
AD-A258 556 Technical Report

CMU/SEI-92-TR-22
ESC-TR-92-022

. ..i Carnegie-Mellon University

Software Engineering Institute

Software Quality Measurement:
DTI, A Framework for Counting

S ELECTE Problems and Defects

DEC 0 9 William A. Florac4.1J with the Quality Subgroup
of the Software Metrics Definition Working Group

"and the Software Process Measurement Project Team

"September 1992

, ~/ "

t//\

INb 4o0wUM13i~ou been OPPOOV011

4 92-31129

/- \

// ./

C vnfeqJe Me),(on lfriiersit ilees not dsi-rirsirate anr$ Carneqe Mellon Onneprsty isrqino if to diiritat admits onemivrn racnesrtr
,,I 'rrn onp onbassof)are color natonaj ir gin sexy or Yhaniap Din vbolation of T.T r V I of the Civi Rights A c! 0ffh 1 "A4I, lao' X r 0 d rrA i'

Arrntet i1172 Alit S;,i:tor, 5,4 of !',p Reriantitation Act of 1973 o' other, federal state o' ")eal laws3, or teca ito AcOrdrs

inad'r arei Me,"), Ijniersity does riot rfs's',ri'atn I- arlmrss:orr e "Iorvn~ ad`mnrstatlrof (Jf Its nram r the Oasis 01 trti'in ner
,arc-0s'y [v ofe C ge nnpnra st,~ se ? rmtatoni ir in velation of Yilma stat or oa' laws cv execl(tlve otcsW' i'(e the fnm-teral CroA rsY 're

7o 3I. s %c~;f 1"t an 5C, ow eliv ROTC srsrhisor ron f trC cIltatv ROT' rsirr553b. n35S~ r

ratCPýirfr, q App~h'vt Oniot ,Ies stter''ssnild re ip e to the Pr-ovost Carnege Meci rversity týf100 lores Avrr AF soirj r

15213 teoieitl2~k8$4 or rhe Vce Prsdetor FIrnreminre Carnege Meslon. nest 500/i I i'bes Avon- P!!Osl'gnj I'. t5 !,. .Tthin
(1412) 26A8 ?0'f)h

Technical Report
CMU/SEI-92-TR-22

ESC-TR-92-022

September 1992

Software Quality Measurement:
A Framework for Counting

Problems and Defects

William A. Florac
with the Quality Subgroup of the Software Metrics Definition Working Group

and the Software Process Measurement Project Team

Accesion For .
NTIS CRA&I

DTIC TAB I

Jstification
............

Dist ibution

Avaiho:;;ty ,~s
Avail a d/r

Dist

A-I
Approved for public release.

S - Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman. Capt. USAF
.SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel. DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.

Copies of this document are aWso available through the Na,;onal Technical lnorma:on Service For information on orde-ng.
please con:azt NTIS d',ect'y Naior,al Tec.hnica; •formaion Service. U S Department of Comnierce, Springfield, VA 22161

Copies of ths dxour"c t are also ava 'a:e from Research Access. Inc. 3400 Forbes Aver'je. Sdie 302, Pittsburgh, PA 15213

Use of any trademarks in this report is not inene.•d in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figures iii

Preface V

Acknowledgments vii

1. Introduction 1
1.1. Scope 1
1.2. Objective and Audience 1
1.3. The Software Measurement Environment 2

2. Understanding the Framework for Counting Software Problems
and Defects 5
2.1. Why Measure Problems and Defects 5

2.1.1. Quality 6
2.1.2. Cost 6
2.1.3. Schedule 6

2.2. Measuring Software Problems and Defects 6
2.2.1. Defects 7
2.2.2. Problems 7

2.3. Problem and Defect Finding Activities 8
2.4. Problem and Defect Attributes 10
2.5. Measurement Communication with Checklists 12
2.6. Supporting Forms 15
2.8. Framework Summary 18

3. Using the Problem and Defect Attributes 21
3.1. Identification Attributes 21
3.2. Problem Status 22
3.3. Problem Type 24
3.4. Uniqueness 26
3.5. Criticality 27
3.6. Urgency 27
3.7. Finding Activity 28
3.8. Finding Mode 30
3.9. Date/Time of Occurrence 30
3.10. Problem Status Dates 30
3.11. Originator 31
3.12. Environment 32
3.13. Defects Found In 32
3.14. Changes Made To 33
3.15. Related Changes 33
3.16. Projected Availability 33
3.17. Released/Shipped 33
3.18. Applied 34

CMU/SEI-92-TR-22 I

3.19. Approved By 34
3.20. Accepted By 34

4. Using the Problem Count Definition Checklist 35
4.1. Example Problem Count Definition Checklist 36

5. Using the Problem Count Request Form 41
5.1. Example Problem Count Request Form 42

6. Using the Problem Status Definition Form 47

6.1. Example Problem Status Definition Form 48

7. Summary 51

8. Recommendations 53
8.1. Ongoing Projects 53
8.2. New and Expanding Projects 53
8.3. Serving the Needs of Many 54
8.4. Repository Starting Point 54
8.5. Conclusion 54

References 55

Appendix A: Glossary 57
A.1. Acronyms 57
A.2. Terms 57

Appendix B: Using Measurement Results Illustrations and
Examples 61
B.1. Project Tracking-System Test 62
B.2. Tracking Customer Experience 64
B.3. Improving the Software Product and Process 68

Appendix C: Checklists and Forms for Reproduction 71

U1 CMU/SEI-92-TR-22

List of Figures

Figure 2-1 Measurement Environment Framework Relationship 5
Figure 2-2 Problem and Defect Finding Activities 9

Figure 2-3 Problem and Defect Data Collection and Recording 10

Figure 2-4 Problem Count Definition Checklist 14

Figure 2-5 Problem Count Request Form 17
Figure 2-6 Framework Overview 19

Figure 3-1 A Generic Problem Management System 22
Figure 3-2 Problem Status Attribute 24
Figure 3-3 Problem Type Attribute and Values 26
Figure 3-4 Uniqueness Attribute and Values 27

Figure 3-5 Criticality Attribute 27
Figure 3-6 Urgency Attribute 27
Figure 3-7 Finding Activity Attribute and Values 29
Figure 3-8 Finding Mode Attribute and Values 30
Figure 3-9 Originator Attribute and Values 31
Figure 3-10 The Environment Attribute and Values 32

Figure 3-11 Defects Found In Attribute 32
Figure 3-12 Changes Made To Attribute 33

Figure 4-1 Example Problem Count Definition Checklist 38
Figure 5-1 Example Result of Problem Count Request Form

Specification 43
Figure 5-2 Problem Count Request Form 44
Figure 5-3 Instructions for Problem Count Request Form 45
Figure 6-1 Example Problem Status Definition Form-1 49

Figure 6-2 Problem Status Definition Form-2 50

Figure B-1 Example of System Test Problem Status 62
Figure B-2 Example of Open Problem Age by Criticality 63

Figure B-3 Customer-Reported Problems 64
Figure B-4 Product Reliability Growth 65

Figure B-5 Fault Distribution by Customer ID 66

Figure B-6 Release-to-Release Improvement in Defect Density 67
Figure B-7 Defect Analysis by Development Activity 68

Figure B-8 Defect Density Analysis by Development Activity 69

CMUISEI-92-TR-22 III

Figure B-9 Defect-Prone Modules by Defect Density 70

Figure B-10 Defect-Prone Modules by Percent Contribution 70

Iv CMUISEI-92-TR-22

Preface

In 1989, the Software Engineering Institute (SEI) began an effort to promote the use of
measurement in the engineering, management, and acquisition of software systems. We
believed that this was something that required participation from many members of the
software community to be successful. As part of the effort, a steering committee was formed
to provide technical guidance and to increase public awareness of the benefits of process
and product measurements. Based on advice from the steering committee, two working
groups were formed: one for software acquisition metrics and the other for software metrics
definition. The first of these working groups was asked to identify a basic set of measures
for use by government agencies that acquire software through contracted development
efforts. The second was asked to construct measurement definitions and guidelines for
organizations that produce or support software systems, and to give specific attention to
measures of size, quality, effort, and schedule.

Since 1989, more than 60 representatives from industry, academia, and government have
participated in SEI working group activities, and three resident affiliates have joined the
Measurement Project staff. The Defense Advanced Research Projects Agency (DARPA)
has also supported this work by making it a principal task under the Department of Defense
Software Action Plan (SWAP). The results of these various efforts are presented here and
in the following SEI reports:

" Software Effort & Schedule Measurement: A Framework for Counting Staff-Hours
and Reporting Schedule Information (CMU/SEI-92-TR-21)

"* Software Size Measurement: A Framework for Counting Source Statements
(CMU/SEI-92-TR-20)

"* Software Measures and the Capability Maturity Model (CMU/SEI-92-TR-25)

"* Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-1 1)

"* A Concept Study for a National Software Engineering Database
(CMU/SEI-92-TR-23)

"* Software Measurement for DoD Systems: Recommendations for Initial Core
Measures (CMU/SEI-92-TR-19)

This report and the methods in it are outgrowths of work initiated by the Quality Subgroup of
the Software Metrics Definition Working Group. Like the reports listed above, this one
contains guidelines and advice from software professionals. It is not a standard, and it
should not be viewed as such. Nevertheless, the framework and methods it presents give a
solid basis for constructing and communicating clear definitions for two Important measures
that can help us plan, manage, and improve our software projects and processes.

We hope that the materials we have assembled will give you a solid foundation for making
your quality measures repeatable, internally consistent, and clearly understood by others.
We also hope that some of you will take the ideas illustrated in this report and apply them to

CMU/SEI-92-TR-22 v

other measures, for no single set of measures can ever encompass all that we need to
know about software products and processes.

Our plans at the SEI are to continue our work in software process measurement. If, as you
use this report, you discover ways to improve its contents, please let us know. We are
especially interested in lessons leamed from operational use that will help us improve the
advice we offer to others. With sufficient feedback, we may be able to refine our work or
publish additional useful materials on software quality measurement.

Our point of contact for comments is

Lod Race
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

vI CMU/SEI-92-TR-22

Acknowledgments

The SEI measurement efforts depend on the participation of many people. We would like to
thank the members of the Quality Subgroup of the Software Metrics Definition Working
Group who contributed to the preparation of this report. We are indebted to them and to the
organizations who sponsored the efforts to improve measurement of problems and defects.
Without the contributions of these professionals, we could not have completed this task:

Frank Ackerman Sallie Henry
Institute for Zero Defects Software Virginia Tech

John K. Alexiou Sujoe Joseph
IBM Corporation Bull HN Information Systems, Inc.

David Babuder Cheryl L. Jones
Allen-Bradley Company Naval Underwater Systems Center

Mark Baker Hsien Elsa Lin
Modern Technologies Corporation AT&T Bell Laboratories

Faye C. Budlong Stan Rifkin
Charles Stark Draper Lab., Inc. Master Systems, Inc.

William S. Coyne Cindy D. Roesler
US Air Force Rockwell Intemational

Michael K. Daskalantonakis Kyle Y. Rone
Motorola, Inc. IBM Corporation

Deborah A. DeToma Dileep R. Saxena
GTE Govemment Systems Bell Communications Research

Robert L. Erickson Lee Shaw
Bellcore Westinghouse Electric Corporation

Tom Grabowski Sylvester A. Vassalo
Westinghouse Electric Corporation Unisys Defense Systems

Joel Heidelberg Terry A. Wilcox
US Army Communications- DPRO-General Dynamics
Electronics Command

CMUISEI-92-TR-22 Vii

A first draft of this report was presented and distributed for review at the SEI Affiliates
Symposium in August 1991. A second draft was distributed to approximately 400 reviewers
in June 1992. Nearly 200 comments and suggestions for improvement were returned. All
have received careful consideration, and most have been incorporated or addressed
through the development of new materials. We are indebted to those who took the time and
care to provide so many constructive recommendations:

Jim Bartlett Derek Hatley
Allstate Insurance Company Smiths Industries

Barry Boehm Daniel Heur
Defense Advanced Research Magnavox
Projects Agency

John Bolland George Huyler
ITT Avionics Division Productivity Management Group

Nar.cy Cheney Chris Kemerer
Hamilton Standard, UTC Massachusetts Institute of Technology

Lyle Cocking Gary Kennedy
General Dynamics IBM Corporation

Dean Dubofsky Ed Kettler
The MITRE Corporation Electronic Data Systems

R.L. Erickson Harry T. Larson
Bellcore Larbridge Enterprises

Betty Falato George Leach
Federal Aviation Administration AT&T Paradyne

M. Hosein Fallah Donna Lindskog
AT&T Bell Laboratories University of Regina and SaskTel

Liz Flanagan Everald Mills
AT&T Bell Laboratories Seattle University

Harvey Hallman Marc Meltzer
Software Engineering Institute Pratt & Whitney

John Harding Kerux-David Lee Neal
Bull HN Information Systems, Inc. Northrop Corporation

Jim Hart Donald Reifer
Software Engineering Institute Reifer Consultants, Inc.

viii CMU/SEI-92-TR-22

Michael Robinson Marie Silverthorn
Boeing Computer Services Texas Instruments

Paul Rook Al Snow
S.E.P.M. AT&T Bell Laboratories

John Salasin S. Jack Sterling
Software Engineering Institute Logicon Eagle Technology, Inc.

Hal Schwartz Irene Stone
Fujitsu Systems of America AlL Systems, Inc.

Brian Sharpe Terry Wilcox
Hewlett-Packard DPRO-General Dynamics

CMUISEI-92-TR-22 ix

We also thank the members of the Measurement Steering Committee for their many
thoughtful contributions. The insight and advice they have provided have been invaluable.
This committee consists of senior representatives from industry, govemment, and academia
who have earned solid national and international reputations for their contributions to
measurement and software management:

William Agresti Watts Humphrey
The MITRE Corporation Software Engineering Institute

Henry Block Richard Mitchell
University of Pittsburgh Naval Air Development Center

David Card John Musa
Computer Sciences Corporation AT&T Bell Laboratories

Andrew Chruscicki Alfred Peschel
USAF Rome Laboratory TRW

Samuel Conte Marshall Potter
Purdue University Department of the Navy

Bill Curtis Samuel Redwine
Software Engineering Institute Software Productivity Consortium

Joseph Dean Kyle Rone
Tecolote Research IBM Corporation

Stewart Fenick Norman Schneidewind
US Army Communications- Naval Postgraduate School
Electronics Command

Charles Fuller Herman Schultz
Air Force Materiel Command The MITRE Corporation

Robert Grady Seward (Ed) Smith
Hewlett-Packard IBM Corporation

John Harding Robert Sulgrove
Bull HN Information Systems, Inc. NCR Corporation

Frank McGarry Ray Wolverton
NASA (Goddard Space Flight Center) Hughes Aircraft

John McGarry
Naval Underwater Systems Center

x CMU/SEI-92-TR-22

As we prepared this report, we were aided in our activities by the able and professional
support staff of the SEI. Special thanks are owed to Mary Beth Chrissis and Suzanne
Couturiaux, who were instrumental in getting our early drafts ready for external review; to
Linda Pesante and Mary Zoys, whose editorial assistance helped guide us to a final,
publishable form; to Marcia Theoret and Lori Race, who coordinated our meeting activities
and provided outstanding secretarial services; and to Helen Joyce and her assistants, who
so competently assured that meeting rooms, lodgings, and refreshments were there when
we needed them.

And finally, we could not have assembled this report without the active participation and
contributions from the other members of the SEI Software Process Measurement Project
and the SWAP team who helped us shape these materials into forms that could be used by
both industry and government practitioners:

Anita Carleton Donald McAndrews
Software Engineering Institute Software Engineering Institute

John Baumert Robert Park
Computer Sciences Corporation Software Engineering Institute

Mary Busby Shari Lawrence Pfleeger
IBM Corporation The MITRE Corporation

Elizabeth Bailey Lori Race
Institute for Defense Analyses Software Engineering Institute

Andrew Chruscicki James Rozum
USAF Rome Laboratory Software Engineering Institute

Judith Clapp Timothy Shimeall
The MITRE Corporation Naval Postgraduate School

Wolfhart Goethert Patricia Van Verth
Software Engineering Institute Canisius College

CMU/SEI-92-TR-22 X1

xii CMU/SEI-92-TR-22

Software Quality Measurement: A Framework for
Counting Problems and Defects

Abstract. This report presents mechanisms for describing and specifying two
software measures-software problems and defects-used to understand and
predict software product quality and software process efficacy. We propose a
framework that integrates and gives structure to the discovery, reporting, and
measurement of software problems and defects found by the primary problem
and defect finding activities. Based on the framework, we identify and organize
measurable attributes common to these activities. We show how to use the
attributes with checklists and supporting forms to communicate the definitions
and specifications for problem and defect measurements. We illustrate how the
checklist and supporting forms can be used to reduce the misunderstanding of
measurement results and can be applied to address the information needs of
different users.

1. Introduction

1.1. Scope

This report describes a framework and supporting mechanisms that may be used to
describe or specify the measurement of software problems and defects associated with a
software product. It includes the following:

* A framework relating the discovery, reporting, and measurement of problems and
defects.

* A principal set of measurable, orthogonal attributes for making the measurement
descriptions exact and unambiguous.

• Checklists for creating unambiguous and explicit definitions or specifications of
software problem and defect measurements.

* Examples of how to use the checklists to construct measurement specifications.

* Examples of measurements using various attributes of software problem reports and
defects.

1.2. Objective and Audience

Our objective in this report is to provide operational methods that will help us obtain clear
and consistent measurements of quality based on a variety of software problem reports and
data derived by analysis and corrective actions. The report is appropriate for any

CMUISEI-92-TR-22 I

organization that wants to use software problem report data to help manage and improve its
processes for acquiring, building, or maintaining software systems. The attributes and
checklists described in this report are intended specifically for software project managers,
software planners and analysts, software engineers, and data management specialists.

The mechanisms may be used for defining and specifying software problem and defect
counts found by static or non-operational processes (e.g., design reviews or code
inspections) and for dynamic or operational processes (e.g., testing or customer operation).
The measurements (counts), properly qualified and described, may be used in various
formats along with other software data to measure the progress of the software
development project, to provide data for prediction models, and to improve the software life
cycle process.

Software problem and defect measurements have direct application to estimating,
planning, and tracking the various software development processes. Users within an
organization are likely to have different views and purposes for using and reporting this
data. Our goal is to reduce ambiguities and misunderstandings in these measures by
giving organizations a basis for specifying and communicating clear definitions of problem
and defect measurements.

1.3. The Software Measurement Environment

We based our work on the notion that the reader is familiar with the basic elements of a
software measurement environment that is structured along the following points:

"* Goals and objectives are set relative to the software product and software
management process.

"* Measurements are defined and selected to ascertain the degree to which the goals
and objectives are being met.

"* A data collection process and recording mechanisms are defined and used.

* Measurements and reports are part of a closed loop system that provides current
(operational) and historical information to technical staff and management.

* Data on post-software product life measurement is retained for analysis leading to
improvements for future product and process management.

These points are prerequisites for all measurement environments, and are stated here to
emphasize that an understanding of them is essential for the successful use of the
framework and mechanisms described in this report Each of the points above are in
themselves subjects and topics of a host of papers, reports, and books generated by
members of the software engineering community over the past twenty years. If you are not
familiar with the implications of these points, or are not familiar with the issues, activities,
and effort associated with establishing and sustaining a software measurement system, we
encourage you to become familiar with the software engineering literature on the subject

2 CMUISEI-92-TR-22

before attempting to use the mechanisms discussed in this report. Recent literature that

provides a comprehensive overview of software measurements includes the following:

[Baumert 92]

[Conte 86]

[Fenton 91]

[Grady 92]

[Grady 87]

[Humphrey 89]

[Musa 87]

[IEEE 88a]

Each of the above include extensive listings of papers, reports, and books that provide
additional information on the many aspects of software measurement.

CMU/SEI-92-TR-22 3

4 CMU/8E1492-TR-22

2. Understanding the Framework for Counting
Software Problems and Defects

The purpose of this chapter is to provide a structured view of the activities involved with
data collection, analysis, recording, and reporting of software problems and defects, and
thereby set the framework necessary to define a common set of attributes. These attributes
are used in a checklist to communicate the description and specification of problem and
defect measurements.

In providing a framework for this report, we have tried to be consistent with the software
measurement environment outlined in Section 1.3. We provide a rationale (albeit brief) for
measuring software problems and defects in Section 2.1. This is followed by a discussion in
Section 2.2 of terminology pertinent to problems and defects leading to a definition of each
used in this report. Section 2.3 addresses the issues of problem data collection and
reporting. The topics of problem and defect attributes and measurement definition
checklists are discussed in Sections 2.4 and 2.5 respectively. Figure 2-1 shows the
relationship of the software problem measurement framework to that of the measurement
environment framework previously outlined.

Software Measurement Framework for Measuring

Environment Software Problems

Goals Why measure problems and defects

Measurement definition What are problems and defects

Data collection/recording Problem finding/reporting activities

Measurements/reports Measurement attributes and checklists

Figure 2-1 Measurement Environment Framework Relationship

2.1. Why Measure Problems and Defects

The fundamental reason for measuring software and the software process is to obtain data
that helps us to better control the schedule, cost, and quality of software products. It is
important to be able to consistently count and measure basic entities that are directly
measurable, such as size, defects, effort, and time (schedule). Consistent measurements
provide data for doing the following:

"* Quantitatively expressing requirements, goals, and acceptance criteria.

"• Monitoring progress and anticipating problems.

CMUISEI-92-TR-22 5

"* Quantifying tradeoffs used in allocating resources.
"* Predicting the software attributes for schedule, cost, and quality.

To establish and maintain control over the development and maintenance of a software
product, It is important that the software developer and maintainer measure software
problems and software defects found in the software product to determine the status of
corrective action, to measure and improve the software development process, and to the
extent possible, predict remaining defects or failure rates [Boehm 73], [Murine 83]. By
measuring problems and defects, we obtain data that may be used to control software
products as outlined in the following sections.

2.1.1. Quality

While it is clear that determining what truly represents software quality in the customer's
view can be elusive, it is equally clear that the number and frequency of problems and
defects associated with a software product are inversely proportional to the quality of the
software. Software problems and defects are among the few direct measurements of
software processes and products. Such measurements allow us to quantitatively describe
trends in defect or problem discovery, repairs, process and product imperfections, and
responsiveness to customers. Problem and defect measurements also are the basis for
quantifying several significant software quality attributes, factors, and criteria-reliability,
correctness, completeness, efficiency, and usability among others [IEEE 90b].

2.1.2. Cost

The amount of rework is a significant cost factor in software development and maintenance.
The number of problems and defects associated with the product are direct contributors to
this cost. Measurement of the problems and defects can help us to understand where and
how the problems and defects occur, provide insight to methods of detection, prevention,
and prediction, and keep costs under control.

2.1.3. Schedule

Even though the primary drivers for schedule are workload, people and processes, we can
use measurement of problems and defect., in tracking project progress, identifying process
inefficiencies, and forecasting obstacles that will jeopardize schedule commitments.

2.2. Measuring Software Problems and Defects

To measure with explicitness and exactness, it is of utmost importance to clearly define the
entities being measured. Since we concentrate on problems and defects in this report, we

6 CMU/SEI-92-TR-22

shall define their meaning and discuss the relationship they have to other terms and
entities.

2.2.1. Defects

A defect is any unintended characteristic that impairs the utility or worth of an item, or any
kind of shortcoming, imperfection, or deficiency. Left as is, this definition of a defect, while
correct, needs to be more definitive to be of help in the software measurement sense. If we
further define a defect to be an inconsistency with its specification [IEEE 88a], the
implication is that the reference specification cannot have any defects. Since we know this
is not the case, we will try another approach.

We will define a software defect to be any flaw or imperfection in a software work product or
software process.

A software work product is any artifact created as part of the software process including
computer programs, plans procedures, and associated documentation and data [CMU/SEI
91]. A software process is a set of activities, methods, practices, and transformations that
people use to develop and maintain software work products [CMU/SEI 91].

This definition of a software defect covers a wide span of possibilities and does not
eliminate software artifacts that we know from experience to contain defects. It does
suggest the need for standards, rules, or conventions that establish the type and criticality of
the defect (Grady proposes a model for defect nomenclature and classification in [Grady
92]).

A software defect is a manifestation of a human (software producer) mistake; however, not
all human mistakes are defects, nor are all defects the result of human mistakes.

When found in executable code, a defect is frequently referred to as a fault or a bug. A fault
is an incorrect program step, process, or data definition in a computer program. Faults are
defects that have persisted in software until the software is executable. In this report, we
will use the term defect to include faults, and only use the term fault when it is significant to
refer to a defect in executable code.

2.2.2. Problems

The definition of a software problem has typically been associated with that of a customer
identifying a malfunction of the program in some way. However, while this may be correct
as far as it goes, the notion of a software problem goes beyond that of an unhappy
customer. Many terms are used for problem reports throughout the software community:
incident report, customer service request, trouble report, inspection report, error report,
defect report, failure report, test incident, etc. In a generic sense, they all stem from a
unsatisfactory encounter with the software by people. Software problems are human
events. The encounter may be with an operational system (dynamic), or it may be an

CMU/SEI-92-TR-22 7

encounter with a program listing (a static encounter.) Given the range of possibilities, we
will define software problem as follows:

A software problem is a human encounter with software that causes difficulty, doubt, or
uncertainty in the use or examination of the software.

In a dynamic (operational) environment, some problems may be caused by failures. A
failure is the departure of software operation from requirements [Musa 87]. A software
failure must occur during execution of a program. Software failures are caused by faults,
that is, defects found in executable code (the same kind of faults discussed in the previous
section as persistent defects).

In a static (non-operational) environment, such as a code inspection, some problems may
be caused by defects. In both dynamic and static environments, problems also may be
caused by misunderstanding, misuse, or a number of other factors that are not related to the
software product being used or examined.

2.3. Problem and Defect Finding Activities

To establish a software measurement environment, the software organization must define a
data collection process and recording media. Software problem reports typically are the
vehicles used to collect data about problems and defects. It is worthwhiie to note that the
data that is assembled as part of the problem analysis and correction process is precisely
the same data that characterizes or gives attribute values to the problems and defects we
wish to measure. Although this process facilitates the data collection aspects of software
problem and defects measurement, the variety of finding activities and related problem
reports make it difficult to communicate clearly and precisely when we define or specify
problem and defect measurements.

The primary points of origin for problem reports are activities whose function is to find
problems using a wide variety of problem discovery or detection methodologies, including
using the software product (see Figure 2-2). During software development, these activities
would include design and code inspections, various formal reviews, and all testing
activities. In addition, activities such as planning, designing, technical writing, and coding
are also sources of problems reports. Technical staff engaged in these activities frequently
will encounter what appears to be an defect in a software artifact on which they are
dependent to complete their work and will generate a problem report. Following product
development, the software product customer is another source of problem reports.

8 CMUISEI-92-TR-22

ACTIVITIES Find Problems In:
Requirement specs
Design specs

Product synthesis Source code
User publications
Test procedures
Requirement specs
Design specs

Inspections Source code
User publications
Test procedures
Requirement specs

Formal reviews Design specs
Implementation
Installation
Modules
Components

Testing Products
Systems
User publications
Installation procedures
Installation procedures

Customer service Operating procedures
Maintenance updates
Support documents

Figure 2-2 Problem and Defect Finding Activities

To facilitate the communication aspect, we have identified five major finding activities:

"* Software product synthesis1

"* Inspections

"* Formal reviews

"• Testing

"* Customer service

This classification retains the functional identity of the finding activities without relying on a
specific development process model, and therefore becomes a communicative attribute for
problem or defect measurement.

Problem reports give rise to additional measurement communication issues. Problem
reports generated by the finding activities are typically tuned to the needs of the activity and
vary in content and format. For example, inspection reports, requirement review reports,
test reports, and customer service reports carry data not required by or available to the

1 By product synthesis we mean the activity of planning creating and documenting the requirements,
design, code, user publications, and other software artifacts that constitute a software product. This
would exclude all types of peer reviews.

CMUISEI-92-TR-22 9

others. The problems are recorded and reported at different points in time (e.g., before and
after configuration management control), in batches or continuously, by different
organizations, by people with varying degrees of understanding of the software product.
Often, the data is captured in separate databases or record-keeping mechanisms. The
problem and defect attributes and attribute values described in Sections 2.4 and 3.1 bridge
these differences and provide a consistent basis for communicating (Figure 2-3).

Product Inspections Reviews Testing Customer
Synthesis Support

Problem Inspection Review Test Customer
Report Report Report Report Problem

Analysis and Corrective Actions

Activity Specific Databases

AttributesNalues

Figure 2-3 Problem and Defect Data Collection and Recording

2.4. Problem and Defect Attributes

In spite of the variances in the way software problems may be reported and recorded, there
arc remarkable similarities among reports, particularly if the organization or activity-specific
data is removed. There are several ways of categorizing this similarity. The approach we
use to arrive at a set of attributes and attribute values that encompass the various problem
reports is to apply the "who, what, why, when, where, and how" questions in the context of a
software measurement framework [Fenton 911.

10 CMUISEI-92-TR-22

In developing the attribute values, we are careful to ensure they are mutually exclusive; that
is, any given problem may have one, and only one, value for each attribute. We also work
to ensure that the values for each attribute are exhaustive so that inconsistent or erroneous
counts do not occur.

We have identified the following attributes with the intention of transcending the variations
in problem reports generated by the finding activities (Section 2.3). Each of these attributes
and its values are fully described in Chapter 3. Several of the attributes have values that
require special consideration when used to specify a problem count. This is discussed later
in the report (Section 2.6, Chapter 3, and Chapter 4).

These attributes provide a basis for communicating, descriptively or prescriptively, the

meaning of problem and defect measurements:

"* Identification: What software product or software work product is involved?

"• Finding Activity: What activity discovered the problem or defect?

"* Finding Mode: How was the problem or defect found?

"* Criticality: How critical or severe is the problem or defect?

"* Problem Status: What work needs to be done to dispose of the problem?

"* Problem Type: What is the nature of the problem? If a defect, what kind?

"* Uniqueness: What is the similarity to previous problems or defects?

"• Urgency: What urgency or priority has been assigned?

"* Environment: Where was the problem discovered?

"* Timing: When was the problem reported? When was it discovered? When was it
corrected?

"* Originator: Who reported the problem?

"* Defects Found In: What software artifacts caused or contain the defect?

"• Changes Made To: What software artifacts were changed to correct the defect?

"* Related Changes: What are the prerequisite changes?

* Projected Availability: When are changes expected?

e ReleasedlShipped: What configuration level contains the changes?

* Applied: When was the change made to the baseline configuration?

* Approved By: Who approved the resolution of the problem?

• Accepted By: Who accepted the problem resolution?

CMU/SEI-92-TR-22 11

While the attributes used in the checklists are extensive, they are not exhaustive. For
example, there is no attribute that identifies the different types of errors (mistakes) that have
caused defects. Examples of software error classifications are found in [Grady 92] and
[Schneidewind 79] among others. Your organization may develop its own error
classifications based on its own particular situation and need.

You may find that you wish to identify additional attributes. If you exercise this option, take
care to rephrase existing descriptions so overlapping does not occur. If values are not
mutually exclusive, then observed results can be assigned to more than one category by
different observers. If this happens, it may result in inconsistent and erroneous counts,
including double counting.

2.5. Measurement Communication with Checklists

Our primary goal is to provide a basis for clearly communicating the definition and
specification of problem and defect measurements. Two criteria guide us:

"* Communication: If someone generates problem or defect counts with our methods,
will others know precisely what has been measured and what has been included
and excluded?

"* Repeatability. Would someone else be able to repeat the measurement and get the
same results?

These criteria have led us to the use of checklists as the mechanism to construct problem
and defect measurement definitions and specifications. By using a checklist to organize the
attributes and attribute values, the process for constructing problem and defects definitions
is methodical and. straightforward.

The checklist can also be used to request and specify the attribute value counts and data
arrays of defect counts that we would like to have reported to us. We also design and use
other supporting forms (Section 2.6) to record special rules and clarification or to report
request instructions that are not amenable to checklist treatment.

After listing the principal attributes and arranging them in a checklist, the process for
constructing a definition becomes a matter of checking off the attribute values we wish to
include and excluding all others.

Figure 2-4 is an example of how the first page of the Problem Count Definition Checklist
might look for one particular definition of a problem measurement. The attributes are
shown as bold-faced section headings, and these headings are followed by the lists of
values that the attributes take on. For example, Problem Type is an attribute, and the
values for this attribute are requirement defect, design defect, code defect, operational
document defect, test case defect, other work product defect, hardware problems, etc. All
the software defect values have been collected have been grouped under a generic class

12 CMU/SEI-92-TR-22

called Software Defect. Those that are not software defects are grouped under Other
Problems, or Undetermined. The attributes and values used in Figure 2-4 are discussed in
detail in Chapter 3.

Immediately next to the AttributeNalues column are the two columns used to include and
exclude attribute values. The two columns on the far right, Value Count and Array Count,
are used to specify individual attribute counts.

The checklist in Figure 2-4 helps provide a structured approach for dealing with the details
that we must resolve to reduce misunderstandings when collecting and communicating
measures of problems and defects. With such a checklist, we can address issues one at a
time by designating the elements that people want included in measurement results. At the
same time, designating the elements to be excluded directs attention to actions that must be
taken to avoid contaminating measurement results with unwanted elements. A side benefit
is that the checklist can be used also to specify detailed data elements for which individual
reports are wanted.

CMU/SEI-92-TR-22 13

Problem Count Definition Checklist-1
Software Product ID [Example V1 R11
Definition Identifier: [Problem Count A' Definition Date [01/02/921Attributes/Valu9es Definition r 1 SpeclflIcation

Problem Status Include Exclude Value count Array Count
Open

Recognized ____

Evaluated
Resolved

Closed _____

Problem Type Includ Value Count rra unt
Software defect

Requirements defect __.. ..___-

Design defect _ _ _

Code defect _ _ _

Operational document defect "_
Test case defect
Other work product defect

Other problems
Hardware problem
Operating system problem
User mistake V_
Operations mistake
New requirement/enhancement 6v_

Undetermined
Not repeatable/Cause unknown V'
Value not identified _V

Uniqueness Include Exclude Value Count Array Count
Original V
Duplicate V
Value not identifed

Criticality Include Exclude Value Count Array Count
1st level (most critical) _ _V _ V_
2nd level V _ _ _

3rd level V __

4th level W V
5th level V eV

Value not Identified __"

Urgency Include Exclude Value Count Array Count
1 st (most urgent) V _

2nd 6e ___ ______ _____

3rd
4th

Value not Identified " _"

Figure 2-4 Problem Count Definition Checklist

14 CMU/SEI-92-TR-22

Later (in Chapters 4 and 5), we will explain how to use the checklist and supporting forms
and will include examples of definitions we have constructed with this checklist. Readers
should keep in mind that there are no universal best choices when completing a definition
checklist. Instead, each choice should be made so as to serve an organization's overall
measurement needs. This may involve tradeoffs between how the measurement results
will be used and the difficulties associated with applying the definition to collect data from
real software projects.

In practice, a checklist turns out to be a very flexible tool. For example, an organization may
want to merge results from several values into a new value. Moreover, some measures
exist that some organizations may want to record and aggregate (duplicate problems, for
example) but not include in a total size measure. All these options can be addressed with
the checklist.

With this in mind, we have found it useful to provide blank lines in checklists so that you can
add other attribute values to meet local needs. When you exercise this flexibility to list
additional values for inclusion or exclusion, you should take care to rephrase the labels for
existing values so that overlaps do not occur.

The importance of ensuring that values within attributes are non-overlapping cannot be
overstated. If values are not mutually exclusive, then observed results can get assigned to
more than one category. If this happens, and if totals (such as total defects) are computed
by adding across all values within an attribute that are designated for inclusion, double
counting can occur. Reported results will then be larger than they really are. In the same
vein, if overlaps exist between two values, and if one of the values is included within a
definition while other is not, those who collect the data will not know what to do with
observations that fall into both classes.

2.6. Supporting Forms

Sometimes definition checklists cannot record all the information that must be conveyed to
avoid ambiguities and misunderstandings. In these instances, we need specialized forms
to describe and communicate the additional measurement rules or description. In this
report, we provide two such forms, the Problem Status Definition Form and the Problem
Count Request Form.

Problem status is an important attribute by which problems are measured. The criteria for
establishing problem status is determined by the existence of data that reflects the progress
made toward resolving the problem. We can use the Problem Status Definition Form to
define the meaning of the several problem states by defining the criteria for reaching each
state in terms of the problem data, i.e., the problem attribute values. A description of the
Problem Status attribute is in Chapter 3 and an explanation of the Problem Status
Definition Form is in Chapter 5.

CMU/SEI-92-TR-22 15

The Problem Count Request Form is used in conjunction with the Problem Count Definition
form to supplement the measurement definition. The Problem Count Request Form is a
somewhat modified checklist used to describe or specify attribute values that are literals
(dates, customer IDs, etc.). This form is used to further describe or specify a problem or
defect measurement in terms of dates, specific software artifacts, or specific hardware or
software configuration. An example of the form is shown in Figure 2-5. Use of the form is
discussed in Chapter 4.

The combination of a completed checklist and its supporting forms becomes a vehicle for
communicating the meaning of measurement results to others, both within and outside the
originating organization.

We make no attempt to describe a report form or format for the various problem counts for
several reasons. The report format will vary significantly depending on the problem count
definition. The report could be a single number or it could be an array of several thousand
data elements. Additionally, much of the data will be more useful if graphed over a time
scale or distribution form, especially if the count definition yields several hundred or more
numbers. There are many computer based programs available to perform the
transformation from numerical form to graphical form, each with their own data input format
needs. Such a program will be a key factor in determining report format.

16 CMU/SEI-92-TR-22

Problem Count Request Form
Product iD, Ver/Rel: [Example VIRi] Problem Count Del ID: [Problem Count A]
Date of Request: [6-15-92] Requester's Name or ID: [1. M. Able]
Date Count to be made: [7-1-92]
Time Interval for Count: From [1-1-92] To [6-30-92]

Aggeate Time By: Dpy Week Month Year

Report Count By: Attribute Select Special Instructions
________________Sort Order Value, or Comments

Modue ICD ____ ____

Specific I(s)list)

ChangdwMae To:fgI

Select a configuration Tyeof Artifact___________
component level: Ruirement Design Code User Document

Product (OSCI)____ _______ _______

Component (CSC) se___ ____

Module (CS'J)______ _____ -

Spe ific_(list) ______ ______ __________

Figuret 2- rolm ontRqus F

CMU/SEI-92-TR-22 17

2.8. Framework Summary

We have developed a frame of reference for communicating descriptions or specifications
of problem and defect measurements. We defined software problems to include virtually
any unsatisfactory human encounter with; software, and defined software defects to be any
imperfection of the software.

The issue of collection and recording problem and defect data is addressed by using data
created by existing problem management processes (i.e., finding activities, and analysis
and corrective action activities) in the course of performing their duties (Figure 2-6).

Problem and defect attributes that span the various finding activities are identified and are
used as the basis for measurements. Checklist and supporting forms incorporate and
organize the attributes to communicate problem and defect descriptions and specifications.

Is CMUISEI-92-TR-22

Product i T ns
Synthesis f InspectionsS Reviews Testing CustomerSupport

Problem Inspection Review Test Customer
Report Report Report Report Problem

Analysis and Corrective Actions

Activity Specific Databases

AttributesN alues ao
f Problem

Measurement
SStatus Definition Rules

FCount Request Form Report

Count Defintion Checklist - Generator

Figure 2-6 Framework Overview

CMUlSEI-92-TR-22 19

20 CMU/SEI-92-TR-22

3. Using the Problem and Defect Attributes

In this section, we define and illustrate the attributes and attribute values used in the
checklist and supporting forms. The discussion sequence follows that of the Problem Count
Definition Checklist and the Problem Count Request Form so that information about the
attributes and their values may be readily located. (Appendix C contains copies of our
forms, which you may use as reproduction masters.) Bold type is used to highlight the
attributes. More specific instructions for using the checklist and other forms appear in
Chapters 4 and 5.

Not all software organizations will use the same terms as are presented in the definition of
the attributes. We have tried to use terms and names that are recognized by the IEEE
Standard Glossary of Software Engineering Terminology [IEEE 90a], or describe them in
sufficient detail so that their meaning is clear. The sequence of attributes is:

"• Identification * Originator

"• Problem Status e Environment

* Problem Type - Defects Found In

* Uniqueness * Changes Made To

• Criticality e Related Changes

* Urgency * Projected Availability

" Finding Activity * ReleasedlShipped

"* Finding Mode e Applied

"* Date/Time of Occurrence • Approved By

"• Problem Status Date ° Accepted By

3.1. Identification Attributes

Problem ID: This attribute serves to uniquely identify each problem for reference
purposes.

Product ID: This attribute identifies the software product to which the problem refers.
It should include the version and release ID for released products, or the build ID for
products under development. This value also may be used to identify the product
subsets or non-product units (tools or prototypes) used to produce the product.

CMU/SEI-92-TR-22 21

3.2. Problem Status

The status attribute refers to a point in the problem analysis and corrective action process
that has been defined to have met some criteria. See Chapter 5 for an explanation of the
Problem Status Definition Form. The problem status is of prime interest to the software
developer since it reveals information about the progress to resolve and dispose of the
reported problems. Coupled with information about testing or inspections, problem status
data gives the software manager a basis for projecting time and effort needed to complete
the project on schedule. Because problem status is dependent on the amount of
information known about the problem, it is important that we define and understand the
possible states and the criteria used to change from one state to another (See Figure 3-1).

Time

Software i Aact Pross

Analysis& I t
Correction Collection E ition Resolution Coure
Process

- /

Problem Recognized Evaluation Resolution Closure
Data Data Data Data Data

Problem Recognized Evaluated Resolved
Status

-au OPEN
- CLOSED

Figure 3-1 A Generic Problem Management System

22 CMU/SEI-92-TR-22

The status of the problems is a matter of interest to the software developer and maintainer
because it helps them determine the progress being made to resolve or dispose of the
totality of problems reported. The recognition or opening of a problem is based on the
existence of data describing the event. As the investigative work proceeds, more data is
collected about the problem, including the information that is required to satisfy the issues
raised by the problem. It is the existence of this data that is used as a set of criteria to satisfy
moving from status = Open to status = Closed.

We decompose the analysis and corrective action process into subset states to give a more
detailed understcinding of the problem solving process. Measurements of the numbers of
problem reports in the various problem states, shown with respect to time, will inform the
manager of the rate the project is progressing towards a goal. The rate of problem arrival
and the time it takes to process a problem report through closure addresses the efficacy of
the problem management process.

In practice, many projects may want to greatly expand the number of subset states in both
the Open and Closed status. The specifics of the problem management process will
determine the extent of the subset states. The number of distinct activities, reviews, and
organizations are a key factor in determining the number of subset states. Since this varies
greatly from project to project and organization to organization, we have included three
generic subset states for illustrative purposes.

Below are the attribute values for Problem Status:

Open: This term means that the problem is recognized and some level of
investigation and action will be undertaken to resolve it. The Open value is often
decomposed into substates to obtain a detailed understanding of the work
remaining in the analysis and correction process to close the problem. The status
categories used in this document were selected based on a generic description of
the problem management tasks (Figure 3-1). The status categories are
Recognized, Evaluated, and Resolved and are described as follows:

Recognized: Sufficient data has been collected to permit an evaluation of the
problem to be made. This implies that the data has been verified as correct as well.
This generally means the set of data that one can reasonably expect the problem
originator to provide. Note that in the general case, the problem originator can vary
from a skilled software engineer to an end-user who is unfamiliar with the software
except, for example, as a data entry screen. These two extremes point out the need
to be able to define the status criteria for Recognized (and hence Open) in terms of
the problem data. The minimum criteria might be the Originator ID and the Product
Name. This would give an analyst enough information to request additional data if it
was not included in the initial problem report.

Evaluated: Sufficient data has been collected by investigation of the reported
problem and the various software artifacts to at least determine the problem type.
Again, depending on the software organization, the amount of data required to
satisfy the criteria for this state may vary significantly.

CMUISEI-92-TR-22 23

Resolved: The problem has been reported and evaluated, and sufficient information
is available to satisfy the rules for resolution. Each organization will have its own
prescribed set of processes or activities relative to resolution. This may include the
proposed change, a designed and tested change, change verification with the
originator, change control approval, or a causal analysis of the problem. This
process and the resultant data are a function of the organization's software
management process.

Closed: This term means the investigation is complete and the action required to
resolve the problem has been proposed, accepted, and completed to the
satisfaction of all concerned. In some cases, a problem report will be recognized as
invalid as part of the recognition process and be closed immediately.

The software manager may also be interested in the number of problems that have been
recognized but have not yet been evaluated. These problems are somewhere in transition
between the Recognized state and the Evaluated state. We can refer to them as
unevaluated. Since the problems change from the Recognized to the Evaluated state once
evaluated, problems in the Recognized state are equivalent to being unevaluated.

A problem cannot be in more than one state at any point in time. However, since the
problem state will change over time, one must always specify a time when measuring the
problem status.

Problem Status Include Exclude Value Count Array Count
Open Recognized MI

Evaluated

ClsdResolved P 1

Figure 3-2 Problem Status Attribute

3.3. Problem Type

The Problem Type attribute is used to assign a value to the problem that will facilitate the
evaluation and resolution of the problems reported. The problems may be encountered
over a relatively long period of time. Problems are unsatisfactory encounters with the
software; consequently, some of the problems reported are not software failures or software
defects, and may not even be software product problems. The Problem Type attribute
values are used to classify the problems into one of several categories to facilitate the
problem resolution.

There are many ways to structure problem types. In this report, we use a structure that is
oriented toward a software development and software service organization. The problem
type structure does not address hardware problem types, networking error types, human
factor interface types, or any other problem types from other disciplines. We have arbitrarily

24 CMU/SEI-92-TR-22

Undetermined. This is only for the sake of convenience. The values used with the Problem
Type attribute exist with or without this division. In practice, each problem data record will
contain one, and only one, of the problem type values.

Software defect: This subtype includes all software defects that have been encountered
or discovered by examination or operation of the software product. Possible values in this
subtype are these:

"• Requirements defect: A mistake made in the definition or specification of the
customer needs for a software product. This includes defects found in functional
specifications; interface, design, and test requirements; and specified standards.

"* Design defect: A mistake made in the design of a software product. This includes
defects found in functional descriptions, interfaces, control logic, data structures,
error checking, and standards.

"* Code defect: A mistake made in the implementation or coding of a program. This
includes defects found in program logic, interface handling, data definitions,
computation, and standards.

"• Document defect: A mistake made in a software product publication. This does
not include mistakes made to requirements, design, or coding documents.

"• Test case defect: A mistake in the test case causes the software product to give
an unexpected result.

"• Other work product defect: Defects found in software artifacts that are used to
support the development or maintenance of a software product. This includes test
tools, compilers, configuration libraries, and other computer-aided software
engineering tools.

Other problems: This subtype includes those problems that contain either no evidence
that a software defect exists or contain evidence that some other factor or reason is
responsible for the problem. It would not be atypical for many software organizations to
consider problems that fall into this category as Closed almost immediately as evaluated
with an "out of scope," or similar closing code. Possible values in this subtype are:

Hardware problem: A problem due to a hardware malfunction that the software
does not, or cannot, provide fault tolerant support.

Operating system problem: A problem that the operating system in use has
responsibility for creating or managing. (If the software product is an operating
system, this value should move to the Software defect category.)

User error: A problem due to a user misunderstanding or incorrect use of the
software.

Operations error: A problem caused by an error made by the computer system
operational staff.

New requirement/enhancement: A problem that describes a new requirement or
functional enhancement that is outside the scope of the software product baseline
requirements.

CMUISEJ0-2-TIR-22 25

Undetermined problem: The status of the problem has not been determined. Values for
this subtype are:

Not repeatable/Cause unknown: The information provided with the problem
description or available to the evaluator is not sufficient to assign a problem type to
the problem.

Value not identified: The problem has not been evaluated.

Problem Type Include Exclude Value Count C
Software defect

Requirements defect
Design defect
Code defect
Operational document defect
Test case defect
Other work product defect

Other problems
Hardware problem
Operating system problem
User mistake
Operations mistake
New requirement/enhancement _

Undetermined
Not repeatable/cause unknown
Value not identified

Figure 3-3 Problem Type Attribute and Values

3.4. Uniqueness

This attribute differentiates between a unique problem or defect and a duplicate. The
possible values are:

Duplicate: The problem or defect has been previously discovered.

Original: The problem or defect has not been previously reported or discovered.

Value not identified: An evaluation has not been made.

We must take care to relate the uniqueness of a problem or defect to a particular
configuration level or product release level. This attribute is critical for measuring reliability
growth, or for verifying that a previously corrected defect was completely corrected or only
partially corrected. (See the Defects Found In attribute)

26 CMU/SEI-92-TR-22

Uniqueness Include Exclude Value Count lArray Count
Original
Duplicate
Value not identifed

Figure 3-4 Uniqueness Attribute and Values

3.5. Criticality

Criticality is a measure of the disruption a problem gives users when they encounter it. The
value given to criticality is normally provided by the problem originator or originating
organization. Criticality is customarily measured with several levels, the most critical being
a catastrophic disruption, and the least critical being at the annoyance level.

Criticality Include Exclude Value Count Array Count
1st level (most critical)
2nd level
3rd level ___

4th level
5th level

Value not identified

Figure 3-5 Criticality Attribute

3.6. Urgency

Urgency is the degree of importance that the evaluation, resolution, and closure of a
problem is given by the organization charged with executing the problem management
process. The value is assigned by the supplier or developer, who should or must consider
the criticality of the problem as expressed by the problem originator. Urgency determines
the order in which problems are evaluated, resolved, and closed.

Urgency Include Exclude Value Count Array Count
1st (most urgent)
2nd
3rd
4th

Value not identified

Figure 3-6 Urgency Attribute

CMUISEI-92-TR-22 27

3.7. Finding Activity

This attribute refers to the activity, process, or operation taking place when the problem was
encountered. Rather than use the program development phases or stages to describe the
activity, we have chosen to use the activities implicit in software development regardless of
the development process model in use. We have identified five categories of activities,
each unique in terms of the process used to detect problems, or defects. This attribute is
used to distinguish between defects detected by the various activities. Several of the
software reliability measures require such distinction. The efficiency of defect detection in
each activity may be measured and used to focus on areas that appear to require process
management attention.

28 CMU/SEI-92-TR-22

Findig ActvityInclude Exclude Value Count Arry CountFinding Activity

Synthesis of
Design
Code
Test procedure
User publications

Inspections of
Requirements
Preliminary design
Detailed design
Operational documentation
Software module (CSU)
Test procedures

Formal reviews of
Plans
Requirements
Preliminary design
Critical design
Test readiness
Formal qualification

Testing
Planning
Module (CSU)
Component (CSC)
Configuration item (CSCI)
Integrate and test
Independent verif. and valid.
System
Test and evaluate
Acceptance

Customer Support
Production/Deployment
Installation
Operation

Value not identified

Figure 3-7 Finding Activity Attribute and Values

CMUlSEI-92-TR-22 29

3.8. Finding Mode

This attribute is used to identify whether the problem or defect was discovered in an
operational environment or in a non-operational environment. The values for this attribute
are the following:

Dynamic: This value identifies a problem or defect that is found during operation or
execution of the computer program. If the problem type is a software defect, it is a
fault by definition and the problem is due to a software failure.

Static: This value identifies a problem or defect that is found in a non-operational
environment. Problems or defects found in this environment cannot be due to a
failure or fault. Problems or defects found in this mode would typically be found by
formal reviews, software inspections, or other activities that do not involve executing
the software.

Value not Identified: An evaluation has not been made.

This attribute is essential to defining problem counts that are due to software failures.

Finding Mode
Static (non-operational)
Dynamic (operational)Value not Identified

Figure 3-8 Finding Mode Attribute and Values

3.9. Date/Time of Occurrence

The Problem Count Request Form is used to identify the range and environment constraints
desired for the measurements. The Date/Time of Occurrence attribute first appears on this
form and describes the date and time of day or relative time at which a failure occurred.
This data is of primary importance in establishing and predicting software reliability, failure
rates, and numerous other time-related or dynamic measurements. We also need this data
to reproduce or analyze problems that are keyed to the time of day (for example, power
failures and workloads).

3.10. Problem Status Dates

These attributes refer to the date on which the problem report was received or logged in the
problem database or when the problem changed status. These attributes are used to
determine status, problem age, and problem arrival rate. This information is also of primary
importance in product readiness models to determine when the product is ready for
acceptance testing or delivery.

30 CMU/SEI-92-TR-22

Date Opened: Date the problem was reported and recognized.

Date Closed: Date the problem met the criteria established for closing the problem.

Date Assigned for Evaluation

Date Assigned for Resolution

The Problem Count Request Form should be used to define how the selected values
should be treated.

3.11. Originator

This attribute provides the information needed by the problem analyst to determine the
originating person, organization, or site. This is useful in determining if a type of problem is
unique to a particular source or in eliminating a problem type based on the source
environment. Occasionally, sites will use software in a manner not envisioned by the
original developers. This attribute allows analysts to identify such sites and further
investigate how the software is being used. This is a prerequisite if the analyst is required
to respond to the originator regarding the problem status, or if the analyst finds it necessary
to obtain more information about the problem from the originator. This attribute has the
values listed in Figure 3.9.

The Problem Count Request Form should be used to define how the selected values
should be treated.

Report Count By: Attribute Select
Sort Order Value,

Originator Sort OrderSite ID

Customer ID
user K)
Contractor ID

t ~Specifi ID(s) ls

Figure 3-9 Originator Attribute and Values

The attribute is generally used by identifying a range or limit that is meaningful in terms of
the count. For example, If we wished to count the number of failures encountered at each
site, we would count the failures for each Site ID. This would be expressed in the Problem
Count Definition Checklist by Including a defect value under the Problem Type, the
dynamic value under Finding Mode, and the customer operation value under the
Finding Activity. In this case, the range or limit of the count is the Site ID, all of them. If
the count pertained to a single site, the range would be the specific Site ID. The Problem
Count Request Form may be used to specify the way in which the counts are aggregated or
used to qualify the count.

CMUISEI-92-TR-22 31

3.12. Environment

This attribute provides information needed by the problem analyst to determine if a problem
is uniquely related to the computer system, operating system, or operational environment,
or if a particular environment tends to generate an abnormally large number of problems
compared to other environments. This information is essential if the problem must be
reproduced by the evaluator to determine failure or fault information. The environment
attribute also can be used to identify the test case or test evaluation procedure in use when
the problem occurred. The attribute has the values shown in Figure 3-10.

The Problem Count Request Form should be used to define how the selected values
should be treated.

Report Count By: Attribute Select
Sort Order Value,

Environment Sort Order
Hard.cre config. ID
Software config. ID
System config. ID
Test proc. ID
Specifi ID(s) list

Figure 3-10 The Environment Attribute and Values

3.13. Defects Found In

This attribute enables us to identify the software unit(s) containing defects causing a
problem. This information is particularly useful to identity software units prone to defects, or
to demonstrate reliability growth from one configuration level or release to another. In
addition, the attribute helps quantify the tightness or looseness of logical binding among
various software units at the same configuration level. The Problem Count Request Form is
used to identify the type of software unit and the configuration level to be counted.

Defects Found In:
Select a configuration Type of Artifact
component level: Requirement Deig Cod User Document

Product (CSCI)
Component (CSC)
Module (CSU) _ __
Specifc 6)_ _ _ _ _ _ _

Figure 3-11 Defects Found In Attribute

32 CMUISEI-92-TR-22

3.14. Changes Made To

We use this attribute to identify the software unit(s) changed to resolve the discovered
problem or defect. This information is particularly useful to identify software units prone to
changes due to defects. The Problem Count Request Form is used to identify the type of
software unit and the configuration level to be counted.

Changes Made To:

Select a configuration Type of Artifact
component level: Requirement Design Code User Document

Product (CSCI)
Component (CSC)
Module (CSU)
Specific (list)

Figure 3-12 Changes Made To Attribute

3.15. Related Changes

This attribute and those found in Sections 3.16-3.20 appear in the Problem Status
Definition form. Related changes is a list of changed software artifacts required to be
applied to the product before or at the same time as changes resolving the problem in
question.

3.16. Projected Availability

Date Available: The date the product fix is committed to be made available.

Release/Build #: The Release or Build ID of the product fix is committed to be
available.

3.17. Released/Shipped

Date Released/Shipped: The date the product fix is released or shipped.

Release/Build #: The Release or Build ID in which the product fix is included.

CMU/SEI-92-TR-22 33

3.18. Applied

Date Applied: The date the product fix was applied to the problem-originating site
or installation.

Release/Build #: The Release or Build ID in which the product fix was applied.

3.19. Approved By

Software Project Management: Indication that the product fix has been
approved by appropriate project management.

Other: We have allowed space for you to add other required approvals.

3.20. Accepted By

Software Project Management: Indication that the product fix has been accepted
by appropriate project management.

Problem Originator: Indication that the product fix has been accepted by the
originating site or installation.

34 CMUISEI-92-TR-22

4. Using the Problem Count Definition Checklist

The Problem Count Definition Checklist is used to define and select the attributes and
attribute values that must be counted to implement the problem and defect measurements
selected by the software organization. Figure 4-1 is an example of how a completed
Problem Count Definition Checklist might look for one particular definition of problem
measurement.

We enter the software Product ID and Problem Definition ID in the spaces provided in the
checklist header, along with the date the definition was constructed.

The far left column, titled Attribute/Values, lists seven attributes (on two pages) and the
attribute values (defined and explained in Chapter 3). You may use the Definition box or
the Specification box to indicate whether the purpose is to describe an existing
measurement or specify a required measurement.

We use the column entitled Include, immediately adjacent to the Attribute/Value column, to
indicate that only the problems having the attribute values checked were counted or are to
be counted. The column titled Exclude is used to indicate that problems having the attribute
values checked were not or are not to be counted. A problem or defect count is completely
defined (within the range of the attributes) by entering a check mark in either the Include or
Exclude column for each attribute value. The definition of the count is defined by the union
of the checked Include attribute values for a given attribute and their intersection with the
remaining checked attributes.

The checks in the Exclude column serve to indicate that if a value is not included, it must be
excluded, leaving no ambiguity about the definition of the count. (Note that the Problem
Status value Open has three substates listed. These substates cannot be selected in the
Include or Exclude columns. They may be selected in the Value Count and Array Count
columns described below.)

We use the Value Count and the Array Count columns to identify or specify counts of a
specific attribute value, or a multidimensional array of attribute value counts. For example,
a check in the Value Count column for the Requirement defect value means that a count is
defined or required for the number of occurrences of that value. The value count is further
defined by the existence of a check in either the Include or Exclude column of the same
row. If the check is in either the Include column or the Exclude column, the value count will
be the number of problems that have the attribute value within the intersection constraints
defined by the Include checks for all the attributes. Since each attribute value must have a
check in either the Include or Exclude column but not both, there is ro ambiguity of the
meaning of the Value Count if selected.

The Array Count column allows the definition or specification of multidimensional arrays of
attribute value counts. A check mark in the Array Count column defines or specifies a count
of the number of problems having that attribute value and any other attribute values with the
Array Count checked as long as all the checked values are in the Include column or in the

CMU/SEI-92-TR-22 35

Exclude column (one or the other). As with the Value Count column, the nature of the array
counts is determined by the selection of either the Include or Exclude column for each
value.

4.1. Example Problem Count Definition Checklist

To illustrate the use of the checklist as described above, we will invent a requirement for a
problem count using the Problem Count Definition Checklist in Figure 4-1. Let us suppose
we wish to count all the problems found over the course of the development cycle to date
that are unique software product defects, i.e., not duplicates. We would like to know the
number of such defects that are duplicate, how many of these problems are open and how
many are closed; and finally, we wish to know the number of the unique problems that are
open-evaluated and open-resolved by criticality level.

Our first task is to select all the values in the Include column that we wish to use as criteria
for counting. Since we want to consider all problems, we will check both values, Open and
Closed, for the Problem Status attribute. We want only software product defect problems,
so we will check the first four values under Problem Type and exclude all others. Under
Uniqueness we will include the Original value and exclude the Duplicate value. We want
to include all those problems whose criticality has been established (evaluated) and
exclude the rest, therefore we include the defined levels of criticality and exclude those
problems which do not have a Criticality attribute. The Urgency values are selected
similarly. Our interest is limited to problems found during development, so we include all
Finding Activities except those in the Customer support category, which are excluded.
Again we want only those problems that have been validated (evaluated) with a finding
activity, so we exclude all those with no valid value. Lastly, we include all problems
Ideintified as being found either statically or dynamically and exclude those that have no
value for the Finding Mode attribute.

Checking the Include and Exclude columns as we have done above defines a set of
counting rules and will result In one number representing the combination of all the values
selected above. We also need to specify additional counts. We will obtain a count of the
Open and Closed problems by checking the Value Count column for each of these attribute
values. We will obtain a count of each type of defect by placing a check in the Value Count
column for each of the defects we included. We obtain the number of duplicate problems
meeting all the other criteria by checking Value Count on the Duplicate value row. We
obtain a two-dimensional array (two values by five values) by checking the Array Count
columns for the Evaluated and Resolved values in Problem Status and the five
Criticality levels.

A problem count report following the above specification might appear as shown below:

Problem Count Report for Product ID = [Example Ver 1 Rel 11]

Problem Count Definition Name [Problem Count A]

36 CMU/SEI-92-TR-22

Date of report [/ /] Date of Measurement[/ /]

Total Number of Problems = 200

Open = 100

Closed = 200

Duplicate problems (with same criteria) = 300

Requirement defects = 35

Design defects = 50

Coding defects = 95

User document defects =20

Array Counts:

Number of open-evaluated and open-resolved problems by critical value -

Criticality Evaluated Resolved

I st level 5 5

2nd level 8 12

3rd level 15 15

4th level 8 12

5th level 12 8

There are several additional factors that need specification or definition such as date of
measurement and time interval of measurement. We address these and other factors with
the Problem Count Request Form discussed in Chapter 5.

CMUISEI-92-TR-22 37

Problem Count Definition Checklist-1
Software Product ID [Example V1 R1]
Definition Identifier: [Problem Count Al Definition Date [01/02 /92]
Attributes/ValuesI Definition r I Specification r X I
Problem Status Include I Exclude Value Count Array Count

Open
Recognized
Evaluated v
Resolved

Closed FW
Problem Type Include Exclude Value Count Array Count

Software defect
Requirements defect _,,

Design defect __

Code defect
Operational document defect _ _ _

Test case defect /
Other work product defect

Other problems
Hardware problem
Operating system problem
User mistake
Operations mistake VEx__ud
New requirement/enhancement V

Undetermined
Not repeatable/Cause unknown V_
Value not identified

Uniqueness Include Exclude Value Count Array Count
Original V, I _ _ __ _ _ _ _ _

Duplicate s
Value not identifed___________

Criticality Include Exclude Value Count Array Count
1st level (most critical)V v
2nd level __

3rd level __

4th level V V
5th levelV WV

Value not identified V_
Urgency Include Exclude Value Count Array Count

1st (most urgent)

2nd
3rd
4th

Value not identified V6 I

Figure 4-1 Example Problem Count Definition Checklist

38 CMU/SEI-92-TR-22

Problem Count Definition Checklist-2
Software Product ID [Example V1 R1]
Definition Identifier: [Problem Count A] Definition Date [01/02/91
AttributesNalues _______o rISecifiatio

Finding Activity Include IExclude --V-al-ue Co-unt Array Count
Synthesis of

Design ___________

Code ____ _____ _____

Test procedure
User publications

Inspections of
Requirements
Preliminary design
Detailed design
Code
Operational documentation V ____ __________

Test procedures -

Formal reviews of
Plans
Requirements V
Preliminary design______ _____

Critical design
Test readiness I_______________

Formal qualification

Testing
Planning ____

Module (CSU:)_____
Component (CSC)____ ___ _______

Configuration item (CSCI)__________
Integrate and test__________
Independent verif. and valid. V____ __________

System
Test and evaluate ____ __________

Acceptance ____ __________

Customer support
Production/deployment 6e ___ ____

Installation I____ ______I

Ope ration s
Undetermined

Value not identified V _____ ____

Finding Mode9 Include Exclude Value Count Array Count
Static (non-operational)V______ _____

Dynamic (operational)V __ __ ________

Value not identif iedV___________

Figure 4-1 Example Problem Count Definition Checklist

CMU/SEI-92-TR-22 39

40 CMU/SEI-92-TR-22

5. Using the Problem Count Request Form

The Problem Count Request Form complements the Problems Count Definition Form by
providing a supporting form that allows the user to use literal attribute values to qualify or
specify conditions of a definition or specification.

Attributes such as dates, Originator, Environment, and Changes Made To have
values not amenable to checklist use unless there is a convenient method for specifying
exactly what values should be used to qualify or set conditions on a count. For example, if
you wished to count the number of problems opened by date for a three-month period, you
should be able to specify the range of time that is of interest and how the count ought to be
aggregated (daily, weekly, or monthly). In other cases, you may define a problem count
and wish to have the data separated by environment or originator. The Problem Count
Request Form (shown in Figure 5-2) provides the capability to specify these needs for
attributes with literal values.

The header data includes the Product ID, the Problem Count Definition ID, and the
Requester Name ID. The form header is used to relate the Problem Count Request Form to
a specific Problem Count Definition Form by using the same Product ID and Problem Count
Definition ID.

By using the Date of Request field, you may use the Problem Count Definition Form
repetitively with a new Problem Count Request Form when dealing with a count to be made
periodically or with variations in the way the count data is reported.

The remainder of the form is used to select attribute values that will sort or aggregate the
count defined in the Problem Count Definition Checklist. The Time Interval for Count field is
used to delineate the time period for which the count is intended to cover. This is tied to the
Problem Status values selected on the Problem Count Definition checklist, e.g., all the
problems opened over a specific three-month period. The form allows us to identify the
time unit to be used to sort or separate the count using the Aggregate Time By fields.

We use the Originator and Environment attributes to sort or organize the count defined
in the Problem Count Definition Checklist. When we select an attribute and value, we are
specifying or describing a list of all the literal values for that selection with a corresponding
problem or defect count defined by the Problem Count Definition Checklist. If we select
both attributes, we must indicate the sort order or sequence in the Attribute Sort Order box.
If we select more than one value for any single attribute, we must also provide a sort order
or sequence in the Select Value box. If we wish to restrict the count to a limited number of
originators or environments, then the Specific ID value is checked along with a list of
appropriate IDs attached to the form.

We use the Defects Found In and Changes Made To attributes to limit or organize the
count when the Problem Count Definition Checklist defines or specifies a defect count. The
requester may chose among four types of software artifacts-requirements, design, code, or
user document, and the configuration level of the artifact-product, component, or module.

CMU/SEI-92-TR-22 41

Assuming the Problem Count Definition Checklist specified a count for design defects,
selection of the design artifact and the component configuration level would result in a
listing of all the design artifacts at the component level and the number of defects found in
each artifact. The Specific ID value in each attribute may be used to identify configuration
level artifacts by name for which a count is desired.

Note: It is possible that a defect may encompass or span more that one software artifact.
This is particularly true if the software design is poorly partitioned. Defects can and do span
more that one type of artifact as well. Consequently, it is difficult to assign a defect to one
and only one artifact in many cases. We must realize that we are counting the number of
artifacts affected by each defect, then indexing the list by the configuration level to obtain a
defect count by artifact. This is not entirely accurate defect count; however, if the artifact's
configuration level is large enough (e.g., a product), the defect count will be a good
approximation of a number that is very difficult to obtain absolutely.

5.1. Example Problem Count Request Form

To illustrate the use of the Problem Count Request Form, we will build on the example set
up in Section 4.1 and use the Problem Count Definition Checklist in Figure 4-1, which is
identified in its header as the definition of Problem Count A.

We will use the Problem Count Request Form to specify that we want to sort the defect
count by product component (as specified in the Problem Count Checklist).

The date requested is June 15, 1992, and the count is to include the time interval January
1, 1992, to June 30, 1992. We have no need to request a sort by time or by originator or
environment. There are six product components, each with its own specification, design,
code, and user document configuration baseline.

The Problem Count Request Form in Figure 5-2 reflects this specification; the resulting
measurement would include the information shown in Section 4.1 plus a listing of all the
component-level artifacts and the number of defects found in each. Figure 5-1 presents the
data in a 4 x 6 dimensional matrix.

42 CMU/SEI-92-TR-22

Component Requirement Design Code User

ID Specification Specification Document

Comp A 5 3 8 4

Comp B 5 4 9 2

Comp C 4 5 10 2

Comp D 7 8 12 8

Comp E 4 10 26 3

Comp F 10 20 30 1

Figure 5-1 Example Result of Problem Count Request Form Specification

CMUISEI-92-TR-22 43

Problem Count Request Form
Product ID, Ver/Rel: [Example ViRi] Problem Count Def ID: [Problem Count A]
Date of Request: [6-15-92] Requester's Name or ID: [I. M. Able]
Date Count to be made: [7-1-92]
Time Interval for Count: From [1-1-92] To [6-30-92]

Aggregate Time By: DyWeek Month Year
Date opened______ _ _ _ _ _ ____ _____ _____

Date closed______ _ _ _ _ _ ____ _____ _____

Date evaluated______ _____ ____ ____ ______

Date resolved______ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

Date/time of occurence______ _____ ____ _________

Report Count By: Attribute Select Special Instructions
___________________ Sort Order Value, or Comments

Modue (CUID___ ____ _ _

Specifi I(s)list)

CHangeswMae To:di ID-

Select a configuration Tyeof Artifact _ _ _ _ _ _ _ _ _ _

component level: RuIrement Desion Code User Docum~ent
Product (CSCI)_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Component (CSC) _____ ____ _ _ _

Module (CSU)__ _ _ _ _ _ _ _ _ _ _

Specific (list) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figuret 5- rolm ontRqusFr

44 CMU/SEI-92-TR-22

Summary of Instructions for Using Problem Count Request

Form

Product Name: Provide the name or ID of the product.

Problem Count Definition ID: Provide the name of the Problem Count Definition
that is to be used as specification for the problem count.

Date of Request: Enter the date the request was submitted.

Date Count is to be Made: Provide the date that. the count is to be taken.

Requester's Name: Provide the name of requester.

Time Interval for Count: Enter the from and to dates (m/d/y) to which the count is
limited.

The following section may be used to organize (sort) or constrain the problem count as
defined in the Problem Count Definition ID.

Date Opened, Date Closed, Date Evaluated, Date Resolved (same rules
apply for all):

Selection of these attributes will constrain and aggregate the count according to the
value selected. Selection of one of the time units will result in the counts being
aggregated within each of the time units according to the Problem Count Definition
Checklist.

Originator and Environment (same rules apply for both):

Selection of either of these attributes will constrain and/or sort the count according to
the attribute value selected. Selection of an identified attribute value will result in
sorting the count by the value selected for all values found in the problem data. If more
than more value is selected, indicate the sort order (1, 2, 3, etc.). If the count is to be
limited to a specific originator or environment ID, select the specific list value and
provide a list of the IDs of interest. The count will be limited to the specific IDs listed.

If more than one of the above four attributes are selected, then each must be assigned

an attribute sort order in the column provided.

Defects Found In and Changes Made To

A list of software artifacts with attributed defects, or with the number of changes due to
defects, may be obtained by selecting one of the configuration levels in either or both of
these attributes and identifying which artifacts should be listed.

Figure 5-3 Instructions for Problem Count Request Form

CMUISEI-92-TR-22 46

46 CMUISEI-92-TR-22

6. Using the Problem Status Definition Form

Since a number of the problem measurements are keyed on problem status (e.g., open or
closed), it is necessary to define the criteria for any given problem status. The Problem
Status Definition Form is used for defining problem status based on the existence of certain
project-selected data entities that signify completion of one of the problem analysis or
corrective action tasks. (See Section 3.2 for a full discussion of problem status).

An example of the Problem Status Definition Form is given in Figures 6-1 and 6-2. At the
top of the checklist we have made provision to identify the completed checklist with the
name of the product or project, the finding activity which is reporting the problems, and the
date the checklist was defined. The activity block allows each problem finding activity to
define problem status in accordance with the respective activity problem management
process.

Following the header, there are four sections which we use to identify the status criteria.
We use Section I to identify the attributes that must have valid values for a problem to be in
the Open or in the Closed state. By checking the appropriate boxes, we establish the
criteria required for Open and Closed status.

The remaining sections are relevant only if the Open status is decomposed into substates.
We decompose the analysis and corrective action process into subset states to give a more
detailed understanding of the problem solving process.

We use Section II to list the substates and identify each substate with the preprinted
reference or line number at the left of the section. Each substate should be listed in time or
process sequence order insofar as possible.

Section III asks us to identify the attributes that are required to have values as criteria for
each substate. We indicate the attribute required by checking the appropriate square under
the applicable substate number.

In certain situations, the attribute values will determine what attributes are necessary to
move to the next state. For example, if a problem's Uniqueness value is Duplicate, the
problem may need only to have valid values for the ID of Original Problem attribute. On
the other hand, if the Uniqueness value is Original, there may well be a number of
additional attributes requiring valid values before the problem can be closed. In this
situation, we use Section IV to identify the substate number and the conditional attribute
value (in the left-hand columns). The affected substates and the required attributes are
listed by reference number in the right-hand columns.

CMUISEI-92-TR-22 47

6.1. Example Problem Status Definition Form

We will use Figures 6-1 and 6-2 to illustrate the use of the Problem Status Definition Form.
We enter the header data as shown. We must pay particular attention to the process being
used by the problem finding activity, since the process will greatly influence the selection of
criteria for each status or substatus. In the example, we have selected the Customer
Support activity.

We check three attributes as criteria for Open status and four attributes as criteria for Closed
status, as shown. The criteria may be more, or less, stringent, depending on the finding
activity and the problem management process. In the example, we have three substates
that are identified in Section II (these are the same substates defined in Section 3.2).

We use the next page of the form (Figure 6-2) to identify the attributes required to have valid
values for each substate. For Substate 1 (Recognized), the first three attributes and the fifth
attribute must have valid values for a problem to be in the Recognized state. There are two
attributes that have values that determine the required values for the next state. In our
example, we note that both Uniqueness and Problem Type are required attributes for
the Evaluated state. However, if the evaluation of Uniqueness is Duplicate, the required
attributes for the Resolved state are quite different than if the value of Uniqueness were
Original. These conditional attribute values are identified in Section IV.

We list Substate 2 as having conditional attribute values; and in the adjacent column, we
list the attribute and the attribute value providing the condition (Uniqueness = Duplicate).
The third column identifies the substate affected (Substate 3 or Resolved in this case) and
the fourth column lists the required attributes as shown (attribute 18 or ID of Original
Problem)

Note that attribute 11 (Problem Type) has been selected as an Evaluation criteria. This
implies that the problem management process includes initial screening and evaluation of
the reported problems. If, for example, the screening and initial evaluation were conducted
by one organization and the resolution was executed by a second, the second organization
might have checked off attribute 11 as a criterion for problems being Recognized. This
case might apply in the situation where the two organizations are subcontractors to a prime
contractor. It would be particularly important for the prime contractor, as well as the two
subcontractors, to clearly understand this difference.

The role of the Problem Status Definition Form is to communicate, either in a descriptive or
prescriptive sense, the meaning of the Problem Status attribute discussed in Chapter 3.
The need for status information, i.e., the count of problems in each of the problem analysis
and correction process states, has been briefly discussed above. The problem status
definition also plays an important role in the definition of problem counts as we illustrate in
Chapter 4, which discusses the use of the Problem Count Definition Checklist.

48 CMUISEI-92-TR-22

Problem Status Definition Rules
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92

Section I
When is a problem considered to be Open?
A problem is considered to be Open when A problem is considered to be Closed when
all the attributes checked below have a all the attributes checked below have a
valid value: valid value:

V Software Product Name or ID V Date Evaluation Completed
V Date/Time of Receipt Evaluation Completed By

Date/Time of Problem Occurence V Date Resolution Completed
V Originator ID Resolution Completed By

Environment ID V Projected Availability
Problem Description (text) Released/Shipped
Finding Activity Applied
Finding Mode V Approved By
Criticality Accepted By

Section 11
What Substates are used for Open?
Name # Name

1 Recognized 6
2 Evaluated 7
3 Resolved 8_
4 91
5 101

Figure 6-1 Example Problem Status Definition Form-1

CMU/SEI-92-TR-22 49

Problem Status Definition Form-2
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92
Section III
What attributes are unconditionally required to have values as criteria for each substate?
Attribute Substate Number
Name 1 2 3 4 5 6 7 8 9 10

1 Problem ID V V'- --

2 Software Product Name or ID V, Ve V -

3 Date/Time of Receipt V 6v V-
4 Date/Time of Problem Occurence
5 Originator ID V V V-
6 Environment ID 6/ V-
7 Problem Description (text) V iV-
8 Finding Activity V V_
9 Finding Mode be V-

1 Criticality V V --

11 Problem Type - V V
12 Uniqueness V V,
13 Urgency
14 Date Evaluation Completed - V /
15 Evaluation Completed By
16 Date Resolution Completed V-
17 Resolution Completed By
18 ID of Original Problem
19 Changes Made To
20 Related Changes
21 Defect Found In
22 Defects Caused By
23 Projected Availability V
24 Released/Shipped
25 Applied
26 Approved By:
27 Accepted By:

Section IV
List the substates with conditional attribute values Substates affected
Substate # Conditional AttributeNalue Substate # Attribute Numbers

2 Uniqueness = Duplicate 3 18
2 Problem Type - Software defect 3 19,20.21,22

and Uniqueness = Original

Figure 6-2 Problem Status Definition Form-2

50 CMU/SEI-92-TR-22

7. Summary

The framework discussed in this report provides a structure that is the basis for deriving and
describing measurable attributes for software problems and defects. A Problem Count
Definition Checklist and supporting forms have been used to organize the attributes to
allow a methodical and straightforward description and specification of software problem
and defect measurements. The checklist and supporting forms may be used for defining
and specifying a wide variety of software problem and defect counts, including those found
by static or non-operational processes (e.g., design reviews or code inspections) and by
dynamic or operational processes (e.g., testing or customer operation). Use of these
checklists has the potential of reducing ambiguities and misunderstandings in these
measures by giving organizations a basis for specifying and communicating clear
definitions of problem and defect measurements. While it is not the intention of this report to
comprehensively enlighten the reader about all the ways in which measurement of software
problems and defects may be used, we hope to have encouraged interest in pursuing
problem and defect measurement among the software project mangers, software
engineers, planners, analysts, and researchers for which this report is intended.

Steps for Using Checklists to Define

Problem and Defect Measurements
1. List the reasons why your organization wants measurements of problems and

defects. Who will use your measurement results? How? What decisions will be
based on these reports?

2. Use the Problem Status Checklist to describe the problem states used to measure
progress of analysis and corrective action for each of the finding activities.

3. Organize the measurement needs according to product, purpose, software process,
and time domains.

4. Use the Problem Count Definition Checklist to create descriptions or specifications of
measurements that are made periodically or indicate degree of goal attainment at a
point in time. Typically there will be a need for several Count Definition Checklists to
accomplish this.

5. Use the Problem Count Request Form for each Problem Count Checklist to define the
time the counts are to be made (or were made) and to identify any special
organization or view of the measurements.

6. Then use checklists to specify to the database administrator(s) the measurement
needs or to describe (verify) the results of measurements.

CMUISEI-92-TR-22 51

52 CMUISEI-92-TR-22

8. Recommendations

Since the framework, attributes, and checklists discussed in this report are focused on the
objective of clear and precise communication of problem and defect measurements, it
follows that our primary recommendation is to use attributes and the checklist and
supporting forms to communicate-that is, describe or specify-the meaning of the
measurements. Numerous opportunities arise for using the attributes and checklists to
advantage, both in the establishment and use of these measurements. We outline several
below.

8.1. Ongoing Projects

For those projects that are currently in the midst of development and are measuring
problem and defects, we recommend using the Problem Count Definition Checklist and
supporting form., to verify that the data that they are collecting and using in their
measurements cci'.)rms to their requirements and needs. This may reveal two things
about the measurements: (1) the measurements being taken do not "measure up", that is,
the measurements are less than clear and precise in their meaning, and (2) the existing
measurements fall short of what is needed to control the development or maintenance
activity. If the measurements in use are verified by using the Problem Count Definition
checklist, we urge you to use the checklist to describe your measurements to those who
wish or need to understand.

The combination of a completed checklist and its supporting forms becomes a vehicle for
communicating the meaning of measurement results to others, both within and outside the
originating organization. They can be used for this purpose whether or not definitions have
been agreed to in advance. They can also be used at the start of a project to negotiate and
establish standards for collecting and reporting measures of software size. The benefits
become even greater when the standards that are established are applied uniformly across
multiple projects (and organizations).

8.2. New and Expanding Projects

For those projects that wish to establish or expand a measurement system, an initial task is
to define problem and defect measurements required to determine and assess project
progress, process stability, and attainment of product requirements or goals. We
recommend using the Problem Count Definition Checklist and supporting forms as the
primary mechanisms to specify the software problem and defect measurement part of the
system. The checklists can be of help in addressing many of the issues to be resolved in
developing or expanding a measurement system. Using the checklists for precise
definitions of the measurements helps to crystallize several significant questions-what data

CMUISEI-92-TR-22 53

is required, when is it required, who collects and how is it collected, where and how is it
kept, when it is reported, who has access, and how are the measurements to be used?

8.3. Serving the Needs of Many

Software problem and defect measurements have direct application to estimating,
planning, and tracking the various software development processes. Users within
organizations are likely to have different views and purposes for using and reporting this
data. The Problem Count Definition Checklist may be used to negotiate and resolve issues
that arise because of these differences, if only to serve as a vehicle to clearly express the
various needs of each of the users.

8.4. Repository Starting Point

Finally, the attributes and attribute values can serve as a starting point for developing a
repository of problem and defect data that can be used as a basis for comparing past
experience to new projects, showing the degree of improvement or deterioration,
rationalizing or justifying equipment investment, and tracking product reliability and
responsiveness to customers.

8.5. Conclusion

The power of clear definitions is not that they require action but that they set goals and
facilitate communication and consistent interpretation. With this report, we seek only to
bring clarity to definitions. Implementation and enforcement, on the other hand, are
different issues. These are action-oriented endeavors, best left to agreements and
practices to be worked out within individual organizations or between developers and their
customers. We hope that the materials in this report give you the foundation, framework,
and operational methods to make these endeavors possible.

54 CMU/SEI-92-TR-22

References

[Baumert 92] Baumert, John H. Software Measures and the Capability Maturity
Model (CMU/SEI-92-TR-25). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992.

[Boehm 73] Boehm, B. W., and others, 'Characteristics of Software Quality," TRW
Software Series, December 22, 1973.

[CMU/SEI] Paulk, Mark C.; Curtis, Bill; & Chrissis, Mary Beth; Capability Maturity
Model for Software (CMU/SEI-91 -TR-24, ADA 240603). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1991.

[Conte 86] Conte, S. D.; H. E. Dunsmore; & Shen, V. Y; Software Engineering
Metrics and Models. Menlo Park, Calif.: Benjamin/Cummings
Publishing Co., 1986.

[DOD-STD-2167A] Military Standard, Defense System Software Development (DOD-STD-
2167A). Washington, D.C.: United States Department of Defense,
February 1989.

[Fenton 91] Fenton, Norman E. Software Metrics: A Rigorous Approach. New York,
N.Y.: Van Nostrand Reinhold, 1991.

[Grady 87] Grady, Robert B.; & Caswell, Deborah L. Software Metrics: Establishing
a Company-Wide Program. Englewood Cliffs, N J.: Prentice-Hall, 1987.

[Grady 92] Grady, Robert B. Practical Software Metrics for Project Management
and Process Improvement. Englewood Cliffs, N.J.: Prentice-Hall, 1992.

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading, Mass.:
Addison-Wesley, 1989.

[IEEE 90a] IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990). New York, N.Y.: Institute of Electrical and Electronic
Engineers, Inc., 1990.

[IEEE 90b] IEEE Standard for a Software Quality Metrics Methodology (IEEE
Standard P-1061/D21). New York, N.Y.: Institute of Electrical and
Electronic Engineers, Inc., 1990.

[IEEE 88a] IEEE Standard Dictionary of Measures to Produce Reliable Software
(IEEE Std 982.1, 982.2-1988). New York, N.Y.: Institute of Electrical
and Electronic Engineers, Inc., 1989.

[IEEE 88b] IEEE Standard for Software Reviews and Audits (IEEE Std 1028-1988).
New York, N.Y.: Institute of Electrical and Electronic Engineers, Inc.,
1988.

CMUISEI-92-TR-22 55

[IEEE 86] IEEE Standard for Software Verification and Validation Plans (IEEE Std
1012-1986). New York, N.Y.: Institute of Electrical and Electronic
Engineers, Inc., 1986.

[Murine 83] Murine, G. E., "Improving Management Visibility Through the Use of
Software Quality Metrics," Proceedings from IEEE Computer Society's
Seventh International Computer Software & Application Conference.
New York, N.Y.: Institute of Electrical and Electronic Engineers, Inc.,
1983.

[Musa 87] Musa, John D.; lannino, Anthony; & Okumuto, Kazihra. Software
Reliability Measurement, Prediction, Application. New York, N.Y.:
McGraw-Hill, 1987.

[Schneidewind 79] Schneidewind, N.F.; & Hoffmann, Heinz-Michael. "An Experiment in
Software Error Data Collection and Analysis." IEEE Transactions on
Software Engineering, Vol. SE-5, No. 3, May 1979.

56 CMU/SEI-92-TR-22

Appendix A: Glossary

A.1. Acronyms

CM U Carnegie Mellon University

C S C computer software component

CS C I computer software configuration item

C S U computer software unit

IEEE The Institute of Electrical and Electronics Engineers, Inc.

KLOC thousands of lines of code

KSLOC thousands of source lines of code

LOC lines of code

PDL program design language

S EI Software Engineering Institute

SLOC source lines of code

SIW software

A.2. Terms

Activity: Any step taken or function performed, both mental and physical, toward
achieving some objective (CMU/SEI-91-TR-25).

Anomaly: Anything observed in the documentation or operation of software that deviates
from expectations based on previously verified software products or reference documents.
(IEEE 601.12-1990)

Artifact: An object made by human beings with a view to subsequent use.

Attribute: A quality or characteristic of a person or thing. Attributes describe the nature of
objects measured.

Baseline: A specification or product that has been formally reviewed and agreed upon,
which thereafter serves as the basis for future development, and which can be changed
only through formal change control procedures (CMU/SEI-91-TR-25).

Causal analysis: The analysis of defects to determine their underlying root cause.

Commitment: A pact that is freely assumed, visible, and expected to be kept by all parties.

CMUISEI-92-TR-22 57

Computer software component (CSC): A distinct part of a computer software
configuration item (CSCI). CSCs may be further decomposed into other CSCs and
computer software units (CSUs) [DOD-STD-2167A].

Computer software configuration item (CSCI): A configuration item for software
[DOD-STD-2167A].

Computer software unit (CSU) - An element specified in the design of a computer
software component (CSC) that is separately testable [DOD-STD-2167A].

Customer specifications: Customer requirements for a software product that are
explicitly listed in the requirements document.

Criticality: The degree of impact that a requirement, module, error, fault, or other item has
on the development or operation of a system (IEEE 610.12-1990). See also severity.

Defect: (1) Any unintended characteristic that impairs the utility or worth of an item, (2) Any
kind of shortcoming, imperfection or deficiency, (3) Any flaw or imperfection in a software
work product or software process. Examples include such things as mistakes, omissions
and imperfections in software artifacts, or faults contained in software sufficiently mature for
test or operation. See also fault.

Error: (1) differences between computed, observed, or measured values and the true,
specified, or theoretically correct value or conditions, (2) an incorrect step process or data
definition, (3) an incorrect result, (4) a human action that produces an incorrect result.
Distinguished by using "error" for (1), "fault" for (2), "failure" for (3), and "mistake" for (4).
(IEEE 610.12-1990). See also failure, fault and mistake.

Failure: The inability of a system or component to perform its required functions within
specified performance requirements (IEEE 610.12-1990).

Fault: (1) a defect in a hardware device or component, (2) an incorrect step in a process or
data definition in a computer program (IEEE 610.12-1990).

Formal Review: A formal meeting at which a product is presented to the end-user, a
customer, or other interested parties for comment and approval. It can also be a review of
the management and technical activities and progress of the hardware/software
development project (CMU/SEI-91-TR-25).

Measure: n. A standard or unit of measurement; the extent, dimensions, capacity, etc. of
anything, especially as determined by a 3tandard; an act or process of measuring; a result
of measurement. v. To ascertain the quantity, mass, extent, or degree of something in
terms of a standard unit or fixed amount, usually by means of an instrument or process; to
compute the size of something from dimensional measurements; to estimate the extent,
strength, worth, or character of something; to take measurements.

Measurement: The act or process of measuring something. Also a result, such as a
figure expressing the extent or value that is obtained by measuring.

58 CMU/SEI-92-TR-22

Metric: a quantified measure of the degree to which a system, component, or process
possesses a given attribute. See measurement (IEEE 610.12-1990).

Mistake (software): Human action that was taken during software development or
maintenance and that produced an incorrect result. A software defect is a manifestation of
a mistake. Examples are (1) typographical or syntactical mistakes (2) mistakes in the
application of judgment, knowledge, or experience (3) mistakes made due to inadequacies
of the development process.

Module: (1) A program unit that is discrete and identifiable with respect to other units (2) A
logically separable part of a program (adapted from ANSI/IEEE 729-1983). (This is
comparable to a CSU as defined in DOD-STD-2167A.)

Peer review: A review of a software product, following defined procedures, by peers of
the producers(s) of the product for the purpose of identifying defects and improvements.
See also software inspections (CMU/SEI-91-TR-25).

Priority: The level of importance assigned to an item (IEEE 610.12-1990). See also
urgency.

Problem report: A document or set of documents (electronic or hard copy) used to
recognize, record, track, and close problems. (Sometimes referred to as trouble reports,
discrepancy reports, anomaly reports, etc.).

Problem (software): A human encounter with software that causes a difficulty, doubt, or
uncertainty with the use of or examination of the software. Examples include: (1) a difficulty
encountered with a software product or software work product resulting from an apparent
failure, misuse, misunderstanding, or inadequacy (2) a perception that the software product
or software work product is not behaving or responding according to specification (3) an
observation that the software product or software work product is lacking function or
capability needed to complete a task or work effort.

Project stage: A major activity within the software development and maintenance life
cycle. Each project stage has a set of software work products to be produced. A stage is
entered when the stage entry criteria are satisfied, and it is completed when the stage exit
criteria are satisfied. The stages of the life cycle depend on the software process model
used. Examples of stages are: system requirements analysis/design, software requirements
analysis, preliminary design, detailed design, coding and CSU testing, CSC integration
and testing, CSCI testing, and system integration and testing.

Product synthesis (software): The use of software tools to aid in the transformation of a
program specification into a program that realizes that specification (IEEE 610.12-1990).

Repair: A set of changes made to a software product or software work product such that a
fault or defect no longer occurs or exists with the application of an input set that previously
resulted in a failure or defect.

CMUISEI-92-TR-22 59

Severity: The level of potential impact of a problem. This is also referred to as criticality
(IEEE 610.12-1990).

Software Inspection: A rigorous, formal, detailed technical peer review of the software
design or implementation (code) (IEEE 1028-1988).

Software life cycle: The period of time that begins when a software product is conceived
and ends when the software is no longer available for use. Typically includes following
stages or phases: concept, requirements, design, implementation, test, installation and
checkout, operation and maintenance, and retirement (IEEE 610.12-1990).

Software product: The complete set, or any of the individual items of the set, of computer
programs, procedures, and associated documentation and data designated for delivery to a
customer or end-user (IEEE 610.12-1990).

Software work product: Any artifact created as part of the software process, including
computer programs, plans, procedures, and associated documentation and data, that may
not be intended for delivery to a customer or end-user (CMU/SEI-91 -TR-25).

Urgency: The degree of importance that the evaluation, resolution, and closure of a
problem is given by the organization charged with executing a problem management
process. The value is assigned by the supplier or developer, who should or must consider
the severity of the problem as expressed by the problem originator. Urgency determines
the order in which problems are evaluated, resolved, and closed. See also priority.

60 CMU/SEI-92-TR-22

Appendix B: Using Measurement Results
Illustrations and Examples

In this appendix, we illustrate a few of the ways in which counts of problems and defects are
used to help plan, manage, and improve software projects and processes. Our purpose is
not to be exhaustive, but rather to highlight some interesting uses that you may find worth
trying in your own organization. We also want to encourage you to seek other new and
productive ways to put quality measures to work.

Like most good Ideas, the ones we show here have been borrowed from someone else. In
fact, that was our principal criterion: the examples in this appendix-or ideas much like
them-have all been used in practice. Several of the illustrations are adaptations of
illustrations we found in Bob Grady's and Deborah Caswell's excellent book on
experiences with software metrics at Hewlett-Packard [Grady 87]. Others are based on
illustrations found in Watts Humphrey's book on software process management [Humphrey
89], in Bob Grady's latest book on practical software metrics [Grady 92], and in an SEI
technical report [Baumert 92].

CMU/SEI-92-TR-22 61

B.1. Project Tracking-System Test

The first use of counting problems that we illustrate (Figure B-1) will be familiar to almost
every software development professional. It is a display of the cumulative, week-to-week
status history of the problems encountered during integration and system test. This chart is
useful because it identifies the number of problems encountered to date, the rate of
occurrence, and the time taken to correct the problems for a pre-determined set of test
cases or test procedures. It also provides a number of tips or indicators relative to the
progress of the integration and test activity. This type of chart is typically updated at least
once each week for use by the project manager. Monthly updates are sometimes used in
formal reviews to indicate project status. Figure B-1 shows the total cumulative problems
reported to date, and the number of open, and closed problems for each week of the test
period. The dashed line shows the number of unevaluated open problems. Ideally, the
number of closed problems should track the rate at which problems are received, with the
number of open problems remaining flat or with a slight increase over the test period.
When the number of new problems diminishes, the number of open problems will develop
a negative slope and fall to zero at the end of test.

80

60.

-n-- Total

-.- Closed

Unevaluated

--- Open

Z 20.

0 1 1" 1= 1. 1. 1_•r V •

0 5 10 15

Number of Weeks
Figure B-1 Example of System Test Problem Status

The example data in Figure B-1 tells the project manager that the incoming problem rate is
about eight problems per week, while the problem closing rate is about four problems per
week, or about half what it should be to keep pace with the discovery rate. The time from
discovery to closure is about seven weeks, which could have an impact on the ability to

62 CMUISEI-92-TR-22

execute test cases if the test case execution is dependent on the solution to the open
problems.

Figure B-2 shows the number of unique open problems by age and criticality. The example
data in this chart tells the project manager that there are 13 highly critical (Severity 1 and
Severity 2) open problems, 9 of which are more than a week old. This should be an
incentive for the project manager to look into the reasons for this and take action to correct
the situation. The project manager should consider this information in light of other data
(such as planned and actual tests run, the test plan and schedule, the number of people
assigned to various tasks, and the problem analysis and correction process) to determine
what action may be required to put the project back on track.

Other information the project manager might wish to review is the ratio of defects to
problems, the ratio of problems to test procedures, the distribution of defects by component
or module, the defect density (defects per KSLOC) as found by system test to date versus
previous release system testing. Each of these will give the project manager a view of the
current system test compared to previous versions or releases of the product, or the
previous development process if no product data is available.

0,1-
E
3
0a-I-

1" E- [Severity 5

E3 Severity 4

C Severity 3

- U Severity 2
U Severity 1

z 0-
1 2 3 4 5 6 7 8 9 10 11 12

Weeks of Age
Figure B-2 Example of Open Problem Age by Criticality

CMU/SEI-92-TR-22 63

B.2. Tracking Customer Experience

After the release of a product to the customer, we learn how well we met the target level of
quality. The graphics in Figures 3-3 through 3-6 help to provide a quantifiable, objective
track of the customer experience in using the product.

Figure B-3 shows the number of unique customer reported problems of all types over time.
This chart indicates areas of customer support that may need to be addressed. For
example, the consistently large number of "cause unknown" problems might indicate the
need for better diagnostic tools or improvements in facilities for capturing data. The
relatively large "enhancement request" type of problem report may be an indication of
functional shortcoming in the product. The number of duplicate problems is not shown on
this chart; however, it is useful to use the duplicate counts to determine the volatility of a
problem or the effectiveness of the problem corrective action process. High ratios of
duplicate problems not only require inordinate amounts of analysis effort but are indicative
of shortcomings in the corrective action and distribution process.

120

(An 100
E
.0 |U Hardware failure

S 8o2 8U Operational mistake

o '3 User mistake

o 60 Enhancement request

U Cause unknown
o• U Documentation defect

40 Software failures

E
20

0-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Months after Product Release
Figure B-3 Customer-Reported Problems

64 CMU/SEI-92-TR-22

Figure B-4 plots the number of unique software failures each month over time and provides
a software developer's view of the product reliability growth. The plot shows how the
reliability of the product improves after the faults causing the failures have been corrected.
This does not reflect the customers' operational experience since the data does not include
duplicate or repeat failures caused by the same fault. However, each customer's
experience will show the same trend assuming corrective changes are available and
applied.

30-

----- Total Unique Failures

~20-

EUj-
z

"6-

• 10"

z

O - I I I i I I I I I g I I g a I I i I i I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Months after Product Release
Figure B-4 Product Reliability Growth

CMU/SEI-92-TR-22 65

It is sometimes important to understand how the failures are distributed by customer. Figure
B-5 illustrates a failure distribution by customer for the first three months after release. It is
apparent that two customers are experiencing significantly more unique failures than the
others. It might be advisable to assign dedicated technical personnel to these customers so
that they can quickly correct the faults causing the failures and prevent other sites from
incurring the failures. Additionally, analysis of the customer's usage, system configuration,
and so on, may reveal defects in the software development process that need correcting.

20-

S14-

= 124

." Rolling three month totals

0-

z 2

1 2 3 4 5 6 7 8 9 10

Customer ID
Figure B-5 Fault Distribution by Customer ID

66 CMUISEI-92-TR-22

Figure B-6 illustrates the reduction in product defect density over three releases of the
product. This chart shows the results of improved defect prevention and detection activities
during successive development cycles. This conclusion may not be valid if the number of
customers has decreased or product usage has changed significantly over the prior
release.

2.0

1.8

1.6

(o 1.4-
0
-j
Ul) 1.2

---- 2 Version 1.0

1.0 Version 1.1

. .•• Version 1.2

O 0.6.

0.4.

0.2

0.0 :1':;
0. . I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

Months after Product Release
Figure B-6 Release-to-Release Improvement in Defect Density

CMU/SEI-92-TR-22 67

B.3. Improving the Software Product and Process

When undertaking the development of a new product or the next release of an existing
product, it is extremely important to analyze the previous experience of a project or project
team to look for ways to improve the product and process. The graphs in this section
illustrate two uses of defect data to identify product units and process steps with the most
leverage for product and process improvement.

Figure B-7 accounts for all defects found during the software life cycle and identifies the
activity in which they were injected. The difference between defects injected and those
found within each activity reflect the defects that escaped the detection process
(inspections, reviews, testing, etc.) and will affect the next activity. The purpose of the chart
is to identify those activities which are the primary contributors of defects and those which
have inadequate detection processes. The objective is to reduce the total number of
defects injected and to improve the detection process so that the number of escaping
defects is reduced. The example data in Figure B-7 tells us that the detection process in the
early activities found 53% of the defects injected, leaving considerable room for
improvement. It would appear that more disciplined and stringent inspections and reviews
are needed.

50-

40"

4D

t 353

30 0 Injected
25- Found

20- Escape
15-

S* 10-

Req Des Cod UT CT ST Cust

Software Activity
Figure B-7 Defect Analysis by Development Activity

68 CMU/SEI-92-TR-22

Figure B-8 shows the same data as Figure B-7 except that it is expressed in terms of defect
density. This view tells us that the software process being used to create the product needs
to be scrutinized to reduce the total number of defects injected during development.

30

28 Total Density = 62.5 defects/KSLOC

26

24
22

0 20
C) 18I

16 l Injected
014 U Found

) 12 rl Escaped

0 8

0
6
4

Req Des Cod UT CT ST Cust

Software Activity
Figure B-8 Defect Density Analysis by Development Activity

Figures B-9 and B-1 0 identify the software modules which are "defect prone"; that is, they
have been found to contain a high number of defects relative to the other product modules.
The data shown in Figure B-9 identifies the modules with the highest percentage of defects,
while the data in Figure in B-10 identifies the modules with the highest defect density. Both
charts plot the modules in order of decreasing size (KSLOC). By comparing the module IDs
on both charts, those modules with the largest defect contribution would be selected for
examination, inspection, restructuring, or redesign as part of the development activity for the
next release.

CMU/SEI-92-TR-22 69

80

C.)o 60
_jU,I

0. 40

0 20

0

KO I G N C L H A F J D M E B

Module ID, decreasing size
Figure B-9 Defect-Prone Modules by Defect Density

18"

16"

414

1
*1

4 1

K 0 1 G N C L H A F J D M E B

Module ID, decreasing size,,
Figure B-10 Defect-Prone Modules by Percent Contribution

7 0 CMU/SEI-92-TR-22

Appendix C: Checklists and Forms for
Reproduction

CMU/SEI-92-TR-22 71

Problem Count Definition Checklist-1
Software Product ID []
Definition Identifier: I Definition Date
Attribute aues e nton r caton
Problem Status Include Exclud0 Value Count Array Count

Open
Recognized
Evaluated
Resolved

Closed
Problem Type n E Value Count Array Count

Software defect
Requirements defect
Design defect
Code defect _ ..._ ---
Operational document defect
Test case defect
Other work product defect

Other problems
Hardware problem
Operating system problem
User mistake __

Operations mistake
New requirement/enhancement

Undetermined ---
Not repeatable/Cause unknown
Value not identified

Uniqueness Include Exclude Value Count Array Count
Original
Duplicate
Value not identifed

Criticality Include Exclude Value Count Array Count
Ist level (most critical)
2nd level
3rd level
4th level
5th level

Value not identified
Urgency Include Exclude Value Count Array Count

1st (most urgent)
2nd
3rd
4th

Value not identified

Problem Count Definition Checklist-2
Software Product ID []
Definition Identifier: r Definition Date
AttrlbutesNalues Definition r] pec fication []
Finding Activity Include Exclude ValueCount Arra Count

Synthesis of
Design
Code I
Test procedure
User publications

Inspections of
Requirements
Preliminary design
Detailed design
Code
Operational documentation
Test procedures

Formal reviews of
Plans
Requirements
Preliminary design
Critical design
Test readiness
Formal qualification

Testing
Planning
Module (CSU)
Component (CSC)
Configuration item (CSCI) -

Integrate and test
Independent verif. and valid.
System
Test and evaluate
Acceptance

Customer support
Productionrdeployment
Installation
Operation

Undetermined ,
Value not identified

Finding MOde Include Exclude Value Count Array Count
Static (non-operational)
Dynamic (operational)
Value not identified I

Problem Count Request Form
Product ID, Ver/Rel: [IProblem Count Def 10: I
Date of Request: []Requester's Name or ID: I
Date Count to be made: [I
Time Interval for Count: From C ITO I

Aggregate Time By: Day Week Month Year
Date opened _ _ _ _ ____ _ _

Date closed______ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

Date evaluated______ _____ __ _ _ ___ ______

Date resolved______ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

Date/time of occurence______ _______________

Report Count By: Attribute Select Special Instructions
____________________Sort Order Value, or Comments

Selecntaconfgr ato Syeofora t Order_ _ __ __ _

copoent lee:RIieDn oe UsrDcmn

Prodcft I(Cs) Hsi_ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _

Cnionmpoent (CoC) Order__ __ _ ___

Morduare (CSU)i ID_ _ _ _ _ __ _ _

Specific I(ist) fist _ _ _ _ _ _ _ _ _ __ _ _

Problem Status Definition Rules
Product ID: Status Definition ID:
Finding Activity ID: Definition Date:

Section I
When is a problem considered to be Open? When is a problem considered to be Closed?
A problem is considered to be Open when A problem is considered to be Closed when
all the attributes checked below have a all the attributes checked below have a
valid value: valid value:

Software Product Name or ID Date Evaluation Completed
Date/Time of Receipt Evaluation Completed By
Date/Time of Problem Occurence Date Resolution Completed
Originator ID Resolution Completed By
Environment ID Projected Availability
Problem Description (text) Released/Shipped
Finding Activity Applied
Finding Mode Approved By
Criticality Accepted By

Section II
What Substates are used for Open?
Name # Name

1 _6

2 7
3 8
4 __9_

5 1 101

Problem Status Definition Form-2
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92
Section III
What attributes are unconditionally required to have values as criteria for each substate?
Attribute Substate Number
Name 1 21 3 4 5 6 7 8 9 10

1 Problem ID
2 Software Product Name or ID
3 Date/Time of Receipt
4 Date/Time of Problem Occurence
5 Originator ID
6 Environment ID
7 Problem Description (text)
8 Finding Activity
9 Finding Mode

10 Criticality
11 Problem Type
12 Uniqueness
13 Urgency
14 Date Evaluation Completed
15 Evaluation Completed By
16 Date Resolution Completed
17 Resolution Completed By
18 ID of Original Problem
19 Changes Made To
20 Related Changes
21 Defects Found In
22 Defects Caused By
23 Projected Availability
24 Released/Shipped
25 Applied
26 Approved By:
27 Accepted By:

Section IV
List the substates with conditional attribute values Substates affected
Substate # Conditional AttributeNalue Subsrate # Attribute Numbers

UN4L.1,ff rED, UNCLASSIFIED
Sl3aRirY .LASSFICEGION OF THIS PAGE

REPORT DOCUMENTATION PAGE
IL REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-22 ESC-TR-92-022

6a, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7
a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program OfficeSEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Sa. NAME OFFUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (d"applicable) F1962890C0003

SEI Joint Program Office ESD/AVS

Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORKUNIT
Pittsburgh PA 15213 ELEMENTNO NO. NO NO.

63756E N/A N/A N/A
11. TITLE Include Security COaaication)

Software Quality Measurement: A Framework for Counting Problems and Defects
12. PERSONAL AUTMOR(S)
William A. Florac, et al
13a. TYPE OF REPORT [13b. TIME COVERED 14. DATE OF REPORT (Yx, Mo.. Day) 15. PAGE COUNT

Final FROM re September 1992 78
16, SUPPLEMENTARY NOTATION

17. COSATI CODES I 1. SUBJECT TERMS (Coatime on rave=, of neehaa.y and identify by block number)
FIELD GROUP SUB.____ software quality, software metrics, software problem reports, defects,

faults, failures, software quality measurements, software process mea-
surements

19. ABSTRACT F (Contiue an hv if necessary and identify by block number)

This report presents mechanisms for describing and specifying two software measures-software problems and
defects-used to understand and predict software product quality and software process efficacy. We propose
a framework that integrates and gives structure to the discovery, reporting, and measurement of software prob-
lems and defects found by the primary problem and defect finding activities. Based on the framework, we iden-
tify and organized measurable attributes common to these activities. We show how to use the attributes with
checklists and supporting forms to communicate the definitions and specifications for problem and defect mea-
surements. We illustrate how the checklist and supporting forms can be used to reduce the misunderstandings
of measurement results and can be applied to address the information needs of different users.

(plea•e tm over)

20. DISTRIBUTION/AVALABU.JY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIRCATION
UNCIAWFIUNLIN4ITED SAME AS Rpm'nc USERS Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Amea Code) 22c. OFFICE SYMBOL
John S. Herman, Capt, USAF (412) 268-7631 ESC/AVS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNUMITED, UNCLASSIFIED
SECRrrY C.ASSWICATON OFTHIS

