
D-A258 567

RL-TR-92-102
In-House Report
August 1992

A MAPPING OF SLCSE SERVICES TO THE
NIST ISEE REFERENCE MODEL FOR CASE
ENVIRONMENT FRAMEWORKS

James R. Milligan ECTE

DEC 1 7 1992A U

APPROVED FOR PUBLIC RELEAS" DISTRIBURTON UNLUMITE

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, New York

92-31693 1

111..11'' N iUI\ I9i2il1

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-102 has been reviewed and is approved for publication.

APPROVED: /~4

SAMUEL A. DINITTO, JR., Chief
Software Technology Division

FOR THE COMMANDER: /4

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3CB Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE FoMB A.07ove4 88
Public re!ta•o" aiden frior , I of inrforrrobn is estmed to verea I hoIs per rmesau richi•g t•e tnm for revewirg rsul , seardtvVi acring dta s:uces.

gt-wrg a ud mruinwwi • a €d r'anecbc crgr-O•ng r revuig roi•ea• dintfinab Send cornineas regwdrg ths buden eswmleor any 0 im aspect at ts
coletjiond ~ O e k sr r Ic kgckV sigge s for red& q thris bIurem to Wimn'*' Hea wter$ Servic Dire-dag for tar Ifomn gn Operations and Reports, 1215 Jefferson

Dwes HghW. SuAo 1204, A*aor% VA 222-4O W'd to th Offie of Mwagmrwrt and BudgK Pphirwork Red Proje (0704-018 M, Wa-g *oa DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1992 In-House Mar 91 - Aug 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A MAPPING OF SLCSE SERVICES TO THE NIST ISEE REFERENCE PE - 62702F

MODEL FOR CASE ENVIRONMENT FRAMEWORKS PR - 5581

6AUTHOR(S)
TA - 18

James R. Milligan
WU - 47

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION

Rome Laboratory (C3CB) REPORT NUMBER

Griffiss AFB NY 13441-5700 RL-TR-92-102

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (C3CB) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: James R. Milligan/C3CB (315) 330-2054

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(Mad-u mord,)

This report describes the results of a Rome Laboratory in-house mapping exercise

between the services provided by the Software Life Cycle Support Environment

(SLCSE) and a Reference Model developed by the National Institute of Standards

and Technology (NIST) Integrated Software Engineering Environment (ISEE) Working

Group. SLCSE is a computer-based framework for the instantiation of Software

Engineering Environments (SEEs) that are tailored to accommodate the specific

needs of software development projects. The NIST ISEE Reference Model concen-

trates on characterizing and relating the services which may be found in Computer

Assisted Software Engineering (CASE) environment frameworks.

14. SUBJECT TERMS i, NUMBER OF PAGES

SLCSE, Frameworks, Software Life Cycle, Reference Model, NIST, 170

CASE, Environments, ISEE, Software Engineering I&PRICECOOE

17. SECURITY CLASSIFICATION 18& SECURITY CLASSIFICATION 19. SECURITY CLA•$IFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 754001 -21O-ff Sturdud Form 298 (Rev 2-89)
Prvorbed by ANSI Std Z39-10
2M1I01

TABLE OF CONTENTS

PREFACE . i i
ACRONYMS iii
L INTRODUCTION 1
2. BACKGROUND 3
2.1 A Reference Model for CASE Environment Frameworks . 3
2.1.1 Aims of the Reference Model 3
2.1.2 Reference Model Service Descriptions 4
2.1.3 Reference Model Dimensions 5
2.2 Software Life Cycle Support Environment (SLCSE) . . 5
3. SLCSE MAPPING TO THE REFERENCE MODEL. . . 12
3.1 Selected Services of the Reference Model 12
3.2 Selected Dimension Factors of the Reference Model . . 13
3.3 Service Descriptions for SLCSE 14
3.3.1 Object Management Services (7) 14
3.3.2 Tools (9) 95
3.3.3 Task Management Services (10) 100
3.3.4 Message Services (11) 109
3.3.5 Security (13) 112
3.3.6 Framework Administration and Configuration (14) . . 114
3.3.7 Integration (15) 117
3.4 Comments on the Reference Model 125
3.4.1 Applicability of Dimension Factors for SLCSE . . . 125
3.4.2 Comments on Existing Service Descriptions . . . 127
3.4.3 Additional Service Descriptions Recommended . . 153
4. CONCLUSION 156
5. REFERENCES 157

NMiS CRA..!
DTIC TA-3 L

By

U,.a. , IO-: i -. i .~ ---...

:,1..• ' . . . ' :

PREFACE

This technical report describes the results of a mapping exercise
between the services provided by the Software Life Cycle Support
Environment (SLCSE) and a reference model developed by the National
Institute of Standards and Technology (NIST) Integrated Software
Engineering Environment (ISEE) Working Group.

The author of this report would like to thank the individuals of Rome
Laboratory (RL) and the NIST ISEE Working Group who have contributed to
the development of this report. Special thanks go out to Deborah Cerino (RL)
and Lolo Penedo (TRW/NIST ISEE Working Group).

ii

ACRONYMS

4GL - Fourth Generation Language
ACE - ACL Entry
ACL - Access Control List
ACS - Ada Compilation System
AD - Application Development
AD/Cycle - IBM's AD Environment
ADL - Ada Design Language
AFLC - Air Force Logistics Command
AFSC - Air Force Systems Command
ALC - Air Logistics Center
ALICIA - Automated Life Cycle Impact Analysis
AMS - Automated Measurement System
ANSI - American National Standards Institute
APSE - Ada Programming Support Environment
ASCII - American Standard Code for Information Interchange
ATVS - Ada Test and Verification System
BNF - Baukus-Naur Form
CAIS-A - Common APSE Interface Set, Revision A
CASE - Computer Assisted/Aided Software Engineering
CAVS - COBOL Automated Verification System
CDI - Companion Database Interface
CE - Command Executive
CIS - CASE Integration Services
CM - Configuration Management
COTS - Commercial Off-The-Shelf
CSC - Computer Software Component
CSCI - Computer Software Configuration Item
CSU - Computer Software Unit
DCL - Digital Command Language
DEC - Digital Equipment Corporation
DGL - Document Generation Language
DID - Data Item Description
DOD - Department Of Defense
DS - Deliverable Software
DSA - Dynamic Storage Allocation
DSR - Digital Standard Runoff
ECMA - European Computer Manufacturers Association
ER - Entity-Relationship
ERA - Entity-Relationship-Attribute
ERIF - ER InterFace
ESD - Electronic Systems Division

iii

FSD - Full-Scale Development
GAFB - Griffiss Air Force Base
GKS - Graphical Kernel System
HLERIF - High Level ERIF
IBM - International Business Machines
IFU - InterFace Utility
ISEE - Integrated SEE
J73AVS - JOVIAL J73 Automated Verification System
KBSA - Knowledge-Based Software Assistant
LQP - Line Quality Printer
LSE - Language Sensitive Editor
MBX - MailBoX
MCCS - Mission Critical Computer System
MOO - Menu Operations Organizer
NDS - Non-Developmental Software
NIST - National Institute of Standards and Technology
OBS - Organizational Breakdown Structure
OM - Object Manager
OMS - Object Management System
OS - Operating System
PCRP - Problem/Change Report Processor
PCTE - Portable Common Tool Environment
PDL - Program Design Language
PDL - Program Design Language
PDSS - Post Deployment Software Support
PMA - Project Management Assistant
QA - Quality Assurance
QBE - Query By Example
QUES - QUality Evaluation System
RDB - Relational Data Base (VAX/VMS)
RDBMS - Relational DataBase Management System
RL - Rome Laboratory
RMU - RDB/VMS Management Utility
SDDL - Software Design and Documentation Language
SDF - Software Development File
SDF - Software Development Folder
SDL - Schema Definition Language
SEE - Software Engineering Environment
SEM - SLCSE, Environment Manager
SLCSE - Software Life Cycle Support Environment
SPMS - SLCSE Project Management System
SQL - Structured Query Language
UI - User Interface

iv

V&V - Verification and Validation
VAX - Virtual Address eXtension (of DEC PDP-11)
VMS - Virtual Memory System (OS)
WBS - Work Breakdown Structure

V

1. INTRODUCTION

This report describes the results of a Rome Laboratory in-house
mapping exercise between the services provided by the Software Life Cycle
Support Environment (SLCSE) [17] and a reference model developed
by the National Institute of Standards and Technology (NIST) Integrated
Software Engineering Environment (ISEE) Working Group. SLCSE
(pronounced "slice") is a computer-based framework for the instantiation of
Software Engineering Environments (SEEs) that are tailored to accommodate
the specific needs of software development projects. The NIST ISEE
Reference Model [21 is an evolving document which concentrates on
characterizing and relating the services which may be found in Computer
Assisted Software Engineering (CASE) environment frameworks.

The Reference Model is intended to help experts describe and compare
CASE environment framework technologies. It is not a standard itself, and is
not intended to be used as an implementation specification nor as the basis
for appraising the conformance of actual implementations. The Reference
Model is intended to identify areas for developing standards, and to provide a
common reference for maintaining consistency between all related standards
and products.

The purpose of the mapping exercise was to validate/improve the
Reference Model. The services provided by five interface technologies
(CAIS-A, PCTE, CIS, SLCSE, and AD/Cyde) were mapped to a srlected set of
service descriptions contained in the Reference Model. A meeting between
NIST ISEE Working Group members and representatives for each of the five
interface technologies was held March 12-13, 1991 to set the stage for the
mapping exercise. The mapping exercise was conducted, and the results were
then presented and reviewed at the 5th NIST ISEE Workshop held June 1-3,
1991.

SLCSE Version 3.5 was delivered to Rome Laboratory in September
1989. Since then, the system has been used at Air Force Logistics Command
(AFLC) Air Logistics Centers (ALCs) for beta testing, and by several other
organizations that performed technical evaluations. In addition, SLCSE has
been distributed to dozens of Government and Industry organizations for a
variety of purposes. SLCSE Version 3.9 resulted from the development of the
SLCSE Project Management System (SPMS) [9].

At the time of the mapping exercise, the SLCSE system being mapped
(Version 3.9) resulted from advanced research and development sponsored by
Rome Laboratory (i.e., SLCSE was an "advanced development prototype").

1

Referring to the system as a "product" would lead one to infer that the system
was ready to go to market, which was not the case. Beta test reports, technical
evaluations, and other forms of feedback from SLCSE users have been,
overall, very positive. However, further development of SLCSE is necessary
in order to obtain a framework capable of supporting the needs of the Air
Force and the DOD.

As a result, Rome Laboratory, in conjunction with Electronic Systems
Division (ESD), are jointly sponsoring a five year initiative entitled the
"SLCSE Enhancements and Demonstration Program" [71. The program has
the following three major objectives.

"* Provide the necessary functional and performance enhancements to address
user concerns and issues that were documented as a result of the beta tests
and evaluations.

"* Establish SLCSE as an operational product, with the necessary marketing
and support mechanisms.

"* Support specific user needs through a user-funded task order mechanism.

The mapping exercise, in addition to contributing to the fulfillment of
Rome Laboratory's long-standing technology transfer objectives, was
particularly useful in assessing areas where SLCSE can be enhanced to result
in a product that offers as rich a set of ISEE services as possible.

2

2. BACKGROUND

2.1 A Reference Model for CASE Environment Frameworks

A reference model for Computer Assisted Software Engineering
(CASE) environment frameworks was prepared by the National Institute of
Standards and Technology (NIST) Integrated Software Engineering
Environments (ISEE) Working Group [21. The NIST ISEE Reference Model
was a revision of a European Computer Manufacturers Association (ECMA)
technical report [1].

The NIST ISEE Reference Model used for the mapping exercise was a
working draft strictly for internal use by the NIST ISEE Working Group.
Since then, the Reference Model has been (and continues to be at the time cf
this writing) revised by the Working Group.

2.1.1 Aims of the Reference Model

The NIST ISEE Reference Model is intended to help experts describe
and compare CASE environment framework technologies. The Reference
Model is not a standard itself, and is not intended to be used as an
implementation specificati.)n nor as the basis for appraising the conformance
of actual implementations. The Reference Model is intended to identify areas
for developing standards, and provide a common reference for maintaining
consistency of all related standards and products.

Specifically, the aims of the reference model are as follows.

* Description and Comparison

The Reference Model should be suitable for being used to describe, compare, and contrast
existing and proposed environment frameworks.

* Evolution of Standards

The Reference Model should provide a framework for the smooth and coordinated
evolution of future standards in particular to ensure that the early standards are developed in
such a way that further standards may easily achieve alignment in the sense of upward
compatibility.

* Integration and Interoperability

The Reference Model should address interoperability and integration of tools.

3

* Degree of Generality

The Reference Model has to be able to be used to describe a wide range of CASE
environment framework designs, but should balance this against a requirement to be able to
define points at which useful standards can be defined.

• Education

The Reference Model should be capable of being used as the basis for educating systems
engineers in the subject of CASE environment frameworks.

* Unifying Concepts

The number of unifying concepts required to describe the reference model should be small
and the model should recognize the importance of the relationships which exist betvr'-.n its
elements.

* Software Development Method Independence

The Reference Model should cover afl system aspects irrespective of implementation
techniques or software development methods employed by particular CASE environments or
systems developed within CASE environments.

* Related Models

The Reference Model should be compatible with other appropriate reference models.

2.1.2 Reference Model Service Descriptions

The Reference Model describes a number of "services" that may be
found in a CASE environment framework. These services are grouped, for
notational convenience only (i.e., the groups are not intended to imply any
specific functional attachments between individual services within a group),
as follows.

* Object Management Services
* Task Management Services
* Communication Services
* User Interface Services
* Security Services
* Framework Administration and Configuration Services
* Integration Services

4

Tools are considered by the Reference Model as pieces of software that
are not part of a CASE environment framework, and which call upon the
CASE environment framework services listed above.

2.1.3 Reference Model Dimensions

The Reference Model describes each service in terms of "dimensions".
A dimension is used to obtain a particular kind of description for a given
service. That is, a service described in one dimension would be described
differently using another dimension because each dimension emphasizes a
distinct perspective of a service. Each dimension of the Reference Model is
comprised of several items (which, for discussion purposes, will be referred to
as "factors" in this report), as follows.

ICE Dimension
"* Internal
"* Conceptual
"* External

ROD Dimension
"* Rules
"* Operations
"* Data

TIM Dimension
" Types
"* Instances
"• Metadata

In addition to these dimensions, the Reference Model also defines
three other factors for describing services:

"* Degree of Understanding
"* Relationships Between Services
"* Justification for Including Services

2.2 Software Life Cycle Support Environment (SLCSE)

The Software Life Cycle Support Environment (SLCSE) is a
VAX/VMS computer-based framework for the instantiation of Software
Engineering Environments (SEEs) that are tailored to accommodate the
specific needs of software development projects.

5

A SEE instantiated from the SLCSE framework consists of a set of
integrated tools that support the Full-Scale Development (FSD) and Post-
Deployment Software Support (PDSS) phases of the Mission Critical
Computer System (MCCS) software life cycle. Specifically, SLCSE provides
support for the various phases and inter-phase activities of the software life
cycle, including requirements specification and analysis, design, coding,
unit/integration testing, Quality Assurance (QA), Verification and
Validation (V&V), project management, and Configuration Management
(CM).

As illustrated in Figure 1, the SLCSE top-level architecture consists of
four major subsystems: the User Interface, Command Executive, Database,
and Toolset.

The User Interface is window-oriented and menu-driven, providing a
common and consistent style of operation to all its users. While the User
Interface is consistent in style, the tools and database views a user has access
to are governed by the various "role(s)" the user has been assigned by the
framework administrator.

The Command Executive controls all SLCSE functions (apart from
those which are specific to a tool). It interfaces with the user through the
User Interface, and invokes tools in the Toolset.

The Database provides SLCSE applications with an Entity-
Relationship (ER) InterFace (ERIF) to an underlying relational database
engine. At its highest level of abstraction, the SLCSE Database appears as a
single expansive ER network of information. The current ER database
schema models the data requirements of DOD-STD-2167A (the Military
Standard for Defense System Software Development), and is so
comprehensive and complete that each of the seventeen (17)
DOD-STD-2167A data items (i.e., documents and specifications) can be
automatically generated.

The Database is the most critical and important part of SLCSE. It
serves not only as a repository for formal life cycle information required by
DOD-ST7D-2167A (or potentially by any other life cycle model), but also as an
integrating mechanism for tools by allowing them to share information. As
data is generated and stored by users and tools, it becomes available through
the Database services for use by other users and tools in subsequent activities
and life cycle phases. The SLCSE integrating framework, and in particular,

6

SLCSE TOP-LEVEL ARCHITECTURE

multiple User l•s

User Roles. InterLseo• i

Acquisition Management
Project Administration
Project Management
System Analysis
SW Analysis
Programming
SW Testing •TOObSM
SW Integration Command 8

System Integration W Executive
Verificaion & Validation
Quality Assurance
Configuration Management
Post Deployment SW Support
Training
MCCS Operation
SLCSE Installation 0 Integrating Framework
Framework Administration
Secretaial

Figure 1

the interaction between tools and the Database, is what makes possible many
life-cycle oriented technological opportunities and potential productivity
gains.

The User Interface, Command Executive, and Database are considered
to be the "integrating framework" of SLCSE, and are the three subsystems
with which tools of the Toolset are integrated. A tool is invoked by the
Command Executive from a tool user interface that may be "conformant" to
the SLCSE User Interface, and may interact with other tools through the
Database, which stores and manages all of the project data created
throughout the life cycle.

7

SLCSE has been designed to allow virtually any number of tools to be
integrated into the Toolset to support a variety of software engineering
methods and overall development methodologies. This "methodology
independent" tool integration concept provides for the use of Commercial
Off-The-Shelf (COTS) tools, as well as tools developed specifically for use
within SLCSE.

A more detailed architectural/operational description of SLCSE, as
shown in Figures 2, 3, and 4, reveals that the Database subsystem is actually a
hybrid implementation that includes three different data models, the primary
one being the ER data model just described. The other two data models are
the Infrastructure data model (used to represent all of the data objects that are
necessary for the operation of SLCSE itself), and the Project Files Hierarchy
data model (used to represent the file structures necessary for the storage and
management of user, database, and SLCSE maintenance files). In addition, as
illustrated in Figures 2, 3, and 4, it is evident that the modes of operation are
quite different for: (1) SLCSE framework administration and tool integration
(Figures 2 and 3), and (2) the use of an environment instantiation SLCSE
framework (Figure 4).

8

FRAMEWORK ADMINISTRATION

L USEMi fr 'u r
CI Fram~ewrk lDdbwe luabalse

USERa~s FLUSE

/UTHOIITIESIEARH

(Aa•---s UonroER,
VM SE rn, Duwk ob 6p) rdU

PROATEeo HIERARCHYT

SET ACL 4

TOOL INTEGRATION

WINDOW
s DEFINITIO
L u WINNIE FILE

c I PROTOTYPER

MENU
OPERATION
ORGANICZE SLCSESETUIP

FILE COMMAND
TEXT PROC

EDITOR (tod syn"
addl6awl

COMMAND

ADA EXECUTIVE'S SLCSZ

COMPILER BUILD COMMAND SOURCE

SOUftCZ CODE CODE

SLCSZ
OBJECT

CODE

ACS
LPMR

SLCSK
ca

zZXz

L SEM
c
5 (ML FltAMEWORK
E RWWMTKON) DSA INIF LASTRUCTURE

DATABASE

USE
INFRASTRUCTURE

DATABASE(S)

ft" 3

10

USER ENVIRONMENT

SLCSE
USER WINDOW

INTERFA4CE ,.- DEFINITION
FREW EINNIE MENU

OPERATIONSM n - (400 EDEEFINMON/
FaX

COMMAND ýUSF'it
EXECUTIVE INFRASTRUCTURE

RULE DATABASE
BASE

PR crDATABASEPR:DAT

SHAREBASE w
MBXJ (dotwbW MBX (sub-proem Rdb

process)

MESSAGE TOOLER
HANDLER --------- RDBMS

Aowl

MA94 SMARTSTAI

vMS TOOLS
(VAX) Fam

BATCH IIIERARC
QUEUE

VAX EHLLERI

DATABAS CLUIENT DATABASE

I DacNirr
- -

REMOTE RghKVM DATABASE
NETWORK CLUMNETWORK NODETOOLS

NODE

FlPre 4

3. SLCSE MAPPING TO THE REFERENCE MODEL

The following sections describe the mapping of SLCSE services to the
NIST ISEE Reference Model. Section 3.1 lists the Reference Model service
descriptions selected for validation during the mapping exercise. Section 3.2
lists the Reference Model dimension factors (and other factors) that were
recommended by the NIST ISEE Working Group to each of the mappers for
describing the services provided by their standard/product. Section 3.3
describes the services of SLCSE as mapped to the selected service descriptions
of the Reference Model, and section 3.4 provides comments on the Reference
Model based on the SLCSE mapping.

3.1 Selected Services of the Reference Model

The following NIST ISEE Reference Model service descriptions were
selected for validation during the mapping exercise.

7 Object Management Services
7.1 Data Model
7.2 Data Storage Service/Persistence
7.3 Relationship Service
7.4 Name Service
7.5 Distribution/Location Service
7.6 Data Transaction Service
7.7 Concurrency Service
7.8 Process Support Service
7.9 Archive Service
7.10 BackUp Service
7.11 Derivation Service
7.12 Replication/Synchronization
7.13 Access Control/Security
7.14 Constraint/Inconsistency Management
7.15 Function Attachment
7.16 Global/Canonical Schema
7.17 Version Service
7.18 Configuration Service
7.19 Query Service
7.20 Metadata Service
7.21 State Monitoring Service/Triggering
7.22 Sub-Environment (Views) Service
7.23 Data Interchange Service
7.24 Tool Rgistration

12

9 Tools
9.3 Tool Integration

9.3.1 Data Integration
9.3.2 Control Integration
9.3.3 User Interface Integration

10 Task Management Services
10.1 Task Definition Service
10.2 Task Execution Service
10.4 Task History Service
10.5 Event Monitoring Service
10.6 Audit and Accounting Service
10.7 Role Management Service
10.8 Tool Registration

11 Message Services
11.1 Message Delivery Service
11.2 Tool Registration Service

13 Security
13.1 Security Information Class
13.2 Security Control Services
13.3 Security Monitor Services
13.4 Related Services

14 Framework Administration and Configuration
14.1 Tool Registration

15 Integration
15.1 Data Integration

15.1.1 Object Management as a Data Integration Mechanism
15.1.2 Common Data Descriptions
15.1.3 Tool-to-tool Data Translators
15.1.4 Tool-to-OM Translators
15.1.5 OM-to-OM Exchange
15.1.6 Consistency Management

3.2 Selected Dimension Factors of the Reference Model

The dimension factors (and other factors) described in the Reference
Model that were recommended by the NIST ISEE Working Group to each of
the mappers for describing the services provided by their standard/product

13

are listed below. In addition, each factor is associated with a [denotation] of
how strongly each factor was recommended.

"* Conceptual [required]
"* Operations [required]
"* Relationships Between Services [required]
"* External [recommended]
"* Data [optional]
"* Rules [optional]
"* Types [optional]
"* Instances [optional]
"* Metadata [optional]
"* Internal [optional]

For the SLCSE mapping exercise, emphasis was placed on providing
service descriptions with regard to the [required] factors (i.e., Conceptual:
what a service does; Operations: how a service does what it does; and
Relationships Between Services: what the interdependencies are between a
service and other services).

3.3 Service Descriptions for SLCSE

The services of SLCSE as mapped to the selected service descriptions of
the Reference Model are provided in the following sections. Each SLCSE
service is described in terms of one or more Reference Model dimension
factors (typically the "Conceptual", "Operational", and "Relationships
Between Services" factors).

3.3.1 Object Management Services (7)

33..L1 Data Model (7.1)

33..LL1 ICE - Conceptual

There are three interrelated data models in SLCSE for: (1) "project
database" objects, (2) "infrastructure database" objects, and (3) "project file"
objects. Each environment instantiated lfr-m the SLCSE framework is
associated with a Project Database Model, an Infrastructure Database Model,
and a Project Files Hierarchy Model. Each of these will be described in turn at
the conceptual level.

PROJECT DATABASE MODEL: SLCSE provides an

14

Entity-Relationship (ER) data model which is used to define all of the data
objects that are associated with a particular software development project (e.g.,
requirements, PDL, test cases, source code, tasks, schedules, resources,
milestones, etc.). The Project Database Model is a level of abstraction above
an underlying relational data model.

The Project Database Model is defined using a formal language called
the "Schema Definition Language (SDL)". SDL is used to define "entity types"
and "relationship types", and the "attributes" of those types of objects. In
addition, SDL allows the logical grouping of entity and relationship types into
"subschemas", and permits the definition of relationship types between entity
types defined in different subschemas. Relationship type definitions include
a "domain" entity type that has a "relation" to a "range" entity type (e.g.,
water (the domain) extinguishes (the relation) fire (the range)). The syntax of
SDL is described in Backus-Naur Form (BNF) in Appendix 7 of [13]. A
comprehensive example of a SDL-specified SLCSE Project Database Model
schema for the data objects associated with a DOD-STD-2167A-compliant
software development project is defined in Appendix 1 of [13]

INFRASTRUCTURE DATABASE MODEL: SLCSE provides a list-based
data model which is used to define all of the data objects that are necessary for
SLCSE operation (i.e., framework administration and SLCSE Command
Executive information about such things as project names, peripherals,
personnel, roles, tools, files and their attributes, rules, subschemas, entities,
project database entity access privileges, etc.).

The Infrastructure Database Model is defined formally in an Ada
programming language specification. The syntax of Ada is described in
ANSI/MIL-STD-1815A [31, and the SLCSE Infrastructure Database Model Ada
specification is defined in Appendix 2 of [13].

PROJECT FILES HIERARCHY MODEL: SLCSE provides a hierarchical
model for the storage of file objects. This model consists of three hierarchies:
(1) a "User Files Hierarchy", (2) a "Database Files Hierarchy", and (3) a
"Maintenance Files Hierarchy". User file, database file, and maintenance file
objects are project file objects associated with an environment instantiation of
the SLCSE framework, and the Project Files Hierarchy Model provides the
structure for the storage and management of file objects within the
environment. This model is based on the concept of "directories", which are
special files in which other file objects may be logically placed. Directories
may be placed within other directories, thus forming a hierarchical layering of
levels of file groups.

15

3.3.1.1.1.1 Example

Examples of the above data models are best described by the schemas
derived from them. See the examples given for the Reference Model service
called "Global/Canonical Schema" (7.16).

3.3.1.1.2 ROD - Operations

Neither the Project Database Model, Infrastructure Database Model, nor
the Project Files Hierarchy Model are truly object-oriented, and, therefore, no
operations are inherently associated with objects defined in either model.

3.3.1.1.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends-on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires none of the other mapped services.

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_1_data_model BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7Jl_datamodel (BACKWARD) [objectmanagement]
1- 7..16.globalschema dependson 7_1_datamodel
<-2- 7..14 constraint..mgt depends-on 7_16_.global schema
<-2- 7_20_metadata dependson 7_.6global-schema
<-2- 7...2-data-storage dependson 7_16.globalschema
<-3- 14 1_tool-registration depends-on 7_2_data_storage
<--4- 10_1_task~definition dependson 14_1_tool registration
<-5- 10_2 taskexecution depends-on 10_1_task definition
<-6- 10_4_taskhistory dependson 10_2_taskexecution
<--7- 10_2_taskexecution@ depends-on 10_4_taskhistory

16

<--6- 10_5_eventmonitoring dependson 10_2_taskexecution
<-6- 10_6_auditaccounting dependson 10_2_taskexecution
<--4- 10_7_rolemgt dependson 14_1_tool-registration
<--4- 10_8_toolregistration depends-on 14_1_toolregistration
<--4- 15 1 4 tool to om dependson 14_1_toolregistration
<--5- 15 1 5 om to om dependson 15_1_4_tool to om
<--6- 15_1_1_data-integration depends-on 15_1_5_om to om
<--3- 7_11_derivation dependson 7_2_data storage
<-3- 7_12_replication dependson 7_2_data-storage
<-4- 15_1_6_consistency-mgt dependson 7_12_replication
<--3- 7_13_accesscontrol depends-on 7_2_datastorage
<--4- 13_2_security.control dependson 7_13_accesscontrol
<-3- 7_17_version dependson 7_2_datastorage
<--4- 7_18 configuration depends-on 7_17_version
<-3- 7_19_query depends-on 7_2_datastorage
<-3- 7_21_state monitoring depends-on 7_2_datastorage
<--4- 10_5_eventmonitoring dependson 7 21 statemonitoring
<--3- 7_23_datainterchange depends-on 7_2_datastorage
<-4- 7_ 0lbackup dependson 7 23 datainterchange
<-5- 7_9_archive dependson 7_0lbackup
<--3- 7_3_relationship depends-on 7_2_data-storage
<--3- 7_4_name depends-on 7_2_datastorage
<--3- 7_6_datatransaction depends-on 7_2_datastorage
<--3- 7_7_concurrency dependson 7_2_data storage
<--4- 15 1 6 consistency-mgt dependson 7_7_concurrency
<--3- 9 3 -1 data-integration depends-on 7_2_datastorage
<--3- 9_3_2_controljintegration depends-on 7_2_datastorage
<--3- 9_3_3_ui integration depends-on 7_2_datastorage

3.3.1.2 Data Storage Service/Persistence (7.2)

3.3.1.Z1 ICE - Conceptual

There are three interrelated data storage services in SLCSE which
correspond to each of its data models. The data models are: (1) the "Project
Database Model", (2) the "Infrastructure Database Model", and (3) the "Project
Files Hierarchy Model". Respectively, the data storage services are provided
by: (1) an Entity-Relationship (ER) Interface (ERIF) and a High-Level ERIF
(HLERIF), (2) Dynamic Storage Allocation (DSA) routines, and (3) Operating
System (OS) utilities. The Data Storage Service provided by each of these will
be described, in turn, at the conceptual level.

17

ERIF: The ERIF provides the basic operations necessary for the creation
and storage of instances of the entity and relationship type, defined within
the Project Database Model for a parlicular envirorment instantiation of the
SLCSE framework. These instances are called "entities" and "relationships"
(or "links"), respectively. Each instance created is unique, and has a number
of "attributes" (defined by the type) which characterize the instance. Each
attribute of an entity or a relationship has a value that falls within a range
defined by the attribute's "data type" (e.g., sh ing, text, boolean, integer, float,
enumeration, etc.).

The place for storing entities and relationships is in the underlying
relational database of SLCSE (i.e., the Project Database), and these instances
can be observed and examined at the ER level of abstra.:tion via the
operations provided by the ERIF and the HLERIF.

HLERIF: Built on top of the ERIF is the HLERIF. HLERIF provides
operations that are tailored toward the Replication/Synchronization Service
(7.12) of SLCSE.

DSA: DSA routines provide all of the operations necessary for the
creation and storage of instances of data objects defined within the
Infrastructure Database Model for SLCSE. These instances are called
"records", and are characterized by the values of their "components"
(bounded by the data types (e.g., usernametype, nametype, boolean, etc.)
of the components defined in the Infrastructure Database Model).

The place for storing Infrastructure Database Model records is in a list-
based data repository (i.e., the Infrastructure Database) where these objects can
be observed and examined via the operations provided by DSA.

OS: The OS provides all of the operations necessary for the creation and
storage of file objects within the Project Files Hierarchy Model.

User files are stored in the User Files Hierarchy, Project Database files
are stored in the Database Files Hierarchy, and SLCSE maintenance files are
stored in the Maintenance Files Hierarchy. These objects can be observed and
examined via the operations provided by the OS.

3.3.1.Z1.1 Example

The following is an example of the Data Storage Service provided by
the ERIF described at the conceptual level: (1) the creation of an entity
instance NONDELIVERABLESOFTWARE, whose text data type attribute

18

DESCRIPTION and its enumeration data type attribute NDSTYPE are
assigned the values of "MacProject H" and "COTSSoftware", respectively, (2)
the storage of that instance in the Project Database, and (3) the retrieval of that
instance at the ER level of abstraction for observation and/or manipulation of
that data object.

The following is an example of the Data Storage Service provided by
DSA described at the conceptual level: (1) the creation of a
PERSONNELRECORD record whose UserNameType data type
component USERNAME and NameType data type component PROJECT
are assigned the values of "milligan" and "SLCSE", respectively, (2) the
storage of that record in the Infrastructure Database, and (3) the retrieval of
that record for its observation and/or manipulation.

An example of the Data Storage Service of the OS described at the
conceptual level is: (1) the creation of a source code file in the work directory
of a SLCSE user performing the role of a programmer, (2) the storage of that
object in the user's role directory, and (3) the retrieval of that object from the
role directory to the work directory for observation and/or manipulation (e.g.,
display or compile). Another example is: (1) the creation of a text attribute file
for an entity, (2) the storage of that file in the Database Files Hierarchy, and (3)
the retrieval of that object for observation and/or manipulation.

3.3.1.2.2 ROD - Operations

PROJECT DATABASE: The basic set of operations (create, query,
update, and delete) applicable to this service for the Project Database are
provided by the ERIF, and are:

Create:
"Insert"

"Duplicate"

Query:
"Table"
"EntityNameOf"
"DomainNameOf"
"RangeNameOf"
"EntityTypeOf"
"Relationship_TypeOf"
"DomainTypeOf"
"RangeTypeOf"
"AvailableSchemas"

19

"EntityTypesOf"
"RelationshipTypesOf"
"ComponentsOf"
"AttributeTypesOf"
"Cardinality_Of"
"AttributeInfo"
"DatatypeOf"
to - of

Update:
"Update"
"Reserve"
"Release"
"SetTextAttribute"
"ClearTextAttribute"
"Grant"
"Revoke"

Delete:
"Delete"

The exact syntax, parameters, and descriptions of these operations are
described in Appendix 6 of [13]. Appendix 4 of the same document describes
the use of the ERIF, while Appendix 5 describes the query syntax and
semantics of the query string (a proper subset of ANSI SQL) specified in the
"Table" operation.

The HLERIF also provides operations built on top of the ERIF
operations, and are as follows:

Create:
"AddMonitorAction"
"Duplicate"
"Insert"

Query
"AttributeError._Message"
"CollectionW ErrorMessage"
"Condition"
"Count"
"Finalize"
"Find Backward"
"Find-Forward"

20

"First"
"Get"
"GetCurrent"
" Get-__Error''
"GetInstance_Storage"
"GetMonitorAction"
"Get_-Next_-Event"
"GetSwap-Count"
"Get_-TestError"
"GotoFirst"
"GotoLast"
"GotoNext"
"GotoPrevious"
"Hierif ErrorMessage"
"Image"
"Initialize"
"InstanceErrorMessage"
"Last"
"LocalCollectionExists"
"Login"
"Logout"
"More___Errors"
"MoreMonitor-Actions"
"MoreTestErrors"
"Print"
"RetrieveFromLocal"
"RetrieveFromSlcse"
"Retrieve_MonitorActions"
"Test-Servers"
"Value"

Update:
"SavejToLocal"
"SaveTo-Slcse"
"Set"
"SetjInstance...Storage"
"Set ;Matching"
"fSort"I

Delete:
"Delete"
"Destroy"
"Destroy...Local_.Collection"

21

"RemoveMonitorAction"

INFRASTRUCTURE DATABASE: The basic set of operations (create,
query, update, and delete) applicable to this service for the Infrastructure
Database are provided by DSA, and are:

Create:
"CopyOfDataset"
"CopyOfDSAList"
"CreateDSADatabase"
"CreateDSA StorageArea"
"DefineDSA Data_Type"
"DSA Locker"
"DSAPointerTo"
"NewDataset"
"NewDynamicDataset"

"SaveDSADatabase"
"Template"

Query:
"CheckFolderVars" (New DSA routine)
"Display DSADatabase"
"Display-ObjectFolders" (New DSA routine)
"DSA ListMembershipCount"
"GetNextToken" (New DSA routine)
"InitializeMenusFromDatabase" (New DSA routine)
"IsEmpty"

"Length Of DSAList"
"Length-OfDynamic.Dataset"
"NextDatasetOnDSAList"
"Obtain"
"OnDSA List"
"QueryjYorItem-Type" (New DSA routine)
"Restore_DSADatabase"
"Restore DSAbase" (New DSA routine)
"Switch"
"ThroughDSAList"
"Validate-Keyword" (New DSA routine)
"ValidateUserName" (New DSA routine)

Update:
"AdditemTo_List" (New DSA routine)
"AppendDSAList"

22

"ChangeFileAttributes" (New DSA routine)
"ChangeToolPosition" (New DSA routine)
"Compress DSADatabase"
"DatasetAt"
"ExpandDynamicDataset"
"LockDataset"
"Lock DSA List"
"PutOn DSAList"
"ReduceDynamicDataset"

"SetCurrentRole" (New DSA routine)
"SetToolParameters" (New DSA routine)
"SortDSAList"

"Store In DSALocker"
"SwitchRoles" (New DSA routine)
"Take_- OffDSAList"
"TranslateMenuTo Keyword" (New DSA routine)
"Unlock_AllImplicitlyLockedDatasets"
"UnlockDataset"

Delete:
"DeleteItemFromList" (New DSA routine)
"DestroyDataset"
"DestroyDSA_List"

New DSA routines are those that were built upon the basic DSA
operations especially for SLCSE.

PROJECT FILES HIERARCHY: The basic set of operations (create,
query, update, and delete) applicable to this service for the Project Files
Hierarchy are provided by the OS (and used by the Command Executive (CE)
of SLCSE), and are to numerous to list here.

The OS "Run-Time Library" provides many VAX/VMS system level
routines. Examples are "LIB$RENAME FILE", and "LIB$DELETEFILE".
Pre-defined Ada interfaces for many system level routines are provided in the
"STARLET', "SYSTEM", and "CALENDAR" packages. Ada interfaces for
some commonly used Run-Time Library routines which were not included
in the pre-defined packages have been written and included in a package
called "MORESTARLETr.

The Run-Time Library routines are documented in a series of reference
manuals, and descriptions of the individual Run-Time facilities, along with

23

reference sections describing the individual routines in detail, and can be

found in [20], [211, [221, [231, [24], [25], and [26].

3.3.1.2.2.1 Example

PROJECT DATABASE:

- This contrived example updates a requirement by name, then
- deletes all performance requirements, then inserts a single
-- new performance requirement.
declare

Req : Cursor;
Buffer : AttributeList;

begin
- First find and modify the requirement named "SEARCHMODE". Note
-- that this will match the most recent version of SEARCHMODE.

Table(Universe => "Requirement",
Attributes => "AccessName, Description",
Buffer => Buffer,
Current=> Req,
Query => "AccessName = 'SEARCHMODE");

if not EndOfTable(Req) then
Buffer(2).VString(l..23) := "The New Search Mode ...";
Update(Req);

end if;
Commit(Req);
CloseTable(Req);

- Now delete all performance requirements.
Table(Universe => "Requirement",

Attributes -> "AccessName, Kind",
Buffer => Buffer,
Query -> "Kind = 'PERFORMANCE"',
Current-> Req);

while not EndOfTable(Req) loop
Delete(Req);

end loop;
- Now, using the same table, insert a new performance requirement.

Buffer(1).VString(1..6) := "AVGTIME";
Buffer(2).VString(l..11) :-"PERFORMANCE";
Buffer(3).VString(l..19) :- "The Average Time...";
Insert(Req);
Commit(Req);
CloseTable(Req);

24

end;

INFRASTRUCTURE DATABASE:

declare
role tool-pointer
dsaddata structures. tool-accessjtype;
toolpointer: dsa data structures.tool access type;

begin
role tool-pointer :- new-dataset;
role-tool-pointer copy.of.dataset (tool-pointer);
role-tool-pointer.allowable := true;

- place new tool record on tool list for this role
put on dsa list (dataset => role-toolpointer,

list => role-pointer.tools list,
position => bottom);

end;

PROJECT FILES HIERARCHY:

User Files Hierarchy:

1. SLCSE user directs CE to supply a role directory file as input to Editor
(update).

2. CE directs Editor output file to work directory (create).
3. CE renames Editor output file to role directory (update).
4. SLCSE user directs CE to delete previous version of the role directory

file (delete).
5. SLCSE user directs CE to display file objects in the role directory (query).

Database Files Hierarchy:

1. Text attribute of entity is examined (query).
2. Text attribute file is copied to work directory from SLCSE$TEXT

directory (create).
3. Text attribute file copy is changed (update).
4. Original SLCSE$TEXT directory text attribute file is replaced by updated

copy (delete and create).

3.3.1.2.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between

25

services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_2_data storage FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_2_data.storage (FORWARD) [object-management]
1- 7 2 data storage depends-on 11_1_message.delivery
1- 7_22_data-.storage depends-on 15_1_2_common_datadescr
1- 7 2 data-storage depends-on 7_16_global schema
-->2- 7j 16_global schema dependson 15_1_2_common data descr
->2- 7_16_global schema dependson 7_1_datamodel

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 72data-storage BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all) SUBSETS.

7_2_data_storage (BACKWARD) [object..managementl
1- 14_ 1_tool-registration depends-on 7_2_data,.storage
<-2- 10_1_task..definition dependsoon 14_1_tool-registration
<-3- 10_2_task-execution depends-on 10_1_Uask._definition
<--4- 0_4_task_history depends-,on 10_2_task-execution
<-5- 10._2_task-execution@ dependson 10_4_task-history
<--4- 10_5..event-monitoring depends-on 10_2_-task-,execution
<-4- 10_6..audit..accounting depends-_on 10_2_task,_execution
<-2- 10_7.role..mgt depends.9on 14._.toolregistration
<-2- 108_tool-registration depends,-on 141_Jool_registration
<-2- 15_1_4_tooLto._om depends~on 14_1_tool_registration
<-3- 15_1_5_ometo.orom dependson 15_1_4_tool_to_om
<--4- 15_1_1_datajntegration depends-on 15_1_5_or5too.om
1- 7_11_derivation dependson 7_2_jdatastorage

26

1- 7_12_replication depends-on 7_2_datastorage
<-2- 15 1 6 consistencymgt dependson 7j12-replication
1- 7 13 accesscontrol dependson 7_2_datastorage
<--2- 13_2_security-control depends-on 7_13_accesscontrol
1- 7_17_version dependson 7_2_data storage
<--2- 7_18_configuration dependson 7_17_version
1- 7_.19_-query dependson 7_2_datastorage
1- 7_21_statemonitoring depends-on 7_2_data_storage
<--2- 10_5_eventmonitoring dependson 7_21_statemonitoring
1- 7 23 datainterchange depends-on 7_2_datastorage
<-2- 7 10 backup depends-on 7_23_datainterchange
<-3- 7_9_archive depends-on 7_10_backup
1- 7 3 relationship dependson 7_2_datastorage
1- 7_4_name dependson 7_2_datastorage
1- 7_6_datatransaction dependson 7_2_data.storage
1- 7_7_concurrency dependson 7_2_data-storage
<--2- 15 1 6 consistency-mgt dependson 7_7_concurrency
1- 9 3 1 data-integration depends-on 7_2_datastorage
1- 9 3 _2controlintegration depends_on 7_2_data_storage
1- 9_3_3_ui integration dependson 7_2_datastorage

3.3.1.3 Relationship Service (7.3)

3.3.1.3.1 ICE - Conceptual

PROJECT DATABASE: The Relationship Service of SLCSE allows the
definition of "relationship types" in the Project Database Model, and the
creation and maintenance of Project Database instances of those types (via the
ERIF, and consequently, via the HLERIF), which are called "relationships" or
"links". Relationships possess descriptive attribute values and cardinality
(One To One, One To Many, Many To One, or Many To Many). They link a
"domain" entity with a "range" entity.

It is also possible to define a relationship "union" type, and to reference
relationships which are members of the union. Relationship "alias" types are
also supported in SLCSE to provide relationship access by more than one
name.

INFRASTRUCTURE DATABASE: Relationships between objects in an
Infrastructure Database are defined by pointers established between list record
components, and are maintained via operations provided by DSA.

3.3.13.1.1 Example

27

PROJECT DATABASE:

relationship type Person Solves Problem
cardinality Many To One is

Solution : text;
end relationship;

INFRASTRUCTURE DATABASE:

type tool-record is
record

name : toolnametype;
descriptor : tooldescriptorjtype;
parameters : tool-parametersrecord;
tool -list : dsa-list type;
item-kind : item_type;

allowable : boolean;
available : boolean;
tooldeleted : boolean;
timejlastinvocation : calendar.time;
numberofinvocations : natural;
laststatusoftool : cond_value-type;
keyword-only : boolean;
prerule_list : dsa,_ist-type; - tool-to-rules

- dsa relationship.
post.ruleJist: dsalisttype; - tool-to-rules

end record;

tool : tool record;
type tooLaccess-type is access tool-record;
toolpointer : tooLaccess-type;

3.&L3.2 ROD .

PROJECT DATABASE: The basic set of operations (create, query,
update, and delete) applicable to this service for the Project Database that are
provided by the ERIF arm.

Create:
"Insert"

Query:

28

"Table"
"DomainNameOf"
"RangeNameOf"
"RelationshipTypeOf"
"DomainTypeOf"
"RangeType TyeOf"
"Relationship-TypesOf"
"ComponentsOf"
"AttributeTypesOf"
"Cardinality_Of"
"AttributeInfo"
"Datatype-Of"
"I t,

Update:
"Update"

"Reserve"
"Release"
"SetText Attribute"
"Clear_Text_Attribute"
"Grant"
"Revoke"

Delete:
"Delete"

The exact syntax, parameters, and descriptions of these operations are
described in Appendix 6 of [131. Appendix 4 of the same document describes
the use of the ERIF, while Appendix 5 describes the query syntax and
semantics of the query string (a proper subset of ANSI SQL) specified in the
"Table" operation.

INFRASTRUCTURE DATABASE: The basic set of operations (create,
query, update, and delete), applicable to this service for the Infrastructure
Database, are provided by DSA routines, and are:

Create:
"DSA-PointerTo"

Query:
"Check_Folder_Vars" (New DSA routine)
"DisplayDSADatabase"
"DisplayObjectFolders" (New DSA routine)

29

"DSAList_-Membership-.Count"
"GetNext_Token" (New DSA routine)
"Is-Empty"
"Length...OfDSAList"
"Length....Of - Dynamic_-Dataset"
"Next_-DatasetOnDSAList"
"Obtain"
"OnDSAList"
"Restore_DSADatabase"
",Switch",
"Through...DSA..List"
"ValidateKeyword" (New DSA routine)
"Validate_UserName" (New DSA routine)

Update:
"AddItemTfo List" (New DSA routine)
"AppendDSAList"
"Change.-FileAttributes" (New DSA routine)
"ChangeTool_Position" (New DSA routine)
"Put On_)SAList"

"9Set ZurrentRole" (New DSA routine)
"fSet_-ToolParameters" (New DSA routine)
"ISort_-DSA_List"
"9StoreInDSALocker"
'Take_OffDSA..List"

Delete:
"DeletejItem.,.From-.List" (New DSA routine)
",Destroy...Dataset"
"Destroy...DSAList"

New DSA routines are those that were built upon the basic DSA
operations espeially for SLCSE.

3.1.13.2.1 Example

PROJECT DATABASE:

-ERIF query on relationship.
ERIF.Table (Universe -> "Person Solves Problem",

Attributes -> "Domain.Access - ame, " &
"Relation.Solution, " &
"Range.Access-.Name"

30

Buffer => TheAttribute-List,

Current => TheCursor);

INFRASTRUCTURE DATABASE:

declare
roletool-pointer
dsadatastructures.toolaccess-type;
tool-pointer: dsadatastructures.toolaccessjtype;

begin
roletool-pointer :- newdataset;
roletool-pointer :- copy_of_dataset (tool_pointer);
roletoolpointer.allowable := true;

- place new tool record on tool list for this role
putondsalist (dataset => roletool-pointer,

list => role-pointer.toolsjlist,
position => bottom);

end;

3.3.1.3.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends-on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7.3_jelationship FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_3_relationship (FORWARD) [object-management]
1- 7_3 relationship depends-on 7_2_datastorage
->2- 7_2_datastorage depends.on 11_1_message.delivery
->2- 7_2_data-.storage depends-on 15_1_2_commonrdata.descr
->2- 7_2_data -storage dependson 7_16_globalschema

31

-->3- 7_16.globalschema depends-on 15_1_2_commondatadescr

->3- 7_16_global-schema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.1.4 Name Service (7.4)

3.3.1.4.1 ICE - Conceptual

SLCSE provides a Name Service for Project Database, Infrastructure
Database, and Project Files Hierarchy objects. The Name Service for each of
these kinds of objects will be described in turn at the conceptual level.

PROJECT DATABASE OBJECTS: Entity types possess names that are 12
cL.aracters maximum in length, and must start with a letter. Instances of an
entity type (called an entity) are named as follows:

<entity-name> <accessname>:<descrname>:<version>
<accessname> ::- <identifier> (32 characters maximum)
<descrname> ::- <identifier> (80 characters maximum)
<version> ::= (non-zero sequence of digits)
<identifier> ::= (sequence of letters, digits, and underscores,

starting with a letter)

Relationship types possess compound names that consist of three parts,
as follows:

<relationshipname> ::= <domain-name>
<relation-name>
<range-name>

<domainname> ::= <entity-type-.name>
<relation-name> ::= <identifier> (12 characters maximum)
<range-name> ::= <entity-typename>
<entitytype name> ::= <identifier> (12 characters maximum)

Relationship type instances (called relationships, or links) do not
actually possess names, but are accessible by the names of their types.

Entity and relationship type and instance attributes possess names that
are 12 characters maximum in length, and must begin with a letter.

Both entity and relationship types may possess alias names that are 31
characters maximum in length, and must begin with a letter.

32

Entity and relationship type union names (12 characters maximum)
may also be used to reference a set of entity/relationship types and their
Subschemas also possess names that are 31 characters maximum in length,
and must begin with a letter.

INFRASTRUCTURE DATABASE OBJECTS: Names of objects in a
SLCSE Infrastructure Database are variable length strings maintained as
components of records. However, not all Infrastructure Database records
have name components, and, therefore, the Name Service in SLCSE as
applied to the Infrastructure Database is limited. Names are associated with
the following objects:

"entity-record"
"environment_rootrecord"

"filerecord"
"folder-record"

"keywordrecord"
"peripheralrecord"
" personnel record"
"project-rootrecord"
"rolerecord"
"subschema record"
"toolrecord"

PROJECT FILES HIERARCHY OBJECTS: Names are associated with file
objects within the User Files Hierarchy and the Database Files Hierarchy of
directories, and the Name Service is provided by the OS. In SLCSE, this basic
OS Name Service is augmented in the following ways:

1. An environment instantiation for a project named, for example,
"Project-X", will have the SLCSE$PRJ directory file named
"SLCSEPROJECT-X.DIR".

2. An environment instantiation for a project using a Project Database
named, for example, "Project-X-DB", will have a SLCSE$DBDIR directory file
named "PROJECT-X-DB.DIR", a parent directory file named "SLCSE.DIR",
and subordinate SLCSE$SQL, SLCSE$SDF, and SLCSE$DATABASE dirertory
files named "SQL.DIR", "SDF.DIR", and "DATABASE.DIR", respectively.
The SLCSE$TEXT directc-y file(s) subordinate to the SLCSE$DBDIR directory
assumes the name 'TEXTn.DIR" where 'n' is a digit ranging from '0' to '9'.
Directory files below the SLCSE$TEXT directory assumes a name which is the
string conversion of a number ranging from '0' to '9', and directory files

33

below these directories assume a name which is the string conversion of a
number ranging from '00' to '99'.

3. Project Database entity and relationship text attribute files are assigned a
unique name, which when elaborated describes the complete path (i.e.,
location within the Database Files Hierarchy of directories) and file name. For
example, if in a Project Database named "Project-X-DB" there is an instance of
an entity type named "activity" that has an integer attribute named "key"
equal to 01018 and a text attribute named "description", then the complete
name of the text attribute file pointed to by the entity would be
"[SLCSE.PROJECT-X-DB.TEXT0.0.18]01018CSCI.PURPOSE".

3.3.1.4.1.1 Example

PROJECT DATABASE OBJECT NAMES: The entity type named
"activity" is defined that has string attributes named "accessname" and
"descr_name". The first version of an instance of this type might be named
"Tl:Task-l:1", where 'I1" is the access name of the entity, "Task-l" is the
descriptive name of the entity, and "1" is the version of the entity.

INFRASTRUCTURE DATABASE OBJECT NAMES: A
"project-rootrecord" might have a "project-name" component assigned the
value "Project-X".

PROJECT FILES HIERARCHY OBJECT NAMES: See the examples
provided above.

33.1.4.2 ROD - Operations

PROJECT DATABASE OBJECT NAME OPERATIONS: SLCSE provides
all of the basic operations of create, query, update, and delete for the names of
Project Database objects (as discussed in the ICE dimension, conceptual
description of this service). However, it may not be possible to perform these
operations at all times, as illustrated in the following two tables:

Before Environment Instantiation

OPERATIONS
(ON NAME)

OBTECT WITH NAME I Create I Quer I Update I Delete
attributename I Yes I No I Yes I Yes
entity-alias-name I Yes I Yes I Yes I Yes

34

entity-name INo INo INo I No
entity-typename I Yes I Yes I Yes I Yes
entity-type-unionname I Yes I Yes I Yes I Yes
relationship-type-aliasname I Yes I Yes I Yes I Yes
relationship.type-name I Yes I Yes I Yes I Yes
relationship-type-union-name I Yes I Yes I Yes I Yes
subschema name Yes Yes Yes IYes

In this case: (1) Create operations are provided by a simple text editor
during schema definition, (2) Query operations are provided by
"SDL_Convert" and "AnalyzER" (reference [91, [10], and [11]), (3) Update
operations are provided by a text editor during schema modification, and (4)
Delete operations are also provided by a text editor during schema
modification.

After Environment Instantiation

OPERATIONS
(ON NAME)

OBJECT WITH NAME I Create I Ouery I Update I Delete
attributename I No I Yes I No I No
entity-aliasname I No I Yes I No I No
entity-name Yes Yes I Yes IYes
entity-typename I No I Yes I No I No
entity-type-unionname I No I Yes I No I No
relationship-typealiasname I No I Yes I No I No
relationshiptype.name I No I Yes I No I No
relationshipjtype.union..name I No I Yes I No I No
subschema name No Yes INo INo

In this case, create, query, update, and delete operations are provided by
the ERIF. It should be noted that the creation and deletion of an entity name
(i.e., entityname) is a by-product of the creation and deletion of the entity
itself. That is, an entity cannot exist without a name.

INFRASTRUCTURE DATABASE OBJECT NAMES: The basic
operations of create, query, update, and delete for the names of Infrastructure
Database objects are provided by DSA, but only apply to records with name
components. It is possible, in the case of Infrastructure Database objects, to
have a record exist with a name component that has no name value assigned
to the component (though this would probably be an application error).

35

PROJECT FILES HIERARCHY OBJECT NAMES: The basic operations
of create, query, update, and delete for the names of file objects are provided
by the VMS Operating System (e.g., Create, Directory, Rename, and Delete). It
should be noted that the creation and deletion of a file is a by-product of the
creation and deletion of the file itself. That is, a file cannot exist without a
name.

3.3.1.4.2.1 Example

PROJECT DATABASE OBJECTS: The following is an example of ERIF
operations used to query on the name of an entity, and to delete the name
(along with the entity). This example follows the case where it is after an
environment's instantiation.

declare
Allocation : Cursor;
Buffer: AttributeList;

begin
Table (Universe => "Requirement",

Attributes => "Access-Name, Descr Name, Version",
Buffer=> Buffer,
Mode => MODIFY,
Query => "AccessName = 'Reql' and " &

"DescrName = 'Requirement1' and " &
"Version = 1"

Current => Allocation);
while not EndOf Table (Allocation) loop

Delete (Allocation);
end loop;
Commit (Allocation);
CloseTable (Allocation);

end;

INFRASTRUCTURE DATABASE OBJECTS: The following is an
example of the Delete operation for a PERSON record name on a PROJECT
list using DSA.

take._off dsalist (dataset => personpointer,
list => proj-pointer.master-personnel-list);

destroy-dataset (person-pointer);

36

PROJECT FILES HIERARCHY OBJECTS: The following is an example
of the update operation of the SLCSE Name Service provided by the OS for
file objects.

procedure librename file (
status : out conditionhandling.cond-valuetype;
oldjfilespec : in string;
new-filespec : in string;
defaultfilespec : in string := string'null_parameter;
relatedfilespec : in string := string'null_parameter;
flags : in integer := integer'null-parameter;
successroutine : in integer := integer'null_parameter;
errorroutine: in integer := integer'null-parameter;
confirmroutine : in integer := integer'null-parameter;
userarg : in integer := 0;
oldresultantname out string;
newresultantname : out string;
filescancontext : in out integer);

3.3.1.43 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7..4name FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_4_name (FORWARD) [object-management]
1- 7..4 name dependson 7_2_data..storage
->2- 7_2_data-storage depends-on 11_1 message..delivery
->2- 7..2_datastorage dependson 15_1_2_commondatadescr
->2- 7_2_data.storage dependsaon 7..16.global-schema

37

-->3- 7- 16globalschema depends-on 15_1_2_commondatadescr

->3- 7 16_globalschema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.1.5 Distribution/Location Service (7.5)

A SLCSE Project Database is both logically and physically centralized,
and therefore, there is no concept of a logically centralized database mapping
to a physically distributed database in SLCSE. However, there are facilities
that allow for the management of Project Database Objects on distributed
computing platforms that are not the actual platform hosting a Project
Database. This alternate concept is described more fully in the mapping to the
Replication/Synchronization Service of the Reference Model (paragraph 7.12
of the Reference Model).

3.3.1.6 Data Transaction Service (7.6)

3.3.1.6.1 ICE - Conceptual

SLCSE provides a Data Transaction Service for Project Database Objects.

Operations on Project Database objects are transaction-oriented. When
a transaction has completed, all changes are "committed" or "saved". If a
"commit" involves an operation that fails, all operations of the "commit" are
"rolled back" to the point before the "commit".

The Data Transaction Service of SLCSE is facilitated by a working
combination of "EditER" (a general-purpose ER editing facility), the ERIF, and
the underlying RDBMS.

3.3.1.6.1.1 Example

A SLCSE user modifies two entities, and creates a relationship between
them in his/her local buffers. The user then "commits" the changes, and an
error occurs because a mandatory attribute value specification for the
relationship was not provided. The transaction is "rolled back" to the point
before the "commit", and the user is informed of the problem. The user
specifies the relationship attribute value, and then "commits" the changes.
The "commit" is then successful.

3.3.L6.2 ROD - Operations

38

The commit and rollback operations are provided for transactions in
SLCSE dealing with Project Database objects. The ERIF provides the following
two procedures:

procedure Commit (Current : in Cursor;
-- Table identifier.

Errors : in ErrorBlock := StandardErrorBlock;
-- Where to store errors.

procedure Rollback (Current : in Cursor;
-- Table identifier.

Errors : in ErrorBlock := StandardErrorBlock;
-- Where to store errors.

At the front end, EditER utilizes these procedures to implement the
Data Transaction Service. At the back end, the ERIF utilizes the underlying
operations of the RDBMS to implement these procedures.

3.3.1.6.2.1 Example

EditER's "SaveErrorCleanUp" procedure commits any updates that
were made during a transaction, and then doses the database table (a local
buffer). The procedure is called if any exceptions are raised during the save
process. This is to insure that changes which were made are committed, and
that the buffer is not lost because of an unhandled exception.

procedure Save.Error.CleanUp is
- Current row of the ERIF table.

current : ERIF.cursor;
begin
- Commit the changes.

ERIF.Commit (current);
- Close the table.

ERIF.CloseTable (current);
end SaveErrorClean,_Up;

3.3.1.6.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends_on"

39

relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_6_datatransaction FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF (all] SUBSETS.

7_6_datatransaction (FORWARD) [object-management]
1- 7_6_datatransaction dependson 7 2 data.-storage
->2- 7_2_datastorage dependson 11_1_message.delivery
->2- 7_2_datastorage dependson 15_1_2_commondatadescr
->2- 7_.2_datastorage depends_on 716_.global_schema
-->3- 7_16_..globalschema depends-on 15_1_2_common-datadescr
->3- 7_16_globalschema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.1.7 Concurrency Service (7.7)

3.3.1.7.1 ICE - Conceptual

The Concurrency Service of SLCSE is provided by the operations of the
Entity-Relationship InterFace (ERIF) for Project Database objects.

3.3.1.7.1. Example

The SLCSE Project Management System (SPMS) is an example of an
application that utilizes the Concurrency Service of SLCSE. When an entity is
checked out from the database by user "A", an ERIF operation is used to lock
entity "E". User "A" then manipulates a copy of entity "E". If user "B"
attempts to acces entity "E" from an application, through the ERIF, while
user "A" has that entity locked, access is denied. Only when user "A"
commits the changes to entity "E" will entity "E" be unlocked and accessible
to user "B".

3.3..7.2 ROD - Operations

40

The ERIF provides a lock and an unlock operation, which at the
application level are called "reserve" and "release", respectively. These
operations apply to both entities and relationships, and are described in the
ERIF specification as follows:

procedure Reserve (Current : in Cursor;
-- Table identifier.

Errors : in ErrorBlock := Standard_ErrorBlock);
-- Where to store errors.

procedure Release (Current : in Cursor;
- Table identifier.

Errors : in ErrorBlock := Standard_Error Block);
- Where to store errors.

Both the "Delete" and "Update" operations of the ERIF use an internal
"IsLocked" boolean function (i.e., a function that is not visible to an external
application) to ensure that changes are not made to Project Database objects
that are locked.

3.3.1.7..1 Example

declare
Req: Cursor;

begin
- Find the requirement named "SEARCHMODE".

Table(Universe => "Requirement",
Current=> Req,
Query => "AccessName = 'SEARCHMODE'");
Current=> Req);

- Reserve the entity retrieved by the query.
Reserve(Req);
Commit(Req);
CloseTable(Req);

end;

3.3.1.73 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between

41

services. Each service was modeled as an entity with various "depends on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_7_concurrency FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_7_concurrency (FORWARD) [object_management]
1- 7_7_concurrency depends-on 7_2_datastorage
->2- 7_2_datastorage depends.on 11_1_message.delivery
->2- 7_2_data storage depends on 15_1_2_common data-descr
->2- 7_.2_datastorage depends on 7._16_global schema
->3- 7_.16_global.schema depends.on 15_1_2_common_data.descr
->3- 7_16..globalschema depends-on 7_1_data model

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7j7_concurrency BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_7_concurrency (BACKWARD) [objectmanagement]

I- 15_1_6_consistencymgt depends_on 7_7_concurrency

3.3.18 Process Support Servke (7.8)

SLCSE does not provide the Process Support Service as described in the
Reference Model. However, the VMS operating system upon which SLCSE is
currently implemented does. The VMS operating system provides for
prioritized process scheduling queues, process control blocks (for process state
information), process state transition control (e.g., make wait, execute, prepare
for execution, swap out, swap in, etc.), input/output process requests
handling, and a number of utilities for querying about process information
(e.g., the accounting utility, the show process utility, and the monitor process

42

utility) and for changing processes (e.g., the set utility). SLCSE provides tool
integration services for the incorporation of such utilities as tools in an
environment instantiation (e.g., a tool that was integrated into SLCSE was the
CPU tool, which, at the VMS level, translates to the "monitor
process/ topcpu" utility).

3.3.1.9 Archive Service (7.9)

The VMS Operating System (OS), upon which SLCSE is currently
implemented, provides a complete Archive Service for files stored on disk.
Through a combination of the VMS backup (to tape from disk) utility
(reference [19]), and the Backup Service of SLCSE (reference service mapping
to Reference Model section 7.10, Backup Service), all data can be moved
off-line, and restored.

3.3.1.10 Backup Service (7.10)

3.3.1.10.1 ICE - Conceptual

The "Digital Command Language (DCL) Interface Utilities" of SLCSE
can be used to restore the Project Database (as well as the contents of text
attribute files within the associated Database Files Hierarchy of the Project
Files Hierarchy) for an environment instantiation after a media failure (refer
to [13]).

SMARTSTAR (a 4GL RDBMS software package necessary for SLCSE
operation) also provides utilities to backup a Project Database (exclusive of the
contents of text attribute files within the Database Files Hierarchy). Refer to
[121.

The ShareBase Server (an intelligent database machine, which is the
hardware implementation option for the underlying RDBMS of SLCSE) also
provides utilities to backup a Project Database (exclusive of the contents of
text attribute files within the Database Files Hierarchy). Refer to [6].

The ShareBase Server and Rdb/VMS (the software implementation
option for the underlying RDBMS of SLCSE) provide transaction logging for
the recovery of data since the last complete backup of a SLCSE Project
Database.

The Operating System (OS) supporting SLCSE provides a backup utility
that can be used to restore the entire Project Files Hierarchy for an
environment instantiation in the event of a media failure (this includes the

43

Database Files Hierarchy files for Rdb/VMS, text attribute files, Infrastructure

Database files, etc.). Reference [19].

3.3.1.10.1.1 Example

For a SLCSE Project Database associated with an environment
instantiation, the DCL Interface Utility "database unload" is used to dump the
entire contents of the database into a predefined ASCII text format stored in a
file on disk. The VMS Backup Utility is then used to archive this file, and the
entire Project Files Hierarchy (including the Infrastructure Database) from
disk to tape (or, alternatively, these files could be backed up to another disk).
Media failure may occur to the disk holding the Project Database (be it a
ShareBase Server disk or an Rdb/VMS disk), in which case, the Project
Database is backed up to disk from tape (or, alternatively, to disk from disk),
and then the DCL Interface Utility "database load" is used to restore the
database from the ASCII text file. RDBMS utilities would then be used to
recover additional data lost since the last database backup. Restoration of the
Project Files Hierarchy is done simply by using the VMS Backup Utility (tape
to disk, or, alternatively, disk to disk).

33..L10.2 ROD - Operations

The SLCSE Backup Service operations fall into four general categories:
Copy, Delete, Create, and Update. The Copy operation, in this case, is what is
typically called "making a backup copy". For the Backup Service, "Copy" does
not necessarily mean that a copy of an object (e.g., a database or a file) is an
exact duplicate (i.e., it may be stored on a different type of media, and/or be
formatted differently than the original). The Delete operation may be
required to eliminate corrupted objects after a media failure. The Create
operation may be required to replace deleted/corrupted objects with new
ones. The Update operation is, in this case, what is typically called "restoring
from a backup copy'.

The primary Backup Service operations provided by the DCL Interface
Utilities for a Project Database are listed below:

COPY:
"Database Unload

[/<qualifierJist>]"

Update:
"Database Load

[/<qualifler-list>]"

44

SMARTSTAR utilities provide the following Backup Service
operations for a Project Database:

Copy:
"DUMPDBVAX" - Backup a database to a VAX file.
"DUMPDBTAP" - Backup a database to a ShareBase tape.
"DUMPTRVAX" - Backup a transaction log to a VAX file.
"DUMPTRTAP" - Backup a transaction log to a ShareBase tape.

Delete:
"DUMPDB" - Delete a database.

Create:
"CREATEDB" - Creates an empty database.

Update:
"LOADDBVAX" - Restore database contents from a VAX file.
"LOADDBTAP" - Restore database contents from a ShareBase tape.
'TRANUPVAX" - Restore and roll forward transaction log from a

VAX file.
"TRANUPTAP" - Restore and roll forward transaction log from a

ShareBase tape.

The ShareBase Server RDBMS provides the following Backup Service
operations for a Project Database:

Copy:
"IDMDUMP" - Backup database and/or transaction log to file or tape.

Delete:
"SQL DROP" - Delete a database.

Create:
"SQL CREATE" - Create an empty database.

Update:
"IDMLOAD" - Restore database and/or transaction log from file or tape.
"IDMROLLF" - Roll forward a transaction log.

The VAX Rdb/VMS Management Utility (RMU) provides the
following Backup Service operations for a Project Database:

45

Copy:
"RMU/BACKUP" - Backup a database and its transaction log to a file.

Delete:
"SQL DROP' - Delete a database.

Create:
"SQL CREATE" - Create an empty database.

Update:
"RMU/RESTORE" - Restore a database and its transaction log from a

backup file.
"RMU/RECOVER" - Roll forward a transaction log after restore.

The VMS Backup Utility provides both Copy and Update operations
(disk to tape, tape to disk, disk to disk, and tape to tape) for all files, and has
the following command format:

"Backup [/<command qualifier list>]
<input-specifier> [/<input specifier-qualifierlist>]
<output-specifier> [/<output.specifier-qualifierlist>]"

The VMS Delete Utility may also be used to delete corrupted files
before an Update operation, while the VMS Create Utility may be used to
create directories and empty files. These commands have the following
formats:

"Delete [/<command,.qualifierjlist>] <filespecification>
"Create [/<command.qualifierlist>] <filejspecification>

The VMS Create Utility is rarely used directly by the user during SLCSE
Backup Service operations, since the VMS Backup Utility utilizes the VMS
Create Utility to perform most of the necessary Create operations.

3.3.10.2.1 Example

The following is an example of SLCSE Backup Service operations:

$DATABASE UNLOAD /SCHEMA="UNIVERSAL" -
/OUT-"DUAO:[SLCSE.DATABASE]DATABASE.OUT"
/ LOC='DUAO:[SLCSE.DATABASE]DATABASE.LOG"

$BACKUP DUAO:[SLCSE.DATABASE...J]*.*-, -
DUAO:[USERA.SLCSE_PROJECTX...]., -

46

DUAO: [USERB.SLCSEPROJECTX...]*.; *
MFAO:PROJECTX.BCK/LABEL=PROJECTX

$DELETE DUAO:[SLCSE.DATABASE..]*.*J*
$DELETE DUAO:[USERA.SLCSEPROJECTX...]*.*;*
$DELETE DUAO:[USERB.SLCSEPROJECTX...]*.*;
$BACKUP MFAO:PROJECTX.BCK -

/SAVESET -
/SELECT=([SLCSE.DATABASE...]*.;*) -

DUAO:[SLCSE.DATABASE...]*.;*
$BACKUP MFAO:PROJECTX.BCK -

/SAVESET -
/SELECT=([USERA.SLCSEPROJECTX...].*;*) -

DUA0:[USERA.SLCSEPROJECTX...]*.*;
$BACKUP MFAO:PROJECTX.BCK -

/SAVESET -
/SELECT=([USERB.SLCSE_PROJECTX...].*;*) -

DUA0:[USERB.SLCSEPROJECTX...]*.;
$SQL SYSTEM
SQL> DROP PROJECT-X;
SQL> EXIT;
$CREATEDB PROJECTX-DB
$DATABASE LOAD /IN="DUAO:[SLCSE.DATABASE]DATABASE.OUT"' -

/ LOG ="DUAO:[SLCSE.DATABASE]DATABASE.LOG"

3.3.1.103 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_10_backup FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

47

7 10 backup (FORWARD) [object-management]
1- 7 10 backup depends-on 7_23_data interchange
->2- 7 23 datainterchange dependson 7_2_data-storage
->3- 7_2 datastorage depends-on 11_1_message.delivery
->3- 7_2_data storage depends-on 15_1_2_commondatadescr
->3- 7_2 datastorage dependson 7_16_globalschema
-->4- 7_16_global-schema dependson 15_1_2_commondatadescr
->4- 7_16_global-schema depends-on 7_1_datamodel

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7_10 backup BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_10_backup (BACKWARD) [object-management]

1- 7_9_archive depends-on 7_10_backup

3.3.1.11 Derivation Service (7.11)

3.3.1.11.1 ICE - Conceptual

SLCSE provides for the definition of "entity views". An entity view is
a representation of an entity type in a form other than the physical
representation. Entity views provide a method for restriction, or
abbreviation, of physical structure. Entity views can be defined in the Schema
Definition Language (SDL) to enhance both the clarity of the data model and
the efficiency of applications that frequently reference a given combination of
attributes in an entity type.

Entity views, however, possess attributes that are derived from a
combination of attributes of the entity type from which the entity view is
constructed. That is, an entity view is an object which possesses a subset of
the attributes derived from an entity type, and is simpler than that entity type.
None the less, entity views are derived from entity types. When instances of
an entity type, that has an entity view, are created, an instance of the entity
view is automatically derived.

When the data model for a environment instantiation is defined in
SDL, it is then compiled. Derived in this process are SQL files and ERIF run-
time files. When the SQL files are interpreted via SMARTSTAR, the physical
database for the environment is derived.

48

Special tools integrated into an environment may take advantage of
the Derivation Service provided by the underlying RDBMS. For example, the
ShareBase Server provides for the definition and creation of "views" (which
are different from the "entity views" just described) and "stored commands".
Execution of a stored command (similar to a macro) or a query on a view can
produce conceptual objects with derived values not physically stored
anywhere in the database. SLCSE does not, however, currently provide
services at the Entity-Relationship (ER) level which utilize the views or
stored commands provided at the relational level.

3.3.1.11.1.1 Example

The following is an example of an entity type definition in SDL from
which the subsequent entity view is derived:

entity type Contract is
Number : string (20);
EffectiveDate : time;
Total-Amount: float;
TotalAmountUnit : CurrencyUnit := Dollars;

end entity;

view type ContractCost of Contract is
Dollar-Amount : TotalAmountUnit;

end view;

33..L11.2 ROD - Operations

The basic operations involving the Derivation Service of SLCSE are
Create (i.e., create an entity view definition, create an entity view instance,
create SQL and ERIF run-time files from SDL, create physical Project Database
from SQL, and create view or stored command), Delete (i.e., delete an entity
view definition, delete an entity view instance, delete SQL and ERIF run-time
files, delete a physical Project Database, and delete a view or a stored
command), Update (i.e., update an entity view definition, update an entity
view instance, and update a view or a stored command), and Query (i.e.,
query about an entity view definition, query about an entity view instance,
and query a view or execute a stored command).

It should be noted that the creation or update of an entity view is done
by creating or updating the entity from which that entity view is derived.

49

3.3.1.11.L1 Example

Referring to the example given for the "ICE - Conceptual" Service
Dimension Form, create the entity view definition of the example in an SDL
file using a text editor. Compile the SDL file to create SQL and ERIF run-time
files, and interpret the SQL to create the physical Project Database. Run an
application that utilizes the SLCSE EditER, and create an instance of the entity
type Contract named "PROJECTX:PROJECTX:1" with a TotalAmount
attribute value of 100000.00 and a TotalAmountUnit attribute value of
"Dollars". Query on the entity view instance attribute
"PROJECTX:PROJECTX:I.DollarAmount" to discover a value of "Dollars".
In frustration at discovering undesired results, delete the instance of the
entity type Contract (deleting also the entity view) named
"PROJECTX:PROJECTX:I", and leave the application.

Using an editor, update the entity view definition for ContractCost to
include the entity type Contract attribute TotalAmount, but renamed for the
entity view as DollarAmount, replacing the old DollarAmount attribute
with this one. Delete the old SQL, ERIF run-time files, and the physical
Project Database, and create new ones using the updated SDL as input. Repeat
the exercise with the application, and query on the entity view instance
attribute "PROJECTX:PROJECTX:1.DollarAmount" to discover the desired
value of 100000.00 for the entity view ContractCost.

3.3.1.11.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends-on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_lderivation FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

50

7_11iderivation (FORWARD) [object-management]
1- 7 11 derivation dependson 7_2_datastorage
-->2- 7_2_datastorage dependson 11 1_message-delivery
->2- 7_2_datastorage depends-on 15_1_2_commondatadescr
-->2- 7_2_datastorage dependson 7_16_globalschema
-->3- 7_16.global-schema dependson 15_1_2_commondatadescr
-->3- 7_16_global-schema dependson 7_1_datamodel

This service is required by none of the mapped services.

3.3.1.12 Replication/Synchronization Service (7.12)

3.3.1.12.1 ICE - Conceptual

SLCSE provides a Replication/Synchronization Service for Project
Database Objects.

Within a heterogeneous network of computer nodes, it is possible for
remote applications to "check-out" a subset of information contained in a
SLCSE Project Database, manipulate that subset of information, and to "check-
in" the modified information to the Project Database. Database integrity is
important in a multi-user environment such as SLCSE, and therefore, it is
possible to "lock" the instances that are checked-out, and "unlock" them
when they are checked back in.

This facility is provided using a client-server architecture, where a
client process on the remote node requests (over the network) a subset of data
from a server process running on the host platform of the Project Database.
Both the client and the server work through an interface to the Entity-
Relationship Interface (ERIF) called the High Level ERIF (HLERIF), which is a
highly portable Ada package. This package provides the capability to operate
within the memory constraints of the remote computer via efficient, self-
automated "swapping" operations to and from the local file space, and also
provides data file formats that can be relatively easily transformed into the
format required for use by a native application.

3.3.1.12.1.1 Example

The SLCSE Project Management System (SPMS) is an example of a
system that uses the Replication/Synchronization Service provided by SLCSE,
as described above. The SPMS contains Commercial Off-The-Shelf (COTS)
project management tools implemented on a Macintosh workstation that
communicates to the SLCSE Project Database over the network. The Project

51

at,

Management Assistant (PMA) facet of the RL Knowledge-Based Software
Assistant (KBSA) program and the QUality Evaluation System (QUES) are
other examples where this service was applied for tools implemented on
workstations.

3.3.1.12.2 ROD - Operations

The basic set of operations (create, query, update, and delete) applicable
to this service for the Project Database are provided by the "High-Level Entity-
Relationship Interface (HLERIF)", and are listed below:

Create:
"AddMonitorAction"
"Duplicate"
"Insert"

Query:
"AttributeErrorMessage"
"Collection_.ErrorMessage"
"Condition"
"Count"
"Finalize"
"FindBackward"
"FindForward"
"First"
"Get"
"GetCurrent"
"Get Error"
"Get Instance-Storage"
"GetMonitor-Action"
"GetNextEvent"
"GetSwapCount"
"Get_Test_Error"
"GotoFirst"
"Goto Last"
"Goto.Next"
"GotoPrevious"
"HleriLErrorMessage"
"Image"
"Initialize"
"InstanceError_Message"
"Last"

"LocalCollectionExists"

52

"Login"
"Logout"
"MoreErrors"
"MoreMonitorActions"
"MoreTest_Errors"
"Print"

"RetrieveFromLocal"
"RetrieveFromSlcse"
"Retrieve MonitorActions"
"TestServers"
"Value"

Update:
"SaveToLocal"
"Save_ToSlcse"
"Seto'

"SetInstanceStorage"
"Set-Matching"
"Sort"

Delete:
"Delete"
"Destroy"

"DestroyLocalCollection"
"RemoveMonitor_Action"

3.3.1.12.2.1 Example

On a Macintosh workstation, retrieve from SLCSE all entities of the
PROBLEM entity type, passing the RetrieveFrom..Slcse operation the
boolean value of 'True' for the "Reserve" parameter. This locks these entities
while the retrieving application operates on the local entity collection until
the Save_ToSlcse operation is used with a boolean value of T'rue' for this
operation's "Release" parameter.

3.3.1.12.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends-on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship

53

information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_12_replication FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_12_replication (FORWARD) [objectmanagement]
1- 7 12 replication dependson 7_2_datastorage
->2- 7_2_datastorage depends on 11_1_message-delivery
->2- 7 2_data-storage dependson 15_1_2_commondatadescr
->2- 7_2_datastorage dependson 7_16_globalschema
-->3- 7_16_-global-schema depends-on 15_1_2_commondatadescr
->3- 716_global-schema depends.on 7_1_datamodel

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7_12_replication BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_12_replication (BACKWARD) [object -management]

1- 15_1_6_consistencyjmgt dependson 7L12replication

3.3.1.13 Access Control/Security (7.13)

33..L13.1 ICE - Conceptual

SLCSE provides the service of Access Control/Security for Project
Database, Infrastructure Database, and Project Files Hierarchy Objects. These
shall be discussed in turn for this service.

PROJECT DATABASE: Access Control is provided on Project Database
information at three levels of data granularity. A user is provided access (or
denied access) to Project Database information at the level of: (1) database
entry, (2) subschema entry, and (3) entity/relationship/attribute (ERA) entry.
Access control is specified/modified for a user within the SLCSE
Environment Manager (SEM) (at the database, subschema, and entity entry

54

level) before an environment is instantiated, and, at the ERA level, may be
fine-tuned using the facilities provided by the RDBMS (e.g., SQL). Access
control is enforced via a combination of the SLCSE Command Executive (CE)
and the underlying RDBMS for a SLCSE Project Database. Information
regarding access control is stored: (1) for database entry, in the relational
database, (2) for subschema entry, in the Infrastructure Database, and (3) for
ERA entry, in the Infrastructure Database (entity entry only) and in the
relational database (ERA entry inclusive).

INFRASTRUCTURE DATABASE: Access Control is provided for an
Infrastructure Database file using the access control services of the VMS
Operating System (OS), as described below for Project Files Hierarchy objects.
It should be noted that information for a user's access privileges to Project
Database subschemas and entities, and tools integrated into an environment
instantiation is recorded in the Infrastructure Database using the SEM. This
information is used by the SLCSE CE and some SLCSE applications to govern
access control to Project Database information and an environment's toolset.

PROJECT FILES HIERARCHY: Access Control is provided for file
objects using the access control services of the VMS Operating System (OS).
These services include the following two mechanisms: (1) file protections,
and (2) Access Control Lists (ACLs). File protections include read, write,
execute, and delete for System level access (i.e., special privilege account
owners), World level access (i.e., all account owners), Group level access (i.e.,
all account owners with the same group number as the owner of the object),
and Owner level access (i.e., the account owner who owns the object). An
ACL is associated with an object, and consists of a number of ACL Entries
(ACEs) that grant or deny access to a particular object. Each ACE specifies a
user or a group of users who have access to a particular object (regardless of
whether or not they are the owner of the object), and the type of access
permitted (i.e., read, write, execute, delete, control, none). Refer to [8].

3.3.L13.2 ROD - Operations

The basic operations Create, Update, Query, and Delete provided for
this service in SLCSE are described for Project Database, Infrastructure
Database, and Project Files Hierarchy objects as follows:

PROJECT DATABASE: The following operations apply to Project
Database objects access control and security. SEM generates access control SQL
for interpretation, and also generates the Infrastructure Database (for
subschema access control) via Dynamic Storage Allocation (DSA) operations.

55

The SLCSE CE and applications use DSA and ERIF operations, and rely on
RDBMS access control enforcement at the ERA level.

Create:
"SEM - DEFINE ENVIRONMENT"

(Default subschema access control per user role)
"SEM - DEFINE PROJECT"

(Subschema and entity access control per user of an environment
instantiation)

"DSA - NEWDATASET"
"DSA - PUTONDSA LIST"'

(Subschema access control)
"SQL - GRANT'

(ERA access control)
"ERIF - GRANT'

(ER access control)

Update:
"SEM - MODIFY ENVIRONMENT'

(Default subschema access control per user role)
"SEM - MODIFY PROJECT"

(Subschema and entity access contol per user of an environment
instantiation)

"DSA - PUT_ONDSA LIST-
"DSA - TAKEOFFDSALIST-

(Subschema access control)
"SQL - GRANT"

(ERA access control)
"SQL - REVOKE"

(ERA access control)
"ERIF - GRANT"

(ER access control)
"ERIF - REVOKE"

(ER access control)

Query:
"SEM - MODIFY ENVIRONMENT"

(Default subschema access control per user role)
"SEM - MODIFY PROJECT"

(Subschema and entity access contol per user of an environment
instantiation)

"DSA - OBTAIN"
(Subschema access control)

56

"SQL - SELECT'
(ERA access control)

"ERIF - AVAILABLE SCHEMAS"
(Subschema access control)

Delete:
"SEM - MODIFY ENVIRONMENT"'

(Default subschema access control per user role)
"SEM - MODIFY PROJECT'
"SEM - DELETE PROJECT'

(Subschema and entity access contol per user of an environment
instantiation)

"SQL - REVOKE"
(ERA access control)

"DSA - DESTROYDATASET"
"DSA - DESTROYDSALIST"
"DSA - TAKEOFFDSALIST"

(Subschema access control)
"ERIF - REVOKE"

(ER access control)

INFRASTRUCTURE DATABASE: The following operations apply to
Infrastructure Database objects used for subschema and tool access control and
security. These operations are provided by DSA, and used by SEM, the SLCSE
CE, and SLCSE applications.

Create:
"SEM - DEFINE ENVIRONMENT"

(Default subschema and tool access control per user role)
"SEM - DEFINE PROJECT"

(Tool, subschema, and entity access contol per user of an environment
instantiation)

"DSA - Copy.OfDataset"
"DSA - CopyXODSAList"
"DSA - Create_DSADatabase"
"DSA - Create_DSA.StorageArea"
"DSA - Define._DSA_Data_Type"
"DSA - DSALocker"
"DSA - DSA_Pointer._To"
"DSA - NewDataset"
"DSA - NewDynamicDataset"
"DSA - Save..DSADatabase"
"DSA - Template"

57

Query:
"SEM - MODIFY ENVIRONMENT"

(Default subschemna and tool access control per user role)
",SEM - MODIFY PROJECT'

(Tool, subschema, and entity access contol per user of an environment
instantiation)

"DSA - CheckFolder-Var 6 ' (New DSA routine)
"DSA - Display-)SADatabase"
"DSA - Display...Objectiolders" (New DSA routine)
"DSA - DSA_-List_-MembershipCount"
1DSA - Get_-Next_-Token" (New DSA routine)
"DSA - InitializeMenusFromDatabase" (New DSA routine)
"DSA - IsEmpty"
"DSA - Length-)LDSA_List"
"DSA - Length-OfDynamicDataset"
"DSA - NextDataset_OnDSAList"
"DSA - Obtain"
"DSA - OnDSAList"
"DSA - Query-ForjItemType" (New DSA routine)
"DSA - Restore..DSAJDatabase"
"DSA - RestoreDSAbase" (New DSA routine)
",DSA - Switch"
"DSA - Through - SA..List"
"DSA - Validate._Keyword" (New DSA routine)
"DSA - Validate..User_.Name" (New DSA routine)

Update:
"SEM - MODIFY ENVIRONMENT"

(Default subschema and tool access control per user role)
"SEM - MODIFY PROJECT'

(Tool, subschema, and entity access contol per user of an environment
instantiation)

"DSA - Add Item To List" (New DSA routine)
"DSA - Appen4D)SA..List"
"DSA - Changejlle...Attributes" (New DSA routine)
"DSA - Change-Tool-Position" (New DSA routine)
"DSA - CompressýDSA.Database"
"VSA - Dataset-At"
"DSA - Expand-.Dynamic..Dataset"
"DSA - Lock.Pataset-
"DSA - Lock,.DSA.-List"
"DSA - Put..On..DSAList"

58

"DSA - ReduceDynamicDataset"
"DSA - SetCurrentRole" (New DSA routine)
"DSA - SetToolParameters" (New DSA routine)
"DSA - SortDSAList"
"DSA - Store_InDStLocker"
"DSA - SwitchRoles" (New DSA routine)
"DSA - TakeOffDSAList"
"DSA - TranslateMenuToKeyword" (New DSA routine)
"D3A - UnlockAll_ImplicitlyLockedDatasets"
"DSA - UnlockDataset"

Delete:
"SEM - MODIFY ENVIRONMENT"'

(Default subschema and tool access
control per user role)
"SEM - MODIFY PROJECT"
"SEM - DELETE PROJECT"'

(Tool, subschema, and entity access contol per user of an environment
instantiation)

"DSA - DeleteItemFromList" (New DSA routine)
"DSA - DestroyDataset"
"DSA - DestroyDSAList"

Operations on the file itself that contains the Infrastructure Database are
described below for operations that apply to Project Files Hierarchy objects
(i.e., files).

PROJECT FILES HIERARCHY: The following operations apply to the
access control and security of Project Files Hierarchy objects, and are provided
by the VMS OS. These operations are documented in [271.

Create:
"CREATE/DIRECTORY <directoryjfile-specification>"
"CREATE /OWNER_UIC-<uic> <filespecification>"
"CREATE/PROTECTION=<code> <filespecification>"
"SET ALC-<ACEjIst> <filespecification>"

Update:
"SET ALC=<ACElist> <file-specification>"
"SET FILE/OWNERUIC-<uic> <filespecification>"
"SET PROTECTION=<default.code>"
"SET PROTECTION-<code> <file_specification>"

59

Query:
"DIRECTORY/ALC <file -sperification>....
"DIREr:TORY/OWNER <file.specification>"
"DIRECTORY/PROTECTION <file specification>....
"SHOW ACL <filespecification>"
"SHOW PROTECTION"

Delete:
"DELETE <filespecification>"
"SET ALC=<ACE list> <filespecification>"
"SET FILE/OWNERUIC=<uic> <file-specification>"
"SET PROTECTION=<defaultcode>"
"SET PROTECTION=<code> <file-specification>"

3.3.1.13.2.1 Example

The following is an example of the operations involved in establishing
security in an environment instantiation.

1. Use SEM to establish the default tools and subscheinas to be assigned to
each user role defined by the framework.

2. Use SEM to define a project environment. Add user Jones, and use the
default tool and subschema access settings defined for the framework. Set the
read, write, execute, and delete privileges for each entity type in the Project
Database. Save the definition. This results in access control SQL file,
Infrastructure Database file, and User Files Hierarchy (of the Project Files
Hierarchy) creation.

3. Use the SQL Interpreter to read the access control SQL file (which contains
various GRANT commands).

4. Use the CREATE and SET operations of VMS to establish the desired file
protections and ACLs for Project Files Hierarchy objects.

5. User Jones runs SLCSE to find that he is denied access to certain portions of
the Project Database at the subschema and ERA levels, but has access to the
appropriate portions of the Project Database, as well as to his project files.

3.3.1.13.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between

60

services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a ser-'ice show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_13_access control FORWARD
9 LEVEL RELATIONSHIP
-- AS A MEMBER OF [all] SUBSETS.

7_13_accesscontrol (FORWARD) [object-management]
1- 7 13 access control dependson 7_2_data storage
->2- 7 2_data_- orage depends on 11 1_message delivery
->2- 7_.2_data_-sorage depends-on 15_1_2_common-data-descr
->2- 7 2_datastorage depends on 7_16_globalschema
-->3- 7_16_globalschema dependson 15_1_2_commondatadescr
->3- 7_16_global-schema depends-on 7_1_data_model

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7_13_accesscontrol BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_13_accesscontrol (BACKWARD) [object-management]

1- 13_2_security-control depends on 7_13_access-control

3.3.1.14 Constraint/Inconsistency Management (7.14)

3.3.1.14.1 ICE - Conceptual

PROJECT DATABASE: Constraint Management is provided by the
definition of the data types of attributes of entity and relationship types, and
the enforcement of the values associated with them within an environment
instantiation. In addition, the cardinality of relationship types are also
defined in the data model, and subsequently enforced.

61

SLCSE does not provide for Inconsistency Management except for the
ability to dynamically enable and disable constraints on Project Database access
control.

INFRASTRUCTURE DATABASE: Constraint Management is
provided by the definition of the data types of components stored in lists of
records within an Infrastructure Database. An attempt by an application to
violate these constraints would cause an exception to be raised in it's run-
time environment, or would totally prevent the compilation of the
application prior to run-time.

Inconsistency Management for the objects of an Infrastructure Database
is not provided, and should not apply, given the strong typing of Ada data
types.

3.3.1.14.1.1 Example

PROJECT DATABASE:

The boolean entity type attribute called "Baselined" is constrained to
the values of 'True" and "False".

Access control on an entity type can be dynamically changed for a
particular user from "Granted" to "Revoked", or visa versa.

INFRASTRUCTURE DATABASE:

The TOOL_-RECORD record has a boolean data type component called
"Available" which is constrained to the values of "True" and "False".

3.3.1.14.2 ROD - Operations

PROJECT DATABASE: Operations for Constraint/ Inconsistency
Management are provided by the underlying RDBMS, and are propagated to
SLCSE applications through the ERIF. These operations fall into the general
categories of Create, Update, Query, and Delete, but, when considering this
service, might be called "guarded" operations. That is, a guarded update
operation is an operation that protects against illegal updates to entities and
relationships (e.g., assigning a string value to an integer type attribute).

INFRASTRUCTURE DATABASE: Operations for
Constraint/ Inconsistency Management are provided by the compile-time and

62

run-time environments of an application using DSA routines, and are

provided by the Operating System.

3.3.1.14.2.1 Example

PROJECT DATABASE:

The following is an example of a guarded update operation, as
expressed in SQL (much like the ERIF would translate an ER command from
an application to a form understood by the RDBMS).

$ SQL/DBTYPE=IDM
1) OPEN DATABASE Fl11;
2) UPDATE CSCI

SET VERSION = 'BAD'
WHERE ACCESSNAME = 'MC OFP';

It should be impossible to update the VERSION integer data type
attribute of an instance of the entity type CSCI with the string value of 'BAD'.
The ShareBase Server RDBMS for SLCSE responds as follows:

%IDM-E-IDMO19, Result for field: "version" has wrong type

and the illegal update is protected against.

INFRASTRUCTURE DATABASE:

The following is an example of a guarded update operation, as
expressed in Ada (as a SLCSE application might unsuccessfully attempt).

declare
tool-pointer : dsa -data-structures.toolaccess_type;
badyvar: integer := 96;

begin
tool-pointer := newdataset;
tool-pointer.available := bad-var;

It should be impossible to update the AVAILABLE boolean data type
component of a TOOL-RECORD record with the integer value of 96. The
Ada compiler of the VMS Operating System would respond with an error
message similar to the following:

63

%ADAC-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined
STANDARD of variable toolpointer.available at line 2 is not the same as
type INTEGER in predefined STANDARD of variable badvar at line 3 (LRM
5.2(1)]

and the illegal update is protected against.

3.3.1.14.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_14_constraint-mgt FORWARD
9 LEVEL RELATIONSHIP
-- AS A MEMBER OF [all] SUBSETS.

7_14_constraintmgt (FORWARD) [objectmanagement)
1- 7 14 constraintmgt dependson 7_16_.globalschema
-->2- 7_16._global-schema depends-on 15_1_2_commondatadescr
->2- 7j16_globalschema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.1.15 Function Attachment (7.15)

SLCSE does not provide for Function Attachment to objects, as none of
its data models are truly object-oriented. In SLCSE, Function Attachment to
objects would be done, alternatively, through tool integration into an
environment instantiated from the framework. The tools would then
provide the functions associated with objects.

3.3.1.16 Global/Canonical Schema (7.16)

64

3.3.1.16.1 ICE - Conceptual

The Global/Canonical Schema provided by SLCSE is in a combination
of the instances of: (1) the Project Database Model, (2) the Infrastructure
Database Model, and (3) the Project Files Hierarchy Model, for a particular
instantiation of an environment from the SLCSE framework. It should be
noted that the Entity-Relationship (ER) data model schema used to define all
of the data objects associated with a particular software development project
(e.g., requirements, PDL, test cases, source code, tasks, schedules, resources,
milestones, etc.) is the primary schema for SLCSE.

PROJECT DATABASE MODEL SCHEMA: The Project Database Model
is defined using a formal language called the Schema Definition Language
(SDL). SDL is used to define entity types and relationship types, and the
attributes of those types of objects. In addition, SDL allows the logical
grouping of entity and relationship types into subschemas, and permits the
definition of relationship types between entity types defined in different
subschemas. Relationship type definitions include a domain entity type that
has a relation to a range entity type. A comprehensive example of a
Global/Canonical Schema for the data objects associated with
DOD-STD-2167A, as defined in Appendix 1 of [131.

INFRASTRUCTURE DATABASE MODEL SCHEMA- SLCSE provides
a list- based data model schema which is used to define all of the data objects
that are necessary for operations dealing with both the instantiation of
environments from the SLCSE framework (i.e., SEM operation) and and a
particular environment instantiation (i.e., SLCSE operation). This
information consists of such things as nodes, projects, peripherals, personnel,
roles, tools, files, rules, subschemas, entities, project database access privileges,
etc. A SLCSE Infrastructure Database Model Schema is defined in Appendix 2
of [131.

PROJECT FILES HIERARCHY MODEL SCHEMA: SLCSE provides a
hierarchical file structure schema for the storage of file objects associated with
a particular environment instantiation. This schema consists of three
hierarchies: (1) a User Files Hierarchy, (2) a Database Files Hierarchy, and (3) a
Maintenance Files Hierarchy. User file, database file, and maintenance file
objects are all project file objects associated with an environment
instantiation of the SLCSE framework, and the Project Files Hierarchy Model
Schema provides the structure for the storage and management of file objects
within that instantiation.

65

For a given environment instantiation, there may be several User Files
Hierarchies depending on how many users are assigned to a given project.
The User Files Hierarchy is used for the storage and management of files
owned by a SLCSE user, and begins with the "SYS$SCRATCH" (or "root")
directory of a particular SLCSE user. Below the root directory is a
"SLCSE$PRJ" (or "project") directory (associated with a particular
environment instantiation) where files essential to SLCSE operation are
stored (e.g., an Infrastructure Database file). Below the project directory is one
or more "SLCSE$ROL" (or "role") directories (a user can have up to 18 distinct
role directories. Within a role directory are static file objects owned by the
user. Below a role directory are "SLCSE$WRK" (or "work") and
"SLCSE$BCH" (or "batch") directories, where dynamic file objects reside.
Dynamic file objects within a work directory are subject to interactive tool
manipulations, while those within a batch directory are subject to batch job
(or background process) tool manipulations. Also below a role directory there
may be "SLCSE$FOLDER" (or "folder") directories for the placement of static
file objects. A folder directory may contain other folder directories, and are
provided in this schema to allow a user-defined hierarchical organization of
SLCSE user file objects. The Users File Hierarchy is described in [14].

The Database Files Hierarchy is used for the storage and management
of files pointed to by the Project Database associated with a particular
environment instantiation. The Database Files Hierarchy consists of three
hierarchies: (1) the Main Hierarchy, (2) the Configuration Management (CM)
Hierarchy, and (3) the Software Development Folder (SDF) Hierarchy.

The Main Hierarchy begins with a "SLCSE" directory which contains
"SLCSE$DBDIR" directory named after the Project Database. Below the
SLCSE$DBDIR directory are the "SLCSE$SQL", "SLCSE$SDF", and
"SLCSE$DATABASE" directories for the storage of files essential to the
operation of the SLCSE Database Subsystem (i.e., Relational Database
Management System (RDBMS) and "ER Interface (ERIF)" file objects). Also
below the SLCSE$DBDIR directory are one or more "SLCSE$TEXT"' directories
(up to 10) for the storage and management of Project Database entity and
relationship type instance text attribute data type file objects. A text attribute
of an entity or a relationship type instance point to unique text file objects
stored within a directory hierarchy below the SLCSE$TEXT directory. The
details of the Main Hierarchy of the Database Files Hierarchy of the Project
Files Hierarchy are described in [151.

The CM Hierarchy consists of only one directory, "SLCSE$CM",
associated with an environment instantiation, and is for the storage of PDL

66

and source code files associated with formal design components of
configurations known to the Project Database.

The SDF Hierarchy consists of one directory, "SLCSE$SDF", with any
number of subordinate directories (depending on how many SDFs are
associated with whatever number of formal design components are known to
the Project Database).

The Maintenance Files Hierarchy is used for the storage of files that are
essential for SLCSE and SLCSE tools operation (e.g., executable files) and
maintenance (e.g., source code). It begins with a "SLCSE" directory that has a
"BASEROOT" directory below it. Below the "BASE ROOT" directory is a
"DB" directory (for files primarily related to the Project Database), a "LIB"
directory (for library file objects such as sharable executables), a "TOOL"
directory (for SLCSE tool file objects such as source code and executables), and
a "UI" directory (for files primarily related to the SLCSE User Interface, SLCSE
Command Executive, SLCSE Environment Manager, and Rule Base). Each of
these directories, in turn, have one or more subdirectory structures that will
not be described here. The Maintenance Files Hierarchy is described in [14].

3.3.1.16.1.1 Example

An example of a SLCSE Project Database Model Schema, defined at the
conceptual level using SDL, is:

subschema Contract is
-- User-defined enumeration type attribute

type Currency-Unit is (Dollars, KDollars, MDollars, BDollars);
- entity type

entity type Contract is
- Predefined attributes that every entity type has:

- accessname : string (32);
- descrname: string (80);
-- version : integer;
-- key: integer;
- created: time;
- creator: user;
-- modified: time;
-- modifier: user;
- locked : time;
- owner: user;

- User-defined attributes:
Number: string(20);

67

EffectiveDate : time;
TotalAmountUnit : Currency-Unit := Dollars;

end entity;

-- Relationship type (Domain Relation Range)
relationship type Contract Defines Project

-- Every relationship type has a cardinality associated with
-- it, which may be one of the following:

-- One To One
- One To Many
-- Many To One
-- Many To Many

cardinality One To Many;

entity type NDS is
Description: text;
NDS_- Type: (COTS_Software,ReusableSoftware,GFS);

end entity;

- Alias entity type
entity type NonDevelopmentalSoftware is alias of NDS;

- Relationship type with user-defined attribute
relationship type Contract Identifies NDS

cardinality Many To Many is
- Predefined attributes that every relationship type has:

-- domainkey : integer;
-- range.key : integer;
- created: time;
- creator : user;
-- modifier: user;
- locked : time;
- owner: user;

- User-defined attribute:
Usage_Rationale : text;

end relationship;

entity type SOW is
Number: string(20);
Date : time;
Description : text;

end entity;

68

entity type CDRLItem is
Number: string(20);

end entity;

-- Union entity type
entity type Attachment is union of

Sow,
CDRL_Item;

end entity;
end subschema;

subschema Project-Management is
entity type Project'is

ResourceAcquisitionPlan : text;
Security-ImplementationPlan : text;
SubcontractorMgmtPlan: text;
StatusAccountingSystem : text;
ConfigurationAuditPlan : text;

end entity;
end subschema;

- representation

-- The representations are used to uniquely define the first 12
-- characters of each named item in the schema. Furthermore,
-- representations are used to rename items which are Smartstar
-- or RDB keywords, such as report, audit, and format.

representation is
use Attmnt for Attachment;

end representation;

An example of a SLCSE Infrastructure Database Model Schema, defined
at the conceptual level using Ada, is:

- This record is created by the SLCSE Environment Manager
- for each person available for software development projects
- for the Environment framework; a subset of this list is
- maintained for each project environment instantiation.

type personnelrecord is
record

user_name: usernamejtype;

69

name : nametype;
project : nametype;
primary-or-currentrole : role-type;

-- list of roles user is entitled to play.
assignedroles : dsatypes.dsa-list-type;

-- for access control.
entity-list : dsa-types.dsa-list-type;
read-granted : dsa-types.dsa-list-type;
insertgranted dsatypes.dsajlist-type;
delete-granted dsatypes.dsa-list-type;
update-.granted : dsa types.dsajlistjtype;
processstate : state-type;
uaf: uaf record;
rolesmodified : boolean;

end record;

person: personnel-record;

type person-access type is access personnel-record;

person-pointer: person access.type;

An example of a SLCSE Project Files Hierarchy Model Schema is
illustrated below:

User Files Hierarchy

SYS$SCRATCH
SLCSE$PRJ

SLCSE$ROL
SLCSESWRK
SLCSE$BCH

SLCSESFOLDER
SLCSESFOLDER

[USER]-> [PROJECT-XI-> [PROGRAMMER-J--> [WORK]
+ +-> [BATCH]
+ +-> [BOLDER1]
+ +-> [FOLDER2]
+ +-> [FOLDER2-1]
+-> [SOFTWAREANAl--> [WORK]

+-> [BATCH]
+-> [FOLDERI]

Database Files Hierarchy

70

Main Hierarchy

SLCSE
SLCSE$DBDIR

SLCSESDATABASE
SLCSE$SDF.

SLCSE$SQL
SLCSESTEXTr

[SLCSE]-> [PROJECT-X-DB]-> [DATABASE]
[SDFI
[SQL]
[TEXTO]-> [01-> [00]
+ + (Oil01

+

+ [9

+ +--> [99]

+ [9

+> [91]-> [00]
+ +-> [01]

+-> [99]

CM Hierarchy

SLCSE$CM

[PROJECT-X-CM]

SDF Hierarchy

SLCSE$SDF

[PROJECT-X-SDF]-> [CSCI-AIllOll

71

+

[CSC-A-A11051
+

[CSU-A-A-A1110]
+

[CSU-A-A-B1111]

Maintenance Files Hierarchy

SLCSE
BASE-ROOT

DB

LIB
TOOL
U1

[SLCSEI-> [BUILD_16_BASE]--> [DB]->>.
+

+-> [LIB]->>
+

+-> [TOOL]->>
+

+-> [Ul]->>

3.3.1.16.2 ROD - Operations

PROJECT DATABASE MODEL SCHEMA: Compound operations (of
the basic Create, Update, Query, and Delete operations) such as "edit" (by a text
editor), "compile" (by the SDL Compiler), "convert" (by the ConvertSDL
tool), and "analyze" (by the analyzER tool) do apply to the Project Database
Schema in support of tool integration. The "edit" operation involves
creating and updating object definitions in support of the integration of tools
that produce and utilize the instances of those objects.

INFRASTRUCTURE DATABASE MODEL SCHEMA: SEM provides
operations on the Infrastructure Database in support of tool integration, as
described in the Tool

3.3.1.16.2.1 Example

The Ada Test and Verification System (ATVS) is one example of a tool
(refer to [4]) for which the SLCSE data model was augmented (refer to
Appendix I of [131) to include entity and relationship type definitions to
support the integration of that tool with SLCSE.

72

3.3.1.16.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_16_globalschema FORWARD
9 LEVEL RELATIONSHIP
-- AS A MEMBER OF [all] SUBSETS.

7_16_global schema (FORWARD) [object.management]
1- 7_16_global schema dependson 15_1_2_commondatadescr
1- 7_16_globalschema dependson 7_1_datamodel

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_16_globalschema BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_16_global-schema (BACKWARD) [object-management]
1- 7 14 constraint_mgt depends-on 7_16_globalschema
1- 7_20 metadata depends -on 7.16_globalschema
1- 7_2_datastorage dependson 7_16_global schema
<-2- 14_1_tool registration depends-on 7_2_datastorage
<--3- 10-1_taskdefinition depends-on 14_1_tool-registration
<--4- 10_ 2_task.execution depends-on 10_1_taskdefinition
<--5- 10_4_task.history dependson 10_2_taskexecution
<--6- 10_2_taskexecution@ depends-on 10_4_taskhistory
<-5- 10_5_eventmonitoring dependson 10_2_taskexecution
<-5- 10_6_audit_ iccounting dependson 10_2_taskexecution
<--3- 10_7_role-mgt dependson 14_1_toolregistration
<--3- 10_8_tool-registration depends-on 14_1_toolregistration

73

<--3- 15_1_4_tool to om depends-on 14_1_toolregistration
<--4- 15_1_5_om to om depends-on 15_1_4_tool to om
<--5- 15_1_1_data_integration dependson 15_1 5 om to om
<--2- 7 11 derivation dependson 7_2_datastorage
<--2- 7_12_replication dependson 7_2_data-storage
<--3- 15_1_6_consistency.mgt depends-on 7 12-replication
<--2- 7 13 accesscontrol depends-on 7_2_datastorage
<--3- 13_2_securitycontrol dependson 7 13 accesscontrol
<--2- 7_17_version dependson 7 2 datastorage
<--3- 7_18_configuration depends-on 7_17_version
<--2- 7_19_query depends-on 7_2_datastorage
<-2- 7_21_statemonitoring dependson 7_2_datastorage
<--3- 10_5_eventmonitoring dependson 7 21 statemonitoring
<--2- 7 23 datainterchange dependson 7_2_datastorage
<-3- 7_10 backup dependson 7_23_data interchange
<--4- 7_9_archive depends-on 7 10 backup
<--2- 7_3_relationship dependson 7_2_data storage
<--2- 7_4_name dependson 7 2_datastorage
<--2- 7_6_datatransaction depends-on 7_2_data_storage
<--2- 7_7_concurrency depends-on)_2_data.storage
<--3- 15_1_6_consistency-mgt dependson 7_7_concurrency
<--2- 9 3 1 dataintegration dependson 7_2_datastorage
<--2- 9 3 2 control-integration depends_on 7_2_data-storage
<--2- 9_3_3_ui integration depends-on 7_2_datastorage

3.3.1.17 Version Service (7.17)

3.3.1.17.1 ICE - Conceptual

PROJECT DATABASE: The Version Service of SLCSE is provided as
an intrinsic part of the Project Database Model and it's run-time
implementation within an environment instantiation. It is possible to have
variants of entities and relationships stored within the same Project Database.
Usually, one set of variants is associated with one "configuration", while
another set of variants is associated with another configuration. A particular
entity may have any number of versions, and the relationships between
different versions of entities form the "glue" of a configuration that can be
"baselined".

PROJECT FILES FIER' RCHY: The Operating System underlying
SLCSE provides the capability to have multiple versions of a file object, and
SLCSE provides the necessary operations to associate particular versions of

74

file objects (e.g., PDL and source code files) with a particular configuration

defined in the Project Database.

3.3.1.17.1.1 Example

The entity type SYSTEM may have an instance called,
"B2_SC:B-2_SUPPORTCOMPUTER:1", which is the first version of an
entity identifying the actual system being developed within an environment
instantiation. At some point, the system configuration, consisting of the
"B2_SC:B-2_SUPPORTCOMPUTER:1" instance and many other related
entities in the Project Database, would be baselined (e.g., a Functional baseline
is typically done when the requirements of the system are known). The
developmental configuration of the system could then be identified by a
SYSTEM entity type instance called, "B2_SC:B-2_SUPPORTCOMPUTER:2",
the second version. This configuration could then be baselined, and so on
and so forth.

3.3.1.17.2 ROD - Operations

PROJECT DATABASE: In SLCSE, the Version Service operations are
provided by the ERIF, and DCL Interface Utilities. Both the ERIF and DCL
Interface Utilities provide: "insert" operations for the creation of first-version
entity instances, "duplicate" operations for the creation of variants of an
entity type instance, "update" operations, "reserve" and "release" operations,
and "delete" operations. The DCL Interface also provides a "purge" operation
for the deletion of a certain number of old versions of entities, and the ERIF
provides a "table" operation for querying about entities and relationships.
For more information, refer to [13].

PROJECT FILES HIERARCHY: The operations to associate versions of
files with a configuration stored and maintained in the Project Database are
provided by the SLCSE tools BaselinER, Addfile, Putfile, Getfile, SDFCreate,
SDFDelete, Import, and Export, which utilize both ERIF and Operating
System operations. These tools are described in the comments section for the
Reference Model service called "Data Integration" (9.3.1), and in [15].

3.3.1.17.2.1 Example

The following is an example of the DCL Database Interface Utility
operation for the creation of new versions of one ar more existing entities
listed in a special format text file named ENTITIES.LIS:

$DATABASE DUPLICATE /IN=ENTITIES.LIS

75

3.3.1.17.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_17_version FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF (all] SUBSETS.

7_17_version (FORWARD) [object-management)
1- 7 17 version depends-on 7_2_datastorage
->2- 7_2_datastorage depends-on 11_1_message.delivery
->2- 7_2_datastorage depends-on 15_1_2_commondatadescr
->2- 7_2_datastorage depends-on 7_16_global_schema
-->3- 7_16-globalschema dependson 15 1 2 commondata descr
->3- 7_16_global-schema dependson 7_1_datamodel

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7.17_version BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_17_version (BACKWARD) [object-management]
1- 7_18_configuration depends-on 7_17_version

3.3.1.18 Configuration Service (7.18)

3.3.1.18.1 ICE - Conceptual

76

PROJECT DATABASE: The Configuration Service of SLCSE is
provided by the Project Database associated with an environment
instantiation, and the tools integrated with that environment. In SLCSE, a
"configuration" consists of an identifiable set of entities and relationships
associated with a system being developed within an environment
instantiation. As the system evolves, it may be "baselined" several times,
forming a number of configurations (e.g., DOD-STD-2167A identifies
Functional, Allocated, Product, Developmental, and Product Version
baselining). These configurations can include multiple combinations of the
entities and relationships stored in an environment's Project Database (e.g.,
requirements, design, source code, documentation, etc.).

PROJECT FILES HIERARCHY: SLCSE tools provide the necessary
operations to associate groups of file objects (e.g., PDL and source code files)
with a particular configuration defined in the Project Database.

3.3.1.18.1.1 Example

A group of Project Database entities and relationships, and Project Files
Hierarchy file objects associated with an instance of the entity type SYSTEM
can be included in a configuration that is identified by an instance of the
CONFIGURATIONID entity type that is linked to those objects by a number
of CONFIGURATION_ID INCLUDES PRODUCT relationships.

3.3.1.18.2 ROD - Operations

In SLCSE, the Configuration Service operations are provided by the
ERIF at the application interface level. Compound operations called
"include", "baseline", "generate report", and "edit" are provided by the SLCSE
BaselinER tool:

"include" - entity query and selection for incorporation into a configuration.
"baseline" - freeze a configuration.
"generate report" - query the objects forming a configuration.
"edit" - edit an instance of the CONFIGURATION_ID entity type.

BaselinER is founded on the DOD-STD-2167A development
methodology and the Configuration Management Subschema of the DOD-
STD-2167A ER Data Model developed for SLCSE. Refer to [151.

3.3.1.18.2.1 Example

77

The following is an example of the Configuration Service of SLCSE
using the BaselinER tool:

1. Query on instances of the DELIVERABLEDOCUMENT entity type, and
include the appropriate ones into a configuration identified by a
CONFIGURATIONID entity type instance.

2. Generate a report listing the configuration components.

3. If satisfied with the entities included in the configuration, then baseline
the configuration.

3.3.1.18.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7.18_configuration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7 18 configuration (FORWARD) [object..management]
1- 7_18_configuration dependson 7_17_version
->2- 717..version depends_on 7_2.data storage
->3- 7_2_data..storage depends.on 11_1_message.delivery
->3- 7f..2.data.storage depends-on 15_1_2_commondatadescr
->3- 7.2_data-storage depends-on 7_16_global schema
-->4- 7_16_global_schema dependson 15_1L2.sommondatadescr
->4- 7_16_.global-schema dependson 7_1_datamodel

This service is not required by any of the mapped services.

3.3.L19 Query Service (7.19)

78

3.3.1.19.1 ICE - Conceptual

PROJECT DATABASE OBJECTS: The Query Service of SLCSE for
Project Database objects is provided at the user level (by EditER), at the
application level (by the ERIF), and at the relational level (by the RDBMS). A
query on entities and relationships may be specified in the form of a
"qualified search", where partial entity/relationship identification
specifications are provided, and the values returned are of those of the set of
entities/relationships that match the partial specification. In addition, the
SLCSE data model provides the capability to define an entity type (and
relationship type) "union", which permits queries on the set of instances that
are of the different entity types (and relationship types) included in the union
definition.

INFRASTRUCTURE DATABASE OBJECTS: The Query Service of
SLCSE for Infrastructure Database objects is provided at the user level (by the
SLCSE Command Executive and "infra-coupled" SLCSE tools) and at the
application level (by DSA routines). A query on local files, available
subschemas, available tools, assigned roles, etc., results in the retrieval and
presentation of lists of the objects stored in an Infrastructure Database.

PROJECT FILES HIERARCHY OBJECTS: The Query Service of SLCSE
for file objects in the Project Files Hierarchy are provided at the user and
application levels by the facilities provided by the underlying Operating
System. In addition, for text attribute files in the Database Files Hierarchy
(part of the Project Files Hierarchy), the Query Service of SLCSE for the Project
Database also applies.

3.3.1.19.1.1 Example

PROJECT DATABASE OBJECTS:

A SLCSE user (within the EditER Entity-Relationship (ER) on-line
query form) presses the proper sequence of keys for a qualified search, and
specifies that all of the entities of the CSCI entity type that have a Descriptive
Name beginning with the letter "S" be retrieved from the Project Database.
EditER calls on ERIF routines to direct the necessary RDBMS operations to
retrieve the requested information. The information is provided at the
relational level by the RDBMS to the ERIF, to EditER by ERIF at the
ER/application level, and to the user by EditER through the presentation of
information in query form displays.

79

INFRASTRUCTURE DATABASE:

A SLCSE user presses the return key with the cursor on the TOOLS
button presented by the User Interface. The Command Executive translates
the request for tool information, and displays the TOOLS menu (loaded by the
Command Executive with information retrieved from the Infrastructure
Database using DSA routines at the beginning of the SLCSE user session).
The TOOLS menu shows the tools available for the user's current role.

PROJECT FILES HIERARCHY:

Using the DIRECTORY tool of the VMS Operating System within the
SLCSE environment, the user queries about all of the local files with a file
extension of "ADA", and the DIRECTORY tool, in turn, calls on low-level
Operating System routines to obtain the requested information. All of the
requested information about the files matching the partial file name
specification is then displayed to the user.

3.3.1.19.2 ROD - Operations

PROJECT DATABASE OBJECTS: The operations for the Query Service
of SLCSE on the Project Database are provided by EditER at the user level.
EditER operations are described below:

BACKWARD: Goes back to the previous entity or relationship in the buffer
list. If the current record is the first in the buffer list then a message to this
effect is displayed.

CLEAR ALL- Deletes all buffers from the list. Any changes to entities or
relationships contained in the buffers are lost. They will not be made in the
database.

CLEAR FIELD: Sets the current field to blanks. This has the following effects:
Causes string, enumeration, boolean, user, file, and time attributes to become
all blanks. Causes entity attribute key values to become zero. Causes integer
and float attributes to become zero. Causes text attributes to contain no
characters.

CLEAR FORM: Sets all modifiable fields of a form to blanks, with the
exception of ACCESSNAME, DESCRNAME, KEY, DOMAIN_KEY, and
RANGEKEY fields. The effect on the fields which are changed is given in
the description of CLEAR FIELD.

80

COPY ENTITY: Makes a copy of the field values of the current Entity, and
inserts it into the buffer list. Text attributes contents are copied copied to the
new Entity. This operation should be used to create a new version of an
existing entity. It can not be used to copy relationships (relationships do not
have versions).

DELETE: For entities or relationships which were retrieved from the
database, this causes the current entity or relationship to be marked as deleted.
When changes are saved, the entity or relationship will be removed from the
database. The UNDELETE key can be used (before changes are saved) to
undelete an entity or relationship which was marked as deleted. For entities
and relationships which were inserted during the current session rather than
being retrieved, this removes the entity or relationship from the buffer list
immediately, since there is no need to wait until changes are saved. There is
no way to undelete such an entity or relationship.

DONE: Exits the current form.

EDIT ENTITY ATTRIBUTE: If the cursor is on an entity attribute field, then
this operation brings up a window with a list of the entity instances which the
field may reference. By using the up and down arrow keys, the desired entity
instance can be selected. If <RETURN> is pressed then the entity attribute
will reference the selected entity instance. If the PREVIOUS key is pressed,
then the entity attribute value is not changed. If the cursor is not on an entity
attribute field, then an error message is displayed.

EDIT TEXT ATTRIBUTE: If the cursor is on a text attribute field, then this
operation brings up the TPU editor with the file which represents the text
attribute. The file may be edited as desired. If TPU is exited using the file will
not be saved. If TPU is exited normally, then changes will be saved. If the
cursor is not on a text attribute field, then an error message is displayed..

FIRST: Displays the first entity or relationship in the buffer list.

FORWARD: Goes to the next entity or relationship in the buffer list. If there
are no more entities or relationships in the buffer then the next is read from
the database. If the there are no more in the database then a message to this
effect is displayed.

HELP: Displays a description of each of the EditER operations in a scrollable
window.

81

INSERT: For entity forms, this inserts a blank entity form into the buffer list.
This operation should be used to create new entities. The COPY ENTITY key
should be used to create new versions of existing entities. For relationship
forms, this causes a new relationship to be created. The user is prompted to
specify the domain and range entities at the time the new relationship is
inserted.

KEYPAD: Displays a picture of the EditER keypad layout.

LAST: Displays the last entity or relationship in the buffer list. This
operation will not cause additional entities or relationships to be read from
the database, if there are any. The FORWARD key must be used for that
purpose. This key merely takes one to the last entity or relationship in the
buffer list.

QBE: This operation performs qualified searches using the query by example
method.

QUALIFY: Used to specify a restriction on the values of the current field

which will be retrieved using QBE.

REPAINT: Redraws the entire screen.

RETRIEVE: Discards the current buffer list, and performs an unqualified
search of the database for the entities or relationships of the same type as the
form. If any are found, then the first is retrieved into the buffer. If none are
found then a message to this effect is displayed.

RETURN: Goes to the next field of the form.

SAVE: Traverses the buffer list and updates the database entry for any entities
or relationships which were modified, inserted, or deleted. The save process
involves repeating the original query, if there was one, and synchronizing the
buffer list to the records which are retrieved. This is necessary since the
database only allows the current record to be modified or deleted. From a
user perspective this involves automatically stepping through each buffer in
the list, and pausing to make the update on those which have been changed.

SCROLL DOWN: Causes the form to scroll down to the next screen, if there is
one.

SCROLL UP: Causes the form to scroll up to the previous screen, if there is
one.

82

SHOW ERROR: Brings up a window containing the last error message.

SHOW FIELD: Brings up a window which displays information about the
field where the cursor is located. The following information about the field is
listed: The name of the database attribute, the field datatype, the field length
in characters, whether the field is modifiable by the user, whether the field is
WINNIE protected, whether the database is indexed on the field, whether the
database must be unique on the field, whether null values are permitted for
the field, the field's default value, the legal range of values for the field, the
enumeration choices (if the field is an enumeration datatype), and the list of
entity type names whose instances the field may reference (if the field is an
entity datatype).

TOGGLE: If the cursor is on a boolean or enumeration field then this
operation causes the field to change to its next legal value. All blanks
represents a null and legal value. Repeated toggling will cycle through the
various legal choices for the field. If the cursor in not on a boolean or
enumeration field, then an error message is displayed.

UNDELETE: Causes an entity or relationship which was retrieved from the
database, and then marked as deleted, to be marked as unmodified. This will
prevent the entity or relationship from being deleted when changes are
saved. This key can not be used to bring back an entity or relationship which
was inserted and then deleted.

LUNMODIFY: Causes an entity or relationship which was retrieved from the
database, and then edited so that its status became modified, to be marked as
unmodified. This will prevent the changes made to the entity or relationship
from being made against the database when changes are saved. This key does
not bring back the old values of the entity or relationship.

EditER uses the operations provided by the ERIF (see Data Storage
Service/Persistence (7.2) ROD - Operations factor service description). The
ERIF, in turn, uses the query services provided by the underlying RDBMS of
the Project Database.

INFRASTRUCTURE DATABASE OBJECTS: The operations for the
Query Service of SLCSE on the Infrastructure Database are provided by the
Command Executive (CE) and "infra-coupled" SLCSE tools at the user level.
The operations of the CE correspond with "command buttons" of the SLCSE
User Interface, and are:

83

OBJECTS: When the Objects command button is selected, a pull-down menu
appears with a display of all the objects available to the user for their current
role. Objects consist of local files and "folders" (implemented as directories)
and certain information about them is stored in the Infrastructure Database.

TOOLS: When the TOOLS command button is selected, a pull-down menu
appears with a display of all the tools available to the user for their current
role. Information about tools is stored in the Infrastructure Database (e.g.,
setting execution command options, input files and output files
specifications, etc.), and is presented to the user through tool "set-up"
windows that are loaded by the CE with the information retrieved from the
Infrastructure Database.

SETTINGS: When the SETTINGS command button is selected, a pull-down
menu appears that displays all of the settings tailored by the user (or
established by default) for SLCSE operation (e.g., current role, scroll bar,
prompt display, message search interval, automatic purge, etc.). This
information is stored in the Infrastructure Database and retrieved from it by
the CE.

The Command Executive and infra-coupled tools use DSA operations
at the application level to query about Infrastructure Database information
(see Data Storage Service/Persistence (7.2) ROD - Operations factor service
description). An example of an infra-coupled tool is ModifyER, which
presents a menu of the Project Database subschema names to which the user
is permitted access for his/her current role. ModifyER uses DSA operations to
query on Infrastructure Database subschema information.

PROJECT FILES HIERARCHY OBJECTS: Operations for the Query
Service of SLCSE on Project Files Hierarchy objects are provided by utilities of
the VMS Operating System at the user level, and are primarily the following:

ANALYZE / <Qualifier_List> <FileSpecification>
DIFFERENCES/<Qualifier.List> <FileSpecification>
SHOW ACL/<Qualifier._List> <FileSpecification>
TYPE/ <Qualifier..List> <FileSpecification>

The ability to query about a group of files with common attributes is
provided by both the qualifier list (e.g., about files created after a certain date)
and the file specification, where "wild card" characters can be used to query
with partial specification matching (e.g., DIRECTORY *.ADA). These VMS
Operating System utilities are described in detail in [271. These utilities and

84

other applications are provided with low-level Operating System operations
that are to numerous to list here.

The OS "Run-Time Library" provides many VAX/VMS system level
routines. Examples are "LIB$RENAME_FILE", and "LIB$DELETEFILE".
Pre-defined Ada interfaces for many system level routines are provided in the
"STARLET', "SYSTEM", and "CALENDAR" packages. Ada interfaces for
some commonly used Run-Time Library routines which were not included
in the pre-defined packages have been written and included in a package
called "MORESTARLET".

The Run-Time Library routines are documented in a series of reference
manuals, and descriptions of the individual Run-Time facilities, along with
reference sections describing the individual routines in detail, and can be
found in [20], [21], [22], [23], [24], [25], and [26].

3.3.1.19.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_19_query FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMMER OF [all] SUBSETS.

7.19_query (FORWARD) [object-management)
1- 79._19query depends,-on 7..2_data..storage
->2- 7_2,_datastorage dependson 11 lmessage.delivery
->2- 7..L2data-storage dependson 15_1_2_common_data_descr
->2- 7..2_data..storage dependson 7_16_global schema
->3- 7j6.._global.schema depends_on 15_L 2scommon..data.descr
->3- 7J6.._global_schema dependson 7_ldata.model

85

This service is not required by any of the mapped services.

3.3.1.20 Metadata Service (7.20)

3.3.1.20.1 ICE - Conceptual

PROJECT DATABASE METADATA: The data (i.e.,
entity/relationship/attribute types) about the data (i.e.,
entity/relationship/attribute type instances) stored in a SLCSE Project
Database is formally specified in the Schema Definition Language (SDL).

The schema of SLCSE also includes a "metadata" subschema, which is a
metadata definition that is stored on-line in a Project Database created from
that schema.

INFRASTRUCTURE DATABASE METADATA: The data (i.e., list,
record, and component types) about the data (i.e., list, record, and component
instances) stored in a SLCSE Infrastructure Database is formally specified in
Ada.

3.3.1.20.1.1 Example

PROJECT DATABASE: The entity type CSCI in the DOD-ST1-2167A
schema is defined to have a number of attributes of specific data types, and
defines the attributes that an instance of that type will have.

INFRASTRUCTURE DATABASE: In the metadata description of a
SLCSE Infrastructure Database, the list TOOLSLIST is defined to have
TOOLS_RECORD records with components of specific data types, and defines
the components that an instance of a record, of an instance on that list, will
have.

3.3.120.2 ROD - Operations

In SLCSE, the operations involved with Project Database and
Infrastructure Database metadata are essentially the same as those involved
with the instances (i.e., create, query, update, and delete), with the exception
that create, update, and delete operations are only possible before an
environment is mstantiated from the SLCSE framework. It should be noted
that the query operations involved with Infrastructure Database metadata
after an environment is instantiated are extremely limited compared to those
for Projec Database metadata.

86

3.3.1.20.2.1 Example

PROJECT DATABASE:

Examples of query operations on metadata for Project Database
metadata are the ERIF routines "RelationshipTypeOf",
"DomainTypeOf", "RangeType Of", "RelationshipTypesOf",
"AttributeTypesOf", "Cardinality_Of', and "DatatypeOf".

INFRASTRUCTURE DATABASE:

An example of a query operation on Infrastructure Database metadata
is the DSA routine "DisplayDSADatabase".

3.3.1.203 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends.on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7.20.metadata FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7.20.kmetadata (FORWARD) [object _management]
1- 7_.20_metadata depends.on 7.16global-schema
->2- 7_16..global.schema depends-on 15-1_2 common.data_descr
->2- 7..16..lobal_schema dependson 7..Lldata model

This service is not required by any of the mapped services.

33.1.21 State Monitoring ServceiTriggeuing (7.21)

33.1.21.1 ICE - Conceptual

87

SLCSE provides a "Database Monitor", which periodically examines the
Project Database for events that have occurred. The entities and
relationships, and the attributes of them, that are to be monitored (and what
they are to be monitored for) are specified using the Document Generation
Language (DGL), along with a schedule for the frequency of monitoring using
the "Database Monitor Manager". The "Database Monitor" initiates the
monitoring process according to the schedule specified using the Database
Monitor Manager. The actions that can occur as a result of database events
take two different forms: (1) event notification, and (2) event report
generation and distribution. Typically, both of these actions occur as the
Jesult of a single event. Event notification results in an electronic mail
announcement to project personnel on a notification list of an event's
occurance. Event report generation and distribution results in the generation
of a detailed report about the event, and the distribution of the report to
project personnel on a distribution list. The notification and distribution lists
are also established using the Database Mnitor Manager.

3.3.1.21.1.1 Example

If the COMPLETED boolean type attribute of an instance of the entity
type MILESTONE has the value of FALSE, and the current date is within a
week of the scheduled date for the milestone's completion, then a
notification to the all project personnel in the form of a warning could be
initiated, and a report describing the milestone could be distributed to the
project manager.

33..L21.2 ROD - Operations

The basic set of operations (create, query, update, and delete) apply to
this service, and in SLCSE are:

Create:
"Add Monitor Action"

"Add 'Meta' Message"
"Add 'Meta' Report"
"Generate Message"
"Generate Report"

Query:
"Read Monitor Action"

"Read 'Meta' Message"
"Read 'Meta' Report"

88

"Read Monitor Schedule"
"Read Message"
"Read Report"

Update:
"Modify Monitor Action"

"Modify 'Meta' Message"
"Modify 'Meta' Report"
"Modify Monitor Schedule"

Delete:
"Delete Monitor Action"
"Delete Monitor Schedule"

By the term 'Meta', what is meant is data about the message to be sent
or the report to be generated as the result of a database event. A 'Meta'
Message and a 'Meta' Report are part of a Monitor Action, and are stored in
an entity of the Project Database.

Event Monitor Actions are created and updated using the Database
Monitor Manager. Event notification and report distribution are performed
via a combination of the Database Monitor, the VAX/VMS Batch Queue, and
Electronic Mail. Report Generation is performed by the SLCSE tool DOCGEN
which extracts the pertinent information concerning an event from the
Project Database.

3.3.1.213 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends.on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_21_statemonitoring FORWARD
9 LEVEL RELATIONSHIP

89

- AS A MEMBER OF [all] SUBSETS.

7_21_state.monitoring (FORWARD) [object-management]
1- 7_21 state monitoring depends-on 7_2_datastorage
->2- 7_2_datastorage depends-on 11_1_message_delivery
->2- 7_2_data storage depends-on 15_1_2_commondatadescr
->2- 7_2_data_storage depends-on 7j16_globalschema
-->3- 7_16_globalschema dependson 15_1_2_commondatadescr
->3- 7_16..globalschema dependson 7_1_datamodel

This service is required by the following service that is provided by
SLCSE:

TRACE ON ENTITY 7 21 statemonitoring BACKWARD
9 LEVEL RELATIONSHIP
-- AS A MEMBER OF [all] SUBSETS.

7_21_statemonitoring (BACKWARD) [object-management]
1- 10_5._event.monitoring depends.on 7_21_statemonitoring

3.3.1.22 Sub-Environment (Views) Service (7.22)

Unless the environment of a single user (with roles, tools, and data
access constraints specific to the user) on a project (consisting of multiple
users) can be considered as a sub-environment of an environment consisting
of the entire set of user environments for a project, then this service is not
provided in SLCSE.

3.3.1.23 Data Interchange Service (7.23)

3.3.1.23.1 ICE - Conceptual

For SLCSE Project Database information, the translation of that data to
some a text file format, and from that format to a Project Database, is provided
in SLCSE by the Digital Command Language (DCL) Interface Utilities. The
format of the data is readily transferrable to portable storage media (e.g.,
magnetic tape), and, given a format translation utility, could be used to
transfer data to and from the repositories of non-SLCSE environments.

33.L.23.1.1 Example

An example of the DCL Interface Utilities text file format (produced by
the DATABASE RETRIEVE Utility) is provided below:

90

10211 ALICIA I AUTOMATED LIFE CYCLE IMPACT ANALYSIS SYSTEM
10201 AMS I AUTOMATED MEASUREMENT SYSTEM
1022 1 ANALYZER I ANALYZER VERSION 4.0
10191 ATVS I ADA TEST AND VERIFICATION SYSTEM
1018 1 SLCSE I SOFTWARE LIFE CYCLE SUPPORT ENVIRONMENT
1103 1 SPMS I SLCSE PROJECT MANAGEMENT SYSTEM

3.3.L23.2 ROD - Operations

The operations provided by the DCL Interface Utilities are:

DATABASE RETRIEVE <entity-type>
[/ATrRIBUTES="...
[/NAME]
[/TABCHAR=(...)
[/TABS=(...)]
[1OUT= ... I
[/APPEND]
[/QUERY="... "
[/ORDER="<attr-name> [ASCENDING I DESCENDING]%,...]"]

DATABASE INSERT
[/IN= ... I
[/TABCHAR="... "]
[/TABS-(... A
[lOUT=...]
[/APPEND]

DATABASE UPDATE
[/IN=.. . I
[/TABCHAR="...
[/TABS= (. ..)

DATABASE DELETE
[/IN=... I
[/TABCHAR="... "]
[/TABS-(...

DATABASE DUPLICATE
[/IN-...]
[/TABCHAR="... "I
[/TABS=(. ..)

91

[/QUT=..I
[IAPPEND]

DATABASE [RESERVE I RELEASE]
[/IN=. .]
[/TABCHAR=".
[/TABS--". . . I

DATABASE PURGE
[/SCHEMA=. ...
[/ENTIrY=. ...
[/KEEP--n]
[/LOG=. .. I

ENTITY RETRIEVE <entity-type>
[/QURY."..."
[/NAME=,,...
[/ATrRIBUTE= (<attr-name>,<attr-name>)]
[/OUTVALUE=(<symbol>,<syrinbol>)J
[/OUThJAME= <symbol>]
C/OUITNTITY= <symbol>]

RELATIONSHIP RETRIEVE <relation-type>
C/QUERY-". .. "
C/DOMAIN.". .. "
[/RANGE-"...
[/ArrRlBUTE(<attr-name>, <attr-name>)]
[OUT VALUE-(<symbol>,<symbol>)]
COUTDOMA1Nw<symbol>J
[OUTRANGE=<symbol>1
COUTRELATIONSHIP-=<symbolJ

ENTITY INSERT <entity-type>
[/NAME=". . . "I
C/ATTrBUTE= (<attr-namne>,<attr-name>)J

[/OUTNAME-<symbob~J

RELATIONSHIP INSERT <relation-type>
C/DOMAIN=-."...
C/RANGE="..."
C/ATTRIBUTE= (<attr-name>,<attr-name>)J
[/VALUE-(<symbol>,csymbol>)1

92

[/OUTDOMAIN=<symbol>]
[/OUTRANGE=<symbol>I
[/OUTRELATIONSHIP=<symbol>]

ENTITY UPDATE <entity-type>
[/NAME=". "I
[/ ATMRIBUTE=(<attr-name>,<attr-name>)]
[/VALUE=(". . . "". .

RELATIONSHIP UPDATE <relation-type>
C/DOMAIN="... "i
[/RANGE="... "I
[/ATrRIBUTE=(<attr-name>,<attr-name>)]
[/VALUE=(<symbol>,<symbol>)]

ENTITY DELETE <entity-type>
[/NAME=". . . "I

RELATIONSHIP DELETE <relation-type>
[/DOMAIN=".. "
[/RANGE=".. "]

ENTITY [RESERVE I RELEASE] <entity-type>
C/NAME-". . . "I

RELATIONSHIP [RESERVE I RELEASE] <relation-type>
C/DOMAIN=" ..."

DATABASE UNLOAD
C/SCHEMA=...]
[/ENTITY...]
[/RELATIONSHI=... I
C/OUT- ... I
[/LG.....]

DATABASE LOAD
U/IN-... I
C/LOG-...]

3.3.1.23.1 Example

An example of a DCL Database Utilities command (which produced the
example given in the "ICE - Conceptual" Service Dimension Form for this
service) is shown below-.

93

$ database retrieve csci -
/attributes="key,access name,descrname" -
/out=csci.txt

3.3.1.23.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_23_data-interchange FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7 23 datajinterchange (FORWARD) [objectjimanagement]
1- 7_23_datajinterchange depends -on 7_2_data storage
->2- 7 2 data-storage depends-on 11__nmessage-delivery
->2- 7 2 datastorage depends on 15_1_2_commondatadescr
->2- 7_2_datastorage depends_.on 7J_6_globaLschema
->3- 7_16_global.schema depends-on 1513_2_common datadescr
->3- 7_16_global.schema depends.on 73_1datamodel

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 7_23_datajinterchange BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

7_23_datajinterchange (BACKWARD) [object-management]
1- 7j 10 backup depends.on 7_23_datajinterchange
<-2- 7_9_archive depends_,on 7_10_backup

3.3.1.24 Tool Registration (7.24)

94

Although the data used/produced by tools is registered in the SLCSE
Project Database (by defining the necessary entity types, etc.), the object
manager is not aware of which tools are integrated in SLCSE. Tool
registration, similarly, is not provided for the Infrastructure Database or the
Project Files Hierarchy (i.e., DSA does not know which tools are recorded in
the Infrastructure Database, and the VAX/VMS Operating System is not
aware of the changes made to the Maintenance Files Hierarchy of the Project
Files Hierarchy in support of tool integration).

3.3.2 Tools (9)

3.3.2.1 Tool Integration (9.3)

3.3.2.1.1 Data Integration (9.3.1)

3.3.2.1.1.1 ICE - Conceptual

There are fully-data-integrated, partially-data-integrated, and
data-interoperable tools currently in SLCSE.

SLCSE tools are of several types in terms of their integration within an
instantiation of the environment framework, and are categorized as described
in the Service Mapping Form for this service. Those that apply to data
integration are:

DIRECTLY-COUPLED
Tool uses the SLCSE Project Database directly through the

ERIF/HLERIF.

INDIRECTLY-COUPLED
Tool uses the SLCSE Project Database via the DCL Interface Utilities or

some similar interface that does not by-pass the ERIF/HLERIF.

LOOSELY-COUPLED
Tool does not use the SLCSE Project Database.

INFRA-COUPLED
Tool uses the SLCSE Infrastructure Database via DSA.

NON-INFRA-COUPLED
Tool does not use the SLCSE Infrastructure Database.

95

DEPENDENTLY-COUPLED
Tool is totally dependent on the SLCSE Project Database and/or the

SLCSE Infrastructure Database to maintain its data, and has no persistent
database of its own.

These categories describe the integration of tools with SLCSE, and do
not describe the direct integration of one tool with another, since that is an
unpredictable feature that is specific to the tools, and beyond the control of the
SLCSE framework which houses them. For example, a tool, T1, which is
directly-coupled, would not necessarily be fully-data-integrated with another
directly-coupled tool, 12, if either tool, T1 or 12, is independently-coupled.

3.32-1.1.1.1 Example

Directly-coupled - DOCGEN
Loosely-coupled - ATVS
Infra-coupled - SPMS

3.3.2.LL2 ROD - Operations

Refer to the operations described for the services listed in the
"Relationships Between Services" section for this service.

3.3.2.11.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 9_3.__data_integration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

9_3 1_dataintegration (FORWARD) [tools]

96

1- 9 3 1 dataintegration dependson 7_2_datastorage
->2- 7_2_datastorage dependson 11_1_messagedelivery
->2- 7_2 datastorage dependson 15 1 2 commondatadescr
->2- 7_2_datastorage depends on 7_16 globalschema
-->3- 7_16_globalschema dependson 15 1 2 common datadescr
->3- 7_16_global schema depends on 7..1_datamodel

This service is not required by any of the mapped services.

3.3.2.1.2 Control Integration (9.3.2)

3.3.2.1.2.1 ICE - Conceptual

There are fuUy-control-integrated (e.g., ModifyER and EditEP0,
partially-control-integrated (e.g., BaselinER and DOCGEN), and
control-interoperable (e.g., BaselinER and its submitted batch jobs)tools
currently in SLCSE.

SLCSE tools are of several types in terms of their integration within an
instantiation of the environment framework, and are categorized as described
below in relation to this service.

CONTROL-COUPLED
Tool is invokable by SLCSE as a sub-process that must return control to

SLCSE upon the completion of its execution.

NON-CONTROL-COUPLED
Tool not invokable by SLCSE, but is integrated with the SLCSE Project

Database and/or the SLCSE Infrastructure Database.

As with data integration, the focus in SLCSE is tool-to-environment
integration, as opposed to direct tool-to-tool integration (i.e., tool-to-tool
integration is supported via tool-to-environment-to-tool integration).

3.3.2.1.2.1.1 Example

Control-Coupled - Nearly all VAX tools integrated with SLCSE are
control-coupled.

3.3.2.L2.2 ROD - Operations

Refer to the operations described for the services listed in the
"Relationships Between Services" section for this service.

97

3.3.2.1.2.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 9_3_2_controlintegration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

9_3_2_control integration (FORWARD) [tools]
1- 9 3 2 controlintegration depends on 7_2_data storage
->2- 7_.2_datastorage depends-on 11U1_messagejdelivery
->2- 7_2 data -storage depends-on 15_1_2_common datadescr
->2- 7_2_data storage dependson 7...16_globalschema
-->3- 7_16_global-schema dependson 15_1_2_commondatadescr
->3- 7_16_.global.schema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.2.13 User Interface Integration (9.3.3)

3.3.L1.3.1 ICE - Conceptual

All SLCSE tools are UI-interoperable except for those that do not run
on the VAX/VMS Operating System (that is, for example, Macintosh-based
SPMS tools, although similar in appearance, are not UI-interoperable with
VAX/VMS-based SLCSE tools, according to the definition provided in the
Reference Model). Currently, there are no partially-UI-integrated SLCSE tools
(i.e., all SLCSE "conformant" tools are fully-UI-integrated, but this is not
related to their level of control integration).

98

SLCSE tools are of several types in terms of their integration within an
instantiation of the environment framework, and are categorized as follows
in relation to this service.

CONFORMANT
Tool user interface style conforms to that of the SLCSE User Interface.

NON-CONFORMANT
Tool user interface style does not conform to that of the SLCSE User

Interface.

As with data and control integration, the focus in SLCSE is
tool-to-environment integration, as opposed to direct tool-to-tool integration
(i.e., tool-to-tool integration is supported via tool-to-environment-to-tool
integration).

3.3Z1.3.1.1 Example

All conformant tools in SLCSE are totally-U--integrated.

3.3.2.1.3.2 ROD - Operations

Refer to the operations described for the services listed in the
"Relationships Between Services" section for this service.

3.3.2.1.3.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends-on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 9_3 3_uiijntegration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

99

9_3 3 ui integration (FORWARD) [tools]
1- 9 3 _3_uiintegration depends-on 7_2_datastorage
->2- 7_2_data_storage dependson 11_1_message-delivery
-->2- 7_2_datastorage depends-on 15_1_2_commondatadescr
->2- 7_ 2data-storage dependson 7 16_globalschema
-->3- 7_16_global-schema dependson 15_1_2_commondatadescr
-->3- 7_16_global-schema depends-on 7_1_datamodel

This service is not required by any of the mapped services.

3.3.3 Task Management Services (10)

3.3.3.1 Task Definition Service (10.1)

3.3.3.1.1 ICE - Conceptual

During environment definition and modification using the SLCSE
Environment Manager (SEM), it is possible to define pre-invocation (rules
that are checked prior to a tool's invocation) and post-execution rules (rules
that are checked after a tool's execution) that are specific to a particular tool of
the environment. Both pre-Invocation and post-execution rules can be
defined for any tool according to a pre-defined syntax consisting of the
following keywords:

/-

ABORT
AND
CURRENT-TIME
DAY
DAY_OFWEEK
DISPLAY
ELSE
FALSE
FRIDAY
HOUR
IF
LASTSTATUSO

100

MAIL
MONDAY
NOT
NUMBEROFINVOCATIONSO
OR
SATURDAY
SUCCESSO
SUNDAY
THEN
THURSDAY
TIMEOFLASTINVOCATION(
TO
TRUE
TUESDAY
WEDNESDAY
WEEK

3.3.3.1.1.1 Example

Some examples of rules that can be defined are:

Rule Number: I Tool: DOCCGEN_2167A Rule Type: PRE-INVOCATION

IF NUMBEROFINVOCATIONS(DOCGEN_2167A) > 2 THEN
DISPLAY

"YOU'RE GOING TO STRESS THE MICROVAX -
DON'T RUN DOCGEN AGAIN DURING THIS SESSION"

Rule Number: 2 Tool: DOCGEN_2167A Rule Type: PRE-INVOCATION

IF NUMBER.OFJINVOCATIONS(DOCGEN_2167A) > 3 THEN
DISPLAY

"YOU WERE WARNED!"
AND MAIL

"I'VE IGNORED SLCSE'S WARNING ABOUT DOCGEN -
TAKE APPROPRIATE MEASURES AGAINST ME."

TO SYSTEM
AND ABORT

Rule Number. 3 Tool: LOGIN Rule Type: PRE-INVOCATION

IF DAY = SATURDAY OR DAY - SUNDAY THEN
MAIL "UNAUTHORIZED WEEKEND ACCESS TO SLCSE"

101

TO SYSTEM

AND ABORT

Rule Number: 4 Tool: ADA Rule Type: PRE-INVOCATION

IF SUCCESS(LASTSTATUS(ADA)) THEN
DISPLAY

"BE SURE TO RUN THE ATVS"

Rule Number: 5 Tool: EXIT Rule Type: POST-EXECUTION

IF NUMBEROFINVOCATIONS(ADA) > 0 AND
NUMBEROFINVOCATIONS(ATVS) = 0 THEN

MAIL
"I'VE BEEN COMPILING WITHOUT RUNNING ATVS -
YOU HAD BETTER SEE WHAT I'M UP TO."

TO BOSS

3.3.3.1.2 ROD - Operations

The operations involved with rule definition in SEM are create, query,
update, and delete.

3.3.3.1.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends_on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 10..1_taskdefinition FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

10_1_taskdefinition (FORWARD) [task-management]

102

1- 10-1_taskdefinition depends-on 14_1_toolregistration
-->2- 14_1_tool-registration dependson 7_2_data-storage
->3- 7_2_datastorage dependson 11_1_message delivery
->3- 7_.2_datastorage dependson 15 1 2 commondatadescr
->3- 7_2_datastorage dependson 7_16_global schema
-->4- 7_16_globalschema dependson 15_1_2_commondatadescr
->4- 7_16_global-schema dependson 7_1_datamodel

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 10_1_taskdefinition BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

10_1 taskdefinition (BACKWARD) [task-management]
1- 10_2_taskexecution dependson 10_1_taskdefinition
<--2- 10_4_task-history depends-on 10_2_taskexecution
<--3- 10_2_task.execution@ dependson 10_4_task history
<--2- 10_5_eventmonitoring depends-on 10_2_taskexecution
<-2- 10_6_auditaccounting depends-on 10_2_taskexecution

3.33.2 Task Execution Service (10.2)

As rule definition in SLCSE relates to the Task Definition Service
(10.1), so does rule enforcement in SLCSE relate to this service, and is
described as part of the Event Monitoring Service (10.5) of the Task
Management Services.

3.3.3.3 Task History Service (10.4)

This service is implemented as part of the Task Management Audit
and Accounting Service (10.4).

3.3.3.4 Event Monitoring Service (10.5)

3.3.3.4.1 ICE - Conceptual

As part of the SLCSE Command Executive (CE), there exists what is
called the Rule Base. The Rule Base is that portion of the CE which ensures
that before a tool is invoked, and after the tool completes its execution, if a
rule exists, then the actions specified by the rule are carried out. In this case,
the event is tool invocation or tool execution termination, and the actions

103

that can be taken (depending on the conditions of the rule) are display a
message to the user, mail a message from the user to another user, or abort
the execution of the tool. Rule information is stored in the SLCSE
Infrastructure Database.

3.3.3.4.1.1 Example

If the following post-execution rule were defined for the EXIT tool:

IF NUMBEROFINVOCATIONS(ADA) > 0 AND
NUMBEROF INVOCATIONS(ATVS) = 0 THEN

MAIL
"I'VE BEEN COMPILING WITHOUT RUNNING ATVS -
YOU HAD BETTER SEE WHAT I'M UP TO"

TO BOSS

and the rule was found to be violated by the Rule Base for the user, then
another user having the BOSS account would receive an electronic mail
message from the user (sent by the Rule Base) saying, "I'VE BEEN
COMPILING WITHOUT RUNNING ATVS - YOU HAD BETTER SEE WHAT
I'M UP TO."

3.3.3.4.2 ROD - Operations

The operations performed by the CE Rule Base in monitoring for the
execution of tools and the resultant triggering of actions are:

1. Check for rule before tool invocation.

2. (If pre-invocation rule exists) Parse the rule for interpretation of:.
a. Truth value of antecedent clause, and
b. (If antecedent clause is true) Action of consequent clause.

3. (If antecedent clause is true) Perform the action prescribed by the rule:
a. Display,
b. Mail a message, or
c. Abort the tool's execution.

4. (If tool executes) Check for rule after tool execution.

5. (If post-execution rule exists) Parse the rule for interpretation of:
a. Truth value of antecedent clause, and
b. (If antecedent clause is true) Action of consequent clause.

104

6. (If antecedent clause is true) Perform the action prescribed by the rule:
a. Display, or
b. Mail a message.

3.3.3.4.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various 'depends_on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 1O.....event.monitoring FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

10_5_event monitoring (FORWARD) [task management)
1- lOýevent...monitoring depends__.on 10_2_task_execution

->2- l-2-task execution depends-on 10_1_task,_definition
->3- 10-1task definition depends on 14_1_tooL~registration
->4- 14j1tool-registration depends-..on 7 .2 .data...storage@
->2- 10.2jtask..execution depends on 1O task..history
->3- 10_4_task history depends...n 1O..2ý_task,_execution@
1- 10_.5._g.ventjnonitoring depends_...n 7_21_state-monitoring
->2- 7...21state...monitoring depends_on 7_2_data...storage
->3- 7..2...data...storage depends~on 11_1message-delivery
->3- 7...2..data..storage depends_on 15_1..2-sommon...data-descr
->3- 7ý2..data storage depends...on 7j6_.global..schema
->4- 7j16-lobal-.schema depends-..on 15_1.2sommon,_.data..descr
->4- 7j6...global~schema depends..on 7_1_.datajnodel

This service is not required by any of the mapped services.

33.3.S Audit and Accounting Service (10.6)

105

3.3.3.5.1 ICE - Conceptual

In SLCSE, data is maintained for the enforcement of rules that are
defined for tools. In the Infrastructure Database, a user has a
PERSONNELRECORD on a list in his/her PROJECTROOTRECORD. On
the PERSONNELRECORD is an ASSIGNEDROLES list of
ROLERECORDs. Each ROLERECORD has a TOOLSLIST of
TOOLRECORDs. Each TOOLRECORD has the following information that
is maintained by SLCSE as a record of what has been done with a tool within
the development environment for the enforcement of rules that are defined
in records on the TOOLRECORD's PRERULELIST and
POSTRULELIST:

TIMELASTINVOCATION: CALENDAR.TIME;
NUMBEROFINVOCATIONS : NATURAL;
LASTSTATUS_OFTOOL :

CONDITIONHANDLING.CONDVALUETYPE;

The VAX/VMS Operating System of SLCSE also provides an Audit and
Accounting Service. VAX/VMS provides the ACCOUNTING utility (refer to
[181), which can be used to query about how the system has been used, how it
has performed, and in some cases, how particular individuals have used the
system. While the ACCOUNTING utility is not an actual part of the SLCSE, it
is available to users of the system upon which SLCSE is implemented, and
provides the fllowing kinds of accounting data:

1. Batch job termination.
2. Detached process termination.
3. Image activation.
4. Interactive job termination.
5. Login failures.
6. User messages.
7. Network job termination.
8. Print jobs.
9. Process termination.
10. Subprocess termination.

333.&L1 Example

Every time a tool is executed by a SLCSE user, the following
TOOL-RECORD fields are updated for that tool by the Rule Base of the
Command Executive: TIMELASTINVOCATION,
NUMBER_OFINVOCATIONS, and LASTSTATUS_OFTOOL. In

106

addition, the VAX/VMS operating system records various ACCOUNTING

information about the activity of the user and system processes.

3.3.3.5.2 ROD - Operations

The operations of the Audit and Accounting Service of SLCSE in
regards to pre-invocation and post-execution rule data recording are provided
by DSA and used by the Command Executive Rule Base to create, update, and
query the information prior to a tool's invocation and after its execution.

The operations of the Audit and Accounting Service of VAX/VMS in
regards to the ACCOUNTING utility are also create, update, and query.
Accounting information is created in an ACCOUNTING.DAT file by
VAX/VMS whenever an event that is to be accounted for (estabished by the
SET ACCOUNTING command) occurs, but information that was previously
recorded is never updated as it is a permanent record of past events.
However, it possible to update what information that controls what is to be
captured for ACCOUNTING (using the SET ACCOUNTING command), and
to query about this information (using the SHOW ACCOUNTING
command). The query operations are provided by the ACCOUNTING
command itself, and are characterized by its command qualifiers:

/ACCOUNT
/ADDRESS
/BEFORE
/BINARY
/ENTRY
/FULL
/IDENTIFICATION
/IMAGE
/JOB
/LOG
/NODE
/OUTrPUT
/OWNER
/PRIORITY
/PROCESS
/QUEUE
/ REJECTED
/REMOTEID
/REPORT
/SINCE
/SORT

107

/STATUS
/SUMMARY
/TERM
/TITLE
/TYPE
/UIC
/USER

3.3.3.5.2.1 Example

The following is actual code taken from the SLCSE Command
Executive, and is an update operation provided by DSA on the Infrastructure
Database tool record information with regard to rules (i.e., the number of
invocations of the tool):

DSADATA_.STRUCTURES.TOOLPOINTER
DATASETAT (DSALOCKER (3));

TOOLPOINTER.NUMBEROFJINVOCATIONS
TOOLPONTER.NUMBEROF_INVOCATIONS + 1;;

An example of a query operation and the data obtained using the

ACCOUNTING utility of the VAX/VMS Operating system is:

$ ACCOUNTING/SINCE=TODAY/ACCOUNT=JONES

Date Time Type Subtype User ID Source Status

1-MAY-1991 1339-20 IMAGE ADA JONES 22E00142 TWA30: 10000001
1-MAY-1991 13:40:11 IMAGE MODIFYER JONES 22E00142 TWA30:00000001

3.3.3.5.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends.on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

108

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 10_6_audit-accounting FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

10_-6_audit -accounting (FORWARD) [task-.management)
I- tO_6...audit...accounting depends_on 10_2_task-execution
->2- 10-2-.task...execution depends-On 10_1_task-definition
->3- 1 0...task...definition depends-.on 1 4...tool-registration
-->4- 143 jtool~registration depends-on 7-2..data...storage
->5- 7_2_data-storage depends-on 11_L-message...delivery
->5- 7_-2_.data_storage depends_on 15_1_2_common-data_descr
->5- 7_2_data_,storage depends_on 7_16...global-schema
-->6- 7316.global-schema depends...on I 5...L2.ommon_data..descr
->6- 7j6_global -schema depends...on 7j1data_model
->2- 10_3..task...execution depends...on I (L4..task-history
->3- 10-4-.taskjiistory depends__on 10_2_task-execution@

This service is not required by any of the mapped services.

3.3.3.6 Role Management Service (10.7)

The Role Management Service of SLCSE is a part of the two SLCSE
Framework Administration services called Framework
Definition/ Modification and Environment Definition/ Modification, which
are services not specifically found in the Reference Model.

3.3.3.7 Tool Registration (10.8)

In SLCSE, the Tool Registration Service is provided only in terms of
rules, and is implemented as part of the Framework Administration and
Configuration Service called the Environment Definition/Modification,
which is a service that is not specifically described in the Reference Model.

3.3.4 Mensage Services (11)

3.3.4.1 Message Delivery Service (11.1

3.3.4.1.1 ICE - Conceptual

109

SLCSE, in general, does not provide framework-to-framework two-way
communication.

Tool-to-tool communication in SLCSE is specific to the design of the
tools that are integrated with the SLCSE framework. Tool-to-tool
communication in SLCSE is usually not two-way, however, but is
accomplished via the services of the environment (e.g., tool-to-OM-to-tool).

Service-to-service two-way communication is often internal to the
SLCSE Command Executive (since the Command Executive provides most of
the services for the user environment). The exceptions (refer to Figure 4 of
the General Questions Form) are the communication that occurs between: (1)
the SLCSE Command Executive (CE) and the SLCSE Tooler, (2) the CE and the
SLCSE Message Handler, (3) the Message Handler and the VMS Batch Queue,
and (4) the CE and the various services of the Object Manager (i.e., DSA, ERIF,
HLERIF, SMARTSTAR, VMS, RDBMS, Database Monitor, and the Database
Client/Servers). In all cases, the Message Delivery Service is provided, at the
lowest level, by the VAX/VMS Operating System whether it be mail-box
message passing, process-to-process termination status passing, DECnet data
packet passing, or message passing internal to an executing program.

Tool-to-service two-way communication is accomplished via mail-box
message passing (e.g., between tools and the SLCSE Tooler), process-to-process
termination status passing (e.g., between tools and the Database Monitor), and
message passing internal to an executing program (e.g., between tools and the
ERIF).

All message passing in SLCSE is point-to-point, with the exception of
messages captured by SLCSE or SLCSE tools from the Operating System (i.e.,
one-way broadcast). For broadcast messages from the Operating System, a
point-to-point message delivery from the SLCSE CE to the user (service-to-
user), or from a tool to the user (tool-to-user), subsequently follows via the
SLCSE, or tool, User Interface.

3.3.4.1.2 ROD - Operations

The operations that apply to this service in SLCSE are create message,
send message, and read message.

3.3.4.1.2.1 Example

The SLCSE Command Executive builds a command and sends a
command to the SLCSE Tooler. The SLCSE Tooler reads the command,

110

executes a tool in accordance with the message, and sends a tool status

message back to the Command Executive when the tool finishes its execution.

3.3.4.1.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires none of the mapped services.

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 11_1Lmessage-delivery BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

11_1_message ..delivery (BACKWARD) [message]
1- 7_2_datastorage depends-on 11_1_message-delivery
<-2- 14_1_tool.registration dependson 7_2_data-storage
<--3- 10_1_taskdefinition dependson 14_1_tool-registration
<--4- 10_2_taskexecution depends_on 10_1_taskdefinition
<--5- 10_4_task history dependson 10_2_taskexecution
<--6- 10_2_task.execution@ depends.on 10_4_task_history
<-5- 10..5_event_monitoring dependson 10_2_task.execution
<-5- 10._6_audit.accountlng depends-on 10_2_task._execution
<-3- 1Oj....olengt depends-on 14_1_tool_registration
<-3- 0._.8_tool_registration dependson 14_1_tool-registration
<-3- 5_1..4_tool_topom depends-on 14_1_tool-registration
<-4- 15_..5_omto._om depends-on 15j1A4 tool_to.om
<-5- 15$__1_datajintegration depends-on 15_1_5_om_toom
<-2- 7.11_derivation depends-on 7_2_data_storage
<-2- 7_12jreplication dependson 7_2_data storage
<-3- 15_1 6 consistency.mgt depends.on 7..12_replication
<-2- 7_13_access.control depends-on 7_2_data storage
<--3- 13_2_securitycontrol depends..on 7_13_access_control

ill

<-2- 7j17_version depends-on 7_2_datastorage
<--3- 7_18_configuration depends-on 7_17_version
<--2- 7_19_query depends-on 7_2_datastorage
<-2- 7 21_statemonitoring depends-on 7_2_datastorage
<--3- 10_5_eventmonitoring dependson 7 21_statemonitoring
<--2- 7_23_datainterchange dependson 7_2_datastorage
<-3- 7_1O.1..backup dependson 7_23_data-interchange
<-4- 7_9_archive dependson 7_10jbackup
<--2- 7 3_relationship dependson 7_2_data-storage
<--2- 7_4_name depends-on 7_2_datastorage
<--2- 7_6_datatransaction depends-on 7_2_datastorage
<--2- 7_7_.concurrency depends-on 7_2_data-storage
<--3- 15_1_6_consistency.mgt dependson 7_7_concurrency
<--2- 9 3 1 data-integration dependson 7_2_data.storage
<--2- 9 3 2 control-integration depends-on 7_2_datastorage
<--2- 9.3_3_ui integration dependson 7_2_datastorage

3.3.4.2 Tool Registration Service (11.2)

SLCSE does not explicitly provide support for Tool Registration of this
kind.

3.3.5 Security (13)

3.3.5.1 Security Information Class (13.1)

SLCSE provides neither the Authentication Service, Attribute Service,
nor the Interdomain Service. The VAX/VMS Operating System may provide
some degree of these services, but it is beyond the scope of the current
implementation of SLCSE.

3.3.5.2 Security Control Services (13.2)

33.3.51 ICE - Conceptual

SLCSE does not provide the Secure Association Service, but does
provide a minimum degree of the Authorization Service, as described below.

AUTHORIZATION SERVICE: The authorization service is provided in
part by SLCSE itself, in part by the VAX/VMS Operating System, and in part
by the underlying RDBMS of the SLCSE Project Database.

112

Before a user can operate within an environment instantiation of the
SLCSE framework, the SLCSE Command Executive checks the identification
of the user as provided by the Operating System and determines, from an
examination of the MASTERPERSONNELLIST of the Infrastructure
Database, if the user is assigned to the project specified by the user. If a match
is not found, then the user is totally denied access to the environment.

Once within a session of SLCSE, access control on the Project Files
Hierarchy is enforced by the Operating System according to the Access Control
Lists (ACLs) and file protections established during framework
administration. Access control on the Project Database of an environment is
enforced both by the Command Executive and infra-coupled SLCSE
applications at the subschema level according to the permissions specified
using the SLCSE Environment Manager (SEM) during framework
administration. In addition, access control on the Project Database of an
environment is enforced by the underlying RDBMS at the entity and
relationship level according to the permissions specified using the SEM
during framework administration.

3.3.5.2.1.1 Example

If a user, identified by the Operating System as "Jones", attempts to use
SLCSE for a project named "Foxfire", and the user is not registered on the
MASTERPERSONNELLIST of the Infrastructure Database, then the user is
informed that he/she does not have access to the specified project, and the
session with SLCSE ends.

3.3.5.2.2 ROD - Operations

SLCSE does not provide the Secure Association Service, but does
provide a minimum degree of the Authorization Service, as described below.

AUTHORIZATION SERVICE: The authorization service is provided in
part by SLCSE itself, in part by the VAX/VMS Operating System, and in part
by the underlying RDBMS of the SLCSE Project Database.

The operations for the Authorization Service of SLCSE are authorize

and deny.

3.3.5.2.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between

113

services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 13_2_securityscontrol FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

13_ 2 ..security-control (FORWARD) [security]
1- 13 2 security-control depends-on 7_13_access control
-->2- 7 13 accesscontrol depends__on 7_2_data-storage
->3- 7 2_datastorage dependson 11_1_message.delivery
->3- 7_2 data storage depends-on 15_1_2_common data descr
->3- 7 2_datastorage depends-on 7_16_global-schema
-->4- 7 16_..global-schema depends-on 15_1_2_commondata descr
->4- 7 16_globalschema depends-on 7_1_datanodel

This service is not required by any of the mapped services.

3.3.5.3 Security Monitor Services (13.3)

SLCSE does not provide the Security Audit Information Collection
Service. However, the VAX/VMS Operating System may provide a certain
level of this service, but which is considered beyond the scope of SLCSE.

3.3.5.4 Related Services (13.4)

This service, although listed as a service in [2], is not actually a service,
but rather an editorial error in [2]. "Related Services" actually refers to the
dimension factor called "Relationships Between Services".

3.3.6 Framework Administration and Configuration (14)

3.3.6.1 Tool Registration (14.1)

3.3.6.11 ICE - Conceptual

114

The SLCSE Environment Manager (SEM) provides the Tool
Registration Service, and allows tools to be registered with the framework for
use within environments instantiated from the framework. This includes
the identification of the tool's name and information particular to its
integration with the framework.

3.3.6.1.1.1 Example

The following is a depiction of the information provided to SEM for
the registration of the tool named ACSLINK:

Tool invocation data form for: ACS LINK

Setup window ID: 227
Ada procedure to invoke? YES
TOOLER subprocess invocation? YES
Available in KEYWORD mode only? NO
Clear screen before invocation?. NO
Repaint screen after invocation? NO
Invocation mode: . BATCHOR_INTERACTIVE
Direct tool output to: . OUTPUTFILE
Display completion status message? YES
Number of files required:. .

3.3.6.1L2 ROD - Operations

The operations involved with Tool Registration in SLCSE are register
and unregister. The SLCSE Environment Manager (SEM) provides these
operations, which involves writing to the Infrastructure Database.

3.3.6.1.2.1 Example

To register a tool (e.g., the ACS linker) a name is assigned to the tool
(e.g., ACS LINK) and values are entered into to a Tool Invocation Data Form
display of the SEM. SEM then creates a TOOLRECORD for this information
in the Infrastructure Database.

3.3.6.1.3 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends_on"

115

relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

It should be noted that the Entity-Relationship model established for
this part of the mapping exercise considers this Tool Registration service to
include all ot the additional services provided by SLCSE in terms of
Framework Administration, as described in the Service Mapping form for
this service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 14_1_tool_registration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

14_1_tool-registration (FORWARD) [frameworkadmin]
1- 14_1_toolregistration dependson 7_2_data...storage
->2- 7_2_data-storage dependson 11_1_message.delivery
->2- 7_2_data-storage dependson 15j1 2 common.datadescr
->2- 7_.2 data-storage dependson 7_16_global-schema
-->3- 7_16_.globalschema depends -on 15_1_2 common datadescr
->3- 7_16_globalschema depends-on 7_1_data.model

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY 14_1_tool-registration BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

14_ltoolregistration (BACKWARD) [frameworkadmin]
1- 10_l-task-definition dependson 14_1_tool registration
<-2- 10_2_task.execution depends-on 10_1_taskdefinition
<--3- 104..4task-history depends-on 10_2_taskexecution
<-4- 10_2_task-execution@ depends-on 10_4_taskhistory
<-3- 10_- 5..event-monitoring dependson 10_2_task_execution
<-3- 10...6_audit accounting dependson 10_2_task.execution
1- 10_7_rolemgt depends-on 14_1_tool-registration

116

1- 10_8_toolregistration dependson 14_1_tool-registration
1- 15_1_4_tool_to_om dependson 14_1_toolregistration
<--2- 15_1_5_omto-om dependson 15 1 4 tooltoom
<--3- 15_1_1_dataintegration dependson 15_1_5_om to om

3.3.7 Integration (15)

3.3.7.1 Data Integration (15.1)

3.3.7.1.1 Object Management as a Data Integration Mechanism (15.1.1)

3.3.7.1.1.1 ICE - Conceptual

The role of the Object Manager (OM) for the SLCSE Database Subsystem
(in particular, the Project Database and the ERIF, the Infrastructure Database
and DSA, and the Project Files Hierarchy and the VAX/VMS Operating
System, in descending order of importance) in an environment instantiated
from the SLCSE framework is to provide a manageable and sharable (by
project personnel and environment tools within and between the life cycle
phases of a software development project) data repository for all project
information.

It is not assumed that all tools will use the same Object Manager in
SLCSE, as desirable as this might be. In the SLCSE concept of operations, it is
realized that an environment framework must be flexible to allow the
integration of any tool, including one that has its own Object Manager. Two
reasons for this are:

1. Productivity - People who do a job get used to doing it well with a set of
tools that they adopt, and may not be willing to use tools that operate with the
OM of an environment if those tools then behave differently than the ones
that people are accustomed to.

2. Capitalization - It costs next to nothing and takes very little time to
integrate a tool into the SLCSE framework if it is not required to change it (or,
worse, required to develop from scratch an environment OM-coupled tool to
replace it) to work with the Object Manager of an environment. It usually
costs only a little more to build a shell of mechanisms (e.g., via DCL Interface
Utilities) about the tool to transform and transfer useful data between the tool
and the OM of an environment.

The highest expectation in SLCSE would be to have every tool

117

directly-coupled with a Project Database whose schema is especially devised
according to the data produced by the tools, used by the tools, and required for
the project. The major deficit in SLCSE for the DOD environment is the lack
of enough tools to automatically populate the entire DOD-STD-2167A Project
Database in a way that is transparent to the user, i.e., as a by-product of the
software development process.

3.3.7.1.1.1.1 Example

The SLCSE Project Management System (SPMS) is an example of
where the data from Commercial Off-The-Shelf (COTS) tools is integrated
into the SLCSE Project Database via the OM of SLCSE (i.e., the HLERIF,
Database Client/Servers, the ERIF, and RDBMS) and used by other
directly-coupled SLCSE tools via the OM of SLCSE.

3.3.7.1.1.2 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 15j 1_1 -datajintegration FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

15 1 1 data integration (FORWARD) [integration]
1- 15_1_1_data.integration dependson 15_1_5_ome-to._om
->2- 155..._5_om toom depends on 15_1_4_tool to.om
-->3- 15_1 4 toolto_om depends on 14_1_toolregistration
->4- 14_1_tool-registration dependson 7_2_data_storage
->5- 7_2_data..storage dependson 11_1_message.delivery
->5- 7_2_- data storage depends-on 15_1_2_commondatadescr
->5- 7_2_datastorage depends-on 7_16_globalschema
-->6- 7_16..global.schema dependson 15_1_2_common data-descr

118

->6- 7_16..global_schema dependson 7_1_datamodel

This service is not required by any of the mapped services.

3.3.7.1.2 Common Data Descriptions (15.1.2)

3.3.7.1.2.1 ICE - Conceptual

The following common data descriptions are defined or used by tools
in the SLCSE environment:

Program Internal Forms - The Ada Test and Verification System (ATVS) uses
DIANA trees to represent the structure of Ada programs for static and
dynamic analyses.

Document Internal Forms - The Document Generation Language (DGL) of
SLCSE is used by the DOCGEN tools, and, when processed, can produce a
variety of text processor formats (e.g., LaTeX, DSR, LQP, etc.).

Pre-defined Schemas - The DOD-STD-2167A Entity-Relationship Model
schema for a SLCSE Project Database defines (in the form of the Schema
Definition Language (SDL)) all of the data objects and their relationships to
such a fine granularity as to permit the automatic generation of all seventeen
(17) of the data items (i.e., documents and specifications) required by the
Military Standard for Mission Critical Computer System Software
Development.

Data Interchange Formats - The DCL Interface Utilities of SLCSE have an
ASCII text file format that can be used to facilitate the interchange of data
between tools and environments. DECnet is another data interchange format
used in the client-server architecture, distributed SLCSE environment.

3.3.7.1.2.1.1 Example

The following is a sample DGL DESCRIPTION text attribute possessed
by an instance of the REPORT entity type that is used by the DOCGEN Report
tool to produce a Digital Standard Runoff (DSR) file that, when it is processed
by DSR, produces a report based on information stored in a SLCSE Project
Database.

- Name: CSCIREQUIREMENTSREPORT

119

- Version: 1

-- Abstract:. THIS REPORT TELLS WHAT THE CSCI ENGINEERING
- REQUIREMENTS ARE FOR EACH CSCI. THE OUTPUT
- IS IN THE FORM OF DIGITAL STANDARD RUNOFF.

- System: VAX/VMS

- Author: JAMES R. MILLIGAN

- Date: 22-SEP-1990

document CSCI_REQRPT is

translate off ;

textline ".KEEP" ;
textline ".NO FLAGS ALL";

- Get CSCI information. For each CSCI

variable CSCIKEY;
variable CSCIABBR;
variable CSCINAME;
variable CSCIPURPOSE;

query GETCSCIINFO is
from "csci"

"key" into CSCIKEY
"accessname" into CSCIABBR
"descr_name" into CSCIJNAME
"purpose"into CSCIJPURPOSE

where" ";

iterate over GETCSCIINFO

text line ".CENTER";
textline ** **************** *
textline ".SKIP" ;
text-line ".PARAGRAPH";

120

text line "The CSCI " & CSCIABBR & ":" & CSCINAME &",";
text~line "the purpose of which is:" ;
text line ".SKIP";
textline ".LM +3";
text line ""' & CSCIPURPOSE &"';
text line ".SKIP"
textline ".LM -3" ;
text line "has the following CSCI engineering requirements:";
text line ".NOFILL";
textline ".SKP" ;

table "CSCI Engineering Requirements" is
format ASCII

column "Requirement Type" width 16
column "Requirement Name" width 47

get the relationship information between the CSCI and CSCI
engineering
- requirements. For each relationship found ...

variable RANGEKEY;

query GETRELA NFO is
from "csci has csci-engineeringreq"

"range-key" into RANGE-KEY
where "domainkey = " & CSCIKEY;

iterate over GET RELA INFO

get the requirement information.

variable REQ.ABBR;
variable REQ.NAME;
variable ENTTYPE ;

query GETýrREQINFO is
from "csdcengineering.req"

"access_name" into REQABBR
"descrname" into REQNAME
"entity_type" into ENT_TYPE

where "key - " & RANGE-KEY;

iterate over GETREQINFO

121

text ENT-TYPE;
text REQABBR & ":" & REQNAME;

end iterate;
end iterate;
end table;

textline ".FILL";

text-line ".PAGE";

end iterate;

end document;

3.3.7.1.2.2 Relationships Between Services

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "depends~on"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service does not require any of the mapped services.

This service is required by the following services which are provided by
SLCSE:

TRACE ON ENTITY I5_Jlcommon-data..descr BACKWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [aill] SUBSES.

15_l_2_commondata..descr (BACKWARD) [integration)
1- 7..16_SlobaLschema depends-on 15lj_..2_common-data-descr
<-2- 7J4_constraintmgt depends.on 7J6..1globalschema
<-2- 7..2O-metadata depends-on 7-16..global-schema
<-2- 7_.2_data.storageO dependson 7j..6globaltschema
1- 72..2data..storage depends-on 15_1_.2_commondata_descr
<-2- l4_tjool..egistration dependson 7..2_data..storage

122

<--3- 10-1_task-definition depends-on 14_1_tool-registration
<--4- 10-2_task-execution depends-on 10_1_task-definition
<--5- 10-4_task-history depends~on 10_2_task-execution
<--6- 10_2_task-execution@ depends-on 10_4_task-history
<--5- 10-..5-event-monitoring depends-on 10_2_task-execution
<-5- 1 0._6_audit -accounting depends-..on 10_2_task_.execution
<--3- 102_ -role -mgt depends-..on 14_1_tooL-registration
<--3- 10-8.tooljregistration depends-on 14_1_tool-registration
<--3- 15-1_4_tool-to-om depends-..on 14_1_tool-registration
<--4- 15_1_5_orn-to-om depends-..on 15_1_4_tool-to-om
<--5- 15-1_1_datajintegration depends-on 15_1_5_om-to-om
<--2- 7-11_derivation depends-..on 7_2_data...storage
<-2- 7j12-eplication depends-on 7_2_data..storage
<-3- 15_1_6_consistency...mgt depends-on 7j- 2-eplication
<-2- 7-13_access_control depends..on 7_2_data-storage
<--3- 13_2...security_control depends-on 7_13_access-control
<-2- 7-17_version depends-on 7_-2_-data -storage
<--3- 718-configuration depends..pn 7_17_version
<-2- 7_-19..query depends-..on 7_2_data..storage
<-2- 7-21_state-monitoring depends -on 7_2_data-storage
<--3- 10..._event_monitoring depends-..on 7_21_statejnonitoring
<--2- 7 -23_data-interchange depends on 7_2_data-storage
<-3- 7_IQ0 -backup depends-on 7_23_data-interchange
<--4- 7_9_archive depends_on 7_1O...backup
<--2- 7 3 elationship depends....n 7_2_data..storage
<-2- 7_4name depends-..on 7_.2...datastorage
<-2- 7_6_data-transaction depends_opn 72_2..ata...storage
<-2- 7_7_concurrency depends-on 7ý2..data-storage
<--3- 15_1_6...consistency~jngt depends -on 7_-7_-concurrency
<-2- 9_3_L-datajintegration depends...on 7_2_data storage
<--2- 9...,3 - 2...control-integration depends...on 7_2_d-ata..storage
<-2- 9...3..3..uiintegration depends-on 7_2-data...storage

3.3.7.L.3 Tool-to-Tool Data Translators (15.1.3)

SLCSE supports an alternate concept, and that is tool-to-tool data
translation via the SLCSE Database Subsystem, i.e., tool-to-OM-to-tool data
translation. OM-to-tool data translation provided by SLCSE (and also
tool-to-OM data translation) is described in the service description for
Tool-to-OM Translators (15.1.4).

3.3.7.1.4 Tool-to-OM Translators (15.1.4)

123

3.3.7.1.4.1 ICE - Conceptual

SLCSE provides both tool-to-OM data translation and OM-to-tool data
translation services. It is these services which provide the tool integration
framework of SLCSE.

The Digital Command Language (DCL) Interface Utilities of SLCSE can
be used to develop "shells" about a tool for data translation to and from the
SLCSE Project Database. A tool that exports data (preferrably in a documented
ASCII format) can have a data translator written to transform its data into the
format of a 7-CL Database Utility text file format. Likewise, a tool that imports
data (again, ýreferrably in a documented ASCII format) can have a data
translator written to transform a DCL Database Utility text file format into the
format of the tool. The DCL Database Utilities provide the capability to
import and export DCL Database Utility text file information to and from the
SLCSE Project Database via the Enitity-Relationship InterFace (ERIF).

In a level of complexity slightly higher than the concept of the DCL
Interface Utilities, data translators can be written that directly use the ERIEF.

For tools that are resident on network nodes that are remotely
connected to the host platform for the SLCSE Project Database RDBMS, data
translators can be written for these tools utilizing the Higher-Level ERIEF
(HLERIF) and the Database Client/Servers.

3.3.7.1.4.1.1 Example

The Ada Test and Verification System (ATVS) has a data translator that
exports its data into the form of the DCL Interface Utility Database Insert text
file format.

The Automated Life Cycle Impact Analysis (ALICIA) System has a data
translator that directly uses the ERIF, and imports its data from the SLCSE
Project Database into text files used by the ALICIA System.

The SLCSE Project Management System (SPMS) contains
Macintosh-based Commercial Off-The-Shelf (COTS) tools that have data
translators (called Companion Database Interface (CDI tools) that utilize the
HLERIF and the Database Client/Servers.

3.3.7.1.4.2 Relationships Between Services

124

An Entity-Relationship model of the dependencies between each of the
SLCSE services was developed to determine the relationships between
services. Each service was modeled as an entity with various "dependson"
relationships to other services. An analysis on the model using the SLCSE
analyzER tool resulted in the generation of forward and backward "trace"
reports that were optimized to eliminate redundant relationship
information. Forward trace reports on a service show the services that are
required by the service. Backward trace reports on a service show the services
that require the service.

This service requires the following services which are provided by
SLCSE:

TRACE ON ENTITY 15 I 4 tool_to_orn FORWARD
9 LEVEL RELATIONSHIP
- AS A MEMBER OF [all] SUBSETS.

15-1_4_tool_to.om (FORWARD) [integration]
1- 15_1_4_tool to .. om dependson 14_1_tool_registration
-->2- 14..._tool.,'-,v ,ration dependson 7_2_data.storage
->3- 7_.2_data -turage depends.on 11_1_message.delivery
->3- 7_.2_dataa_storage dependson 15_.12 -common,_data descr
->3- 7_2 uata.storage depends on 7_16_global-schema
-->4- 7_16.•global-schema depends_on 15_1_2_common-data-descr
->4- 7j6..6global-schema depends-on 7_1_data model

This service is not required by any other mapped services.

3.3.7.1.5 OM-to-OM Exchange (15.1.5)

The OM-to-OM Exchange service of SLCSE is a concept identical to that
of the Tool-to-OM Translators (15.1.4) service of SLCSE. The ability to apply
this service depends on how open of an architecture a tool or an OM is in
terms of Importing and exporting its internal data.

3.3.7.L6 Consistency Management (15.L6)

This service Is implemented as part of the Concurrency Service (7.7)
and as part of the Replication/Synchronization Service (7.12).

3.4 Comments on the Reference Model

3.4.1 Applicability of Dimension Factors for SLCSE

125

Comments, particularly with regard to SLCSE, on the applicability of
the various factors for each dimension defined in the NIST ISEE Reference
Model are provided in the following sections.

3.4.1.1 ICE - Internal

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, this factor could be used
for almost every SLCSE service to describe the implementation details
involved with a service. This, on the other hand, would be very laborious
and perhaps of minimal value (i.e., who would take the time to read it?).

3.4.11 ICE - Conceptual

This is the most important factor of the ICE dimension in the
description of SLCSE services, and perhaps the most important factor of all. It
allows an overview description of a service, and can be used to describe every
service in SLCSE.

3.4.1.3 ICE - External

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, the external factor would
apply most to services that have interfaces with other services and tools in
the SLCSE environment.

3.4.1A ROD - Rules

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, it is likely that the rule
factor would be beneficial when describing services that are associated with
constraints on their application by other services, tools, or the user.

3.4.L5 ROD - Operaim-

This is the most important factor of the ROD dimension in the
description of SLCSE services. It is very useful to describe how a service
works in a functional kind of way. The operations factor would seem highly
related to the external factor of the ICE dimension.

A4.L6 ROD - Data

126

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, for those services to which
the operations factor apply, the data factor usually would also apply in the
description of a SLCSE service.

3.4.1.7 TIM - Types

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, few services other than
those that deal with the semantic properties of the Project Database,
Infrastructure Database, and Project Files Hierarchy of SLCSE (in particular,
the Data Model, Global/Canonical Schema, and Data Storage
Service/Persistence services) would apply to this factor.

3.4.1.8 TIM - Instances

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, few services other than
those that deal with the semantic properties of the Project Database,
Infrastructure Database, and Project Files Hierarchy of SLCSE (in particular,
the Data Model, Global/Canonical Schema, and Data Storage
Service/Persistence services) would apply to this factor.

3.4.1.9 TIM - Metadata

Due to time constraints, the mapping exercise did not utilize this factor
to describe any of the services in SLCSE. However, few services other than
those that deal with the semantic properties of the Project Database,
Infrastructure Database, and Project Files Hierarchy of SLCSE (in particular,
the Data Model, Global/Canonical Schema, and Data Storage
Service/Persistence services) would apply to this factor.

3.4.2 Comments on Existing Service Descriptions

The following sections discuss the service descriptions of the Reference
Model in terms of what was discovered when SLCSE services were mapped to
them.

3.4.2.1 Object Management Services (7)

3..2.L1 Data Model (7.1)

127

The data models in SLCSE fully implement the service described in the
reference model. However, none of the data models are truly
object-oriented, and, therefore, do not support the concept of methods
associated with objects nor multiple inheritance.

3.4.2.1.2 Relationship Service (7.3)

The Relationship Service in SLCSE is fully implemented for Project
Database Objects, implemented with limitations for Infrastructure Database
Objects, and not implemented for Project Files Hierarchy Objects.

3.4.2.1.3 Distribution/Location Service (7.5)

A SLCSE Project Database is both logically and physically centralized,
and therefore, there is no concept of a logically centralized database mapping
to a physically distributed database in SLCSE. However, there are facilities
that allow for the management of Project Database Objects on distributed
computing platforms that are not the actual platform hosting a Project
Database. This alternate concept is described more fully in the mapping to the
Replication/Synchronization Service of the Reference Model (paragraph 7.12
of the Reference Model).

3.4.2.1.4 Data Transaction Service (7.6)

The Data Transaction Service is provided by SLCSE for transactions
involving Project Database objects, but is not provided for Infrastructure
Database or Project Files Hierarchy objects.

3.4.2.15 Concurrency Service (7.7)

This service is provided only for Project Database objects.

This service is not provided for Infrastructure Database objects, but, if it
was, would be advantageous when framework administration occurs
simultaneously while SLCSE user sessions are in progress.

For User Files Hierarchy objects, concurrent operations on them do not
typically occur since these files are local to a SLCSE user. Database Files
Hierarchy objects are under the jurisdiction of the Project Database which
covers the Concurrency Service. Concurrent operations on Maintenance
Files Hierarchy objects are not of consequence because they involve only read-
only and sharable executable files used by the SLCSE Command Executive and
SLCSE tools.

128

3.4.2.1.6 Process Support Service (7.8)

SLCSE does not provide the Process Support Service as described in the
Reference Model. However, the VMS operating system upon which SLCSE is
currently implemented does. The VMS operating system provides for
prioritized process scheduling queues, process control blocks (for process state
information), process state transition control (e.g., make wait, execute, prepare
for execution, swap out, swap in, etc.), input/output process requests
handling, and a number of utilities for querying about process information
(e.g., the accounting utility, the show process utility, and the monitor process
utility) and for changing processes (e.g., the set utility). SLCSE provides tool
integration services for the incorporation of such utilities as tools in an
environment instantiation (e.g., a tool that was integrated into SLCSE was the
CPU tool, which, at the VMS level, translates to the "monitor
process/ topcpu" utility).

3.4.2.1.7 Archive Service (7.9)

The VMS Operating System (OS), upon which SLCSE is currently
implemented, provides a complete Archive Service for files stored on disk.
Through a combination of the VMS backup (to tape from disk) utility
(reference (191), and the Backup Service of SLCSE (reference service mapping
to Reference Model section 7.10, Backup Service), all data can be moved
off-line, and restored.

3.4.2.1.8 Derivation Service (7.11)

It is assumed that SLCSE does not provide a full spectrum Derivation
Service, but, on the other hand, it is not clear what a full spectrum Derivation
Service would provide based on the current version of the Reference Model.

3.4.2.1.9 Replication/Synchronization Service (7.12)

This service is not provided for Infrastructure Database or Project Files
Hierarchy Objects, since they are never replicated within a distributed
environment for any constructive purpose in the context of SLCSE.

3.4.2.1.10 Constraint/Inconsistency Management (7.14)

For a SLCSE Project Database, while it is possible to define, maintain
and enforce constraints on entity and relationship attributes and the bounds
on their values, the ability to dynamically enable and disable these constraints

129

does not exist in SLCSE (with the exception of access control constraints).
Similarly, constraints on the values and properties of Infrastructure Database
objects are maintained and enforced, but cannot be dynamically enabled and
disabled (i.e., an item in a list must conform to the type specified for the items
that the list is intended to hold). Constraints on file objects are maintained,
enforced, enabled, and disabled by the services of the Operating System, and
will not be described in the scope of this mapping exercise.

3.4.2.1.11 Function Attachment (7.15)

SLCSE does not provide for Function Attachment to objects, as none of
its data models are truly object-oriented. In SLCSE, Function Attachment to
objects would be done, alternatively, through tool integration into an
environment instantiated from the framework. The tools would then
provide the functions associated with objects.

3.4.2.1.12 Global/Canonical Schema (7.16)

SLCSE does not provide a Global/Canonical Schema of process
definitions, but does provide a Global/Canonical Schema of data in support of
the life cycle processes that occur within an environment instantiation.

3.4.2.1.13 Version Service (7.17)

SLCSE does not provide this service for the Infrastructure Database.

3.4.2.1.14 Configuration Service (7.18)

SLCSE does not provide this service for the Infrastructure Database.

3.4.2.1.15 Metadata Service (7.20)

Metadata about an Project Files Hierarchy data is not provided in
SLCSE to any great extent.

3.4.2.1.16 State Monitoring ServicefTriggering (7.21)

Although SLCSE provides such a service for the Project Database, it is
not one which involves the instantaneous triggering of events when the state
of the database changes, but, rather, involves the triggering of events when
database state changes are periodically examined for and detected. The
limitations of the actions that can be triggered as the result of database events
are described with the "ICE - Conceptual" factor for this service.

130

SLCSE does not provide this service in relation to the Infrastructure

Database and Project Files Hierarchy.

3.4.2.1.17 Sub-Environment (Views) Service (7.22)

Unless the environment of a single user (with roles, tools, and data
access constraints specific to the user) on a project (consisting of multiple
users) can be considered as a sub-environment of an environment consisting
of the entire set of user environments for a project, then this service is not
provided in SLCSE.

3.4.2.1.18 Data Interchange Service (7.23)

This service is provided explicitly by SLCSE only for the Project
Database, although the Import and Export tools of SLCSE may augment the
Operating System Data Interchange Services provided by VMS (e.g., the
Backup Utility) which are not addressed here.

3.4.2.1.19 Tool Registration (7.24)

Although the data used/produced by tools is registered in the SLCSE
Project Database (by defining the necessary entity types, etc.), the object
manager is not aware of which tools are integrated in SLCSE. Tool
registration, similarly, is not provided for the Infrastructure Database or the
Project Files Hierarchy (i.e., DSA does not know which tools are recorded in
the Infrastructure Database, and the VAX/VMS Operating System is not
aware of the changes made to the Maintenance Files Hierarchy of the Project
Files Hierarchy in support of tool integration).

3.4.2.2 Tools (9)

3.4.2.2.1 Tool Integration (9.3)

It is proposed to merge Reference Model section 9.3, "Tool Integration",
with section 15, "Integration".

3.4.12.21 Data Integration (9.3.1)

All degrees of data integration described in the Reference Model exist
within the current toolset of SLCSE. However, not every tool is data
integrated in the same fashion, as described with the "ICE - Conceptual" factor
for this service.

131

In general, the Reference Model does not provide a service for
describing either the tools offered and currently integrated in an
environment, the functions and forms of integration for each tool, or the
taxonomy used in an environment for tool classification. The current tools
of the SLCSE environment, for example, are classified to fall into the
following categories:

GENERAL SUPPORT
Tools which support activities that span all user roles, e.g., text
editors, electronic mail, document formatters, etc.

REQUIREMENTS DEFINITION
Tools which support system/software requirements definition and
modification, display and reporting, and consistency checking.

DESIGN
Tools which support allocation of requirements to design objects
(e.g., computer software components and units) and description of
interfaces, data, and processing algorithms.

CODING
Tools which support creation, modification, compilation, and
debugging of source code, linking of object code and execution of
programs implementing design.

PROJECT MANAGEMENT
Tools which support project planning, tracking, monitoring,
reporting, assessment, adjustment.

PROTOTYPING
Tools which support the rapid construction of interactive user
interfaces to provide developers and end-users of a system the
"look and feel" of a system before the commitment to an undesirable
design, and possibly to serve as the actual user interface of the
completed product.

TESTING/VERIFICATION AND VALIDATION/QUALITY ASSURANCE
Tools which support test case definition, organization, evaluation,
and problem reporting as well as the collection and evaluation of
software quality metrics, programming standards, consistency, and
traceability.

132

CONFIGURATION MANAGEMENT
Tools which support the definition, modification, control, and
analysis (e.g., change impact analysis) of software configurations.

ENVIRONMENT MANAGEMENT
Tools which support SLCSE environment definition, modification,
and tailoring (e.g., for projects, databases, users, roles, rules, and
tools as well as tool and data integration services).

For each category, a representative set of tools was integrated into
SLCSE. Some of these tools were specifically developed and integrated for use
within SLCSE (Developmental Software (DS) tools), while others required no
development, and were simply integrated as Non-Developmental Software
(NDS) tools.

The forms of tool integration with SLCSE are as follows:

CONFORMANT
Tool user interface style conforms to that of the SLCSE User Interface.

NON-CONFORMANT
Tool user interface style does not conform to that of the SLCSE
User Interface.

DIRECTLY-COUPLED
Tool uses the SLCSE Project Database directly through the
ERIF/HLERIF.

INDIRECTLY-COUPLED
Tool uses the SLCSE Project Database via the DCL Interface
Utilities or some similar interface that does not by-pass the
ERIF/HLERIF.

LOOSELY-COUPLED
Tool does not use the SLCSE Project Database.

INFRA-COUPLED
Tool uses the SLCSE Infrastructure Database via DSA.

NON-INFRA-COUPLED
Tool does not use the SLCSE Infrastructure Database.

DEPENDENTLY-COUPLED

133

Tool is totally dependent on the SLCSE Project Database and/or the
SLCSE Infrastructure Database to maintain its data, and has no
persistent database of its own.

CONTROL-COUPLED
Tool is invokable by SLCSE as a sub-process that must return
control to SLCSE upon the completion of its execution.

NON-CONTROL-COUPLED
Tool not invokable by SLCSE, but is integrated with the SLCSE
Project Database and/or the SLCSE Infrastructure Database.

The NDS tools that were integrated with the SLCSE user interface
and/or database subsystems include:

ADA COMPILATION SYSTEM (ACS) - allows users to perform a
variety of operations (e.g., link, compile, check, recompile, etc.) on Ada objects
(e.g., libraries, units, etc.). ACS is integrated into SLCSE with its own
non-conformant line-oriented command user interface.

ACS LINKER - allows users to link compiled Ada source code objects to
create executable images. SLCSE provides the DEC ACS linker with a setup
window for user specification of command parameters.

ACTA - a Macintosh-based outline manager that provides the user
with the capability to manage project organization hierarchies. ACTA is part
of the MacSLCSE/Micro Import toolset.

ADA COMPILER - allows users to compile Ada source code. SLCSE
provides the DEC Ada compiler with a setup window.

ADA DESIGN LANGUAGE (ADL) PROCESSOR - allows users to
process ADL specifications. SLCSE provides the ADL processor with a setup
window.

ANALYZER - The analyzER provides automated support for E-R
model analysis, verification, and documentation. It produces a variety of
textual reports that fall into four general categories. Graphical displays and
hard-copies are also generated by the analyzER for two of these categories. In
addition, the analyzER performs both syntactic and semantic analyses with
diagnostics reporting for ER models defined using Prolog constructs. The
analyzER is integrated with a SLCSE-conformant user interface.

134

AUTOMATED LIFE CYCLE IMPACT ANALYSIS (ALICIA) SYSTEM -
allows users to navigate an ER model of a Project Database and to identify
instances of entity and relationship types which are impacted by a particular
change, and provides a variety of algorithms for the reporting of potential
impacts throughout the database. The ALICIA system was implemented on a
VAXstation II workstation with a user interface developed using the DEC
Graphical Kernel System (GKS), and interfaces with a SLCSE Project Database
via the ERIF.

AUTOMATED MEASUREMENT SYSTEM (AMS) - provides
automated quality measurement of Ada and Fortran source code as well as
quality information about the entire software life cycle for MCCS
development. The AMS is the precursor tool of the QUality Evaluation
System (QUES), and is integrated with SLCSE having its own user interface
style (based heavily on ReGiS graphics) and data repository.

AMS ANALYZE - allows users to process AMS files. AMS Analyze is
integrated with SLCSE having a conformant user interface.

CLEAR - allows users to clear the field for the name of the current file
object upon which tools, by default, perform operations.

COBOL AUTOMATED VERIFICATION SYSTEM (CAVS) - allows
users to perform a variety of static and dynamic tests on computer programs
written in the COBOL programming language in support of verification
activities associated with the coding, integration and maintenance phases of
the software life cycle. CAVS is integrated into SLCSE with its own non-
conformant user interface.

COBOL COMPILER - allows users to compile COBOL source code.
SLCSE provides the DEC COBOL compiler with a setup window.

COPY - allows users to make copies of files in their local workspace.
SLCSE provides the Copy utility with a setup window.

CPU - is one of the MONITOR PROCESS/TOPCPU utilities of the
VAX/VMS Operating System. CPU is integrated with its own user interface
style.

DIGITAL STANDARD RUNOFF (DSR) - allows users to process DSR
input files to produce formatted documents. SLCSE provides the DSR tool
with a pop-up window for an input file name specification.

135

DIRECTORY - allows users to show a list of the files in their local
workspace. SLCSE provides the Directory utility with a setup window.

EDT and EVE - allow users to edit files in their local workspace. SLCSE
provides the DEC Edt and Eve text editors with setup windows.

EXCEL - a Macintosh-based spreadsheet application useful for
Organizational Breakdown Structure (OBS) and Work Breakdown Structure
(WBS) construction and analysis. Excel is part of the MacSLCSE/Micro
Import toolset, and also is directly-coupled to the SLCSE Project Database as
part of the SLCSE Project Management System (SPMS).

FORTRAN COMPILER - allows users to compile Fortran source code.
SLCSE provides the DEC Fortran compiler with a setup window.

JOVIAL J73 AUTOMATED VERIFICATION SYSTEM (J73AVS) - allows
users t. perform static and dynamic analysis testing of JOVIAL J73 source
code. SLCSE provides the J73AVS tool with a setup window.

JOVIAL J73 COMPILER - allows users to compile JOVIAL J73 source
code. SLCSE provides the JOVIAL compiler with a setup window.

KERMIT - Kermit is a file transfer protocol. It allows the transfer of
files over terminal lines from a remote Kermit program to the local Kermit
program. Kermit is integrated into SLCSE with its own user interface style.

LANGUAGE QUALITY PRINTER (LQP) - allows users to format and
print documents. SLCSE provides the LQP tool with a setup window.

LANGUAGE SENSITIVE EDITOR (LSE) - provides users programming
language sensitive editing functions. SLCSE provides the DEC [SE tool with
a setup window.

LATEX - allows users to produce high-quality typesetting of documents.
SLCSE provides the LaTeX document formatting system with a setup
window.

LINK - allows users to link object code produced by DEC compilers to
produce executable images. SLCSE provides the DEC Link utility with a setup
window.

LOTUS 1-2-3 - an integrated commercial software package supporting
spreadsheet analysis, database management, and business graphics. LOTUS

136

1-2-3 is integrated into SLCSE with its own proprietary user interface, and is
used as a building block for the SPMS WBS/OBS Editors.

MACPROJECT II - a commercial Macintosh-based project management
software package providing a variety of functions for project planning,
assessment, adjustment, and reporting. MacProject II has its own proprietary
user interface, and is used as a building block in the SPMS Macintosh toolset.

MACRO - allows users to assemble VAX MACRO assembly code to
produce object code. SLCSE provides the DEC VAX MACRO assembler with a
setup window.

MAIL - a VAX/VMS Personal Mail Utility (MAIL), which is used to
send messages electronically between users of the system. MAIL is integrated
with SLCSE having its own proprietary user interface.

MICRO PLANNER PLUS - a Macintosh-based commercial project
management software package that forms a part of the MacSLCSE/Micro
Import toolset, and is indirectly-coupled with the SLCSE Project Database.

OBJECTS - allows users to view the files in their local workspace while
operating the SLCSE in keyword-driven mode.

PIGMY - an interactive graphics utility that is integrated into SLCSE
with its own user interface style.

PRINT - allows users to print files. SLCSE provides the DEC Print
utility with a setup window.

PROCEDURE - allows users to execute Digital Command Language
(DCL) command procedure files. SLCSE provides the Procedure utility with a
setup window.

PROJECT EXCHANGE - a Macintosh-based commercial software
application used to translate Micro Planner Plus project management
information into an ASCII format that is transferrable to the VAX, and
translatable by the VAX-resident Micro Import tool for loading data into the
SLCSE Project Database via DCL Interface Utilities. It forms a part of the
MacSLCSE toolset.

PURGE - allows users to purge (delete all but the latest version file) all
files (or only those files matching a particular name specification) in their

137

local SLCSE workspace. SLCSE provides the Purge utility with a pop-up
window for a file name specification.

RENAME - allows users to change the name of a file in their local
workspace. SLCSE provides the Rename utility with a setup window.

RUN - allows users to execute images (compiled and linked programs)
residing in their local workspace. SLCSE provides the Run utility with a
setup window.

RXVP80 - allows users to perform a variety of static and dynamic tests
on Fortran computer programs in support of verification activities associated
with the coding, integration and maintenance phases of the software life
cycle. RXVP80 is integrated into SLCSE with its own non-conformant user
interface.

SDESIGN - allows users to design and create applications for a
relational database. SLCSE provides the SmartStar SDESIGN tool with a pop-
up window the user specification of an application file name.

SELECT - allows users to select a file as the current object upon which a
tool will operate while working in the SLCSE keyword-driven mode.

STRUCTURED QUERY LANGUAGE (SQL) INTERPRETER - allows
users to perform relational database operations via SmartStar SQL commands
and queries. SLCSE provides the SQL interpreter with a pop-up window the
user specification of a hardware or software target database implementation.

SQUERY - allows users to execute database applications created by
SDESIGN. SLCSE provides the SmartStar SQUERY tool with a pop-up
window the user specification of an application file name.

SREPORT - allows users to create reports from the database applications
created by SDESIGN. SLCSE provides the SmartStar SREPORT tool with a
pop-up window the user specification of an application file name.

SOFTWARE DESIGN AND DOCUMENT LANGUAGE (SDDL)
PROCESSOR - allows users to process SDDL specifications. SLCSE provides
the SDDL processor with a setup window.

TEXPRINT - allows users to process device-independent LaTeX files
into device-dependent output files which are then printed on a specified
device. SLCSE provides the TeXPrint utility with a setup window.

138

TYPE - allows users to display the contents of a file in their local
workspace on the terminal screen. SLCSE provides the Type utility with a
setup window.

The DS tools that were integrated with the SLCSE user interface and/or
database subsystems include:

ADDFILE - allows users to add source code and Program Design
Language (PDL) files in their local workspace to the Project Database where
they will be associated with a Computer Software Configuration Item (CSCI),
Computer Software Component (CSC), or Computer Software Unit (CSU),
and placed under SLCSE configuration management control (i.e., baselined).
Addfile interfaces with the Project Database via the ERIF.

BASELINER - allows users to create/modify configurations, include
entity type instances in configurations, baseline configurations, and generate
reports describing the contents of a configuration. BaselinER interfaces with
the Project Database via the ERIF.

CREATE - allows users to create files (or folders to contain files) in their
local workspace. SLCSE provides the Create tool with a setup window.

DELETE - allows users to delete files or folders in their local workspace.
SLCSE provides the Delete tool with a setup window.

DIGITAL COMMAND LANGUAGE (DCL) INTERFACE TOOLS - a set
of tools for manipulating the Project Database from the VMS DCL level (i.e.,
Database Load, Unload, Retrieve, Insert, Update, Delete, Duplicate, Reserve,
Release, and Purge; and Entity/Relationship Retrieve, Insert, Update, Delete,
Reserve, Release). All DCL Interface tools access the SLCSE Project Database
via the ERIF.

DESIGN - allows users to populate and modify Project Database
subschemas relevant to design. Entity and relationship type instances can be
created, modified, and deleted. Attribute values for entity type instances can
be defined and modified. The Design tool interfaces with the Project Database
via the ERIEF.

DOCGEN 2167A - allows users to generate documents conformant with
DOD-STD-2167A Data Item Descriptions (DIDs) from the contents of the
Project Database. DOCGEN 2167A interfaces with a DOD-STD-2167A Project
Database via the ERIEF.

139

DOCGEN REPORT - allows users to generate customized reports based
on the contents of the Project Database. DOCGEN Report interfaces with a
Project Database via the ERIF.

EDITER - is used by several SLCSE applications to edit the contents of a
Project Database. Those applications include: BaselinER, Design, DOCGEN
2167A, DOCGEN Report, ModifyER, PCRP, Requirements, Test Manager.
EditER can also be used independently within SLCSE. EditER interfaces with
a Project Database via the ERIF.

EXIT - a special SLCSE tool executed only at SLCSE session termination,
and exists primarily to allow the establishment of pre-invocation and
post-execution rule definitions at SLCSE wrap-up time.

EXPORT - allows users to export files from their local workspace to the
external VMS file system or to a Software Development Folder (SDF)
associated with a CSCI, CSC, or CSU. Export interfaces with the Project
Database via the ERIF.

GETFILE - allows users to copy source code and PDL files from the
Project Database that are under SLCSE configuration management control for
CSCL CSC, or CSU entity type instances to the user's local workspace. Getfile
interfaces with the Project Database via the ERIF.

IMPORT - allows users to import files from the external VMS file
system or a SDF associated with a CSCI, CSC, or CSU to their local SLCSE
workspace. Import interfaces with the Project Database via the ERIF.

LOGIN - a special SLCSE tool executed only at SLCSE initialization
time, and exists primarily to allow the establishment of pre-invocation and
post-execution rule definitions at SLCSE start-up time.

MACSLCSE - a Macintosh-based project management software
integration program implemented as a Hypercard stack that automates the
transfer of Micro Planner Plus/Project Exchange, Acta, More, and Excel files to
the VAX for manipulation and transfer to the SLCSE Project Database via
Micro Import.

MENU - a special SLCSE tool used to return to the default menu-
driven mode of SLCSE operation from the keyword-driven mode of SLCSE
operation.

140

MICROIMPORT - allows users to upload data from Macintosh-based
project management related commercial software tools (i.e., MORE and Acta,
outline managers for project organization hierarchies; Micro Planner Plus
and Project Exchange, a project management package; and Excel, a
spreadsheet) to the Project Database.

MODIFYER - allows users to edit and browse the Project Database.
ModifyER interfaces with the Project Database via the ERIF.

MORE - a Macintosh-based outline manager that provides the user
with the capability to manage project organization hierarchies. MORE is part
of the MacSLCSE/Micro Import toolset.

PROBLEM CHANGE REPORT PROCESSOR (PCRP) - allows users to
populate and modify Project Database subschemas relevant to problem and
change reporting and tracking. Entity and the relationship type instances can
be created, modified, and deleted. Attribute values for entity type instances
can be defined and modified. PCRP interfaces with the Project Database via
the ERIF.

PUTFILE - allows users to return source code and PDL files that are
associated with CSCI, CSC, and CSU entity type instances (files that were
previously extracted from the Project Database to a user's local workspace via
GETFILE) to the Project Database where they will be placed back under SLCSE
configuration management control. Putfile interfaces with a the Project
Database via the ERIF.

REPORTER - allows users to generate reports about the instances of
selected entity and relationship types in the Project Database. ReportER
interfaces with a the Project Database via the ERIF.

REQUIREMENTS - allows users to populate and modify Project
Database subschemas relevant to system and software requirements. Entity
and the relationship type instances can be created, modified, and deleted.
Attribute values for entity type instances can be defined and modified. The
Requirements tool interfaces with a the Project Database via the ERIF.

SDF CREATE - allows users to create a Software Development Folder
(SDF) for a CSCI, CSC, or CSU entity type instance. SDF Create interfaces with
a the Project Database via the ERIF.

141

SDF DELETE - allows users to delete a SDF for a CSCI, CSC, or CSU
entity type instance. SDF Delete interfaces with a the Project Database via the
ERIF.

SDL COMPILER - allows users to compile ER model Schema Definition
Language (SDL) specifications to create SmartStar SQL code for the crcation of
a Project Database as well as run-time support files for -p;:ications that use
the ERIF.

SDL CONVERT - permits the conversion of SDL into a Prolog database
of facts about entities, relationships, and subschemas. SDL Convert output is
used as input by the AnalyzER tool, and is integrated into SLCSE with a setup
window.

SLCSE ENVIRONMENT MANAGER (SEM) - supports environment
definition, creation, modification, and tailoring (e.g., defining users, roles,
tools, Project Database access privileges, etc., as well as creating supporting
files and directory structures) for specific software development projects
within the context of the SLCSE framework.

TEST MANAGER - allows users to populate and modify Project
Database subschemas relevant to system and software testing. Entity and the
relationship type instances can be created, modified, and deleted. Attribute
values for entity type instances can be defined and modified. The Test
Manager interfaces with the Project Database via the ERIF.

TOOLS - allows users to view the list of tools for their current role
while operating SLCSE in its keyword-driven mode.

VERIFYER - allows users to check the consistency of a Project Database
through the verification of the existence of selected entity and relationship
type instances. VerifyER interfaces with the Project Database via the ERIF.

WINNIE - a prototyper that allows users to develop windows for data
driven application user interfaces. WINNIE is has a SLCSE-conformant user
interface, and was, in fact, a tool used in the development of the SLCSE user
interface.

In addition to DS tools, several other tools have been
developed/integrated to operate within the SLCSE environment:

ADA TEST AND VERIFICATION SYSTEM (ATVS) - allows users to
perform a variety of static and dynamic tests on computer programs written

142

in the Ada programming language in support of verification activities
associated with the coding, integration and maintenance phases of the
software life cycle. The ATVS is integrated with a SLCSE-conformant user
interface, and exports data which is transferrable to a Project Database that
contains an ATVS subschema via the Database Insert tool.

ATVS LIBRARY READER - an Ada library manager of the ATVS with
a conformant user interface.

ATVS STANDARDS DEFINER - an Ada coding standards definer of
the ATVS with a conformant user interface. This tool allows standards
violations established by a project manager to be flagged during the static
analysis of Ada source code by the ATVS.

C COMPILER - allows users to compile C programming language
source code. SLCSE provides the C compiler with a setup window.

DATABASE ACCESS MANAGER - a Macintosh-based SPMS
application used to manage data imported and exported to and from the
SLCSE Project Database via HLERIF.

DATABASE INSERT - one of the DCL Interface Utilities. SLCSE
provides a setup window for Database Insert to import information (from
tools like ATVS) that is in a DCL Interface Tool file format to the Project
Database.

DATABASE MONITOR MANAGER - a VAX-based SPMS application
with a SLCSE-conformant user interface that is used to specify Project
Database events to be monitored, the schedule for the monitoring, and the
actions to be taken in the occurrence of an event.

DATABASE MONITOR SCHEDULER - a VAX-based SPMS application
that initiates Project Database Monitoring as specified by the Database Monitor
Manager. This tool is indirectly-coupled to the Project Database via the
DOCGEN Report tool.

MENTOR CASE - a Computer-Aided Software Engineering (CASE)
VAX/VMS project management software package. Mentor CASE is
integrated with SLCSE having a pop-up window for command entry, and is
indirectly-coupled with the SLCSE Project Database via the Mentor Import
tool.

143

MENTOR IMPORT - a tool used to translate and import Mentor CASE
output file data to the SLCSE Project Database. Mentor Import uses the DCL
Interface Utilities, and has a SLCSE-conformant user interface.

MICROSOFT WORD - a Macintosh-based commercial word processing
tool that is a directly-coupled tool of the SPMS Macintosh Toolset.

OBS EDITOR - a VAX-based SPMS tool based on Lotus 1-2-3 macro
capabilities. The OBS Editor provides project managers with the capability to
develop and analyze Organizational Breakdown Structures (OBSs), and is
directly coupled via HLERIF to the SLCSE Project Database.

SLCSE PROJECT MANAGEMENT SYSTEM (SPMS) - provides
advanced project management tools supporting the planning, monitoring,
assessment, and plan adjustment of software development projects. The
SPMS is being implemented using Apple Macintosh-based and VAX-based
COTS/DS tools, and is being integrated with the SLCSE user interface and
database subsystems. Macintosh COTS tools include MacProject II, Microsoft
Word, and Excel. VAX-based COTS tools include Lotus 1-2-3. DS includes
Companion Database Interface (CDI) tools, a Database Access Manager, and a
Client-Server architecture for SLCSE Project Database access by
Macintosh-based tools. VAX-based DS tools include an Organizational
Breakdown Structure (OBS) Editor and a Work Breakdown Structure (WBS)
Editor built upon Lotus 1-2-3 and the SPMS Client-Server architecture, as well
as a Database Monitor Manager and a Database Monitor Scheduler for the
monitoring of Project Database events (or the lack thereof). Also included in
the SPMS VAX DS is a Problem/Change Report Processor (PCRP) tool that
provides more functionality than the original SLCSE PCRP tool (e.g., various
report generation capabilities).

QUALITY EVALUATION SYSTEM (QUES) - provides automated
quality measurement of Ada and Fortran source code as well as quality
information about the entire software life cycle for MCCS development based
on 13 quality factors derived from the Rome Laboratory Software Quality
Framework, AFSC Pamphlet 800-14 Software Quality Indicators, and the
AFSC Pamphlet 800-43 Software Management Indicators. The QUES is being
implemented on VAX and SUN workstations with an X-windows user
interface and an interface to a SLCSE Project Database via the ERIF.

WBS EDITOR - a VAX-based SPMS tool based on Lotus 1-2-3 macro
capabilities. The WBS Editor provides project managers wit) the capability to
develop and analyze Work Breakdown Structures (WBS), and is directly
coupled via HLERIF to the SLCSE Project Database.

144

The following tables summarize the SLCSE toolset that exists, and

information about the tools:

TOOL INTEGRATION TYPE CODES

CO - Conformant (User Interface Style)
NC - Non-Conformant (User Interface Style)
DI - Direct (Project Database Coupling)
ID - Indirect(Project Database Coupling)
LC - Loosely-Coupled (Project Database Coupling)
DE - Dependent (Project Database Dependency)
IN - Independent (Project Database Dependency)
IF - Infra-Coupled (Infrastructure Database Coupling)
NF - Non-Infra-Coupled (Infrastructure Database Coupling)
CC - Control-Coupled (SLCSE Control Coupling)
AC - Non-Control-Coupled (SLCSE Control Coupling)

TOOL CATEGORY CODES

GST - General Support Tool
PMT - Project Management Tool
RQT - Requirements Tool
DST - Design Tool
PRT - Prototyping Tool
COT - Coding Tool
TQT - Testing/V&V/QA Tool
CMT - Configuration Management Tool
ENT - Environment Management Tool

DEVELOPMENTAL SOFTWARE
OR

NON-DEVELOPMENTAL SOFTWARE
CODES

DSA - Developmental Software, ATVS
DSO - Developmental Software, Other
DSP - Developmental Software, SPMS
DSQ - Developmental Software, QUES
DSS - Developmental Software, SLCSE
NDS - Non-Developmental Software

HOST PLATFORM CODES

145

VAX - VAX
MAC - Macintosh Workstation
SUN - SUN Workstation

TOOLS:
INTEGRATION TYPE,

CATEGORY,
DS/NDS, and

HOST PLATFORM

ACS NC,LC,IN,NFCC; COT; NDS; VAX
ACS LINKER COLC,INNF,CC; COT; NDS; VAX
ACTA NC,ID,IN,NF,AC; PMT; NDS; MAC
ADA COMPILER COLC,INNFCC; COT; NDS; VAX
ADDFILE CODI,DE,NFCC; CM`T; DSS; VAX
ADL PROCESSOR. CO,LC,IN,NFCC; DST; NDS; VAX
ALICIA NC,DI,DE,NF,CC; CMT; NDS; VAX
AMS. NC,LC,INNFCC; TQT; NDS; VAX
AMS ANALYZE COLC,IN,NFCC; TQT; NDS; VAX
ANALYZER. CO,LC,INNFCC; ENT; NDS; VAX
ATVS CO,4D,IN,NFCC; TQT; DSA; VAX
ATVS LIBRARY MANAGER COLC,1N,NFCC; TQT; DSA; VAX
ATVS STANDARDS DEFINER. COLCN,NFCC; PMT, DSA; VAX
BASELINER. .CODIDE,NFCC; CMT; DSS; VAX
C CO,LCLNNFCC; COT; NDS; VAX
CAVS .NC,LC,IN,NFCC; TQT; NDS; VAX
CLEAR COLCINNFCC; GST; DSS; VAX
COBOL COMPILER. COLC,INNFCC; COT; NDS; VAX
COPY . COLC,INNFCC; GST; NDS; VAX
CPU .NC,LC,INNFCC; GST; NDS; VAX
CREATE .COLC,DE,IFCC; GST; DSS; VAX
DATABASE INSERT .CODIDE,NFCC; ENT; DSS; VAX
DATABASE ACCESS MANAGER NC,DI,DENFAC; PMT, DSP; MAC
DATABASE MONITOR MANAGER CODIDE,EFCC; PMT; DSP; VAX
DATABASE MONITOR SCHEDULER NC,IDDE,NFAC; PMT; DSP; VAX.
DCL INTERFACE UTILITIES . NCDI,DENFCC; ENT; I)SS; VAX
DELETE . . . COLCDEIFCC; GST; DSS; VAX
DESIGN . .. CODlDE,IFCC; DST, DSS; VAX
DIRECTORY. . . . COLC,INNFCC; GST; NDS; VAX
DOCGEN 2167A . . . CODI,DENFCC; CMT; DSS; VAX
DOCCEN REPORT .CO,DIDE,NFCC; GST; DSS; VAX
DSR . .. COLC,INNFCC; GST; NDS; VAX

146

EDITER CO,DI,DE,NFCC; GST; DSS; VAX
EDT CO,LC,IN,NF,CC; GST; NDS; VAX
EVE . . . CO,LC,IN,NF,CC; GST; NDS; VAX
EXCEL NC,DI,LN,NF,CC; PMT; NDS; MAC
EXIT CO,LC,DE,IF,CC; GST; DSS; VAX
EXPORT CODI,DE,NFCC; GST; DSS; VAX
FORTRAN COMPILER . . CO,LC,IN,NF,CC; COT; NDS; VAX
GETFILE CO,DI,DE,NF,CC; CMT; DSS; VAX
IMPORT CODI,DE,NFCC; GST; DSS; VAX
J73AVS COLC,IN,NFCC; TQT; NDS; VAX
JOVIAL J73 COMPILER . . COLC,INNFCC; COT; NDS; VAX
KERMIT NC,LC,INNF,CC; GST; NDS; VAX
LATEX COLC,INNFCC; GST; NDS; VAX
LINK. COLC,INNFCC; COT; NDS; VAX
LOGIN CO,LC,DE,IFCC; GST; DSS; VAX
LOTUS 1-2-3 . . . NC,LC,IN,NFCC; PMT; NDS; VAX
LQP COLC,INNFCC; GST; NDS; VAX
LSE CO,LC,INNFCC; COT; NDS; VAX
MACPROJECT II l NC,DI,IN,NFAC; PMT; NDS, MAC
MACRO COLCINNFCC, COT; NDS; VAX
MACSLCSE. NC,IDIN,NFAC; PMT; DSS; MAC
MAIL. .. . NC,LCIN,NFCC; GST; NDS; VAX
MENTOR CASE . . . COID,INNFCC; PMT, NDS; VAX
MENTOR IMPORT. . . COIDDE,NFCC; PMT, DSO; VAX
MENU. COLC,INNFCC; GST; DSS; VAX
MICRO PLANNER PLUS. . NC,DINNFAC; PMT; NDS; MAC
MICROSOFT WORD . . NC,ID,IN,NF,AC; PMT; NDS; MAC
MICRO IMPORT . . . CO,ID,DE,NFCC; PMT; DSS; VAX
MODIFYER. CODIDE,NFCC; GST; DSS; VAX
MORE. NC,IDNNFAC; PMT; NDS; MAC
OBJECTS COLC,INNFCC; GST; DSS; VAX
OBS EDITOR . . . NC,DI,INNFCC; PMT; DSP;- VAX
PCRP. CODI,DE,IFCC; PMT, DSP; VAX
PIGMY NC,LCINNFCC; GST; NDS; VAX
PRINT COLC,INNFCC; GST; NDS; VAX
PROCEDURE . . . COLC,JNNFCC; GST; NDS; VAX
PROJECT EXCHANGE . . NC,ID,IN,NFAC; PMT; NDS;- MAC
PURGE .. COLC,INNFCC; GST; NDS; VAX
PUTFILE CODI,DE,NFCC; CMT; DSS; VAX
QUES. NCDINNFAC; TQT; DSQ, VAXSUN
RENAME COLC,INNFCC; GST; NDS;- VAX
REPORTER. . . . CODI,DE,IFCC; GST; DSS; VAX
REQUIREMENTS . CO,DIDEIFCC; RQT; DSS;- VAX

147

RXVP80 NC,LC,IN,NF,CC; TQT; NDS; VAX
RUN. CO,LC,IN,NF,CC; COT; NDS; VAX
SDDL PROCESSOR. CO,LC,IN,NF,CC; DST; NDS; VAX
SDESIGN NC,LC,IN,NF,CC; PRT; NDS; VAX
SDF CREATE CO,DI,DE,NF,CC; CMT; DSS; VAX
SDF DELETE. CO,DI,DE,NF,CC; CMT; DSS; VAX
SDL COMPILER CO,DI,DE,NF,CC; ENT; DSS; VAX
SDL CONVERT CO,LC,IN,NF,CC; ENT; DSS; VAX
SELECT CO,LC,IN,NFCC; GST; DSS; VAX
SEM CO,DI,DE,IF,CC; ENT; DSS; VAX
SPMS. NC,DI,IN,IF,AC; PMT; DSP; VAX,MAC
SQL INTERPRETER NC,LCIN,NF,CC; ENT; NDS; VAX
SQUERY NC,LC,IN,NF,CC; PRT; NDS; VAX
SREPORT NC,LC,IN,NF,CC; PRT; NDS; VAX
TEST MANAGER . CO,DI,DE,IFCC; TQT; DSS; VAX
TEXPRINT CO,LC,IN,NFCC; GST; NDS; VAX
TOOLS. CO,LC,IN,NF,CC; GST; DSS; VAX
TYPE CO,LC,IN,NFCC; GST; NDS; VAX
VERIFYER CO,DI,DE,IFCC; CMT; DSS; VAX
WBS EDITOR NC,DI,IN,NFCC; PMT; DSP; VAX
WINNIE CO,LC,INNFCC; PRT; NDS; VAX

3.4.2.2.2.2 Control Integration (9.3.2)

All degrees of control integration described in the Reference Model
exist within the current toolset of SLCSE. However, not every tool is control
integrated in the same fashion, as described with the "ICE - Conceptual" factor
for this service.

3.4.2.2.2.3 User Interface Integration (9.3.3)

All degrees of user interface integration described in the Reference
Model exist within the current toolset of SLCSE. However, not every tool is
user interface integrated in the same fashion, as described with the "ICE -
Conceptual" factor.

3.4.2.3 Task Management Services (10)

3.4.2.3.1 Task Definition Service (10.1)

Although task definition, as described by the Reference Model, is not
completely supported by SLCSE, there is the concept of rule definition which
is a rudimentary form of task definition.

148

3.4.2.3.2 Task Execution Service (10.2)

As rule definition in SLCSE relates to the Task Definition Service
(10.1), so does rule enforcement in SLCSE relate to this service, and is
described as part of the Event Monitoring Service (10.5) of the Task
Management Services.

3.4.2.3.3 Task History Service (10.4)

This service is implemented as part of the Task Management Audit
and Accounting Service (10.4).

3.4.2.3.4 Event Monitoring Service (10.5)

As rule definition in SLCSE relates to the Task Definition Service
(10.1), so does rule enforcement in SLCSE relate to this service. Also refer to
the State Monitoring Service (7.21) of SLCSE, since the monitoring of state
changes to the Project Database are related to this service.

3.4.2.3.5 Audit and Accounting Service (10.6)

As rule definition in SLCSE relates to the Task Definition Service
(10.1), so does rule data recording in SLCSE relate to this service. In addition,
the underlying VAX/VMS Operating System of SLCSE also provides a certain
degree of the Audit and Accounting Service.

3.4.2.3.6 Role Management Service (10.7)

The Role Management Service of SLCSE is a part of the two SLCSE
Framework Administration Services called Framework
Definition/Modification and Environment Definition/Modification, which
are services not specifically found in the Reference Model.

3.4.2.3.7 Tool Registration (10.8)

In SLCSE, the Tool Registration Service is provided only in terms of
rules, and is implemented as part of the Framework Administration and
Configuration Service called the Environment Definition/Modification,
which is a service that is not specifically described in the Reference Model.

3.4.2.4 Message Services (11)

149

3.4.2.4.1 Message Delivery Service (11.1)

SLCSE, in general, does not provide framework-to-framework two-way
communication. Other limitations with regard to this service are described
with the "ICE - Conceptual" factor for this service.

It is proposed that the following additional kinds of two-way
communication be considered for inclusion in the Reference Model
description of the Message Delivery Service:

1. service-to-user,
2. tool-to-user,
3. environment-to-environment, and
4. framework-to-environment.

3.4.2.4.2 Tool Registration Service (11.2)

SLCSE does not explicitly provide support for Tool Registration of this
kind.

3.4.2.5 Security (13)

3.4.2.5.1 Security Information Class (13.1)

SLCSE provides neither the Authentication Service, Attribute Service,
nor the Interdornain Service. The VAX/VMS Operating System may provide
some degree of these services, but it is beyond the scope of the current
implementation of SLCSE.

It is recommended that each of the services identified in this section of
the Reference Model have its own section with descriptions according to
applicable dimensions.

3.4.-5.2 Security Control Services (13.2)

SLCSE does not provide the Secure Association Service, but does
provide a minimum of the Authorization Service.

It is recommended that each of the services identified in this section of
the Reference Model have its own section with descriptions according to
applicable dimensions.

3.4.2.5.3 Security Monitor Services (13.3)

150

SLCSE does not provide the Security Audit Information Collection
Service. However, the VAX/VMS Operating System may provide a certain
level of this service, but which is considered beyond the scope of SLCSE.

It is recommended that the Security Audit Information Collection
Service in this section of the Reference Model have its own sub-section with
descriptions according to applicable dimensions.

3.4.2.5.4 Related Services (13.4)

This service, although listed as a service in [2], is not actually a service,
but rather, is listed as the result of an editorial error in [2]. "Related Services"
actually refers to the dimension factor called "Relationships Between
Services".

3.4.2.6 Framework Administration and Configuration (14)

3.4.2.6.1 Tool Registration (14.1)

SLCSE provides fully implements the "Tool Registration" service, as
described in the Reference Model, but also provides other Framework
Administration and Configuration Services, as discussed in section 3.4.3,
Additional Service Descriptions Recommended, of this report.

3.4.2.7 Integration (15)

It is proposed to merge Reference Model section 9.3, 'Tool Integration",
with section 15, "Integration".

3.4.2.7.1 Data Integration (15.1)

3.4.2.7.1.1 Object Management as a Data Integration Mechanism (15.1.1)

SLCSE provides Object Management as a Data Integration Mechanism,
and also as a Tool Integration Mechanism.

3.4.2.7.1.2 Common Data Descriptions (15.1.2)

3.4.2.7.1.3 Tool-to-Tool Data Translators (15.1.3)

151

SLCSE supports an alternate concept, and that is tool-to-tool data
translation via the SLCSE Database Subsystem, i.e., tool-to-OM-to-tool data
translation. OM-to-tool data translation provided by SLCSE (and also
tool-to-OM data translation) is described in the service description for
Tool-to-OM Translators (15.1.4).

3.4.2.7.1.4 Tool-to-OM Translators (15.1.4)

SLCSE also supports OM-to-tool data translation (i.e., two-way data
translation).

3.4.2.7.1.5 OM-to-OM Exchange (15.1.5)

The OM-to-OM Exchange service of SLCSE is a concept identical to that
of the Tool-to-OM Translators (15.1.4) service of SLCSE. The ability to apply
this service depends on how open of an architecture a tool or an OM is in
terms of importing and exporting its internal data.

3.4.2.7.1.6 Consistency Management (15.1.6)

This service is implemented as part of the Concurrency Service (7.7)
and as part of the Replication/Synchronization Service (7.12). The control of
SLCSE over the consistency of data in different data pools is limited, and
decreases in the following order when considering:

1. Different data pools used by the same OMS (SLCSE Database
Subsystem OMSs):

a. SLCSE Project Database OMS,
b. SLCSE Infrastructure Database OMS, and
c. SLCSE Project Files Hierarchy OMS,

2. Different implementations of the same OMS:
a. SLCSE Project Database OMS,
b. SLCSE Infrastructure Database OMS, and
c. SLCSE Project Files Hierarchy OMS,

3. Different OMSs utilizing different data pools:
a. SLCSE Project Database OMS,
b. SLCSE Infrastructure Database OMS, and
c. SLCSE Project Files Hierarchy OMS,

It is indisputable that SLCSE (or any existing environment framework)
does not provide a full Consistency Management Service along these lines.

152

3.4.3 Additional Service Descriptions Recommended

With respect to the services of the Reference Model, the following
sections describe additional service descriptions that were desired during the
SLCSE mapping exercise.

3.4.3.1 Tools (9)

Section 9, "Tools", is not organized as the prior "Object Management
Services" section was, which makes the Reference Model inconsistent in its
presentation style.

More importantly, there is some redundancy in the Reference Model
because section 9.3, "Tool Integration" describes various forms of
tool-to-tool integration, which would reasonably be merged with section 15,
"Integration".

In addition, Section 9 of the Reference Model does not provide a
service for describing: (1) the taxonomy used in an environment for tool
classification, (2) the tools offered by an environment framework and their
classification/functions, and (3) the forms of integration for each of those
tools with the framework and/or with each other.

Below, the row on the left describes the current organization of section
9, and the row on the right describes a suggested organization that is more
consistent with the previous portion of the Reference Model. Also, the 'Tool
Integration" section is relocated to section 15, and additional services are
suggested to allow for the description of tools that are integral to a particular
environment framework.

9 Tools 9 Tools
9.1 Conceptual 9.1 Tool Taxonomy
9.2 Types and Instances 9.1.1 Internal
9.3 Tool Integration 9.1.2 Conceptual
9.3.1 Data Integration 9.1.3 External
9.3.2 Control Integration 9.1.4 Rules
9.3.3 User Interface Integration 9.1.5 Operations

9.1.6 Data
9.1.7 Types
9.1.8 Instances
9.1.9 Metadata
9.1.10 Degree of Understanding

153

9.1.11 Relationships Between Services
9.1.12 Justification For Including

Services
9.1.13 Examples
9.2 Classification/ Functions of Tools
9.2.1 Internal
9.2.2 Conceptual
9.2.x etc.
9.3 Integration of Tools
9.3.1 Internal
9.3.2 Conceptual
9.3.x etc.

It is proposed to merge Reference Model section 9.3, "Tool Integration",
with section 15, "Integration".

3.4.3.2 Framework Administration and Configuration (14)

The following additional Framework Administration and
Configuration Services are provided by SLCSE, and are described at the
Conceptual level:

1. Framework Definition/Modification Service - This includes
establishing/modifying the name for the framework, defining/modifying the
set of tools (and the aspects of their integration with the framework) that are
available to environment instantiations of the framework (see the Tool
Registration (14.1) description), defining/modifying the default role
definitions (in terms of the tools available to a user that is assigned a
particular role) for an environment instantiation, and a master list of
personnel that can be assigned to an environment instantiation.

2. Tool Integration Service - This includes providing mechanisms for the
most convenient as possible coupling of tools with the framework, i.e.,
common user interface "wrappers" for tools, "plug and play" slots for tools,
and tool-to-environment and environment-to-tool object management data
transfer utilities.

3. Environment Data Repository Creation/Modification Service - This
includes the definition/modification of the schema (using the data model of
the framework) to be used in an environment for a particular software
development project, the creation/modification of the data repository for the
environment from that schema, and the loading/unloading of data into and
out of the repository that is necessary to support the project. These operations

154

are typically dependent upon the tools that are to be integrated into the
framework and used within the environment.

4. Environment Definition/Modification Service - This includes
definition/modification of the characteristics of an environment for a
particular software development project. In particular, the characteristics
specific to the Object Manager for an environment (i.e., the location of the
data repository created for the environment), the personnel to be
assigned/deassigned to a project, the roles assigned to those personnel, the
modification of the default role definitions for the framework in terms of tool
availability to each person assigned to a project, the data access privileges of
personnel assigned to a project, adjusting an environment's definition to
incorporate the modifications made to the framework, and the
definition/modification of pre-invocation and post-execution rules to be
applied to the tools in the environment.

5. Environment Deletion Service - This involves the deletion of existing
environment instantiations of the framework with options to delete/save
information pertaining to the environment to be deleted.

155

4. CONCLUSION

The mapping exercise revealed that the NIST ISEE Reference Model
can provide an excellent means of neutrally describing and comparing CASE
environment framework standards and products. The mapping exercise, on
the other hand, also revealed a certain lack of maturity in the Reference
Model that will, in time, improve as a function of its use on actual ISEE
initiatives. As ISEE technology matures, so too will the Reference Model
when it is applied to that technology. This mapping exercise was the first of
many potential opportunities to validate and improve upon the correctness
and usefulness of the Reference Model, and it was successful in doing that.

The mapping exercise was not only beneficial to the development of
the NIST Reference Model, but also aided Rome Laboratory in assessing areas
where SLCSE can be enhanced (under the FY 91 program entitled, "SLCSE
Enhancements and Demonstration Program") to result in a product that
offers as rich a set of ISEE services as possible.

156

5. REFERENCES

[11 A Reference Model for Computer Assisted Software Engineering
Frameworks ECMA TR/55, European Computer Manufacturers Association,
December, 1990.

[21 A Reference Model for Computer Assisted Software Engineering
Frameworks NIST Version 1.0, NIST Working Draft, National Institute of
Standards and Technology, March 1991.

(31 ANSI/MIL-STD-1815A, Ada Programming Language January 1983.

[41 Ada Test and Verification System (ATVS), Software User's Manual
General Research Corporation, January 1990.

[5] DOD-STD-2167A, Military Standard for Mission Critical Computer System
Software Development, February 1988.

(61 Database Administrator's Manual ShareBase Corporation, October 1989.

[7] F. LaMonica, Software Life Cycle Support Environment (SLCSE). Product
')verview SLCSE Enhancements & Demonstration Program, Rome

S--boratory, July 1991.

(81 Guide to VMS System Security Digital Equipment Corporation, June 1989.

[9] J. Milligan, Software Life Cycle Support Environment (SLCSE) Project
Management System (SPMS): Not Tust Another Pro'ect Management Tool,
Rome Laboratory, July 1991.

(101 J. Miiligan, Software Tools Via Loi'c ProEramming. RADC-TR-90-261,
Rome Laboratory, August 1990.

[11] J. Milligan, Software User's Manual for AnalyzER 3.0 RADC-TR-89-83,
Rome Laboratory, July 1989.

[12] SMARTSTAR Administrator's Guide, Signal Technology Incorporated,
1990.

[131 Software Life Cycle Support Environment. Software Detailed Desigm
Document General Research Corporation, July 1989.

157

(14] Software Life Cycle Support Environment. Software Programmer's
Manual General Research Corporation, August 1989.

[15] Software Life Cycle Support Environment Software User's Manual,
General Research Corporation, August 1989.

[161 Software Life Cycle Supplort Environment Project Management System,
Software Design Document, General Research Corporation, September 1991.

[17] T. Strelich, Software Life Cycle Support Environment, RADC-TR-89-385,
Rome Laboratory, February 1989.

[181 VMS Accounting Utility Manual. Digital Equipment Corporation, April
1988.

[19] VMS Backup Utility Manual Digital Equipment Corporation, April 1988.

[20] VMS RTL DECtalk (DTKS) Manual. Digital Equipment Corporation, April
1988.

[211 VMS RTL General Purpose (OTS$) Manual Digital Equipment
Corporation, April 1988.

[22] VMS RTL Library (LIB$) Manual, Digital Equipment Corporation, April
1988.

[231 VMS RTL Mathematics (MTH$) Manual, Digital Equipment Corporation,
April 1988.

[241 VMS RTL Parallel Processing (PPLS) Manual Digital Equipment
Corporation, April 1988.

[251 VMS RTIh Screen Management (SMGS) Manual Digital Equipment
Corporation, April 1968&

[261 VMS RTL Strifn Manipulation (STRS) Manual, Digital Equipment
Corporation, April 1988.

[271 VMS User's Guide Digital Equipment Corporation, June 1989.

6US. GOVERNMENT PRINTING OFFICE -

158

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C31) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

