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Analytica is an automatic theorem prover for theorems in elementary anal-
ysis. The prover is written in Mathematica language and runs in the Math-
ematica environment. The goal of the project is to use a powerful symbolic
computation system to prove theorems that are beyond the scope of previous
automatic theorem provers. The theorem prover is also able to guarantee
the correctness of certain steps that are made by the symbolic computation
system and therefore prevent common errors like division by a symbolic
expression that could be zero.

In this paper we describe the structure of Analytica and explain the main
techniques that it uses to construct proofs. Analytica has been able to prove
several non-trivial examples including the basic properties of the stereo-
graphic projection and a series of three lemmas that lead to a proof of
Weierstrass’s example of a continuous nowhere differentiable function. Each
of the lemmas in the latter example is proved completely automatically.

Abstract




1 Introduction

Current automatic theorem provers, particularly those based on some vari-
ant of resolution, have concentrated on obtaining ever higher inference rates
by using clever programming techniques, parallelism, etc. We believe that
this approach is unlikely to lead to a useful system for actually doing math-
ematics. The main problem is the large amount of domain knowledge that
is required for even the simplest proofs. In this paper, we describe an alter-
native approach that involves combining an automatic theorem prover with
a symbolic computation system. The theorem prover, which we call Ana-
lytica, is able to exploit the mathematical knowledge that is built into this
symbolic computation system. In addition, it can guarantee the correctness
of certain steps that are made by the symbolic computation system and,
therefore, prevent common errors like division by an expression that may be
zero.

Analytica is written in the Mathematica programming language and runs
in the interactive environment provided by this system [19]. Since we wanted
to generate proofs that were similar to proofs constructed by humans, we
have used a variant of the sequent calculus [9, 10] in the inference phase
of our theorem prover. However, quantifiers are handled by skolemization
instead of explicit quantifier introduction and elimination rules. Although
inequalities play a key role in all of analysis, Mathematica is only able to
handle very simple numeric inequalities. We have developed a technique
that is complete for linear inequalities and is able to handle a large class of
non-linear inequalities as well. This technique is more closely related to the
BOUNDER system developed at MIT [16] than to the traditional SUP-INF
method of Bledsoe [5]. Another important component of Analytica deals
with expressions involving summation and product operators. A large num-
ber of rules are devoted to the basic properties of these operators. We have
also integrated Gosper’s algorithm for hypergeometric sums with the other
summation rules, since it can be used to find closed form representations for
a wide class of summations that occur in practice.

There has been relatively little research on theorem proving in analysis.
Bledsoe’s work in this area [3, 4] is certainly the best known. Analytica has
been heavily influenced by his research. More recently, Farmer, Guttman,
and Thayer at Mitre Corporation [8] have developed an interactive theorem
prover for analysis proofs that is based on a simple type theory. Neither of
these uses a symbolic computation system for manipulating mathematical
formulas, however. Suppes and Takahashi [17] have combined a resolution




theorem prover with the Reduce system, but their prover is only able to
check very small steps and does not appear to have been able to handle very
complicated proofs. London and Musser [14] have also experimented with
the use of Reduce for program verification.

Our paper is organized as follows: In Section 2, we give two simple
examples that illustrate the power of our theorem prover and show how
it uses various symbolic computation techniques provided by Mathematica.
Section 3 contains an overview of the structure of Analytica and the major
techniques that it uses in constructing proofs. Sections 4 and 5 describe
several of the most important techniques in greater detail. Section 4 deals
with summation and includes a short description of how we have integrated
Gosper’s algorithm into the prover. Section 5 discusses how Analytica treats
inequalities. The paper concludes in Section 6 with a discussion of some
extensions that we hope to add to Analytica in the near future.

2 Simple examples proved by Analytica

In each example, the input for the prover is given first. The theorem and its
proof are printed by the theorem prover. Mathematica automatically gen-

erates Latex commands to typeset formulas involving algebraic expressions.
1. The sum of two roots of a quadratic equation.

Provelimp[and[a!=0, x!=y, a x"2 +bx + ¢ == 0, ay*2+by+c ==0],
x +y == -b/a])

Theorem :

(a;éOAz;ﬁyAazz+bz+c=0Aay2+by+c=0=>z+y=—%)

Proof :
a;éOAz;éyAc-;-bz+azz=0/\c+by+ay2=0=>z+y=—-§
reduces to
c+bz+az2=0Ac+by+ay2=0==>z=yVa=0Vz+y=—:‘b-
rewrite as

b+az+ay _
—_—=

c+dbz+az’ =0Ac+by+ay’ =0=z-y=0va=0V 0
reduces to

c+bz+a22=0/\c+by+ay2=0=>x—y=ova=0Vb+a(z+y)=0




solve linear equation

c=—(z(b+az))Ac=—(y(d+ay)=>z—y=0vVa=0Vb+a(z+y)=0
substitute using equation
—{(z(b+az))=—(y(b+ay)) =z-y=0vVa=0Vb+a(z+y)=0
reduces to
z(b+az)=y(b+ay)=>z-y=0vVa=0VvVb+a(z+y)=0
rewrite as
(z-y)(b+az+ay)=0=z-y=0Va=0Vb+az+ay=0
reduces to
t-y=0Vbh+a(z+y)=0=2—-y=0Va=0vb+ta(z+y)=0

simplify formula using local context

0

2. Closed form for a summation.

True

Prove[imp[and[integer[n], O<=n, m!=1], sum[2"k/(1+m"(2°k)), {k, 0, n}] ==
1/(m-1) + 2°(n+1)/(1-m" (2" (n+1)))1];

Theorem :
(tnteger(n)/\0<n/\m#l=>z +k =mil+l 2:’:,.“)
Proof :
ok .om
mteger(n)/\O(n/\m#l=§1+m2.=__1:_m 1_2,:,.2,.
reduces to
mteger(n)/\0<n=>m—lvzl+:n2.=_l:,m 1_2',::2"

prove
n

z 2 1 2T i
k01+m3"——1+m 1-m2?*

use induction on n

base case with n =0 1 ] 2
=1V =
mEN e T i m T iom?
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reduces to

True
induction step
n
. 2* 1 2-2"
integer(n) A0 Sn/\kz; T3 = Tism + T ==
1+n Kk n
2 1 4.2
m—lvz 14+ma* g g
k=0
calculate summations
n
2k 1 2.27
1 A< = =
integer(n) O-nAkZ;1+m2" —1+m+ T—miz"

2.2° "L 2k 1 4.2"
m=1v 1+ m32" + (§1+m2") - —l+m+ 1-m*+2"

substitute using equation

n 2k 1 2_2"
mteycr('n)AO575/\"201_'_"'2.=_1+m+1_m2.2..=>
2.2" 1 2.27 1 4-2"
=1V =
m=1 1+m"”'+—l+m+1—m""‘ -1+m 1-m*2?"
reduces to
True

O

3 An overview of Analytica

Analytica consists of four different phases: skolemization, simplification,
inference, and rewriting. When a new formula is submitted to Analytica for
proof, it is first skolemized to a quantifier free form. Then it is simplified
using a collection of algebraic and logical reduction rules. If the formula
reduces to true, the current branch of the inference tree terminates with
success. If not, the theorem prover checks to see if the formula matches
the conclusion of some inference rule. If a match is found, Analytica will
try to establish the hypothesis of the rule. If the hypothesis consists of a
single formula, then it will try to prove that formula. If the hypothesis
consists of a series of formulas, then Analytica will attempt to prove each
of the formulas in sequential order. If no inference rule is applicable, then
various rewrite rules are used attempting to convert the formula to another




equivalent form. If the rewriting phase is unsuccessful, the search terminates
in failure; otherwise the simplification, inference and rewriting phases will
repeat with the new formula. Backtracking will cause the entire inference
tree to be searched before the proof of the original goal formula terminates
with failure.

3.1 Skolemization phase

In Analytica (as in Bledsoe’s UT Prover [3]), we use skolemization to deal
with the quantifiers that occur in the formula to be proved. Initially, quan-
tified variables are standardized so that each has a unique name. We define
the position of a quantifier within a formula as positive if it is in the scope
of even number of negations, and negative otherwise. Skolemization con-
sists of the following procedure: Replace (3z.¥(z)) at positive positions or
(Vz.¥(z)) at negative positions by (¥(f(y1,¥2,--s¥n))) Where z, 41,92, ..., ¥n
are all the free variables in ¥(z) and f is a new function symbol, called a
skolem function. The original formula is satisfiable if and only if its skolem-
ized form is satisfiable. Thus, X is valid if and only if X’ is valid where
-X' is the skolemized form of —X [9]. We call ~skolemize(~f) the nega-
tively skolemized form of f . A formaula is valid if and only its negatively
skolemized form is valid. When a negatively skolemized formula is put in
prefix form, all quantifiers are existential. These quantifiers are implicitly
represented by marking the corresponding quantified variables. The marked
variables introduced by this process are called skolem variables. The result-
ing formula will be quantifier-free. For example, the skolemized form of the
formula
(3z.Vy.P(z,y)) = (3uVv.Q(u,v))

is given by
P(z,30(z)) — Q(uo(),v),

while its negatively skolemized form is

P(zo(),y) = Q(u, vo(u)).

where z,y,u and v are skolem variables, and ug, v, Zo, Yo are skolem func-
tions. Although formulas are represented internally in skolemized form with-
out quantifiers, quantifiers are added when a formula is displayed so that
proofs will be easier to read.




3.2 Simplification phase

Simplification is the key phase of Analytica. A formula is simplified with
respect to its proof contert. Intuitively, the proof context consists of the
formulas that may be assumed true when the formula is encountered in
the proof. The formula that results from simplifying f under context C is
denoted by simplify(f,C). In order for the simplification procedure to be
sound, simplify( f,C) must always satisfy the the following condition

C E simplify(f,C) < f.

The initial context Cy in each simplification phase is a conjunction of all
of the given properties of the variables and constants in the theorem. The
initial formula in each simplification phase is the current goal of the theorem
prover. In the first simplification phase it is the result of the skolemization
phase. In each subsequent simplification phase it is the result of the previous
rewriting phase. The simplification procedure for composite formulas is
given by the following rules:

1. simplify(f) = simplify(f,Co)

2. simplify(f1 A f2,C) = fi A simplify(f2,C A f7)
where f] = simplify(f1,C A f2)

3. simplify(fi V f2,C) = fi V simplify(f2,C A =f])
where f] = simplify(f1,C A - f3)

4. simplify(fi — f2,C) = fi — simplify(f,C A f])
where f] = simplify(f1,C A = f3)

5. simplify(-f,C) = -~simplify(f,C)

The soundness of these rules can be easily established by structural induc-
tion. For example, if the soundness condition holds for f; and f;, it will also
hold for fi A f3, etc.

A large number of rules are provided for simplifying atomic formulas
(i.e., equations and inequalities) using context information. Some examples
of rules for simplifying inequalities are given in Section 5. In addition to
the equation and inequality rules, special simplification rules are included
to handle functions that are frequently used, such as Abs, Min, Max, Sum,
Product, Limit, etc. The simplification of summations and products is dis-
cussed in detail in Section 4.




The following example illustrates how the context information is used to
simplifying formulas:
Theorem :
(O<a<d=>8®—a®> (b—a)®)

Proof :
0<a<b=>—a>+8>(-a+b)°

reduces to
0<aAa-b<0=>3a(a—-b)b<0

reduces to

0<ana—b<c0d = (0<bA-a+b<0Va—-b<O0Ab<O)Aa<KOV
0<aA(0<bAa-b<OV—-a+b<O0Ab<O)

simplify formula using context information
0<aAa—-b<d=>0<b

replace expression with its lower or upper bounds
0<aAha-b<0=0<a

reduces to

O

True

3.3 Inference phase

The inference phase is based on the sequent calculus [10]. We selected this
approach because we wanted our proofs to be readable. Suppose that f is
the formula that we want to prove. In this phase we attempt to find an
instantiation for the skolem variables that makes f a valid ground formula.
In order to accomplish this, f is decomposed into a set of sequents using
rules of the sequent calculus. Each sequent has the form I' F A, where I’
and A are initially sets of subformulas of f. The formula f will be proved,
if substitution can be found that makes all of the sequents valid. A sequent
I' F A is valid if it is impossible to make all of the elements of I' true and
all of the elements of A false.

In Analytica, the funcition FindSubstitution(f) is used to determine the
appropriate substitution for f. If f is not provable, FindSubstitution( f) will
return Fail. FindSubstitution has rules corresponding to each of the rules of
the sequent calculus except those concerning quantifiers. The two rules for
implication are given as examples:




1. Implification on the left:

FindSubstitution(I', A - B,A F A) = 0,02 where
o1 = FindSubstitution(T',A + A, A), and
09 = FindSubstitution(Toy, Boy, Aoy F Aoy).

2. Implication on the right:
FindSubstitution(I' - A, A — B, A) = FindSubstitution(I', A+ A, B,A)

Rules are also needed for atomic formulas. The three below are typical.
1. Equation: FindSubstitution(I' - A,a = b,A) = o where ao = bo.
2. Inequality: FindSubstitution(I',a < b,A F A) = o where ao = bo.
3. Matching: FindSubstitution(T',A,A+ A,B,0) = 0 where Ao = Bo.

Backtracking is often necessary in the inference phase when there are
multiple subgoals, because a substitution that makes one subgoal valid may
not make another subgoal valid. When this happens it is necessary to find
another substitution for the first subgoal. In order to restart the inference
phase at the correct point, a stack is added to the procedure described above.
When a rule is applied that may generate several subgoals, one subgoal is
selected as the current goal and the others are saved on the stack. If some
substitution ¢ makes the current subgoal valid, then o is applied to the
other subgoals on the stack and Analytica attempts to prove them. If the
other subgoals are not valid under o, then Analytica returns to the previous
goal and tries to find another substitution that makes it valid.

Special tactics are included in the inference phase for handling inequali-
ties and constructing inductive proofs. The tactic that is used for inequalities
is described in detail in Section 5 and will not be discussed further here. The
induction tactic enables Analytica to select a suitable induction scheme for
the formula to be proved and attempts to establish the basis and induction
steps. A typical induction scheme is

f(no) AVn(n 2 no A f(n) — f(n+ 1)) = Vn(n 2 no — f(n))

In this case, we need only to identify the induction variable n and determine
the base value for n. In order to find a suitable induction variable for
formula f, we list all variables that appear in f and select those that have
type integer. To reduce the search space, we would like to make sure that
our choice of the induction variable is a good one. The choice is good if the




induction hypothesis is useful for proving the induction conclusion. This will
be more likely if the terms that appear in the induction conclusion appear
either in the induction hypothesis or in the current context. Hence, we arrive
at the following heuristic for selecting the induction variable: Use n as the
induction variable to prove f(n) provided that f(n + 1) only contains terms
that already appear in f(n) or in the current context. Once the induction
variable n has been selected, a base value for that variable must be found
in order to start the induction. In Analytica, a suitable base value may
be determined by calculating the set of lower bounds of n as described in
Section 5 and choosing the simplest element of this set. If the basi case fails
for this value, Analytica will choose another base value and try again until
the basis is proven or no other choice is available. In the former case, the
induction step is tried; otherwise the induction scheme fails and Analytica
will try other techniques like those in the rewriting phase. This strategy
is used in the constructing the induction proof for the second example in
Section 2.

3.4 Rewrite phase

Five rewriting tactics are used in Analytica:

1. When the left hand side of an equation in the hypothesis appears in
the sequent, it is replaced by the right hand side of the equation. For

example,
i 2 1 P
—14m?* T -14m " 1-m??
2.0 T ok 1 4.27
1+m2'2"+(kz=%1+m2")_-1+m+1—m"'2"

substitute using equation

S | 22" ‘
,§]1+m2"_-1+m 1-m2?

2.2n 1 2.2 1 4.9m
14 m2?" —1+m+1—m2'2"—-—1+m 1 - m+2"

2. Rewrite a trigonometric expression to an equivalent form.




Given that a is an odd integer, k, m,n are integers, m < n,
—cos(ma™z) + (=1)* cos(ra~™* " (a™z — k)) = 0
sewrite trigonometric expressions

True

. Move all terms in equations or inequalities to left hand side and factor
the expression.

2, (C1+23)"0°

_1 2(_1 4 12 + pa?
(=14 23)" (=1+y +y3)=—1+1'3+ /
(=1 + y3)

(-14y3)?

rewrite as
2(=1+23) (23— y3) _

0
-l+ys

. Solve linear equations.
c+br+az’=0Ac+by+ay =0=z-y=0Vb+a(z+y)=0
solve linear equation

c=—-(z(b+az))he=~(y(b+ay)) = 2-y=0Vb+a(z+y)=0

. Replace a user defined function by its definition. In the example below
the user defined function S is expanded.

0 < a™bd™ + (1 — ab) Abs(S(m))

expand definition

=14m g o n n
0 < wa™b™ + (1 — ab) Abs( Z b™ (- cos(wa™r) +hcos(,|-a (z + h))))
n=0

4 Summation

Summations play an important role in symbolic computation. Nevertheless,
Mathematica’s ability to handle summations is very limited. A summation
with range from n; to ny, where n; and n; are integers and n; < n,,
is explicitly expanded into a sum with ng — ny + 1 terms. However, a
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summation with a symbolic range will not be simplified. Consequently, we
have introduced a large number of special rules for dealing with summations.
Although most of the rules are based on simple identities, Analytica is able
to handle a large range of summations in example proofs. Analogous rules
for products are also included in Analytica. A few of the rules for summation
are listed below. The rules are partitioned into three sets.

1. The first set of rules reduces the number of summations occurring in
the expression to be simplified.

ning € = ¢(n2 —ny + 1) where c is a constant

nzny S1(7) + Laln, fa(n) = 0kn, (fi(n) + fo(n))
nZn, f(n) + Zn_n,+1 f(n) = o, f(n)

n=n, f(n) - n—'nl f(n) = En—’n.z-l—l f(n)

'n._.n1 f(n) - ﬂ—n2 f(n) = n—'nl +1 f(n)

2. The second set does not change the number of summations, but sim-
plifies summands.

nen, ¢f(n) = ¢ 7%, f(n) where c is a constant
Tita, f(E+1) = T332, f(K)
Shin f(E=1) = TR0, f(K)

3. The third set does not change the number of summations or the sum-
mands, but simplifies the ranges.

2y f(n) = =it f(n)if ny > ny
TtV f(n) = (T02,, f(n) + f(n2 + 1) + ... + f(ng + N)
SN f(n) = (The,,, f(n)) = f(n2) = ... = f(na = N + 1)

where N is positive integer

4.1 A summation example

The following example comes from a lemma used in the proof of the existence
of a continuous, nowhere differentiable function given by Weierstrass. [18]

Z b" cos(xa"z) - (—1)" (Z " (1+ cos(ra"'"""'f(m)))) - i b™ cos(xa~™*" (1 + a))

n=0 n=sm n=0

11




~1l4m
+ Z b™ (~ cos(ra™z) + cos(xa™™*" (1+a))) =0
n=0

simplify summations

- (("l)a (Z " (1 +cos(1ra'"'+"€(m)))>) + Z b” (cos(ra™z) — cos(ra™™*" (1 + a)))

nmm n=0
-14+m
+ Z b (- cos(xa"z) + cos(xa™™*" (1 +a))) =0
n=0

simplify summations

- ((—l)° (Z b (1 +cos(1ra""+"5(m)))) ) +Z b (cos(wa"z) —cos(ra™™*" (14 a))) =0

n=m n=m

simplify summations

f:(—(—l)"b" (1 + cos(xa™™*"¢(m))) + b (cos(ra"z) — cos(xa™™*" (1 4+ @)))) = 0

reduces to

Z(b" (— cos(ra”z) + (—1)* (1 + cos(ra""‘""f(m))) + cos(ra™™*" (1 4 a)))) =0

n=m

This can be simplified to True by trigonometric rules.

4.2 Gosper’s Algorithm

In many examples, it would be helpful if we could obtain a closed form
representation for some summation. Gosper’s algorithm is able to compute
such a representation for a large class of summations. Consequently, we
have also integrated this method into our theorem prover. A function g is
said to be a hypergeometric function if g(n + 1)/g(n) is a rational function
of n. Gosper’s algorithm is able to find a closed form for the series 3 p_; ax
when there is a hypergeometric function that satisfies g(n) = 3.7, ax + g(0)
[13]. The following example illustrates how Gosper’s algorithm is used in

Analytica:
Theorem :
(2] >1= lim i L <3
n—co \ &t K2+ (222 +1)k+2% (22 + 1) 2
Proof :

n
. 1 1
|3|>1=>”ll_r.n°° (; k2 +z2(l+z’)+k(1+2zz)) < 5

12




reduces to

) - 1
1-jo} <0=> -2 + lim_ (kz:(k+z"’)(l+k+z2)) <0

=1

calculate summation with Gosper’s Algorithm

1-|z) <0=>—2 4 lm [—— + ! p— <0
2 n=oo\2+4z? (1+4+2z?)(2+2%) 1l+n+z?

simplify limits

1-jzj< 0= -1-+ ! + 1 <90
2 2422 (1+422)(2+12?)
reduces to
1—|z|<0=1;z2-<0
2 + 212

reduces to
1-|zj<0=1-2z°<0

replace expression with its lower or upper bounds

True

O

5 Inequalities

Inequalities play a key role in all areas of analysis. Since Mathematica
does not provide any facility for handling inequalities, we have built several
techniques into Analytica for reasoning about them.

5.1 Simplification of inequalities

There are many rules that simplify atomic formulas involving inequalities.
However, we only include four examples.

1. simplify(0 < a™,C) = True if simplify(0 < a,C) = True
2. simplify(0 < a™,C) = True if simplify(0 < a,C) = True
3. simplify(a™ < 0,C) = False if simplify(0 < a,C) = True

4. simplify(a™ < 0,C) = False if simplify(0 < a,C) = True




There are also rules that use upper and lower bound information to sim-
plify inequalities. If a has a negative upper bound, then a < 0 is true, while
a > 0 and a = 0 are both false. The function Lower(Upper) gives a set of
lower(upper) bounds for its argument and will be discussed in Section 5.3.
The set of lower(upper) bounds is calculated in the current context.

1. simplify(fi < f2,C) = False if 3z[z € Lower(f1 — fo,C)Az > 0].
2. simplify(fi < f2,C) = True if 3z[z € Lower(f2 — f1,C) Az > 0].
3. simplify(fi < f2,C) = True if 3z[z € Lower(f2 — f1,C) Az > 0].
4. simplify(fi < f2,C) = False if Iz[z € Lower(fi — f2,C)Az > 0].

5.2 Proof strategy for Inequalities

Although many inequality formulas can be handled in the simplification
phase, some valid inequality formulas cannot be reduced to true in this
phase. For example, (a < 0Ab < a) — b < 0 cannot be proved by the tech-
nique used in simplification phase alone. Other more powerful techniques
for deciding satisfiability of inequality formulas must be used in addition.
If the inequality a < b is not directly provable using the techniques in the
simplification phase, then Analytica will try to find a term c, such thata < ¢
and ¢ < b are both provable in the current context. In order to find such a
term ¢, we compute a set of upper bounds for a and a set of lower bounds for
b by using information provided by the current context. The sets computed
are denoted by Upper(a) and Lower(b), respectively. A term z will be in
Upper(a) only if a <= z is true in the current context. Likewise, z will be
in Lower(b) only if z <= b is true in the current context. To prove a < b, it
is sufficient to prove that there is some ¢ € Upper(a) such that ¢ < b is true
or that there is some ¢ € Lower(b) such that a < c is true.

In order to deal with strict inequalities, we introduce a new symbol §
such that both Sz(a) £ b and a < Sy(b) are equivalent to a < b. Hence,
Su(z) € Upper(a) only if a < z is true in the current context, and Sp(z) €
Lower(a) only if z < a is true in the current context. Sy(a)+b = Sy(a+0b)
because ¢ < Sy(a+bd)iff c < a+biff c—b < aiff ¢ —b < Sy(a)iff
¢ < Su(a) + b. Similarly, Sp(a) + b = Sp(a + b), —SL(a) = Sy(—a) and
~Su(a) = Sp(—a), ete. This convention permits both strict inequalities and
nonstrict inequalities to be handled by the same method.

It is possible to show that the technique is complete for linear inequalities,
and it can also be used to prove many of the nonlinear inequalities that arise

14




in practice. The technique is not guaranteed to be complete for nonlinear
inequalities, however.

5.3 Calculating upper and lower bounds for expressions

There are three main ways of obtaining upper and lower bounds for expres-
sions.

1. Obtain bounds from context information:

Upper and lower bounds for an expression are calculated in the current
context. For example, when proving (a < b) V ¢, the upper bounds of
a and the lower bounds of b are calculated under the context of —c. In
general, If @ < b is a conjunct of the current context, we have

a € Lower(b), b € Upper(a),
and if a < b is a conjunct of the current context, we have
Si(a) € Lower(a), Sy(b) € Upper(a).

2. Obtain bounds from the monotonicity of some function:

If f is a monotonically increasing function, and a’ is an upper(lower)
bound of a, f(a’) is an upper(lower) bound of f(a);if f is a monoton-
ically decreasing function and @’ is an upper(lower) bound of a, f(a’)
is a lower(upper) bound of f(a). For example:

{cz|z € Upper(a)} C Lower(ca), if ¢ <0

3. Use some known bound on the value of a function:

If f is bounded, i.e. for all x, f(z) < M, or f(z) > M', M is an upper
bound for f(z) and M’ a lower bound for f(z). For example:

T+ -;— € Upper(round(z))

z - % € Lower(round(z))
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5.4 An example to illustrate inequality proofs

The following example also comes from the proof of the Weierstrass theorem
mentioned earlier. Assume that b > 0,

3(%,, 6" (1 + cos(xa™™*"(a™ — round(a™))))) <o
- 1—(a™ — round(a™)) =

2™

replace expression with its lower or upper bounds

_ 3b™ (1 4 cos(w(a™ — round(a™))))
1 - (a™ — round(a™))

2™ <0

reduces to
3(1 + cos(x(a™ — round(a™))))
1 - (a™ - round(a™))
replace expression with its lower or upper bounds

—2cos(x(a™ — round(a™))) < 0

2

<o

reduces to

0 < cos(x(a™ — round(a™)))
The last inequality will be reduced to True in the rewriting phase by using
the tactic for trigonometric identities.

6 Conclusion

In a related project that we plan to describe in a forthcoming paper, we
have managed to prove all of the theorems and examples in Chapter 2 of
Ramanujan’s Collected Works[2] completely automatically. The techniques
that we use are similar to those described in this paper. We believe that the
examples that we have been able to prove provide convincing justification for
combining powerful symbolic computation techniques with theorem provers.

Nevertheless, there are many ways to improve Analytica. One direction
is to add powerful algorithmic techniques for simplifying particular classes
of formulas (like extensions of Gosper’s algorithm for summations). The
difficulty with adding such techniques is that a proof obtained in this manner
may be virtually impossible for a human to follow.

Another direction is to strengthen the ability of Analytica to do inductive
proofs. The technique that Analytica currently uses for generating induc-
tion schemes is quite simple. More research is needed on the generation of
complex induction schemes and the identification of sufficiently general hy-
potheses for inductive proofs. There has been a fair amount of research on
this problem [6, 7], but more work should be done in the context of inductive
proofs in analysis.
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Most proofs in modern analysis are based on set theory and many use
topological concepts. Clearly, the extension of Analytica to handle such
proofs is critical. Although theorem proving in set theory has been an
important problem for a long time, there is no generally accepted technique
for constructing such proofs. The most successful work on set theory so far is
probably that of Quaife [15]. His work, however, uses a theorem prover based
on hyper-resolution and may not produce proofs that are very readable.

Better methods for managing hypotheses and previously proved lemmas
and theorems are also needed. Techniques developed for proof checking
systems like LCF {12] and HOL (11} may be adequate in the short run, but
some type of higher-order unification or matching will probably be necessary
in the majority of cases. In general, deciding when to use an hypothesis or
previous result is a very difficult problem. Every student of elementary
calculus learns the mean value theorem by heart, but giving a good set of
rules for determining when to apply this theorem in order to obtain a simpler
bound on some complicated expression is not easy.

Certainly, some type of higher order logic would be more appropriate
for analysis than the first order logic we currently use. The ability to state
higher-order lemmas would be an additional advantage of basing the prover
on a higher order logic and might help solve the problem described in the
last paragraph. We intend to experiment with combining ideas from this
paper with Andrews’ theorem prover for higher order logic [1] in the near
future.

Perhaps, the most serious problem in building a theorem prover like An-
alytica is the soundness of the underlying symbolic computation system.
Mathematica (as well as Macsyma, Reduce, and Maple) has some rules that
lead to correct results in most cases but do not lead to correct results all
the time. We believe the solution to the soundness problem is to develop
the theorem prover and the symbolic computation system together so that
each simplification step can be rigorously justified.
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