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Particle Simulation of Auroral Double Layers
Bruce L. Smith

Externally driven magnetic reconnection has been proposed as a possible
mechanism for production of auroral electrons during magnetic substorms. Fluid
simulations of magnetic reconnection lead to strong plasma flows towards the
increasing magnetic field of the earth. These plasma flows must generate large
scale potential drops to preserve global charge neutrality. We have examined
currentless injection of plasma along a dipole magnetic field into a bounded
region using both analytic techniques and particle simulation.

Our analysis shows that the maximum potential for cold ions and electrons,mass ratio m- is qV K•••
a M, qAV = A 2 pAB, where p is their common magnetic

moment, K is the kinetic energy of the injected ions, and AB is the difference
between the maximum magnetic field strength, BMAX, and that at injection,
B0 . With thermal spread in particle magnetic moments the potential depends on
their temperature ratios, -T, and with thermal injection velocities the magnetic
field mirror ratio, BM4,. For drifting isotropic Maxwellians, the leading order

B0

potential is qAo = K 1 f AB-
1. BMAX

This potential is a boundary condition for the local field solution. While
global charge neutrality must be maintained in steady-state, the local poten-
tial is determined by the Vlasov-Poisson equations. Several authors obtained
quasineutral solutions (ni = ne) to this boundary value problem. However,
single-valued quasineutral solutions are only accessible to special combinations
of fields and particle distributions. In our case multivalued solutions to the
quasineutral equation arise for particular values of electric and magnetic fields.
A double layer is that solution which preserves gross quasineutrality within its
volume while permitting momentum balance between incident accelerated par-
ticles. The potential of the double layer is limited by the ion kinetic energy but
need not match the global potential required for overall charge neutrality.

One and two dimensional electrostatic particle simulations verify both dou-
ble layer solutions and dependence of potentials on the injected energy. The
difference between global and local potentials is absorbed in a sheath opposite
the injection boundary.

Potential formations are strictly dependent on the self-consistent charge dis-
tributions they support. Microinstabilities cause changes in particle distribu-
tions. Double layer motion is associated with exchange of momentum between
particles and these fields. Accesion For
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Externally driven magnetic reconnection has been proposed as a possible
mechanism for production of auroral electrons during magnetic substorms. Fluid
simulations of magnetic reconnection lead to strong plasma flows towards the
increasing magnetic field of the earth. These plasma flows must generate large
scale potential drops to preserve global charge neutrality. We have examined
currentless injection of plasma along a dipole magnetic field into a bounded
region using both analytic techniques and particle simulation.

Our analysis shows that the maximum potential for cold ions and electrons,
mass ratio M, is qAV = K1-* cx pAB, where p is their common magnetic
moment, K is the kinetic energy of the injected ions, and AB is the difference
between the maximum magnetic field strength, BMAX, and that at injection,
B0 . With thermal spread in particle magnetic moments the potential depends on
their temperature ratios, -T, and with thermal injection velocities the magneticT.,
field mirror ratio, Bm-". For drifting isotropic Maxwellians, the leading order
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potential is qAq -= K AB
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This potential is a boundary condition for the local field solution. While
global charge neutrality must be maintained in steady-state, the local poten-
tial is determined by the Vlasov-Poisson equations. Several authors obtained
quasineutral solutions (ni = ne) to this boundary value problem. However,
single-valued quasineutral solutions are only accessible to special combinations
of fields and particle distributions. In our case multivalued solutions to the
quasineutral equation arise for particular values of electric and magnetic fields.
A double layer is that solution which preserves gross quasineutrality within its
volume while permitting momentum balance between incident accelerated par-
ticles. The potential of the double layer is limited by the ion kinetic energy but
need not match the global potential required for overall charge neutrality.

One and two dimensional electrostatic particle simulations verify both dou-
ble layer solutions and dependence of'potentials on the injected energy. The
difference between global and local potentials is absorbed in a sheath opposite
the injection boundary.

Potential formations are strictly dependent on the self-consistent charge dis-
tributions they support. Microinstabilities cause changes in particle distribu-
tions. Double layer motion is associated with exchange of momentum between
particles and these fields.
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Externally driven magnetic reconnection has been proposed as a possible
mechanism for production of auroral electrons during magnetic substorms.
Fluid simulations of magnetic reconnection lead to strong plasma flows
towards the increasing magnetic field of the earth. These plasma flows must
generate large scale potential drops to preserve global charge neutrality.
We have examined currentless injection of plasma along a dipole magnetic
field into a bounded region using both analytic techniques and particle
simulation.

Our analysis shows that the maximum potential for cold ions and elec-
trons, mass ratio •, is qAV = Kll x 1 izAB, where p is their common
magnetic moment, K is the kinetic energy of the injected ions, and AB is the
difference between the maximum magnetic field strength, BMAX, and that
at injection, Eo. With thermal spread in particle magnetic moments the
potential depends on their temperature ratios, TL, and with thermal injec-

tion velocities the magnetic field mirror ratio, B . For drifting isotropic
mT

Maxwellians, the leading order potential is qAz = K 1 ' AB
1e BMAX"

This potential is a boundary condition for the local field solution. While
global charge neutrality must be maintained in steady-state, the local po-
tential is determined by the Vlasov-Poisson equations. Several authors
obtained quasineutral solutions (ni = n,) to this boundary value problem.
However, single-valued quasineutral solutions are only accessible to special
combinations of fields and particle distributions. In our case multivalued
solutions to the quasineutral equation arise for particular values of electric
and magnetic fields. A double layer is that solution which preserves gross
quasineutrality within its volume while permitting momentum balance be-
tween incident accelerated particles. The potential of the double layer is
limited by the ion kinetic energy but need not match the global potential
required for overall charge neutrality.

One and two dimensional electrostatic particle simulations verify both
double layer solutions and dependence of potentials on the injected energy.
The difference between global and local potentials is absorbed in a sheath
opposite the injecticn boundary.

Potential formations are strictly dependent on the self-consistent charge
distributions they support. Microinstabilities cause changes in particle dis-
tributions. Double layer motion is associated with exchange of momentum
between particles and these fields.
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Preface

Philosophy

The birth of plasma physics as a discipline is most often associated with the
advent of the fusion program in the late 50's. However, an equal impetus
for a comprehensive understanding of plasma physics phenomena was gen-
erated by coincident advances in space physics. Both the space physics and
the fusion communities owe a great deal to an even more recent discipline.

Up to a comparatively short time ago (1960's) the only approach to
the many-body problems of plasma phenomena was the statistical one of
solving the coupled Maxwell-Boltzmann equations or its moments - fluid
theory - applied to an appropriate model. Alternatively, the experimentalist
could construct an apparatus which closely matched the parameters under
investigation and with suitable diagnostics, make desired measurements. In
both instances the construction of a suitable model, to which the theory
or an experiment could be tractably applied, was quite constrained, and
certain simplifying assumptions were necessary in order to glean any useful
information at all.

With analytic theory, once approximations were made and a solution
found, many of the details of plasma behaviour could be obscured. For
instance, reliance on Fluid Theory provided no information about wave-
particle interactions. Similarly, experiments were limited, in that not all
parameters could be measured. These measurements depended severely on
the ingenuity and pursestrings of the experimenter. In many respects then
the most useful results of theory and experiment are to demonstrate very
general phenomena while application to specific phenomena were limited
to embellishing the general results with appropriate detail - as for example,
explanation of Whistler waves in the ionosphere.

ix



With advent of powerful computers a radical new approach to plasma
physics became possible. Instead of statistical solution to the many-body
problem, one could actually follow the self-consistent trajectories of each
particle in an ensemble. The data from each particle could be stored and
used to provide an "exact" description of particles and fields.

Of course, this is an oversimplification. Computer time and memory are
limited and other complications abound. First, the particles can only be
followed in discrete steps so that a series of snapshots and not a continuous
motion picture is possible. Second, calculations of the fields in a pair-wise
manner was prohibitively time expensive and memory consuming. Third,
the number of particles which could be followed, and therefore particle
density, was generally much lower than that of the modeled phenomena.
Finally, since the model is necessarily finite, questions about what to do
with particles and fields at the boundaries is a thorny one.

All of these considerations mean that, while a powerful new tool ex-
ists to examine specific physical situations, the role of the modeler, the
computational physicist, is an enormous one. Once the model has been
constructed and sucessfully implemented for a particular situation, it is
important to know that the model can be "scaled" to a broader range of
additional problems.

Even more important than the code as implemented is the ability to
organize and use a set of "tools" into working code. So, while useful results
may be obtained using another's code, its construction or even its modifi-
cation, clearly relies on the experience gained by doing. This experience is
ultimately the most important product of this effort.
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Chapter 1

Introduction

Since 1958 when the Van Allen belts were discovered, we have come to rec-
ognize complex interactions between the sun and the earth coupled by the
sun's plasma (the solar wind), its radiation (at the earth's ionosphere) and
their magnetic fields (the earth's, the Interplanetary Magnetic Field (IMF),
and current-driven magnetic disturbances.) One of the most intriguing and
beautiful manifestations of these interactions is the aurora borealis.

As pictured in the accompanying sketch (Figure 1.1), observation of
these aurorae is not new. Greeks recorded them many centuries ago but
their name is attributed to Gassandi (1621)[12, p.15]. The detailed physical
processes which lead to aurorae, however, are still being understood. The
cause of the emissions themselves weren't known until the 50's when, from
electron densities at the aurorae, they were linked to impact of energetic
electrons upon oxygen molecules in the earth's ionosphere.

Since their discovery two different types of aurorae have been identi-
fied. (Figure 1.2). Diffuse aurorae are, just as their name implies, broad
bands of light which appear almost continuously in the polar region sky.
The broad distribution of electron energies which cause diffuse aurorae are
associated with pitch angle scattering into the electron loss conc above the
earth's dipole magnetic field.

In contrast, discrete (or Bright Active) aurorae, are identified as ribbons
of light. In 1960 McIlwain [31, p.99] discovered a characteristic electron
energy peak at 6 keV during discrete aurorae. For these energetic electrons
to reach the earth, accelerating potentials must exist parallel to the earth's
magnetic field [31, p. 99ffl and a source of energy must be available to drive



Figure 1.1: A woodcut by Fridtjof Nansen; Nansen depicts himself strolling
on the ice under a triple curtain-like form of the aurora; the auroral arcs.
(From Nansen's Nord I Takeheunen, 1911) [2, Cover Page].

2



12

~r,00

0 FFUSE A URORA-] 0

Figure 1.2: Schematic diagram showing the main characteristics of auroral
displays, as seen from above the north geomagnetic pole. Auroral arcs are
indicated by lines and the diffuse aurora is indicated by the shaded region.
This is slightly modified from the original version given by Akasofu (1976)
[2, p.4].

them.
Discrete aurorae are correlated with increased solar activity and the

direction of the IMF with respect to the earth's dipole magnetic field. These
in combination are believed to cause substorms. During these substorms
plasma is observed to flow from the tailward region toward and away from
the earth. As modeled by Sato [38] the energy involved in this flow results
from externally driven magnetic reconnection.

A "semi-empirical" theory to substantiate plasma flows as a source of
energetic electrons for substorm-generated aurorae is due to Serizawa and
Sato[42]. They developed an expression for the potential drop between in-
jection and loss boundaries required to preserve global charge neutrality.
Their analysis revealed that for ion parallel kinetic energy, K, and temper-
ature ratio, Ti/Te, eOMAX ; K/(1 + Ti/T,) with only mild dependence on
electron to ion mass ratios m/M < 1 and mirror ratios BMAx/Bo > 1.
As noted by the authors, this theory yields no details about the nature of
background particle interaction with the local potential.

Under the assumption of quasineutrality several authors have shown,
both in theory [34],[521 and through numerical calculation [14], that large,
long-scale length ( >» AD) potential drops along magnetic field lines may
develop self-consistently. Although this mechanism has been proposed as
a candidate for acceleration of auroral electrons, results between differ-
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ent models are contradictory and heavily dependent on assumed particle
distributions. Further, the assumption of quasineutrality limits acquired
solutions to only a subset of those actually possible.

Among alternatives proposed for electron acceleration are double layers
(DLs) - potential drops over relatively short scale lengths (s .. L-). Both
strong (eO >» kT) and weak (e¢ , kT) DLs have recently been observed
above the earth's poles [49].

The role of double layers in laboratory and space plasmas has been the
subject of much investigation. In an early analysis Block [6, p.349] modelled
four species of particles-reflecting and passing, electrons and ions-incident
upon a strong DL. Two fluid equations, an adiabatic equation of state, and
Poisson's equation lead to criteria on the drift velocities of ions and electrons
incident on the high and low potential sides of the DL, respectively. These
are called Bohm criteria in analogy to similar criteria on ions in a plasma
sheath[7, p.77]. An analgous Langmuir's condition [30, p. 973] leads to the
perceived requirement for net current in all DLs.

Focussing on these criteria as a recipe, one could easily construct a
DL. Plasma experiments and simulations required only fixed potentials at
the boundaries to drive required currents or a floating potential (or even
periodic boundary conditions) with large enough drifts between species.
Because of these drifts, these plasmas were inherently unstable. (See Fig.
1.3.)

Just recently double layers have been demonstrated under more relaxed
assumptions about boundary conditions and particle distributions. Some
authors have found ways to relax the constraints imposed by the Bohm cri-
teria. For example, Kan and Lee [251 concluded that the condition on the
electron velocity is obviated by presence of trapped electrons. In their sup-
port simulations by Wagner showed double-layers to develop in the presence
of just a current sheet[51].

Sato and Okuda [36,37] performed a series of simulations using even
"more realistic" conditions. Their model (Fig. 1.4(a)) was that of polar
region field lines in a self-consistent circuit (Fig. 1.4(b)). Initial conditions
included a driving potential and current. The subsequent potential and
current were related by a fixed resistance consistent with the initial con-
ditions. Specifically, they assumed an electron drift velocity, Vd, < Vthe,

and T, >» Ti. This is the range of parameters for ion-acoustic instabili-
ties, but avoids the large relative drifts which may cause other two-stream

4
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Figure 1.5: Sato and Okuda results exhibit multiple weak DLs. These DLs
move with a velocity near the ion-acoustic velocity but recur so that the
number of DLs is approximately constant[37, p.3364].

instabilities.
One of the results, shown in Figure 1.5, was obtained for Vde/Vth, = 0.6.

As apparent, the simulation resulted in multiple weak (eD- Te) DLs about
1000AD apart and with scale lengths I1 50 AD. These DLs are unstable
and propagate at near the ion-acoustic velocity but recur at a rate such
that the number of DLs is approximately constant.

Hasegawa and Sato [22] provided the theoretical mechanism for such
DLs. Basically, an ion hole is created which cuts off the electron current.
Formation of an adjacent electron hole follows. This yields a DL which
decays on the ion time scale.

Most recently laboratory and theory experiments have demonstrated
double layer solutions even under currentless conditions. Stenzel et al [44]
conducted an experiment in which a dipole magnetic field reflected an in-
cident ion beam. This experiment resulted in inherently currentless strong
DLs for varying magnetic field strengths. Cohen et al modeled the likely
formation of double layers in the throat of a mirror device[15]. Perkins and
Sun [35] generalized their results by demonstrating eigenvalue solutions for
currentless DLs.

7



Interestingly, quasineutrality does not preclude formation of double lay-
ers (DLs) [52, p.1526][45]. These results contrast with those like Chiu and
Schultz' [14], using the condition of local charge neutrality to demonstrate
the requirement for particular mixes of particle velocity distributions, but
agree with more recent work by Stern, who includes double layers within
an overall quasi-neutral framework.

As described in this introduction it is our goal to extend work on dou-
ble layers to more realistic scenarios such as these "recent" theories, ex-
periments, and simulations. Chapter 2 provides a brief survey of aurora!
physics, leading to a physical context for construction of our model. We are
motivated by observations that aurorae are caused by energetic electrons.
In particular, we examine one possible source of these electrons suggested by
Sato et al [38], [42] that during substorms plasma flows earthward driven
by magnetic reconnection in the tail region leading to large scale poten-
tials to be explored by plasma constituents. Their results are supported
by global calculations, however, and rely on static injection distributions.
They therefore provide few details about the local behaviour of particles
and the self-consistent electric potential in space and time. Alternative so-
lutions exist which satisfy the boundary conditions of the global potential
drop, injected particle distributions and background magnetic field.

In Chapter 3 we review theories and measurements from experiments
and observations relevant to auroral double layers, and other plasmas im-
mersed in a dipole magnetic field. Many of the previous theories suffer
from the limited focus on global versus local analysis of potential solutions
or ignore entirely the possiblity for existence of double layers by excluding
the class of solutions to which they belong. These deficiencies are partially
due to unwarranted regard for thresholds and criteria rather than the un-
derlying physics from which they were developed. This chapter has the
simultaneous goal of exposing the reader to analytic and graphical tech-
niques for analysing solutions to Poisson's equation. Use of both global
charge conservation, requiring currentless boundari-ýs, and local quasineu-
trality, exploring s.nutions to Poisson's equation by mapping An = 0, are
accomodated by the same physics.

We have examined solutions to the Vlasov-Poisson equations using both
analytic and computational models. Among the questions we ask: What
is the local distribution of potential-double layer or otherwise? May they
be currentless or do criteria prohibit formation of double layers? Are they

8



accessible? Do they persist or are they subject to instabilities? How do
global and local approaches coincide?

In Chapter 4 we obtain both the global and local analytic solutions.
These analyses weave together the theories of the previous chapter while
developing observations and supporting the model assumptions for the sim-
ulations to follow. While Serizawa and Sato use "semi-empirical" methods
to obtain a global requirement for large scale potential drops, we develop
an analytic result. We analyze expected simulation results for the local
potential using quasi-neutral techniques. In particular we assume Drifting
Maxwellian particle distributions, beginning in the limit of cold temper-
atures for both TL and T11 and proceeding to finite values for both. The
cold distribution is used explicitly by Schmidt [40] as an example of mov-
ing plasma behaviour, but is implicit in the assumed distributions of other
authors [35], [15]. We find that the underlying global solutions retain their
dependence on the injected ion kinetic energy even for finite TL and T11 but
local DL solutions exist only for warm T11 electrons.

None of the analytic techniques permit observation of temporal and
spatial dependence. Particle simulations allow observation of both, thus
demonstrating accessibility, the role of instabilities, interaction betweeen
the self-consistent particle distributions and how local requirements on the
potential satisfy competing global boundary conditions. They permit ob-
servation beyond physically limited experiments (such as those in space)
and give the "experimenter" more freedom in terms of flexibility and avail-
ability of "apparatus" and expenditure of time and money. Data can be
stored and additional "non-intrusive" diagnostics performed. These diag-
nostics are limited only by the ingenuity of the computational physicist and
simulation time and memory available.

Previous simulations were inadequate since they concentrated on peri-
odic, non-bounded simulation regions or fixed potentials and lacked a real-
istic magnetic field and injection scheme. In Chapter 5, using particle simu-
lation, we modeled a flowing neutral plasma injected along a (fully) dipole
magnetic field. The computational model is that of a three-dimensional
magnetic mirror with a one-dimensional (thus 1D) electrostatic solution
to Maxwell's equations lying along the mirror axis. A currentless, neutral
(one-sided) Maxwellian plasma is injected at the low-field (x=L) side (e.g.,
magnetospere) into an initially vacuum simulation region and propagates
toward the high-field (x=O) side (e.g., the ionosphere.) Field boundary
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conditions arc 0(0) = 0, d¢/dx(L) = -E(L) = 0[48]. Model diagnostics
include phase-space plots; local charge densities, fields, and potentials; fre-
quency and spatial spectra; and energy calculations. A variety of particle
distributions, boundary conditions and equations of motion were used.

Both double layers and large scale potentials with eV > kT are ob-
served. The double layers move in correspondence with changes in velocity
space distributions of incident particles. These changes coincide with ob-
served instabilities. Movement of the double layer in time is associated
with Langmuir's condition. Comparisons are made between theory and
"experiment."

Extension of the simulation to two-dimensions offers the possibility to
observe instabilities, transport processes and scale lengths not permitted
in 1D, but modeling in 2D requires additional, sometimes subtle, consid-
erations. In chapter 6 we describe construction of and results from a two-
dimensional code. Comparison is made to behaviour in 1D.

In Chapter 7 we conclude by summarizing our contributions, suggesting
future employment of our models and identify gaps yet to be explored.

General methods of particle simulation are described in a set of appen-
dices to detail techniques and tools necessary for code construction. Impor-
tant difficulties had to be overcome in the simulation of a plasma injected at
a non-periodic boundary. In 1D we developed techniques to combat alias-
ing of Fourier transform solutions. In 2D we extended use of Buneman's
algorithm [11] for solving Poisson's equation to mixed boundary conditions.
In both codes we developed and used a guiding center pusher for electrons
which permitted use of larger time steps. For this reason, although we
initiated construction of these simulations with a particular application in
mind, we emphasize these general aspects to relate the model's construction
to possible follow-on investigation.

Finally, an extensive bibliography should add to the usefulness of this
document as a reference source.
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Chapter 2

Aurorae 1

2.1 The Sun's Plasma and Magnetic Fields

The aurorae result from complex plasma phenoma under the influence of
interactions between the sun and the earth. Regardless of their proximity,
these plasmas remained relatively inaccessible until comparatively recently
and their study is a relatively new branch of space physics. In this chapter
we introduce the physics of these plasmas which provide motivation for our
dissertation and a context within which to build analytic and computational
models.

2.1.1 The Sun

The Sun is the major source of energy and a major source of particles
for interactions manifest in phenomena such as aurorae. The core at the
sun's center, heated by gravitational pressure, produces over 1026 W via p-p
and carbon cycle fusions. This energy radiates out through the radiation
zone producing X-rays, boils up through the convection zone and is visibly
apparent in the photosphere. In this transit the temperature decreases from
107'K at the core to 5 x 103*K at the photosphere. However, in the outer
chromosphere large amplitude acoustic or shock waves heat the gas of the

1Except where otherwise noted, the substance of this chapter was gleaned from the
1986 Princeton University AS556 Lecture Notes, Selected Topics in Space Physics, by
Professor Hideo Okuda [33]. Author references with years in parentheses are from these
notes.

11



photosphere to 10"°K and densities continually decrease from 1017 cm-3

primarily neutrals to a plasma density of 106 - 10' cm- 3 at the corona.
The corona is the location of many solar activities. Among these are so-

lar flares and sunspots. Sunspots are dark spots (low temperature regions)
on the sun's surface which are also observed to be local regions of strong
magnetic fields (- lkG) much larger than the normal sun magnetic field, a
dipole of approximate magnitude B=I Gauss with a 22 year reversal cycle.
Sunspots are thought to originate from the wrapping of magnetic field lines
as the sun rotates (Babcock, 1959). This model also describes the 11 year
sunspot cycle with its familiar "butterfly pattern."

Solar flares violently release magnetic energy associated with these sunspots
as the field lines buoy up above the coronal surface. The energy stored in
solar flares is as much as 1032 ergs and can be released in tens of minutes.
Its release may be explained by "driven" (Pettschek-Parker) magnetic field
line reconnection. This mechanism may also be important in the Earth's
magnetic tail.

Radiation from the sun may be approximated as blackbody at 5800°K
and is the primary portion of energy released by the sun. At the earth this
radiation is reponsible for visible light-day and night-as well as production
of the ionosphere, where the high frequency edge (TJV and X-rays) of the
radiated spectrum is absorbed.

2.1.2 The Solar Wind

The solar wind was first postulated by Biermann (1951) to explain the
anti-sunward orientation of comets' tails. Radiation pressure alone was
insufficient to account for this phenomena. Observations have since shown
that typical earth parameters for the solar wind are n=5 cm-3, T=2 x 10SK

and u=400 km/sec. The wind consists of 90% H and 10% He with a mean
free path l,,,fp -, 1 AU = 150 x 106 km (500 light sec). The energy flux
from the solar wind is 1013 - 1014 W and is the driver for magnetospheric
activity. One may readily verify that the kinetic energy density of the solar
wind at the earth is much greater than its magnetic field energy density.

A theoretical foundation for the solar wind was advanced by Chapman
(1958). His was a static model in which the pressure of the corona was
balanced by the gravitational force. This model was unsuccessful in that
the gravitational potential was too weak to contain the corona. An alternate
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dynamic model, in which outgoing solar wind is replaced by solar gas, was
more successful. A particular manifestation of this model is supersonic
expansion of the solar wind (MA = 5) in the gravitational throat of the
sun.

2.1.3 Interplanetary Magnetic Field

The dipole field of the sun is dragged along by the solar wind. Because of
the sun's rotation, the field lines form an Archimedes spiral. At the earth
the resulting magnetic field points at an angle X -" 450 to the line between
the sun and earth in the sun's equatorial plane. The magnitude of the field
at the earth is - 5 x 10-'G and for distances much greater than the earth's
is primarily in the € direction. At large di~d.ances from the sun density
decreases as 1/r 2 while BIMF OC 1/r. kii outward limit for the solar wind
is obtained where magnetic nrcý,sure balances particle pressure at 50 AU,
well beyond Pluto.

2.2 The Earth's Magnetosphere (See Fig. 2.1.)

2.2.1 The Earth's Magnetic Field

For up to about 10 earth radii the magnetic field of the earth is well modeled
by a simple magnetic dipole produced by an infinitesimally small current
loop. Such a field is characterized by its magnetic moment (i-) and is given
by the formula [24, p. 182]

B = 3-•.• .•

Since the earth T' = -mi, B may be well expressed in cylindrical coordi-
nates

= m, 3pz,+ ( 3z 2 ..

and its magnitude easily computed as

B (1 + 3 ),/2
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Figure 2.1: Schematic of major regions of the earth's magnetosphere. Au-
roral ovals encircle earth at - 100 km and in the 650 - 750 magnetic latitude
band. (a) Noon-midnight meridian projection; (b) tail current system as
viewed from sun; (c) three-dimensional perspective of (a) [31, p.1].
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If the field is known at a given point, say itO, then in terms of that field

0r r022
B = B0(•3)[(1 + )(

The magnitude of the earth's field at 1 earth radius is known to be .312 G
at the equator (and .628 G at the poles.) The total field B = Bb is easily
seen to be

3z0'- 1"2" 3pz 3z 2

B 0 )3(1 + Z0 )-12_ ' , + (1 -

rr r

and the two directions of b = bpk + b,5 are given by

b = 3(1+3)1/2
,2

bz = (1 - 3L2-)(1 +3,)-1/2

While the IMF represents but a small perturbation to the near earth
magnetic field. BIMF is approximately that of the earth at r - )1-/= Z

15 earth radii.

2.2.2 The Magnetosheath

The first encounter of the solar wind with the earth's magnetic field is at
the bow shock (R - 15 RE) where the supersonic flow from the sun de-
celerates to subsonic with respect to VA. The solar wind plasma heats in
the magnetosheath exchanging kinetic for thermal energy, and is finally
blocked at the magnetopause (R - 10 RE) where the solar wind pressure
balances pressures from the earth's magnetic field and particles in the mag-
netosphere, within which the earth's magnetic field is confined. The distant
extent of the magnetosheath is R - 200 RE where the magnetic fields of
the earth and the solar wind become comparable[31, p.86].

As the plasma flows past the earth, it drags along the earth's magnetic
field creating two categories of field lines-open and closed. Subject to adi-
abatic constraints particles are free to enter or leave the earth's ionosphere
primarily at the polar caps where the magnetic field lines are open. In
absence of collisions or wave-particle interactions the solar wind may not
penetrate the closed lines of the magnetosphere. However, two popular
mechanisms have been proposed to allow for this occurence.
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Figure 2.2: Mapping of the convection electric potentials and the surface
S from the magnetosphere to the ionosphere, as seen from above the north
pole [31, p. 60].

The first, proposed by Axford-Hines, invokes the Kelvin-Helmholtz in-
stability as a source of "anomalous viscosity." In this case the solar wind
may penetrate the earth's magnetic field on a steady state basis. Addi-
tionally, in periods of increased solar activity, when the IMF may acquire
random components in the N-S direction, Dungey [31, p.56-59] theorized
that a southward component would cause reconnection both sunward and
anti-sunward of the earth, permitting free access of the solar wind into the
earth's magnetosphere.

2.2.3 Convection Electric Field

As the solar wind traverses the earth's magnetic field, an electric field is
mapped into the ionosphere along open dipole magnetic field lines. This
field drives currents perpendicular to the magnetic field and establishes
current patterns which map into polar caps. The observed value of this
electric field is 20mV/m over the polar caps, amounting to an integrated
potential of eo - 50 kV[31, p.64]. In the polar region ionosphere this
potential causes the flow of currents both perpendicular to the magnetic
field and parallel (Pederson currents) and perpendicular (Hall currents) to
the electric field[31, p.60]. Birkeland currents flow parallel to the magnetic
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field.

2.2.4 Ionosphere

Nearest the earth the ionosphere covers the globe. Because of solar radi-
ation and neutral density fall off with height, different regions of plasma
may be identified. Below the E region (.-. 100 km) the collision frequency
is such that ve, > Qe and vi, > Qj, above it Q, > v,. > vi, > fQ,. As a
result, the E region is the site of current amplification, and Hall conductiv-
ity dominates current flow in the ionosphere. Ionospheric plasma may exit
through the polar caps creating the polar wind.

2.2.5 Plasma Sheet

Directly behind the earth the ambient polar wind collects to form the
plasma sheet. The plasma sheet is the demarcation between the two oppo-
sitely directed components of the combined earth-IMF magnetic field. The
sheet is populated with plasma particles T = .1 - lOkeV, n = .01 - 1cm-3

and V = 10 - 1000km/s[31, p.2].
Because of the oppositely directed magnetic fields a current must flow

in the neutral sheet region defined by B=0. This is known as the sheet
current. The plasma sheet is a tremendous reservoir of solar wind energy
E - 3 x 1022 - 1025 ergs[31, p.3]. Part of the sheet, known as the tail,
stretches more than 200 RE as estimated by mapping polar electric fields
into the tail [31, p.86].

Examination of individual particle orbits as they enter the neutral sheet
show that the particles are trapped and oscillate between opposite mag-
netic poles of the plasma sheet fields. Electrons and ions drift in opposite
directions-the resulting current is in the direction of the electric field. The
work done on the particles is P,-, 1012 W[31, p.871.

Because of its current system, the sheet is particularly vulnerable to
instabilities from reconnection (or tearing modes.) These instabilities make
the sheet a source for other of the earth's regions.
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2.2.6 Plasmasphere

Just outside the earth is the closed region known as the earth's plasmas-
phere. It is a cold (T < 1 eV) [31, p.2], dense (n ,,_ 10a) region of plasma
which ends abruptly at the plasmapause where the corotation field of the
earth, E, = -V"R x B/c, coupled to the convection electric field sweeps out
the region between RE=3-6 [31, p.76].

Throughout the region between the ionosphere and the sheet are the
famous ring currents and radiation belts where high energy electrons and
ions are trapped. The particles are responsible for a magnetic field depres-
sion, AB ,- lO0snT [31, p.3], at the earth's surface during magnetic storms.
This region also stores a significant amount of energy-2 x 1022- 1025 ergs[31,
p. 2]. The rings are accelerated by ExB, Fermi and betatron acceleration
and are depopulated by ion cyclotron waves and charge exchange[31, p. 3].

2.2.7 Plasma Parameters

Parameters throughout these regions are conveniently summarized in Fig.
2.3. Using n=1-100 cm- 3 , B=102 - 104 x 10- 5 G, and T, _< Ti - 100's eV
yields wpe "- w,,e - 10 - 106 rad/s and P <« 1. In this parameter regime
the electrostatic approximation is appropriate [28].

2.3 Aurorae and Substorms

2.3.1 Diffuse Aurorae

The lights known as aurorae are caused by energetic electrons striking am-
bient molecules, primarily oxygen at the 4756A line, within the earth's
ionosphere. Within the earth's magnetic field an electric field E = -v" x B
forms to achieve a fluid force balance. The mapping of this field back into
the tail drives the tail plasmý, earthward.

Electrostatic waves such as ES electron cyclotron harmonics have been
shown to be responsible for scattering (primarily) convected electrons into
the loss cone causing the diffuse aurora. The aurorae display character-
istic patterns associated with return currents required to replenish these
electrons.
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Figure 2.4: Illustration of convective flow V in the equatorial plane resulting
from the superposition of the interplanetary and the earth's magnetic field.
The surface S, charged as indicated, separates the regions of sunward and
anti-sunward convection[31, p.59].

2.3.2 Discrete Aurorae

The visible forms of discrete aurorae have scale widths of - 10km and
are imbedded in larger scale -, 100km inverted V structures explained by
current patterns established above. However, the current densities as mea-
sured for discrete aurorae, j 10-6 - 10-5 A/m 2 , cannot be explained by
flows into a normal loss cone [31, p. 104]. Thc loss cone must be widened by
parallel electric fields with integrated potential -,, few keV. Possible mech-
anisms for these fields include large scale potentials generated by suitable
particle distributions or both strong and multiple weak DLs. Backscattered
particles and Auroral Kilometric Radiation (AKR) from the RH extraor-
dinary wave, rivaling Jupiter as a source of radio emissions, are associated
with these potential structures[31, p.145].

2.3.3 Geomagnetic Substorms

During increases in solar activity changes in the solar wind and IMF take
place. The plasma from the solar wind may collect at the plasma sheet
more rapidly than it dissipates due to normal diffusion processes. Because
the magnetic field is so low, the resulting system may be unstable, injecting
plasma along field lines toward the polar caps to cause increased auroral
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Figure 2.5: Summary of the distribution and directions of the large-scale
field-aligned currents as determined from Triad satellite magnetic field ob-
servations. The hatched area near noon indicates confused current di-
rections (from Iijima and Potemra, 1976b) (@by American Geophysical
Union)J31, p.105].
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activity known as auroral storms. During these auroral storms, the ambient
densities may increase above typical values.

Substorms are a subset of a storm and last for several hours while a
storm may last several days. Substorms are associated with discrete aurorae
and are evidenced by BEN (Broadband Electrostatic Noise) and ion conics.

The actual process for formation of a substorm is controversial. Sub-
storms may be the result of local tearing mode instabilities and can cause a
heightened flow of plasma toward the earth as well as a tailward flow known
as a plasmoid. Parameters for this flow are n=.1-1 cm- 3 , V=100-1500 km/s,
and Te < Ti < 2keV. A substorm, related to tearing mode instabilities, is
thought to be driven by some external source and this process is therefore
called "driven reconnection."

2.3.4 Plasr'.:i Jet Theory

Using a 2D o_ .ID model with anomalous resistivity, Sato simulated an
externally driven magnetic reconnection creating strong plasma jets with
speed- '- VA z• 500km/s [38]. Subsequently Sato and Hasegawa [39] de-
veloped a theory for this process. While tearing modes saturate at low
flow velocity, externally driven flows have large velocities consistent with
observation of strong jetting of protons [38, p. 7178].

A subsequent model of potentials generated from these flows is proposed
as a mechanism for auroral electron acceleration. Serizawa and Sato showed
that an equilibrium solution exists which is currentless and requires no
trapped particles. To do this, they specified the particle distribution at an
injection point into a mirror field and then used the curentless condition,
ji = je, to obtain the required maximum potential at the opposite boundary.

The injected distributions are

f3 (VI 0 ,v 1.) = N 7(r)ie(- ox { e[( - e- Uo )•, } (2.1)

where j=e,i and a = (T), u is the flow speed and N the particle density. For
frequencies less than the ion cyclotron frequency but greater than collision
frequencies we may assume that both energy and magnetic moment are
conserved. From these assumptions the return flux at the injection point
may be calculated. Imposition of ji = j, then yields a solution for the
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Figure 2.7: Sketches illustrate a model of the magnetotail structure change
associated with magnetic reconnection. (Top) The normal state. (Center)
A state of the magnetotail just after magnetic reconnection sets in. In
this stage , accelerated plasmas on the earth side of the reconnection point
are still trapped, and those on the antisolar side are confined in a mag-
netic island. (Bottom) Illustration of a stage of the substorm expansion in
which trapped particles are precipitated down into the ionosphere and the
magnetic island is propelled tailward [38, p. 7178).
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maximum potential which may be obtained numerically as

1OA = U2( Bo )(. _me)/(1 + T1) (2.2)
eCMAx = 5Mu0(1 BMAX Ti mi Te

This scenario will serve as a model for our simulations and theory. Al-
though this formalism does not specify the particle densities or potential at
any point between the source point and throat, it provides a useful formula
with which to compare our results. We shall devote the remainder of the
dissertation to examining both global and local solutions for the potential
and considering the relationship between these approaches. Additionally,
this technique for obtaining the global potential will be used in Chapter 4
to analyze requirements for global charge neutrality.
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Chapter 3

Sheaths and Double-Layers

The previous chapter introduced a method for determining global potential
requirements for a bounded region. In this chapter we consider techniques
for analyzing local self-consistent field/particle distributions and the result-
ing observations from their application.

3.1 Maxwell-Boltzmann Equations

Electromagnetic phenomena are governed by Maxwell's equations:

V.E = 41rp 3.1(a)
VxE - 3.1(b)
V.11 = 0 3.1(c)

V =-) 3.1(d)

These equations are familiar to us as Gauss' Law (3.1(c)), Poisson's Equa-
tion (3.1(a)), Faraday's Law (3.1(b)) and Ampere's Law (3.1(d)). Gauss'
Law and Poisson's Equation may be treated as initial value conditions
which, once satisfied, remain so by virtue of Faraday's and Ampere's Laws.
It is often useful to define the electric field in terms of a scalar and vector
potentials

SaA
cat

with V • A = 0, so that Poisson's equation may be equally well expressed
as -V 2qO = 47rp.
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The charge and current densities p and 7 can be obtained by summing
the zeroth and first velocity moments of the particle distribution function,
(f), for each plasma component (a), weighted by its charge (q):

p = , dff, =- Eqno,

S= f =_ E,,q•, ,.

The particle distributions in turn evolve according to the Boltzmann
equation,

Of Of
-+V.Vf +a.Vvf L-(3.2)

where the RHS of (3.2) represents "collisions", essentially the particle/field
interaction terms not included in its LHS. When the term on the RHS of
(3.2) is small and collisions may be ignored, we have the Vlasov equation,

Of
+ Vi-. Vf + al. Vf = 0 (3.2a)

The acceleration, a, is commonly given in terms of the Lorentz' force,

F = ma= q(E + V- x B) (3.3)

and couples these Maxwell-Boltzmann equations.

3.2 The Fluid Equations

The fluid equations derive from velocity moments

I dV'(...)

of Boltzmann's Equation. These equations are not closed, since each in-
volves one higher moment. "Closure" is obtained by truncating the series
at some moment and replacing it with some reasonable form.

As presented above, one set of equations may be obtained for each
plasma constituent. The fluid equations for a plasma of electrons and one
specie of ions are commonly known as two-fluid theory and are familiar as

equation of continuity: 2n +V'nv- = 0 (3.4a)
equation of motion: mn[ + (t. V)vl = qn(E, + •x xB) - Vp (3.4b)
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where we have assumed a scalar pressure, p. Often, the isotropic ideal gas
law, p=nkT, may be used. E and B obtain from Maxwell's equations (3.1)
above.

Alternatively, by combining (adding or subtracting) these individual
species equations, one obtains one-fluid theory. These are

conservation of mass: 8 + V. (p,,,i6) = 0 (3.5a)
8tconservation of charge: LP + V. •'= 0 (3.5b)

equation of motion: Pm = J B - Vp + p,,, (3.5c)
Generalized Ohm's Law: E + 6 x B = r7+ e(C" × B - Vpe) (3.5d)

In the above, mass flow is dominated by the ions while electrical properties
tend to depend on the electron's motion. The resistivity 17 is defined by the
first velocity moment of the collision term in. Boltzmann's equation (3.2).

3.3 Useful Idealizations

3.3.1 Quasi-Neutrality (Plasma Approximation)

By nature a plasma tends toward charge neutrality. (Opposite charges
attract, like charges repel.) A useful approximation is to assume that the
densities of ions and electrons are equal

An =_ ni - ne = 0 (3.6)

This assumption is known as the plasma approximation or quasineutrality.
Of course, with this assumption the value of the electric field can no longer
be freely determined directly from Poisson's equation but must instead
come from some other means such as the fluid equations (3.4) and (3.5).

It is useful to examine the validity of the plasma approximatio-u. We
do so in one-dimension. For a single ion species Poisson's equation (3.1(a))
can be rewritten by changing variables to

d2 V

X-,- N, - Ne (3.7)

where AD = 41n, N n/no, no = ni+ne, V -ek/kT, and X - x/AD.
(See [43, eq(14)].) Since INel and IN, I < 1, IN1 - Nj < 1 and, averaging
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Poisson's equation over a scale length, L,

1 LJo dX2V ) d- I' dX(-d-X2 =-_A(dg) =< N, - N, >_< 1
L dX

where < ... > denotes the average - fL dX Quasineutrality holds
when IA r A < 1 or the scale length for the change in slope of the poten-
tial is much greater than a Debye length. This is trivially true for < 1
over the same interval. Although quasineutrality may not hold locally, it
must hold in the macro sense, even in the formation of sheaths and DLs[45].

3.3.2 The Adiabatic Approximation

The steady-state Vlasov equation may be easily solved for the case of one-
dimensional electrostatic fields and a mirror force. When the magnetic
moment, M, is an adiabatic invariant, the force on the particles may be
expressed in terms of a scalar potential (4 = q0 + pB):

F d_ dqS dB

dx = dx+I dx

Entering this for the acceleration term, the steady-state Vlasov equation
becomes

Of 1 d$ Of
Ox m dxOv=

and may be rewritten as
Of of-=0
OV OK

where V = -/kT and K = 1/2mv'/kT.
Treating V and K as coordinates in two space, we see that

Vf-((i- 0=

where V = Vi, / = Kj and V - --•. We may represent this equation
graphically as a function (f) whose gradient is orthogonal to the direction
of i - 3. (See Figure 3.1.) The solution to this equation corresponds
to rotating the axes 45° such that Vf lies perpendicular to the family
of curves H=K+V=constant. Therefore f is a member of the family of
functions, f(H+c), c constant. The reader may recognize lines parallel to

29



K

L1

/V

f (H 2 )

f (H1 )

Figure 3.1: K-V Plane showing lines of constant K ± V. These lines may
be identified with the Hamiltonian, H=K+V, and the Lagrangian, L=K-V.

Vf as defining a set of Lagrangians, L = K-V = c1 ,2,..., while H may be
identified as the Hamiltonian.

If we use the boundary condition that f is a drifting Maxwellian in the
absence of a potential (at V=O), we know that

f(K + c) = fM,

and c just determines the constant of normalization. To maintain this func-
tional form, f(H) = fMe-1/kT. This is simply the Boltzmann or adiabatic
distribution. For a cold species (T=O) the contribution to the Maxwellian
occurs only at F=constant. This is equivalent to conservation of energy.

A more familiar version of the adiabatic approximation is obtained from
the first law of thermodynamics when we insist that an ideal gas remains
isolated (TdS=O) during a process (See Fig. 3.2.)

TdS = dW + dU = O

dW = pdV = p(dn-), p=nkT (ideal gas)
n

U = N(-mu2 +qO + laB) =
2

-k~dln = d( 1mu 2 + qO + pB)-kTdlnn = 1

2
rn = noe-'/kT
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dQ = Tds

dW pdV

._,/ \

I dU- - \

Figure 3.2: Diagram depicting flow of energy into and out of an isolated
control volume.

In practice the adiabatic approximation is used when the distribution
has time to reach thermodynamic equilibrium-when we know that we have a
Maxwell-Boltzmann distribution-but before species have time to exchange
energy with other species (or waves.)
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3.4 Sheaths

3.4.1 One - Dimensional Sheath

The solution for the electric potential in a plasma of warm electrons and
cold ions in contact with a conducting wall is attributed to Langmuir. This
geometry is depicted at Figure 3.3. To the left of x = 0 we take E = 0,
implying ni = n, = no. We use the adiabatic equation of state for electrons,

n. = nOe a

and combine the equation of continuity (3.4a)

V. (n•') = 0
(nv)0 = (nv)

and conservation of energy

1 2-Mv2 + eq = - Mvo

2 2 0

0v 2eq

to obtain the ion particle density

eo ,
ni = no(1 - IMV2)-2

Substituting into Poisson's equation (3.1(a)) and defining V = we
obtain d 2V 1_( e-")

where the scale length and debye length are defined above and the Mach
number is defined as M = I in terms of the sound speed c.

C&

Multiplying by - a ý and using ýo = 0 leads to:
I d 2 d 2V .½ 42 +d'-=( ) - d[(l+•--)2M+e-]

1ý2 (1+2V.j)M2+ e-VM2

32 2M
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Figure 3.3: The potential 0 in a planar sheath. Cold ions axe assumed to
enter the sheath with a uniform velocity is0. The regions of the sheath are
marked as the presheath, sheath and anode (d) [13, p.245].
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This equation can only be satisfied for

2V , M2 -
1+M2<(1 + M2 +e-V

when ý2 > 0. For small V, near X = 0 [13, p.246],

1V2(1 _ M2) > 0

so M 2 > 1or

V0 > CS

Equivalently, we may require for self-consistency that at V=O 8 > 0 and
S>0,

1 2V 3/2 2 OV
[- (1+ --)- 1 2 M +exp -V] - > 0

exp-V > (1 +2V) 3 / 2 1

.142>1

V0 > CS

as before. This condition is known as the Bohm-Sheath criterion and spec-
ifies a minimum ion injection velocity, v0 , for the formation of sheaths.
Alternatively, this criteria has been shown above as a condition on the
slope of the relative charge density. We will exploit this equivalence in
observations to follow.

The demarcation between the sheath and the presheath is marked by the
existence of a quasineutral or "plasma" solution (eqn. 3.6). This is evident
in Langmuir's evaluation of low-pressure, long mean free path plasma, as
pictured in Fig. 3.4. The reader should note that the formal plasma solution
is double-valued in 0 and no unique "plasma" solution exists beyond s = SO.

Outside the sheath region in the presheath, v is arbitrary. To get a
velocity v > c,, there must be an accelerating electric field in the presheath
plasma while still satisfying the condition of quasineutrality. This condition
may still be satisfied provided the scale length is long. The field itself comes
from the distribution of ions and electrons produced within the plasma.
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Figure 3.4: The relation of the plasma and complete solutions of the
plasma-sheath integral equation [50, Fig. 6, p.9021. (Here 77 and s cor-
respond to the variables 0 and x.)
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At some point near the wall the contribution of electrons to the space
charge becomes negligible. Ignoring this contribution, we calculate a po-
tential as measured from the sheath boundary.

02o e/ L- = 41rnoe(1 -Mv2 )

12 V02 2 O(1-O
S(Ox-) = 4.rnoM,,o x

2 ~ axe9

=7 -[87rno 0u2{2[J - (-~ x 0 2

For 2MI >> 1 and (841)2 < 87rnoMuo(11 ) ,

_ _ 2e€ 2 2

Ox -[8irnoMuo(--- M--)•]•

413I- ' - [8irnoMuo(2elM)']}
=43OxLO Ii

= 3/4[87rnoMuo(2e/M)212x

For a thickness d, the current density, jo, is related to 0 by

jo = 4/9(2e/M) 2- (3.8)47ran

This is known as the Child-Langmuir law for space charge limited flow[13,
p. 248]. jo is established such that global charge neutrality is maintained
and is fixed by the ion production rate. €d is such that the flow of electrons
is equal to the ion flow rate. d then changes to suit these two parameters. A
similar relationship is obtained for a cold, zero field cathode where d is the
distance between the cathode (injection point) and the anode at potential
4 d. We shall exploit these facts in the analyses that follow.

3.5 Double Layers with Current

3.5.1 Double Sheaths

A similar analysis to the last can be made for the case of cold ions and
electrons incident upon a potential drop within a plasma. This analysis
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Figure 3.5: A generic model for double layer analysis with passing and
trapped ions and electrons in each region 0 and 1. The height of the lines
indicate the relative velocities of charges in response to the potential, 0.

involves participation of four different species- passing and trapped, elec-
trons and ions. (See Figure 3.5.) The following set of equations relate the
particle boundary conditions to the potential:
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Flux: (nu)i = (nu)iO , (nu)e " (ul.)e1

Energy: MU= e(O0 - 0) -__ = e2 2 2 =( e ýU, = %-(00 - 0)11½ , e Mo = )_
Poisson: dE 47r(ni - ne)e

fo' d E M - fO'dx~!47re {(nu(io-4()J ,j

E2 =Vm/2ejeV/ + Mji(V/j -

If E = 0 at 0 =o, j, = fJij. This is Langmuir's condition for a double

sheath. Noting from the last section je = V -ji for single sheaths, this
analysis is equivalent to treating two separate plasma sheaths in contact.

In this form Langmuir's condition clearly represents a pressure balance
between the electric field on the LHS and the particle impulse on the other.
Because the momentum gained by the ions and electrons in the potential
drop qo are proportional to the square root of their mass ratios, the rate at
which they can be provided to the double sheath, their current densities,
are inversely so. In general, Langmuir's condition is given by the expression
[30, Eqn. (49), p. 973]

]pd =0 (3.9)

when the electric field at either end point is negligible.

3.5.2 Block Theory

Block undertook a more complete study of DLs. He derived conditions for
ionospheric DLs under the condition of frozen-in magnetic flux. Ignoring
collisions and gravity, he derived self-consistency requirements,

eE d 0(mu2),o > "yT, o + To( e-+ o,)o

eE + pi dB

and (mu2 )i > yT•1 +d(B E)

where, here, - is the ratio of specific heats. (In terms of degrees of freedom
d, 2±. - ) These two conditions are Bohm criteria. We observe that, for
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dB < 0 and E > 0, the criteria can be satisfied for any velocities provideddz

dB ZeIEI + Ye Idol-

and dIEI-p zI - T-

However, when mui,• < Y+,€ +T,,i, these constraints limit the electric field.
Therefore, these stronger criteria hold for strong DLs.

These Bohm criteria provided strict conditions for DL formation-that
is, the directed velocities of the ions and electrons on each side of the DL
must be relatively great. Since the current density is

j = e[(nu)io + (nu)e,],

these criteria led to the common observation that currentless double layers
could not exist.

Similarly, Block developed a Langmuir condition identical to that of the
double sheath case in the last section, j- = (')1. However, Block hinted
at another possibility for the existence of double layers,

The Langmuir condition requires a supply of electrons and
ions in the right proportion from both sides of the double layer.
If that is not possible, the layer will be charged. The resulting
external electric field will accelerate it to an equilibrium velocity
such that the Langmuir condition is fulfilled in the frame of the
layer[6, p. 3661.

Since these criteria were derived using the fluid approximation, the pos-
siblity that these criteria may be relaxed for appropriate velocity distribu-
tions remained to be explored. These were the approaches of Kan and Lee
[251 and Perkins and Sun [35], to be discussed below.

3.5.3 Kan and Lee

Kan and Lee considered the same situation as Block except that, instead of
including the magnetic field explicitly, they allowed for trapped electrons
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between the high field side of the DL and the increasing magnetic field of
the earth. For passing electrons the waterbag distribution,

Sconst Vi<v<VK
fel={ 0 otherwise,

was used, where V,,,i = [(Vei ± Vth1) 2 + 25-]2 but V1 = (L--) for v., < Vthei-

similarly for passing ions. Reflected ions and electrons were modeled with
Maxwellians. The resulting Bohm criteria are

mv21 >_ 2Tl+ + Ti1 Net < Nc

butvei > 0 Net>Nc
where Nc = Nei[ 2,f 7  1]. Similarly MVo > 2Tio+Teo(1+±-•t). (Here,

t (vel +7th.1 )' 0 - Ne0

y = 2 for 2 degrees of freedom.)
This result shows that trapped electrons can provide the necessary num-

ber density for electrons on the high field side. However, we note that,
while this approach indeed relaxes the requirement on v,,, N, is a signifi-
cant fraction of N, (since 2eS >> mv2 by assumption), and this approach
may require an incident ion velocity significantly greater than the sound
speed. So while it may be diminished, there still must be a current.

3.6 Currentless Double Layers

3.6.1 Perkins and Sun

By allowing for trapped ions, Perkins and Sun showed that DL solutions
exist which require no current. In their fully kinetic treatment they chose
Maxwellian distributions for electrons and high field ions and counter-
streaming beams of trapped ions on the low field side. The electron density
is n, = n 0 e-V where = =-. For equal ion and electron temperatures,

S=-T = 1, the ion velocity distribution is

f= no(2-f) 2e

This distribution requires the low-field particle kinetic energy, 2T = f +

to be greater than some minimum (Oo - A). A, then, determines how
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deeply ions are trapped in the potential well, Oo. The resulting ion density
is

to27rT
nog(V),A) =- n, = I -Ide

[35, Eqn. (6)] and the scaled Poisson's equation (3.7) becomes

,9 20 = g(V ,' A ) - C " = _ G ( ,, A )

Integrating by parts,

V(0, A) _ v ) = 2 G(', A)d¢' > 0

At 0o, G(Oo, A) = 0 [35, Eqn. 8(a)] for quasineutrality (eqn. 3.6),
while V(ko, A) = 0 [35, Eqn. 7] satisfies Langmuir's condition (eqn. 3.9).
Eigenvalue DL solutions to these equations exist for particular b0, A. A
numerical solution is plotted in Fig. 3.6, as for Langmuir's sheath of Figure
3.4, the multivalued nature of 0(n, = ni) is to be noted. This solution also
satisfies Bohm's criteria which restrict the slope of the electron distribution
function on the low density side but are obviated by A on the high field
side.

In this presentation Perkins and Sun make several important observa-
tions. First, a DL may exist in a region where quasineutrality imposes a
multi-valued 4. Second, "only" the magnitude not the directions, of the
particle parallel velocities are important. And third, the particle distri-
butions which support the DL may be unstable. These observations have
important inference for mirrors and magnetospheric potential theories.

Their approach holds for A a slowly varying (L > AD) function of x,
for example in a mirror magnetic field, and is a generalization to analysis
of axial potential profiles in thermal barrier cells [15]. Using Maxwellian
distributions for electrons (and passing ions), Cohen et al accounted for
trapped particles from energetic neutral pumping by charge exchange with
a model distribution described by a parameter, "a".

AM=_no(- exp[ E-ap
27rT (a -1)T
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Figure 3.6: Electron and ion densities as a function of potential for r = 1.
Curve a is the electron density exp-0. Curve b is t a ion density
g(O, A)[Eq. (6)]. Curve c is the difference G(O,A) and depicts regions
of positive and negative charge density. Dashed curve d would be the ion
densitv if A = 0. It is evident that the required region of positive charge
density cannot exist for A = 0[35, Fig. 2, p. 116.]
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Figure 3.7: Potential profiles O(R) obtained from quasi-neutrality for vari-
ous values of the trapped -particle filling parameter a. The portions of the
curves with R< 1, shown dotted, apply when B>Bth,,mt as in the dashed
profile of Fig. 1. The values of a and the corresponding ratios p =_ nt/ne
and %,, = -eO/T evaluated at R=3 are: (A) a=1.08, p=0.085, Dm=2.23;
(B) a=1.12, p=0.123, fire=2.19; (C) a=1.15, p=0.15,4ý,,•=2.15; (D) a=1.20,

p=0.19 , m,,=2.08 [15, Fig. 5, p.2 12 ].
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Figure 3.8: Schematic view of the experimental setup. A plane ion beam
of energy eVb is injected into the target plasma against a biased magnet
(VY. > Vb> kTl/e). A uniform axial magnetic field is applied opposing the
magnetic dipole[44, p.709] .

For a=O this is a Maxwellian while for a=1 we have a beam of ions. Plots
of quasineutral solutions, An(4'm, R) = 0, are at Fig. 3.7. A double layer
solution for appropriate values of the electric field at its boundary is possible
where Langmuir's condition is satisfied.

3.6.2 Experiments

Stenzel, Ooyama and Nakamura [44] performed a series of experiments in
which an ion beam from a double plasma device was injected toward a
dipole magnetic field. As pictured in the accompanying sketch (Fig. 3.8),
the beam was injected with kinetic energy (Vb) by biasing one half (the
high potential side) of a double plasma device with respect to the other.
A permanent dipole magnet (B - 500G) was situated in the opposite half

44



of the device and a smaller axial magnetic field (B - 20G) was applied
counter to that of the dipole so that the configuration consisted of open
and closed field lines (as for the earth's magnetosphere.) With magnetic
potential Vm > Vb > eo/kT a strong double layer was formed with eq
.8Vb, L = 0/E -, 10AD and ,n/n -. 10%.

In this experiment trapped particles were observed and formed a large
percentage of the total electron population (nt/n 1 -, .48) [44, p.715]. The
role of the magnetic potential Vm was both to totally reflect the ions and to
impart a drift v, > Vthe to the electrons trapped between the double layer
and the magnet. Of course, these electrons then were susceptible to the
electron two-stream (Buneman) instability. However, oscillations were not
recorded near the plasma frequency, indicating a lack of the ion-acoustic
instability. The authors attributed this to wave-turbulence and an effective
T, _> Te [44, p.717].

The experiment was performed with a variety of plasmas, the higher
mass ions being less magnetized . (The electrons are always magnetized.)
Double layers were observed in all cases, but the shape of the DL, when the
ions were magnetized, assumed the so-called inverted V. Without beams
weak DLs were observed.

The double layer was stable. The authors attributed the stability to a
momentum balance between the electrons accelerated in the double layer,
the reflected ions, and (possibly) ExB drifts in the V-shaped structure.
This momentum balance is equivalent to Langmuir's condition. Charge
neutrality also plays a role in that on either side of the double layer it must
hold[44, p.717].

3.7 Overview

In addition to learning useful methods for obtaining the local self-consistent
solutions for potential/particle systems, this chapter introduced several al-
ternative viewpoints. On the one hand, Block's (and Langmuir's) work
demonstrated the need for satisfying criteria on the incident particle ve-
locity (Bohm's) and current density (Langmuir's) for existence of double
layers. On the other, theory by Perkins and Sun, Cohen, and experiments
argue for relaxation or removal of these criteria. In our review we pointed
out where these criteria were embedded in each of the theories and exper-
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Figure 3.9: Axial plasma potential profiles O(z) in front of magnet with
bias Vm. Without ion beam a sheath is formed, with reflected ion beam a
double layer appears in front of sheath. Small magnet[44, p.712].

46



imental conclusions, and we suggest that these differing points of view are
really entirely consistent. In the next and following chapter we shall fur-
ther discuss the necessity, or lack thereof for these criteria and the ultimate
harmony between competing points of view.
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Chapter 4

Analysis

In this chapter, we extend Serizawa and Sato theory [42) by obtaining
local solutions to the coupled Vlasov-Poisson equations and explore the
possibility for double layer solutions by applying the graphical and analytic
techniques we learned in the previous chapter. We remind the reader that
their model is that of a comoving neutral two-species plasma injected along
the axis toward a dipole magnetic mirror. However, in the next chapter
we wish to use particle simulations to observe dynamic behaviour. To best
accomodate simulation limitations, we seek a simple model which captures
essential physical aspects we wish to examine while permitting access to
analytic and computational solution. We devote this chapter to analysing
alternative models and comparing their implications.

4.1 Cold Model

This simple model is an asymptotic limit to the more ccmplex models we
discuss. For relatively small parallel temperatures, distributions introduced
in Section 3.6 [35], [15] are approximated by beams, in which each of the
particles have nearly the same parallel velocity.

At points other than injection we expect the plasma to reach equilibrium
according to the Vlasov equation (3.1). It is well known that a function of
the constants of motion must be a steady-state solution. In our case, for
low collision frequencies and "perpendicular" frequencies much less than the
ion cyclotron frequency, we take the particle energy, E = lmv' + pB + qO,
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ad tas constants of motion and model the
equilibrium velocity distributions accordingly.

For a cold plasma with no spread in perpendicular or parallel velocities
an appropriate distribution for each specie is

f C 6V( - eo)( - Po)

or, rewriting the functional dependence on energy in terms of parallel ve-
locities [24, p.301,

f M Ab(v - u)6 (p - po)/v

where v vI, u =[!(E - - 2= [-(mvo - pAB - qAO)]1 and "0"
specifies the injection site.

From this distribution we calculate a density,

n = 27r dv dv.vxf

= 327Aj0 dv I' dpBb(v - u).5(, - o/

21rAB
mu

The normalization constant, A = nvo is evaluated by noting that n =27rBo 7 '

no, u = vo, and B = Bo at injection. Therefore,
j l nu = jo(B), (4.1)

identical to Schmidt's analysis of a charge-neutral homogeneous plasma
moving in a strong magnetic field with weak curvature [40, Eqns. (6-53),
p.167].

Using Poisson's equation (3.1(a)), we can evaluate the potential drop as
a function of position (in terms of AB.) A particular solution results near
An = ni - n, = 0, where the electric field, E, is a maximum or minimum.
Assuming equal injected particle currents, jo, and magnetic moments, P,
for each specie, we obtain the electric potential in terms of the magnetic
field,

U
2 = U2

2 (1 M v , A -e O 2 .(1 m v A B + e
m21S- tab - ]a) mV -pAB +

(1
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where we use capital letters to distinguish ions and lower case for electrons.
The maximum potential for this model occurs where U2 = u- = 0 at

1 2(1+ M)
/jLABMAx = -MVo 2

qAIAX = 1 2k M) (4.2)

These relationships are implicit in Schmidt's analysis [40, Eqn.(6-56)].
We observe that this solution preserves overall charge neutrality (An ,

0, Eqn. (3.6) ) for any €. Quasineutrality specifies that the total charge
contained even in a double layer [451 or a sheath, when the wall is consid-
ered, is negligible. In the global sense then, quasineutrality always holds
for the plasma [15]. However, also assuming quasineutrality locally leads
to an expression for the electric field

qE= (1 --i) dB
0 + M)dz

as a function of the magnetic field gradient. This relationship has been
noted by many authors (e.g., [52] and [34]) and results in a potential de-
picted in Figure 4.1. Also in this figure is pictured a non-quasineutral
potential with larger gradients than B. When the gradient in 0 is so large
that the gradient in B may be ignored, we may have a double layer.

To further explore the extent to which this model preserves local quasineu-
trality, we develop a correction to the quasineutral solution. Transforming
variables to V = V) + - (k )I for a dipole field, T - uBo,

and K, -" "S-+--_(_uj+p)AB] simplifies Pois-M+M T T

son's equation to

- u,,Q K-k 2 z+V•Ay (4.3)

ý -(V, + ~ f12or "small" 1,

where E. (1 + M) = -2-, if u=U, and Z z the axialwhrTY , 2K.o -sa M--uA

distance from the dipole center. For 'dJz (zo) = 0 and V1 (zo) = 0,
Z 3[_2 L (ZZo) (Z Zo)

v= Vo sinL(cos L
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Figure 4.1: The QN solution is E xc B x pLB). In those cases
when the gradient of B relative to E may be ignored, a non-quasineutral
potential, designated by qAO, results.

Far from the injection point, Z0 > Z > 1,

V, • Vo -12( L-)2

remains "small".
The resulting electric field E cx except near 1 where Equation

(4.3) more resembles the ion sheath equation of section 3.4.1. This point
occurs near Z = 1 where p!/T , 1 and M may no longer be treated as
"a constant of motion. Although it results in particles' ability to explore
"a larger spatial extent, a potential doesn't necessarily accelerate particles.
The combined "potential" of the electric and magnetic fields slows both
electrons and ions in this case.

Using a graphical technique evident even in Langmuir's work, as in
Figure 3.4, we obtain the quasineutral solution,

An(V,B) = 0

Defining Y -A - 1, in Fig. 4.2 we plot charge density An(V, B)
for all values V, Y < K. The graph may be conveniently divided into four
sections separated by two diagonals. At the middle left is the full plasma
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Figure 4.2: This figure is a charge density plot of An(V, B) in terms ofy=4 yi
B0 -A 1. The light regions correspond to regions of positive

density while the dark regions are negative. Along the diagonal extending
from the lower left to the upper right is the quasineutral solution. The
white line from the upper left to lower right is an ion-rich (anode) region
which occurs as the ions overshoot the electrons. No electrons are allowed
in the bottom quadrant. Similarly the upper (cathode) quadrant permits
only electrons accelerated by the increasing potential. The actual solution
of Poisson's equation is near (slightly below) the QN line until it formally
becomes a sheath at the (anode) diagonal.
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solution. Along the straight diagonal from the lower left to the upper right
lies the quasineutral solution given by equation (3.6). Above this line the
solution is increasingly positive as the electrons accelerate and the ions slow
in the potential, V. Along the diagonal from the upper left to the lower
right, is an anode solution where the ions are so dense that the electron
contribution may be ignored. In the quadrant below the two diagonals
electrons are precluded, as are the ions above. To the right neither are
allowed.

As noted in the previous chapter, a DL solution requires adjacpnt layers
of oppositely charged plasma. Since at fixed magnetic field the densities
(4.1) of the two species diverge with increasing potential, these distributions
are incompatible with DL solutions. However, as we shall see in the next
section, the assumed initial distributions for a particular situation may not
agree with the steady state potential which results. For example, in this
section conversion of the cold electron velocity distributions to Maxwellian
leads instead to the sheath solutions of Section 3.4.1.

4.2 Finite Perpendicular Temperature

4.2.1 Particle Currents

With finite perpendicular temperature we must consider particles that are
able to transit the model's extent into the loss cone. We choose a perpen-
dicular Maxwellian injection distribution

f = f(Ey) exp Bo

while leaving the parallel distribution cold to obtain

j = 27rA dvv j b(E _ Eo) exp _

27rAT B [Ko-V Ko - V - K
- mBoJ dK exp; 2 -B0o 0 Y

27rAT B [1 -exp KoV;rn2 -Bo YV]

where we have used K =- , V = S, and Y • B(= -").
T T IBo T
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At j = jo, AB = 0, B = B0 , and AO = 0, giving A = jO2 and

JI oforward = - exp(-K ° -- V

essentially the result produced in the previous chapter, Eqn. 4.1, modified
by a correction term. In the reverse direction we must allow a loss cone for
those particles with 0 < YMAX < Ko - VMAX so that

•B -Ko -VMAX -Ko _

Jref lected = jO( B0)[exp( YMAX ) -- exp( - V)

for K0 > VMAX. For K0 < VMAXJ jf orward - jreflected = 0.
j= JoB)1-ep K- VM AX

exp(- YMAX )]H(K0 - VMAX) (4.4)

Requiring the steady state chargp of the system to remain cconstant, implies
Aj _ ji - j, = 0 at z=0 for equal injection currents at z=z0 . Assuming
equal injection velocities,

eAOPMAX = eAqMAX

eALMAX = 1MV2(1 m Ti Ti2 0 M T )/(1 + )T

This is the maximum potential for this model and agrees with the cold
result (4.2) for equal ion and electron temperatures. Although corrections
for non-monotonic 0 may be necessary, they were not applied in the above
calculation. Similarly, in the section that follows we ignore corrections
due to the loss cone. However, as we shall see in the next chapter, any
particular physical realization requires adjudication between these, possibly
conflicting, demands on the potential.

4.2.2 Particle Densities

To obtain the local solution for this model, we begin by evaluating the
particle density.

n = 27r0 dvo dv±v±A6(6 -&o)exp-'ý
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2 A - 0 0_ 1 2
2 0I dv0 djiBS(my2- 2mv 0 + pLAB + qAO)exp-
27rA B 00dvxp , V2_OB½.-½,.2-q"A 10

-m dvBexp-o( T 2(-mV -1 - qAqO)

B Ko-V (45_ 2 noXo.BF( V)2 (4.5)

where we have substituted for A from above, H is the Heaviside function,
and

X2= KO-VY

with No =- X(V = 0). The last term in equation (4.5),

F(X) = exp -X 2 f dt exp t2,

is known as Dawson's Integral [1, p.298] and has the assymptotic values

F(x) = xexp-X 2  + ( ) for small x [1, 262] and

O(n + 1)n!

F(x) = [1 + ( ]- for large x [4, p.256]
nX2)

n=1 (2x) 2x

In Figure 4.3 we have plotted ni and n, for particular values of Y.
These establish the crossing points plotted in Figure 4.4, the quasineutral
solutions for these charge densities. For small (Y,V) the solution is that
presented in the previous section and AO cc AB. For increasing AB an
additional solution appears, but, because ni increases with Y and F reaches
a maximum at .54, an upper bound for Y exists at = _ rk= .54
(treating ni as constant for these values of V) or y ; k-the point where the
perpendicular energy equals the total injected electron energy.

A solution also exists at eAO ; z KO for all values of Y. These solutions
are obtained in the (four) limits of large and small x and X bounded by
the two diagonals and lying in the four quadrants established in Figure 4.2.
(X, the ion value for the argument of Dawson's integral, is a maximum at
the lower left corner and decreases toward the upper right. x, its electron
counterpart, is a maximum at the upper left corner and decreases toward
the lower right.)
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Figure 4.3: Plotted are ni and n, vs V for the values Y=.5, 1 and 2. The
ion density is that with the peak to the right and the electron density is
the smaller peaked function to the left. The points where the two densities
cross represent quasineutral solutions.
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Figure 4.4: Plotted here are the contours An = 0 for both electron and ion
densities proportional to F(X).
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Between the two quasineutral solutions ni > n, and a sheath must ex-
ist. To connect these solutions requires passage through a region of strong
electric field gradient. As noted by Stenzel and Ooyama [44, p.714], accel-
eration of electrons in this region may lead to a strong electron two-stream
instability and their rapid thermalization. Designating this point as "1",
we may replace the Dawsonian electron distribution with a Maxwellian

n = ni exp

where n - 2noAXoF(K-•)I,, and Te represents a spread induced by
thermalization, expected to be on the order of the accelerating potential.

Plotted in Fig. 4.5 is the contour An = 0 for K = 25, T, = 15 and z,
at Y=1. Near Z1 the potential V is double-valued, allowing a DL solution
when Langmuir's condition, eqn. (3.9), is also satisfied. We remark that
the shapes of these model distributions lead to double layer solutions, as
Perkins and Sun [35] postulated and we demonstrate in the next chapter.

4.2.3 Langmuir's Condition

Holding B constant, an exact integral of F(X) over € is

j F(X)dO/T = dV exp -X 2 J dt exp t2

= JVdV exp - KoVJXdt exp t2

= Y[F(X)IV - j dV O]

= Y[F(X)- X]IV0,

This result is useful for establishing Langmuir's condition:

q J(ni - n,)dO = Ti{2no BXo[F(X) - X]jV} - T,(n - no)

T,(n - no) - T,(n - no) - (X - Xo)(2noXo -) = 0
B 0

ATAn - AX(2noXoy) =AT~n 0

Together with quasineutrality, this condition yields a double layer solu-
tion, visually evident in Figure 4.5 when the integrated particle densities
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Figure 4.5: In this figure we have plotted the contour An = 0 for
Maxwellian Electrons and Dawsonian Ions. The solution is obviously dou-ble-valued in V, and a DL solution exists where Langmuir's condition issatisfied.
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over the potential enclosed by two areas on either side of a line drawn per-
pendicular to the Y axis and the quasineutral solution are equal. Since
by assumption AX < 0 and An > 0, T, > Ti =< pi > AB is required
to satisfy Langmuir's condition, consistent with streaming instabilities[47].
While this distribution will prove valuable in our particle simulations, in-
stabilities will permit observation of the more general model we discuss
below.

4.3 Generalization to Drifting Maxwellian

4.3.1 Current Density

We generalize our results to a drifting Maxwellian by integrating over the
distribution

h(u) = Aexp - T(vo- U)2kT 1
with the boundary condition

jo = no j h(u)udu - no < u >

for both species. Using Eqn. (4.4), we evaluate the particle current density
as

j = no( B)f' duuh(u)[1-exp- K-V

= no(-B)[< u> - 00 duuh(u)exp- K-V duuh(u)(1 - exp K- V

= j0[1 0 3

Jo Jo

where f (2eO/m)½ for ions
u,,i, = 1.0 for electrons

and we redefine T = T11 and p =< y >. K, V and Y have their former values
multiplied by the quantity = T BI. For example, V = (T±)(L a)-- Kmin.

We recognize jo as the cold particle current density, Eqn. 4.1.
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For K - V > 1, < u >,,t ATVA' fo~~' dAx exp _AX 2 , and we may
approximate Aj

2no( B )ATV7 __ 12 __(y

Ajm Bo -R(-)~ exp--[R (~):F1]1 dAx exp -(I ±)Ax 2

whee R= -fi':ýý- .Simi1ax1y,

ji ý-ý Ano( ~~B U2 i.exp -V(1 - R2exp -V(1-R2.
Bfo( ')mnI 2V(R - 1) 2V(R - Y+1)I

P JOIT-[- 1/Y ex-1R2

The ratio of the last two terms is L'1 K xpVI-) for large Y.

Requiring In x = 0 for charge conservation, we set

--A - Aj +ie= XO+X1

Since lnx(Vo±V1 ) z lnxO(VO)+ 1~V [xi(Vo) +E.---Tjv0 Vi0 ] = 0, to lowest

order In xo(Vo) = 0 and

V +V K k 3Iny (1 +Y

m I [

V K (Ti+141B Te+ise&B) 2 T.[(, A(B ii
-1 + 1

_ pAB K m T.+ ,ABA
(1 -j 9±L) T + 1s2AB~ M MTe + IeAB~

- In [(±PA )(Pe)]
2 TL T+ pclAB pi,

For T =pBO, T+ pAB = pB and

(1 - M-) AB
V =:K M T. (4.6)
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In the limit of large injection energy to parallel temperature ratio, this
assymptotic evaluation of the potential has resulted in an analytic expres-
sion which agrees exactly with the "semi-empirical" result obtained by Ser-
izawa and Sato [42, Eqn. 7] but provides corrections which account for
biMaxwellian temperature distributions.

4.3.2 Particle Density

We compare the density for this distribution to that of the previous sections.
Integrating over (4.5)

B -/-Fz 2 - V I FK')2/20'2

n = 2no F( -, )2exp-(z- o) 2dz(.Z) exp -(z.- Kodz

The integral can be evaluated by a variation on the method of steepest
descent[4]. We begin by changing variables to t = z/v/V, r = V Noting
that F(X) may be written

F(X) = exp-X2j dxexpx 2 = X dyexp-(1- y2)X 2 ,

[1 d t21y12 Y2 )V(t 2  )2]
n(t,y) = 2no- V dt [(t'-l)1Itexp -[(1- -1) + V(t -r

Bo V/W i 0 J Y

Setting 0(t, y) = (1 - y2)(t 2 - 1) + Y(t - r) 2, we note

V~t,y = 0 at {to, yo} = {1,[1 + Y(1- r)]2} and {to, yo} = {I', 0}, where

a O21 = YAt 2 - 4yoAyAt
AO = (At- + AYy)to,v - (1 + y)At 2 

- (t2- 1)Ay2

These two points correspond to the combined contribution from the two
peaks in F and the Maxwellian.

For to < 1 n = 2no B V exp -V(I - r2)

x dAt J dAy[KAt(2 + At)]J(1 + At)exp-V[rAt 2 
- AyAt]

Jo f-Y Y Y
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Letting Ay = mAt, we integrate along a path of steepest descent in the
Ay, At plane for m = yielding

2 no B V _ _m2Bo_- m2)p2I[X(p)] 127-a

n z + exp -V(1 - r) 7 dPexp-rV (1 4- 2  x rain
S (1 +- i 2 ) (y exp (1 +rV in 2 )

P Bl O + exp -V(1 - r) /2I [(-m(1 - yo)) + mrI(-m)]

r( + M2 ) ý'rM2 vý-V M2 rwith I(x)= [1+X2-12

wi ) [(I + x)2 - ], Xma = -m[(1 - yo) + P], and

S0- (l - yo) < P < Yo
Xmn = -m(-yo +.P)yo < P <00

so that n decays exponentially from r=1.
Similarly for to > 1,

n • 2no•--/0 ( ) exp-V(to )2 V[ 0 -

which corresponds to the original distribution shifted in Y and diminished
by an exponential factor. Finally, for to ,: 1 and yo ; 0 the contribution
from the two peaks coalesce giving

B V F2 1)'r[ 2(r) F-+'
n • 2no0 n=o (_)n[ I exp-V(1 - r)

,i0~ +! 2 ~ Y)j 2 IKY1+ Y)] 2

A slowly converging function yielding a broad peak.
These three equations correspond with the original quadrants in Figure

4.2. The last essentially divides the plane along the quasineutral line, above
and below are regions of small and large to respectively, apparent as the
high V and low V areas in Figure 4.6, where we have plotted the densities
for Y=1 and 4. We see that, as expected, the peak is spread. Although the
inflection point is lowered, it permits the ion density to cross a constantly
increasing n, at three points in V. The shift in the peak lowers the range
of n values, but not necessarily the magnitude of double layer potentials.
Just as in the previous section, opportunity for a DL solution diminishes
with increasing B. We shall observe the consequences of this analysis in the
next chapter.
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Figure 4.6: In this figure are plotted ion distribution functions where in-
jected velocities are drawn from a Drifting Maxwellian. Comparison to the
F distribution of the previous section shows that the peak in this distribu-
tion is less pronounced. Similarly the inflection point has shifted to the left
(toward injection). However, presence of the inflection point together with
a sufficiently large electron temperatures should allow DL solutions in the
cases we consider.
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4.4 Summary

The analysis of the potentials we developed in these sections contrasts be-
tween the global requirement which maintains overall charge neutrality and
the local one which permits double layer solutions. The latter potential is
dependent on the self consistent constituent particle distributions both in
slope (in terms of Bohm criteria) and in integrated charge density over the
potential (in terms of Langmuir's condition.)

The results of this section showed that, in limited circumstances of the
cold one-dimensional plasma in presence of a magnetic field, the only po-
tential solution is one in which the plasma must either reach quasineutrality
or leave a region unexplored. First order corrections show explicitly that
large scale potential drops do not result in double layers or even particle
acceleration. Thus, the global and the local requirements are equivalent.

With the added freedom to redistribute energy between parallel and
perpendicular velocities the plasma may explore beyond boundaries for the
cold plasma. Indeed, the plasma has access to an infinitude of quasineutral
solutions. The alternative it chooses is that required for pressure balance
as demanded by Langmuir's condition. However, the conditions for double
layers are stringent, and for large mass ratios a double layer solution is
difficult to attain with Dawsonian electrons.

When instabilities alter particle distributions, as we allowed in the case
of cold parallel electrons, they may present opportunities for double layer
solutions. Changing the electron distribution in Section 4.2 to that of a
Maxwellian immediately leads to double layer solutions pictured in Figure
4.5. These distributions and results agree with those first proposed by
Perkins and Sun [35]. Addition of parallel temperatures softens distribution
shapes, but still permits double layer solutions to exist. Indeed, apparent
from graphical methods, local perturbations may even provide opportunity
for multiple closely spaced double layers.

In each case we demonstrated Langmuir's condition in the role of pres-
sure balance and couched Bohm's criteria as a requirement on the slope
of the distributions functions. This view provides different emphasis from
but demonstrates the consistency between frameworks established by other
authors.

Our global analysis confirms Serizawa and Sato [42]. We demonstrate
that their solution varies little between cold (Eqn. 4.2) and warm (Eqn.
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4.6) particles except for a multiplicative factor of order unity, attesting
to a weak dependence on the mirror ratio T11 brings. Additionally, the
physical distribution of Serizawa and Sato in section 4.3 should permit
double layer solutions. As demonstrated, the model distribution of section
4.2 well approximates both the global and local results expected with their
distributions. However, to observe the time-dependent behaviour of these
scenarios, we resort to particle simulation as presented in the next chapter.

Actual solutions depend greatly on not their initial values but on the
time-dependent behaviour of the resulting self-consistent particle distribu-
tions actually explored. To investigate these, it is necessary to resort to
particle simulation techniques. In Chapter 5 we investigate a simulation
equivalent to the cold T11, warm TL distribution of section 4.2. As pointed
out above, the adequacy of this model was demonstrated by its accessibility
to double layer solutions and the close resemblance it bears to the expected
analytical results when a thermal parallel distribution is added. In the sub-
sequent chapter we extend our one-dimensional results to preliminary ones
in two dimensions.
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Chapter 5

One Dimensional Particle
Simulation

In the previous chapter we explored the static local and global solutions
to Poisson-Vlasov equations. This, as well as previous theory, lacks from
the ability to observe time dependent behaviour-instabilities, stationarity,
and accessibility. While experiments allow observation of these phenomena,
often they suffer from constraints of physical accessibility, range of param-
eter exploration and cost. In this chapter we compare the solutions in the
previous chapter to those using particle simulation.

Previous simulations were limited in variety of particle and field bound-
ary conditions allowed. Our model advances beyond these to allow injection
with floating potentials in a bounded simulation so that the double layer
isn't predisposed by initial conditions. While the electric field is calcu-
lated in one dimension only, thus 1D, the magnetic field is a realistic one
required for observing effects of the magnetic moment. Once injected, par-
ticles are free to explore all of position and velocity space allowed by the
one-dimensional potential and the three-dimensional magnetic field.

5.1 Physical Model

The physical model is that of auroral field lines with one end tied near
one of the earth's magnetic poles and the opposite embedded near the
reconnection zone far from the earth, but this model may apply equally to
other "mirror" configurations.
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Figure 5.1: A projection of the simulation region. Particles are injected into
a box at the right boundary (z=L) where symmetry requires the electric
field to be zero. The axis of the simulation is that of the dipole magnetic
field. The potent".l on the left boundary (z=0) is defined as 0=0.

5.1.1 Particles
Currentless plasma enters the modeled region from the reconnection zone
streaming towards the earth with injection velocities Vd - lO0OOkm/s, yield-
ing ion kinetic energies K - lOkeV. Temperatures are T, < Ti - lkeV.
Both the density and magnetic field are functions of distance from the
earth, R. Extrapolating VA = 500km/s [38, p. 71801 in the tail region of
the magnetosphere where R - lORE to the ionosphere where R - RE and
using VA O B- and n ox B yield densities n - 100cm- 3 .

In this region particle and field scale lengths are

AD - p << pi < R, AD < 1 < R7

where R is the B field scale length and 1 is that expected for F. Similarly,
the frequency ordering is

Qi <<Wp < e « - oWpe,

0 the gyrofrequency. Particie collisions may be ignored.

5.1.2 Electric Field

For these parameters, 0 <« 1. In this regime electrostatic (ES) and electro-
magnetic (EM) waves are decoupled [46, p. 224] and [28, p. 427], and we
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may choose an ES solution to Maxwell's equations. The boundary condi-
tions for the electric potential are chosen as 0 = 0 at z=0 (the ionosphere or
mirror throat) and E=0 at z=L (the magnetosphere or mirror center.) As-
suming that the same physical processes drive phenomena at both the North
and South poles requires these potentials and charge distributions to mir-
ror one another about the equatorial plane of the earth. While disallowing
odd solutions to Poisson's equation, this assumption leads to the condition
E(L)=0. The condition at z=0 derives from the presence of high density
regions of ionized gas near the earth's poles. Taking the poles as electric
ground while assuming local charge neutrality requires E=0 throughout the
regions and 0(0) = 0. (For discussion of these boundary conditions see [15]
and [481.)

5.1.3 Magnetic Field

We use the exact dipole field of Section 2.2.1. However, taking the electric
field scale as K/i with 1 << R for a double layer and my 2 - T,

mv2 /R
«<1,qE

permitting us to ignore curvature drifts by centering the model and aligning
the direction of the electric field along the magnetic field axis. The value
of the field is chosen so that at the model's center the magnitude of the
field is equal to that at R = 2.5RE directly above the poles. However, to
reduce the size of the simulation region, the magnetic field scale length is
reduced while maintaining the above relative parameters. Bounding the
computational model are injection and loss planes perpendicular to the
magnetic field axis.

5.2 The Computational Model

We primarily choose parameter values for our simulation to maintain fre-
quency and length scalings. In part, these values mirror those of the physi-
cal model (Figure 5.1.) However, a particle sin.ulation is limited by mimbers
of particles and simulation size and duration. Therefore, use of this tool
requires careful abstraction of both physical processes and parameters.
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5.2.1 Electric Field

Electric Field Grid

To calculate the electric field we divide the computational model at equi-
spaced grid points defined by intersection of intermediate planes perpen-
dicular to the magnetic axis. At each time step particles are assigned to
grid points centered between planes to obtain charge density. The electric
field is solved and the particles are moved according to the electric force
interpolated to their positions.

The grid length, A, is chosen as AD. 1D simulation theory for no (or
constant) magnetic field has demonstrated the effectiveness of this choice
[23]. In the presence of magnetic field gradients, however, the density is
not uniform and one may propose the smallest "XD" to capture fine scale
behaviour at the highest densities. We have chosen AD at the injection
point.

Charge Sharing/Force Interpolation

In our 1D simulation we use an interpolation scheme which assigns particle
charges to grid points, xg,

{q(l - Ixi.2xeI) <x-9
bi x 9 > A

and interpolates particle force from electic i:elds at gridpoints, Eg,

Fi = EgbigEg

Because electric fields are calculated in the axial direction only, the same
equations are obtained by considering particles to be constant density slabs
of infinite cross section but finite thickness, A, -nd basing charge shar-
ing/force interpolation on the particle volume in each cell. This scheme is
known as cloud-in-cell (CIC) weighting [5, p. 311].

Poisson Solver

The charge sharing scheme above results in a grid charge density

pg = EiSig,
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where the summation is over individual particles, i.
Direct integration of Poisson's equation 3.1(a) in 1D,

Eg - Eg+1 = og+½A,

is fast and easily implemented. However, especially for diagnostics, ad-
vantages accrue by using a Fourier solver. Some authors have advocated
straightforward application of continuous Fourier transforms to the dis-
crete case [171. In general, these methods don't account for effects of alias-
ing, which may predominate in bounded simulations. After correcting for
these aliases, using techniques developed in Appendix B, their effects are
ameliorated and the Fourier transform results closely agree with those ob-
tained by direct integration. Thus, direct integration was used for the 1D
simulation while post-processing diagnostics incorporated corrected Fourier
transforms.

5.2.2 Particles

Particle Pusher

While taking advantage of axial symmetry, particle acceleration is calcu-
lated with a full pusher or, for electrons, a guiding center (gc) pusher. In
this chapter we primarily report results from the full pusher,

qAt[- V1 + ½ _1) Bo

Yi- 2 c

This equation, along with its position counterpart,

= VI.,
At 2

constitutes the "Leap-Frog" scheme (Eqn. A.1).
In the next chapter we report results in 2D using a gc pusher (Eqn. A.3).

The full and gc pushers yield similar results in 1D. In practice, however,
the charge to mass ratio (q/m) is chosen to retain the appropriate scale
lengths while relaxing the required number of time steps to observe the
desired physical phenomena. At injection care is taken to retard particle
positions by a half time step in adherence to the leap-frog scheme.
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Particle Velocity Distributions

Particles are injected at the low-field side of our cylindrical box of length
L =_ NAD. To simulate a warm plasma accelerated by external processes,
the injected particles would be drawn ideally from a drifting Maxwellian
velocity distribution. However, previous authors demonstrated "energy in-
stabilities" attributed to current flow through a boundary at floating poten-
tial [48]. Because we expected a time-dependent potential at the injection
boundary, we sought a computational model which retained features of par-
ticle mirroring and drift while allowing simple and current-free injection.

For both ions and electrons we use a cold (delta-function) distribution,
-mvl

fo = Ano6(v - u)exp 2T'

the injection probability is simply P=1 for v - v11 = u and 0 otherwise.
This approach permits a simple numerical algorithm for particle injection
while avoiding these "energy instabilities." As presented in Section 4.2, this
distribution allows straightforward comparison to 'esults expected from a
more general drifting Maxwellian. Indeed, while this distribution results in
simulations consistent with our analyses, thermal processes permit direct
extension of our results to more general situations than this simple approach
might suggest. These aspects will be discussed below.

Particle Injection

The number of particles penetrating a boundary of cross section, A, during
each time step, At, is

fdA." fi:dVAt = rAtA

The flux for an azimuthally symmetric distribution along the magnetic field
axis,

r=. J Jdvidviif(viiii)vii,

is weighted by its parallel velocity.
At any particular time step the probability for injection with perpen-

dicular velocity of magnitude greater than vj _ IV-±I is

P(vI) = j dvig(?7±)/j dv.g(t±) where g =_ dvllJf(v11l)
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Noting that P(0)=I, to distribute velocities for a perpendicular Maxwellian
distribution (g oc exp -mv /2T), we simply choose

v = 2T InP(x)m

where P(x) is a uniform probability distribution and x is a pseudo-random
number distributed on the interval x e [0,1].

In our simulation the particle injection rate is N/At = novoA. This
quantity is fixed by choice of the three parameters, no,vo, and At. To
inject discrete particles, one may either choose these parameters for integer
injection number, N, or he must account for residual particles left behind
at each time step. To maintain a currentless boundary, the actual injection
was most often performed by placing electron guiding centers on top of ions'
and injecting a fixed number of these pairs with identical parallel velocities
at each time step.

Particle Boundary Conditions

Particles that exit at z=L are mirrored to the position 2(L-z) with perpen-
dicular velocities identical to, but parallel velocities opposite, the previous
time stc;p. Various schemes were used at z=0.

Replacing particles at z=0 without considering their attributes, such as
"recycling" particles by exchanging those lost at z=0 with replacements at
z=L, generally do not conserve energy. Therefore, particles lost at z=0 were
most often simply allowed to escape, requiring the potential to maintain
overall system charge neutrality. That is, a sheath was formed.

One alternative was to replace hot plasma, lost during time scales of
interest, with backscattered ionospheric particles cooled by collisions with
neutrals. Steady state requires that the total flux of hot charge balances
that of cold. Approximating v T

rcold = -rhot

_(flv)hot r
T hoi

ncold -- " hot
Vcold .1d

This technique was used to study the effects of these fluxes on simulation
results and agrees with results we report below except, as noted, the ap-
proximation AF = 0 ameliorates the need for a sheath.
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5.3 Simulation Results

5.3.1 Simulation Parameters

We present results from a simulation with Ng - L/AD = 1024, M/m = 25,
wpAt = 0.25, and mirror ratio 7 ; 25 with B at the center point of the
model equal to that at R = 2.5RE and an injection density no = 100crn-
Perpendicular velocities are normally distributed with Ti = 2T, = lkeV.
The ions and electrons share a common injection velocity vinj = .6VFVthe.

These values yield wpe -e Q 1, 'AD P p, ,. 10m, and pi - 100m. Even
in the absence of particle collisions the ion bounce time and loss cone size
determine the extent to which the ion velocity distribution is characterized
by the injected beam. A crude estimate of the bounce time is 7b - 1000/wp,
which allows sufficient time for the bulk of the injected ions to be reflected
by the magnetic field, but only few ions may complete an "orbit" in z.

5.3.2 Chronology

In Figure 5.2 are plots of velocity space vs axial position at times wpet -
2100 and 3300 for a charge neutral plasma injected at z=L. The instanta-
neous relative charge density and electric field are also plotted and can be
compared to the simulation's progress in velocity space.

As the plasma drifts into the dipole magnetic field, a strong electric
field is evident by the acceleration of electrons and slowing of ions at z Z
700AD for wpet = 2100 and z - 750AD for Wpet = 3300. Acceleration is
apparent in the growth of phase space and increase in average velocity to
< ve >t 1.2 5 -1.5Vth, at wpt = 2100 and < v, >,: 2 .OVthe at wpt = 3300 for
electrons and by their contraction and decrease for ions. The instantaneous
electric field and charge densities are maximum near these points, indicating
a potential drop.

Electrons are rapidly scattered in parallel velocity while ions slowly fill
velocity space behind the potential. The width of the electron distributions
implies that their effective paralle! temperature is much greater than the
injection temperature. Underlying the velocity space plots are oscillations
AV,, -vth, with scale lengths A -- lOsAo for both ions and electrons. One
also notes that the potential moves toward the "equator" at a velocity
VDL - (100Ao)/(1200/wp) - .lVthe < Vthi and that its movement coincides
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Figure {5.2: Plotted in these two sets of panels are phase space (v, - z)
(top) and average velocities (bottom) for electrons (left) and ions (center) in
units of electron thermal velocity, plots of the electric field acceleration per
time step (change in parallel velocity) normalized to the thermal velocity
(top right), and instantaneous charge density normalized to the injected
particle density averaged over several cells (bottom right). The spatial grid
is graduated in units of, - z/AD = 100. For this simuiation particles are
injected at s=1024 on the right with the "ionosphere" on the left at s=0.
The plots are for two different times WVpet = 2100 (above) and 3300 (below).
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with the filling of ion velocity space.

5.3.3 Velocity Distributions

Shown in Figure 5.3 are electron and ion velocity distributions at times
wpet = 2100 (top) and 3300 (bottom) at eight equally spaced grid points
from s = z/AD = 64 (upper left) to 960 (lower right). For large z two ion
beams are clearly present. The peaks of these beams converge until, beyond
the potential drop of Figure 5.2, they are indistinguishable. The assymetry
in the electron distribution at large z indicates velocity components in both,
but particularly the forward (injection), directions. For intermediate z val-
ues the effect of the electric field is evident where the electron distribution
spreads and flattens. At smaller z the distribution spreads to greater and
greater widths but then again narrows.

Accounting for differences in mass, the spread of the two species' veloc-
ities are comparable at large and very small z, indicating roughly the same
temperatures. However, near the potential drop the ions remain beams and
their velocities spread relatively less than those of the thermal electrons.
These observations are borne out in the next two figures (5.4 and 5.5)
obtained for a gc simulation with parameters identical to this simulation
except for T = 1 at injection.

T.

5.3.4 Stringer Plots

Figures 5.4 and 5.5, as those presented by Stringer[471, display velocity
differences and temperature ratios as functions of position for each pair
of constituents in counterstreaming plasmas. One set, Figure 5.4, por-
trays differential (current-carrying) flows between ions and electrons. The
other set, Figure 5.5, displays differential ion-ion, electron-electron and ion-
electron flows between counterstreaming neutral beams. At right of each
set of differential velocity and temperature ratio plots are their point values
for each of several positions along the axis. Comparison of these plots to
regions of instability, while considering differences in ion mass and a factor
of two difference in like species counterstreaming velocities, were intended
to identify possible regions of instability.

Stringer's plots were based on drifting Maxwellian distributions and a
realistic mass ratio (1836). But, as discussed in Section 5.4.3 below, our
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Figure 5.4: These are current carrying flows at Wpet = 2600. The top figure
displays positive flowing ions and negative flowing electrons. The bottom
is the opposite comparison. Differential velocities are in units of Vthe while
the position is graduated in units of 100s of Debye lengths.
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Figure 5.5: The same comparisons as the previous figure's but for counter-
streaming neutral beams. The top left panel represents counterstreaming
ions (positive velocities) and electrons (negative velocities). Because the e-e
wave is unstable at any temperature for Av > 2 . 6 Vth,, it is omitted from
the adjoining two plots. The two bottom rows represent the negative (top)
and positive (bottom) ion beams interacting with the combined electron
beams.
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simulation certainly leads to other nearby distributions. Therefore, com-
parison of these plots to those of Stringer yield only mF"g_,inal evidence of
instabilities. However, of note are the depressed temperature ratios between
component ions and electrons, roughly coinciding to the region following
the double layer. These plots are also useful for observing the velocities of
individual beam components. At left, in Figures 5.4, we have the presence
of a sheath. In Figure 5.5, the top left panel indicates the effect of the po-
tential in slowing the ions. Irregularity of negative velocities in the middle
left plot admits to instabilities.

5.3.5 Electric Field Potential

The relative charge densities, electric field, and electric potential are plotted
in Figure 5.6 around wpet = 2750. While the electric field acceleration
remains small during any time step, the cell to cell variation in density can
be quite large. A smoothing algorithm, used to "best fit" the data within
bands of fixed "standard deviation", resulted in the continuous curves in
the density and electric field plots. A double layer is evident at z = 8 0 0AD,
where there is a large potential drop, a spike in the electric field, and the
characteristic back to back positive and negative layers of charge. A smaller
double layer is apparent at z ; 875\D. The magnitude of the maximum
potential drop is V - 6.5 - 7.5, while the total potential difference between
particle injection at z=L and loss at z=0 is 3.25. Also apparent is a sheath
at z = 0, indicated by the presence of the negative electric field gradient
and the jump in potential.

5.3.6 Wave Spectra

At right of the electric field and potential in Figure 5.6 are the energy
densities in k-space. The mode structure gives wavelengths most strongly
peaked near k = 0 and around kADI/V ,- .1. These correspond to longer
scale lengths visible in the electric field, 1 -• 40\D, and shorter ones, T ,
20\D, apparent in the potential and charge density.

Plotted in Figure 5.7 are the frequency spectra for different positions.
These spectra are measured in the rest frame of the simulation but are
Doppler shifted (w ± kV) by the constituents' velocities. The units of
the abscissa are tenths of iwP. The spectra are most strongly peaked
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Figure 5.6: Plotted on this panel at left are the normalized charge density
(top) and electric field (middle) averaged from wp, t = 2750 to 3000. On the
bottom is the electric potential normalized to the perpendicular injection
temperature. At right are the Fourier energy densities Ek,/4•r (top) and
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81



near 0.3 for large z and around .06 and its harmonics for decreasing z.
These correspond to oscillations at the electron and ion plasma frequencies
respectively.

5.3.7 Energies

In Figure 5.8 we plot energies normalized to the injected energies of the
particles measured during the simulation. By wpet - 1250 the plasma has
crossed the simulation region and energy is lost at s=0. Loss rates of ion and
electron energies indicate comparable exit currents as required to maintain
overall charge neutrality in the simulation. The collective potential energy
is a small fraction of the total. Midway through the simulation the waves
have saturated and the ion and electron energies approach steady state
with the ion energy about twice that of the electrons. As evident in the
first panel, total energy is conserved to within much less than 1 percent.

5.4 Discussion

5.4.1 Plasma Instabilities

Although a spread in parallel velocities is a natural consequence for mir-
roring particles with thermal perpendicular velocities, the observed shape
of the distributions in these simulations is accounted for only by additional
processes. In absence of "collisions" the parallel distribution function for
the two species is, using the notation of Chapter 4 (Eqn. 4.5),

2irA B Ko-V--K
g oc exp-( )H(Ko- K- V)

m AB Y
and the peaks of the two species separate. as they encounter the increasing
quasineutral potential. Owing to the Heaviside function, the shape of these
distributions presents a cold ion beam but thermal electron distribution to
waves traveling at speeds greater than the ion drift velocity but less than
that of the electrons and ions, oscillating at their plasma frequency, may
be excited by electrons drifting through them. This instability accounts for
the observed drifting electron distribution with a peak coincident to the
ions', but with a "temperature" on the order of the electric field potential,
eA0 ,.- piAB, necessary to maintain quasineutrality. This temperature
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Figure 5.8: Plotted in these panels is the energy budget vs. time (wp~t)
for the simulation. At upper left is total particle energy normalized to
the total injected energy. This account is divided between energies of ions
and electrons as displayed in the two succeeding panels. At bottom left is
the normalized potential energy (Ei q41Ei,,.i.) To its right is the energy
contained in particles lost from the system.
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spread is evident both in the plots of the particles' phase-space (Fig. 5.2)
and their velocity distributions (Fig. 5.3).

As the beams are reflected by the magnetic field and electrons are ac-
celerated in the double layer potential, the constituents become susceptible
to other two-stream instabilities. Electrons in one beam, excited by those
in the opposing beam both with mean velocities v > 1. 3Vthe, take part in
oscillations with w ; wpe and A - AD and acquire a spread in velocities on
the order of the ions' drift [47].

With T <« T, the plasma is vulnerable to electron/ion instabilities at
the ion plasma frequency. Figures 5.4 and 5.5 show temperature ratios,
particularly for down-streaming ions on the high potential side of the dou-
ble layer, potentially unstable to electron beams drifting through them with
velocities greater than V, - .924(1.2)/21[27], either combined or singly, with
two attendant possible modes of oscillation. Consistent with the observed
spectra, these oscillations have w ý•wpi and wavelengths on the order of
ADi, the local AD for T, -' jMv. Both ions and electrons participate in
these oscillations. However, most of the excitation energy is converted to
ion thermal energy when the wave, having trapped the ion peak, breaks
and heats ions at expense of the bulk of electrons, accelerated by the elec-
tric potential. Paranthetically, the ion-ion wave is not permitted in our
simulation, since we average charge over a debye length.

5.4.2 A Kinetic Approach to Double Layers
The Langmuir condition requires that the difference in electric field pressure
across the double layer be zero. Any difference in pressure will result in
movement of the double layer until equilibrium is reached. This equilibrium
need not be stationary.

In the rest frame the double layer momentum is
rZJ +(Zt)

Q _(ii) Adx I dvmf•,(x,v,t)v

where, as depicted in Figure 5.9, x+ and x- are the time-dependent spatial
limits of the double laycr defined by ni = n, and A is its constant cross
section. The pressure on its surface must be

dP f + r-f dx) +dx f
P j vM,[Idx(-+. f±--)L,

Adt & dt dm
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Figure 5.9: This shows the symbology we use for integration through the
DL.

where the second term in parentheses is the change in momentum due to
movement and changing size of the DL -while the first term is the pressure
due to the time-dependent behaviour of the particle distributions.

Ignoring collisions and in the absence of instabilities, the Vlasov equa-
tion 3.2(a) allows us to substitute for the first term

(-+ V . Vf) = -at. VJf

The second term may be broken into motion of the DL with velocity
VDL(X, t), defined at its center where ni = n,, and the rate of change in

its volume due to movement of its endpoints

dx d t dL

"di -"(L +j VDLdt) = + VDL

The equation for the pressure becomes
dL X+

p dvmav[- J dxd. V- f+ (VDL + dl

86



Only acceleration and reflection of ions and electrons in the electric field of
the DL contribute to its recoil. This component is present in the first term
while the second term admits the resulting movement of the DL.

When the first term is in balance, an equilibrium may exist with VDL +
dL 0 0. For stationary double layers and symmetric velocity distributions
the second term vanishes and, in absence of external forces, an equilibrium
can only be established with

Emnon dxa tiJ dvv isft btoJ dxE(vflow o- Jidvf) ,  i

JOE
- . fq0 dxEn0 , = dxE-=0,

COx

where we have integrated by parts and used Poisson's equation 3. 1(a). This
is Langmuir's jump condition. In steady state, for stationary double layers
and non-symmetric particle distributions, current must flow to maintain a
momentum balance between accelerated ions and electrons [6].

When one includes wave particle interactions, an additional term, afCott
contributes to evolution of particle distributions. The distributions for an
injected/reflected pair of beams will no longer be symmetric since reflected
beams "carry the memory" of changes in their distributions along the entire
path they traverse. That is f(x, v-) f(x, v+). In this instance a non-
stationary equilibrium

dL ]+ •,dvmcv d(f w
Z dvmav(VDL + V).j I -Zdmv dV(tu

dL+
or P(VDL -"T - RHS

with VDL RHS PdL/dt +-withT -D -A A p

may be found. The physical interpretation is that the double layer will
move or change in volume in response to changes in particle momentum
[26, p. 5,eq. 27 a,b] until an equilibrium with VDL + I = 0 is reached.

Formally, we may approximate the collision term as

S= - (ao. V ,,f + a, o V f0)
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Figure 5.10: Plotted in this figure is maximum potential energy vs. injected
ion energy in terms of the particle thermal energy. The analytic expression
for the expected points plotted in this graph is given by Eqn. 4.6.

If the scale length of the DL is far removed from the wavelength of the
instability (L > A), we may ignore the contribution of the DL potential to
velocity space diffusion from instabilities, that is

Ofo 8 q 2 E2 Ofo
& 9ou m w - k= 9v

In our simulation with 2lco1 ;-- -vf, v < wi, and dx z AD(#) a rough
estimate of the equilibrium drift velocity is VDL = vAD(±) <_ c. [18], on
order of that observed.

5.4.3 Comparison with Plasma Jet Analysis

In Chapter 4 we calculated the potential due to a neutral jet of plasma
with constant parallel velocity but with perpendicular Maxwellian velocity
distributions. Plotted at Figure 5.10 are the kinetic energies of injected
ions vs maximum and total potentials for simulations with different mass
ratios. Simulations with cold plasma injected at the "ionosphere" exhibited
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little difference between the two potentials and therefore appear as single
points.

The two sets of lines visible in the data are estimates of the maximum
potential (solid lines) and total potential difference from injection to exit
(dotted lines). As discussed in Chapter 4, the maximum maintains local
quasineutrality while the injection voltage assures global charge conserva-
tion. Our analysis predicted a roughly linear dependence between both
potentials and the injected ion kinetic energy. Additionally, the total po-
tential is dependent on both the temperature ratio and the mass ratios of
the two species and the mirror ratio between injection and exit. In the limit
of large mass and mirror ratios the expected slope for the total potential
was 1 of the ion kinetic energy for Ti = T,. These predictions are the two
lines passing through the origin.

The second set of lines with non-zero y-intercepts are the least-squares
best fits to the data. Use of cold ions and electrons, effective Te/Ti 3 1, in-
stabilities which modified particle distributions, and caused non-monotonic
potentials contributed to differences between the two sets of lines.

We compare the potential expected from two drifting Maxwellians to
that from a beam of ions and Maxwellian electrons by dividing the potential
into four regions. In the first, the ion density is approximately that for a
cold beam where ni oc F -'•. For quasineutrality

B0
n,= rz,0 n0 /(1 -

eql - yAB BIn B I (1V ( 1

T Bo 2 K 0

VI (ln 1+Yj)/(1 - )
Bo2K

and, unlike the case for drifting Maxwellians, the potential in region I is
only weakly dependent on the ion kinetic energy.

The boundaries of the second region are defined by points just before
and after the double layer. Noting that the ion density may increase from
its injected value before an inflection point at F(1.5) = .43 to a maximum
defined by F(.92) = .54 [1, p.298], a rough estimate of the magnitude of
the DL is obtained by setting the argument of F to 1.

K i - V II z
y1

Y8
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V 1 •-, K- Y

and the maximum potential is VM = V1 + V1i , KI + In B-L The value ofBo"

the potential drop is directly dependent on the ion kinetic energy at the
DL's base. Indeed, since the DL must begin before the inflection point,
S< 2.25 or KI > VII > KI - 2.25Y1 and Y, < KI/2.25. The fact

that the potential is less than the injected ion kinetic energy relates to the
investment of ion energy into thermal energy of the electrons.

One key to double layer existence is the slope of the electron distribution
function vs that of the ions. Again, using ni oc F,

ni.__= K°-VIV ) K° - Vini- =: )½-ý-TI < 2(.54)XI

Similarly, quasineutrality demands

nell/nel < 2(.54)XI

expV11 < 1.08XI

V1 I< -lnXi
< 1 In KI

2 Y1

This condition is equivalent to a Bohm criteria where the electron slope at
the double layer's start is required to be greater than the ions' ('e > F 21)T F 80F

but less than that at the inflection point (ne < FP'$1==.s). Satisfaction
of a similar relationship at the high potential end of the double layer is
guaranteed by the shape of the ion distribution function [35].

Because electrons gain and ions lose a substantial fraction of the ion
kinetic energy at the double layer, in the third region a decreasing poten-
tial may be required to maintain quasineutrality. Generally, however, the
potential is relatively flat (Vill = 0) and we approximate both ions and
electrons as beams.

In the fourth region, at the boundary of the simulation, a sheath must
exist to balance the electron and ion current losses. For cold beams a rough
estimate of the needed potential is

_KI - kil

2
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2Yj - (Kt - Yt) - kt Kt + k, t

2 = ( 2 Y)

so the total potential for current equality is

Bo

Bo

While the intercepts of the two potentials are sensitive to double layer
location and the actual distributions of ions and electrons, the relative
slopes between the two potentials observed in our simulations agree well
with this heuristic approach.
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Chapter 6

2D Simulation

Results for two-dimensional runs are presented for comparison to the one-
dimensional results of the previous chapter. Although the physical model
is the same as for 1D, the two dimensional simulation requires extending
the Poisson solver beyond simple integration used in the previous chapter.
We discuss these aspects more fully in Appendices B and C. Similarly, as
discussed in Appendix A, refinement of the particle pusher is required to
permit following greater numbers of particles contained in our two dimen-
sional "volume" for a reasonable period of time.

6.1 Computational Model

6.1.1 Electric Field

Electric Field Grid

The model and boundary conditions, pictured in the accompanying sketch,
are similar to those in z for 1D, but now the electric potential also varies
radially in r. Now, to collect charge and compute the potential, a two-
dimensional mesh in r and z overlays the simulation region. The cell size
for both directions is AD, as in the ID case.

Charge Sharing/Force Interpolation

The weighting scheme chosen in 1D may be interpreted as a dipole expan-
sion of the charge density about the midpoint between cells [29]. In two
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Figure 6.1: The two dimensional model. The coordinates at top left are
z,r=O. At bottom right they are z=L, r=R. Boundary conditions in z are
those for 1D. That at r=O are appropriate for continuous charge distribu-
tions. Although we show O(R) = 0, the boundary condition at r=R is
9exible.
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dimensions a similar expansion including a quadrupole term yields a scheme
known as area weighting [5, p. 244]. This approach is roughly equivalent
to the scheme used here.

In 1D charge sharing/force interpolation derived from treating particles
as plates, one-cell thick of uniform charge density. In two-dimensions (r-z)
we may use the same approach in the z direction. In r, however, we treat
the particle as a one cell thick ring which varies radially to maintain total
charge, q = 7rp(r•+i - r2 1 )Az. Therefore,

P 1
2rr Azr <2

where ri.1 aad ri i are the outer and inner bounds of the particle.
Using Gauss' Law, the electric fields at a radial location, r, are

rEr = r+[6Er(r+,z+)+(1-b)Er(r+,z_)]( rr+-

+ r- [Er(r _, z+) + (1 - )Er(r _,z _)]( r++ - )

r2 _ 2 r2 - 2

Elz = [E 2(r+,.z+)( - +Ez(r, z+)(rý. 2

2 r!.
+ (1 - b)[E•(r+,z)( r2 2r)+E(r z)( r22A

r2_ r 2' r_

where the plises(+) and minuses(-) indicate the upper and lower cells into
which the particle extends.

The radial and axial electric forces are then calculated as

F, 27r jrdrpE =_ q+Er+ + qEr_,

F. =q-- E. = Eýý+ + (1 - 6)E._
q

One must use care in calculating the force due to the magnetic field.
This force should act at the charge center of the particle [8] which is located
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at

Fr2+riS=

= (i+ 1 )Ivlr- <
22

Poisson Solver

Computation of the electric field is obtained by implementing Buneman's
algorithm for mixed boundary conditions (Appendix C), solving for the
potential and ultimately the electric fields.

Boundary Conditions

The boundary conditions at z = 0 and L are those of the preceding chap-
ter. The boundary condition at r=O attests to the continuous particle
distributions-no line charge. For high order radial modes the boundary
condition at r=R is flexible. In two dimensions we may express the solu-
tions to Poisson's equation 3.1(a) in terms of Bessel functions (Appendix
B)-¢(R) = 0 or E,(R) = 0 just shifts the solution by a node. Since we
model a wide enough radial region to expect the presence of several modes,
this choice is not critical.

At r = R and z = 0 we allow the charge in particles "hanging over the
edge" to be lost. At z = L we take advantage of inversion symmetry and
mirror particles as for 1D.

6.1.2 Particles

Particle Pusher

For the ions we retain the full Boris pusher of the previous simulations.
For the electrons, however, we adopt a guiding center pusher, as described
below. In particle pushing schemes including gyromotion, length of the time
step is constrained by the gyroperiod (Appendix A.) In a simulation with a
magnetic field gradient, such as a dipole's, this limits the magnitude of the
magnetic field at exit, and, when the field at injection assumes particular
values, ultimately the mirror ratio. We desire to adopt a scheme which
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ameliorates this condition. Averaging particle motion over Larmor orbits
results in the set [321

m dv jj -E I p B On _ 0 61 O: + 6_ - + -- E "(-•- + V11- +UE" l
e dt e Os euE ati+ II±u9e1

e _+ sc - mc de1  df!E
R- = {-cE + VB + -[v 1 -- + dt '"

B e e dt
The desirability of time-centered schemes is discussed in Appendix A.

In general, this set of equations is not amenable to time-centering. However,
in cylindrical coordinates, because both E and stationary B lie in the -, F
plane,

dvl__[ = cEil _LOgBMT- + LE (U.E )

dt m mOs
and

q<E >xb
v ~ Vd + -____m f

where V-d = [0 + (L-± + -au'] U is entirely in the $

direction for low oscillation frequencies (w < Q) and small radial scale
lengths (p < R,). With axial symmetry this perpendicular component can
be ignored in moving particles.

Subtracting i'± from
di_ = + +
dt

leaves

and differentiating the parallel velocity leads to a time-centered expression
in the r-z plane,

= dvIlj 2 Obr + Ob-^
dt dt + O•-•s

2 - - + - Z-21 = [d 32(1 cos)(X)/r/(1(3 COS2)]o
At + At - -- +

Strictly, the guiding center approximation is not applicable within the
double layer itself. However, as demonstrated in one dimension, for suffi-
ciently narrow double layers, the pusher well models the bulk of the simu-
lation volume.
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Particle Injection

The particles are distributed in r and injected uniformly at the injection
boundary. As for our 1D simulation the full dipole magnetic field is super-
imposed on our mesh. However, for the two dimensional model the dipole
is mirrored at the injection boundary (z = L), and the symmetric field
calculated accordingly. This technique allows injection entirely in the z di-
rection while distributing the particles in r. The radial injection is designed
to extend many ion Larmor radii while keeping plasma from being lost out
the sides.

6.2 Two Dimensional Results

6.2.1 Simulation Parameters

The attached plots are for a mass ratio of 25, a mirror ratio -y - 11,
simulation length of L = 128AD and width R = 64AD. Temperatures are
Ti = 2Te = lO00keV. Both ions and electrons are injected uniformly with
vdrift -, 3vf2/5Vth, at the boundary z = L for r < 32AD. These are the
same values as for the previous simulations and therefore have the same
relative scale lengths and times.

6.2.2 Chronology

As pictured in Figure 6.2, the electrons are reflected rapidly by the mirror
field. Initially the electrostatic potential is - kT,, as the ions attempt to
neutralize the front-going electrons. As for the one-dimensional case, they
rapidly attain an effective parallel temperature ,-, kT,. Particles with large
drift velocity may result from E x B drifts.

6.2.3 Velocity Distributions

Underlying velocity space plots for both ions and electrons are oscillations
of amplitude < kTe. As in the one dimensional case, ions fill velocity space.
The profile of the velocity distributions, Figure 6.3, moderately into the
injection region shows ion velocities embedded in a two- peaked electron
velocity distribution. The relative drifts between the electrons not only
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Figure 6.2: Plotted in this chapter are run results for wpot = 200 (top) and
wpet = 250 (bottom). In this figure the left plots are normalized ion (top)
and electron (bottom) velocities, the middle set is average velocities, and
at right are fractions of trapped (reflected) particles versus axial position.
Ion velocities in the left panels are normalized to half the electron thermal

velocities (wpeAt = .5) to which the remainder are normalized.
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allow the ions to interact with both distributions but may be sufficient for
an electron-electron two-stream instability.

While use of the guiding center pusher eliminates opportunity to ob-
serve electron cyclotron waves (partially responsible for diffuse aurorae),
one would expect electrostatic ion cyclotron modes (k± > k1l) to be present.
Even though the simulation proceeds for many IlAt, the influence of these
waves cannot be distinguished from these plots. Overall, the gross results
compare well with the ion acoustic scenario presented in the previous sec-
tion.

6.2.4 Electric Field Potential

The large scale potential is of the order to maintain charge neutrality. At
later times, wpet - 200, a sharp potential drop is readily apparent from
s -. 75. The magnitude is - 7kTe. However, its movement is not apparent,
or it actually may be receding. Reminiscent of the V-shaped potentials
encountered in nature [51], the potential contour plots clearly evidence a
gross radial scale size of the jet - 32AD (as broadened by the ion gyroradius)
necking down to about 1/3 that value at the left boundary, corresponding
with a similar increase in B. The local scale size for the potential is far
more granular.

Also plotted here, the densities show a marked increase as the particles
slow down in the effective potential and then slowly decrease to the left
boundary as particles are reflected.

6.3 Discussion

Quantitatively and qualitatively the two-dimensional simulation results agree
well with the one-dimensional results. This is evidenced particularly in the
velocity space diagnostics. Although we may expect break-down of the
guiding center approximation for f E dt too great and from ignoring com-
ponents of particle movement, gross simulation energy is well conserved, as
shown in Figure 6.5. The question of stationarity in 2D is open. While,
the solutions may be altered by the additional source term (4-2) in the
Poissons equation from its 1D form [9], the additional degree of freedom
for particles and waves need further exploration.
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Figure 6.3: Plotted are the velocity distributions for the electrons and ions
at eight points from z = 0 (top left to z = L (bottom center).
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Chapter 7

Conclusion

Our dissertation goal was to investigate the detailed spatial and temporal
behaviour of potentials in the scenario of Serizawa and Sato [42]. We ob-
tained analytic confirmation of their semi-empirical result that global large
scale potentials may exist for plasmas injected into a dipole magnetic field.
The potential is proportional to the kinetic energy of the injected ions, as
given by equation (4.6). However, our analyses in Section 4.3 further sug-
gest that local double layer solutions are to be expected in the parameter
regimes considered. These expectations were verified by particle simulation
in one and two dimensions and the results are described in Chapters 5 and
6.

We were led to our analytic results in search of a simple computational
model. We therefore investigated analytic properties of increasingly more
realistic particle distributions. In a cold drifting plasma the current and
density are locked together by equation (4.4) so that the global and local
solutions are inextricably linked. Thus, in Section 4.1 we demonstrated
that, although a large scale potential, equation (4.2), exists, it neither per-
mits local double layer solutions nor guarantees acceleration of incident
particles.

With perpendicular and parallel temperatures, global potentials, Eqn.
(4.6), retain the same functional dependence on ion kinetic energy (-, K,)
as for the cold case, and maps of their relative charge densities exhibit re-
markably constant properties. However, some distributions lead to local
double layer solutions, others do not. In sections 4.2 and 4.3 we demon-
strated that the local double layer solutions are provided opportunity by
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the Maxwellian plasmas and cold (parallel) ions. Local analyses indicated
this in section 4.3.2 and Figure 4.6.

The analytic results can be couched in terms of global and local require-
ments for charge neutrality. Global neutrality is guaranteed by equal exit
currents into the loss cone while demands of local neutrality may lead to
double layers. The conditions for a double layer are indicated by multi-
valued solutions to the quasi-neutral equation (3.6). These solutions are
present only when the slopes of underlying velocity distributions permit
(as allowed by Bohm's criteria discussed in Section 3.4.1) and the mo-
mentum balance of particles rebounding or accelerating in the potential
is maintained (Langmuir's condition.) Equivalently, Langmuir's condition,
equation (3.9), may be interpreted graphically as areas of equal charge
densities integrated over the double layer potential (Section 5.4.2.)

Indeed Bohm criteria and Langmuir's condition are just as operative as
ever. All the theory of Chapter 3 is consistent. In section 3.4 we showed
that the Bohm criteria were equivalent to conditions on the charge density.
In section 3.6 we related these conditions to treatment of currentless dou-
ble layers. However, the Bohm criteria are necessary but not sufficient to
guarantee a solution. While the frame of the double layer is important, the
real requirement is on particle distributions, not average quantities such as
injection velocity.

To explore the temporal behaviour of our analytic results, in Chapters
5 and 6 we simulated a drifting plasma incident upon a dipole magnetic
field in one and two dimensions. While previous double layer simulations
modeled constant magnetic fields and fixed potentials [43], to our knowledge
this is the first simulation of DL formation combining particle injection,
floating potentials, and realistic magnetic fields. In the one dimensional
simulations, a double layer of several kT with scale length I ,- AD < R, the
magnetic field scale length, is clearly apparent in Figure 5.6.

As discussed in section 5.4.3 and shown in Figure 5.10, our simulation
results compare well with analytic predictions [421, and correspond qualita-
tively with laboratory experiments j44], theory, and simulations examining
the role of plasma jets into the earth's polar regions [42] and agree in mag-
nitude with their predictions. In contrast, previous theory [52] and simu-
lations [141 predicted an electric field E 0c L (1 - R.) These, however,
assumed self-consistent distributions of particles in quasineutral electro-
static fields, thereby ignoring those portions of solution space reserved for
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double layers. Our results bear out Stern's more general approach[45] of
treating the double layer as an extension of quasineutrality but on a coarser
(than AD) scale.

Our simulations have proven valuable in considering access to double
layer solutions which match the required global potential[42]. While the-
ory shows that double layers may form with self-consistent particle distri-
butions, consideration of overall charge neutrality demands that the total
potential drop across the model boundaries be constrained to a particular
value. Local and global solutions need not match. Adjudication of any
difference between these opposing potentials obeys the spatially depen-
dent solution of Poisson's Equation coupled to the particles' distributions
throughout the simulation region. While the global condition depends on
the presence of particles in the loss cone, the double layer solution ulti-
mately depends on local conditions. In our simulations differences between
the boundary solution required for global charge neutrality and the local
solution for the potential resulted in a sheath at the exit boundary.

Potential and particle distributions must be self-consistent in time.
Perkins and Sun [35] analyzed the instability criteria for distributions such
as ours. As expected, both ion and electron beams are subject to streaming
instabilities. The instabilities, evident in temperature and velocity space
plots of Figures 5.1-5.5, are consistent with the ion acoustic instability (with
both electron beams) in one dimension. At first, the electrons rapidly ther-
malize while the ions remain cold. The waves scatter the ions in velocity
space. Coincident with this scattering, the double layer moves to the low
field side. The double layer approaches and rests near the boundary (z=L).

In consonance with [35] and suggested by [6], the frame of the double
layer is important. When stability is reached the final distributions must
be consistent with the final potential, and instabilites affect both. The role
of instabilities is to alter particle distributions, and this requires the dou-
ble layer to move. In section 5.4 we explained the movement in terms of
momentum conservation, or Langmuir's condition, versus Block's descrip-
tion in electrical terms. Momentum conservation demands that the double
layer adjust itself to where a local solution exists. The momentum lost is
attributed to waves, in analogy with quasilinear theory [26]. Unlike ours
Stenzel et al' double layers were stationary[44]. However, they attributed
this property to a species of trapped electrons characteristic of their exper-
iment.
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The theory we have reviewed is essentially 1D but requires considera-
tions of a second dimension. The two dimer.sional code has been sucess-
fully employed, but 2D results remain quite preliminary. It shares the same
global behaviour but not alli details of the .ocal behaviour of the 1D results.
In particular the 2D results lead to -maller magnitude double layers, and
their movement is not apparent. Because our 2D diagnostics were not as
extensive as in one dimension, we are unable at this time to verify the role
of electrostatic ion cyclotron waves. However, the code should see future
utility in more fully observing the effect of the extra degree of freedom. For
example, in two dimensions it may be useful to model off-axis behaviour
for our scenario or to model other scenarios such as that of Perkins and
Sun. We discuss below.

Our B field provided an adjustable parameter called for by [35]. How-
ever, we modeled a sudden entrance of plasma into a region to simulate
behaviour during a substorm. In our scenario we observe a rapid injection
with few bounce times. The distributions are dominated by injected parti-
cles. Other situations may allow many bounce times, such as when particles
are injected into a magnetic mirror [151. In this model both ions and elec-
trons are Maxwellian, because the ions have time to explore adjacent cells
where collisions predominate. In our model instabilities we observe play a
similar role. Given more than a few bounce times or increased collision fre-
quency and sufficient confinement time, we expect to similarly populate our
model, in which case an equilibrium with stationary double layers should
be reached [35], [15]. Under these conditions a particle undergoing many
bounces will lose memory of its injection velocity. Ultimately, however, the
Langmuir's condition must be satisfied, requiring the double layer to adjust
to some stationary equilibrium.

Longer simulation runs may be needed to explore the full behaviour of
the double layers such as these. In that regard, usefulness of a guiding
center pusher, developed in Appendix A, was demonstrated. Even in two
dimensions it requires no corrector for stability. However, a more rigorous
implementation of the guiding center approximation would be most useful
for considering perpendicular phenomena in the E,B plane.

Simulations depending on Fourier transforms to solve for the potential
[17] may be plagued by errors in the field calculation. In our 1D simulations
these errors were traced to aliasing in a bounded plasma. In Appendix B
a correction for aliasing has been derived to ameliorate its effects, and
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this correction was sucessfully employed in one dimension. Our approach
suggests an "optimal" particle shape based on two-body correlations to
account for collisions. In Appendix C we developed Buneman's algorithm
for the mixed boundary conditions of our bounded 2D simulation.

In our simulations we used a simple injection scheme to avoid "energy
instabilities." This is analgous to and suffers from the save problems as
"quiet starts" [5] to distribute particles in angles. It proved adequate for
the 1D results. However, random injection with varying velocities (and

densities) of particles would be more realistic and still avoid some of the
cautions for steady injection.

Ideally, if charge neutrality is to be observed throughout the simulation
region, f ds(%E = -J) = 0 at the boundaries. Writing this law in terms ofJ at -

the total charge entering a flux tube originating at the earth, we must have
f A1 " dA, = - f J,± dAoido. The influx of current into the magnetic field
flux tubes must be balanced by that across the magnetic field. If there is
to be a net current out of the simulation, then, to be totally self-consistent,
one needs to treat it as part of a circuit as did Sato and Okuda [37]. For
discussion see Reference [43].

Finally, the role of background plasma in, for example, adjudicating
the potential difference between local and global conditions has yet to be

fully explored. Its role was discussed to some extent in section 5.2.3. Such
techniques are worthy of future consideration.
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Appendix A

Particle Pushers

A.1 The "Leap Frog" Scheme

A non-relativistic charged particle in external electric and magnetic fields
obeys the Lorentz force law

r=m-' =q(E-+ x) (3.3)

[24, p.572]. To advance particles with discrete time steps (At), we seek
a difference equation analog to (3.3) together with the similar expression
for the velocity, !L-• = iV, which accurately models particle trajectories and
is also stable to small deviations (due to round-off error, etc.) from the
correct solution.

A MacLaurin expansion of (3.3) gives to lowest order in At

- _qAt - 1 -hi~i 0oV_-_ = t[E 0 + ( 2 2 ) X ]+ o(At2 ) (A.1)2 2 m 2

This equation along with its position counterpart,

X1 - X0
At= VI..At -0•

is known as the"Leap-Frog" scheme. Its name derives from alternate deter-
mination of velocities and functions of position, as pictured in Fig. A.1. We
shall note that this time-cent, red scheme provides accuracy and favorable
stability properties.
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Figure A.1: Pictured here is the Leapfrog scheme in which velocities and
functions of position are determined at interleaved time steps. (After [5,
Fig. 2-4a, p.13].)

When E and BI fields are constant, we may obtain the solution to (3.3)
by substituting V- = U- + WE where WE = c-Oy-, leaving

d! _ (9 x B)
dt m C

where Ell = E. B/Bb. Setting Q = LB/c and operating on both sides with
xQ givesd2 -- - where Ail and fil- B/Bb. Using the

gvsdt 2  - L w - .1.

initial conditions, u 20  u 2(0) = 0 and u 30  u3(0) = u±0 , the continuous
solution for the perpendicular velocity is 1x = u.0[cos Qt3 - sin fltg].

The solution to (A.1) is obtained in a similar fashion. To lowest order,
-½ - U_1 4½ + .4

2At - 2 2 2 Xo + Elio

Multiplying each side by At and adding 2if_½ yield
2

2 x fAt+2i_+ ElloAt
2 2-2 2

_ [if½ + I 1._½]a2 + -_ xU 2-_ EIloAt

= 1- a2 - 2a + l+ 0Aul ! •u''_- + if-½ x 1 --- &+ 1ll- +lo
2 + a2~- 2 2 2

where a' a- 0e'
2
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Figure A.2: This is the magnetic coordinate system.

Separating this (vector) equation into its three scalar components ac-

cording to the coordinate system defined in Figure A.2,

uj½ ul_½ + EloAt
2 2

U2 ½. = + f2u3_½

U31= fIU3 -½ - f 2u 2-,
where f2 =2-'2

where f, = and f2 ='-"The last two equations may be most

conveniently expressed as L. =R " ia.- where R is the tensor

- f, f2R=[ f2 fI
f'* 2 +-f222= (1-c )2

We note that the determinant I R I = fi• + f• = (i''2 J+ C'tj2 = 1 so

the operator R is a pure rotation in the plane perpendicular to B. This
means that the magnitude of the velocity component perpendicular to B

is conserved.
Because our particle maintains its perpendicular velocity in constant

E and uniform B fields, its guiding center moves at the correct velocity,
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V9C = vll~l + WE, and along its correct path. However, corrections must
be introduced to maintain the trajectory for the particle. Using half-angle
formulas for the sine and cosine [41], after one time step the continuous

•_ 2tann~t

phase angle is £At = tan (1-t( 2 sl, )- However, since
2

2a
U21 = 1-+ a2U0

1- a2

U3 1 = 1 -+a2 U0 ,

the discrete phase angle is tan-l(-!!) = tan-(-2). While equal in the
limit At -- 0, only a = tana maintains the same phase for all At.

Similarly, for utL to represent the correct particle orbit, we must equate
the difference equation

At 2

to
df2i
dt

where here /is the Larmor radius. Using the known solution for the correct
particle position, f3 = p(0)(cos ndt2 + sin Q6), the discrete solution is

QAt Pat_
p-(At) - P-TO) = UI½ At = fZP0[- sin - 2 + cos 3]At

Y 2 2

giving the particle position after one time step as

p2(At) = po - p0 sin( Q )QAt

p3(At) = Po cos( - )SIAt

2
with Larmor radius

22( _ sin a),
Pi = P2+ = po[l+ 4 a (1-

a

This agrees with the continuous solution only for sin a = a.
Recognizing that, in general, the solution to the difference equation

does not match the physical solution, we may introduce coefficients, A(At),
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into the difference equations to obtain identical continuous and discrete
trajectories for all At while the difference and continuous equations are the
same in the limit of small time steps, limat-.o A = 1. Defining A. = sif,_

and An = , we have

at- A L-½ + WEI. + V½

(vI -- V < go > XBO(]
Y) = [0 + A(E + (A.2)

At m c

where < V-0 >= 7 A particularly efficient implementation of this
2

scheme breaks the equation for the velocity into an acceleration by the
electric field and a pure rotation by the magnetic field, and is known as the
Boris algorithm [8].

Accuracy

This scheme was derived for constant E and B and is the correct solution
for the first RHS term in (A.1). Setting XF = x'o + Ax + g, we obtain the
error after one time step.

2±½At

X± -X0= j dtV

A ý= G3At

i = f Vdt - A-

dd At 3
~ ( -101

Stability

For simplicity consider (A.2) only for constant B and one-dimensional E =
EiI(s)b. Setting Fn = ,,nO + bX,,, the difference equation for the error, 6', in
the parallel direction is

6(Xl -- 210 + X--1 ) = 0 m) t

= (-V --. EAt 2 )bo
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-4'r6ne 2At 2

The maximum t5E occurs for Ni1bo -. N&F0 or 6n = no. This is equiv-
alent to displacing all the particles together. We may obtain a dispersion
relation for this scheme by (z) transforming to 6bx = $xoe"A"'t [21, page
664],

eiat -- 2 + e-iwAt = - (wPeAt)2

-4 sin 2 wAt/2 =

requiring wpeAt < 2 for stability to parallel displacements. A more careful
analysis reveals that the actual stability requirement is wuZAt < 1.62 [5, p.
184].

A.2 Gyrokinetic Solution

A similar analysis shows perpendicular displacements to be stable. How-
ever, the full dispersion relation includes non-physical effects from aliasing
in frequency which causes instabilities analogous to cyclotron waves [5, p.
201]. In general, aliasing can be reduced by choosing smaller values of £lAt
[5, p.202-203]. Thus, in particle pushing schemes including gyromotion the
time step is limited by the time to complete a gyrorbit. It is desirable to
use a scheme which eliminates this stability restriction.

Such a scheni? results from an (analytic) averaging over particle orbits.
When we average the single particle equation of motion over the gyromo-
tion, to ordere - p/L (with L -IB!VBI [31]),

R = -S[E(R) + (A/c) x B(R)] - (-L)VA(R) + o(e)
m m

[32, eqn (12),p. 84] where p a-•. This equation is as difficult to solve
as the original equation and carries unphysical properties with it [32]. A
substitute for this equation is the coupled set, to o(E2),

dvn1  m Ell OB ++ Oi
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and
R-L= - -E+-VB+(vll--•+m)

Q M dt duE

[32, eqn (17),(20)]In our model B is stationary and both f and B are in
the •3,U plane so that fie = UE. Invoking azimuthal symmetry (a = 0)
the parallel equation reduces to

dvl_ = eEii - OB + UE* (iZE. V)b
dt m m Os

and

= [-c +(VB).+ v V11 O(E) b, u,
B Q uSs FbU( E

+(1 alUE +uEbpVII)X+ atP+SI

where I denotes the direction 4 x b. All except the last two terms in RL
are in the 4 direction. In general, these equations are not amenable to
time-centering.

Formally these equations were derived for Ell - e, E_ *s 1. In some
instances the additional assumption that EL - Ell holds and the last terms
and others involving UiE may be ignored. In our simulation we assume
instead - "- w «< S, [o(•) -,s e2], where w is the time scale for large field
changes so that the first of these terms may be ignored. Additionally, for
weak curvature the second term is on the order of p/r - r in comparison
to other terms in the perpendicular velocity.

Writing the velocity in cylindrical coordinates, we have

V = ilý+ r4)+i

and the parallel and perpendicular velocities separate into their components

= .~ .qq(E) xe

m

where i'd - [A •B- ± + Q + -(%')l - E is the 4 component of

the perpendicular velocity less the E x B drift.
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Differentiating the parallel velocity
j d(v=jb) _ d + v,• = + , + ; +

dt dt dt dt+r++
db _ d(b+b•)= +b +t,+b
A dt

=t dvj ± ,i vjjb ý + b,,; )i+b

dt
2- + -_ __- d_ +; v 2 (abr- Ob + .

At At Z -dt + - as
dvjl b + V2 (1 + cos 2 O)bo
dt 1±3 1 r(l+3S) (b x 0)]o (A-3)

where we have used V-11 - = v1l,bk = i. We observe that the above equation
consists of an acceleration and a pure rotation so that we may apply the
Boris algorithm with i3. -- v11 and Q -- 3v 2(1 + cos 2 O)bo/r(1 + 3 cos 2 6).
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Appendix B

Poisson Solvers

B.1 Charge Aggregation and Force Interpo-
lation

B.1.1 Pairwise Force Calculation

The most obvious way to calculate the force on a particle is to calculate
the force from the local B field and the resultant pairwise electric field.
Naively this method involves o(n 2) ., ()1 calculations for n particles.
In one dimension the number of calculations may be reduced to ,-, n log n by

particle sorting. In higher dimensions we are unable to use this technique,
and even in 1D the number of calculations may be prohibitive.

B.1.2 E Field Grid

At the expense of some loss in precision an alternate route may be taken.
A grid may be superimposed upon the model, then charges are assigned to
and Poisson's equation is solved at each grid point[23]. Besides avoiding
computation of pairwise forces, the grid facilitates study of field behaviour
in space and time and smooths collisions among the limited number of
particles.
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B.1.3 Direct Integration

Once we know the electric field at grid points, we must calculate the force
on particles between points. We could interpolate, using a Taylor series
expansion. An equivalent approach in one dimension, with strong physical
appeal, is direct integration.

dx(V E) = E(x)- Eg = 4wL pdx

Similarly Eg+, - Eg = 47v ' pdx = 4r < p >A

or E(x) = Eg +(E9+1 - Eg)-4-r4 (< p > -p)dx

= 6Eg+ ++(1 -)Eg +o(' 2 )

where 6 b and < .-. > denotes the average. Thus the particle forceA

is
F(x) = q[bEg+i + (1 - b)Eg]

While it is possible to mix schemes for charge sharing and force cal-
culation, due to the reciprocal nature of fields and density, use of a single
scheme for both prevents unphysical self forces from arising [5, p.162-3].

B.2 Electric Field Calculation

B.2.1 Difference Equations

In the ID case we may integrate Poisson's equation (3.1(a)), suitably in-
terpolating p between grid points. This approach is equivalent to a finite
difference solution,

Eg - Eg+l = p,+g Ax + o(Ax 2 ),

where we have used the difference analog to the operator !d--, Ag+1 - Ag_,

A a quantity defined at the grid point g.

In the 1D electrostatic case Poisson's Equation (3.1(a)) becomes

Og+l - 20g + 09-1 = -47rpgA 2
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We may obtain the solution for 0. after inverting the resulting tridiago-
nal equation. The Buneman algorithm, as presented in Appendix C, is a
particularly efficient application of this scheme in more than one dimension.

B.2.2 Fourier Transform Solution

Discrete Fourier Transfor:-s

Solution of Poisson's equation can be obtained by using discrete Fourier
transforms, just as one would use Fourier transforms in the continuous
sense. The discrete Fourier transform of (B.4) on the interval x = 0, L,
with grid points at x. = gA +± x0,g = 0,1,2,-.. ,N, is obtained from the
continuous (finite) transform as

Pk= 1 0 L dx'p(x')e-ikx'

= q9 1L dx'b(x'- xg)e-ikx'

-- A Zpge-ikxg

The inverse is found by noting that
• ik(xg-.T g) ={N g =g' +lN

{ 0 g 'h g"+ IN,
k= iý

I an integer, so that p. -2 Ek pke'k'g, where k takes on the values mAk,
M= 1,2,.--,N andAk=T"

To solve a linear equation such as Poisson's, we apply the operator
A F, e-tkx,, obtaining the k-space solution as

£g = f

9k = kf

We then apply the inverse transform to obtain g. On its face this procedure
appears to require - N2 operations (- N summations for each k x N ks.)
However, the Fast Fourier Transform (FFT), has decreased that number to
SN log N, a huge savings[16]. We shall write the FFT algorithm as

FFT(A) = • Ae-2'- n,m discrete
n
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We axe able to compute the transform of quantities defined at points dis-
placed from the grid by including a phase factor:

E e-ikx A9= E e-ik('A+6)Ag x = gA + 6
9 9

E (Age-k6)e=!;V
9

= FFT(Age-k-)

Ak= e-ikSFFT(Ag)

Similarly, the phase factor must be included when we find the inverse trans-
form

1 Z: e ikx1e~ik6FFT(Ag)] = A(x)
Nk

These notions are useful when examing charge sharing and interpolation
schemes, but for grid quantities where x=xg, = g'A + 6, we have

A(x 9 ) = Z e3 VFFT(Ag) = FFT-1 [FFT(Ag)]
k

and the phase factor is unneeded.

1D Green's Function Solution to Poisson's Equation with Mixed
boundary conditions

Continuous Solution We desire to solve the continuous Poisson's equa-
tion for E and use it as a basis for the discrete solution in our simulation.
Thus, we seek the solution to the 1D boundaxy value problem:

-VIO = 47rp, 0(0) = 0, 0'(1) = 0

The solution may be expressed in terms of a Green's function which satisfies
the equation

V'2G = -41rb(- - Q)/A, (B.1)

with boundary conditions on G to be determined. Defining g = fA Gda',

we multiply (B.1) by 4 and integrate by parts to obtain

J(5) P(')G(£' P)dZx' + 1/s[G(' .0, 0 0(

4r an/ an'
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Figure B.1: This sketch shows the area of integration used in evaluating
the Green's function solution to Poisson's equation.

LdXP(X)g + 1 ,= jo •tgX, _,a,,o , ,

At x=0 where € = 0 it is most convenient to remove the second term by

requiring G=0. At x=L where 0' = 0 we can, at best, satisfy the boundary
condition imposed by Poisson's Equation:

J d 3 xV,2 G = J OG = L
"G nj.da 0 -41r

agI- L10 = -47r

This implies

O( ) = p(x)G(X, x')d3x' + q(L)[1 i10]
= I -41rOx 0

Evaluating this expression at Z = 0 with the boundary condition G(0, x') =

gives2jo = 47r or 8GIL = 0 just as for the potential 4.
We solve for G using an alternative Green's function,

E(x) = IL dx'd(x - x')p(x'),

where d(x - x') is the solution to

d(d) = 4w6(x - x')

and g and d are related by

d dg
dx
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Applying the condition, E(L) = 0,

d(L - x') - d(x - x') = L 47r6(x" - x')dx"

-d(x-x') = 04r x <x'

After integrating and applying the condition, 0(0) = 0,

g(x - x') - g(O - x') = - j dx"d(x" - x')

{4rx' x > x'
47rx x < x'

Discrete Solution Now we may solve for E. Making use of a continuous
finite transform in x and a discrete transform in k, we have

E(x) = dx'( Z dkeik(.._,))(( 1 Pk_, )

10 Lk L ki

L 2 k V i0

L kdkpketkxk

or Ek = dkpk

In other words, to solve for the electric field of some arbitrary charge dis-
tribution, we need only solve once for dk and algebraically find the solution
for the particular charge spectrum.

Proceeding to the solution for dk, we begin by solving for the discrete
0.

O(W) = j0 dx'g(x - x')p(x')

L 1 'k

= 4[r ( dx'x' + L dx'x)eskx' + Po( ] dx'x' + L dXLX)]

1k#o
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47r d Lx f d ,1ikx, +, +
-L Ep k(-idk dx'+ x +dx)e po[2 o +(X')1

kj6o

47r d 1 ikx' 1 ikx'AL+ Po['2
-- E Pk[-? (Te )lo + x( )I•] +e - + x(L - x)]}

Lk$o d ik Z

47r d 1 ikr 1 x ikL -ik) +)L-- L{ •pk[-•(ke - ) + Te'• e)o]L

-L k[-"- eox(L -e k)] + pox(L -47r pi1( i- - 1 ix '
f- P[k[(e" - -k)e po-(- e )] + o(--)

4[E Lk =ek 1 ~ kx p

SE- -V = 47r[•-[ _Pk(eikx _ 1) + po(x - L)] (B.2)L Akj0 k

These, of course, may be recognized as a particular solution to the inhomo-
geneous equation (the periodic (in x) parts) and a general solution to the
homogeneous equations (the parts non-periodic in x.)

An "Exact" Poisson Solver

In many instances use of the Fourier Transform solution is preferable to
that of difference equations which results from approximating the operator

S(o r -) when solving for 0. As its name implies, the FFT is relatively
fast, particularly in multiple dimensions and unlike othcr fast solvers such
as Buneman's, allows easy analysis of the field spectra, ard incorporation of
particle shaping. If we plan to use FFTs to solve these equations, however,
we must be prepared to live with aliasing which result from inability to
distinguish short wavelength modes from others on a finite grid. Indeed,
we can readily show examples using Fourier Transforms where, despite the
advertised (local) error estimates, global errors can be disastrous.

In the previous section we implicitly solved for dk = -- in equations
B.2 and B.2. In general, however, the choice of the Poisson solver is some-
what arbitrary. Eastwood [19] makes a case for choosing the (periodic)
solution to Poisson's equation as

Ek= dkpk (B.2')
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where 4 minimizes the mean-squared deviation of F, the resulting force,
from R, a "reference" force. In our case the reference force is that defined
by the particle shape and E field (B.2).

The optimal I = IFkI2 = Rk/I IUE.I2I2. Here Rik is the Fourier
transform of R (with the assumption that R is band limited), Uk is the
transform of the shape function U, and Uk, is the alias of Uk due to finite
transforms. Basically dk is that from the Green's function solution to the
Poisson's equation adjusted to account for particle shape/force weighting
schemes and aliasing due to finite grids.

The assumption of a band-limited force is tenuous from the outset, and
the proper choice of Eýk for non-periodic boundary conditions is difficult if
not completely ambiguous. Thus, in many cases the direct k-space solution
to Poisson's equation (B.2) is likely to be as good as (or better) than other
more sophisticated schemes [19, p.15].

Trying to retain the advantages of the FFT without loss of accuracy due
to aliasing, we take a slightly different approach. Rather than approximate
the operator and take the charge distribution as known exactly at points, we
shall use the exact operator and approximate the charge distribution over
the continuous interval about the known points, xg = gA + 6, g = 0, 1, 2. -.
We take as given, pg, and expand the continuous function p about these
values. Of course, if we know p(x) everywhere, we could (conceivably) solve
for E exactly.

In one dimension
_E = Op 02p (-x g)2Ox=47rp(x) = 47r{ [E p(xg)+-z=.(-)-g L=* -'lIng}
Ox - &=X 2 ~ ] 2
where xg is a grid point, A the grid spacing, and

ni Ix - Xgl <
n= 0 Ix-X1 >2

is the "hat" function. Further we may require that, if we find the value of p.

by "adding up" particle charges within each gth cell, Ei f +,-a pdx = pg.

This effectively eliminates all even values of the expansion (except for the
zeroth term.)

Now, to solve Poisson's equation, we use Fourier transforms. However.
we would like to avoid the problems of aliasing or, alternatively, problems
of truncatiou associated with difference schemes.
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Specifically, the FFT and continuous transforms for p can be shown to
be related. Applying the operator fL dxeikz..", we obtain the transform
of the quantities.

foL de~ikxOp

Pk L dxeikxn [ P + O (X - x) +±..]
9f9A+8+• 0O]pik

= •Jg,+•- dx[p9 + -1 9(x - a,9) +...ik

We may evaluate the integral piece by piece for each cell, x - <x
xg + -•, and, taking Pg, 2E "... as known grid quantities, we find

L:+ A 12+ ~ikx _ -ik(x,+&) -ik(xg_)]
A - -ke - e

= L -ikxg iL-i' __ eikA

k

SAe-ik sin( -) kAM kA

a well-known result [5, p. 169].

Ixg+ IN A
2• dxe- ikx(x- xg) = dx'e-ik(x'+xg)xI

2

= e-ikxg T x'dx'e-ikx'

2

i •d .kA kA= e- d•

= e- .kxi[_[coT __

22
2=eikxgi[A[Cs kA kA 1Ak

Assuming = ,Cos( kA kA

k 2

124



- V'r pg(e-k/2  eik/2)eik- .+ -IPge J-k dAxe--'ik

= sin( +) Op .d sin(kA/2) ...]e-ikz9A

= (-) Ox dk (kA/2)
= [pgfo(k) + •LP Jf(k) + ... e-ikxgA
=

9 a

wherefA(k) = (,r•)n[sin(kA/2)IA ,• (k&/2) 1
Note that, although we do not have a measure of dp/dxl and higher

derivatives, we may either

1) approximate their values with a difference equation, for ex-
ample, or
2) use their exact values in terms of the unknown Pk.

We take this second approach for now but return to the first.
Noting that p = E =_00 e'ikpk, we have

d ,, j. 1 0 ) i x .()p1 9  L • (ik) Pk
k=-0o

Performing the operation A F. ei(k-k')-g = L~kk,, bkk, the Kronecker delta,

1 k=k'
bkk'= 0  k jk',

we have

Pk = Zpgfo(k)e-ikx9 + [(ik- (id)n fo(k)]pk
Snodd n!

We recognize the sum over n as (formally) [sin(- kd)fo(k)] where sin(-kL)
operates on fo(k). We finally have

Pk =: [ f0 (k)pk = '[1 -sin(-kdllfo(k)]

That is, the infinite transform Pk is related to the finite transform pm by
the relation

Pk = p.F(k)
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This is a pleasant state indeed. Let us assume that we desire to obtain
the function Ee(say) = _ . We know that Ek and Em are
related through the aliases to Ema, that is

0= N/2 00

E j= E eikx Ek= E E e ikpxEkp
k=-oo m=-N/2+1 p=-0o

where kp = m + Np. If we can solve analytically for Ek(e.g. Ek =

then we may solve "exactly"

Eg= Ee imzx E EkP
m P=-oo

00

= je i•x - ip, E F(k,)/k,)
m p=-oo

e imxg 
f 0 (kP)

-i• •()[ 1 - sin(-kp d.)fo(kp)

.e.)Ey( N )(1'om
,,, i --"n + 7rP 1 - (-1I)P sin(-• -k-!- ) fo(m )

We recognize the terms in the solution:

1) En eimx9(-i-) is the standard FFT solution for E at the
grid points without any corrections for aliasing.
2) Ep... is the correction factor for aliasing.
3) sin(-kpAýL)fo(kp) carries the degree to which the continuous
p is approximated by the Taylor series expansion.

By truncating this series, we are (equivalently) creating a difference equa-
tion to solve for E.. This procedure is equivalent to creating a band-limited
function as posited by Eastwood.

We illustrate this point by dealing with only the zeroth order term in
the expansion for p(i.e. p = Eg flgpg).

Eg = ei"(-iP-') • m X (-1)Pfo(m)
M m X x+ rp

E e ( 1pm26
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where we have used the expansion [10, p. 217]

00 1
cot Xx + 7rncot= Z

We are not surprised that, in agreement with Eastwood, this solution cor-
responds to tg+1 - 20g + qg- 1

P9 = A 2

Og+1 - Og-1,
Eq= 2A

We may obtain as accurate an expression as patience allows by evaluat-
ing the sine series to any desired order and physically summing the resulting
expression over as many ps as we choose! If we intend to use this scheme
in a program where we repeatedly evaluate E9 given P., we need only eval-
uate the modifying terms at the start of the program once. Since this term
converges for p as Zy, we expect rapid improvement in our evaluation for
E over its aliases. We may in turn increase our accuracy in terms of A "
to any compatible order by keeping higher and higher terms in the sine
expansion. For example, keeping the first sine term should give an order of
accuracy better results than the common finite difference scheme.

Furthermore we still retain the ability to use particle shaping in these
schemes. The subject of particle shaping remains a separate issue - what
particle shape gives the best physics shall be briefly considered in the next
section.

B.3 Particle Shapes

B.3.1 Cloud-in-Cell Weighting

At each time step the particle contributes to the density and derives a force
from the fields based on its position. Commonly the rule for assigning the
density and calculating the forces for a discrete array of grid points based
on a continuous particle position is known as interpolation. In particle
simulation, however, it is useful to consider the alternate view of finite size
particles.
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In our 1D case, to calculate the force, we assign particle charge to each
of the grid points:

qg= q(1 - )xi x,-xg.< A (B.3)

The same scheme is obtained by considering the particle to be a constant
density slab of thickness A and infinite cross section. This is known as
cloud-in-cell (CIC) weighting [5].

Charge density for field calculations may also be assigned to each grid
point based on the volume of this particle in each cell. More generally, after
counting particles within each grid cell, we obtain a charge density,

L A a

p~)=Zjdx'p(x') J2 dAxS(x' - x.- Ax)l JT dAx Zq9b(x - x.)
g 2T 2 9

(B.4)
where S is the particle shape which determines assignment of particle charge
to the grid for calculation of field quantities.

The idea of finite size particles is easily incorporated into plasma theory
and is particularly useful in studying the effects of higher order interpola-
tion schemes or the use of "smoothing factors" to promote more realistic
simulation behaviour. For example, the use of "smoothing factors" may be
interpreted in terms of "effective particle shapes". Thus, a principal benefit
of the finite size particle concept is as a bookkeeping tool. It ensures that
we may analytically compute the effects of our charge sharing and force
interpolation schemes.

B.3.2 Optimal Particle Shape

Potential for Finite Size Particles

The Coulomb potential for a pair of point particles is

e20(r) = -, r X= l X- 1
r

This can be written in the equivalent form

=Jf dxfdxIte6 (X - Xl)b(X" - X2)

Ix"- x'I
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for point particles or, more generally,

eCS(X' - XI)S(X" - X2)
4=]x f=j d" X I"- X'I

for finite size particles which includes point particles as a subclass.
To exhibit the explicit dependence of p on the separation of finite size

particle centers we note

S(x' - z1 ) = )3) dkSke'tk('-l)
2vr

and therefore

e dx' dx" Ak dk' Ske kx-xi

(21r)6 I I IXI I

Changing coordinates to Y =ý±L, the position of the center of charge
elements, and Ax, the separation between charge elements, we have

_(27r)6 J dYJfdAxJdkj Jdk,SkSk' , _ , +
e ()Jdx-jd~Axfdkf dk' kkeie(k+k')7xi(k-k')%I-(kx1+k'X2)

We next use the identity f dxe-i(k-k')x = f dXe-ikx(eik".) = 27rb(k - k').
(This can be most easily seen in that (-)fdkeikT6(k - k') = eik'x' /27 so
that the Fourier Transform of eik'- is 27rb(k - k')).

e2 dAx dkA dk'S SkI e f xe
= (2ir)6  --I I 2I(2 -, d +V)

e 2  f dAx /d SkS-A ikAx+ikr

Now we may transform Ob(r)

kk' = Jdre-k' O(r)
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e 2  drrr xd SkS-.k eik~xe-z'+~( 21)3 ]d] ~d

= e2jjdAxdk e Ax6(k'+ k)

Ok= Jd~xe 2 Skk etkAx

= SkS-k.'k

We see that the presence of the shape merely modifies the standard form
of the potential by a factor ISk j2.

Two Body Corellation Function for Finite Size Particles

The use of finite size particles to reduce collisions in simulations is a common
technique to compensate for reduced shielding of charges from the relative
smallness of the plasma parameter - nAD . We wish to examine how the
two body correlation function (and therefore collisions) behaves with finite
size particles and postulate the existence of an "optimal" particle shape in
regard to the correlation function.

In thermal equilibrium Frieman and Book [20] have shown that, assum-
ing a correlation function of the form

g(IX, - X2 1, v1,v 2 ) = fM(v,)fM(v2)9(Ixl - X2 1)

where fM = (m/2wkT)Ie-m 2 /2kT, the spatial dependent part of T obeys
the equation

(V1 - V2 ). . + "(vI - V 2 )9 =(I - V2)

n.•._ [dx (Oq(XI - X~l.v923)1-) 90•(12 - X31).
_________ 8qj(Ix2  Xj) v2 'T(1,3))

UT ex, OX2
O'I 10q59_

or (vI - V2 )• [- + 1 + n 0 dAxO(l• - A=I)T(IAxI)
or +T 5T09 1 0¢(9n 0
5T + U -5T(" + 1) =- 0 5o,, dAx,(lx'- ,xl)9Y(IZxl)

The effect of finite particle size on the potential 4 is to reduce it at short
distances so that it remains finite even at zero separation. We plot the elec-
tric field and potential versus separation distance in the figure below. We
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(a) (b)

- kTE

a a r

Figure B.2: This shows the potential vs radius for particles.

note that, as the particles overlap, the force decreases, finally approaching
zero for small r. At large distances the electric field and potential both
must approach the classical Coulomb potential.

If f is on the order of e at a (by assumption) then it is of the samekT
order for r < a. This then changes our assymptotic analysis. The terms
above are in the ratios given below, as deduced from Book and Frieman,

at av nro" f dAxV(lx -Axj)%P(jAxj)

"small"ro < n-1 c c < f 2

ro a- AD f E f

where V =T x = -L
For "small" r we have the balance

ft 8v
o---+-•-•+•)= 0

eV __( _ + ) eV
5o 7 + • -(%P + 1) =

Ox ex
a
Tx [eVQ(% + 1)] = 0

' = -1 + conste-V

P= -1 + conste-

Note for V large, " balances !',v while for V small, 1 effectively balances
itself.
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For "large" r (V small) the balance must be

1941 OV 3O"
-+-+nA T VdAxV(I•-Axl)%(hxl) =0
ax ax Dx-x$(~I=

We have immediately that

4' + V + nA4 I dAxV(li - Axl)$(jAxI) = cons-

Using the convolution theorem,
1 1

dAxV(Ii' - AxjI)%(IAxl) - () dkVkPkekx ,
i27r)3

we have the solution in Fourier components

Tk + Vk + nVkPk = [47rb2 (k)b(p)/k 2]const

Tk = - Vk + 47r2 6(k)b(p)coast

l + nVk k2 1 + nVk

1 =3 Vk 47r2 6(k)6(p) constletk
21r)]A 1 fl + -~k k 1 + nVk ose

const 1 J dkk 2  V' [(eik,- e--' )/ikr]

-1 +nVo 47r2 1-+ nV -

For 0 we have the standard Coulomb potential integrated over the shape
functions

V dA x1 JdAx 2  e 2 S(,,X )S(AX 2 ) AT

IX+ AX1  - x 2 - Ax 2 1

= (1)3JdkISk 2Ok/kTeik

e2 ikxS= J d•-;ik

= 2reo2 j drrf dpe-ikP

27re 2 J' -ikr -kr-i i• dr(e - e)

2re= 2 k (-ik-a)r e(ik-a)r00= -:-i lim[-, --- 10•
k a-0o -ik i

41r
T21
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so that 'P = (2 -ikr-4-7r2 "X I+Sk' I/x D k• i )"

For Sk = 1 (point particles) we have poles at k = ±i/AD. We extend
the limits of integration from -oo to co since the integrand is even in k and

q = _( !1) 33 e f2 ood k r k_2_( eikr - , - ikr

= 2dr kT J+k V( (1IAD)2 ikr

We note that the portion of the integral involving eikr must be evaluated
over contour 1 while that for e-ikr must be evaluated over contour 2 in
Figure B.3.

k 2  eikr = s )2 Or

k +2 1/ )2 ik-r -3 I e 2(-D)eei9 i( - )r
= -, dOeID

2rde -r /\D

2J0 r

r

With a like contribution from the other contour so that

T= -e AD
kTr

as in Frieman and Book[20].

An "Optimal" Particle Shape

We see that the trade-off between the (real) point particle case and the
finite particle case must be the density (in the form of AD = FT7-) and
the particle shape. Since g (the two body correlation function) represents
the error due to collisions, we should seek to minimize this error.

An appropriate shape should result from the minimization principle:

-d~x(%(s)- _p(b)) 2 = 0

133



ki

0

Skr

XD

Figure B.3: The contour of integration to evaluate particle shape.
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B.4 Extension to Two Dimensions

We extend the simulation to two dimensions. The model is similar to the ID
case but now the potential varies both in r and z. The model and boundary
conditions are pictured in Figure 6.1. We shall find the boundary condition
at r=R is flexible. The condition at r=O reflects the fact that the particle
distribution is continuous (no line charge).

B.4.1 Poisson's Equation in Spherical and Cylindrical
Coordinates

Azimuthal symmetry about the z-axis suggests use of cylindrical or spheri-
cal coordinates. Poisson's equation and the electrostatic potential in these
two systems is:

1 a9 ip~ )+ EZ =4 r

EV~ ýP+ a'i

or
r2 rsin 0

Or rO
Numerical solution of Poisson's equation is facilitated when the V 2 operator
can be expressed with one "Poisson-like" variable. Cylindrical coordinates
therefore are chosen.

B.4.2 Continuous Solution

In cylindrical coordinates, we have an equation for the potential 0(p, z):

1 9 (P ) +20= -47rp

The charge density p can be expanded in an infinite Fourier series, ] - P(P) expikz,

with pk(p) =- foL dz exp-'k' p(p, z). This suggests a form for the 0! solution,
1 00xp k

L E qk(P)expi +O7Sh,
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where Ok(p) are particular solutions to the inhomogenous equations

1 O( '9 qk(p))1 a (P--- P)- k2k(P) = -47rpk(p)

and Oh is a homogeneous solution to the cylindrical Poisson equation which
allows € to satisfy the boundary conditions in z, 0(0) = 0, 0'(L) = 0.

The Green's function solution for ;k may be expressed in terms of mod-
ified Bessel functions Io(p), Ko(p). The requirement for finite € at r=0
precludes use of KL, which behaves as ln(f) for x < 1.

We may add to this any solution to the homogeneous equation which
satisfies the given boundary condition. However, we choose this solution
to be zero in absence of a source, p. The homogeneous solution consists
of products of exponentials (real or imaginary) in z and appropriate Bessel
functions, Oh = ,k' Jo(k'p)[Akek'z + Bke-k'z]. The boundary conditions on
the homogeneous solution derive from those on 0 itself, i.e. Oh = 0 - Op.
The boundary conditions in r are 05,(0, z) = 0 and 4h(L, z) = 0. The first
condition allows solutions of the form Jo while the boundary conditions
at r=R restrict kR to zeroes of J0 . The boundary conditions in z are

Oh(O) = - 2 k 4 ) (p) and 0),(L) = -i Zk kqk(p) and, using the orthogonality
relation [24, Eqn. (3.95), p. 106],JoR R

pJo(k'p)Jo(kp)dp = -2[Jl(kR)]2 bk~k,

determine the constants in the expression for Oh,

Ak, + Bkl = 2Jp4)h(O)Jo(kp)dp/R2Ji2(kR)

and kl(Ak,ek'L - Bk, e-k'L) = 2 R p¢'(L)Jo(kp)dp/R2J4(kR)

B.4.3 Matrix Solution

Boundary conditions

We may specify either Dirichlet or Neumann boundary conditions or equally
well a combination of the two-"mixed boundary conditions".
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Dirichlet Boundary conditions Here the value of the potential is given
at a boundary. Assume that the nth grid line contains the given values
0j, = fi. The differential operator at the n - Ia grid line is:

¢n-- 2 €i,n-I + 4h,• 2 i,n- i
A2 = Pi,n-1

4,X2

-2 4 i,n-1 +- •i,n-2 f-i -

or A 2  A

The boundary value is absorbed into the charge.

Neumann Boundary Conditions Here the value of the electric field
is given at a boundary. Assume that the nth grid line contains the givenOiln.•l - i-qirn-

values 9i = =- 2A
Then the differential operator on the flth grid line becomes

€i,n+1 - 2 0j,. + €i,n-1 __

A 2  i

-20i,n + 2 0j,,-1 _ 2gi
A 2  

-

Again the boundary value is absorbed into the charge so that we are free
to consider homogeneous boundary values, Oh = 0 or 0' = 0, only.

Mixed Boundary Conditions Some combination of 0 and 0' are given
on separate (therefore not Cauchy) boundaries.Assume we have Dirichlet
boundary conditions 0 = 0 at z=0 and Neumann boundary conditon 0' = 0
at x=L. The boundary conditions may remain unspecified in the r direction.

Difference Equations

To obtain the discrete analog to the V 2 operator we use the 3-point two
dimensional difference, that is, since

DO = O+ - 20i + Oi-i
A 2
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The difference equation is readily obtained as

1[rm+4(4Om+1,n - Om,n) - rm...(O~M,n - m-I,n)I

rm Ar2 +[(40m,n+1 - 'Om,n) - ('kM,n - m,n-I 47)]n(B5

for the interior points.
At the boundaries (particulaxly at r=O) it is useful to apply the integral

form of Gauss' Law, Eqn. (3.1(c)).

JV V-Edx'=f J47rpdx-

jSE -dS = 47rq

where the surface and volume integrals are over the cells of interest.
At m=O

ELn[7(Ar )z .n-[7(Ar 7o
2+ (E,,0 ,n+4 - )r-]=4rq,

4 (00,~n - 01,n) + (~O,n - 00,n+l) - ( 4 'O,n-I -00,n))]_ 
4 7rqo,n

Ar 2  +Az 2  AV
60n- 4,n- 00,n+l - 1 =I 4irPO,n (B.6)

A2

for Ar = Az = A and AV = 7r(Aýt)2AZ.

At m>O0

7r[(m + )2 - (m - )]Ar 2(E~mn I - E1,,,m.. L ) +

27r(r.n + -)ArAzErm+i. - 27r(m - -)ArAzErm....,n = 47rqm,n

27rmAr 2 ( m ,n Om- + OM~n - im~n-1 ) +
Az Az

2ir(m + 1!)ArAz OmMn - Om+1,n +2rm- 1 ArAz OPM,i - O~m-l,n = 4 lrqnm
2Ar +2i~m ! Ar

27rmA(2 0m,n - 4Om,n+l - 4m,n-1)+

27rmA[24'm,n - (1 + 1)q0m+I,n - (1 - )4Om-l,n] = 47rqm,n
2m 2m

2m ~m-I,n + 4q0m,n - (1 + 2)m in - qm,n~l - O~- 7p
A2  nmf

138



(a) (b)

z0z

Figure B.4: This is Gauss' Law for m = 0.

for Ar = Az and AV = 21rmAr 2Az.

For E, = 0 at r = R = MAr, we approximate 4OM+l,n = OM,n

(3 -- - (1 -n -- M,n+1 - OM,n-I = 4 7rpm,n (B.7)

For = 0 at r = R _= (M + 1)Ar

40M, -- (1 -- 1-)M-I.n - OM,n+ - OM,n-I -= PM,n (B.8)

B.4.4 Solution for Electric-field

Mixed Boundary Conditions in z

We use m = 1 at r = 0. Using E = -VO at interior points (ngr - 1 >
nr > 2, ng- - > nz > 1, ngr M + 1):

€m+i,n - €•m-i,.

Ermn -- 2

Ezmn -- 2m,,.=
2
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(a) (b)

I EE

E I

I Ezmln-

Figure B.5: This is Gauss' Law for m > 0.

For nr = l,ng - 1 > nz > 1

Er-i,n = 0 Ezi,n = ln~ - 01.-

For nr = ngr, ng - 1 > nz > 1 and Er(R) = 0

Erngr,n = 0 Ezg~ Og~~ - 2nr~-

For ngr - 1 > nr > 2, nz =ng

Etm-,ng = 4 m+1,ng - 0Sm..I,ng E.n

At n=O, 4' = 0

-, + 1--(rEr) = 47rp
~z- r Or

Ezm,n+l - Ezmn. 1 (M - !)Erm.+I,n - (M - 2)ErMA n 4

2Az n- rn-m2ir 2 rp~
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For ngr - 1 > nr > 2, nz =0

EzMO = Ezm,2 -
8 7rpm,l + 2 x rn-M 4 ?M,l)

+ 2 (4 m,1 - 4'm-i,I)]

-211 - 1( 1)]Om11~ + 4 0M'I

E, = 0 at r=R for no surface charge.

At r=R 4=0 for O~(R) = 0

E.m.= 0
Ezm,n+41-Ezm,n- 1

Az +
1 (M + 1)AErm+i,n - Erm....in(m -1) _ rpn

mA 2A r~

Er(M 2) 8ErM -l -+k~-)+ (S,+

-1-jW)E-M1l,n +

(1- )[87rPM,n + 2 (0~m,.+, + 4 'M,n-1) - 4qSM,n]

At the cormers:
For m,n=1,0

=~~ 0 Ezi,o = Ei2- 81rpl,l + 4(01,1 - 02j1)

At (rn,n)=(1,ng),
Er~g= 0 Ez~n = 0

At r=R,z=O Er = 0, E, = 0(no surface charge).
At r=R,z=L, (m,n)=(ngr,ng), E,, = 0

E,.M+1,N = (1 - )ErM-1,N + (1 - jff[87rPM,N + 4 (q 5 M,N-1) - 4OMN)]
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n=0

n

.S-
n z

m

Figure B.6: This shows the calculation of E on the boundaries.

142



B.4.5 Charge Sharing/Force Interpolation

The weighting scheme chosen in 1D may be interpreted as a dipole expan-
sion of the charge density about the midpoint between cells[29]. In two
dimensions a similar approach, but including a quadrupole term yields a
scheme known as area weighting [5, p. 244]. This approach is roughly equiv-
alent to the scheme used here consolidating the charge as a ring of finite
size. In the limit of large r, the two approaches are exactly equivalent.

This scheme may be readily derived by application of Gauss' Law:

J E.d A = 47rq

E,+(z)(27rr+ŽAz) - E,._(z)(21rrAz) +
E+ [7r(r 2 - r'_)] - E_[47r(r 2 - r_)] = 47rp[r(r 2 - r2 )]AZ

= Er(z+) + (1 -)Er(z_)

E7 (2wrrAz) - E,_(27rAz) + (E,+ - E,,-)[r(r 2 - r = 4lrpT[r(r 2 - r2_)]AZ

where we designate +,- as the upper and lower limits of the particle extent.

rEr = E,_r_ + 2p[7r(r 2 - r)] - AE - r + 2)(p - p)[(r2 r 2)]

=~~~ ~ ~ 27r(P7 + r)(r r!)4r- ý +.

2 AZ(- 7.2-A .

=- r2_ )[E,+(2rr+Az) - EE_(2.rrAz) +
2 wEr+( 2 -- )A

= E,_r_ + (r r! )[r+E,.+ - rE,_-] +...
r 2 _ 2 -r

= r+E r+-r++ r+r__-r•-).. .rrr

2 2=r+[bE,,(r+,z+)+(1-b)E,(r+,z_)](rr-2 -2

+r_[bE7 (r_,z+) + (1 - b)E•(r_,z-)]( r _ )+o(Ar)

(E,(z) t E,(z_) + 6[E7 (z+)- Er(z-)]/Az)

Similarly

E7 +(2rr+Az)- E,_.-(2rr_ Az)+(E, -E,,_)[r(r 2+-_r 2)] = 4wrp.[Tr(r2 -r2_)]Az
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E. = E__ + Az[47rp2 - 2(r+E,.+ - rE,_)/(r2 - r2_)]

= E.- + bz(E.+ - E-,-)

= bE.+ + (1 -6)E Z_
r2 -- rr2 -r2

= 6[E.(r+, z+)(r r2 ) + E(r_ z+)(rT r_)]
rr

2 A-

+ (1 ),(2 _ i )E.(r+,zz-) + E.(r-,z-)(r2r 2)]

In two-dimensions (r-z) we may continue to use the same charge sharing
and force interpolation scheme as in the 1D case for the z direction. In r,
however, we choose to treat the particle as a ring of uniform charge density,

qP 2
7r(r,+, - r .A

q >
21rriAzAr . -

i~j <2

The charge density of the particle remains uniform but varies with r as
shown in Figure B.7.

The force is similarly calculated from

F, = 21/rrdrpEt =_ qE,1 + q2E,.2 , where E -,.1  + 2!il4,n+l
- q, q r1

Force weighting is identical to charge sharing except as noted for cal-
culation of B. Since both the mass and the charge are distributed together
and because of symmetry the acceleration for each bit of charge is the same
for the particle treated as a whole as for individual bits.

Care must be taken in calculation of the force due to the magnetic
field[8]. This force should act at the charge center of the particle which is
located at

J rz rdrp = 1 rJ+' rdrp

2

r, = (44 i ri >
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7TpAZ 1/2 3/2 5/2

Figure B.7: This shows the variation of particle charge density with r.
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=(ri + IV2ri < '

More elaborate schemes for charge weighting and force calculation may
be used but one may often obtain a more "accurate" (less noisy) simulation
by instead substituting a greater number of particles.
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Appendix C

Buneman Algorithm Solution
to the Mixed Boundary
Condition Problem

The Buneman algorithm is a quick way to solve Poisson's equation without
the use of Fourier transforms. In cylindrical coordinates with r and z as
variables we have

-- r-5 + j- = -41rp1~ Or 0z2

and its finite difference form,

-trm+ - m)- -

+ (0m,n+1 - 2 €m,n + 4 'm,n-1) = -47rpm,n-A 2,

where we have assumed a uniform grid spacing Ar = Az = A.
It is mathematically convenient to write the system of equations as

T$.+j + A4. + T'._1 = -41rT YaA2
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00,n PO,n
where , =, = P.. , T is the diagonal matrix

I
8

T= m

M

and A is the symmetric triadiagonal matrix
_3 1

4 2m-1 -4 m+1A= -22

M-1 -42

With the further transformation T½e4 -- 4h[ll, p. 642], "A2 -4

-6 V•F

T-UATA -- A =

the system may simply be written

On+, + Aq + n-I = -4rn
for 0 = 0 at r=-R (B.8). Assuming the boundary conditions of symmetry
about z=L and 4(z = 0) = 0, our system of equations look like

A01+& 02= A1

OSi, + Aqj + qj+1 = ' j=2,...,N-1

2 0N-, +AON = PN

and may conveniently be written in block matrix form

-'46j1 Pj-1

I A! I =1
P j+l
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where the corner values depend on the given boundary conditions. At the
end faces, z=O and L, A0 1 + q2 = -47r- and ON+. = ON-,, respectively.
Also 0o = 4 2N = 0.

One observes that, for a grid spacing of L = NA, the solution is imme-
diately obtained as

ON = --A47rPN

By analogy we can solve the entire system for a smaller grid spacings by
suitably lumping equations together and after obtaining the solution at a
single grid line and use that solution as a new boundary condition to back-
solve our equations and obtain solutions at each of the other grid lines. Such
a method is conceivably less time consuming than a brute force method of
solving the system such as Gaussian elimination. In fact the Buneman
algorithm reduces the necessary calculations by a factor In N/N.

After multiplying even equations by -A and adding adjacent odd equa-
tions, we obtain the reduced set

(21-A 2 )42 + 4 -PI 3 P2

-+ (21- A )i+ =j+2 (i + p3 +l) -
20j_2 + (2I - A2 )N 2 PN -- AN

where we have multiplied the last equation by -A but the second to last by
-21. This is equivalent to increasing the system length by 2 and placing a
mirror charge distribution on the opposite side.

This process may be repeated k times for N = 2 k. Each time we shall
have a new matrix A(r) = 21 - (A(V-i))2 in a system of equations in the
same form but half the size of the original set. The k - 1°t reduction yields

(k-1)
A (- k-1) + 0 2k = P2(k-1)

202k-, + A(k 1)9 2k = P2(k-)

And finally
02(k)k) = P20)

where A(k) = 2 - (A(k-1))2 and p(k) 2p(k-) A(k-1) (k-1)F2(h) - .2(k-1) - - -200)

A convenient (and quick) way to solve this equation results from the
factorization of A(N). Note A(0) satisfies

A(r) = 21 - (A(r-1))2
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which is a polynomial expression in A and I. One may recognize the equation
for the A(') as a difference equation of the form

pi+1 = 2 - pi

with solution
pi = -2cos2'0

We can factor Pk+i by expressing it in terms of its roots[21]:

Pk+1= 2 -- (-- 2 cos2k0 )2 = 0

cos2 2 k = 2

cos2k0 = ±11V2

2 k = (2n - 1)7r/4
S7(2n - 1)

2k+1 2

This means that A(k) may be written as

k

A(k) = (_1)1+2k fl(A + 21 cos 0,)
r=1

and the solution can be obtained by k inversions of tridiagonal matrices.
If applied directly, this algorithm is unstable but, as Buneman discov-

ered, stability may be acquired by more subtle treatment of the charge
densities on the RHS. Letting y = A(rip3 ](r) + q()

P3 + 1 ( r ( r ) I r) (r))\P4+) (r) 3 A(A)- (p3+2, + Pj+2 -- qj)

(r+1) + (r 2 (r+1)
= %j+2r q•-r_ 2_ -P3

-ý j() =q - (Xj-. 2 r + X,+ 2 r)

These are [11, Eqns. 11.6 a,b, 11.7, and 11.8] and is the Poisson solver
implemented in our simulations.
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