA-92-109

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING,' MONITORING
AGENCY REPORT NUMBER

AFIT/CI
Wright-Patterson AFB OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release lAW T90-T
Distributed Unlimited
ERNEST A. HAYGOOD, Captain, USAF
Executive Officer

13. ABSTRACT (Maximum 200 words)

DTIC
FUEECTE

EGNo a199e0

92-31015IIull I1111 H~ ~I 1111 Blll II UI IIII ,

14. SUBJECT TERMS 15. NUMBER OF PAGES

195
16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prticribed by ANSI $td Z39-18
ZWIG02

i-d



I |

A FRAMEWORK FOR CORPORATE IMPLEMENTATION OF

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

by

JAMES MARK McVAY

Captain, USAF

1992

195 pages

Master of Science

University of Colorado



ABSTRACT

The object paradigm is praised by many software engineers as

a solution for managing today's complex software development.

Applying the paradigm through object-oriented analysis, object-

oriented design, and object-oriented programming promises many

benefits. Code is easier to reuse. Transitions across the

development phases are more understandable. System development

costs and time are reduced.

Reaping the benefits of object-oriented software development

(OOSD) comes at the expense of major changes. Before fully

committing to these changes a company must answer three basic

questions:

1) Is the object paradigm useful to software devel-
opment?

2) If so, how can it be applied to reap the most
benefits?

3) What are the impacts on organizational dynamics?

The difficulty with these questions is that none can be answered

without experience. In order for the object paradigm to be

judged, it must be tested.

This thesis proposes a framework which provides guidance in

establishing an adequate test environment. The framework

consists of ten components. Each component addresses a specific

area of the software development environment. Each component is

constructed to highlight the implementation factors required by

OOSD.

Following the framework is a case study of one company which



developed a system using object-oriented techniques. This case

study is based on the framework and was designed to test the

viability of the framework components.

The thesis serves as a beginning for other research

necessary to support or adjust the framework in its goal of

establishing a proper OOSD test environment.

Accession For

NTIS GRA&I
DTIC 7AiMi Fl
Un.nrimunuic~e-di

Di L

Dist'

Diat 
A.4~



A FRAMEWORK FOR CORPORATE IMPLEMENTATION OF

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

by

JAMES MARK McVAY

B.S., Auburn University, 1983

A thesis submitted to the

Faculty of the Gradiate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master of Science

School of Business

1992



This thesis for the Master of Science degree by

James Mark McVay

has been approved for the

School of Business

by

Jams C Brancheau

David A. Carlson

KDai A.' K'12

Date A 2-



McVay, James Mark (M.S., Management Science and

Information Systems)

A Framework for Corporate Implementation of Object-

Oriented Software Development

Thesis directed by Assistant Professor James C. Brancheau

The object paradigm is praised by many software

engineers as a solution for managing today's complex

software development. Its scope covers all phases of a

software development life cycle. Applying the paradigm

through object-oriented analysis, object-oriented design,

and object-oriented programming promises many benefits.

Code is easier to reuse. Transitions across the

development phases are more understandable. System

development costs and time are reduced to yield higher

returns on investment.

Reaping the benefits of object-oriented software

development (OOSD) comes at the expense of major changes.

Traditional software developers must convert to a

technology conceptually opposed to past practices. The

initial costs for converting to OOSD are quite high. New

training, tools, and management practices are required.

Before fully committing to these changes a company must

answer three basic questions:

1) Is the object paradigm useful to software devel-
opment?

2) If so, how can it be applied to reap the most
benefits?

3) What are the impacts on organizational dynamics?

...... .....



iv

The difficulty with these questions is that none can be

answered without experience. In order for the object

paradigm to be judged, it must be tested.

This thesis proposes a framework which provides

guidance in establishing an adequate test environment.

The framework consists of Len components. Each component

addresses a specific area of the software development

environment. Each component is constructed to highlight

the implementation factors required by OOSD.

Following the framework is a case study of one

company which developed a system using object-oriented

techniques. This case study is based on the framework

and was designed to test the viability of the framework

components.

While one case study is not sufficient to validate

the framework, two components were heavily supported by

the study. The thesis serves as a beginning for other

research necessary to support or adjust the framework in

its goal of establishing a proper OOSD test environment.



CONTENTS

CHAPTER

I. INTRODUCTION .............. ................ 1

Problem Statement ........... ............ 2

Thesis Purpose .......... ............... 3

Method ................ .................. 3

Thesis Organization ......... ........... 4

II. THE OBJECT PARADIGM ........... ............ 7

Software Engineering ........ ........... 8

Goals of Software Engineering ... ..... 9

Object Fundamentals ..... ........... 12

Object Defined ...... ............. .. 12

Object-Oriented Elements ... ........ 14

III. OBJECT-ORIENTED SOFTWARE DEVELOPMENT .... 24

The Fountain Life Cycle ... ......... 24

Object-Oriented Analysis ... ......... .. 29

Paradigm Benefits ..... ........... 30

Software Engineering Support ........ 31

Object-Oriented Design .... .......... 32

Paradigm Benefits ..... ........... 33

Software Engineering Support ........ 34

Object-Oriented Programming .. ....... 35

Paradigm Benefits ..... ........... 36

Software Engineering Support ........ 38



Vi

Business Benefits ..... ............ 39

Tangible Benefits ..... ........... 40

Intangible Benefits ..... .......... 41

IV. THE FRAMEWORK ......... ............... 44

Innovation Diffusion Theory .. ....... 44

The Framework Under Diffusion Theory . . 45

The Framework Components ... ......... 46

The Champion ........ .............. 47

The User Team ....... ............. 56

Object-Oriented Analysis Team . . .. 62

Object-Oriented Design Team ..... 65

Object-Oriented Programming Team . . . 67

Maintenance Advisor(s) ... ........ 71

The Technology Resource Center ..... .. 73

User Team Support Unit ... ........ 74

Object Reuse Library ... ......... .. 76

The Vendor ........ ............... 78

The Decision Makers ..... .......... 81

Corporate Goals and Objectives ..... .. 84

The Appropriate Software Project . . .. 86

The Management Team ..... .......... 90

The Communication Channels ......... .. 90

Summary ........... ................. 92

V. RESEARCH APPROACH ....... ............. 98

Research Method ........... ............. 98

Contacting Companies . ... 100



vii

Participant Selection ......... .......... 100

Question Set Design ....... ........... 101

Process Goal .......... ............... 101

VI. ANALYSIS and FINDINGS ....... ........... 104

Case Study Project Background ...... 104

Company Structure ....... ........... 105

Project History ....... ............ 106

OOSD Technology ....... ............. 107

OOSD Principles ....... ............ 107

Life Cycle Approach ..... .......... 108

Benefits .............. ................ 109

The Champion ............ ............... 110

Champion #1 ............. .............. 110

Champion #2 ......... .............. 112

User Team ........... ................ 112

Collective Features ..... .......... 113

OOA Team .......... ................ 118

OOD Team .......... ................ 118

OOP Team .......... ................ 120

Maintenance Advisor ..... .......... 121

Technology Resource Center ... ........ .. 122

User Team Support Unit .... ......... 122

The Object Reuse Library ... ........ .. 123

The Vendor .......... ................ 124

The Decision Makers ....... ........... 125

Corporate Goals and Objectives ........ .. 126



viii

Appropriate Software Project ... ....... .. 127

The Management Team ....... ........... 129

Communication Channels ...... .......... 130

Summary of Findings ....... ........... 130

Technology .......... ............... 131

Managerial .......... ............... 131

Other Findings ............ ............. 133

VII. CLOSING DISCUSSIONS ........ ............. 134

Proqnosis for Diffusion .. ........ 134

Limitations of the Case Study ...... 135

Additional Research Areas ..... ........ 136

Business Unit Impact ...... .......... 136

OOSD and Markeu Share ..... ......... 137

Conclusion .......... ................ 137

REFERENCES ................ ..................... 139

APPENDIX

A. CASE STUDY INTERVIEW QUESTION SETS ....... .. 144

B. CASE STUDY INTERVIEW DATA ..... ......... 159

Champion Question Set - Champion #1 . . 16i

Modified Champion Question Set
Champion #2 ... ......... 164

.nalyst #1 .......... ................ 166

Analyst #2 .......... ................ 168

Designer .......... ................. 170

.rogrammer #1 ......... .............. 174

Programmer #2 ......... .............. 176

Programmer #3 ......... .............. 179



ix

Manager ........... ................. 182

User Support .......... ............... .. 184

Senior Manager ........ .............. 187

Pooled Data ......... ............... 191

User Team Personality ..... ......... 191

Education Level ....... ............ 191

C. PROJECT DETAILS MAILED TO FIRMS ... ...... 193



CHAPTER I

INTRODUCTION

Commercial software development began in 1951 when

UNIVAC I was delivered to the U.S. Bureau of Cens-

us. [1] Today's hardware eclipses the abilities of

yesterday's and continues to advance in power. Its

capacity demands software at an ever increasing rate. As

a result, software systems continue to grow in complexity

while developers search for ways to manage them. The

accumulation of older programming languages and methods

to apply them often frustrates this search. New develop-

ment techniques find their way out of research, each

promising it is up to today's challenge. With so many

different development approaches, managers may question

which choice is the best solution.

The object paradigm is one approach touted by many

software engineers as a solution for today's complex

development environments. Its application can reach

across all phases of the software life cycle. It offers

benefits such as development cost and time reductions.

It promises to create more understandable documentation

and code. Formerly rough transitions through the life

cycle phases are supposedly smoothed. The benefits come



2

at a price, though. This price is organizational change.

Moad observes, "as object-oriented technologies move

into IS organizations, there is growing recognition that

major changes in programmer training, development

styles, and tools" are required. [2] Herzog warns,

however, "management must appreciate the impact of change

evolves over time. . . . Too frequently the change is not

allowed to take root . . . and realize its full poten-

tial."[3] The change expected by the object paradigm

requires that organizations compile sufficient informa-

tion to determine if the change is worth the cost.

Problem Statement

Organizations considering the object paradigm are

faced with three fundamental questions:

1) Is the object paradigm useful to software devel-
opment?

2) If so, how can it be applied to reap the most
benefits?

3) What are the impacts on organizational dynamics?

The difficulty with these questions is that none can

be answered without experience. In order for the object

paradigm to be judged, it must be tested. The problem is

to establish an adequate environment to properly test the

paradigm.



3

Thesis Purpose

The purpose of this thesis is to propose an appro-

priate environment under which object-oriented software

development (OOSD) can be adequately tested. Firms with

a valid test environment can find their own answers to

the three fundamental questions.

The thesis will examine the foundations of the

object paradigm and the reasons for its consideration.

It will examine literature for current software manage-

ment practices and their applicability to OOSD.

Method

This thesis proposes a framework which is designed

to help establish an appropriate test climate. Ten

components form the framework. Each component addresses

a specific area of the software development environment.

Each component is constructed to highlight the implemen-

tation factors required by the technology.

The thesis presents the definition of an object, the

principles of the object-oriented approach, and the OOSD

process. This information is needed to understand the

relevance of the framework to OOSD.

The thesis also presents a case study based on the

framework. The case study was designed to test the

viability of the framework components. A company with a

large OOSD project volunteered to participate in this



4

research. Initial contact with this company suggested

the project was a success story. Detailed study revealed

this was not necessarily true. Serious problems hindered

the process and caused a late end product. Thirty-four

pages of interview data reveal an intriguing story.

One case study is insufficient to adequately support

or disprove the framework. However, the case study does

suggest the framework's positions on vendor training and

an appropriate software project are sound. Inadequate

training and pioneering OOSD with a critical project

contributed heavily to the above problems.

Thesis Organization

Chapter II begins by explaining the discipline and

goals of software engineering. This is to show the

reader why OOSD appears to be a viable software develop-

ment technology. The definition of an object follows as

does a synthesis of object-oriented principles.

Chapter III describes the application of OOSD

through an appropriate life cycle. The phases of the

life cycle are explained along with the respective bene-

fits of each.

Chapter IV presents the framework's construction.

Each component is defined via its respective attributes

and operations. The thesis finds support for the compo-

nents in numerous literature sources. Some attributes



5

and operations derive from the technology requirements.

Chapter V presents how the research was conducted.

It covers the chosen research method, the process of

contacting companies, how participants were selected,

rationale of the question set design, and the goal of the

research process.

Chapter VI analyses the data found in Appendix B.

Interviewee answers are compared and contrasted. A

summary of key findings closes the chapter.

Chapter VII concludes the thesis with closing dis-

cussions. The prognosis for OOSD diffusion in the stud-

ied firm is discussed along with potential areas for

future research.



6

Notes - Chapter I

[I] Anthony Ralston and Edwin D. Reilly, Jr., eds.
Encyclopedia of Computer Science and Engineering (New York:
Van Nostrand Reinhold Company, 1983), s.v. "UNIVAC I" by
Michael M. Maynard.

[2] Jeff Moad, "Cultural Barriers Slow Reusability,"
Datamation, 15 November 1989, 87.

[3] John P. Herzog, "People: The Critical Factor In
Managing Change," Journal of Systems Management, March
1991, 8.



CHAPTER II

THE OBJECT PARADIGM

Using object-oriented concepts is seen by many as a

new way to develop software; however, the idea has been

around for many years. Most software professionals view

the development of SIMULA 67 in the late sixties as the

beginning of the object paradigm.[1] 1[2] Ten Dyke

and Kunz argue, however, that the 1957 Minuteman missile

project used "'r.imitive object-oriented tech-

niques."[3] The idea that the object paradigm is new

stems from its only recent acceptance as a means to

develop software. Coad and Yourdon say this passing of

time allowed the object paradigm to mature to a point

where it is now a viable approach. [4]

The use of object-oriented techniques appears to

hold great promise in the management of increasingly

complex software systems. However, software profession-

als in the midst of making decisions based on this prom-

ise may find themselves confused by the extravagances of

claims made in the media. One article will tell how

object-oriented approaches will make software development

simple.[5] Another will propose that using objects is

a "silver bullet" in the battle over software prob-



lems. [6] Others may take the opposite position and

argue the object paradigm is overrated and just will not

match the claims made about it. This thesis takes the

position that the promises of the object paradigm may be

attainable, but not automatically so. While a technology

may have many benefits, it takes humans to realize these

benefits. Humans must create a proper environment to use

the object paradigm before its promises can be expected

to be fulfilled. The framework proposed by this thesis

seeks to provide guidance in building this proper envi-

ronment.

In order to understand how the object paradigm aids

software development, one must first understand the

discipline of software engineering. Object-oriented

techniques are promising means to meet the objectives of

software engineering.

Software EngineerinQ

The complexity of modern software requires a disci-

plined approach to its development and management. The

title "software engineering" is a broad term encompassing

most of the specific activities involved in developing

software. Though its scope is broad, software engineer-

ing does demand definite actions of software profession-

als. Its definition hints at these actions.

Boehm combines the separate dictionary meanings of



9

software and engineering to give us the following defini-

tion:

Software engineering is the application of science
and mathematics by which the capabilities of comput-
er equipment are made useful to man via computer
programs, procedures, and associated documenta-
tion.[7]

Boehm goes on to emphasize two key points of this defini-

tion. He insists that software be "useful to man" and

that software professionals must recognize software

development encompasses more than just the computer

programs. [8]

The discipline of software engineering does not

identify specific means to accomplish the requirements of

the above definition (this is left to entrepreneurs as

they develop marketable methods), but the discipline does

specify what is necessary to fulfill the definition.

Discipline requirements are revealed by examining Boehm's

software engineering goal structure and Booch's goals of

software engineering.

Goals of Software EnQineering

Using Boehm's software engineering goal structure,

this thesis will focus on his subgoal of achieving a

successful software producc. In the context of human

r~lations, he says the software product should be easy to

use, should satisfy an actual human need, and should

enhance human potential. In the context of actual pro-

gram engineering, he says the software product's requir-



10

ements should be precisely stated; the end-product should

correctly match these requirements; the end-product

should be adaptable to changing requirements and/or

changing environments.[9]

Booch cites the work of Ross, Goodenough, and

Irvine[10] in identifying four goals of software

engineering: modifiability, efficiency, reliability, and

understandability. He explains modifiability as "con-

trolled change . . . without increasing the complexity of

the original system."[ll] This corresponds to

Boehm's goal of adaptability. Efficiency is defined as

"using the set of available resources in an optimal man-

ner."[121 Booch identifies these resources as time

and space within the context of hardware components.

This thesis takes the view that these resources are too

narrowly defined. Time and space are applicable in many

contexts, especially in the context of human resources.

This thesis expands the efficiency goal to include human

time as a resource to be optimally used.

In setting reliability as a goal, Booch acknowledges

no system is perfect. However, he expects "a reliable

system would degrade gracefully without causing any

dangerous side effects."[13] Booch identifies under-

standability as the most important goal of software

engineering.[14] Without a clear understanding of

what is to be done, the final product will not be easy to



11

use and will have no assurance of satisfying a need. It

cannot be piecisely specified or be tested effectively

for correctness.

To be understandable, Booch says a system "must

directly reflect our natural view of the world."[15]

In other words the end-product should use processes and

terminology consistent with how a human would interpret

and perform a task. Booch restricts his explanation of

understandability to the contexts of design and program-

ming. This thesis takes the view that understandability

should cloak not only computer programs but all proce-

dures and associated documentation needed to build sys-

tems.

Combining Boehm's and Booch's goals results in the

following composite list of software engineering goals:

1. Systems which are easy to use.

2. Systems which satisfy human needs and enhance
human achievement.

3. Requirements which are clear and precisely
stated.

4. Systems which are easily modified or adapted to
changing requirements.

5. Efficiency of computer and human resources.

6. Systems which are reliable.

7. Understandability across all system development
processes.

Applied in a disciplined manner, the object paradigm

can aid tremendously in obtaining these goals. Before



12

examining the means of applying the object paradigm,

though, a study of object fundamentals is needed.

Object Fundamentals

A quick review of the object-oriented material in

print today reveals a great deal of confusion. Many

authors use different terminology to define the expres-

sion "object-oriented." Though a standard consensus on

defining the object paradigm is unavailable, a usable

definition is attainable through careful study. This

thesis extracts the similarities of the differing views

and presents a definition of the term object and the

general elements composing the term object-oriented.

Object Defined

Defining the term object is the easiest task. Most

writers offer very similar meanings. Coad and Yourdon

define an object as:

An abstraction of something in a problem domain,
reflecting the capabilities of a system to keep
information about it, interact with it, or both; an
encapsulation of attribute values and their exclu-
sive services.[16]

Booch says:

An object has state, behavior, and identity; the
structure and behavior of similar objects are de-
fined in their common class.[17]

Wirfs-Brock and Johnson offer:

An object embodies an abstraction. It provides
services . . . an object is not just a collection of



13

data. The services are computations that are appro-
priate to the abstraction. [18]

Coad and Yourdon's information and attribute values,

Booch's state, and Wirfs-Brock and Johnison's implication

of a collection of data all point to the idea that ob-

jects possess data. The use of the term services in the

first and third definition and of the term behavior in

the second point to the idea that objects possess opera-

tions as well. Therefore, a general definition is: an

object is a structure which contains both data and opera-

tions.'

The benefit of having a software construct as de-

fined above is the overcoming of weaknesses of tradition-

al software development techniques. Traditional tech-

niques separate system development into functional model-

ing and data modeling. While successful at times in the

past, this division creates problems as modern systems

become more complex. Coad and Yourdon give two examples

where software deve~opers were divided into functional

teams and data teams. This separation induced conflict

and resulted in systems which were less than ide-

al.1[19] Sommerville points out that "the role of any

computer system is to model the real-world."[20]

Separating data structure from functionality is not

a characteristic of real-world entities. As noted in

1 This shorthand definition is commonly used in

software engircering circles



14

literature, real-world entities have attributes (data)

and operations (functions).[21] Humans are short,

tall, blond, brunette, etc. They also drive cars, play

baseball, are mugged, go to graduate school, etc. Ob-

jects give software developers the ability to map all

these human aspects into one structure which reflects its

real-world counterpart. Remember, this ability to map

the real-world is key to Booch's requirement of an under-

standable system.

Object-Oriented Elements

Booch says object-oriented incorporates four primary

elements: abstraction, encapsulation, modularity, and

hierarchy.[22]

Booch defines abstraction in terms of levels of

detail. He says, "a good abstraction . . . emphasizes

details that are significant . . . and suppresses details

that are . . . immaterial" for a given level.[231

Put in the context of objects, his definition is as

follows:

An abstraction denotes the essential characteristics
of an object that distinguish it from all other
kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective
of the viewer. [24]

He defines encapsulation as a complement of abstrac-

tion. He views abstraction as the "outside view" of an

object, whereas encapsulation is the inside view or

implementation of the object. He concisely defines



15

encapsulation as:

A process of hiding all of the details of an object
that do not contribute to its essential characteris-
tics.[25]

Booch further explains these hidden details are known to

all processes within the object's boundaries but are

unknown to objects on the outside.

Booch defines modularity as:

The property of a system that has been decomposed
into a set of cohesive and loosely coupled
modules. [26]

He quotes Britton and Parnas in stating, "the overall

goal of the decomposition into modules is the reduction

of software cost by allowing modules to be designed and

revised independently."[27] He goes on to explain

how modularity reduces system complexity by designing and

coding smaller, more easily understood components. If

done properly, modularity allows enhancements or changes

to be made with little or no adverse effects to other

components.

Booch defines hierarchy as simply "a ranking or

ordering of abstractions."(281 He explains hierarchy

in terms of inheritance or the obtaining of characteris-

tics defined in one or more classes in a given hierarchy.

Korson and McGregor, Coad and Yourdon, and Ten Dyke

and Kunz all include Peter Wegner's object-oriented

elements with additions of their own. As Ten Dyke and

Kunz point out, Wegner focused on languages and said for



16

a language to be considered object-oriented it must

support objects, classes, and inheritance.[29] Ten

Dyke and Kunz added dynamic binding and encapsulation as

needed properties. Korson and McGregor add to Wegner the

concepts of polymorphism and dynamic binding.[30]

Coad and Yourdon add the principle of communication with

messages to Wegner as the properties necessary for defin-

ing object-oriented. [31]

All three writings view objects, more or less, as

defined above: a structure which contains data and

operations.

Coad and Yourdon's definition of classes sums up the

other two views:

A description of one or more objects with a uniform
set of attributes and services, including a descrip-
tion of how to create new objects in the
class.[32]

The key points are: classes describe characteristics and

objects are created from classes.

Each view inheritance much as Booch defines hierar-

chy. Ten Dyke and Kunz offer a succinct definition which

encompasses the other two's discussions:

Inheritance is a property of classes that allows
them to share resources. Classes may be arranged in
a hierarchy from most general to most specific.
Classes lower in the hierarchy may inherit methods
and attributes from classes above.[33]

Dynamic binding addresses the idea of waiting until

run-time to allocate memory to a unit of code. In an

object-oriented context, dynamic binding is usually



17

associated with polymorphism.

Polymorphism is a difficult concept to many tradi-

tional software developers but is a powerful, time saving

tool when used correctly. Stefik and Bobrow define

polymorphism as:

The capability for different classes of objects to
respond to exactly the same protocols. Protocols
enable a program to treat uniformly objects that
arise from different classes. A critical feature is
that even when the same message is sent from the
same place in code, it can invoke different meth-
ods. [34]

Understanding this definition requires an understanding

of all previously defined concepts along with two others:

methods and messages. Methods are synonymous with the

operations associated with an object. An object's meth-

ods define what an object can do and what can be done to

the object. For one object to cause another object's

method to execute, it must communicate a request via a

message. The above definition is saying that an object

can send a message and, depending on the point in time,

this message can be applied to different objects. If the

addressed objects have a method matching the message,

then that method is invoked. Because the object issuing

the message is not required to know the class of the

object being sent the message, the actual method code

which is invoked is not known until run-time.

Booch illustrates the power of polymorphism with a

language which does not support it. He shows how, with



18

Pascal, a class hierarchy cannot be created for variant

but similar data objects. To invoke the correct methods,

a programmer would first have to write code to decide

which object is to be addressed and therefore which

method to call. Any additions to the data would require

error-prone changes to the already large testing

code.[35] Polymorphism reduces the amount of coding

required as long as the protocols are written correctly.

Coad and Yourdon's discussion on communicating with

messages is limited due to its minimum application in

analysis. Their views are encompassed by the more com-

prehensive discussion on polymorphism above.

Ten Dyke and Kunz's definition of encapsulation is

encompassed by that of Booch's.

Although the above authors use differing terminolo-

gies and omit concepts which others include, the definite

similarities and sound arguments allow this thesis to

identify the following as the essential object-oriented

elements:

1. Use of objects.

2. Abstraction.

3. Encapsulation.

4. Inheritance.

5. Polymorphism.

The use of objects as essential is obvious and

precludes defending.



19

The thesis chooses the term abstraction over classes

due to its encompassing the meaning of classes and its

further use in managing the complexity of human thought.

Abstraction is the beginning point in finding a software

solution using objects.

This thesis chose encapsulation primarily by consen-

sus. Nearly all authors touched on this concept in one

way or another. Some may use the term information hid-

ing. Korson and McGregor discussed the need for informa-

tion hiding under the heading of classes. They later

show information hiding is synonymous with encapsulat-

ion.[36] The principles associated with encapsula-

tion are vital in incorporating the object character-

istics identified by abstraction.

Inheritance was a common term among all authors.

Booch listed hierarchy but explained it almost entirely

in explicit terms of inheritance.[37]

Although polymorphism was only explicitly listed by

Korson and McGregor, Booch illustrates its power on a

level equal with inheritance.[38] Other sources less

comprehensive than those used above also include polymor-

phism as an essential object-oriented ele-

ment. [39] [40]

This thesis acknowledges the importance of modulari-

ty but does not place it as a separate element of the

object paradigm. Modularity is essential to properly



20

express abstract classes and to encapsulate class details

which are to be hidden. As such, modularity is seen to

exist in both abstraction and encapsulation by giving

form to these principles.

In order to realize the benefits of the object

paradigm, the object paradigm must be applied in a disci-

plined manner. This disciplined manner is generically

termed object-oriented software development (OOSD).

Methods of applying OOSD are discussed in Chapter III.



21

Notes - Chapter II

[1] Peter Coad and Edward Yourdon, Object-Oriented Analysis
(Englewood Cliffs: Yourdon Press, 1991), 5.

[2] Bertrand Meyer, Object-Oriented Software Construction
(Hertfordshire, Great Britain: Prentice Hall International
Ltd., 1988), 423.

[31 R. P. Ten Dyke and J. C. Kunz, "Object-Oriented
Programming", IBM Systems Journal 28, no. 3 (1989): 192.

[4] Peter Coad and Edward Yourdon, 5.

(5] John W. Verity and Evan I. Schwartz, "Software Made
Simple," BusinessWeek, 30 September 1991, 92.

[6] Brad J. Cox, "There Is A Silver Bullet," Byte, Oct
1990, 209.

[71 Barry W. Boehm, Software Engineering Economics (New
Jersey: Prentice-Hall, 1981), 16.

(81 Ibid., 17.

[9] Ibid., 718-723.

[10] Grady Booch, Software Engineering with Ada (Menlo

Park: The Benjamin/Cummings Publishing Company, 1983), 25.

[11] Ibid.

[12] Ibid.

(131 Ibid., 26.

[14] Ibid.

[15] Ibid., 27.

[16] Coad and Yourdon, 53.

[17] Grady Booch, Object-Oriented Design With Applications
(Redwood City: The Benjamin/Cummings Publishing Company,
1991), 77.

[18] Rebecca J. Wirfs-Brock and Ralph E. Johnson, "Sur-
veying Current Research in Object-Oriented Design",
Communications of the ACM, September 1990, 106.



22

[191 Coad and Yourdon, 1-2.

[20] Ian Sommerville, "Object-Oriented Design: A Teenage
Technology," in Software Engineering for Large Software
Systems, ed. B. Kitchenham (London and New York: Elsevier
Science Publishers LTD, 1990), 316.

[21] Booch, Software Engineering with Ada, 38-39.

(22] Booch, Object Oriented Design With Applications, 38.

[23] Ibid., 39.

[24] Ibid.

[25] Ibid., 46.

(26] Ibid., 52.

[27] Ibid., 51.

(28] Ibid., 54.

[29] Ten Dyke and Kunz, 467.

[30] Tim Korson and John D. McGregor, "Understanding
Object-Oriented: A Unifying Paradigm," Communications of
the ACM, September 1990, 42.

[31] Coad and Yourdon, 30.

[321 Ibid., 53.

[33] Ten Dyke and Kunz, 467.

[34] Stefik, M. and Bobrow, D., "Object-Oriented Program-
ming: Themes and Variations," The AI Magazine, Winter 1986,
43.

(35] Booch, Object-Oriented Design with Applications, 103.

(36] Korson and McGregor, 42 & 51.

[37] Booch, Object-Oriented Design With Applications, 54-
59.

[38] Ibid., 102-114.

[39] Parker Hodges, "A Relational Successor?", Datamation,
1 November 1989, 47.



23

(40] Ralph E. Johnson and Brian Foote, "Designing Reusable
Classes," Journal of Object-Oriented Programming, June/July
1988, 22.



CHAPTER III

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

This chapter will present a disciplined approach for

applying the object paradigm. The fountain life cycle is

depicted as an appropriate means to implement the object

paradigm. The general phases of the fountain life cycle

are object-oriented analysis, object-oriented design, and

object-oriented programming. This chapter also presents

the business benefits of object-oriented software devel-

opment.

The Fountain Life Cycle

The traditional process of developing software is

through a software life cycle. A traditional software

life cycle has many steps each of which has a definite

starting and ending point. Each step must be completed

before continuing to the next. Figure 3-1 gives Hender-

son-Sellers and Edwards' rendition of this life cycle.

Korson and McGregor identify problems with the

traditional life cycle in that it does not allow itera-

tion and does not emphasize reuse.[l] Booch explains

iteration of processes as critical to good product devel-

opment. He explains how one step in the process may



25

User Requirements
Analysis

User Requirements
Specification

Software Requirements
Specifloation

Logical Design

I
Physical Design

I mplementatlon/Codlng

System Testing

Program Use

Software Maintenance

Figure 3-1. Modified from Hend-
erson-Sellers and Edwards, The
Obiect-Oriented Systems Life Cy-
cle, figure 1.



26

identify new requirements and changes to be made. Not

recognizing the need for returning to a former step "is a

fundamentally poor process."[2] In Figure 3-2, Hend-

erson-Sellers and Edwards offer their "Fountain Model" as

a life cycle suitable for object-oriented software devel-

opment. This life cycle recognizes the iterative aspects

of an object-oriented approach and emphasizes reuse where

applicable.

As Henderson-Sellers and Edwards note and Puhr and

Monarchi reiterate, this model as well as the traditional

approach is encompassed by three general phases of analy-

sis, design, and implementation.[3] [4] Puhr and Monar-

chi subdivide Figure 3-2 by associating steps one and two

with analysis, steps three through five with design, and

steps six through nine with implementation. Figure 3-3

represents this subdivision and incorporates the intent

of Figure 3-2.

The overlapping of circles represents the blurred

boundaries between the phases. Korson and McGregor

explain the blurred boundaries as a result of using

objects. Unlike other development techniques, objects

provide a common focus in each of the development phases.

The continuity of focusing on objects across analysis,

design, and implementation causes a "more seamless inter-

face between the phases."[5]

This thesis uses the compact life cycle in Figure 3-3



aiTestn

Program
Uee

oding

Deal n

Software
Req Speo

User Req
Goifilost t

eq irement
Analysis

Figure 3-2. modified from Hend-
erson-Sellers and Edwards, The
Objec -Oriented Systems Life Cy-
cle, figure 7.



28

F.mplementation

Design

// Analysis

Figure 3-3.



29

to express the benefits of the object paradigm in each of

the three broad development phases. These development

phases are object-oriented analysis (OOA), object-orient-

ed design (OOD), and object-oriented programming (OOP).

This thesis will present how the object paradigm can

benefit each phase via the software engineering goals.

Object-Oriented Analysis

Puhr and Monarchi point out that the purpose of

systems analysis is to identify and define the problem

domain and to produce an accurate representation of the

problem which is to be solved with an automated sys-

tem.[6] Traditional methods of analysis have not al-

ways produced suitable results. Norman identifies two

problems which tend to induce less than ideal require-

ments analysis. First, the separate processes of data

analysis and function analysis do not always converge to

produce a cohesive requirements document; a point illus-

trated earlier by Coad and Yourdon. Second, the transi-

tion from analysis to design is not smooth due to commun-

ication problems caused by different perspectives.[7]

While not addressing specific methods, Dykman and

Robbins say that much analysis documentation bears little

resemblance to actual system processes. They point out

many analysts fail to adequately communicate with the

user in learning the business task to be automated. [8]



30

-.,is thesis views this inadequate communication as a

result of traditional analysis methods which do not allow

easy translation from a user view of the world to an

analyst view of the world. As explained below, using

object-oriented analysis may reduce the impact of these

problems.

Paradi(Tm Benefits

Booch defines OOA as:

A method of analysis that examines requirements from
the perspective of the classes and objects found in
the vocabulary of the problem domain.[9]

obviously, users or those familiar with the real-world

processes know the problem domain best. They set the

vocabulary of the problem domain. Since objects have

both data and operations, they allow user and analyst to

view entities with a common vocabulary. The analyst can

use abstraction and encapsulation to build classes and

objects which can be easily understood by the user.

Since all characteristics and operations can be expressed

in real-world terminology, the user can more readily

identify problems if any exist.

The analyst can use inheritance to establish class

hierarchies so that, as Coad and Yourdon note, common

attributes and services are specified once and may be

extended in specific cases.1111

Polymorphism is primarily applicable in programming

since it is dependent on dynamic binding; it is planned



31

for in design; but, it gets its start in analysis. Any-

time a user specifies an operation with the same name but

in different contexts with different objects, polymor-

phism has begun. The analyst can identify these polymor-

phic functions in their contexts via the class hierarchy.

Software EnQineering Support

The software engineering goals 2, 3, 4, 5, and 7

from page 11 are directly supported by OOA.

Confidence that human needs are met begins with

correctly identifying those needs. Vocabulary common to

both user and analyst helps accomplish this.

Precision of requirements can be achieved through

precise abstract class and object specifications. The

nature of these classes and objects is that a user can

see exactly what will and will not be available. There

is reduced confusion about which process applies to which

piece of data.

When abstraction and encapsulation are applied

correctly, the problem domain is expressed in a series of

well-defined modules. During the iterative development

process if any modifications are needed in the require-

ments, developers can easily make the changes to the

appropriate modules.

Analyst and user time can be more efficiently used

as abstract classes and inheritance allow common features

to be written once. When two or more objects have common



32

operations and attributes, the analyst does not have to

waste effort rewriting these common features. She lists

only the unique features at the appropriate level.

Understandability across all development processes

starts with OOA. The final analysis result is a product

more easily understood by user and analyst. There is no

need for confusing translation from a user view to an

analyst view.

Object-Oriented DesiQn

Puhr and Monarchi say the design stage "transforms

the problem representation into a solution representa-

tion."[ll] They note while the solution domain encom-

passes the problem domain, it may be larger. They list

user interfaces, hardware control processes, and reusable

domain independent objects as possible additions that

must be designed into the solution.[12]

Booch identifies two key functions of OOD:

1. Object-oriented decomposition.

2. Expression of the logical and physical
models. [13]

He defines object-oriented decomposition as:

The process of breaking a system into parts, each of
which represents some class or object from the prob-
lem domain . . . we view the world as a collection
of objects that cooperate with one another to
achieve some desired functionality.[14]

He says the logical model consists of the class and

object diagrams. Effort is given to track the logical



33

flow of object interaction as object creation and de-

struction is modeled. The logical model is implementa-

tion or language independent.

The physical model evolves from the logical model

and employs module and process diagrams. Module diagrams

specify the actual software components to be implemented.

Process diagrams address hardware components. Coad and

Yourdon call this stage detailed design and say it is

language dependent.[15]

Paradigm Benefits

Booch states the primary purpose of the design steps

is to produce a blueprint to be used in building the

solution. [161 The elements of object-orientation as-

sist in producing this blueprint much as they do in OOA.

Korson and McGregor point out that the product of

OOA is the "initial layer in the design" phase.[17]

As the designers decide how to solve what is required,

they will use abstraction and encapsulation to define the

characteristics of user interfaces and physical resourc-

es. Internal details will be added as object attributes

and functional algorithms are decided.

Henderson-Sellers and Edwards present reuse as an

important part of an OOD strategy.[18] Reusable mod-

ules, developed from previous efforts, can shorten the

design considerably. Designers determine the placement

of these reusable modules and can extend their capabili-



34

ties through inheritance.

As designers study the logical flow of object inter-

action, they may identify needs for additional classes

and objects. They may also gain a better understanding

of object communication and can identify methods improved

by polymorphism.

The need for additional classes usually requires

clarification from users. Designers iterate back to

analysis to gain additional information from the users.

Objects allow users to understand the process even in the

design stage due to common terminology across analysis

and design.

Software Engineering Support

Object-Oriented Design directly supports the page 11

software engineering goals 1, 2, 4, 5, and 7.

The first step in providing easy to use systems is

designing user interfaces which the user understands. As

interface objects are designed into the solution domain,

designers can take these objects to the user for review

and feedback.

The identification of new classes and objects, which

may have been overlooked in analysis or are required by

the solution, helps ensure satisfaction of human needs.

As module design increases in detail, abstraction and

encapsulation can still ensure changes are localized and

effects are understood.



35

Reuse, inheritance, and polymorphism allow design

extension and deter redundant or unncceqsary design de-

tails. This allows more efficient use of designer time.

As in OOA, objects allow a common dialogue to exist

among user, analyst, and designer. The iterative process

can be used to its fullest as the cross-flow of informa-

tion is understood by each participant.

Object-Oriented Programming

Implementation follows the maturing of the design

phase. This thesis applies the term object-oriented

programming to cover all steps associated with implement-

ing the design. Booch defines OOP as:

A method of implementation in which programs are
organized as cooperative collections of objects,
each of which represents an instance of some class,
and whose classes are all members of a hierarchy of
classes united via inheritance relationships.[19]

Programmers carry out OOP by using a suitable lan-

guage to manifest the elements of the object paradigm in

their code. One should note, as Duff and Howard suggest,

OOP by itself does not guarantee a good system.[20]

OOP must be applied by skilled programmers who understand

the elements of the paradigm.

Programming can be a complex and a very error prone

phase of the life cycle. Modern automated systems re-

quire enormous amounts of software which in turn requir-s

numerous programmers. Traditionally, as these large



36

systems are divided into more manageable components,

programmers get bogged down in communicating details with

each other. They have had to overcome the problems of

separating functionality and data. They have used lan-

guages and designs which force them to code their higher

level modules based on code at lower levels. Beudette

says these problems result in an "intertwined complexity"

which is confusing and prevents reuse of previously

written code.[21] As a result, he says programmers

waste time rewriting the same code repeatedly.

Paradigm Benefits

The elements of the object paradigm allow program-

mers to handle the confusion and better manage system

complexity. Objects eliminate the complexity associated

with separating functionality and data. Programmers can

now focus on a single component for this information.

Abstraction can play a major part in controlling

complexity and aiding communication. Martin suggests

that complexity is reduced in that programmers can devel-

op their modules without having the additional burden of

understanding the internal workings of another programm-

er's modules. They make use of other objects based only

on the outward view or the interface.[221 Program-

mer-to-programmer communication is enhanced, also, by

allowing them to discuss what their respective modules

provide without forcing distracting dialogue on how capa-



37

bilities are provided.

Encapsulation allows programmers to hide how the

abstract view is actually implemented in an object. As

noted before, this allows changes to be made with little

or no concern given to outside objects. Encapsulation

also ensures no manipulation of an object's internal

components can occur outside the messages to which an

object responds.

Abstraction and encapsulation combine to provide

reusability of objects. Programmers focus on the ab-

stract view of an object (i.e., what is provided) in

deciding whether to reuse it. Encapsulation provides the

controlled change which may be needed to apply an object

to a new solution domain. Most views of object reuse

take the position that objects are reused as is, but

Booch and Fischer, Henninger, and Redmiles explain this

is not always the case. They point out that objects

quite often need to be modified to fit a particular doma-

in. [23] [24]

Inheritance allows programmers to reduce the amount

of code to keep track of. If an object needs capabili-

ties of an established class, its class can be made a

subclass of the desired class. There is then no need to

rewrite the desired capabilities again.

Programming gains from polymorphism are detailed in

the discussion of object-oriented elements in Chapter II.



38

Software Engineering Support

Object-Oriented Programming directly supports the

page 11 software engineering goals 1, 2, 4, 5, 6, and 7.

Following design of proper interfaces, the program-

ming of these interfaces allows users their first glimpse

of the system in action. Users can "test-ride" the

software and give their verdict on ease of use. If

changes are needed, the fountain life cycle allows itera-

tion back to either analysis or design. If the fountain

life cycle and OOP are used effectively, the final prod-

uct should meet the easy to use criteria.

The programmed classes and objects retain the ini-

tial vocabulary and ideas identified in analysis and

design. This stable vocabulary across each development

phase should allow effective communication among all

participants. Good communication is critical in ensuring

the proper needs are met.

Code utilizing abstraction, encapsulation, inheri-

tance, and polymorphism is potentially far easier to

modify and adapt. Time is conserved by adding modules

which have to be concerned only with the outer view of

any module interacted with. Programmers can make inter-

nal module changes without concern for effects on other

external modules. Many capabilities can be obtained or

added with little coding just by strategic placement

within an inheritance hierarchy. System enhancements



39

using polymorphic methods can be added with little or no

alterations to the message sending modules.

Not only do inheritance and polymorphism suggest

easier modifications, the reduction in code required

allows more efficient use of programmer time. Reusing

classes and objects of previous efforts also implies

reductions in the need for new code thus improving pro-

grammer efficiency.

System reliability can be increased by encapsulation

and reusing modules. Encapsulating both data and opera-

tions in an object localizes any errors occurring with

any enclosed algorithm. A programmer needs to focus only

on the offending module for error correction. Generally,

reused modules have proven reliability and including them

in other systems transfers this confidence as well.

OOP continues the understanding developed in OOA and

OOD. Using objects with the iterative fountain life

cycle allows users, analysts, designers, and programmers

to communicate with a common vocabulary which helps

ensure understandability across all development process-

es.

Business Benefits

As explained above, the object paradigm can benefit

analysts, designers, and programmers individually as well

as supporting the goals of software engineering. As a



40

result, there are definite business benefits from which a

firm may profit. This thesis finds both tangible and

intangible business benefits.

Tangible Benefits

The key tangible benefit of using OOSD is reducing

the time needed co develop software. Reducing develop-

ment time results in reduced production costs.

Many writers point to software reuse as the major

time saving feature of OOSD.[25] [26] [27] As

stated above, reuse combined with inheritance and poly-

morphism can reduce designer and programmer time in

developing new systems.

Time savings extend into maintenance as well.

Johnson and Foote quote a National Bureau of Standards

study "suggesting that 60 to 85 percent of the total cost

of software" is in maintenance.[281 The controlled

change allowed by encapsulation, and all other OOSD

features required during maintenance, promises to greatly

reduce this high cost.

For firms who sell software, the reduced time and

costs allow them to market their product faster and at

more competitive prices. For firms who develop software

for internal use, the reduced time and costs allow them

to more quickly adjust their software to changing busi-

ness environments possibly gaining a substantial competi-

tive edge.



41

Intangible Benefits

Firms who develop and sell software alone or as part

of a larger system probably can possibly market their

products and services more effectively if they employ

OOSD. In today's market, identifying what the customer

wants and then meeting that desire is critical to suc-

cess. Applying the object paradigm through OOA defines

the customer's wishes at the earliest possible time. The

dialogue between the analyst and customer is in terms the

customer is comfortable with. The resulting requirements

documentation is in language the customer can easily

identify with. The final solution/product should closely

match the problem as the user sees it. This can increase

customer satisfaction.

Software firms who offer an object-oriented solution

versus trying to get customers to understand and sign-off

on confusing functional decomposition and data flow

diagrams could gain increasing market share.



42

Notes - Chapter III

[1] Tim Korson and John D. McGregor, "Understanding Object-
Oriented: A Unifying Paradigm," Communications of the ACM,
September 1990, 41.

[2] Grady Booch, Object-Oriented Design With Applications
(Redwood City: The Benjamin/Cummings Publishing Company,
1991), 188-190.

[3] Brian Henderson-Sellers and Julian M. Edwards, "The
Object-Oriented Systems Life Cycle," Communications of the
ACM, September 1990, 145.

[4] Gretchin I. Puhr and David E. Monarchi, "Object-
Oriented Analysis and Design: A Comparison of Methodolo-
gies, Techniques and Representations", Faculty Working Paper
Series, College of Business and Administration, University
of Colorado, Boulder, 1991, 6.

[5] Korson and McGregor, 41.

[6] Puhr and Monarchi, 7.

[7] Ronald J. Norman, "Object-Oriented Systems Analysis:
A Methodology for the 1990s," Journal of Systems Management,
July 1991, 32.

[8] Charlene A. Dykman and Ruth Robbins, "Organizational
Success Through Effective Systems Analysis," Journal of
Systems Management, July 1991, 7.

[9] Booch, Object-Oriented Design With Applications, 37.

[10] Peter Coad and Edward Yourdon, Obiect-Oriented
Analysis (Englewood Cliffs: Yourdon Press, 1991), 15.

[11] Puhr and Monarchi, 7.

[12] Ibid., 13.

[13] Booch, Object-Oriented Design With Applications, 37.

[14] Ibid., 516.

[15] Coad and Yourdon, 180.

[16] Ibid., 37.

[17] Korson and McGregor, 41.



43

[18] Henderson-Sellers and Edwards, 150.

[19] Booch, Object-Oriented Design With Applications, 36.

[20] Chuck Duff and Bob Howard, "Migration Patterns," Byte,
October 1990, 223.

[21] Neal E. Beudette, "Object-Oriented Programming:
Untangling the Software Mess," Industry Week, 5 March 1990,
49.

[22] James Martin, "OOP Goes Beyond the Commonsense Meaning
of 'Object'," PC Week, 11 September 1989, 76.

[23] Booch, Object-Oriented Design With Applications, 232.

[24] Gerhard Fischer, Scott Henninger, and David Redmiles,
"Cognitive Tools for Locating and Comprehending Software
Objects for Reuse," in 1991 IEEE 13th International
Conference On Software Engineering by the IEEE (Los
Alamitos: IEEE Computer Society Press, 1991), 323.

[25] Beudette, 52.

[26] John W. Verity and Evan I. Schwartz, "Software Made
Simple," Business Week, 30 September 1991, 92.

[27] Brad J. Cox, "There Is a Silver Bullet", Byte, October
1990, 210.

[28] Ralph E. Johnson and Brian Foote, "Designing Reusable
Classes," Journal of Object-Oriented Programming, June/July
1988, 24.



CHAPTER IV

THE FRAMEWORK

An effective mechanism must be used to implement

OOSD in order to obtain the technology's benefits. This

thesis proposes a framework of structural components as

one mechanism for the effective implementation of OOSD.

The framework's purpose is to present to managers a set

of factors required for successful implementation of the

object-oriented technology. This framework is construct-

ed within the context of innovation diffusion theory.

The framework is presented as an idealized model.

In actual practice organizations may choose to combine

component responsibilities or initiate the framework in

increments. The idealized model is used to present all

factors in one setting.

This thesis presents the framework by identifying

each component, its purpose, attributes, and operations.

The support for each component and its features is de-

rived from literature or deduced from the technology

attributes.

Innovation Diffusion Theory

A common theme of most discussions of innovation

diffusion theory is the S-shaped adopter distribution



45

curve.[1] [2] The context of most S-curve dialogue

is the study of firms adopting a particular innovation or

technology. Brancheau and Wetherbe have adjusted the

focus of the S-curve to address individuals adopting a

particular technology from within a firm. In their

Individual Adoption Process, they identify knowledge,

persuasion, decision, and implementation as stages of

thinking which people go through in deciding to "adopt or

reject an innovation."[3] The knowledge stage entails

awareness and understanding of the innovation. The

persuasion stage involves development of a positive or

negative attitude through evaluated information. The

decision stage is the individual deciding to adopt or

reject the innovation. The implementation stage follows

a decision to adopt and is the act of committing to the

innovation.[4]

The Framework Under Diffusion Theory

Brancheau and Wetherbe identify four major compo-

nents of innovation diffusion theory as 1) the S-shaped

adopter distribution, 2) innovativeness and adopter

categories, 3) the individual adoption process, and 4)

diffusion networks and opinion leaders.[5] The frame-

work's scope focuses primarily on the individual adoption

process and secondarily on the diffusion networks and

opinion leaders.

Focusing on the individual adoption process, this



46

thesis views OOSD as too broad a technology for any one

person to effectively implement in its entirety. This

view necessarily requires that many individuals will be

going through the stages of thinking just to reach the

decision to implement OOSD or not. The framework seeks

to establish the proper environment for individuals to

progress through their respective knowledge, persuasion,

and decision stages. The framework environment allows

well-informed individuals to unite at some point in time

and pool their knowledge. The firm may then act as the

individual unit in the adoption process and decide to

implement or reject OOSD.

Brancheau and Wetherbe define diffusion networks as

the structure taken on by interpersonal communications

among employees within an organization or work-

group. [6] This thesis holds that a proper adoption

process environment will transmit more accurate informa-

tion across the diffusion networks. The result should be

more positive opinion leaders should a decision be made

to implement OOSD company wide.

The Framework Components

The key components necessary to establish a proper

OOSD adoption process environment are: 1) The OOSD

technology, 2) the Champion, 3) the OOSD User Team, 4)

the Technology Resource Center, 5) Vendors, 6) the Deci-



47

sion Makers, 7) Corporate Goals and Objectives, 8) an

Appropriate Software Project, 9) the Management Team, and

10) Communication Channels. Figure 4-1 shows a graphic

representation of the components. The OOSD technology is

defined in chapters II and III. The other components are

described below.

The Champion

The purpose of the champion is to guide the adoption

and diffusion of OOSD throughout the firm. This person

is responsible for creating the proper environment and

ensuring that all components interact correctly.

The champion's importance in spearheading innovation

is expressed by many writers. Howell and Higgins feel

"someone must take the creative idea, guide it through

the trying period . . and persevere until it becomes an

innovation."[7] Beatty and Gordon studied ten compa-

nies which adopted advanced manufacturing technologies

(AMT) and found that the champion was critical to the AMT

projects reaching their full potential.J8] Howard and

Guile explain,

Champions are particularly important to commercial-
ization success across a wide range of industries

they accept responsibility both for the focus of
their enterprise and for its success and failure.
They become personally invested in, and identify
with, pushing whatever piece of the world they can
control to . . . apply an innovative idea. [9]



48

008D Us-er Them9 lr

OhampionVeor

no Doolion

Management Mklers

Co[@orporsto

Fbstls Appropriate
Oommunloetlon Software

____________Proj sot

Ohannels

Figure 4-1. Framework Components



49

Table 4.1 presents this thesis's model champion to

lead the implementation of OOSD.

Table 4.1

The Champion

Purpose: Guide the adoption of OOSD; bring it to life.

Attributes:
1. Positive attitude about OOSD
2. Knowledgeable in current software development

methods and their limitations
3. Personality:

a. self-confident
b. persistent
c. energetic
d. risk-prone

4. High level position
5. Well connected; has open Communication Channels

to many internal areas; has many external
contacts in technology areas

Operations:
1. Educates self on OOSD
2. Develops understanding of how OOSD helps meet

Corporate Goals and Objectives
3. Assembles pioneering User Team
4. Educates User Team in how OOSD helps meet

Corporate Goals and Objectives
5. Involves User Team and Technology Resource Center

in choosing Vendor OOSD methods and/or tools
6. Oversees User Team education in OOSD technology
7. Involves User Team and Technology Resource Center

in choosing an Appropriate Software Project to
begin building experience

8. Use Communication Channels to monitor attitudes,
perceptions, and progress of User Team

9. Argues OOSD case to Decision Makers
10. Be aware of enormous short term costs associated

with applying OOSD

The attributes and operations found in Table 4.1 are

explained below.



50

Attributes

The person to lead a company into OOSD should obvi-

ously believe the technology will benefit the firm. The

champion's confidence in OOSD is a key requirement in its

diffusion.

In requiring the champion to be knowledgeable in

current software development methods and their limita-

tions, the model accounts for possible confrontations

with those opposed to change. Properly used, the object

paradigm affects all aspects of software development;

changes are widespread. The champion must be able to

deftly argue the merits of OOSD over those of traditional

methods.

The personality attributes of self-confidence,

persistence, energetic, and risk-prone were identified by

Howell and Higgins. Their study found successful champi-

ons were sure of what they were doing, continued despite

many obstacles, were tireless, and would readily risk

their status for the benefit of the innovation. [10]

Studies by Howell and Higgins and Beatty and Gordon

both identify their champions as mid-level manag-

ers. [11] [12] However, this thesis takes the po-

sition that the champion should be of a higher level for

two reasons. One is the large impact that implementing

OOSD will have on a company. As Howard and Guile point

out, the champion must be able "to garner sufficient



51

resources to reach the goal."[13] Therefore, the cham-

pion will need great latitude in securing the training

and resources to equip the analysts, designers, program-

mers, and the technology resource center. Depending on

the corporate structure, personnel may have to be secured

from multiple departments. The required costs may re-

quire other projects go unfunded. A high level champion

would have the clout needed to succeed. The second

reason is the 1990's trend of eliminating mid-level

positions. Companies who have trimmed their mid-level

managers still need champions of innovation. Again, the

leverage necessary for successfully implementing OOSD is

at the higher levels not line/lower management.

The champion will need to be well-connected both

within the firm and externally. The broad impact of OOSD

will require the champion to influence multiple depart-

ments. Beatty and Gordon use the term evangelist for

their definition of a champion.[14] The OOSD

"evangelist" will definitely need people receptive to the

message. Brancheau and Wetherbe say it is critical to

establish effective communication channels with those who

could negatively impact adoption of a technology.[15]

The internally well-connected champion can use the commu-

nication channels to influence the knowledge and persua-

sion stages of OOSD adoption by correcting misinformation

and other problems. Howell and Higgins found successful



52

champions were also well-connected externally. [16]

Adapting their findings to OOSD, a champion would: track

competitor usage of the object paradigm, seek to meet

customer needs via object-oriented analysis, track trends

in object-oriented tools and methods, know which suppli-

ers best meet the firms needs, and seek information from

object-oriented consultants.

Operations

This section explains the operations as identified

in Table 4.1. The successful OOSD champion will exploit

the above attributes by taking specific actions to reap

the full benefits of the technology.

The champion must take the initiative in learning

the complexities of the object paradigm. The extent of

learning is determined by the corporate environment. The

champion should know enough to defend and explain OOSD

and its benefits to the decision makers. He/she should

also have enough technical expertise to persuade those

who will be developing systems with OOSD.

The champion's understanding of how OOSD helps meet

corporate goals and objectives is critical if he wishes

to convince others of the technology's importance to the

firm's direction. Frenzel explains strategic plans

supporting corporate goals and objectives are a critical

success factor for information technology (IT) organiza-

tions.[17] He also notes many corporate leaders "do



53

not fully understand" the benefits of IT let alone spe-

cific methods.[18] The champion who can detail the

importance of OOSD in strategic planning is more likely

to receive the support crucial to successful implementa-

tion. Even if corporate goals and objectives do not

explicitly address software development, they generally

concern reducing development costs and increasing custom-

er satisfaction. A knowledgeable champion can take the

ideas presented in chapter II and III and skillfully

argue OOSD's merits to corporate direction.

The champion should assemble the OOSD user team.

This thesis views the user team as the means by which the

firm progresses through the knowledge and persuasion

stages in the adoption process. The user team is ex-

plained in the next section. Remember, in contrast to

Brancheau and Wetherbe's focus on singular individuals,

the broad scope of OOSD requires the firm to rely on many

individuals to reach the decision stage. These individu-

als include analysts, designers, programmers, and others

whose various areas of expertise will focus the view of

OOSD throughout the firm. This thesis assumes the cham-

pion risks much in the OOSD venture. Using her clear

vision of company needs, she is the one most likely to

build a suitable team and maintain a proper focus.

The champion must educate potential user team mem-

bers on how OOSD helps meet corporate goals and objec-



54

tives. Since goals and objectives guide organizational

direction, team members would be more likely to accept

OOSD when shown its benefits. A clear direction should

also help team members seek better ways to apply the

features of OOSD.

The champion should involve the user team and the

technology resource center (fully defined later) in

choosing vendor OOSD methods and tools. Two examples of

CASE implementation indicate the wisdom of this activity.

Bouldin shows that Rockwell International Corp. allowed

the projected users of CASE tools to evaluate and decide

which vendor product to purchase. Rockwell viewed this

as a critical factor to the tool's successful implementa-

tion.[19] Norman et al. state "lack of user involve-

ment" contributed to a failed CASE implementation at

another organization.[20]

The champion should oversee the education of the

user team. The outcome of the user team's efforts vill

have the greatest impact during the persuasion stage of

the OOSD adoption process. Their success or failure in

using OOSD features may irrevocably affect corporate

attitudes toward the technology. Since education lays

the foundation for success, the champion should ensure

the user team receives adequate training. The champion

should interact with the user team during training to

determine if changes are needed.



55

The champion should again involve the user team and

technology resource center (TRC) in choosing an appro-

priate software project for initial implementation of

OOSD. This step will also increase the chance of favor-

able persuasion. The importance and definition of an

appropriate software project are explained in a later

section. Including the user team and TRC in the decision

allows input to better match the available expertise to a

project. A guideline here is to find a project with re-

quirements that are well suited to the developers' previ-

ous experience. Learning the intricacies of a new appli-

cation will overly complicate the task of learning OOSD.

The champion should use communication channels to

actively monitor attitudes, perceptions, and progress of

the user team. This operation is critical if OOSD is to

have a chance to diffuse throughout the firm. Other

software developers and interested parties will be watch-

ing and talking to the user team. Some in these groups

will be opinion leaders. Brancheau and Wetherbe note "if

opinion leaders reject a new technology, they can stop

the diffusion process in its tracks."[21] It is imper-

ative for the champion to remove barriers to progress,

correct false views of the technology, and reverse nega-

tive attitudes where possible. Depending on the organi-

zation, a mix of formal and informal communication chan-

nels can be used by the champion.



56

The champion may have to argue the case for OOSD to

the decision makers to secure their commitment. In his

criticism of management practices, Tully notes:

The capitalization, quality, staffing, and scale
of the software process is not treated by corporate
management as having the strategic importance which
it should have, given its outputs to the organiza-
tion.[22]

In their study of technology-based products, Gupta and

Wilemon show a consequence of Tully's observation in that

"senior management often wants innovation but they may

not commit the needed resources -- time, funds, and

people."[23] If the user team is to succeed with

pioneering the use of OOSD, the champion must obtain the

needed resources and support from senior management.

The champion must be aware of the enormous start-up

costs involved with OOSD. This knowledge is crucial for

planning and managing the pioneering effort. While huge

costs may threaten senior management support, knowing

this up front helps establish a more legitimate

cost/benefit analysis. Costs involve staff training in

the chosen language, programming model, and class li-

brary, conversion of existing applications, developing an

organizational infrastructure for software reuse, and

other organizational changes.[24] [25]

The User Team

The user team's purpose is to pioneer OOSD in gener-



57

ating an object-oriented end product. The user team's

importance is immense. It is the primary means through

which the corporation as a whole will traverse the knowl-

edge and persuasion stages and enter the decision stage

in the adoption process. All eyes will focus on the team

to see if the promised benefits of OOSD are real or

fictitious.

Assembling a proper team is the paramount task.

However, this task is challenged by many obstacles.

Kellner says "software development is largely practiced

as an individual creative activity, rather than a team

effort."[26] He lists several forces opposed to team

building: desire for autonomy, a culture that dispropor-

tionately rewards individual efforts, concentration of

crucial knowledge by a few individuals, desire for priva-

cy by developers, and large productivity differences

between individuals. [27] Schlumberger feels manage-

ment sees tight teams as threats to its authori-

ty. [28] An effective OOSD user team must overcome

these obstacles.

This thesis presents a user team model subdivided

into four components: object-oriented analysis team,

object-oriented design team, object-oriented programming

team, and maintenance advising team. The four components

will share common attributes and operations as well as

having their own specific ones. Many characteristics and



58

functions of the user team are similar to those of the

champion. They are listed again to underline their

importance to each member. Table 4.2 shows the shared

user team attributes and operations.

Table 4.2

The User Team

Purpose: To generate an 0-0 end product.

Shared Attributes:
1. Positive attitude towards OOSD
2. Experienced software developers
3. Personality:

a. Team oriented; works well with others
b. Self-confident
c. Persistent
d. Communicates well with others

4. Professionally active outside company

Shared Operations:
1. Learn how OOSD helps meet Corporate Goals and

Objectives
2. Learn principles of OOSD
3. Involved in choosing an Appropriate Software

Project
4. Use Communication Channels to inform Champion of

opinions, progress, and problems of OOSD project
5. Work with Technology Resource Center in building

an Object Reuse Library

Shared Attributes

Each member assigned to the team should have a

positive attitude toward OOSD. If a potential member

lacks enough information to form an attitude, then at the

very least he/she should posses the pioneer traits of



59

being venturesome and having a high tolerance for uncer-

tainty.[29] This is, again, an ideal case. Some

situations may require assigning reluctant members to the

team. In these cases, the champion should observe and

manage any negative impacts on teamwork.

Team members should be experienced software develop-

ers. Some in software circles disagree with this view

and hold with Clarke that "it is probably easier to learn

about 0-0 if you have no previous programming back-

ground."[30] While it may be easier to inject a new

technology into an empty mind, the benefits are doubtful.

This thesis stands with Gabriel and Dussud's view that

while the object model is the best method for most appli-

cations it does not fit every situation. [31] In

these situations, experience is essential to work a

suitable solution. Also, Kinlaw says superior work teams

seek to continually improve all aspects of their

work.[32] Experienced software developers can deter-

mine how and why OOSD is an improvement and are better

equipped to evolve into superior work teams.

OOSD user teams should have members which are team

oriented, self-confident, good communicators, and persis-

tent. While these attributes do not guarantee teamwork,

members possessing them will have a greater chance of

overcoming the differences which reduce productivity.

Herzog's discussion of change management shows the



60

importance of working well with other team members. He

says during the process of change:

The most powerful tool is . . . a sincere wish to
understand the other person's point of view and to
accommodate the solution that is the most appropri-
ate for the good of the majority.[331

Using OOSD for the first time is a major change and

software developers should be team oriented and work

together to find good solutions. Kinlaw suggests the

amiable nature of superior work teams improes quality

and efficiency.[34]

The attributes self-confident, and persistent are

drawn from those of the champion. The dramatic changes

of OOSD over traditional techniques make these character-

istics vital to success. If problems arise with the OOSD

process, the team must believe in its ability to overcome

them. Kinlaw supports persistent with his description of

consistency - "the long haul," as a trait of superior

work teams.[351

Members who can express themselves well are crucial

if the team is to adequately discuss and overcome the

problems of pioneering a new technology. As a member

learns new ways to apply OOSD to the project, he/she

needs to inform others and seek to cut production time.

This thesis draws "professionally active outside

company" from Brancheau and Wetherbels findings of pio-

neers.[361



61

Shared Operations

The user team should learn how OOSD helps meet

corporate goals and objectives. This is the mirror

operation to the champion's task of educating the user

team in goals and objectives. The champion may tell them

but it is up to the user team to learn and internalize

why they are using OOSD to implement the chosen software

project.

The team members should learn how the principles of

OOSD apply across the entire life cycle, not just to

their own development area. The fountain life cycle, as

described in chapter III, may at times require the entire

team meet and resolve difficulties. Knowledge of OOSD's

use in all development areas establishes common ground

for all and should facilitate problem solving.

The user team should be involved in choosing an

appropriate software project. See explanation in champi-

on operations above.

The user team should use communication channels to

keep the champion informed. Problems which cannot be

handled by the team must be handled by the champion.

Failure to elevate problems promptly can hinder the

project and may eventually lead to wrong opinions about

OOSD.

The user team should work with the technology re-

source center in building an object reuse library.



62

Biggerstaff argues that narrow domains and well under-

stood domains/architectures are two of the key factors

for successful reuse.[37] The user team is most able

to explain the domain of their object modules. It can

help establish storage and retrieval standards to make

the most of reuse. The team is important in determining

what does and does not work. A properly designed reuse

library can aid future development teams and ease diffu-

sion of OOSD.

Object-Oriented Analysis Team

The purpose of the OOA team is to "model the [sys-

tem] problem domain by identifying and specifying a set

of semantic objects that interact and behave according to

system requirements."[381 These are the people who

will talk with the users or domain experts and discover

what the system requirements are. These requirements are

expressed by defining appropriate objects. The OOA team

has the additional attribute and operations shown in

Table 4.3.

Table 4.3

The Object Oriented Analysis Team

Purpose: Model the system problem domain

Attribute:
Expertise in software requirements analysis

Operations:



63

Table 4.3 continued

1. Work with Champion and Technology Resource Center
to choose Vendor OOA training and tools

2. Learn OOA method
3. Communicates with Users of Appropriate Software

Project
4. Produces Object Oriented Requirements

Specification
5. Communicates with the Object Oriented Design Team

on the Object Oriented Requirements Specification
6. Revisit analysis phase as deemed necessary by the

User Team

Attribute

Members should have some expertise in software

requirements analysis. Those who have experience in sys-

tems analysis have developed needed communication skills

and the ability to understand the problem domain. As

they learn OOA, these members can concentrate more readi-

ly on how to apply the method without the distraction of

learning other analysis skills.

OOA Operations

The OOA team should wcrk with the champion and

technology resource center to choose vendor OOA training

and tools. The members' past analysis experience allows

them to judge the quality of the vendor's training. They

know the dimensions of the analysis task and can help

detect failings of a vendor's method. Involving the OOA

team can speed training and reduce the chance of addi-

tional costs to cover inadequate initial education.



64

Members should learn the chosen OOA method and be

confident they can perform the analysis task. Any uncer-

tainty in the beginning of OOA can only magnify future

problems and jeopardize the adoption process. If a

member lacks confidence in the training, this should be

voiced to the champion who can then help correct the

problem.

The operation, communicates with users of appropri-

ate software project, is obvious but is included as a

warning to deal directly with users/domain experts and

not rely on second-hand data.

The OOA team's main function is to produce an ob-

ject-oriented requirements specification. This docu-

ment's importance is revealed by Coad and Yourdon. They

say the product of OOA is necessary for a "progressive

expansion" of the object model into object-oriented

design (OOD). They further explain, "the OOA layers

model the problem domain and the system's responsibili-

ties. The OOD expansion of the OOA layers model a par-

ticular implementation."[39] In other words, OOD pres-

ents a solution to the problem as expressed by OOA and is

a direct extension of the OOA model. Well formed OOA

documents are critical when using the fountain life cycle

as defined in chapter III. As designers and analysts

revisit the OOA phase, knowing how they made past deci-

sions will help them find new directions.



65

The OOA team must communicate with the OOD team on

the object-oriented requirements specification. If OOD

is to be the expansion of OOA as Coad and Yourdon envi-

sion it, then interaction is needed between the two

teams. As shown in chapter III, the "seamless interfac-

es" allowed by the object paradigm gives each team common

terms to aid this interaction.

To gain the benefits of the fountain life cycle, the

OOA team must be available and able to revisit the analy-

sis phase when necessary.

Object-Oriented Design Team

Drawing from Coad and Yourdon above and Puhr and

Monarchi, the purpose of the OOD team is to produce a

model of the solution domain from the objects identified

in OOA. Puhr and Monarchi hold that OOD is to be lan-

guage-independent.[40] However, Booch and Coad and

Yourdon hold that OOD extends into physical or detail

design.[41] [42] Their views require addressing

language dependencies toward the end of the design phase.

This thesis takes the latter view. The OOD team has the

additional attribute and operations shown in Table 4.4.

Table 4.4

The Object Oriented Design Team

Purpose: Produce a model of the solution domain from
the objects identified in OOA.



66

Table 4.4 continued

Attributes:
Expertise in software design

Operations:
1. Work with Champion and Technology Resource Center

to choose Vendor OOD training and tools
2. Learn OOD method
3. Use Communications Channels to talk to the OOA

Team to successfully move from Analysis to Design
4. Communicate with Users of Appropriate Software

Project and the OOA Team to insure proper
interpretation of objects and interaction

5. Produce OOD specification
6. Revisit Design process as deemed necessary by the

User Team

The OOD team should be experienced software design-

ers. Although the object paradigm is vastly different

from past methods, this thesis assumes experienced de-

signers practice the goals of software engineering. As

such, experienced designers should be more capable of

forming an OOD which meets these goals.

OOD Operations

Many operations in Table 4.4 match those of Table

4.3. The rationale is virtually the same for these

matching operations and the justification for these

operations is not repeated here. As with OOA, the OOD

team operations are important and should be verified by

the champion or other pro3ect leadership.

The OOD team should communicate with the users of

the appropriate software project when needed. While this



67

may not be a common practice in traditional software

development, objects again allow dialogue via terms

common to both parties. Booch recommends this communica-

tion saying, "often, all it takes to clear up a design

problem is a brief meeting between a domain expert and a

developer."[43] To ensure team unity and sustain

documentation integrity, these communications should

include the OOA team.

The key task of the OOD team is to produce the OOD

specification. This document is used by the OOP team to

code the final product. The designers should maximize

the use of all object-oriented elements and emphasize

reuse where possible. Doing so should allow optimum

exploitation of the OOSD business benefits.

Object-Oriented Programming Team

The purpose of the OOP team is to continue the work

of OOA and OOD by building the object-oriented product.

The division of work is dependent upon management styles,

but, normally, each programmer is assigned various class-

es to implement. The interaction among the resulting

objects and the need to remain true to the analysis and

design efforts will require the programmers to work

closely together. A quality object-oriented end-product

depends on the OOP team overcoming the obstacles to

teamwork mentioned earlier. It is probably safe to say

the unity of object interactions relies on the unity of



68

the OOP team. Table 4.5 shows the additional attribute

and operations of the OOP team.

Table 4.5

The Object Oriented Programming Team

Purpose: Produce an object oriented product reflecting
the work of the OOA and OOD phases.

Attribute:
Expertise in structured software programming

Operations:
1. Work with Champion and Technology Resource Center

co choose programming language
2. Work with Champion and Technology Resource Center

to choose Vendor OOP training and tools
3. Work with Maintenance Advisor to produce

maintainable code
4. Learn OOP method
5. Learn programming language
6. Communicate with OOA Team and OOD Team to insure

software product fits with their efforts
7. Revisit Programming process as deemed necessary

by the User Team

OOP Attribute

The OOP team should be experienced in structured

programming. This thesis agrees with Booch that struc-

tured programming is inadequate for large and "extremely

coiplex systems."[44] However, structured program-

ming is a disciplined approach and those used to such a

method are more likely to adapt to the discipline of OOP.

This thesis also assumes programmers familiar with struc-

tured programming are aware of its shortcomings and will



69

quickly accept the remedies offered by QOP. Experienced

programmers will also be needed to make proper decisions

in time and space efficiencies.

OOP Operations

Many of the operations for OOP are the same as those

for OOA and OOD. As done previously, the Table 4.5 OOP

operations comparable to OOA and OOD operations are not

repeated. here.

The OOP team should work with the champion and

technology resource center to select the programming

language. There are many topics to consider in choosing

the programming language. This thesis gives substantial

weight to the OOP team's opinion in the decision process

based on their collective expertise. There are various

languages which can emulate parts of the object paradigm.

Meyer presents object possibilities and limitations with

some classical languages.[45] However, as Booch

notes, there presently are only a handful of truly ob-

ject-oriented languages.[46] One consideration in choos-

ing a language is deciding how many object-oriented

elements the system is to utilize. If utilizing all

elements is desired with the aim of reaping the most

benefits, then the field of 2hoice is narrow. Another

consideration is the availability of language support

tools. Flaatten et ai. argue that support tool avail-

ability nas a major influence on language selec-



70

tion.[47] The OOP team should assess tool avail-

ability for all languages and decide based upon their

needs. It should be obvious that to make these consider-

ations the OOP team will need a firm understanding of

OOSD. The decision on which language to use should not

be expected until well after user team OOSD training.

The OOP team should work with the maintenance advi-

sor to produce maintainable code. McClure says, "the

source code should be inspected prior to the testing

phase by someone other than the original coder to audit

compliance to specifications and to standards" and "to

measure understandability."[48] In the context of

OOSD, compliance to standards includes verifying the code

is truly object-oriented and highlighting those places

where code was exempted from the object paradigm. Using

an object-oriented language does not guarantee object-

oriented code will result. McClure explains the reason

for outside inspection:

Because of personal attachment and because of famil-
iarity, a programmer often reads his code the way he
thinks it is written rather than the way it is actu-
ally written. An impartial reader can find errors
and standards violations that are not obvious to the
coder.[49]

The two operations, learn OOP method and learn pro-

gramming language, may be viewed by some as a single

task. Training organizations tend to teach the nbject-

oriented elements using a programming language. In

instances where this happens, programmers should focus



71

their efforts to learn the language not as an end, but as

a tool to implement an 0-0 product. At the conclusion of

training, programmers should be confident in their knowl-

edge and be able to apply their training in producing an

adequate object-oriented product.

Maintenance Advisor(s)

The purpose of the maintenance advisor is to ensure

the OOSD product can be easily maintained. Rosen defines

software maintenance as "the activity that addresses

itself to the correction of software errors and to reme-

dying the inadequacies that may exist."[50] The impor-

tance of this activity is found in the fact, first cited

in chapter II, that maintenance costs are 60 to 85 per-

cent of the total software budget. Battling these costs

is the maintenance advisor's first order of business.

Ramamoorthy and Siyan list two maintenance functions

through which the battle is fought:

1. Understanding existing software. This requires
good documentation, traceability between require-
ments and code, and well-structured code.

2. Modifying existing software. This implies the
need for software, . . . and data structures that
are easy to expand and that minimize the side ef-
fects of changes and that have easily updated docu-
mentation.[51]

The maintenance advisor should accomplish these functions

within the OOSD context of chapters II and III. Table

4.6 shows the additional attribute and operations of the

maintenance advisor.



72

Table 4.6

The Maintenance Advisor(s)

Purpose: To insure the OOSD product can be easily
maintained.

Attribute:
Expertise in software maintenance

Operations:
1. Consult with other User Team members on the

maintainability of their efforts
2. Work with Technology Resource Center's Object

Reuse Library on plans to retrieve and store
enhanced reused modules

Attribute

The maintenance advisor should be experienced in

software maintenance. Pioneering efforts, especially,

need sound judgements on documentation, traceability, and

the effects of change.

Operations

The maintenance advisor (MA) should consult with

other user team members on the maintainability of their

efforts. McClure feels "the maintainer should actively

participate in the development process" throughout the

project.[52] Though her argument is via traditional

methods, the premise is no less fit for OOSD. The MA

should be consulted throughout the fountain life cycle

for an assessment on documentation and traceability of

the analysis, design, and programming phases. He can



73

provide an outside evaluation of how well the code is

structured using the object-oriented elements. He should

give special attention to the use of encapsulation.

Proper use of this 0-0 element is critical in limiting

the change side-effects mentioned above.

The MA should work with the technology resource

center's object reuse library on plans to retrieve and

store corrected modules. Since errors may be found long

after the software system is released, maintainers need

to be able to easily find the flawed module and any

objects useful to the correction.

The Technology Resource Center

This thesis envisions the technology resource center

(TRC) as a corporate unit combining the characteristics

of Prudential's Technology Transfer Center (TTC) and of a

standard information center. Prudential's TTC evaluates

new technologies and helps business units implement the

beneficial ones. [53] The information center provides

training and resources to help end-users develop their

own applications. [54] Instead of end-users, the TRC

targets a firm's conventional software development group.

The TRC's purpose is to perform the administrative func-

tions to obtain OOSD resources and training and to manage

the formation and operation of the object reuse library.

Some firms may view the TRC as equivalent to their devel-



74

opment center.

The TRC should be easily accessible to those needing

services. Problems should be assumed possibilities as

innovations such as OOSD are introduced. Giving the user

team ready access to services should expedite their

efforts and speed the knowledge and decision phases in

the adoption process.

The TRC or a similar corporate support function is a

probable entry point for OOSD. As such, the TRC will

need to find a champion to promote the adoption of OOSD.

The TRC should seek a person with the champion attributes

listed above.

The TRC should learn the OOSD concepts. This know-

ledge is essential in understanding how to properly

support an OOSD effort and to establish the object reuse

library.

Depending on the organization, the technology re-

source center may have numerous departments. This thesis

focuses on only two, the user team support unit and the

object reuse library.

User Team Support Unit

Table 4.7 shows the pertinent attributes and opera-

tions of the user team support unit.



75

Table 4.7

The User Team Support Unit

Attribute:
Staff skilled in securing training resources

Operations:
1. Works with Champion and User Team in choosing a

Vendor to provide OOSD training
2. Works with User Team and Champion in choosing an

Appropriate Software Project

Attribute

People skilled in securing computer resources and

training should staff the user team support unit. This

unit should be familiar with the service quality of any

potential vendor. Inadequate resources or training can

negatively impact the OOSD project and impede the adop-

tion process.

Operations

The user team support unit should work with the

champion and user team in choosing vendors to provide

OOSD training. The user team and champion sections

reveal the rationale for this important operation. The

support unit provides the administrative support for this

operation.

The support unit should work with the user team and

champion in choosing an appropriate software project. It



76

is involved in order to evaluate training requirements

and resources needed.

Object Reuse Library

An object reuse library provides a collection of

reusable software components. A well constructed reuse

library is critical to realize the promised benefits of

object reuse. Fischer, Henninger, and Redmiles explain

that reuse raises "the problems of knowing when to use

components, what components do, and how components should

be modified."[551 A well organized reuse library

should help alleviate these problems.

One should note, a pioneering OOSD effort will not

have a reuse library to draw from unless a viable reuse

library is purchased from a vendor. The user team may

produce objects which can be used in different subsystems

of the appropriate software project, but there is gener-

ally no initial library to assist in design or program-

ming. Thus, the object reuse library will have to be

built over time. This is a development project in itself

and will require money and commitment from senior manage-

ment.

The user team should provide input to the construc-

tion of the library. Their growing knowledge of OOSD

will be invaluable in establishing the needs to be met.

A careful study of Fischer, Henninger, and Redmiles'

library inodels CODEFINDER and EXPLAINER deduces standards



77

which a object reuse library should meet. These stan-

dards are concerned with: meaningful classification of

components, documentation of component design and origi-

nal purpose, and tracking of reused and modified compon-

ents.[56]

The object reuse library is included in the frame-

work environment because of its importance in OOSD diffu-

sion. Since reuse is a highly touted benefit of OOSD,

other software developers will be observing its actual

impact. Developing a reuse library early generates

experience and ain object inventory both of which will be

useful to future projects. Resistance to the idea of

reuse will be less if the benefits are observed.

Because of the high initial costs and long-term

nature of the benefits associated with an object reuse

library, this thesis holds that senior management commit-

ment is critical. Banker and Kauffman's study of First

Boston found it was senior management's decision to

"implement a reusability approach to rebuild and upgrade

the capabilities of the existing information sys-

tems."[57] Banker and Kauffman followed 20 software

projects for two years. They found objects were reused

across the projects an average 48 percent with a major

reduction in new code needs.[58] First Boston's com-

mitment and adequate funding allowed fulfillment of the

reuse promise.



78

The Vendor

Within the context of this thesis, the vendor's

purpose is to provide training and tools for the imple-

mentation of OOSD. The importance of selecting the

proper vendors to accomplish this purpose cannot be

overstated. The vendor is the avenue through which the

user team will gain its working knowledge of OOSD.

However, as Weber, Current, and Benton observe, litera-

ture says very little about "quantitative methods" being

applied to vendor selection in any industry. [59]

Their view is bolstered by the little available informa-

tion on vendor selection in the University of Colorado

library databases. In light of this, Table 4.8 presents

an OOSD vendor based on this thesis's view of the tech-

nology's needs and the available literature support.

Table 4.8

The Vendor

Purpose: Provides OOSD training and tools

Attributes:
1. Substantiated track record
2. Skilled instructors provide training

Operations:
1. Provides proper training to appropriate personnel

in OOSD methods
2. Provides proper connectivity to other vendor

training and tools
3. Adapts to user's needs
4. Provides fast and effective post-purchase and

post-training support when needed



79

Attributes

A vendor should have a substantiated track record.

Many vendors' marketing literature will proclaim many

companies that benefitted from their training and tools.

The user team, champion, and technology resource center

should be able to verify the accuracy of vendor claims.

They can contact firms supported by the vendor and verify

service quality. The champion's or user team's outside

contacts, such as professional organizations, become

valuable for verification and may become essential if

project secrecy prevents contact with other firms.

The vendor should have skilled instructors to con-

duct training. Swander's evaluation process requires a

vendor to provide instructor resumes to help judge an

instructor's skill.[60] Instructors will set the

OOSD foundation for the user team. To increase the

probability of a quality product, OOSD trainers should

have both development and training experience.

Operations

The vendor provides proper training to appropriate

personnel in OOSD methods. These methods are, again,

OOA, OOD, and OOP. Defining "proper training" is not an

easy task. This thesis assumes adequate OOSD training

equips che user team to develop a successful end product.

The training should be sufficient to help overcome any

unforeseen development problems. Based on these assump-



80

tions, this thesis views the training as proper if, after

completion, the respective user team members are confi-

dent in their knowledge and can apply the training to a

positive end.

The vendor should provide adequate connectivity to

other vendor training and tools. If a firm chooses

different vendors to train and supply tools for OOA, OOD,

and OOP, problems can occur. In Kolman's analysis of

CASE technology, he found companies choosing different

vendor tools that were incompatible across the develop-

ment life cycle. This severely limited the technology

and led these firms to blame CASE itself for the prob-

lems.[61] To prevent false indictments of OOSD and

to ensure smooth transitions throughout the iterative

fountain life cycle, vendor training and tools must be

compatible.

The vendor should adapt to user needs. Vendors

should be willing to change their material and avoid an

"inflexible" training regimen. [62] [63] Applica-

tions such as graphical interfaces, avionics control

systems, and database management systems are all differ-

ent environments which may not be served well by generic

tools and training.

A vendor needs to provide fast and effective post-

purchase and post-training support when needed. Should

the user team encounter a problem with the tools or a



81

question the training does not answer, fast help is

essential. Poor vendor support which slows the pioneer-

ing OOSD effort may give skeptics another avenue to

criticize the technology and hinder the adoption process.

The Decision Makers

The decision makers' purpose is to provide the

needed resources to establish an effective environment so

OOSD may be successfully integrated into the organiza-

tion. The decision maker is a high level manager given

broad corporate responsibilities. Depending on the

organizational structure, this thesis views multiple

decision makers having a say in the OOSD effort. Their

characteristics, within the scope of this thesis, are

presented in Table 4.9.

Table 4.9

The Decision Makers

Purpose: Provide needed resources to successfully
integrate OOSD into the organization.

Attributes:
1. Is delegated authority over major resources
2. Aware of software's key role in o~aan'zaticn

Operations:
1. Learn benefits of OOSD; recognize business

opportunities
2. Find a Champion for OOSD {?}
3. Actively support the Champion
4. Communicate firm support to User Team and

Technology Resource Center
5. Support the Champion, User Team, and Technology

Resource Center during high level disputes



82

Table 4.9 continued

6. Understand OOSD's high short term costs and long
term payoffs

Attributes

A decision maker has the authority to control hEc

assigned resources. The extensive resources required of

the framework and the changes required by OOSD demand the

exercise of such authority.

The decision maker is aware of software's key role

in the organization. Without this awareness the decision

maker cannot be expected to appreciate the potential of

OOSD and therefore be willing to devote the needed re-

sources.

Operations

The decision makers should learn the benefits of

OOSD and recognize the business opportunities. Preece

lists the business and technical objectives of new tech-

nology:

1. "To increase profitability."

2. "To meet competition."

3. "To save on costs."

4. "To increase flexibility."

5. "To improve control and consistency."

6. "To achieve product improvements."[64]



83

A decision maker knowledaeable in OOSD's technical and

business benefits could see the application to Preece's

objectives and make more informed decisions on resource

allocation.

Instead of the TRC, te decision maker may be the

one to find the OOSD champion. Howard and Guile write of

"a well-chosen . . champion" and say "the challenge to

management is to select" appropriate champions.[65]

Howell and Higgins mirror this view saying, "the chal-

lenge facing management is to identify and effectively

manage . . chanpions."[66] If OOSD knowledge first

enters through a decision maker and gains tentative

acceptance, then the decision maker should be involved in

finding a champion to lead the OOSD effort.

There should be at least one decision maker activelv

supporting the champion. The champion will have little

success pioneering OOSD if adequate resources are not

available. Lack of senior management support says that

the organization has serious doubts in the technology.

Opinion leaders outside the OOSD project are more likely

to favor the technology if decision maker support is firm

and visible.

The decision makers should communicate support to

the user team and technology rrsource center also. This

thesis views the usp- team and TRC as sharing risk in

pioneering an OOSD effort. Decision maker support is



84

needed to overcome the anxiety associated with this risk.

Support communicated to this level can positively affect

diffusion networks as well. Howell and Higgins hold that

visible senior level support "can help . . . overcome

active opposition, passive resistance, or indifference to

the innovation."[67]

The decision makers should support the champion,

user team, and technology resource center during high

level disputes. Howell and Higgins note, "many projects

have been shelved because of political in-fighting" and

other disputes but executive protection "from these

negative influences . . can facilitate the innovation

process."[68] They argue protection for the champion

only but this thesis expands the coverage to the user

team and TRC due to the level of risk they enjoy.

The decision makers should understand the nature of

OOSD's high short term costs and long term payoffs. As

discussed for champions and reuse libraries, initial

costs of OOSD are high. The payoffs come over time as

workable reuse libraries are built, maintenance costs are

cut, and the other previously noted benefits are real-

ized. This knowledge allows management to make informed

investment decisions and helps alleviate unrealistic

expectations.

Corporate Goals and Objectives

The purpose of the corporate goals and objectives is



85

to generally provide direction for the firm and to spe-

cifically address software concerns. Information on

goals and objectives is abundant. This thesis highlights

only the features essential to diffusion of OOSD. Table

4.10 presents the corporate goals objectives structure.

Table 4.10

The Corporate Goals and Objectives

Purpose: Provide direction for corporation

Operations:
1. Address computer resources
2. Require the benefits which OOSD can provide
3. Provide unifying guidance for all corporate

activities

Attribute:
Specific and easily understood

Operations

The goals and objectives should address computer

resources. Firms which specifically address computer

resources in their goals and objectives acknowledge the

importance of these assets and the people who work with

them. This thesis assumes the companies who market hard-

ware and software do this but those firms in which com-

puter resources are a supporting function may not address

this asset's significance. This operation is a critical

first step toward a meaningful evaluation of OOSD.

The goals and objectives should require the benefits



86

which OOSD can provide. Giegold says key functions of an

objective are "to record the commitment of . . . the

organization to achievement of a needed improvement" and

"to motivate the performer."[69] If the goals and

objectives do not specify a need which OOSD can fill,

then there is no reason to invest in the technology.

People will be motivated to consider and apply OOSD if

they can see its application to a required improvement.

The goals and objectives should provide unifying

guidance for all corporate activities. Pioneering an

OOSD effort would be the job of Frenzel's information

technology (IT) organization. He argues defining the

purpose and roles of the IT organization within the

company is critical to the IT organization's suc-

cess.[70] This operation would show the champion,

user team, technology resource center and others their

purpose and contribution to the company as a whole.

Attribute

A goal or objective must be specific and easily

understood says Giegold.[71] This attribute is stat-

ed to emphasize that goals and objectives should be

meaningful and known through all levels. Without this,

the above operations will lack clear direction.

The Appropriate Software Project

The purpose of the appropriate software project is



87

to provide a vehicle for building expertise in OOSD.

Implementations of other technologies provide guidance on

choosing an appropriate software project. In discussing

the implementation of an information architecture, Branc-

heau and Wetherbe advise:

Build an island of success. Take on a small but
visible pilot project . ... Find the right project

that will give short-term benefits and
use the project to build experience and gain credi-
bility.[721

To introduce CASE, Gray, Brancheau, and Kozar say the

project should be small but "of sufficient size to test

the limits of the CASE product."[73] The Goddard

Space Flight Center Software Engineering Laboratory used

a pilot project named GRODY to experiment with OOSD.

This project "provided an extremely valuable experience

in the application of object-oriented principles to a

real system."[74] They used the experience to create

their own OOSD method GOOD, which "is now being used on

an increasing number of projects inside and outside of

the Goddard Space Flight Center."[75]

Modeled &fter the above information, Table 4.11

presents the structure of the appropriate software pro-

ject.



88

Table 4.11

The Appropriate Software Project

Purpose: Vehicle to begin building expertise in OOSD

Attributes:
1. Non-critical to immediate corporate success
2. Similar in size and purpose to previous projects
3. Choice is agreed upon by Champion, User Team, and

Technology Resource Center

OPERATIONS:
1. Provides ample opportunity for practicing learned

methods of OOA, OOD, and OOP
2. Lays the foundation for the Reuse Library
3. Provides Champion opportunity to study and adjust

management methods in using OOSD

Attributes

The appropriate software project is non-critical to

immediate corporate success. There is already a great

deal of pressure in learning and applying OOSD princi-

ples. The added stress of keeping the company out of the

red may tempt the user team to take short-cuts and forego

OOSD and return to traditional methods.

An appropriate software project is similar in size

and purpose to previous projects worked on by the user

team members. This attribute should allow the project to

"test the limits" of OOSD and be visible enough to gain

credibility among management and opinion leaders. This

should also relieve some user team anxiety in that the

actual product is not something totally foreign.

The champion, user team, and TRC agree on the choice



89

of an appropriate project. The rationale for this at-

tribute is found in the respective sections above and is

not repeated here.

Operations

An appropriate software project provides ample

opportunity for the user team to practice OOA, OOD, and

OOP. As in the Goddard Space Flight Center example, this

operation lets the user team work out the kinks of the

new technology and gives them needed expertise to be

applied to future, more critical projects.

The project lays the foundation for constructing the

reuse library. As the user team begins to master OOSD

they will create an inventory of objects. This gives the

TRC the opportunity to research the problems and solu-

tions of reuse and to begin building a workable library.

The project provides the champion the opportunity to

study and adjust management methods in using OOSD. Just

as OOSD requires software developers learn new technical

practices, new management practices are required also.

The fountain life cycle will require managers to be far

more flexible than the rigid techniques demanded of the

waterfall life cycle. A reuse library will open many

opportunities to cut development costs but will tax

management with its conflicting control and easy access

requirements. The champion can use the pro3ect to com-

pile management information to be used on future critical



90

products.

The Management Team

The purpose of the management team is to assist the

champion in implementing OOSD. The management team is a

component whose existence depends on the program manage-

ment style of the organization. If the champion does not

have direct authority over the user team and persons

assigned from the TRC, then the champion must work

through other managers. These other managers form the

management team.

The attributes and operations of the management team

are a subset of those of the champion. Except for being

high level and well-connected, the management team should

possess the champion attributes. Any negativism by the

managers could adversely affect the user team and jeopar-

dize the adoption process. Tae champion may delegate or

seek assistance in the performance of the champion opera-

tions.

The Communication Channels

The purpose of the communication channels is to

allow effective transfer of all needed information con-

cerning organizational use of OOSD. This component lacks

the physical constraints of the other components and is

not as easily observed. As such, the communication

channels are not presented with attributes and opera-



91

tions. Though communication channels are not as visible,

they are vital and can be tested when properly under-

stood.

Two of Drucker's communications principles are

"communication is perception" and "communication makes

demands."[761 He explains communication is percep-

tion as the communication process being controlled by the

receiver of information. It is the receiver's perception

of the information which decides if the communication is

successful. The receiver must perceive the information

as it is intended by the communicator. Success is not

assured just because the receiver heard the communicator.

He explains the principle "communication makes demands"

by saying communication,

Always demands that the recipient . . . do some-
thing, believe something. . . . If it goes against
his aspirations, his values, his motivations, it is
likely not to be received . . . or to be resisted.[77]

Many of the framework operations require communica-

tions among company members. These communications will

occur through either formal or informal communication

channels. This thesis views these communication channels

as vital in getting correct information to the right

receivers. In following Drucker's principles, these

recipients must interpret the information correctly.

Both communicator and receiver should understand the

"demands" made by the communication.

As communication occurs in an OOSD development



92

environment, the champion or management team can monitor

the information flow and judge the resultant opinions and

actions taken. The champion or management team can then

make corrections if problems occur due to incorrect

perceptions or improper development actions.

Summary

This framework is composed of ten components con-

sisting of various attributes and operations which mark

the implementation factors required by OOSD. Current

literature supports many of the constructs proposed in

this chapter. Organizations seriously considering imple-

menting OOSD may greatly benefit by adapting this frame-

work to their existing structure. This thesis strongly

contends that application of such a framework greatly

enhances the knowledge and persuasion stages and leads to

a more informed decision stage during the OOSD adoption

process.



93

Notes - Chapter IV

[I] James C. Brancheau and James C. Wetherbe, "Under-
standing Innovation Diffusion Helps Boost Acceptance Rates
of New Technology", Chief Information Officer Journal, Fall
1989, 23.

[2] John Hagedoorn, The Dynamic Analysis of Innovation and
Diffusion (London: Pinters Publishers Limited, 1989), 120.

[3] Brancheau and Wetherbe, 26.

[41 Ibid., 26-27.

[5] Ibid., 23.

[6] Ibid., 28.

[7] Jane M. Howell and Christopher A. Higgins, "Champions
of Change: Identifying, Understanding, and Supporting
Champions of Technological Innovations," Organizational
Dynamics, Summer 1990, 40.

[8] Carol A. Beatty and John R. M. Gordon, "Preaching the
Gospel: The Evangelists of New Technology", California
Management Review, Spring 1991, 74.

[9] William G. Howard, Jr. and Bruce R. Guile, Profiting
from Innovation: The Report of the Three-Year Study from
the National Academy of Engineering (New York: The Free
Press, 1992), 92.

[10] Howell and Higgins, 41.

[11] Ibid., 44.

[12] Beatty and Gordon, 73.

[13] Howard and Guile, 93.

[14] Beatty and Gordon, 80.

[15] Brancheau and Wetherbe, 28-29.

[16] Howell and Higgins, 47.

[17] Carroll W. Frenzel, Management of Information
Technology (Boston: Boyd & Fraser Publishing Company,
1992), 87.



94

[18] Ibid., 89.

[19] Barbara M. Bouldin, "Automate your software develop-
ment with minimum pain," EDN, 7 June 1990, I11.

[20] Ronald J. Norman, Gail F. Corbitt, Mark C. Butler,
Donna D. McElroy, "CASE Technology Transfer: A Case Study
of Unsuccessful Change," Journal of Systems Management, May
1989, 37.

[21] Brancheau and Wetherbe, 29.

[22] Colin Tully, "A Failure of Management Nerve and
Vision," in 1991 IEEE 13th International Conference On
Software Engineering by the IEEE (Los Alamitos: IEEE
Computer Society Press, 1991), 155.

[23] Ashok K. Gupta and David L. Wilemon, "Accelerating the
Development of Technology-Base New Products," California
Management Review, Winter 1990, 34.

[24] Chuck Duff and Bob Howard, "Migration Patterns:
Moving to object-oriented technology is more involved than
simply buying a compiler," Byte, October 1990, 224.

[25] Anthony I. Wasserman, "Object Insider: Object-
Oriented Thinking," Object Magazine, September/October 1991,
10.

[26] Marc I. Kellner, "Non-Technological Issues in Software
Engineering: Panel Session Overview," in 1991 IEEE 13th
International Conference On Software Engineeringby the IEEE
(Los Alamitos: IEEE Computer Society Press, 1991), 146.

[27] Ibid.

[28] Maurice Schlumberger, "Software Engineering Manage-
ment," in 1991 IEEE 13th International Conference On
Software Engineerinj by the IEEE (Los Alamitos: IEEE
Computer Society Press, 1991), 153.

[29] Brancheau and Wetherbe, Figure 3, 26.

[30] Dan Clarke, "Object Insider: Diskette frisbee isn't
fun," Object Magazine, May/June 1992, 19.

[31] Richard P. Gabriel and Patrick Dussud, "Neoclassical
object-oriented techniques: multimethods," Object Magazine,
May/June 1992, 41.

[32] Dennis C. Kinlaw, Developing Superior Work Teams
(Lexington: Lexington Books, 1991), 16 & 59.



95

[33] John P. Herzog, "People: The Critical Factor In
Managing Change," Journal of Systems Management, March 1991,
11.

[34] Kinlaw, 14.

[351 Ibid., 15-16.

[36] Brancheau and Wetherbe, 26.

[37] Ted J. Biggerstaff, "Software Reuse: Is It Deliver-
ing?," in 1991 IEEE 13th International Conference On
Soctware Engineering by the IEEE (Los Alamitos: IEEE
Computer Society Press, 1991), 53.

[38] Gretchin I. Puhr and David E. Monarchi, "Object-
Oriented Analysis and Design: A Comparison of Methodolo-
gies, Techniques and Representations", Faculty Working Paper
Series, College of Business and Administration, University
of Colorado, Boulder, 1991, 13.

[39] Peter Coad and Edward Yourdon, Object-Oriented
Analysis (Englewood Cliffs, N.J.: Yourdon Press, 1991),
178.

[401 Puhr and Monarchi, 13.

[41] Grady Booch, Object-Oriented Design With Application
(Redwood City: The Benjamin/Cummings Publishing Company,
Inc., 1991), 157.

[42] Coad and Yourdon, 181.

[43] Booch, 143.

[44] Ibid., 18-19.

[45] Bertrand Meyer, Object-Oriented Software Construction
(Hertfordshire: Prentice Hall International (UK) Ltd,
1988), 375-382.

[46] Booch, 36.

[47] Per 0. Flaatten, Donald J. McCubbrey, P. Declan
O'Riordan, and Keith Burgess, Foundations of Business
Systems (Orlando: Dryden Press, 1989), 158.

[48] Carma L. McClure, Managing Software Development and
Maintenance (New York: Van Nostrand Reinhold Company,
1981), 56.

[49] Ibid.



96

[50] Anthony Ralston and Edwin D. Reilly, Jr., eds.
Encyclopedia of Computer Science and Engineering (New York:
Van Nostrand Reinhold Company Inc., 1983), s.v. "Software
Maintenance," by Saul Rosen.

[51] Anthony Ralston and Edwin D. Reilly, Jr., eds.
Encyclopedia of Computer Science and Engineering (New York-
Van Nostrand Reinhold Company Inc., 1983), s.v. "Software
Engineering," by C. V. Ramamoorthy and K. Siyan.

[521 McClure, 40.

[53] Nicole A. Wishart and Lynda M. Applegate, "The
Prudential: Organizing For Technology Innovation," Harvard
Business School Case Study (Boston : Harvard Business
School, 1990) 4.

[54] Flaatten, McCubbrey, O'Riordan, and Burgess. 64-65.

[55] Gerhard Fischer, Scott Henninger, and David Redmiles,
"Cognitive Tools for Locating and Comprehending Software
Objects for Reuse", in 1991 IEEE 13th International Confer-
ence On Software Engineering, by the IEEE (California: IEEE
Computer Society Press, 1991), 323.

[56] Ibid., 319-326.

[57] Rajiv D. Banker and Robert J. Kauffman, " Reuse and
Productivity in Integrated Computer-Aided Software Engi-
neering: An Empirical Study," MIS Quarterly, September
1991, 378.

[58] Ibid., 388-390.

[59] Charles A. Weber, John R. Current, and W.C. Benton,
"Vendor selection criteria and methods," European Journal
of Operational Research 50, no. 1 (January 1991): 16.

[60] Alice J. Swander, "Vendor Training: Establishing the
Evaluation Process," Performance & Training 29, no. 4 (April
1990): 33.

[61] Joe Kolman, "Getting down to CASEs, " Institutional

Investor, August 1990, 120.

[62] Swander, 33.

[63] Charles A. Litchfield, "Vendor Training: A Question
of Commitment to User Success," Journal of Library Admin-
istration 12, no. 2 (1990): 9.



97

[64] David A. Preece, Managing Ti.e Adoption Ot New Tech-
nology (London: Routledge, 1989), 15-31.

[65] Howard and Guile, 92-93.

[66] Howell and Higgins, 55.

[67] Ibid., 53.

[68] Ibid.

[691 William C. Giegold, Management By Objectives: A Self-
Instructional Approach, vol. 1, Strategic Planning and the
MBO Process (New York: McGirw-Hill, 1978), 15.

[701 Frenzel, 79.

[71] Giegold, 15.

[72] James C. Brancheau and James C. Wetherbe, "Information
Architectures: Methods and Practice," Information Process-
ing and Management 22, no. 6 (1986): 463.

[73] Linda Gray, James C. Branclheau, and Kenneth A. Kozar,
"Evaluation, Environment, and Education: The 3E Framework
for CASE Implementation," Software Engineering: Tools,
Techniques, Practices, March/April 1992, 18.

[74] Ed Seidewitz, "General Object-Oriented Software
Development: Background and Experience," The Journal of
Systems and Software 9 (1989), 107.

[75] Ibid.

[76] Peter F. Drucker, Management: Tasks, Responsibili-
ties, Practices (New York: Harper and Row, 1974), 483.

[77] Ibid., 487.



CHAPTER V

RESEARCH APPROACH

This chapter presents how the research was conduct-

ed. It covers the chosen research method, the process of

contacting companies, how participants were selected,

rationale of the question set design, and the goal of the

research process.

Research Method

Nachmias and Nachmias discuss three methods of data

collection: the mail questionnaire, the personal inter-

view, and the telephone interview.[1] I chose the

personal interview as the primary data collection tool.

I used the telephone interview to gather limited informa-

tion to judge whether or not a company was a prime candi-

date for study.

The disadvantages of the mail questionnaire are it

"requires simple questions," provides "no opportunity for

probe," gives "no control over who fills out the ques-

tionnaire," and has a "low response rate."[2] To ful-

ly test the pertinence of the framework components, I

needed more than simple questions. I also needed the

ability to ask more probing questions based on any given

response. Since I was originally attempting to do a

detailed study of only two companies, I could not afford



99

a low response rate.

The telephone interview would have severely limited

answers in the environment of the one company that com-

mitted to my research. Nine of the eleven people inter-

viewed worked in cubicles or shared offices. Others

around them could easily hear them talking on the tele-

phone.

Of the three types of personal interviews presented

by Nachmias and Nachmias, I chose the nonscheduled-struc-

tured interview. Its four characteristics meshed well

with the nature of my research:

i. It takes place with respondents known to have
been involved in a particular experience.

2. It refers to situations that have been analyzed
prior to the interview.

3. It proceeds on the basis of an interview guide
specifying topics related to the research hy-
pothesis.

4. It is focused on the subjective experiences

regarding the situations under study. [3]

The common experience shared by the participants was

developing a software system using OOSD. I was able to

do limited analysis before the interviews to ensure their

situations fit within the scope of my research. The

subjective experiences were important in that respon-

dents' subjective interpretations of the activities

involved with implementing OOSD have great influence on

its possible diffusion.



100

Contacting Companies

I first contacted ten companies who had participated

in a past mail survey conducted by the Emerging Technolo-

gies Project, University of Colorado. These ten compa-

nies indicated on the survey they were actively involved

in object-oriented development or research. However,

none of these firms wanted to participate in my on-site

case study.

I then compiled a list of suitable companies based

on available literature and sought help from several

professional contacts of mine. I, or persons on my

behalf, contacted 29 firms over a period of three months.

The locations ranged from Massachusetts to California and

Michigan to Texas and many points in between. Of these,

eight agreed to consider my proposal and review the

project details description in Appendix C. Only one

company committed to participate in the study.

Participant Selection

I asked my contact at the firm to request volunteers

to be interviewed. Of thirteen people I hoped would

volunteer, eleven did so. The positions of the eleven

are two analysts, one designer, three programmers, one

mid-level manager, one support person from their equiva-

lent of the technology resource center, one senior manag-

er, and two "champions."



101

Although neither of the two people identified as

champions met the full definition as shown in chapter IV,

they did perform some champion operations. I decided to

interview them with the champion question set and see

what the results would be. One champion was not associ-

ated with the studied project and was interviewed with a

modified champion question set.

Question Set Design

The question sets in Appendix A were designed to

test for the presence of the attributes and the perfor-

mance of the operations of the framework components and

to test for realization of the OOSD benefits. Often the

same question, or a rephrasing, was designed into differ-

ent question sets. This allowed testing for consensus or

conflicting views on such items as communication chan-

nels, OOSD technology, training, etc.

Process Goal

The original goal of the research was to study the

implementation of OOSD at two firms and compare their

experiences with this thesis's framework. Two detailed

case studies would begin the process of compiling data

which could be used to adjust the framework or suggest

its soundness. Detailed studies of several other compa-

nies are required to secure confidence in the framework.



102

Time limits and the need to study OOSD in depth

restricted the goal sample to two firms. Company reluc-

tance to participate limited the actual sample to one

firm. However, though only one company participated,

valuable information was discovered in their implementa-

tion of this emerging technology.



103

Notes - Chapter V

[1] David Nachmias and Chava Nachmias, Research Methods in
the Social Sciences (New York: St. Martin's Press, 1981),
181.

[2] Ibid., 182-183.

[3] Ibid., 191.



CHAPTER VI

ANALYSIS and FINDINGS

This chapter analyzes the case study data in refer-

ence to the proposed OOSD framework. Reviewing the

tables in chapter IV will greatly aid the reader's com-

prehension of this analysis. Presented is background

information on the studied OOSD project followed by

examinations within the context of each framework compo-

nent. A brief summary of the key findings concludes this

chapter.

The analysis will refer extensively to the interview

data in appendix B. Rather than repeat the information

fully, the data is referenced by person and answer num-

ber. Some answers were very voluminous and required

separation by paragraphs. A paragraph number will be

used in such cases. Example: [Senior Manager: 4a-para.

31.

Case Study Project BackQround

This section presents a brief sketch on the company

structure and the project history. Due to the require-

ment that the company remain anonymous, very little

specific information will be revealed. What is revealed



105

is enough information to give the reader the context in

which the OOSD effort took place.

Company Structure

The company studied is one of many firms engaged in

developing software for business applications. Depending

on one's viewpoint, this company has a tall management

hierarchy. The case study location had four levels of

management above the staff level development team.

This company, like many other firms, has placed its

software analysts within its marketing hierarchy. The

analysts deal directly with the customer or domain ex-

perts. The software designers and programmers are part

of the product development hierarchy. Though the ana-

lysts are considered part of the development team, they

are not under the reporting authority of product develop-

ment.

Software development is the primary function of the

case study location. The interview data reveal estimates

of 70 to 90 percent of all work is in developing soft-

ware. The company has other locations which research new

software develipment methods including OOSD. The case

study site has found little application for this res-

earch. Methods of choice for marketable product develop-

ment at this location are functional decomposition tech-

niques.



106

Project History

As stated in Appendix B, AFCAP is this thesis's

masked acronym for the studied project.

AFCAP is a major version upgrade of a previous

software release. The previous version was developed

using traditional functional decomposition. AFCAP is

this site's pioneering effort at applying OOSD to a

revenue generating product.

The AFCAP project has approximately 450,000 lines of

code. The original manning was 10 people which increased

to a maximum of 20 at one point in the product's develop-

ment. C++ was the object-oriented language used in the

applications. The original scheduled time-to-develop was

approximately 1.5 years. Actual completion time was

three years.

Initial contacts with the company suggested the

AFCAP project was a success story of OOSD usage; however,

as the data suggest, this is not necessarily clear.

If one defines success as delivering a product which

satisfies the customer, then AFCAP is a success. The

development team completed the project and is testing the

system at several customer sites as of this thesis writ-

ing. Initial customer reaction to the product is very

favorable.

If one defines successful OOSD use as delivering a

near total object-oriented product, then AFCAP is not a



107

suiccess. The interview data indicate some parts of AFCAP

were developed with traditional techniques. User team

inexperience with OOSD combined with time problems re-

sulted in a departure from OOSD in some instances. The

project was late and will not generate the expected

profits.

The following analysis presents a more detailed

picture of AFCAP's development.

OOSD Technology

This section reveals the extent of usage of OOSD by

the firm. The analysis is divided into OOSD principles,

life cycle approach, and benefits realized.

OOSD Principles

Judging the extent of use of the OOSD principles in

OOD separate from OOP is virtually impossible with this

case study. The method of design and programming em-

ployed by the user team was to have the same person do

the design and programming of a software unit.[Designer:

19 & 20] [Programmer #1: 19c] [Champion #1: 8c] Since this

was the case, this paper will assume the extent of use in

programming was also reflected in the design.

Each programmer used objects extensively. Two

programmers used abstraction and encapsulation extensive-

ly with one reporting only moderate use. Only one pro-

grammer used inheritance extensively with the other two



108

reporting moderate use. All three programmers used

polymorphism very little.[Programmer #1, 2, 3: 16a-e]

One programmer even expressed a dislike for polymor-

phism. [Programmer #1: 16e]

The less than total use of object-oriented princi-

ples led to a design and end product that was a mixture

of traditional and object-oriented methods. Of those

highlighting this fact, two cited time constraints and

one inadequate training as the reasons for the prob-

lem.[Champion #1: Inserted Question II] [Programmer 2:

2a] [Manager: 6c]

Object-oriented analysis was not applied to this

project. None of the OOA principles were used in defining

the problem domain. The analysts were unfamiliar with

OOSD and developed non-object-oriented requirements to be

used by the designer-programmers.[Analyst #1: 1 & 2b] [An-

alyst #2: 1]

Life Cycle Approach

While the iterative or fountain life cycle is the

method of choice for OOSD, this effort's use of it was an

unplanned occurrence. Each of those citing an iterative

life cycle said its use was out of necessity due to

continually changing requirements.[Analyst #1 and #2:

13a] [Designer: 13] Analyst #1 and Designer said OOSD did

not cause the use of an iterative life cycle; Analyst #2

was unsure. Designer stated her displeasure with using



109

an iterative approach. However, Analyst #1 felt the

traditional waterfall life cycle "doesn't work in complex

systems."

Benefits

As stated previously, combining the object-oriented

principles, a fountain life cycle, and reuse practices

promises to decrease development time anid costs and to

improve relations with users. Logic implies a pioneering

or early OOSD effort will not fully realize these bene-

fits due to large start-up costs. The case study seems

to support this.

Two people could see no real benefits of OOSD. [Sen-

ior Manager: 4a, para. 1] [Analyst #1: 2a] Of those

finding a benefit in this project, all cited improved

maintainability. Errors were more easily corrected and

enhancements were inserted without propagating errors

through other code.[Champion #1: 6a, 6b] [Designer: 2c]

[Programmer #1, #2, #3: 2b] Champion #1 felt the quality

had improved. Programmer #3 felt reusability and inheri-

tance also helped him do his job. One should note this

form of reusability is only reusing modules from within

the project.(Programmer #2: 12b] This project did not

realize the full benefit of reuse. The provided library

was of limited value and contributed little to the ef-

fort.[Designer: 12a] [Programmer #2, #3: 12b][Manager:

6e] [User Support: 16]



110

The Champion

The case study found no person matching the champion

framework component during the research. However, two

people were identified as staunch advocates of OOSD. One

directly influenced OOSD's use in the AFCAP project and

the other semi-regularly pushed the technology in other

areas of the firm. Neither enjoyed the clout required by

the framework in that both are staff-level employees and

senior management apparently could not identify them by

name.[Champion #1, #2: 3] [Senior Manager: 61 Their

limited influence is revealed in the following analysis.

Due to Champion #2 having no relati-nship with the AFCAP

project, the analysis is sniit into two parts.

Champion #1

This champion had a positive attitude toward

OOSD.[#l: 11 He seemed to understand the advantages of

the object paradigm over traditional methodologies [#1:

1] but did not understand the full application of the

technology. He did not have a grasp of the importance of

OOA.[#i: 6d]

Since this person did not meet the literature defi-

nition of a champion, I decided not to seek personality

data.

This person cannot be considered well-connected.

Communication channels are not very open to him and he



il

does not deal with people outside his work area. Time

constraints at his job level are stated as the limiting

factor. He is associated with only one professional

organization. He does not receive technical information

from the few professional contacts he has.[#1: 14c, 17,

18, 19a&b]

Of the ten champion component operations, this

person performed four to some degree. He educated him-

self on the technology and experimented with its use.[#1:

5b] He sees how OOSD helps meet his company's goals and

objectives.[#1: 6a] Although he did not argue OOSD's

case to the decision makers, he was obviously instrumen-

tal in securing its use in the project against opoosi-

tion: others saw him as a champion in the beginning; he

and one other were the only ones totally for OOSD; other

projects tried to stop the use of OOSD.[#l: 2, 9, 7c]

He, along with management, became aware of the large

start-up costs but none seemed aware at the beginning of

the project. This is evidenced by the severe underesti-

mates in needed training time and resources. [#1: Inserted

Question II, 15c]

The other six operations were responsibilities not

given him or were not performed at all. The project

leader was his superior.[#1: 16a, 8b, 12b, 10a&b, 11,

15a&b, 16b]



112

Champion #2

Champion #2 was not associated with the AFCAP pro-

ject and was interviewed with the modified champion

question set.

Champion #2 believes in OOSD but is not very opti-

mistic about its immediate future in the company.[Cham-

pion #2: la, 1b]

As with Champion #1, Champion #2 is also a low level

employee.[Champion #2: 3] He disagrees with the frame-

work's view that a champion should be at a higher level

position. He feels pushing OOSD at the lower levels will

bring a better chance of success.[Champion #2: 4a] The

data suggests, however, that his way is not working.

Champion #2 is better connected than Champion #1,

but he is not receiving many benefits from his connec-

tions.[Champion #2: 8, 9]

Although he has not influenced the user team, he has

presented the OOSD message to others in the firm. He

reports lecturing on OOSD to all levels of the company.

He continues to find divided opinions about the technolo-

gy.[Champion #2: 2a] He knows of no one at senior levels

who are OOSD advocates.[Champion #2: 4b]

User Team

The firm used a team approach to develop the AFCAP

system, but as discussed, the entire team did not apply



113

OOSD. Although the analysts were team members, they did

not have the same chain of command as the other develop-

ers.[Analyst #1, #2: 10]

This section evaluates the presence or absence of

the user team attributes and operations. This informa-

tion is presented via collective features, OOA team, OOD

team, OOP team, and maintenance advisor.

Collective Features

At the start of the project only two of the ten

original team members had a positive attitude toward

OOSD. Two were opposed and eight were ambivalent.[Cham-

pion #1: 9] Champion #1 and Manager both feel the entire

team has come to prefer the technology.[Champion #I:

9] [Manager: 7a] The data, however, reflect a mixture of

attitudes.[Analyst #I: 1] [Designer: 2a] [Programmer #1:

2a&b] [Programmer #2: 2b] [Programmer #3: 2b, 7] Analyst

#1 has developed a negative attitude based on insuffi-

cient information. Designer and Programmers #1 and #2

have a positive attitude. Programmer #3 questions its

usefulness to some problems but does acknowledge positive

benefits.

All team members sampled had prior experience with

software development projects. The least experienced

member worked only three projects including this one.

[Analyst #1, #2: 3a] [Designer: 3a] [Programmer #1, #2, #3:

3a]



114

None of the team members were professionally active

outside the company. [Analyst #1, #2: 6] [Designer: 6] [Pro-

grammer #1, #2, #3: 6] Analyst #1 cited cost and Pro-

grammer #3 cited lack of time as their reasons.

The team as a whole revealed no uniform understand-

ing of corporate goals and objectives and how OOSD helps

accomplish them. This could probably be expected since

there was no high level champion to point out the bene-

fits of OOSD to corporate direction. Designer and Pro-

grammer #3 seemed definitely aware of OOSD's application

to the goals and objectives.[Designer: 7] [Programmer #3:

7] Programmer #2 was "aware of the goals and objectives

to some degree" and OOSD's application. Analysts #1 and

#2 and Programmer #1 were not sure the goals and objec-

tives addressed software with Programmer #1 stating OOSD

was not used "to meet the goals and objectives."[Analysts

!, #2: 7] [Programmer #1: 7]

The user team had no involvement in choosing an

appropriate software project with which to gain OOSD

experience.[Analyst #2: 8] [Designer: 8] [Programmer #1: 8]

As Champion #1 pointed out, "there really wasn't a

choice" to be made.[Champion #1: 15b]

Since there was not a champion facilitating the

introduction of OOSD, the user team could not use commu-

nication channels to keep him informed of the project

status. Any problems had to be communicated via the



115

standard chain of command. The interviewees had mixed

feelings about the communication channels. The analysts

had a different chain of command than did the other team

members. They had no problems being heard.[Analysts #1,

#2: 10] Analyst #2 felt the other team members had

communication problems in that they were reluctant to use

their chain of command when problems occurred. Designer

felt communications were fine.[Designer: 9] Programmer

#1 said past communications were poor but are improv-

ing.(Programmer #1: 10] Programmer #2 felt things get

lost and Programmer #3 was pessimistic about using the

channels.[Programmer #2, #3: 9, 10]

The perceptions of upper management support were

diverse and opposed. Within the analysts' chain of

command support was viewed as good.[Analyst #1: lla]

Within in the other member's chain of command, support

was rated between poor and good. Analyst #2 felt the

others' management was unsupportive through most of the

effort.[Analyst #2: Inserted Question I, para. 2: lla]

Designer feels current support is strong but was weak at

the project's start. She feels the project getting into

trouble brought attention and needed support.[Designer:

lla] In contrast, Programmer #1 felt the support was

good at first and became "sour" when the project got into

trouble.[Programmer #1: lla] Programmers #2 and #3 feel

the support vacillates and negatively affects mor-



116

ale. [Programmer #2, #3: lla] These differing perceptions

do not seem to have been well managed.

There was no workable reuse library being estab-

lished for multi-project use.[User Support: 161 The team

members were not involved in creating one.

User Team Personality

Seven of the interviewees were asked to judge the

user team on the percentage of members who possessed four

characteristics. Table 6.1 represents their answers.

Respondents are identified only by a number. This is the

one question that many interviewees were uneasy about.

Therefore, it is intentional that no connection is made

to the interview answers in Appendix B.

Person 6 responses were viewed as too large an

anomaly and were not considered part of the standard

deviation calculations.

Most team members seemed to posses the desired

characteristics. Person 6 scores the team low in works

well and communicates well. Person 7 scores the team at

50 percent in all but self-confidence. With the rather

high standard deviations, there is plenty of room to

improve team composition. The comments under Pooled Data

in appendix B suggest the problems and missed schedules

negatively impacted self-confidence. Though persistence

was generally high, some people did quit due to the long

hours.



117

Table 6.1

User Team Personality Data

Legend

A Works well with others
B Communicates well with others
C Self-confidence
D Persistence

Person A B C D

1 .90 .90 1.00 .98

2 1.00 .95 1.00 1.00

3 .75 .95 .75 .85

4 1.00 .80 1.00 1.00

5 .60 .70 .60 .80

6 .19 .33 .60 .80

7 .50 .50 .75 .50

Mean .71 .73 .81 .85

Mean
minus #6 .79 .80 .85 .86

Std. Dev.
minus #6 .21 .18 .17 .19



118

OOA Team

One analyst had seven previous projects performing

requirements analysis. The other's first effort as an

analyst was this project.[Analyst #1, #2: 14]

Since the object paradigm was not applied in the

analysis phase, five of the six component operations were

not performed. In fact, there was no OOA Team.

The only operation performed was the revisiting of

the analysis phase as a function of an iterative life

cycle approach. However, as previously stated, this was

not a planned occurrence.

The firm has looked at OOA but has no current plans

for its implementation.[Manager: 131

OOD Team

As stated earlier, there was no design team separate

from the programming team. A company contact stressed

the AFCAP project was based on OOD. Accepting this

tenet, this paper investigates the presence cf the OOD

team attributes and operations even though the OOD team

and OOP team are the same in the case study.

Designer was experienced in systems design.[Desig-

ner: 3a, 3b] Given the development work structure where

programmers do their own design, this paper will assume

any experience in programming translates into design

experience also.

Designer had no input into choosing vendor OOD



119

training and tools.[Designer: 14b] The firm generally

uses its own training organization to conduct any train-

ing.[Champion #1: 10a]

The degree of learning OOD required by the framework

was not achieved for this project. The training received

merely "g:- [them] going in the right direction." The

training did not adequately train them for OOD.[Designer:

14b, 15]

Analysis to design communications took place but the

object paradigm was of limited, if any, benefit in facil-

itating this communication.[Designer: 16a] The analysts

were unfamiliar with the object paradigm and as such none

of the benefits of improved analysis to design transition

were realized.[Designer: 16c, 16b]

The designers did communicate with the users and

analysts but the discussion of objects was limited. [Des-

igner: 17] The benefit of common terminology offered by

the paradigm was therefore unrealized.

The designers produced an OOD specification but it

contained traditional design approaches as well. Design-

er cites lack of understanding and time constraints as

causes for the less than ideal design product.[Designer:

14a, 15]

Using an iterative life cycle approach, the design-

ers did revisit the design process; but, again, it was

not by choice. Not understanding the benefit of this



120

type of life cycle and planning its use caused difficulty

for Designer. She dislikes the approach.[Designer: 13]

OOP Team

All programmers sampled had previous programming

experience on other projects.[Programmer #1, #2, #3: 3a,

3b] Question 3c of the programmer question set was

designed to do a rudimentary test of the programmers'

understanding and past application of basic structured

programming principles. Of the two sampled, there was an

understanding nf the principles but not a strict applica-

tion in p- .- ice.[Programmer #2, #3: 3c]

Nor- of the programmers sampled had any involvement

in :hoosing the language or vendor training and tools for

use in the project. The language used was mandated and

the company's own training organization handled OOSD

education. [Programmer #1, #2: 14] Programmer #3 was

brought to the effort well after the beginning of the

project which precluded his involvement.[Programmer #3:

14]

There was no permanent maintenance advisor for the

programmers to work with. This operation was performed

to a minimum degree though, in that a person skilled in

code maintenance was brought in to judge the programmers'

work.[Champion #1: 8c]

The operations learn OOP method and programming

language were performed but not to the degree required of



121

the framework. All programmers sampled applied the

object-oriented principles.[Programmer #1, #2, #3: 16]

However, a common feeling was the training received did

not adequately prepare them for the task.[Programmer #1,

#2: 15] [Programmer #3: 14, 151

The programmers did communicate with the analysts

but since the analysts were unfamiliar with the object

paradigm, this communication was in terms other than

objects.[Programmer #1, #2, #3: 19a] Programmer #3 seems

to not understand the broad reach of the object paradigm

and its applicability to systems analysis. Even though

this communication took place it did not occur when

necessary at times. The analysts reported developers

ignoring some requirements or adding non-required fea-

tures. This caused problems for the customers in the end

product.[Analyst #1: 4, para. 2] [Analyst #2: 20, para. 2]

Not using an OOA method prevented benefitting from common

terminology in communications and led to expected prob-

lems. Requirements were interpreted one way by the

analysts and a different way by programmers.[Analyst #1:

20]

Maintenance Advisor

As stated above there was no permanent maintenance

advisor on the studied project's user team. Someone

outside the team was brought in to perform the operation

of judging the maintainability of the code but the full



122

benefits of this activity were probably limited due to

the short time involved.[Champion #1: 8c]

TechnoloQy Resource Center

This firm's equivalent to the TRC provides tools and

consulting support to all development projects. This

support organization is funded by the various projects

paying for services rendered. [User Support: 1]

The requirement of easy access to the TRC is ques-

tionable here. Having to pay for any support received

may reduce frivolous requests but it also may reduce

valid ones.

There is no evidence this TRC understands the basic

principles and purpose of OOSD. The person sampled

seemed to view C++ as the means of achieving software

engineering goals and the object paradigm as an obstacle.

[User Support: 2] Nearly every time I asked a question

using the term OOSD, the answer I got in return was

expressed in terms of C++.

OOSD did not enter the firm through the TRC, there-

fore, they did not seek a champion.[User Support: 3, 41

User Team Support Unit

User Support was confident in his ability to provide

resources and said he had plenty of contacts to help.

[User Support: 5]

User Support reiterated that training of company



123

personnel is accomplished almost exclusively by the

firm's own training organization. There was no choice to

be made in who provides the training. [User Support: 6]

User Support felt decision maker support was lacking

towards OOSD. Again, his answer was expressed using

C+÷.[User Support: 15a, 15b] Funding came from each

supported project and was not directly controlled by the

decision makers.[User Support: 15c.]

The Object Reuse Library

The company provided a library of "reusable" compo-

nents which was designed for use company wide, not just

at this site. As stated earlier the user team found the

components did not fit the needs of the AFCAP project.

User Support criticized the library further. [User Sup-

port: 16, para. 1]

My contact stated User Support was involved in

establishing a reuse library, however, I found this was

not so. User Support reported reuse efforts were not

impressive and "there is no real reuse library here."

[User Support: Inserted Question III, para. 2: 16, para.

1] His attitude towards reuse was less than positive.

The prospects of this firm establishing a reuse

library as the framework envisions seem dim. If this re-

mains true, one of the major benefits of OOSD will be

lost.



124

The Vendor

The fact that this company had the resources to

develop its own tools and training programs seemed to

restrict its looking at outside vendors. Since the firm

provided the services of the vendor, this paper holds the

firm should mirror the vendor framework component.

There seemed to be no object-oriented development

tools provided. Manager felt lack of tools hinde-ed

productivity. [Programmer #3: 15, para. 2] [Manager: lla]

Every person interviewed at mid-level management or

below felt the training was inadequate.[Programmer #1,

#2: 15] [Programmer #3: 14, 15] [Manager: 5c, 5d] [User

Support: 2, para. 2] [Champion #1: 15] This training

failure seemed to have a direct impact in the project

getting into trouble. [Champion #1: 11, para. 2] [Program-

mer #1: 15] This conflicts with Senior Manager's view

that the "training staff . . . is quite expert" and "the

training was probably adequate."[Senior Manager: 4c]

The user team's needs were far more than the three

day class provided. There were no indications the train-

ing was adapted to specific needs. Designer indicated

that those wanting training received a standard presenta-

tion.[Designer: 14b]

When problems arose, the user team chose not to seek

the training organization's help. They sought guidance

from another person at their site.[Champion #1: Inserted



125

Question V]

The Decision Makers

Only one person was sampled who matched the decision

maker profile. This one person's answers carry much

weight, however, in that he was one of the most senior

managers at the site.

This person definitely had the authority to control

his assigned resources. He was in charge of product

development of the business unit which owned the project

under study.[Sc(-ior Manager: 1a]

Senior Manager stated a keen awareness of software's

importance to his organization. He pointed out software

was the determining factor in cost and delivery time for

his products.[Senior Manager: 2]

Senior Manager seemed versed in the overall benefits

of OOSD, but he was far from convinced they were true.

His answers indicated he is a careful observer of the

activities in his organization. His observations of the

OOSD efforts led him to say he had not "seen evidence to

support the claims."[Senior Manager: 4a, paras. 1 & 3: 5]

When t:ying to determine his understanding of the

short-term and long-term costs of OOSD he responded with

his view that the paradigm chosen and the associated

costs are not the most important factors in software

development. He went on to explain that starting a



126

critical project with a paradigm in which no one had

experience was not a very wise decision.[Senior Manager:

11] This idea will be taken up more fully in the discus-

sion on the appropriate software project below.

No champion support was given due to the absence of

any true champions.

Senior Manager's description of the support he gave

the AFCAP project indicated strong commitment to the

effort. He pointed out some severe measures he took to

correct the problems may not have looked like support to

some. He normally uses the management hierarchy to relay

support but with this project he took the time to meet

with the project managers and "keep up the support as

needed."[Senior Manager: 7a, 9a, 9b] As stated earlier,

some at lower levels did not feel senior management

support was good.

Corporate Goals and Objectives

There were corporate goals and objectives estab-

lished but the data does not clearly indicate whether or

not they fit the framework component profile.

There were differing opinions on whether or not the

goals and objectives addressed software. Three people

stated they now address software needs.[Champion #2: 5a]

[Designer: 7] [Manager: Inserted Question IV] The ana-

lysts stated the goals and objectives did not address



127

software, however, their answers should be qualified

since they are not in the same chain of command as the

others sampled.[Analyst #1, #2: 7] Senior Manager said

they indirectly address software.[Senior Manager: 3b] It

is very interesting that opinions on goals and objectives

are so diverse. Software development is the major pro-

duction activity at this site.[Senior Manager: 2] [Analyst

#2: Inserted Question II] [Designer: Inserted Question: I]

The goals and objectives seemed to require the

benefits which OOSD can provide. Some that saw OOSD as

helping goal attainment reported the following benefits:

improved quality; reduced maintenance time and costs.

[Designer: 7] [Programmer #2, #3: 7]

The framework requirement that goals and objectives

be specific and easily understood was a function of

communications in the case study. Senior Manager says

every person under him is informed of the "fairly specif-

ic" objectives.[Senior Manager: 3a] As stated earlier

though, not everyone at the staff levels were clear on

the goals and objectives. Manager reports they were

communicated "sort of indirectly."[Manager: lOb]

Appropriate Software Project

The one fact most apparent in this case study is

this firm did not use an appropriate software project to

judge the feasibility of OOSD.



128

A key requirement is the appropriate software pro-

ject be non-critical to immediate corporate success. To

say the case study project was critical is an understate-

ment. Completion of other revenue generating projects

were dependent on the object-oriented product. Three

levels of management were replaced because of the prob-

lems. The delayed market delivery substantially reduced

expected profits.[Senior Manager: 4a-para. 2, 7a, 7b] [An-

alyst #2: lla]

The project was similar in size and purpose to

previous projects in that it was a version upgrade.[De-

signer: 16c-para. 2]

The project did not provide ample opportunity to

practice OOSD methods. As several people noted, the user

team received minimum OOSD training and went straight

into development of the critical project.[Programmer #1:

15] [Programmer #2: Inserted Question I] [Senior Manager:

4c] Manager's views directly support the need for a non-

critical project to practice on.[Manager: 5d] Senior

Manager indirectly supports this argument. He points out

they did not have enough experience with OOSD before

starting.[Senior Manager: 4c, 4a-para. 2, 11-para. 2]

Senior Manager did point out that they had an organiza-

tion which evaluates and practices with new technologies

but there is no apparent method for adequately transfer-

ring the knowledge.[Senior Manager: Inserted Question I]



129

There was no champion to study and adjust OOSD

management methods but it seems the management team bene-

fitted from the opportunity. Manager mentioned a "retro-

spective report" which outlined the project history. [Man-

ager: 12a] This should provide valuable insight should

future OOSD projects occur.

The Management Team

Since there was no champion to lead this pioneering

project, the task fell to the management team. The group

comparable to the framework component is seen by this

paper as the management hierarchy below Senior Manager.

Manager is the only member from this hierarchy who volun-

teered to be interviewed.

Manager had a cautiously positive attitude about

OOSD and felt the technology would "in the long run .

be good for the company."[Manager: la]

He expressed a basic understanding of OOSD and its

differences over traditional methodologies.[Manager: 5a]

He had some understanding of OOSD's application to

corporate goals and objectives and indicated involvement

in communicating this information to the team. A more

direct communication approach may have overcome some of

the previously mentioned confusion in the team.[Manager:

6a, 10b]

Close inspection of Manager's answers indicates he



130

did monitor the attitudes, perceptions, and progress of

the user team.[Manager: 5d, 6c, 7a]

He was brought in as a replacement for one of the

managers relieved of duties. As such he was unavailable

to perform the other champion operations which are re-

quired at project beginning.

Communication Channels

Most of what can be determined about the communica-

tion channels is revealed in the analysis above. This

suggested communication needed improving. Items of note

were: goals and objectives not adequately communicated;

perceptions of training at staff levels were opposed to

those at the senior level; inadequate analysis to design

communications resulted in requirements to product dis-

crepancies; communication to glean information from

outside sources were almost nonexistent.

One other serious communication lapse was the re-

ported lack of sharing of OOSD knowledge among team

members at times.[Analyst #2: Inserted Question I][Prog-

rammer #3: 4a]

Summary of Findings

This section provides a brief summary of the more

pertinent findings revealed in the above analysis. The

information is organized under the headings Technology,

Managerial, and Other Findings.



131

Technology

The firm developed the case study project with only

an object-oriented design and object-oriented programming

emphasis. While the omission of an OOA method is under-

standable due to the method's recent maturing, the bene-

fits discussed in chapter III are obviously lost. The

firm has no plans to integrate OOA into product develop-

ment in the future.

The effort to implement OOD and OOP in such a criti-

cal product was bold but did not result in a pure object-

oriented product. The severe time pressures led the

developers to revert to traditional techniques for some

parts of the system. They regretted this but felt there

was no other means to meet the deadlines.

Some benefits were realized even with this first

major OOSD effort. Improvements in maintenance and

quality were mentioned by several.

Managerial

Inappropriate Software Project

If there is one key factor leading to the severe

problems this project had, it would have to be the first

time application of OOSD to a highly critical system. It

was apparent through all discussions that developer

inexperience with OOSD caused the majority of The prob-

lems. One could argue Senior Manager's addition of new

people to the project [Senior Manager: 9a] disrupted the



132

teamwork and led to the missed schedule. This paper

counters this argument in that the problems started well

before this event.

Had the user team been given a chance to practice

and gain needed OOSD experience on a non-critical pro-

ject, many of the problems may have been avoided.

Inadequate Training

Another major factor contributing to the problems

was the inadequate initial training in OOSD. The U.S.

Air Force has a training team which teaches a programming

language and its proper application at several sites

around the world. This language is equivalent in diffi-

culty to C++. The course is 152 hours long, offered only

to experienced programmers, and provides only a starting

point in experience.' The three days of training given

to the user team seems totally inadequate for learning

C*+, let alone OOD and OOP. As the analysis revealed,

they were behind almost from the start.

While confidence in the firm's training organization

is expected, total dependence on it for all training

neglects outside avenues for possibly better instruction.

Lack of Champion

The organizational structure at this firm did not

seem conducive to a champion approach as envisioned by

Direct experience - I supervised one team's training.



133

the framework. Project managers were in charge of prod-

uct development but had to rely on systems engineers

(analysts) from a different chain of command. The pro-

ject managers were the ones responsible for paradigm

selection.[Senior Manager: 11] A high level champion

well versed in OOSD could probably better handle the

conflicts of two different command levels. Very few of

the champion activities proposed by the framework and

supported by literature were adequately performed for

this project.

A true champion may have better handled the user

team dynamics, met their needs, and established a proper

environment for OOSD utilization.

Other Findings

Reuse is the OOSD benefit most written about in

literature. This organization has no obvious plans to

seriously research its proper application. Their attempt

to employ general libraries established at another compa-

ny location was unsuccessful.

No one interviewed had a clear understanding of

OOSD's applicability across the entire software life

cycle. This can be expected to limit funding and re-

search into the full benefits of OOSD.



CHAPTER VII

CLOSING DISCUSSIONS

This chapter concludes the thesis by discussing

OOSD's chances for diffusion in the studied firm, the

limitations of the case study research, and additional

research areas.

Prognosis for Diffusion

If current conditions persist at the studied firm,

the diffusion of OOSD can be safely predicted to never

occur. Yes, the user team does prefer the technology.

There are also those outside the studied project which

favor OOSD.[Programmer #3: Inserted Question III] [Man-

ager: 7b] However, the serious problems encountered in

the AFCAP project have cast a dark cloud over OOSD.

Several people stressed the technology itself did not

cause the problems, but no one can erase the negative

impression cast by a late project and lost profits while

OOSD was being used.

Senior Manager's interview provides the most con-

demning evidence against OOSD's diffusion. He has seen

improvements in small projects using OOSD but only prob-

lems in large projects. He says if OOSD cannot be ap-



135

plied to large efforts "then it's not going to be worth

much here."[Senior Manager: 4a-para. 3] He said he does

not blame OOSD for the AFCAP project's problems, but the

tone of the interview shows he feels OOSD to be too

risky. To reverse Senior Manager's view of OOSD, a major

project success would have to occur. This seems unlikely

;s this thesis found no evidence suggesting other program

managers are willing to chance OOSD.

Limitations of the Case Study

One case study is not adequate for testing the

framework's soundness or for suggesting its adjustment.

Follow-on research of other companies is needed to com-

pile a suitable database which will support or refute the

framework. Needed is a broad spectrum of case studies.

Some studies should be done in companies whose OOSD

implementation environment closely resembles the frame-

work. Others need to be done in firms with environments

dissimilar to the framework. These further studies

should target companies whose software is applied in

different industries.

Since one sample limits the conclusions that can be

made, this thesis argues for keeping the framework in its

present form. Even with the limitations, the analysis

and findings in chapter VI do imply that an appropriate

software project and adequate vendor training are sound



136

framework principles.

Additional Research Areas

This section identifies two items for further re-

search. One item was revealed in the case study inter-

views. The other is deduced from the nature of OOSD

technology.

Business Unit Impact

One surprising revelation was the suggestion that

organizations which restructure into semi-autonomous

business units may actually deter the possibility of

object reuse.

The interview with User Support found this company

had traditionally transferred tools, software products,

and other innovations freely among its many sites. The

different sites evaluated the usefulness of these prod-

ucts to their own missions and applied Chem at will. The

restructuring into business units has stopped this free

technology transfer. If one business unit wishes to use

or evaluate software developed by another business unit,

it must first pay for it. User Support says this will

effectively stop reuse in the company. [User Support: 16,

Inserted Question III]

The above information suggests avenues of research

outside the scope of this thesis. While business units

may help large corporations be more competitive, will



137

they also neutralize the major advantage •>wr - ge

companies have - the ability to bring enormous capital

and diverse expertise to bear on a competitive idea?

Will making autonomous business units compete among

themselves for capital and expertise actually stifle

innovation causing missed opportunities for competitive

advantage? The case study suggests even if OOSD was

adopted, this company would not benefit from reuse. Are

there other companies which have this problem? Other

research is necessary to answer these and related ques-

tions.

OOSD and Market Share

Chapter III suggested that an intangible benefit of

OOA is increased customer satisfaction. The object

paradigm allows the use of OOA to express the problem

domain in terms familiar to the domain experts - the

customer. Carrying customer defined objects throughout

the development effort allows the solution domain to more

closely match the problem domain.

This thesis found no data to support using OOA via

OOSD impacts market share one way or the other. Research

into this area may reveal a positive correlation and help

bolster OOSD usage.

Conclusion

This thesis has defined the object-oriented princi-



138

ples and an effective means to apply these principles

through OOA, OOD, and OOP. It suggests that OOSD is a

potentially useful software enqineering technology with

many promising benefits.

OOSD is not a technology that one person can evalu-

ate and adequately judge its value to a company. OOSD's

broad reach across an entire software development life

cycle requires many people to be part of the adoption

process and to provide input into the company's decision

to implement or not. A proper environment needs to be

established to effectively manage the adoption process.

This thesis offers one such environment via its framework

architecture.

The detailed case study of one company tested the

presence of the framework components in an OOSD project.

This one study was not sufficient to thoroughly evaluate

the framework but it did start the process of building a

database from which a judgment can be made. The case

study did suggest some framework components were sound.

While the framework has yet to be proven, this

thesis nonetheless offers it as a viable means to intro-

duce OOSD into a corporation.



REFERENCES

Banker, Rajiv D., and Robert J. Kauffman. "Reuse and
Productivity in Integrated Computer-Aided Software
Engineering: An Empirical Study." MIS Quarterly
(September 1991): 375-399.

Beudette, Neal E. "Object-Oriented Programming:
Untangling the Software Mess." Industry Week, 5
March 1990, 49.

Beatty, Carol A. and John R. M. Gordon. "Preaching the
Gospel: The Evangelists of New Technology."
California Management Review (Spring 1991): 73-93.

Biggerstaff, Ted J. "Software Reuse: Is It Delivering?"
In 1991 IEEE 13th International Conference On
Software Engineering by the IEEE. Los Alamitos:
IEEE Computer Society Press, 1991, 52-54.

Boehm, Barry W. Software Engineering Economics. New
Jersey: Prentice-Hall, 1981.

Booch, Grady. Software Engineering with Ada. Menlo
Park: The Benjamin/Cummings Publishing Company,
1983.

_ Object-Oriented Design With Applications.
Redwood City: The Benjamin/Cummings Publishing
Company, 1991.

Bouldin, Barbara M. "Automate your software development
with minimum pain," EDN, 7 June 1990, 111.

Brancheau, James C. and James C. Wetherbe, "Information
Architectures: Methods and Practice," Information
Processing and Management 22, no. 6 (1986): 453-63.

Brancheau, James C. and James C. Wetherbe. "Understanding
Innovation Diffusion Helps Boost Acceptance Rates of
New Technology", Chief Information Officer Journal,
Fall 1989, 23-31.

Clarke, Dan. "Object Insider: Diskette frisbee isn't
fun." Object Magazine, May/June 1992, 19.

Coad, Peter, and Edward Yourdon. Object-Oriented Analy-
sis. Englewood Cliffs: Yourdon Press, 1991.



140

Cox, Brad J. "There Is a Silver Bullet." Byte, October
1990, 210.

Drucker, Peter F. Management: Tasks, Responsibilities,
Practices. New York: Harper and Row, 1974.

Duff, Chuck, and Bob Howard. "Migration Patterns:
Moving to object-oriented technology is more in-
volved than simply buying a compiler." Byte, October
1990, 224.

Dykman, Charlene A., and Ruth Robbins. "Organizational
Success Through Effective Systems Analysis," Journal
of Systems Management 42 (July 1991): 6-8.

Fischer, Gerhard, Scott Henninger, and David Redmiles.
"Cognitive Tools for Locating and Comprehending Soft-
ware Objects for Reuse." In 1991 IEEE 13th Interna-
tional Conference On Software Engineering, my the
IEEE. Los Alamitos: IEEE Computer Society
Press, 1991, 318-328.

Flaatten, Per 0., Donald J. McCubbrey, P. Declan O'Rior-
dan, and Keith Burgess. Foundations of Business
Systems. Orlando: Dryden Press, 1989.

Frenzel, Carroll W. Management of Information Technolo-
cry. Boston: Boyd & Fraser Publishing Company,
1992.

Gabriel, Richard P., and Patrick Dussud. "Neoclassical
object-oriented techniques: multimethods." Object
Magazine, May/June 1992, 41.

Giegold, William C. Management By Objectives: A Self-
Instructional Approach, vol. 1, Strateg.c Planning
and the MBO Process. New York: McGraw-Hill, 1978.

Gray, Linda, James C. Brancheau, and Kenneth A. Kozar.
"Evaluation, Environment, and Education: The 3E
Framework for CASE Implementation." Software Engi-
neering: Tools, Techniques, Practices, March/April
1992, 18.

Gupta, Ashok K., and David L. Wilemon. "Accelerating the
Development of Technology-Base N-w Products." Cali-
fornia Management Review 32 (Winter 1990): 24-45.

Hagedoorn, John. The Dynamic Analysis of Innovation and
Diffusion. London: Pinters Publishers Limited,
1989.



141

Henderson-Sellers, Brian, and Julian M. Edwards. "The
Object-Oriented Systems Life Cycle." Communications
of the ACM 33 (September 1990): 142-159.

Herzog, John P. "People: The Critical Factor In Managing
Change." Journal of Systems Management 42 (March
1991): 6-11.

Hodges, Parker. "A Relational Successor?" Datamation, 1
November 1989, 47.

Howard, William G., Jr., and Bruce R. Guile. Profiting
from Innovation: The Report of the Three-Year Study
from the National Academy of Engineering. New York:
The Free Press, 1992.

Howell, Jane M., and Christopher A. Higgins. "Champions
of Change: Identifying, Understanding, and Support-
ing Champions of Technological Innovacions." Organi-
zational Dynamics 19 (Summer 1990): 40-55.

Johnson, Ralph E., and Brian Foote. "Designing Reusable
Classes." Journal of Object-Oriented Programming 1
(June/July 1988): 22-35.

Kellner, Marc I. "Non-Technological Issues in Software
Engineering: Panel Session Overview." In 1991 IEEE
13th International Conference On Software Engineer-
ing, by the IEEE. Los Alamitos: IEEE Computer
Society Press, 1991, 144-146.

Kinlaw, Dennis C. Developing Superior Work Teams. Lex-
ington: Lexington Books, 1991.

Kolman, Joe. "Getting down to CASEs." Institutional
Investor, August 1990, 119.

Korson, Tim, and John D. McGregor. "Understanding Object-
Oriented: A Unifying Paradigm." Communications of
the ACM 33 (September 1990) 40-60.

Litchfield, Charles A. "Vendor Training: A Question of
Commitment to User Success." Journal of Library
Administration 12, no. 2 (1990): 3-12.

Martin, James. "OOP Goes Beyond the Commonsense Meaning
of 'Object'." PC Week, 11 September 1989, 76.

McClure, Carma L. Managing Software Development and
Maintenance. New York: Van Nostrand Reinhold
Company, 1981).



142

Meyer, Bertrand. Object-Oriented Software Construction.
Hertfordshire, Great Britain: Prentice Hall Inter
national Ltd., 1988.

Moad, Jeff. "Cultural Barriers Slow Reusability," Data-
mation, 15 November 1989, 87.

Nachmias, David, and Chava Nachmias. Research Methods in
the Social Sciences. New York: St. Martin's Press,
1981.

Norman, Ronald J., Gail F. Corbitt, Mark C. Butler, Donna
D. McElroy. "CASE Technology Transfer: A Case Study
of Unsuccessful Change." Journal of Systems Manage-
ment 40 (May 1989): 33-39.

Norman, Ronald J. "Object-Oriented Systems Analysis: A
Methodology for the 1990s." Journal of Systems
Management 42 (July 1991): 32.

Preece, David A. Manacing The Adoption Of New Technology.
London: Routledge, 1989.

Puhr, Gretchin I., and David E. Monarchi. "Object-Orient-
ed Analysis and Design: A Comparison of Methodolo-
gies, Techniques and Representations." Faculty
Working Paper Series, College of Business and Admin-
istration, University of Colorado - Boulder, 1991.

Ralston, Anthony, and Edwin D. Reilly, Jr., eds. Ency-
clopedia of Computer Science and Engineering. New
York: Van Nostrand Reinhold Company, 1983. S.v.
"UNIVAC I" by Michael M. Maynard.
"Software Maintenance," by Saul Rosen.
"Software Engineering," by C. V. Ramamoorthy and K.
Siyan.

Schlumberger, Maurice. "Software Engineering Management."
In 1991 IEEE 13th International Conference On Soft-
ware Engineering, by the IEEE. Los Alamitos: IEEE
Computer Society Press, 1991, 152-153.

Seidewitz, Ed. "General Object-Oriented Software Devel-
opment: Background and Experience." The Journal of
Systems and Software 9 (1989): 95-108.

Sommerville, Ian. "Object-Oriented Design: A Teenage
Technology." In Software Engineering for Large Soft-
ware Systems, ed. B. Kitchenham, 316. London and
New York: Elsevier Science Publishers LTD, 1990.

Stefik, M., and D. Bobrow. "Object-Oriented Programming:



143

Themes and Variations." The AI Magazine, Winter
1986, 43.

Swander, Alice J. "Vendor Training: Establishing the
Evaluation Process." Performance & Training 29, no.
4 (April 1990): 32-35.

Ten Dyke, R. P., and J. C. Kunz. "Object-Oriented Pro-
gramming." IBM Systems Journal 28, no. 3 (1989):
465-478.

Tully, Colin. "A Failure of Management Nerve and Vision."
In 1991 IEEE 13th International Conference On Soft-
ware Engineering, by the IEEE. Los Alamitos: IEEE
Computer Society Press, 1991, 154-155.

Verity, John W., and Evan I. Schwartz. "Software Made
Simple." BusinessWeek, 30 September 1991, 92.

Wasserman, Anthony I. "Object Insider: Object-Oriented
Thinking." Obiect Magazine, September/October 1991,
10.

Weber, Charles A., John R. Current, and W.C. Benton.
"Vendor selection criteria and methods." European
Journal of Operational Research 50, no. 1 (January
1991): 2-17.

Wirfs-Brock, Rebecca J. and Ralph E. Johnson. "Surveying
Current Research in Object-Oriented Design." Commu-
nications of the ACM 33 (September 1990): 104-124.

Wishart, Nicole A., and Lynda M. Applegate. "The Pruden-
tial: Organizing For Technology Innovation."
Harvard Business School Case Study. Boston
Harvard Business School, 1990.



APPENDIX A

CASE STUDY INTERVIEW QUESTION SETS



145

This appendix contains the interview questions

categorized by question set type.

The Champion Question Set

1. How do feel about your firm using OOSD to develop
software?

2. Do you see yourself as sort of the champion of OOSD
in your area? or site?

3. What position do you hold in the organizational

structure?

4. What is the management hierarchy above you?

5a. What do you feel are the major differences between
objects and other ways of developing software?

b. How did you gain this knowledge of objects?

6a. WhaL parts of the OOSD methodology do you feel help
meet your corporate goals and objectives?

b. Have you found any time reductions?
c. Do you foresee any cost reductions?
d. Has OOA assisted customer relations as far as de-

fining requirements faster and/or easier?
e. Any other benefits?

7a. Did you begin the process of converting your firm
to OOSD or did someone else seek you out to lead
the effort?

b. If someone else sought you, what is their position
in the firm?

c. Were any problems encountered while g-[ng to OOSD?

8a. Are you using a team concept to implement OOSD?
b. Did you assemble or oversee the assembling of this

team?
c. Does this team consist of software analysts, soft-

ware designers, programmers, and at least one main-
tenance person?

9. What is the attitude of the team members toward
OOSD?

10a. To what extent where you involved in choosing OOSD
methods and tools?



146

b. Were the team members and (TRC equivalent) included
in the selection process?

11. To what extent where you involved in training the
team members in these methods and tools?

12a. Do you feel it's important that the team members
understand how OOSD helps meet corporate goals and
objectives?

b. If so, was the team educated on these facts?

13. How do you view your short term costs associated
with implementing OOSD?

14a. Do you feel those who guide the corporation firmly
support the OOSD effort?

b. What efforts have you taken to communicate this
support to those involved with the OOSD effort?

c. How do you view communication channels from the
top? (Easy letting them know problems and getting
feedback?)

15a. Where you given the freedom to choose an appropri-
ate software project with which to implement OOSD?

b. To what extent did you involve the user team and
(Technology Resource Center equivalent) in this
choice?

c. How critical is the project to immediate corporate
success?

16a. Do you see yourself as the project leader?
b. To what extent do you actively monitor the atti-

tudes, perceptions, and progress of the team as
they implement OOSD?

17. How do you feel about your rapport with others in
the firm? (i.e. are there any closed doors, do you
feel you can communicate easily with those in other
departments, etc..)

18. Are you associated with any professional technology
oriented organizations outside your firm?

19a. Would you consider your professional contacts out-
side your firm to be many, few, or none?

b. Of these, do you have many, few, or none which are
technology oriented?



147

Modified Champion Question Set

la. How do feel about your firm using OOSD to develop
software? (Is it a viable technology?)

b. How do you see the future of OOSD at your company?

2a. In what ways did you try to champion OOSD here?
b. Did you begin the process of converting your firm

to OOSD or did someone else seek you out to lead
the effort?

c. If someone else sought you, what is their position
in the firm?

3. What position do you hold in the organizational
structure?

4a. Do you feel there needs to be a higher level propo-
nent of OOSD?

b. Do you know of anyone at a higher level who likes
the technology?

5a. Has OOSD helped meet any of your corporate goals
and objectives on any projects that you are aware
of? (Any time reductions? Any cost reductions?)

b. Are you aware of OOA being used to assist customer
relations as far as defining requirements faster
and/or easier?

6. How many projects are using OOSD here?

7. Are you currently on a project using OOSD?

8. Are you associated with any professional technology
oriented organizations outside your firm?

9. Would you consider your professional contacts out-
side your firm to be many, few, or none? Of these,
do you have many, few, or none which are technology
oriented?

The Analyst Question Set

la. How familiar are you with object-oriented methodol-
ogies?

b. What do you feel are the main principles of OOSD?

2a. How do you feel about object oriented software de-
velopment as a viable development technique? (Good



148

for your company?)
b. Do you use any object-oriented techniques in estab-

lishing system requirements?
c. Have any benefits been realized with OOSD? (cost

reductions, time, etc.)

3a. How many software development efforts have you been
involved with?

b. How confident are you in your ability to use OOSD
to successfully complete the chosen software pro-
ject?

4a. On the AFCAP project do you work with the other de-
velopers as a team or on an as needed basis?

b. Does your office location affect your working rela-
tionship in any way?

5. In your view, what percentage of your fellow AFCAP
team members posses the following characteristics?

a. Works well with others.

b. Communicates well with others.

c. Self-Confidence.

d. Persistence.

6. How many professional technologically oriented
organizations are you associated with outside your
firm?

7. How does OOSD help meet your firm's goals and ob-
jectives?

8. What type of input did you have in choosing the
software project that your team was to develop
using OOSD?

9. As you use OOSD, do you feel opinions you may have
about the methodology are being heard by the right
people?

10. Do you feel communications channels are always open
for you to express any problems that occur? (ie.
no problem getting the right people informed of the
problems and keeping them informed of the prog-
ress?)

lla. How do you feel about the support from the top?
b. Anyone ever tell you how (the decision makers) feel

about your efforts?



149

12a. Have you worked with (TRC equivalent) in setting up
an object reuse library?

b. Are you satisfied with the efforts in this area?

13a. What type of life-cycle approach are you using?
b. Are you using an iterative/fountain life-cycle

approach (may need to explain to interviewee) with
OOA, OOD, and OOP or are you sticking with tradi-
tional transition phases?

14. How many software projects have you been involved
in performing requirements analysis?

15. What's your overall impression of OOA? In what
ways is it better than previous methods you have
used?

16. Were you involved in choosing a vendor to provide
OOA training and tools? Who did you work with in
doing so?

17. With the training you received, are you confident
you can produce a quality object oriented require-
ments document?

18. Have OOA techniques helped you communicate better
with the end-users as opposed to the past methods
you've used? (ie. have you been able to express
their requirements more in their terms via obje-
cts?)

19. To what extent do you feel your requirements speci-
fication has helped or hindered the design team as
opposed to past methods?

20. Do you feel your analysis team and the design team
communicate and work well with each other? (is
there agreement on what the project requirements
are?)

The Designer Question Set

la. How familiar are you with object-oriented methodol-
ogies?

b. What do you feel are the main principles/elements
of OOSD?

2a. How do you feel about object oriented software
development as a viable development technique?
(Good for your company?)



150

b. Did you use any object-oriented techniques in doing
the system design of the AFCAP project?

c. Have any benefits been realized with OOSD? (cost
reductions, time, etc)

3a. How many software development efforts have you been
involved with?

b. How many software projects have you been involved
in performing software design?

4a. On the AFCAP project do you work with the other de-
velopers as a team or on an as needed basis?

b. Does your office location affect your working rela-
tionship in any way?

5. In your view, what percentage of your fellow AFCAP
team members posses the following characteristics?

a. Works well with others.
b. Communicates well with others.
c. Self-Confidence.
d. Persistence.

6. How many professional technologically oriented
organizations are you associated with outside your
firm?

7. How does OOSD help meet your firm's goals and ob-
jectives?

8. What type of input did you have in choosing the
software project that your team was to develop
using OOSD?

9. As you use OOSD, do you feel opinions you may have
about the methodology are being heard by the right
people in management?

10. Do you feel communications channels are always open
for you to express any problems that occur? (ie no
problem getting the right people informed of the
problems and keeping them informed of the prog-
ress?)

lla. How do you feel about the support from the top?
b. Anyone ever tell you how any senior leaders feel

about your efforts?

12a. Have you worked with (TRC equivalent) in setting up
a object reuse library?

b. Are you satisfied with the efforts in this area?



151

13. What type of life-cycle approach are you using? In
other words, are you using an iterative/fountain
life-cycle approach (may need to explain to inter-
viewee) with OOA, OOD, and OOP or are you sticking
with traditional transition phases?

OOD Team Specific

14a. What type of object-oriented design approach did
you use - pure or hybrid?

b. What was the extent of your involvement in choosing
a vendor to provide OOD training and tools?

15. With the training you received, are you confident
you can produce quality object-oriented logical and
physical design documents?

16a. Have OOD techniques helped you communicate better
with the analysts as opposed to the past methods
you've used?

b. Is it easier to move from analysis to design?
c. If no to either question, why do you think communi-

cations or analysis to design transitions have not
improved?

17. Do you get together/communicate with the analysts
and users to insure you have the correct interpre-
tation of the objects and their interaction?

18. Do you:
a. reuse object classes/modules? If so, is the reuse

library helpful and easy to use?
b. make use of inheritance and polymorphism?
c. design classes to be reused?

19. To what extent do you feel your object oriented
design has helped or hindered the programming team
as opposed to past methods?

20. Do you feel your design team and the programming
team communicate and work well with each other? (is
there agreement on what is to be implemented?)

The ProQrammer Question Set

la. How familiar are you with object-oriented methodol-
ogies?

b. What do you feel are the main principles/elements
of OOSD?



152

2a. How do you feel about object oriented software
development as a viable development technique?
(Good for your company?)

b. Have any benefits been realized with OOSD? (cost
reductions, time, etc)

3a. How many softwa_ • development efforts have you been
involved with?

b. How many software projects have you been involved
in as a programmer?

c. How well do the terms modular, tightly cohesive,
and loosely coupled apply to your past coding effo-
rts?

4a. On the AFCAP project do you work with the other de-
velopers as a team or on an as needed basis?

b. Does your office location affect your working rela-
tionship in any way?

5. In your view, what percentage of your fellow AFCAP
team members posses the following characteristics?

a. Works well with others.
b. Communicates well with others.
c. Self-Confidence.
d. Persistence.

6. How many professional technologically oriented
organizations are you associated with outside your
firm?

7. How does OOSD help meet your firm's goals and ob-
jectives?

8. What type of input did you have in choosing the
software project that your team was to develop
using OOSD?

9. As you use OOSD, do you feel opinions you may have
about the methodology are being heard by the right
people in management?

10. Do you feel communications channels are always open
for you to express any problems that occur? (ie no
problem getting the right people informed of the
problems and keeping them informed of the prog-
ress?)

lla. How do you feel about the support from the top?
b. Anyone ever tell you how any senior leaders feel

about your efforts?

12a. Have you worked with (TRC equivalent) in setting up
a object reuse library?



153

b. Are you satisfied with the efforts in this area?

13. What type of life-cycle approach are you using? In
other words, are you using an iterative/fountain
life-cycle approach (may need to explain to inter-
viewee) with OOA, OOD, and OOP or are you sticking
with traditional transition phases?

OOP Team Specific

14. What was the extent of your involvement in choosing
a vendor to provide OOP training and the program-
ming language to be used on this project?

15. With the training you received, are you confident
you can produce quality object oriented code?

16. Using the terms extensively, moderately, very lit-
tle, or none, to what extent are you using the
following elements of object-oriented programming?
(You will need to get their view/definition of each
of the terms so you can be sure you're talking the
same language)

a. Objects.
b. Abstraction.
c. Inheritance.
d. Encapsulation.
e. Polymorphism.

17a. Do you use the reuse library to help reduce the
amount of code you generate?

b. What's your opinion of reusability (think it's
going to have much impact)?

c. What's your opinion of vyur reuse library?

18. Do OOP techniques help you work and communicate
better with the maintenance advisor in order to
produce more maintainable code?

19a. Have OOP techniques helped you communicate better
with the analysts and designers as opposed to the
past methods you've used?

b. Is it easier to move from design to coding?
c. If no to either question, •vhy do you think communi-

cations and/or design-to-coding transitions have
not improved?

20. What's your opinion of the quai-.i of code produced
by OOP? Is it better, same *-s before, or worse?



154

The Mid-Level Manager Question Set

la. How do you feel about your firm using OOSD to de-
velop software?

b. How do see the future of OOSD here?

2. Is there any one or two people you see as champion-
ing OOSD here?

3. What position do you hold in the organizational

structure?

4a. What position does your supervisor hold?

b. What do you feel the attitude is of those above you
toward new technologies? (eager to try them, let
others try them first, won't try them unless
they've been used several other projects and suc-
ceeded, try them if forced to)

5a. What do you feel are the major differences between
objects and other ways of developing software?

b. How did you gain this knowledge of objects?
c. Do you think the team received adequate training in

OOSD?
d. How would you have made it better?

6a. What parts of the OOSD methodology do you feel help
meet your corporate goals and objectives?

b. Have you found any time reductions?
c. Do you foresee any cost reductions?
d. Has OOA assizi ed customer relations as far as de-

fining requirements faster and/or easier?
e. Any other benefits?

7a. What do you feel is the attitude of the team mem-
bers toward OOSD?

b. Do you have any idea/feeling of what others outside
the AFCAP project think about OOSD?

8. In your view, what percentage of the AFCAP team
members posses the following ch~aracteristics?

a. Works well with others.
b. Communicates well with others.
c. Self-Confidence.
d. Persistence.

9a. Were any of the above characteristics consider-
ations in chocsing the development team for AFCAP?



155

b. What was the most important consideration?

10a. Do you feel it's important that the team members
understand how OOSD helps meet corporate goals and
objectives?

b. If so, was the team educated on these facts?

lla. How do you view your short term costs associated
with implementing OOSD?

b. Do you feel those above you were aware of these
costs? If not, why not?

12a. Do you feel those who guide the corporation firmly
support the OOSD effort?

b. What efforts have you taken to communicate this
support to those involved with the OOSD effort?

c. How do you view communication channels from the
top? Easy letting them know problems and getting
feedback?

13. Are you familiar with object-oriented a.-ilysis and
its benefits to software development?

14. Are you associated with any professional technology
oriented organizations outside your firm?

15a. Would you consider your professional contacts out-
side your firm to be many, few, or none?

b. Of these, do you have many, few, or none which are
technology oriented?

The Technology Resource Center Question Set

1. Give me an idea of how your support function works
here.

2. How does your center help meet your firms goals and
objectives?

3. Did your center originate the research into OOSD
for possible use by the firm?

4. Did your center seek and/or find someone to champi-

on OOSD?

The User Team Support Function

5. Are you confident your training has given you the
skills to find and provide the computer resources



156

and training necessary for developing quality soft-
ware systems?

6. How familiar are you with all available resources
for performing OOSD?

7. What was the extent of the champion and analysts,
involvement in helping you choose a vendor and
resources for OOA training?

8. What was the extent of the champion and designers'
involvement in helping you choose a vendor and
resources for OOD training?

9. What was the extent of the champion and program-
mers' involvement in helping you choose a vendor
and the language for OOP training?

10. Did you substantiate each vendor's past track re-
cord in providing the kind of training and tools
needed?

lla. Did you get feedback from the team menmbers on ven-
dor instructors?

b. Did they consider the instructors were properly
skilled?

12. Did you request any of the vendors to adapt their
tools or training to meet any special needs you
had? Did they do so?

13a. Did you need any post-purchase support on any of
the training or tools you purchased?

b. Was support fast and effective?

14. Do you feel you were able to provide resources to
the user team at the times needed?

15a. Do you feel you get appropriate support from top
management?

b. Has support been actively expressed from the deci-
sion makers?

c. Do you feel your group gets enough money to do what
is required?

The Object Reuse Library

16. Has a library of reusable objects and classes been
established?

17a. Is the library easy to use by those needing it?
b. Is access fairly easy and non-cumbersome?



157

C. Are search tools designed to find modules which
match or are similar to designs sought?

18a. Do you have a control system in place to ensure
modified modules are tracked?

b. Have you had problems with old bugs returning?

19a. Is the library system automated?
b. Is it accessible via networks or other remote sys-

tems?

20a. Do you consider yourself skilled in configuration
management practices?

b. How did you gain your knowledge?

21. Were members of the user team consulted in estab-
lishing the reuse library to meet their needs?

22a. Did you seek out current reuse library technology
in setting your standards for storage and retriev-
al?

b. Does your system have a meaningful classification
of components?

c. Does your system document component design and
original purpose?

The Decision Maker Question Set

la. What is your position in the organization? (or:
In what way do you influence the direction of the
organization?)

b. What is your background prior to obtaining your
present position? (software, hardware, management,
finance...?)

2. What are your feelings on software's role in your
organization? How important is it?

3a. Do you feel you have specific and easily understood
corporate goals and objectives which provide the
direction for your organization?

b. Do these goals and objectives address the impor-
tance of software?

c. Are these goals and objectives divided into long-
term (or strategic) areas and short-term (or tacti-
cal) areas with regards to software?

4a. What do you see are the benefits of OOSD?
b. Do you see the technology as the cause of the prob-

lems in the AFCAP project?



158

c. Do you think the AFCAP team received adequate trai-
ning in 00 techniques?

5. Do you feel OOSD can improve your business opportu-
nities and help achieve your corporate goals and
objectives? If so, is this communicated to those
involved with the OOSD effort?

6. Do you see anyone in your firm as a champion of
OOSD?

7a. Do you see yourself as supportive of the people on
the AFCAP project?

b. Are you satisfied with their efforts so far?

8. Do you actively communicate your support (or dis-
like) for OOSD to others?

9a. How actively do you communicate your support to the
people on the AFCAP project and others in your
firm?

b. By what means do you ensure they are aware of your
support?

10. Have there been any high level disputes over OOSD
where you had to run interference/defend the cham-
pion? If so, what were the general reasons for the
dispute?

11. What are your feelings on the high short term costs
of OOSD versus the long term payoffs?



APPENDIX B

CASE STUDY INTERVIEW DATA



160

This appendix contains the answers to the interview

questions found in appendix A. No interviewee names are

given in order to ensure confidentiality as much as

possible. The acronym AFCAP is the mask assigned to

signify the name of the software project studied. Any

other masking of identifying information will be so noted

with square [I brackets. Square brackets are also used

to insert any clarifying information.

The interview answer- are presented under the head-

ing of the corresponding question set. Additional ques-

tions asked which are not part of the question set are

signified by INSERTED QUESTION. Since all answers are

quotes they are single spaced.

Prior to the start of any interview, each partici-

pant was told of his/her right not to answer any question

and that she/he could terminate the interview at any

time. Each was reminded that no names would be published

with the responses and that the company identity would

remain anonymous.

I recorded the original responses via hand written

notes. I had time between interviews to add from memory

any details I may have missed. The responses below were

generated from these noties at the earliest opportunity.



161

The Champion Question Set

Champion #1

1. Object-oriented design and object-oriented program-
ming are better than top-down functional methods to
develop software. The maintenance is improved. There
has been a problem using C++ on this project. C++ has
required far more RAM than the previous version did.
This has affected the existing base of hardware by re-
quiring newer machines to run the system effectively.

2. When the project started, I was sort of seen as the
champion. There was one other supporter for using OOSD.
Now, there are several advocates of the methodology.
There really is no one person seen as THE champion of the
methodology.

INSERTED QUESTION I: Is there anyone in the hierarchy
above project levels who is seen as an OOSD advocate? No
one that I know of.

INSERTED QUESTION II: Do you have a feel for how other
project groups see the technology? Other groups are wary
of using OOSD because this project was late. That and I
don't think they like C++. The object paradigm is not
the reason we were late. One reason the project was late
is that product management wanted more capabilities than
were feasible in the time given. They greatly underesti-
mated the time needed. We didn't have enough training
time to learn object-oriented techniques before we had to
produce usable code. We didn't have time to practice.
Management also wanted to mix object-oriented techniques
with a functional approach and I think that was a big
mistake. The finished system has several areas that need
an object-oriented approach but don't have and this hurts
the systems as far as maintenance goes.

3. [Staff level position]

4. Looking at this site only, there are 4 successive
levels above me.

5a. [See 1]

5b. I read a book by Brad Cox; I took a one week class
in C++ on site; and I played around with the technology
on ny own.

6a. The goals and objectives address maintenance and
quality. OOSD does produce more easily maintained soft-



162

ware. Maintenance costs arx reduced. The quality is
better.

6b. Being late with the project, naturally there were no
time reductions in original development. But, now we're
seeing time reductions in debugging and fixes from prob-
lems found in field tests.

We probably could have realized other benefits but we
just didn't do as much front end design as we should
have. Managers wanted the code finished and weren't as
concerned with the design phase. Same old development
problems.

6c. [see 6a]

6d. The analysts deal with the old ways, functional
based. I don't see where the object paradigm could help
them.

6e. OOSD emulates the real world better. Functional
software development doesn't represent the real world as
well.

7a. I'm not aware of anyone else pushing OOSD at the
same time we started this project. [The company] had
other projects using OOSD at other locations. I think
there were other projects here using OOSD but I'm unsure.
I didn't interact with any of the other projects.

7b. No one sought me out.

7c. There were some political problems. At the time
there were other project groups doing similar types of
efforts as ours and they went over our heads and tried to
keep us from using object-oriented techniques.

8a. Yes.

8b. I didn't have any real influence on building the
team; I was asked my opinion on a few things.

8c. The original team had analysts, we call them system
engineers, and the job of designing and programming are
combined. What I mean is the person who is to program a
piece of the system also designs it. As far as mainte-
nance, we didn't have a permanent member. We brought in
someone from another site and for one week he evaluated
the maintainability of our work. I felt he was a bit
brief, though.

INSERTED QUESTION III: What do you think about having



163

someone full time in a maintenance advisory mode? I
think that would be a good idea.

9. At the beginning of the project, some were ambivalent
and others resisted. Of the 10 original programming
members, 2 didn't want it at all, 2 were all for it, and
the rest had the attitude of I'll do it if I have to.
Now, all present members say the object paradigm is
better.

10a. There weren't really any useful code support tools
at the time. I really had no involvement in choosing
methodology training. (The company] has its own training
program and they gave us a 1 day course in object-orient-
ed design and a 1 week course in C++. I don't think the
training we received was sufficient for the work we had
to do.

INSERTED QUESTION IV: Does [the company's] training
organization do any type of follow-on evaluation of their
training? They had us fill out an evaluation at the end
of the training but they haven't done any evaluation
after we've had a chance to use the training.

INSERTED QUESTION V: Did you have any questions or
problems that required you to contact [the company's]
training people for help? We had some problems but we
didn't go back to the training people. There was a local
[company] person who had experience in C++ and OOSD and

we took our questions to him.

10b. No.

11. I wasn't really involved with the training but if
anyone on the team had any problems, they would come to
me first.

12a. I feel it's important, but I'm not sure everyone

knows how OOSD meets corporate goals and objectives.

12b. Through memos and department meetings.

INSERTED QUESTION VI: Do you try to make the leadership
aware of how OOSD helps meet the goal and objectives?
I'm not sure if my supervisor is passing up this informa-
tion or not.

13. The short term costs are very high especially in
training. Going to an object-oriented approach requires
"a change in mind set. As you learn OOSD you are climbing
"a mountain and it's not obvious what you need to do.
Once you're over the top though, I think its obvious how



164

to use objects.

14a. I don't feel there's much support for OOSD at the
top. I think the lateness of the product put us in a
negative light. Management is not too sure of OOSD right
now.

14b. They know.

14c. I don't feel the doors are too open. You're sort
of expected to use the chain of command when you have a
problem. I get little or no feedback from senior manage-
ment.

15a. I was on the AFCAP project team and some of us
wanted to go with OOSD.

15b. There really wasn't a choice of projects to apply
the technology. [see 9 for member attitudes]

15c. The project turned out to be more critical than we
realized. Other projects depended on our work. It
turned out we didn't have enough machine resources at
first and we started to have problems. We were a low
resource priority and sometimes our compiles would take
all day to complete. As we began to be late, management
realized we needed more resources and we got them.
16a. No; the department head is the project leader. He

has other projects going on that aren't object-oriented.

16b. N/A [Not appropriate for his level]

17. I don't deal with others here. There's just not
enough time to do that. Lack of time has kept me from
getting the object-oriented message out.

18. Yes, one. IEEE.

19a. Not very many.

19b. I don't get information from other professionals.

Modified Champion Question Set

Champion #2.

la. It's viable and I think it should be used.

lb. I think it will have to wait. It's been very slow



165

to catch on with people here.

2a. I started on my own using the technology for my own
small projects. The department head wanted me to spread
the knowledge so I started by sponsoring lecture series
on C++. We had about 3 to 6 lectures a year. I was able
to bring in some big name people in OOSD and C++. I
established a support agreement with [the company's]
object-oriented people at [another location]. I talked
to the former site director about the technology but he
wasn't too interested. I was able to give a presentation
to a vice-president in [another location] and he did seem
interested. As I've talked about OOSD, I've found camps
for and against it. Every time I give a presentation to
project directors, some will be all for it and some will
be adamantly against it.

2b. [See first two lines of 2a]

3. I'm part of the technical staff.

4a. Here, managers don't really push what techniques are
to be used on a project. I'm not sure having those
higher pushing a technology would work. I think those in
the lower level development organizations must be con-
vinced to go with OOSD if it's going to work. One thing
about technologies, what is smiled upon today may be
frowned on tomorrow.

Even when certain techniques are good for improving
quality, quality goes by when things are going to be
late. I don't see any strict standards for quality.
When a project is late, whatever it takes to get it out
the door is what goes.

4b. That vice-president was interested, but there is no
one actually pushing it that I know of.

5a. Goals and objectives change and they haven't always
addressed software development. For about a year now
they have focussed on software. On a previous project I
worked on, there was a positive improvement in quality.
Chang 3 were easier to make with OOSD and this cut time
requirements.

5b. I'm not aware of anyone using object-oriented analy-
sis here. The systems engineers [analysts] in my area
are looking at it but no action has been taken yet.

6. Three that I know of..

7. No.



166

8. Yes. ACM and IEEE.

9. Few. I occasionally talk to them; I don't get much
information.

The Analyst Question Set

Analyst #1.

1. I'm not very familiar. What I've heard is changes
that you want to make are far easier with OOSD. I don't
feel this will be much use; programmers aren't going to
like many changes. They will feel too much chaos is
involved with mandated changes in design.

2a. I haven't seen where OOSD has made much difference,
yet. I know there was a long lead time in the developers
coming up to speed in learning it.

2b. We didn't use any 00 techbiiques in building our
requirements.

2c. I really haven't seen any benefits.

3a. 5 efforts, 1 as an analyst.

3b. N/A

4a. I felt I was part of the team. When the project got
into trouble the team really unified and everyone really
pulled together.

4b. My location had no affect on our work. But, there
were communication problems at times. When I needed to
talk to someone about a certain piece [project module or
code] it was hard at times to determine who was assigned
to it. At times no one felt responsible for various
pieces and it made my job harder. Sometimes the develop-
ers wouldn't consult us and would ignore some of the
requirements. Some things [required elements] didn't
make it to the end product.

5a-d. [See Table 6.1 in chapter VI]

6. 0. I was member of one in the past, just wasn't worth
the money.

7. The goals and ob]ectives really address making more
money. I don , replly feel they address software



167

Management does emphasize it would like software devel-
oped faster and at cheaper cost.

8. N/A

9. N/A

10. My chain of command is different from the develop-
ment team's. I work close with the marketing people in
the business and am therefore separate from the product
development people in supervisory levels. Even so, I do
work as a team member with development in establishing
the system requirements. As far as communications go, I
was able to voice my fruscrations when trouble occurred.
I feel I was heard but since my chain of command is
different, I can't say if the others' communications were
hindered.

lla. Within my supervisory chain, the support is fine.
As I worked with tCe develcoment team, I felt support was
OK there too.

llb. Within my chain, you don't really get much feed-
back. If you .)n't get feedback, that generally means
you're doing a good job.

12a. No.

12b. N/A

13a. We used the iterative life-cycle out of necessity
not because of the application of the object paradigm.
The waterfall life-cycle just doesn't work in complex
systems. By waterfall. I mean where you're supposed to
come up with requirements that everyone agrees on and
then they're set in scone. In complex systems as you go
along requirements change; something may have been left
out or the customer wants something altered.

13b. We are looking at better ways to come up with
requirements; but we're not looking at ar- 00 analysis
methods.

Inserted Question I: Are you aware of anyone championing

the object paradigm here? No.

14. See 3a.

[Analysts did not use OOA, therefore questions 15 - 19
were not asked]

20. There's not much trouble with communications. Our



168

styles are different in that we have different world
views. We develop the requirements by focusing on the
customer. In designing the system the developers don't
focus as well on the customer. They are more concerned
with the underlying architecture and getting something to
work. There were a few problems, though. There's always
trouble in trying to translate the real world to the
software world. We've found after production completion,
that our requirements were not totally complete. Actions
which we would interpret as "obvious" were somehow inter-
preted differently by the designers and showed up in the
final product as not quite the actions we intended. We
have to work to correct these problems in the future.

Inserted Question II: Do you have any idea how the
customers view the product? We are currently testing the
product at 6 controlled release sites. So far the feed-
back is generally good. For some reason some have com-
plained about the differences from the past versions of
the product. I can't quite explain their reasoning since
this is supposed to be a major upgrade with several new
enhancements.

Analyst #2.

1. I'm not very familiar with it. My idea of it is it's
a structured way to program.

2. I can't give you an opinion due to my lack of knowl-

edge.

3a. 12-15 software development efforts.

3b. N/A

4a. I now have other responsibilities besides the AFCAP
project. Originally, as the requirements were being
developed I was totally dedicated the AFCAP project full
time. I was definitely a team member.

4:.. My lucation now doesn't interfere with my working
relationships. At the beginning of project I was in
[another state] and transferred here shortly after start
of the project.

5a-d. [See Table 6.1 in chapter VI]
[Side issue during discussion of this question] The team
had a lot of trust and worked well together. A problem
was there wasn't any formal communications established
where team members actively communicated new techniques
and learning with others.



169

Inserted Question I: Were 00 methodologies a problem to
the team? I feel they [designers/programmers] were
forced into the language. I feel the 00 learning wasn't
shared with others. Those that learned something new or
useful didn't always share that with those that could've
benefitted. Some understood the technology far more than
others.

[Additional comments on persistence] The project got in
trouble and got behind. Upper management responded to
the problem by discouraging anyone from taking vacations
and wanting a lot of overtime. Many were working 70
hours a week for two years. I feel management's actions
reduced the group's normal persistence. I think the
group felt management didn't trust them. No one quit
from this though. New management came in later and
reversed previous decisions. They encouraged people to
take vacations and get away from the work for a while.

6. 1 in the past; 0 now.

7. Goals and objectives don't really address software.
I'm not very familiar with the goals and objectives.

Inserted Question II: What percentage of chis site's
productivity is in software? 90%

8. None

9. N/A. [Didn't use OOSD]

10. My chain of command goes through [another state's]
office. I have no real communication problems, things
work fine. I feel others in the team had communication
problems. When the project got into trouble, no one
wanted to say anything. No one wanted to get management
involved when things started to get bad even though I
thought someone should.

lla. There seemed to be a general lack of information at
the upper levels. The team didn't want to elevate prob-
lems. I don't think they were confident in the upper
level support. At times I don't feel management was very
interested in the project. They are very interested now
because of the money impact. This project was critical
to other products being sold. After the project got into
trouble, it got managements attention. Now that the
project is doing well, I think management is proud of the
team.

llb. [Not asked]



170

12a. No.

12b. N/A.

13a&b. For the original version of the project we devel-
oped the requirements in [another state] and sent them
here for designing and coding. After the requirements
were sent here we didn't get them back for updating with
missed or new requirements. These original requirements
didn't have everything the customer needed, though.
After I was transferred here we went to an iterative
cycle out of necessity. The requirements were changing a
lot. I'm not sure if OOSD caused this [use of iterative
cycle] or not. Management wants requirements written in
stone but in practice everyone knows you can't do this;
requirements change during development. The original
manager didn't like it [changing requirements] but the
new manager does. He says he likes having up-to-date
requirements.

14. 8.

[Since OOA was not used, questions 15 - 19 were not
asked.]

20. The design teams changed over time. This is a
problem now because I was given additional responsibili-
ties as the project matured. These responsibilities have
nothing to do with the AFCAP effort. There was no formal
communications established which kept us informed of
these changes. This caused problems for us in that when
requirements changed or we needed to talk to someone
about a module, we didn't always know who to call and it
was hard finding out at times. We would view project
parts differently at times than the developers and it
wasn't easy at times to figure out who was working on
which aspect or feature of the project.

Sometimes the developers decided to put in a requirement
on their own. They didn't consult us. In field testing
the product, these new additions have caused a few prob-
lems for the customer.

The Designer Question Set

Designer.

la&b. Data abstraction, use of objects - where data and
operations are combined into one entity.



171

2a. I feel it's viable now. I wasn't sure at the begin-
ning of this project because of some problems with people
coming up to speed using it.

2b. Yes; both in design and programming. The way we
work here is the developers do the design and programming
of Lheir pieces of the project. I had more of a hand in
the beginning with the design as far as establishing the
original system architecture.

2c. This being the first big project using the paradiam,
we haven't seen many benefits yet. I feel the maintain-
ability has improved a lot. It's easier to make changes
without causing other problems.

3. Six. All six.

4a. The original design was a team effort. As the
project was divided into pieces and pieces assigned to
people we worked some as a team. The low level design
was mainly individual work; there wasn't much interac-
tion. The output [coded product] could have been more of
a team effort I feel. Management kept pushing us to get
the product finished and we didn't take the time to make
sure everything meshed together well. While there
weren't major problems, I felt the final product could
have turned out better if there was more time for team-
work.

4b. No. We all work in the same area.

5. First, let me say the team changed over time. Some
of the original people left and new people were brought
in when we had some trouble. The original core of people
worked well together but the group dynamics were inter-
rupted by the new people. For both the old and new
people this was a factor in some communications problems.

5a-d. [See Table 6.1 in chapter VI]

6. None.

7. Management has laid out their goals and objectives
and they do specifically address software issues. The
only benefit we've realized so far is improved quality.
Our quality is a lot better using the object paradigm.

Inserted Question I: What percentage of this site's
total productivity is concerned with software develop-
ment? 95%

8. None.



172

9. Yes. My concerns are being heard and I feel manage-
ment cares about what I have to say. I think management
is confident in what I and the others are doing.

10. Yes. Answers to my concerns generally always come
back to me.

11a. Now I think it's strong from the top. I feel it
was weak in the beginning. When we got into trouble and
started slipping schedules we were able to get a lot of
help and support.

We underestimated the learning curve for the object
paradigm and got into trouble as we attempted to imple-
ment it. We also had problems with lack of hardware
resources. We needed more computer time but couldn't get
it. Sometimes our compiles would take all day to com-
plete due to our low priority. Because our project was
so critical, after we got into trouble, we got all the
resources and support we needed.

11b. [Not asked]

12a. We have libraries that are supposed to be for reuse
and in the beginning we tried to use them but the origi-
nal library modules we used had too many bugs or they
were just too slow for what we needed. The original
libraries weren't that good.

12b. I feel there is only a limited application for a
reuse library with our project. The AFCAP system is
unique and most modules are just too specific to really
apply reuse.

13. We used an iterative approach out of necessity, not
because of the paradigm. I don't see the iterative life-
cycle as a plus, though. It just takes too much time.
It's very time consuming to have to go back to require-
ments when something is not identified up front or when
the customer wants something else. We were constantly
updating the requirements with the AFCAP project and it
got to be too much.

14a. I'd say it was a hybrid. approach. We used some
techniques from older methods. I didn't really under-
stand OOD at first. We were able to get help and input
from other experienced people.

14b. I had no involvement in choosing who trained us.
Our training people bring in people occasionally to
present lectures on different topics. People can attend
as they want. As far as OOD, they set up a three day



173

class on OOD. We learned what we could in three days.
They at least got us started in the right direction.

15. Now, yes. When we started it was a struggle. Like
I said, the training got us going in the right direction
but did not give us everything we needed. I think trial
& error had more impact in our learning than the train-
ing. Our design and documentation could have been a good
deal better in the AFCAP system but time constraints kept
problems in.

16a. As far as interaction with the systems engineers
[analysts], we talked objects with them but I'm not too
sure they really understood what we were saying. It has
helped communications among the developers in that we
focus on objects when we talk about the system. It helps
in that we're not continually focusing on each function
and small part.

16b. There's no real improvement.

16c. The system engineers don't understand objects.

[Interviewee added comment] My understanding of how the
AFCAP system operates is far clearer with Version 3 over
Version 2.
[Version 2 was implemented with traditional development
methods and a non-object-oriented language.]

17. Yes. We spent quite a bit of time gaining an under-
standing of the requirements. But, like I said, we
really didn't talk objects that much.

18a. Yes. We used a few library modules for some piec-
es. We usually made minor modifications. We didn't put
our modified modules back into the library. I wouldn't
say it was easy to use.

18b. Inheritance, yes. Polymorphism, yes.

18c. I design for reuse now; not at first.

19 & 20. In the AFCAP project, each piece was designed
and coded by the same person. In the future we may
separate the functions.



174

The ProQrammer Question Set

Programmer #1.

la&b. I think encapsulation is a key part of OOSD. In
the old ways of programming you used a linear approach
and just wrote code as you thought about it. C++ forces
me to think about what I need ahead of time. What I mean
is I have to look at how modules interact before I can
write my code.

2a. I think it's a good technique and it will probably
stay around.

2b. The code is more maintainable. The older methods
produced code which was cumbersome and hard to update.

3a. 3

3b. 3

3c. [Not asked]

4a. Definitely a team effort.

4b. No. As you saw, we are all close together.

5a-d. [See Table 6.1 in chapter VI]

6. None.

7. I guess it has helped in making the product more
maintainable. We really didn't use the technology to
meet the goals and objectives. The corporate goals and
objectives haven't really been spelled out for me.

8. None.

9. I really don't have any opinions that I want elevated
other than I don't want to go back to using C.

10. Channels are fairly open; they are improving. In
the past, communications were poor. [The company] did a
survey in the past which identified communications as
poor here.

lla. Originally, we had good support. When the project
got behind schedule the support turned sour. Some people
on the project were forced to retire. Now we have pretty
good support again.



175

lib. No.

12a. [Not asked]

12b. [Not asked]

13. [Not asked. The life-cycle being used has been
established.]

14. No involvement.

15. After the decision was made to implement this prc-
ject with the object paradigm, we were behind schedule
from almost day 1. The project finally came on line
almost 1 1/2 years late. [The company] has its own
training organization and they gave us a 1 day class on
OOD and a 2 day class on C++. After practicing on a few
sample programs, we started programming the AFCAP pro-
ject. We really had inadequate training to get up to
speed. We ended up trying to develop a critical product
too fast with a new technology. The schedule was just
unrealistic in this environment.

Now, I'm confident I can produce quality code.

16a. Extensively.

b. Extensively.

c. Moderately.

d. Extensively.

e. Some. A bit less than moderately. I don't really
like to use polymorphism. I feel it makes it hard for
people who'll look at my code in the future to under-
stand. When I use polymorphism and then come back to my
code later, I have trouble figuring out what my own code
is doing.

i7a. Reuse was not attempted too much. Time constraints
prevented identifying reusable modules. There was a lot
of duplicate code in this project.

17b. I'm really not sure.

17c. The libraries that we used had too many bugs.

18. N/A. [No maintenance advisor]

19a. The analysts don't know the technology or the
terminology used; so no it hasn't.



176

19b. No.

19c. The programmers and designers are one in the same
here.

20. The quality seems to be a lot better. I really
don't know why though.

INSERTED QUESTION I: Do you talk to others outside your
work area about OOSD? No.

INSERTED QUESTION II. Do you have any idea if others
outside your team like the technology or not? I have no
idea.

Programmer #2.

la. I've done some object-oriented design work in the

past.

lb. The use of polymorphism and inheritance.

2a. If there are successful projects here, it will fly.
We've had some problems with the AFCAP projec'. It
wasn't a success at first, but we're turning it into a
success. It's over budget. With AFCAP, OOD wasn't used
as much as it could have been. There's a mixture of some
good object-oriented design and pieces with no OOD.
Early on I think the design was good but as the project
became late, OOD was pretty much abandoned. In program-
ming, people tended to regress from C++ to using straight
C.

INSERTED QUESTION I: What do you think caused these
problems? I don't feel there was enough training. There
just wasn't a good understanding of the object paradigm
early on. There was a one day course in OOD and it
really took a few months to get the feel of it. With
AFCAP there was no real chance to practice what was
learned. Things were left in the code which should have
been altered or thrown away. I feel people should get a
chance to practice with something new. This was too
critical a project to learn as you go.

2b. Yes. I found it easy to adjust and fix problems.
Enhancements are easy to make without changing the inter-
faces. The object paradigm makes it easy to add fea-
tures. I was brought to this project from another which
was using the object paradigm and the benefits there were
more pronounced. That project didn't have the pressures
of this one.



177

[ASIDE COMMENTS] I'm primarily responsible for mainte-
nance on this project. We're currently field testing the
product and I fix the bugs that are found. I've been on
the project about a year.

3a. 12

3b. 12

3c. My past code was very modular. It was tightly
coupled though. Cohesiveness is always the goal, but
wasn't always reached.

4a. This was not nearly the team I would have liked it
to be. Sometimes different ideas clashed and instead of
resolving things, some would just go off on their own.

4b. [Not asked]

5a-d. [See Table 6.1 in chapter VI]

6. None.

7. I'm aware of the goals and objectives to some degree.
OOSD helps with software maintenance. Costs are being
reduced; time to service code is reduced. Overall, the
code is more maintainable. I don't feel the higher ups
are doing well at stating the goals and objectives as far
as OOSD goes. The efforts toward the object paradigm
came from the grass roots. I feel the goals which ad-
dress software were accepted by senior l-ddership because
of the efforts of lower level workers.

8. [Not asked. No one had a choice.]

9. Upper level supervisors aren't very technology ori-
ented. My immediate supervisor always respects my opin-
ions but they haven't gone any higher than him.

10. People listen to my ideas but things get lost.
There's no real formal communications mechanism.

lla. When things are going well we get good support.
When we get into trouble we get plenty of negative feed-
back. When we got into trouble, management seemed to
make a point of publicizing their concerns that we were-
n't going to get the job done. This negatively affected
morale.

llb. I've received a few awards and pats on the back on
occasions; I've never talked with the senior leaders.



178

12a. No, I didn't know of his efforts with reuse.

12b. [The company's] reuse iibrary is not very useful.
It allows us to get prototypes going very fast but the
code doesn't perform very well in the actual product.
The code is just too general. Reuse within the AFCAP
project has gone well. Modules from other components are
used but we don't use modules from outside or other
projects.

13. [Not asked. Fact has been established.]

14. I wasn't involved. Use of C++ was mandated by
others and [the company] provided the training.

15. 1 was when I was fresh out of training. My first
experience using the paradigm showed me otherwise,
though. I had quite a bit of learning still to do.

INSERTED QUESTION II: Does [the company's] training
organization evaluate the effectiveness of their train-
ing' They have a questionnaire at the end of training
but they don't evaluate the training after it's been used
for real.

16a. Extensively.

b. Moderately. It wasn't used as much as I feel it
should. People tended to regress to straight C.

c. Moderately.

d. Moderately. Could have been used more.

e. Very little. Should have been used a lot more.

17a. No, not the large libraries. In the AFCAP specific
libraries I do.

b. [Not asked.]

c. [See 12b.]

18. N/A. [No maintenance advisor]

19a. No. The analysts don't seem to be familiar with
object-oriented terminology and so using it is a hinder-
ance. They really don't see what is possible with using
oLjects.

b. It seems easier. We really don't have good design
documentation with an object orientation.



179

20. Quality is high with the right design. As I said
before, some pieces were designed using older methods.
Quality is definitely better than before.

Programmer #3.

la. I'm fairly familiar with it.

lb. The abstract data types and the object user inter-
faces such as those found in Smalltalk.

2a. OOSD is not the best solution for all problems. You
must identify up front if the problem matches the para-
digm. I feel OOSD will be of limited application here
because of [the company's] devotion to UNIX. C++ is not
a perfect language either. There are limitations to the
paradigm. It is hard to share objects in large systems
cspecially in parallel systems where objects can't be
shared easily across processors.

2b. Yes. Reusability within the project; extendibility
[he agreed his definition matched mine of inheritance];
reduction in time to code; and adding features seems a
bit easier.

3a. 5
3b. 5

3c. My past code was modular, more tightly coupled thar
now, and highly cohesive.

INSERTED QUESTION I: Was your transition to OOSD easy or
difficult? I had no problems moving into the object
realm.

4a. Both. Sometimes we get to wcrk as a team and other
times I feel left out. Time crunches were a big factor
in keeping people apart, that and the large amounts of
data we had to pour through. I could generally get
assistance when I needed it but at times I couldn't.

4b. Location is not a problem.

5a-d. [See Table 6.1 in chapter VI]

6. None. I don't have time to read other material.
[The company] keeps us up to date on technology.

7. Maintenance is improved. New features can be added
with minimum code additions. It's not clear to me that
any start up costs were saved.



180

8. N/A. [He came to project after its start.]

9. It's not clear to me if my opinions are heard or not.
There are too many management levels. I hardly ever get
feedback on what I say.

10. The channels are open but you don't want to use them
if you don't have to. If you elevate too many problems,
you may give an improper view of things. I see somewhat
of an adversarial view between management and us; this
tends to limit some communication.

lla. Sometimes the support is lacking; there seems to be
turf battles at times.

llb. No one from higher management has ever mentioned my
specific efforts. My direct supervisor does commend and
comment on my work.

12a. There have been some small efforts toward reusabil-
ity.

12b. The libraries we used early on were insufficient.
The code was not good grade and the libraries weren't
well implemented; not easy to use. I'm not familiar with
the current state of any reusability effort outside the
AFCAP project.

13. [Not asked]

14. After I came to the project, I arranged for a class
to help those of us inexperienced with OOSD, but the
class was so basic that only 4 or 5 of us were new enough
to receive any benefit. [The company's] training people
didn't train our team as a group. Most of the C++ and
object-oriented learning came as on-the-job-training and
from books.

15. The training we received was not adequate to do any
serious work with. Even the books we used didn't ade-
quately address the problems we had to face in this
project.

Now I feel experienced enough to program quality code. I
do feel I need more training in object-oriented design
addressing classes and hierarchies. I would like to have
tools to help create objects more quickly, too.

16a. Extensively.

b. Extensively.



181

c. Extensively. I feel that I and others use inheri-
tance maybe too much. It shortens the code but at times
I feel creating a new class might be more beneficial.

d. Extensively.

e. Very little. I see increasing use in the near
future.

17a. Within the project there are some reusable modules
available which are used if possible.

17b. I think reuse is beneficial and is the way to go in
the future. With the AFCAP system to get maximum benefit
of reuse would probably require changing the architec-
ture. You would need the resources to change the exist-
ing code to make it reusable and this would affect a
large majority of the existing code.

17c. Not enough code is actually usable and the librar-
ies aren't easy to use. There are no browsing tools to
help find what you need.

18. [Not asked]

19a. We don't communicate with the analysts using ob-
ject-oriented terms. I don't see where object terms
would be beneficial to customers. Objects are for con-
structing the internal workings of a system.

19b. At first it was difficult because of the massive
amount of code that the design called for. It was very
tedious to generate the proper classes.

19c. Analysts aren't familiar with OOSD. [see also 19a]

20. Quality has improved.

INSERTED QUESTION II: Do you talk to others outside your
work area about OOSD? Yes. A lot of project groups have
shown interest in the past. There's not as much interest
now; people have either accepted it or rejected it. I
think the problems we encountered probably caused this.

INSERTED QUESTION III: Do you have any idea if others
outside your team like the technology or not? All the
software developers I know like it; they're all for it.
Upper management has been opposed to it; they feel it's
too risky.



182

Mid-Level Manager Question Set

Manager.

la. In general it causes technical discontinuity. You
stop doing things the way you're accustomed and have to
learn a new methodology and this causes problems. The
object paradigm will give us good results but these will
come at a price. There is a steep learning curve; learn-
ing slows things down. In the long run it will be good
for the company, but in the short run it's like starting
over.

lb. The technology has a black-eye here because of the
problems encountered with the project. Some see object
oriented development as the cause but that is not neces-
sarily so. Its use may grow but not as fast now. I see
isolated uses in the near future.

2. There are a few in management ranks who like it and
are seeking ways to use it. Its use comes in mainly from
the staff level.

INSERTED QUESTION I: How effective are the managers in
getting OOSD accepted? They have the authority to use it
in new projects if they see fit.

INSERTED QUESTION II: How many projects outside the

AFCAP project are using OOSD? 4 or 5 here.

3. [Answer omitted due to identifying information.]

4a. [Answer omitted due to identifying information.]

4b. They are willing to try new technologies if there is
proof they work. They won't be ones to jump in first.

There has been a change in leadership since this project
started but both leaderships had the same characteristic
towards new technologies.

5a. I'm not an object-oriented expert. The major dif-
ference is that OOSD is a different way of thinking about
a problem. You don't view systems development like you
would in a traditional functional approach. I think the
biggest feature is information hiding. Another good use
is in windowing user interfaces where you establish icons
as objects and build other objects around the icons.

5b. A two day class here and reading books.

5c. The learning curve is bigger than people realized.



183

I don't think they got adequate training.

5d. I feel adequate training is 6 months of prototyping
using object-oriented techniques knowing you will throw
away your results. This gives you a chance to learn what
you should without worrying about a production deadline.
This group went straight into a critical project. A lot
of good people struggled with this in the beginning. Now
they're proficient.

INSERT QUESTION III: Do those above you know your feel-
ings about the training? I know my boss does. I don't
know about those above him.

6a. Information hiding. This makes problems easier to
fix without affecting other components. Easier fixes
enhance maintenance and raise quality.

6b. Not yet. This is the first effort with this prod-
uct. I feel the first effort using OOSD actually slows
down the development.

6c. We'll see improvements in some areas of the project
not others. Some pieces of the product didn't use ob-
ject-oriented techniques. Some of the developers were
worried about time crunches and used older methodologies
to develop their code.

6d. N/A

6e. Reuse is not a big effort here. The developers have
found the needs are so application specific that they
just didn't get much use from existing libraries. In
fact for the general modules they did hope to use, the
reused modules actually degraded performance.

7a. It's a good motivation tool. People like to learn
something new. Everyone in the team prefers OOSD and
they wouldn't want to go back to the older methods.

7b. Outside this project, those who have used it like
it. Others have unjustly blamed the technology entirely
for the problems the AFCAP project has had.

8a-d. [See Table 6.1 in chapter VI]

9a. Get along with others.

9b. The number one consideration was getting people with
a "can do" attitude.

10a. Yes.



184

10b. Through meetings and other communications the team
was shown sort of indirectly how the goals and objectives
were to be met. The primary goals which were focused on
were increased productivity and reduced faults per non-
comment lines of code.

INSERTED QUESTION IV: Do the goals and objectives spe-
cifically address software? Now they do; they didn't in
the past.

11a. High. It takes a lot of training and the learning
curve is very high. Getting to a productive stage is
also hindered by a lack of needed 00 development tools.

llb. No, they weren't told. The people initially push-
ing the technology didn't talk about the costs. That's
only natural because I think there's always the fear if
the negatives are discussed then you might not get the go
ahead.

12a. The upper management here doesn't really feel the
technology is sound due to the problems the AFCAP project
had. They were supportive in the beginning but not very
supportive now. We're going to try and change that with
our retrospective report. This is a report to upper
management on the problems and pluses of the project. We
will show how the technology was not the main reason for
the troubles encountered.

12b. [Not asked]

12c. Communication is reasonable. There are no real
problems getting information up and down the channels.

13. There was an effort here at one time toward gaining
knowledge on OOA but no one I know really found muchi use
for it. The work load now prevents looking at it any
time soon.

14. No.

15a. Few.

15b. A handful may be technically orienLed.

The Technology Resource Center Question Set

User Support

1. I acquire implementations of C++ platforms; answer



185

questions on C++; provide a consulting role on C++ and
existing objects which exist in the libraries. I help
make C++ development tools and maintain the C++ librar-
ies. I see my department as a loose collection of tools,
with each unit responsible for their set of tools. We
provide support to any project who needs us, we don't
belong to any specific project. Our funding for exis-
tence comes from each of the projects. They pay us out
of their funding for our assistance.

2. The software goals are to reduce faults per lines of
code, increase robustness, and increase reliability.
Using C++ does this. To do it right, you need to start
with C++ as a better C for projects. You don't want to
change the paradigm at first, you've got to get people
use to the language. The fault rate goes down just with
using the language.

Going object-oriented is an entirely new mind set. A 3
day class like they give around here isn't going to give
you all the knowledge you need. As far as object-orient-
ed techniques go, you need to see if there are any natu-
ral applications for using objects. I think people can
go overboard with objects resulting in performance penal-
ties. Calling a bit an object and having associated
operations on a bit is ridiculous.

3. No. [Someone else] introduced OOSD here but at the
time there were no projects at the stage where implemen-
tation was possible.

4. No.

User Team Support Specific

5. Yes. I don't have any problems with that. I have
good contacts at other company locations that assist me
with whatever I need.

6. I'm very familiar. Training is provided by a sepa-
rate company training organization. I do bring in ob-
ject-oriented people occasionally as they're needed, but
this is rare. I don't think people are seeking help when
they need it.

[Since I had established most of the training was company
provided, I did not ask questions 7 through 13]

INSERTED QUESTION I: Is there anyone assigned in your
company to research the object paradigm and its applica-
tion? Not here. There is an organization in [another
company location] which does.



186

INSERTED QUESTION II: Does anyone here communicate with
them about their research? Not really. The ideas coming
from there are very abstract and not really applicable
here yet.

14. Yes. We do customer satisfaction surveys to deter-
mine whether or not needs were met. As I said before,
they are paying customers and we want to keep them happy.

15a. As you go up the chain you'll find people who have
used the older technologies. They are very skeptical of
newer technologies. For them to accept C++, they will
have to see increased profits and decreased costs. Some
projects fell behind schedule and management blamed C++.
It seems that minor problems at low levels get blown out
of proportion at upper management levels. C++ definitely
has a black eye.

15b. Not from upper management but yes from my boss and
his boss.

15c. [Projects are their customers; money comes from
there. See 1 and 14.]

Object Reuse Library Specific

16. There is no real reuse library here. The [another
company location] center has C++ developers who built a
library of stock classes for use company wide. This
library was just too general, though. Classes were too
large, too slow, and too dependent on other components in
the library.

In the past, there was a kind of informal library system
made of libraries put together by the different company
locations. It was managed from a central location in
[another site]. There was a free exchange of modules by
any location who needed code developed at another site.
But I think free exchange is going away. [The company]
has reorganized into autonomous business units. Each
business unit is responsible for its own resources and
funding now. If one business unit wants to use a module
developed by a different business unit then it has to pay
for it.

INSERTED QUESTION III: What do you think this is going
to do for reuse in your company? I don't think it's
going to work. You're going to start having duplicate
work going on and a waste of resources. No one is going
to want to spend money on a module of code that they
aren't sure may do what they want or they may have to
modify a bit.



187

Efforts here with reuse haven't been too effective.
There are problems with reuse. It costs money to track
classes. You may spend as much time looking for a class
as if you wrote it from scratch. I think developers lack
trust in library modules; they're afraid of introducing
errors. I think the efforts in reuse here are more
salvaging, finding bits and pieces, than actual module
reuse.

(Since there is no workable reuse library or dedicated
work to establish one, questions 17 through 22 were not
asked.]

The Decision Maker Question Set

Senior Manager

[I felt this person's answers would have more weight if

more identifying information was left in the replies than

is evident in the other answers. I asked the senior

manager to review these answers and give approval to

leaving this information in. Approval received.]

la. I am in charge of all product development for one of
[the company's] business units. I have people here at
this site as well as in two other states. I have 1300
people under me.

lb. Hardware, circuit design. I became a manager in
1972 and was given jobs of increasing responsibility up
to my current position.

2a&b. Software is the lifeblood of what we do here. In
1969 software was 2 percent of this location's efforts.
Now, 70 percent of our people here are involved with
software development. We have no products which are not
software intensive. Software is the gating interest in
cost and time to market for our products.

3a. I have a written set of objectives which are to
guide our people in their efforts. I personally send out
a copy to every person under me. The objectives which
everyone receives is a fairly specific, 4-5 page docu-
ment.

3b. Yes and No. What we have are project commitment



188

objectives written for project guidance a whole. Soft-
ware is not specifically addressed. We do address con-
cerns such as reducing faults per line of code and indi-
rectly address software quality.

3c. Yes; our strategic objectives target areas such as
revenue growth and process improvement and are less
specific for the long term. Our tactical cbjectives are
naturally more specific in how we plan to accomplish our
goals in the short term.

4a. I've heard the claims of increased productivity,
increased modularity, and reduced errors; I'm not con-
vinced of these claims however.

I think some of our people here have confused using C-+
as an automatic use of the object paradigm. The AFCAP
project was implemented using C++ and the people thought
they were using object-oriented techniques but they
didn't seem well prepared for the new methodology. The
project was almost 2 years late. This product was very
critical in that other projects were dependent on it and
had to be held up because of its problems. I'm hard
pressed to say AFCAP was a good example of object para-
digm use.

We do have a better success story with the TOOL project
but it was a smaller effort to develop a tool set. It
didn't require as much personnel and resources. I feel
if the object paradigm is good only for small projects
then it's not going to be worth much here. Our commer-
cial products are large efforts and generally interface
to other products. As far as I'm concerned, the jury is
still out on just how beneficial the object paradigm
really is. I haven't seen evidence to support the
claims.

4b. I don't specifically blame the object paradigm for
the AFCAP problems; there were other factors. I do know
the object-oriented nature of the project seemed to
confuse people during the code inspection process, howev-
er.

4c. [The company] has its own research and training
staff which is quite expert in the object paradigm and
C++. I feel the training was probably adequate. We have
enough expertise and resources available to overcome most
training problems. I feel the AFCAP people, in the
beginning, thought they understood object techniques and
what was required but the reality is soon after they
started the project they had problems. Training alone
isn't going to give you the development expertise needed



189

for such a large project as this. The object paradigm
was new to most every member of the original team and as
such, probably shouldn't have been used in this instance.

5. The jury is still out. As an observation, no other
project manager in 3 years has chosen to use object-
oriented techniques; but, these projects are mainly
follow-on efforts and the original architecture was not
developed using the paradigm. No new start-up projects
have chosen it either.

6. There are some champions. There are some in our tool
development unit which are 00 experts and are proponents.

7a. Yes, I am supportive, some may have differing views
on this. The AFCAP is a critical product and was in
desperate need of completion. I ended up having to
change 3 levels of management to help correct some prob-
lems. These changes had nothing to do with the object-
oriented techniques, the job just wasn't getting done.

7b. Well, they're through the valley of death and they
seem to be doing fine now. They have a new release due
within the next year and I'll be looking to see if they
are on time and under budget. To answer your question, I
am not satisfied overall with the project. The project
came in at double the time and cost and we're not going
to be as profitable as projected.

8. N/A

9a. As far as my actively communicating, people know
what their commitments are, I don't need to stay continu-
ally involved. On the AFCAP project, people put in long
hours to meet their commitments. As they got into trou-
ble I heard they needed more time and they received it;
but schedules were still missed. We supported them with
more people, resources, and paid them over-time. Adding
new people to an ongoing effort can create social prob-
lems and, when this happened, we brought in people to
smooth these problems and help motivate and encourage the
team. It's sometimes hard to encourage people and make
them see the importance of project completion without
being seen as beating up on them. As a whole, I think we
were very supportive of the project.

9b. Those things [normal support actions] are handled by
the project managers. They meet regularly with their
people and keep up with the needs and solve the problems.
When action and support is needed at my level, I give it.
During the height of the AFCAP problems I met once a week
with their managers to monitor the progress and keep up



190

the support as needed.

10. N/A

11. Whatever design paradigm is used can be an aid to
development but I feel that's second order in importance.
There are two important considerations with any project:
1) did the project manager make a wise decision in making
the development commitment (i.e. schedule, budget, prom-
ised functionality, etc)? 2) what is the expertise of
the team?

If you make a bad decision and start a project in a hole,
you're dead in the water. We don't dictate to project
managers which development methods to use. It's their
responsibility to analyze what is needed and to make the
appropriate decisions. In the case of the AFCAP project
I think the older technologies should have been used. It
was just too critical a project to start with new tech-
niques. While the team was composed of experienced
developers, they were not experts in the use of bject-
oriented techniques. It seems the promises of the object
paradigm probably led to an over-estimate of their pro-
ductivity.

INSERTED QUESTION I: In the AFCAP case, the developers
went almost straight into production after their train-
ing, sort of learning as they went. Are there ways your
people could practice a new technology before critical
use? We do have research organizations which try new
technologies. They get involved with forward looking
projects which may have future impacts. They get the
practice in newer technologies. It's difficult to secure
funds for practicing.

INSERTED QUESTION II: What do you feel about prototy-
ping? I find prototyping generally targets the easiest
parts of large systems first. People tend to gain limit-
ed expertise with prototyping and things tend to get
bogged down as the major parts are entered.

Closing Comments:

Whatever the reasons are for using a new technology, if
it isn't helpful to normal development then it isn't much
use.

I don't know if you were told this or not but the faults
per lines of code were far higher in the AFCAP project
than in our other projects using the older traditional
methods.



191

Pooled Data

This sectio.-i pools two categories of information

revealed in the interviews so that the data can be evalu-

ated as a group. These two categories are user team

pers.nality data and education level of all interviewed.

User Team Personality

Table 6.1 in chapter VI reflects the primary answers

given when interviewees were asked to judge the user team

personality. Some interviewees added other comments

during this questioning. These comments ale below and,

again, are not associated with the above positions due to

respondent uneasiress with giving these answers.

We missed some schedules and this affected self-confi--
dence. At times it was very low.

My definition of persistence is sticking with a problem
to fix the whole problem. Some fixed part of problem and
did the rest fast and dirty.

[On persistence] We worked a lot of overtime and I know
this caused 3 or 4 people to leave.

[On persistence] No one chose to leave after workinc 70
hour weeks for 2 years. (I discovered this conflict with
the above answer was due to communication problems.]

Education Level

Each interviewee was asked their highest atLained

level of education. Below are the number and type of

degrees found.

Six - Master of Science, Computor Science

Two - Master of Science, Electrical Enginee'ing



192

One - Master of Business Administration

One - Bachelor of Science, Computer Science

One - Bachelor of Science, Computer Science and

Electrical Engineering



APPENDIX C

PROJECT DETAILS MAILED TO FIRMS



194

RESEARCH PROJECT ON MANAGING EMERGING TECHNOLOGIES:
OBJECT ORIENTED SOFTWARE DEVELOPMENT

CASE STUDY

PROJECT DETAILS

Research Needs. Academic literature suggests methods to implement
object-oriented software development (OOSD) in corporations.
However, there are few detailed studies available which support or
refute this literature. What is needed is an opportunity to study
actual implementations of OOSD so that the literature may be
substantiated or that new information may be generated which reflects
real-world requirements and practices. A study of your firm's
implementation of OOSD would greatly aid this effort.

OOSD Environment. This project views the ideal object-oriented
software development environment as utilizing object-oriented
analysis (OOA), object-oriented design (OOD), and object-oriented
programming (OOP). However, due to the limited OOA tools and the
recent maturing of OOD methodologies, this project recognizes this
comprehensive environment is unlikely to be encountered in 1992.
Therefore, the minimum environment sought is a firm using OOP and at
least a hybrid OOD technique to identify and design the necessary
classes and objects. Your participation in this study would be
extremely valuable whether you have finished an OOSD system or are
currently developing an OOSD system.

Interview Population. The effective evaluation of the management and
technical factors impacting OOSD requires interviewing several key
people of your firm. We would like to talk to the following people:

a. The person given responsibility for overseeing the
successful implementation of OOSD - often referred to in literature
as the "project champion."

b. At least two managers (if applicable) who are/were assigned
to assist the project champion.

c. Seven software developers who are/were assigned to the same

object-oriented system:

- Two analysts (or your equivalent).

- Two designers.

- Two programmers.

- One software maintainer (if one was assigned to evaluate
the maintainability of the effort).

d. At least one senior manager who had a part in deciding to
implement OOSD.

e. Two support people from your equivalent of the technology
resource center. (This organizational unit is sometimes referred to
as the information center. Its purpose is to obtain the needed
resources and training to implement OOSD.)

Time Period for Data Gathering. The total number of people we would
like to interview is 13. The estimated average time required per



195

interview is 30 minutes. Two to three interviews may be 10-15
minutes less while two to three may be 10-15 minutes longer. The
total estimated time to complete all interviews is 6 1/2 hours. The
researcher would be at your location for 3 days with total
flexibility in interview times. Please feel free to set any
interview schedule you would like over these 3 days.

Voluntary Participation. We request all participation in this study
be voluntary. Participants may omit answers to any question they
wish.

Confidentiality. No participant names will be published in the final
report nor will their responses be attributed to their names in other
possible research discussions. Your company's name will not be
published in the final report. If there are other questions
concerning confidentiality, please call.

Benefits of Research. Your firm will receive a post-implementation
report (mid-implementation for a current effort). Topics of the
report will include management to development team communications,
extent of object paradigm use, review of efforts to reap OOSD
benefits, resource selection process, and prognosis of OOSD diffusion
to other software efforts. Upon request, this report can be tailored
to provide other information within the scope of the research
parameters.



Work I did while you were gone were as follows:

CLEANED!!II!I!I!!

The following Ed Plans were processed:
(This includes updating cards, aces, and folders.)

Capt John K. Gay, revised
Capt Melvin E. Allen, initial
Capt Peter D. Read, initial
Capt Scott D. Mattson, initial
Capt Jon K. Wisham, initial
1st Lt Sean M. Farrell, initial
2nd Lt Lowell E. Bailey Jr., initial
Capt David M. Deloach, initial
Capt James M. Child, final
Capt John E. Meskel, initial
Capt Victor J. Valdez, initial
Capt Stanley E. Grant, initial
1st Lt Mike Eliason, initial
ist Lt Randall J. Redell, revised
Capt Judity A. Wiser, initial
Capt James P. McCombe, initial

CLEANEDI!II!1!!!

The following Ed Plans were returned for the following:

Capt Jerald R. Warner, needs advisors signature
1st Lt Curt D. Wagner, incomplete ed plan
2nd Lt Martin F. Payne, incomplete ed plan
1st Lt Catherine M. Morgan, needs advisors signature
2nd Lt Mark W. Babione, incomplete ed plan
Capt Louann J. Woods, incomplete ed plan
1st Lt Katherine A. Germain, incomplete ed plan

CLEANED DRAWERS!!!!!!II!I!!!

Processed Leave Forms for the following:

Capt Mark E. Kraus, permissive TDY
Capt Gordon Hendrickson, ordinary
Capt Christopher B. Felt, ordinary
Lt Laura Smith, permissive
Capt Paul K. Daly, permissive

CLEANED! IIII!!!!!!!!

The following TDY requests were processed:

Capt Andrew Dembosky, thesis research
Capt Brian Hoey, revoked



The following were updated in ACES:

Students within 6 mos of graduation w/o a thesis status and/or
payment code or where the graduation date is blank (this is in
the thesis menu and I attached the list)

All incoming students

All Naval Postgraduate School students

The following letters were mailed requiring forms:

Capt Merrill Adkison
2nd Lt Daniel Allen
Maj Stephen Atkins
2nd Lt Mark Babione
2nd Lt Lowell Bailey
Capt Kevin Baggett
Capt Hugh Bowman
Capt Ronald Cournoyer
2nd Lt Thomas Crimmins
Capt Donald Dishong
Capt Daniel Elmore
Capt David Hamilton
1st Lt Katherine Germain
Capt Stephen Moree
2nd Lt Michael Kayser
Capt Theodore Lewis
Capt Robert Smith
Capt Nickolaus Behner
Capt Stuart O'neill
Capt Peter Read
Capt Robert Miranda
Capt Michael Marzec
Ist Lt Julie Hurford
Capt Stanley Grant
Capt Christine Schubert
1st Lt Barbara Bonner

CLEANED COMPUTERS!IIIIIIIIIIIII

The following training reports were completed and mailed to CBPO:

Capt Kristen A. Dotterway, final
Capt Adam F. Grove, final
Capt Bennett K. Larson, final
Capt David A. Brockway, final
Capt Lee E. Thomas, annual
Capt Mark E. Kraus, annual
Capt Robert L. Schantz, final
Capt Theresa L. Pobst-Martin, final
Capt Stephen G. Cunico, annual
Capt Gary L. Crowder, annual
Capt Brian G. Fillmore, annual



Capt Bruce 0. Fagerland, annual
Capt William M. Major, annual
Capt David L. Ritter, annual
Capt James M. McVay, final
Capt James Child, final
Capt Michael A. Cervi, final
Capt Jeffrey A. Ralston, annual
Capt Wayne R. Martin, final

CLEANED DESKS!Ii!I!!!!!!!!!1H!

The following students are closed-out and returned to AFIT/RR but
a final ed plan needs to be request to send to CIF:

Capt Theresa L. Pobst-Martin
7450 Tactical Intel SQ (USAFE) new address
Ramstein ABS Germany
APO, AE 09094

Capt Krista Evans
Tactical Air Cm OL ACOO (TAC)
Langley AFB VA 23655-6000

CLEANED FILING CABINETSI!H!!!!!!!!IWI!

The following students are closed-out and returned to AFIT/RR:

Capt Kristen A. Dotterway
Capt Adam F. Grove
Capt Bennett K. Larson
Capt David A. Brockway
Capt Robert L. Schantz
Capt Theresa L. Pobst-Martin
Capt Donald G. Rose
Capt Evelyne M. Conlon
Capt Krista L. Evans
Capt Michael A. Cervi
Capt James M. Child
Capt Wayne Martin
Capt James McVay


