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A High Fidelity Simulation of Optical Detection Systems

1. Introduction

This study, entitled “Program Definition and System Evaluation for a Short Wave-
length Laser Radar,” consisted of four tasks: define system needs for short wavelength
laser radars, simulate potential system performance, analyze the effect of key system pa-
rameters, and simulate and evaluate the performance of potential system demonstrations.

Early in the study, the team determined that detector performance will be critical for
the operation of short wavelength laser radar systems. Most of these systems will use
direct detection, so quantum efficiency and detector noise performance will directly affect
the size and weight of the system. Poor detector performance will require either larger
lasers for illumination or larger receiver apertures for a given level of system performance,
and both of these system elements are major contributors to the overall system weight. The
detector models currently available in the the Defense Laser/Target Signatures (DELTAS)
code do not permit high fidelity evaluation of the effect of specific detector subsystems on
the overall system performance. The authors filled this gap by developing a high fidelity
simulation of optical detection systems that is compatible with both the DELTAS code
and SPARTA'’s optical sensor simulation, SENSORSIM, that simulate laser radar systems
designed for a wide variety of missions. This volume describes the result of this simulation
development effort.

Sensor simulation codes like DELTAS and SENSORSIM, illustrated in Figure 1, syn-
thesize representative examples of signatures recorded by actual sensor systems that are
useful for many applications {1} including sensor design and analysis and development of
signal and image processing systems. Prior studies [2] have demonstrated that computer
simulation is an efficient and economical tool for assessing the effect of detection systems
on the performance of an optical sensor system, but these studies also identified certain
inadequacies in existing models of detection systems.

An optical detection system may range from a single device such as a CCD array or
a photomultiplier tube to a relatively complex system like the example in Figure 2. This
figure shows an image intensifier tube containing a photocathode, a microchannel plate
intensifier, and a phosphor on the face of an optical fiber bundle that couples the tube to
a CCD array. Many existing detector models constrain input to a precise set of parameter
values describing the detection systems under consideration. This approach leads to a
dilemma. Models with only a few parameters, usually describing only a simple detector,
cannot simulate complex systems like the example in Figure 2 to adequate fidelity. On the
other hand, models with enough parameters to simulate fairly complex detection systems
are too unwieldy for use with simple detection systems. Additional limitations can arise
if the set of parameters chosen for a particular model does not provide the flexibility to
simulate some types of devices. A useful general model must allow the user’s input to
conform to the design and requirements of the detection system.

The authors have developed a robust model that can simulate any type of optical
detection system [3]. This model is fully compatible with the SENSORSIM and DELTAS
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codes, as discussed below. Under the current project, the authors implemented a prototype
of the new detection system model for angle-angle imaging systems. This prototype, which
demonstrates the viability of the model, provides a test platform for further refinement
and enhancement. The prototype code, written in FORTRAN ’77 with minor extensions
for compatibility with the SENSORSIM and DELTAS codes, runs on IBM and compatible
personal computers.

The current prototype code is driven by text files, allowing the user to create component
libraries with any standard text file editor. In a production version, a graphical user
interface can insulate the user from the details of the text-based interface. This graphical
user interface will provide tools for defining operations, represented as labeled blocks,
and for defining the flow of signals through the simulation using arrows to connect the
blocks. Additional mathematical routines added to the framework created during the
current program will permit simulation of a larger variety of detection and processing
systems. Ultimately, this interface will provide the ability to create block diagrams of any
system directly on the screen. A program script, created by the graphical user interface,
will provide the ability to simulate each system. This general, powerful tool will be useful
for applications far beyond simulation of detection systems.




2. Considerations Affecting the Design of the Model

Several considerations affect the design of any model of optical detection systems.
These considerations include the design and mission of the sensor system(s) that it must
simulate, the physical characteristics of various components in detection systems, the pur-
pose of the simulation, and software issues affecting the implementation of the model and
its integration into a simulation of the sensor system.

2.1. Design of Sensor System

The SENSORSIM and DELTAS codes simulate various sensor systems from angle-
angle and range-Doppler imagers to quad cell trackers and range signature sensors with
single detector elements, and SENSORSIM also simulates signatures from passive (solar
and thermal) sensors. These sensors sample the signal from the target at various combina-
tions of range (time) and crossrange resolution appropriate to the type of signature that
they record. Sensors that obtain angle-angle images may have either scanning (linear) or
staring (planar) arrays, and some recent designs scan a single detector element over a two
dimensional field of regard [4]. Effects thai are negligible in one design may be signifi-
cant in another, so a truly comprehensive model must correctly simulate each effect of the
detection system.

2.2. Component Characteristics

There are very few components of a real detection system that do not degrade an
image or a signature to some degree as compared to an ideal detection system, and many
components have multiple sources of degradation. The detector model must correctly
simulate all sources of degradation that affect the detected image or signature including
attenuation, noise from various sources, gain, cresstalk, saturation, blooming, response
time, and even the physical dimensions and materials of each component.

2.3. Goal of Simulation

The goal of a simulation governs the selection of phenomenological models to achieve
the desired results, particularly in the treatment of random phenomena. The SENSORSIM
and DELTAS codes both simulate instances from the same signature distribution obtained
from an actual sensor system. These simulated signatures are suitable for development
and evaluation of signal and image processing systems [5]. The model must draw random
values from the actual statistical distribution corresponding to each noise source to achieve
this goal because a limited set of statistical parameters, such as mean (expected value)
and standard deviation, do not reliably characterize the composite distribution of multiple
noise sources in a detection system.




2.4. User Community

The SENSORSIM and DELTAS codes serve a diverse user community. At one extreme,
component designers need to modify the details of component specifications to assess the
effects of minor design changes on component and system performance. At the other
extreme, system analysts may want to compare the performance of representative detection
systems of several different types. In the middle, system designers may want to evaluate the
performance of several different components in a particular detection system configuration.
The design of the new detection system model supports allows it to support all of these
users.

2.5. Software Implementation and Integration

The DELTAS and SENSORSIM codes impose two constraints on the design and im-
plementation of the detection system model. First, the model must run on a variety of
host platforms (DELTAS) including an IBM or compatible personal computer (SENSOR-
SIM). Second, the new model must work with existing models of other components such
as the receiver optics and the signal processor. These considerations require the use of
programming languages and data structures that are compatible with the SENSORSIM
and DELTAS simulations.



3. Concept of Detection System Model

A typical detection system contains a sequence of optical, electronic, and hybrid devices
that perform various mathematical operations, some desirable and others undesirable, on
the incoming signal. This structure provides a sound basis for a hierarchical model in which
the top level is the overall detection system, the second level represents the individual
devices, and so on to the lowest level which contains individual mathematical operations
performed by the various devices or elements.

The devices contained in detection systems fall into two major classes. Compound
devices, like the image intensifier tube in Figure 2, contain several distinct elements that
operate sequentially on the incoming signal. Simple devices, like the CCD array, do not
have distinct elements. The smallest distinct physical entities in a device break down into
a sequence of mathematical operations. Figure 3 shows a decomposition into mathematical
operations for the photocathode of the image intensifier tube in Figure 2.

The detection system model provides separate general hierarchical representations for
simple and compound devices, as illustrated in Figure 4. This hierarchical representation
allows many detection systems to use a single definition of a device. Similarly, several
compound devices may share a single definition of an element. This model allows users to
assemble detection systems rapidly from libraries of device definitions.

The prototype code supplies the mathematical operations of addition of bias, linear and
non-linear amplification, attenuation by Bernoulli selection (processes such as quantum,
collection, and transmission losses), discrete pixel sampling, blurring (uniform and non-
uniform), and conversion between photons and electrons. Each operation draws a random
value for each pixel from the statistical distribution that characterizes the underlying
physical processes, as described in Appendix A, simulating each possible response of the
device or element with the correct probability. This process ensures that ensembles of
images produced by the simulation have the same statistical distribution in each pixel as
equivalent ensembles of images recorded by an actual sensor.

The mathematical operations at the lowest levels of the hierarchy are built into the sim-
ulation code. Standard text files, following the intuitive syntax described in Appendix B,
define all other levels of the model’s hierarchy. Users can edit all input files with familiar
text file editors to create or modify all definitions. Users can also print text files directly
and transfer them electronically using standard system resources. The simulation code
interprets these files as it simulates the detection system.

The detection system model has a sophisticated numerical expression evaluator that
accepts standard algebraic expressions for all floating point values in its input files. The
algebraic expressions may reference variables defined in the input files as well as several
system parameters, fundamental constants, and conversion factors defined by the simula-
tion. The evaluator also provides a many standard mathematical functions, pseudorandom
numbers with both uniform and Gaussian distributions, and a function that interpolates
tabulated data from laboratory measurements or other sources.

The numerical expression evaluator, variables defined by the user, and the values de-
fined by the simulation provide several important capabilites for the detection system
model. The simulation defines a factor to convert responsivity to quantum efficiency,
allowing the attenuation operation to use either value to simulate the quantum loss of a
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photocathode. The simulation can also interpolate either value as a function of wavelength
from tabulated measurements. Similarly, the a system or compound device definition can
set variables referenced in device or element defintions to the values of parameters such
as supply or bias voltages that are controlled from outside the device or element. This
feature allows systems with different values of such parameters to share a single definition
of the device or element. Argument declarations in device and element definitions ensure
that all such parameters are properly defined.

The prototype code for the detection system model, described in Appendix C, also
conforms to its hierarchial structure. The code has separate subroutines for each level of
the hierarchy and for each mathematical operation. Several utility routines and modules
manage the image buffer, parse user input, generate random numbers with various dis-
tributions, maintain the current value of user variables, facilitate file access, and perform
other incidental tasks for the simulation. This modular design ensures that the code will
be easy to maintain.

The design of the detection system model and its prototype code allows for future
expansion by addition of both new classes of devices and new mathematical operations.
Due to time constraints on the development cycle, the prototype code does not provide
mathematical operations for effects such as pattern noise that vary from pixel to pixel, but
a production release should provide these operations. New devices may also perform math-
ematical operations that now remain unforeseen. Additional device classes might include
a class for preassembled subsystems containing several devices and/or classes for specific
types of devices to permit optimization of certain sequences of mathematical operations,
though the need for such device classes is not now apparent. The model’s expandability
in these areas guarantees that it will not become obsolete as new devices appear.




4. Output from the Detection System Model

The detection system model simulates each mathematical operation that occurs in
the detection system to produce a realistic instance of an image from a sensor system.
Figure 5 shows the image of a cube illuminated by an incoherent laser after each step
in the simulation process. In this example, the detection system consists of a simple
CCD array. The detection system model executes three mathematical operations, after
quantizing the image, to simulate this device. The first operation maps the image onto the
pixels of the CCD array. The second operation attenuates the pixel values by Bernoulli
selection to simulate quantum losses with a quantum efficiency of sixty percent. The third
operation adds bias with a Poisson distribution having a mean of ten counts to sirnulate the
CCD’s read-out noise. The gray scales of these images are approximately proportional to
the expected signal level to facilitate visual comparison of the images, so the mathematical
operations performed by the simulation are the primary source of any differences between
successive images.

Figure 6 shows images of the same scene as Figure 5 with two different levels of illu-
mination and two different pixel configurations. Brighter illumination by a factor of ten
reduces shot noise considerably in the right images compared to the left images. Larger
pixels in the top images also reduce the level of noise compared to the bottom images by
spatially averaging the incident signal. The gray scale of each image is proportional to
the expected signal levels, but each image has the same level of read-out bias. This bias
is more significant in images with weaker signal levels, causing a difference in brightness
that is most pronounced in the lower left image of the figure.

Figure 7 shows a reentry vehicle observed by sensors with identical illumination and
receiver optics but different detection systems. The sensor on the left has a low noise
CCD detector with a conventional shutter. The sensor on the right uses a Pockels Cell
as a shuttering device. The attenuation in the Pockels Cell reduces the light levels at
the sensor, resulting in a higher signal to noise ratio. With consistent gray scales, the
additional degradation appears as higher noise levels in the printed images.
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Fiqure 5. Sumaulation of an image detected by a CCD array: ideal 1maqe
(top left). focal plane nmage (top right), shot nowse (maddle leftic pired
geometry (maddle right). quantum losses (bottom Lo ft). and read-out noise

(hottom right).
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Figure 6. Effect of signal strength and pizel size on detected 1mages. The
right itmages have len times as much light as the respective left imageas,

uith gray scales adjusted by a factor of ten for consistent msual contrast.
The bottom 1muages have four times as many pirels as the respective top
images gray scales adjusted by a factor of four, again to mamtain con-
sratent msual contrast.
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Figure 7. SENSORSIM Images of a generic reentry vehicle tlluminated by
an incoherent laser: 1deal tmage (top left), focal plane 1mage (top right),
and detected 1mages from two detection systemas (bottom).




5. Further Development of Detection System Model

The successful implementation of a prototype code has demonstrated the viability of
SPARTA’s comprehensive model of optical detection systems. The prototype code is also
available for use as a test platform for further enhancement and refinement of the model.

Time constraints on the development of the prototype code precluded implementation
of mathematical operations to simulate pattern noise, which may be either multiplica-
tive (non-uniform gain or attenuation) or additive (non-uniform bias). These phenomena
frequently affect imaging sensors. Further work on the detection system model should
include addition of these operations. The prototype code already contains the random
number generators and the image buffer manager functions to support these operations,
so the time required to add these operations will be minimal.

The prototype code does not simulate sensor systems that sample temporally rather
than spatially. Range-Doppler imagers and quad cell (3-D) tracking systems are among
the standard system designs that record temporal samples. With some modification to the
data structures in the prototype code, the detection system model can also simulate these
systems. The authors recommend addition of this capability to the production version of
the detection system model.

A preprocessor to create and edit files defining detection systems, devices, and elements
would greatly enhance the detection system model. This preprocessor might use a graphical
interface to show each definition as a block diagram. The user would select a device or an
element with a mouse or other pointing device to view or edit its definition.

With these enhancements, the detection system model should be integrated into the
DELTAS code. This integration will entail minor modification of some routines to use
the DELTAS data structures. The project should also include development of libraries of
files containing definitions of a selection of devices representing the state of the art at the
principal wavelengths of current laser radar systems.

The development of the detection system model also has implications for other aspects
of optical sensor simulations, as described below. These possililities should also be pursued
as availiable funding allows.

13




6. Other Implications of Technological Developments

The technology developed for the detection system model has several implications for
the simulation of optical sensor systems. The most immediate benefit is, of course, a truly
useful and comprehensive model of optical detection systems, but several technologies
developed to support the detection system model are critical to advances in other areas as
weli.

6.1. Hierarchical Models

The concept of a hierarchical model controlled by a flexible command structure is a
major advancement in the design of phenomenological models for optical sensor systems.
This concept has its roots in SPARTA’s Basic Scene Descripton Language (BSDL) and
Basic Target Description Language (BTDL) of the SENSORSIM and DELTAS codes.
Both of these languages provide a nestable include command to execute a sequence of
commands in another file, but the detection system model is the first to define a rigorous
structure for the hierarchy.

SPARTA can also develop an advanced hierarchical model of the sensor’s signal and
image processing system. This application requires a set of basic mathematical operations
that simulate the response characteristics, including noise, of analog and digital electronic
elements. The current DELTAS simulation contains a preliminary signal processing model
based on this concept that has proven the viability of this concept, but the final DELTAS
Signal Processing Model, scheduled for completion during the option years of the DELTAS
project, never received funding. Advances implemented in the prototype code for the
detection system model, such as the numerical expression evaluator, the user variable
handler, and the image buffer manager, provide the base of technology to expand signal
and image processing capability beyond that envisioned for the final DELTAS model. The
authors believe that this enhanced signal and image processing capability would be a useful
addition to the DELTAS code.

6.2. Numerical Expression Evaluator

The numerical expression evaluator in the prototype code opens the door to several
major enhancements to the SENSORSIM and DELTAS codes. Perhaps the most obvious of
these enhancments is an extension of SPARTA’s BSDL and BTDL to allow expressions for
numerical arguments. This enhancement would allow the scenes and targets to change as a
function of certain values defined by the simulation or of values defined in a scene parameter
file supplied by the user. The scene compiler also provides random number functions with
uniform and Gaussian distributions that might facilitate simulation of irregular objects.

The numerical expression evaluator can also evaluate mapped attributes in scene or
target descriptions. The present versions of the SENSORISM and DELTAS simulations do
not support mapped attributes. Either simulation could store the definitions of mapping
functions in character strings during scene compilation, then pass these definitions to the
numerical expression evaluator to obtain the texture at visible points on the object surface
after defining variables such as the coordinates of the point on the surface. Mapped
attributes can include vibration and texture, the former affecting the Doppler signature of
a target and the latter simulating camouflage paint schemes.

14




A logical expression evaluator, following the same design as the numerical expression
evaluator, would allow programming constructs for conditional execution of blocks of com-
mands. Added to BSDL or BTDL, for example, a file defining an inflatable decoy might
define the shape of the inflated decoy after its inflation time or the shape of its canister
before its inflation time.

15




7. Summary and Conclusions

The authors have developed a comprehensive model of optical detection systems that is
compatible with both SPARTA’s optical sensor simulation, SENSORSIM, and the Defense
Laser/Target Signatures (DELTAS) code. This model, which overcomes the limitations
that can be quite severe in many other models, simulates physically and mathematically
correct examples of images obtained from detection systems of any complexity. Under the
current project, the authors implemented a working prototype of the model that demon-
strates the viability of its approach. This prototype code, written in FORTRAN ’77 with
minor extensions, will serve as a test platform for further refinement of the model and its
eventual integration into the DELTAS and SENSORSIM codes.

The detection system model follows an intuitive hierazchical structure that conforms
to the design of the detection system. This structure allows system analysts to assemble
detection systems very quickly from libraries of predefined components and rapidly evaluate
competing designs. System designers can change components in a detection system with
equal ease to evaluate the relative performance of competing devices. Component designers
can modify component definitions to evaluate the effect of small design changes on device
performance. The prototype code can also save intermediate images, permitting analysis
of the performance of each component. Thus, this model will satisfy the requirements of
a diverse user community.

Technology developed for the prototype detection system model will allow other en-
hancements to the DELTAS and SENSORSIM codes. The hierarchical design of the de-
tection system model can also simulate signal and image processing systems with a similar
degree of fidelity. The DELTAS simulation contains a preliminary model of this type
that has considerable room for enhancement. The numerical expression evaluator and the
user variable handler can provide similar capabilities for scene and target descriptions and
a mechanism for mapping textures and other attributes onto target surfaces. A logical
expression evaluator and a logical flag handler based on the same algorithms would al-
low conditional execution of commands through “block if” command structures. These

capabilities will significantly enhance the SENSORSIM and DELTAS codes.
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Appendix A. Noise in the Detection System

Images and signals from optical sensors contain noise from numerous sources charac-
terized by various statistical distributions. The detection system model draws a random
value for each pixel from the correct statistical distribution for each source of noise in the
detection system, beginning with shot noise on the incoming optical signal. This process
cascades the statistical distributions of the noise sources in the same manner as an actual
detection system, thus guaranteeing that an ensemble of simulated images exhibits the
same statistical distribution in each pixel as a corresponding ensemble of images recorded
by an actual sensor. This noise model ensures that processing systems developed and
tested from simulated images will work reliably in operational sensors.

A.l1. Basic Noise Model

The detection system model must simulate noise from various sources. The signal
collected by the sensor’s optics has shot noise due to random arrival of photons at the
detector, and it may also have noise due to speckle if the illumination is at least partially
coherent. Most elements in a detection system also add some form of noise to the signal.
The binomial distribution family, illustrated in Figure A-1, characterizes these sources of
noise.

The SENSORSIM and DELTAS models of the receiver optics generally determine the
expected intensity of illumination in each pixel of the detection plane for a single speckle
pattern. Several executions of the detection system model with a single signature from
the optics model, therefore, represent multiple measurements of a static speckle pattern,
as in a laboratory experiment in which rigid mountings prevent motion of the sensor and
the target(s). In this case, only shot noise and noise within the detection system cause
differences in the detected images. Of course, with incoherent illumination, the optics
models generate the expected intensity without speckle.

Most generally, the receiver optics model generates values from a gamma distribution
in each pixel [1] for the case of partial coherence.* The gamma distribution has the form

n' n' xn’—le—n’z/u
wZ)=\|—) —=—F— 1
mo= (%) S @
where

z is the expected signal for the speckle pattern,

n’ is the freedom parameter (number of “coherence cells”), and

u is the a priori expected signal, without knowledge of the speckle pattern.

* Although the laser beam and receiver optics models in the SENSORSIM and DELTAS codes treat
only the limiting cases of coherent or incoherent illumination, the case of partial coherence may arise at
the detector plane through incoherent integration of a coherent signal over the active area of each pixel in
either simulation. Both simulations handle this situation correctly without explicitly computing the freedom
parameter of the gamma distribution.
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Figure A-1. The binomial family of probability distributions. The ezpected
(mean) value for each distribution is u and the freedom parameter is n
or —n'.

The gamma distribution, with a variance of u?/n’, reduces to the negative exponential
distribution

p(z) = ie"’" )

in the coherent limit (n’ = 1). In the incoherent limit (n’ — o0), the gamma distribution
converges to

Poo(z) = 6(z = pt) (3)

where é(z) is Dirac’s delta function.

The detection system model draws a random value from a Poisson distribution with a
mean equal to the expected signal, in counts, to simulate the shot noise in each pixel at
the detection plane. This quantization of the signal combines the gamma distribution of
the expected incident signal with a Poisson distribution by the cascade relationship

19




2.0
1.8
L6 Z Poisson Distribution, u = 4, from Photocathode
= Ideal (Poisson) First Dynode, G = 50
1.4 5

Prob. 127

of .

Resp. 1'0—:

(Pct.) 0.8
0.6 A I3
044 a4 i3 i !\
0.2 4 :“% _f "".\i: J
0°0:'H'1£WMV|II||||l|r|lrrl||(ir|||||||||l|llr1|

o

50 100 150 200 250 300 350 400 430 500
Response (Counts)

Figure A-2. Statistical distribution for cascade of two Poisson elements. The
first element has an ezpected value of 4. The second element has a gain

of 50.

Put) = [ pute) () de @

where the expected value of the Poisson distribution is the value drawn from the gamma
distribution. Upon substitution for p,/(z) by equation (1) and evaluation of the integral,
equation (4) reduces to the formulation of the negative binomial distribution in Figure A-
1. Equation (4) similarly reduces to the exponential and Poisson distributions for the
respective limiting cases in equations (2) and (3).

Once the detection system model quantizes the signal to simulate shot noise, it main-
tains all signal values in counts of photons or electrons. This choice of units allows the
detection system model to simulate each source of noise by a drawing pseudorandom value
for each pixel from the correct distribution for each source of noise in Figure A-1. This
process guarantees that the values in each pixel have the same statistical distribution as
images obtained from an actual sensor. Figure A-2, which is very similar to published re-
sponse curves for photomultiplier tubes [2], shows the effect of cascading two Poisson noise
sources representing the photocathode and first dynode of a photomultiplier tube with very
low noise. Standard probability functions cannot approximate the resulting multimodal
distribution which this model reproduces correctly.
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Multiplicative operations in a detection system include amplification and attenuation.
In these operations, the expected output signal (u) is always the product of a gain or
attenuation (efficiency) factor and the input signal. The output signal is always the value
drawn from the correct distribution in Figure A-1.

Many elements in a detection system attenuate the signal by Bernoulli selection, charac-
terized by the binomial distribution. In a Bernolli process, each count (photon or electron)
entering a stage has a certain probability of exiting independent of what happens to other
counts. Since each count of the input signal represents an independent event, the number
of degrees of freedom (n) is always the number of counts in the input signal. Examples of
Bernoulli processes include transmission, collection, and quantum losses.

The negative binomial distribution generally characterizes amplifying operations in a
detection system. The freedom parameter of the distribution (n’) controls the severity
of noise in the detection system. The freedom parameter is always proportional to the
number of counts in the input signal, so the user need only specify the value for a single
count of input. The simulation automatically multiplies this value, as well as the gain, by
the number of counts of input. Microchannel plate image intensifiers and dynodes in a
photomultiplier tube are examples of amplifying devices.

Sources of bias, like sources of amplification, are generally characterized by the negative
binomial distribution, or by the Poisson distribution in the limit of low noise. The bias
value drawn from this distribution, however, is added to the signal already present in the
pixel. Since the level of bias is independent of the input signal in the pixel, the simulation
does not scale the distribution parameters. Sources of bias include dark currents and CCD
readout noise.

A.2. Effects of Pixel Geometry and Coupling

Standard detection system components have various geometric structures. Some de-
vices or elements have distinct pixels; others do not. The prototype code supports cir-
cular, square, rectangular, and hexagonal pixels on square, rectangular, and hexagonal
grids. These options represent the vast majority of standard components, but the authors
designed the prototype code to allow addition of other configurations if a need arises.

Devices in a detection system may change the geometry of the image plane either by
tapering pixels to a new geometric arrangement or by resampling the signal. The tapering
operation retains the signal level in each element as it changes the size and/or location of
the individual elements, whereas a resampling operation redistributes the signal in each
pixel among overlapping pixels and gaps of the new geometric arrangement. Devices and
elements with clearly defined geometric structures normally resample the incident image.
Some devices or elements, such as a tapered fiber optic coupler, may both resample and
taper the image. In the detection system shown in Figure 2, the microchannel plate, the
fiber optic bundle, and the CCD array all resample the image. The photocathode and the
phosphor do not resample the image because they are continuous materials with no clearly
defined pixel structure.

The prototype model adjusts internal parameters describing the pixel geometry to
simulate taper devices, but it does not change the values of the any pixels or the dimensions
of the array. The model can apply any attenuation, gain, bias, or crosstalk due to the taper
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mechanism separately either before or after the taper since the taper operation does not
affect the pixel values.

The resampling operation is more complicated than the tapering operation because the
detection system model must actually resample the image or signal. The model allocates
a new buffer for the resampled image, then it distributes the counts in each pixel of the
old buffer to the overlapping pixels of the new buffer by a series of binomial distributions.
For each overlapping pixel, the parameters of the binomial distribution are

b= (50)
n=n, (50)

where
n, is the number of counts that remain unassigned,
An is the area of the intersection of the old pixel and the current new pixel, and
A, is the area of the old pixel not intersected by previous new pixels.

This process, illustrated in Figure A-3, follows immediately from the assumption that the
remaining signal counts of the original pixel are dispersed with a uniform distribution in
the area that remains unintersected by new pixels. Counts of the old pixel that remain
after sampling all intersecting new pixels are lost in the gaps between the pixels of the new
geometry. This resampling operation can introduce considerable noise into an image.

A similar process of redistributing the signal in a pixel simulates phenomena like
crosstalk that partially couple nearby pixels. A convolution kernel specifies the proba-
bilities associated with each possible offset from the original pixel. The simulation draws
the actual counts redistributed to each offset from a binomial distribution in the same
manner as in the resampling operation. For the ith entry in the kernel, the distribution
parameters are

n.Dy
p=—r— (6a)
1- ij
j=t
n=n, (6b)

where
p; is the probability that a count is shifted to the new pixel and
n, is the number of counts remaining in the original pixel.

The simulation retains counts any counts that remain after completing this dispersion
process in their original pixel, so signal loss occurs only when the shift causes the new
pixel to fall beyond the bounds of the image array. This process can also introduce noise
into the image.
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Figure A-3. Resampling a pizel.
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A.3. References

1. J. W. Goodman, Statistical Optics, Wiley & Sons, New York, 1985.

2. See, for example, R. W. Engstrom, Photomultiplier Handbook, RCA Corporation, Lan-
caster, PA, 1980.
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Table B-1. Default Filename Extensions for Prototype Model.

Defined Entity Default Type
Detection System .DET
Simple Component .SMP
Compound Component .CMP
Element of Compound Component .ELT

Appendix B. Definition of Detection Systems and Components

The definition of a detection system follows the hierarchical structure of the detection
system model, omitting the lowest level. Each block above the lowest level on a block
diagram represents a separate input file, with one additional file to specify the sequence
of blocks at the top level. The mathematical operations at the lowest level of the model’s
hierarchy do not require separate input files because the simulation code contains their
definitions.

The prototype code uses four types of files to define detection systems (at the top level
of the hierarchy), simple components, compound components, and elements of compound
components. A file defining a detection system specifies simple and compound components
by the names of the files containing their definitions. A file defining a compound component
likewise specifies its elements by the names of the files containing their definitions. Files
defining simple components and elements of compound components specify a sequence of
operations that simulates the corresponding component or element. Thus, the complete
definition of a detection system consists of exactly one detection system file, a file defining
each component in the detection system, whether simple or compound, and a file defining
each element of any compound components. The prototype code supplies the default
filename extensions shown in Table B-I if the user does not explicitly specify an extension
as part of the file name. Each file name may also include a directory path if it is not the
operating system default.

The input to the detection system model follows a syntax similar to SPARTA’s Basic
Scene Description Language (BSDL) [1] and Basic Target Description Language (BTDL)
[2] in the SENSORSIM and DELTAS codes. All definition files share the following syntactic
conventions with BSDL and BTDL.

e Each record of an input file contains either a command or a comment.

¢ Each command record contains an intuitive key word, usually followed by a specific
sequence of arguments. The arguments may include key words and numerical values.

o All key words are lower case.

e Comment records, universally marked with an asterisk (*) as the first non-blank char-
acter, have no effect.

¢ Blank records are forbidden. (Records that contain an asterisk as the only non-blank
character are valid comment records.)
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Table B-II. Syntax for Specification of Detection System.

Command Syntax

Device device <class> <filename>
Set Variable set <variable> <value>
Delete Variable delete <variable>

Save Image save <filename>

Comment * <comment text>

These conventions allow the detection system model to share parsing routines and a con-
sistent interface with the scene and target models of the SENSORSIM and DELTAS codes.

The prototype code employs variables defined in its input files to pass parameters
between definitions. All variables are global entities that exist for the duration of the
simulation unless explicitly deleted. The prototype model permits the user to define up
to fifty (50) variables concurrently, in addition to the predefined values described below.
The user may reference these variables in an algebraic expression for any argument that
requires a floating point value. Each definition should delete the variables defined within
it when they are no longer required to release its storage for other variables.

All syntax tables below follow standard notational practices of the computer profession.
A fixed pitch (typewriter) font indicates key words and operators that must appear exactly
as shown. Italic text in angle brackets denotes a <description of an entity> that the
user must supply. Square brackets enclose [<optional entities>], and ellipses (...) indicate
repeatability of the preceeding optional entity.

B.1. Specification of a Detection System

The detection system model always requires exactly one detection system file to specify
the sequence of components in the detection system. Table B-1I shows the command syntax
for in this file.

The device command specifies the file containing the definition or parameters for the
next device in the detection system and the class of device. In the prototype model, the
argument <class> may be either simple for a simple device or compound for a compound
device. All other values of the class identifier are reserved for additional classes of devices
that may be added at a later date.

The set command assigns a value to a variable, creating the variable if it does not
already exist. The delete command removes the specified variable. Any arithmetic ex-
pression in an input file may reference a variable by name while the variable exists.

The save command writes a copy of the current image to a disk file. The default
file type is .IMG, indicating a SENSORSIM image file. This command allows examina-
tion of intermediate images, supporting identification of sources of degradation within the
detection system and analysis of their severity.
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Table B-III. Syntax for Definition of Simple Devices and Elements of Compound Devices.

Function Command Syntax
Declare Argument argument <name> <description>
Amplification gain <gain factor> <freedom parameter>
Signal Loss atten <attenuation factor>
D. C. Bias bias <ezpected counts> <freedom parameter>
Convert to Electrons electron
Convert to Photons photon <wavelength>
Set Variable set <variable> <value>
Delete Variable delete <wariable>
Comment * <comment tezt>
Function Command Sequence
Resample Image pixelmap
<pizel geometry specification>

endmap

Taper Pixels tapermap
<pizel geometry specification>

endmap

Spread Signal to spread
Nearby Pixels <convolution kernel specification>
endspread

B.2. Definition of Simple Devices and Elements of Compound Devices

A file defining a simple device or an element of a compound device contains the sequence
of mathematical operations performed by the device. Table B-III shows the syntax for the
operations provided by the current prototype code.

The argument command, normally placed at the beginning of the definition, identifies
the variable <name> as an argument to the definition that follows. The prototype model
checks that this variable exists before processing the remainder of the definition. The
<description>, treated as a comment by the prototype model, should briefly describe the
corresponding parameter.

The gain command specifies an amplifying mechanism within a device or element. The
value of the <freedom parameter> may be zero for an ideal (Poisson) amplifying element or
the freedom parameter (n') of the negative binomial distribution for a single event (input
of one count) in each element. The simulation multiplies both values by the number of
events (incident counts) to obtain the actual distribution parameters.

The atten command specifies a loss by Bernoulli selection within the component. The
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attenuation (loss) factor must be between zero and one.

The bias command specifies the addition of a fixed (D. C.) component to the existing
signal. The value of the <freedom parameter> may be zero to indicate an ideal (Poisson)
bias source or the freedom parameter (n') of a negative binomial distribution with the
expected value specified by <ezpected signal>.

The electron and photon commands convert the signal, respectively, to electrons or
to photons of the specified wavelength. The wavelength in the photon command must be
in meters. These commands do not change the number of counts in an image pixel, but
they set internal values in the model for the corresponding type of signal including the
lambda and resp values described below.

The set, delete, and comment commands are identical to the corresponding com-
mands in the detection system file. The definition of a device or element should generally
“clean up after itself” by deleting any variables that it creates.

The pixelmap...endmap and tapermap...endmap command blocks specify changes in
the pixel geometry. The pixelmap block tells the simulation to resample the image pixels by
dividing the signal in an old pixel among the overlapping new pixels and interpixel spaces.
The tapermap sequence retains all counts in the corresponding pixel while changing the
pixel geometry. The key words pixelmap or tapermap and endmap each occupy separate
records of the input file. The <pizel geometry specification> in these command blocks
contains a separate set of commands described below.

The spread. . .endspread command block specifies a convolution kernel for redistribu-

tion of the counts in each pixel of an image. The specification of the convolution kernel is
described below.

B.3. Specification of Pixel Geometry

Common components in detection systems have a number of geometric configurations
in their image planes. The active area of a pixels may be square, rectangular, hexagonal, or
circular. The pixels may be centered on square, rectangular, or hexagonal grids. Further,
the center of a device may not be on the axis of the detection system and the device may be
rotated relative to other components. The prototype model requires numerous parameters

and tokens to fully specify all of these variations, exceeding the reasonable capacity of a
single command line.

At first glance, a pixel geometry specification in separate file referenced by a single
command of the form

pixelmap <file>

seems more consistent with the convention of one command per line to which the rest of
the detection system model strictly conforms. In requiring a separate file for every change
of pixel geometry, and thus for every device or element with a distinct pixel structure,
this approach would be a serious inconvenience in maintaining libraries of devices and in
distributing definitions to other users. The geometric characteristics of a device or element
logically belong in the device definition rather than a separate file because they are inherent
in the device or element itself. The pixel geometry command block embedded in the simple
device or element definition is therefore a more satisfactory solution. Similar reasoning
applies to the embedding of convolution kernels in spread...endspread command blocks.
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Table B-IV. Syntax for Specification of Pixel Geometry.

Function Command Syntax

Array Sizet array <rows> <columns>

Active Pixel Area pixel <shape specifier>

Grid Geometry grid <grid specifier>

Grid Position center <row shift> <column shift>
Grid Orientation orient <orientation angle>
Comment * <comment tezt>

t — Not allowed in tapermap...endmap command blocks.

Table B-V. Pixel Shape Specifiers.

Shape Specifier

Square square <width >
Rectangle rect <height> <width>
Hexagon hex <width>

Circle circle <diameter>

Table B-IV shows the pixel geometry commands that may appear in the <pizel geom-
etry specification> of a pixelmap...endmap or tapermap...endmap command block. These
commands may appear in any sequence. If a command is not present, its associated values
do not change in the mapping operation.

The array command specifies the number of rows and columns in the pixel array. The
respective arguments <rows> and <columns> must have integer values. For non-rectangular
grids, the number of columns is the number of elements in each row. The array command is
forbidden in tapermap...endmap command blocks because tapering devices cannot change
the number of pixels in the image array.

The pixel command defines the active area of the pixel. Table B-V shows the permit-
ted values for the <shape specifier>. The hexagon is oriented with two sides perpendicular
to the rows of the grid, and the <width> is measured perpendicular to two opposite sides.
The dimensions in the pixel command generally should not exceed the corresponding
spacing parameters in the grid command.

The grid command specifies the grid of points marking the centers of the image pixels.
Table B-VI shows the values permitted for the <grid specifier>. Spacing parameters are
always measured from the center of one pixel to the center of the next, and thus are the
largest value permitted for the corresponding dimension in the pixel command.

Hexagonal grids are somewhat more complicated, mathematically, than square and
rectangular grids. The odd rows of pixels are shifted to the left by one half of the pixel
separation relative to the even rows, effectively creating twice the specified number of
columns but locating pixels only at “even” grid points (that is, grid points where the dif-
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Table B-VI. Grid Specifiers.

Shape Specifier

Square square <spacing>

Rectangle rect <row spacing> <column spacing>

Hexagon hex <spacing>

Offset offset <modulus> <row spacing> <column spacing>

ference between the row and column indices is even). The simulation adjusts the separation
between the rows of pixels to maintain the same separation between adjacent pixels along
the resulting diagonals as along the rows. Figure B-1 shows hexagonal and rectangular
grids with the same spacing and dimensions.

The offset grid extends of the concept of the hexagonal grid by dividing the image into
groups of <modulus> rows. The corresponding rows in each group are shifted a propor-
tionate amount to create a diagonal alignment, so that each diagonal column of one group
aligns with the adjacent diagonal column of the next group. The diagonals run from upper
left to lower right if <modulus> is positive or from upper right to lower left if <modulus>
is negative. The <column spacing> parameter for an offset grid is the distance between
adjacent pixels within each row, so that <row spacing> and <column spacing> specify the
respective maximum dimensions of rectangular pixels. The command

grid hex spacing
is equivalent to

grid offset 2 spacing/sqrt(3.0) spacing
where spacing is a variable set to the desired grid size.

The center command specifies the location of the center of the pixel grid in meters
along the reference axes (the axes of the original image).

The orient command specifies the orientation of the array relative to the reference
orientation, which is the orientation of the original image. The orientation angle is specified
in degrees. The simulation rotates the array about its center point.

Comments may appear anywhere within the geometry command block.

B.4. Convolution Kernels

The <convolution kernel specification> is a sequence of records containing a row offset
and a column offset, both of which are integers, and a real value between zero and one
that represents the fraction of the original signal shifted by that offset. The kernel need
not contain an entry in which both offsets are zero because the simulation retains counts
that are not distributed to other pixels in their original pixel without an explicit entry.

The legal combinations of row and column offsets depend upon the current grid type.
All pairs of integer values are legal for square and rectangular grids. For hezagonal grids,
the difference between the offsets must be even because the simulation counts the inter-
mediate columns of pixels created by shifting the even rows relative to the odd rows in
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Figure B-1. Centers of pizels on hezagonal (top) and rectangular (bottom)
8 % 10 grids with identical row and column separation.
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Table B-VII. Syntax for Definition of Compound Devices.

Function Command Syntax

Arguments argument <name> <description>
Element element <filename>

Set Variable set <variable> <value>

Delete Variable delete <wvariable> y
Comment * <comment tezt>

computing the final offset position. Thus, proceeding clockwise from directly above a pixel
in a hexagonal grid, its six nearest neighbors have (row,column) offset pairs of (-1,1), (0,2),
(1,1), (1,-1), (0,-2), and (-1,-1). Similarly, for offset grids, <modulus> must divide the dif-
ference (positive modulus) or sum (negative modulus) of the offsets because the simulation
counts the intermediate columns of pixels created by shifting the rows in each group.

B.5. Definition of Compound Devices

Definitions of compound devices are a cross between definitions of detection systems
and definitions of simple devices, and thus bear some but not all characteristics of each.
Table B-VII shows the commands that define compound devices.

The element command specifies the file defining an element of a compound device.
This command is similar to the device command in the detection system file, but it omits
the type specifier since there is only one type of element.

The remaining commands in the definitions of compound devices are identical to their
counterparts in definitions of detection systems and in definitions of simple devices.

B.6. Specification of Devices of Specific Classes

Specific classes of devices, if added to the detector model, differ from general classes
of devices in that the correct sequence of mathematical operations will be built into the
simulation. Thus, the input file for a specific class of devices will normally contain only a
sequence of parameters and identifiers to distinguish a particular device from others in the
class. If appropriate, the sequence may also include names of input files corresponding to
additional levels of the hierarchy.

B.7. Numerical Arguments

The detection system model accepts standard algebraic expressions for all numerical
arguments for which a real (floating point) value makes sense. These expressions follow
standard algebraic logic, as defined by the grammar in Table B-VIIIL. This grammar fol-
lows the standard precedence that evaluates expressions in parentheses first (by recursive
application of the evaluation rules), followed by (unary) plus (+) and minus (=), then by
multiplication (*) and division (/) from left to right, and finally by (binary) addition (+)
and subtraction (-) from left to right. The detection system model also recognizes the rich
set of mathematical functions shown in Table B-IX. Calls to these functions may appear
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Table B-VIII, Standard Grammar for Numerical Expressions.

Entity Permitted Expansions
Expression Term
Expression+Term

Expression-Term

Term Factor
Term*Factor
Term/Factor

Factor Primary
+Primary
-Primary

Primary UnsignedConstant (1)
Variable (2)
FunctionReference (3)
(Expression)

Notes to Table B-VIII.

(1)

(2)

(3)

An UnsignedConstant may be the symbolic name pi, which evaluates to the
mathematical constant m, or a numerical constant written in standard floating
point format consisting of a mantissa optionally followed by an exponent. The
mantissa may follow one of three forms: (1) a string of decimal digits optionally
followed by a decimal point, (2) a string of decimal digits followed by a decimal
point and another string of decimal digits, or (3) a decimal point followed by a
string of decimal digits. If the optional exponent is included, it must consist of
either e or E, an optional sign (+ or -), and a string of decimal digits. Strings
of decimal digits must not be empty.

A Variable is a symbolic name other than pi. It may consist of any sequence
of alphanumeric characters, the first of which must be alphabetic, other than
the symbolic name pi which is reserved for the mathematical constant #. The
special variable random evaluates to a random value uniformly distributed on
the unit interval. The special variable gauss evaluates to a random value with
a normal (Gaussian) distribution of zero mean and unit standard deviation. All
other names refer to predefined and user variables and physical constants.

A FunctionReference must agree with the permitted syntax shown in Table B~
IX. Each numerical argument to a function (z, y, and any additional arguments
to the functions max and min) must be an Expression as defined in Table B-VIII.
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as primaries in any expression. The evaluator uses the standard floating point (REAL) data
type of the host processor for all computation.

The data function in Table B-IX interpolates an argument into a table of values con-
tained in a separate data file. This function permits use of laboratory measurements of
device characteristics. It also accommodates functional forms that are not easily repre-
sented in terms of the standard mathematical functions supported by the evaluator. For
example, if a data file named s20-eta.dat contains the quantum efficiency of an S-20
photocathode as a function of wavelength in meters, the command

atten data(’s20-eta’,lambda)

in a device or element file represents the quantum loss at any wavelength in the domain
of the data file. In this example, the simulation interpolates the tabulated data in the
file to find the quantum efficiency at the system wavelength, then it draws random values
for each pixel from a binomial distributions with the correct expected value and freedom
parameter to simulate the noise added by the attenuation (Bernoulli selection) process.

The prototype model defines variables to the values shown in Table B-X and the metric
prefixes shown in Table B-XI before it parses the files defining the detection system. The
bias, atten, and gain commands also set the variable signal to the number of events in
the current pixel. These names may appear as primaries in any expression without prior
definition by the user. The set »1:d delete commands cannot change or delete any of these
values, but the photon ar ' ¢ _ectron commands respectively set lambda and resp to the
correct values. Multinlic:..ion by a unit conversion factor universally converts from the
corresponding units to .ae internal units of the simulation. Division by a unit conversion
factor likewise coriverts the internal units of the simulation to the indicated units.

The responsivity conversion factor, resp, converts the responsivity of a photocathode
to quantum efficiency. This conversion factor allows the simulation to use values of re-
sponsivity directly in the attenuation command. If a file named s20-rsp.dat contains the
responsivity of an S-20 photocathode as a function of wavelength in microns, the command

atten data(’s20-rsp’,lambda/micro)*resp

in a device or element file simulates the quantum loss of the photocathode. In this example,
the simulation converts the wavelength from meters to microns, interpolates the tablulated
data in the file s20-rsp.dat to obtain the responsivity of the detector, computes the
equivalent quantum efficiency, and attenuates the signal.

The simulation does not accept expressions for arguments that require integer values,
such as the dimensions of a pixel array.

B.8. References

1. S. E. Rafuse, D. Wyshogrod, N. R. Guivens, Jr., and P. D. Henshaw, “Laser Radar
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Table B-IX. Function Calls Permitted in Numerical Expressions.

Syntax Description Restrictions
abs(z) Absolute Value

acos(z) Inverse Cosine -1<z<1
asin(z) Inverse Sine -1<z<1
atan(z) Inverse Tangent

atan(z,y) Full Circle Inverse Tangent (1) y#0ifz=0
cos(z) Cosine (5)
cosh(z) Hyperbolic Cosine (5)
data(’ file’ ,x) Interpolate Tabulated Data in file (2)

dim(z,y) Positive Difference

exp(z) Exponential (5)
int(z) Truncate to Integer (5)
log(z) Natural Logarithm z>0
log(z,y) Logarithm to Base y of z z>0,y>0
max(z,y[,2..]) Maximum (Most Positive) Value (6)
min(z,y[,2...]) Minimum (Most Negative) Value (6)
mod(z,y) Modulus y Congruence of z (3) y>0
nint(z) Round to Nearest Integer (5)
pow(z,y) Raise z to y power z20,y>0ifz=0
sign(z) Sign Function (4)

sign(z,y) Transfer of Sign (4)

sin(z) Sine (5)
sinh(z) Hyperbolic Sine (8)
sqrt(z) Square Root 20
tan(z) Tangent (5)
tanh(z) Hyperbolic Tangent (5)

(See notes at top of next page.)
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Notes to Table B-.

(1)

(6)

The function call atan(z,y) is equivalent to atan((z)/(y)) if y > 0 or to
atan((z)/(y))-sign(pi,z) if y < 0. in keeping with the standard convention
of many computer languages. If y = 0. this function returns 0 or = depending
upon the sign of z.

The function data(’ file’ ,z) interpolates tabulated data in a file named file to
obtain the function value. The data in the file must define a function by a series
of data points of the form z;, f (z;) arranged in order of increasing z;. Each
data point must appear on a separate record of the file with the two values
separated either by a comma optionally followed by spaces or by one or more
spaces. Blank and comment records may be placed as desired before, between,
or after the data records. but comment records must not begin with numerical
values. Comment text. preceeded by one of the delimiters that separate data
values. may also be appended to any data record.

The mod(z,y) function returns the congruence of the first argument on the
modulus of the second argument using the standard mathematical definition of
modulus. This function never returns a negative value.

The function sign(z) returns 1.0 if z is positive. -1.0 if z is negative. or 0.0 if
z is zero. The function sign(z,y) returns -abs(z) if y is negative and abs(z)
otherwise. Thus, sign(1.0,y) and sign(y) are equivalent if y is not zero.

The mathematical definitions of these functions impose no restrictions on the
values of their arguments, but errors may occur if the values of their arguments
are not within a reasonable range determined by the host processor.

The functions min(z,y[,z...]) and max(z,y[,z..]) require at least two argu-
ments. These functions can have as many additional arguments as will fit into
the input record. The evalutator computes these functions incremnentally to
minimize the chance of stack overflow.

Table B-I1. Predefined Variables.

Name Value Units

lambda System Wavelength () Meters

resp Responsivity Conversion Factor (hc/)e) Watts/Amp

he Photon Wavelength-Energy Product (hc) Joules/Meter-Count

elec Charge of Electron (e) Coulombs/Count
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Table B-XI. Predefined Unit Conversion Factors.

Name Value
milli 10-3
micro 10~
nano 10~°
pico 10712
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Name I Value
kilo | 10°
mega ; 10°
giga \ 10°
tera | 1012




Appendix C. The Prototype Code

SPARTA implemented a prototype code for the detection system model to demon-
strate the concept of the model and to provide a test code for refinement of the model
before its incorporation into SPARTA’s optical sensor simulation, SENSORSIM, and the
simulation module of the Defense Laser/Target Signatures (DELTAS) code. Written en-
tirely in FORTRAN 77 with minor extensions described below for compatibility with the
SENSORSIM and DELTAS codes, this prototype code follows the same basic structure
as the detection system model. The code’s main routine corresponds corresponds to the
overall detection system at the top level of the model’s hierarchy, with separate subrou-
tines for simple and compound devices, elements, and mathematical operations at each
subordinate level. Numerous utility routines perform standard functions such as parsing
input and generating random numbers with various distributions. Two additional modules
manage image buffers and variables defined by the user.

C.1. Overall Structure

The structure of the prototype code follows the basic hierarchical structure of the de-
tection system model. The main program simulates the overall detection system, calling
subroutines that simulate each class of device. The subroutines SIMPLE and COMPND re-
spectively simulate simple and compound devices. The subroutine COMPND in turn calls
the suoroutine ELEMNT to simulate each element of a compound device. In the prototype
code, the subroutine ELEMNT is actually a second entry point in subroutine SIMPLE, as this
allows both routines to share a large block of common code.

The core of the simulation’s main program is a nested “block IF” logic tree in a loop
over the records of the detection system files. The subroutines SIMPLE and COMPND contain
similar logic trees that loop over the records of their respective input files. These logic trees
call the parsing routines PARSE, NUMARG, and INTVAL as necessary to parse and interpret
each command, executing each command once it is interpreted. The main program also
contains code to initialize the model and to save the final image.

The parsing routines PARSE, NUMARG, and INTVAL provide full parsing capabilities for
all command files. The subroutine PARSE returns the next token in the command line as
a text string. The function NUMARG is a sophisticated numerical expression evaluator that
computes the value of floating point arguments to each command, calling a user variable
handler, described below, to obtain the value of each variable or constant other that pi,
random, and gauss that appears in an expression. The function INTVAL reads integer
values from the record, but it does not provide any support for integer expressions beyond
a simple value.

The subroutine SIMPLE calls a set of subroutines that execute mathematical operations
according the commands in the definition of each simple device or element. Table C-I
shouws the subroutines that execute mathematical operations in the prototype code. To
add another mathematical operation to the simulation, one need only define a command
corresponding to the operation, write and test a subroutine to execute the operation, and
add a few statements to the logic tree in SIMPLE to parse the command and call the

38




Table C-1. Mathematical Operations in the Prototype Model.

Operation Routine
Losses (Bernoulli Selection) ATTEN
Amplification AMPLFY
Fixed (D. C.) Bias BIAS
Change Pixel Geometry PXLMAP
Spread Signal to Other Pixels SPREAD

Table C-II. Pixel Geometry Routines.

Operation Routine
Area of Intersection of Two Circles CCAREA
Area of Polygon PGAREA
Extreme Limits of Polygon PGEXTR
Area of Intersection of Polygon and Circle PGINTC
Overlap of Two Polygons PGOVRL
Vertices of Rectangle PGRECT
Vertices of Regular Polygon PGREGN
Rotate Vertices of Polygon PGTURN

subroutine. The main program also calls the subroutine AMPLFY to simulate shot noise as
part of its initialization process.

The subroutines that execute mathematical operations call several routines that gen-
erate random values with various distributions. For signals expected to exceed forty (40)
counts, the mathematical routines approximate the distributions of the binomical family
by rounding values drawn from Gaussian distributions with the same mean and standard
deviation to the nearest integer value. The subroutine PXLMAP also calls the geometry
routines shown in Table C-II to determine the overlapping area of the old and new pixels.

The simulation’s image buffer manager, described below, maintains the image pixel
array and associated parameters. The main program calls the image buffer manager to load
the focal plane image and to write images to files. All other routines call the appropriate
functions of the image bufier manager to obtain or change image values.

C.2. User Variable Handler

The user variable handler is a single module with the functions shown in Table C-IIIL
These functions return the LOGICAL values .TRUE. if successful and .FALSE. on error.

The variable handler provides two functions to manage memory for storage of user
variables. The function USRVAR either allocates memory for a specified number of variables
or verifies that thc memory previously allocated can accommodate a specified number of
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Table C-III. User Variable Handler Functions.

Operation Routine
Allocate/Verify Storage USRVAR
Set Value of Variable SETVAR
Return Value of Variable GETVAR
Add Value to Variable ADDVAR
Multiply Variable by Value MLTVAR
Delete Variable DELVAR
Release Variable Storage DONVAR

additional variables. The function DONVAR deallocates this memory, thus deleting all user
variables.

The remaining functions of the variable handler operate on individual variables. The
function SETVAR sets the value of a variable, creating the variable if it does not already
exist. The function GETVAR returns the current value of a variable to the calling routine.
The function ADDVAR adds a value to the current value of a variable, recording the result as
the new value of the same variable. The function MLTVAR similarly multiplies the current
value of a variable by a specified value. Finally, the function DELVAR deletes a variable,
allowing another variable to take its place.

The prototype code allocates storage for sixty-four (64) variables. Fourteen (14) of
these variables are reserved for the predefined physical constants and unit conversion fac-
tors. The remaining fifty variables are available for the definition of the detection system
and its components.

C.3. Image Buffer Manager

The image buffer manager is a module containing the functions shown in Table C-IV.
These functions manage memory for image buffers, store and retrieve images, manipulate
image pixel values, and manage supplemental specifications associated with each buffer.
The functions PIXEL and SPEC return the values that they retrieve as the value of the
function. All other functions return the LOGICAL values .TRUE. if successful and .FALSE.
on error.

The image buffer manager maintains nain and auxilliary image buffers. When only
one buffer is active, it is always the main image buffer. When both buffers are active, the
buffer created most recently is always the main buffer.

The function NEWBUF creates a new image buffer with dimensions specified by the calling
routine. The function IMGBUF creates a new buffer and loads an image into it from a disk
file. The function WRTBUF writes a copy of an image to a disk file. The function DELBUF
deletes an active buffer. The function DONBUF deletes all active buffers. The function
BUFDIM tests the current status of a buffer and returns the buffer dimensions if the buffer
is active.

Several functions in the buffer manager manipulate image pixel values. The functions
SETPIX, ADDPIX, and MLTPIX respectively set a single pixel to a value, add a value to a
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Table C-IV. Image Buffer Manager Functions.

Function Name
Reserve New Image Buffer NEWBUF
Load Image to New Buffer IMGBUF
Write Buffer to Image File WRTBUF
Return Buffer Dimensions BUFDIM
Initialize Buffer SETBUF
Add Value to Buffer ADDBUF
Multiply Buffer by Value MLTBUF
Set Pixel Value SETPIX
Add Value to Pixel ADDPIX
Multiply Pixel by Value MLTPIX
Return Pixel Value GETPIX
as Function Value PIXEL
Duplicate Specifications DUPSPC
Set New Specifications NEWSPC
Return All Specifications ALLSPC
Set Single Specification SETSPC
Return Single Specification GETSPC
as Function Value SPEC
Delete Buffer DELBUF
Delete All Buffers DONBUF

single pixel, and multiply a single pixel by a value. The functions SETBUF, ADDBUF, and
MLTBUF perform the same respective operations uniformly on each pixel of a buffer. The
functions GETPIX and PIXEL return the value of a pixel to the calling routine.

The buffer manager also maintains supplemental specifications for each image buffer.
These supplemental specifications are real values that are stored in the image file. The
function DUPSPC copies the specifications from the auxilliary buffer to the main buffer. The
function SETSPC and sets a single specification. The functions GETSPC and SPEC return a
single specification to the calling routine. The functions NEWSPC and ALLSPC respectively
set and return all specifications. The function NEWSPC also reallocates the specification
array, permitting changes in its size. These supplemental specifications are written to each
image file along with the image dimensions and pixel values.
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C.4. Programming Language

The use of FORTRAN ’77 for the SENSORSIM and DELTAS simulations, to which the
new detection system model may be added in the future. made FORTRAN the language
of choice for the prototype source code as well. The X3J3 (FORTRAN) subcommittee
of the American National Standards Institute (ANSI) has developed a new standard for
the FORTRAN programming language, commonly known as FORTRAN ’90, which is
a proper superset of FORTRAN ’77. At the start of this project, final approval of the
FORTRAN ’90 standard was thought to be imminent, but it is now pending resolution of
several peripheral issues [1].

The source code for the prototype model conforms as far as possible to the FOR-
TRAN '77 standard [2], thus ensuring maximum possible compliance with the anticipated
FORTRAN 90 standard. The prototype source code does contain a few extensions to
perform operations that are not possible within the FORTRAN ’77 standard, but it can
run on any processor conforming to the ANSI FORTRAN ’77 standard with minor modi-
fications described below. The prototype code compiles correctly with version 5.0 or later
of the Microsoft FORTRAN compiler on IBM or compatible personal computers.

The prototype code has a simple “prompt and response” interface similar to that of
SENSORSIM. Two of the extensions enhance this interface. First, several console WRITE
statements in the main program contain backslash (\) characters in their format strings.
This Microsoft extension causes the console READ statements following the affected WRITE
statements to display the user’s input on the same line as the prompt rather than on the
following line. Second, the main program calls the subroutine CLRSCR to clear the screen.
This subroutine clears the screen by writing an ANSI (VT-100) terminal control sequence
that is not defined in the FORTRAN 77 standard. These extensions may be replaced
with equivalent extensions of another processor or removed completely without affecting
the results generated by the program.

The prototype code uses SENSORSIM’s image input and output routines to store
and retrieve image files. These routines open image files with Microsoft’s FORM=’BINARY"’
extension in their OPEN statements to provide compatibility with the input and output
system of the C programming language. SENSORSIM’s image input and output routines
also compress images in a lossless run length encoded format that adds only four bytes to
files containing uncompressible images. These routines can be replaced with image input
and output routines for another environment by changing a few subroutine calls in the
image buffer manager.

Several routines in the prototype code use dynamic memory allocation to avoid poten-
tially unacceptable compromises between excessive memory requirements and limitations
on capacity. Microsoft’s implementation of dynamic memory allocation is very close to
the proposed FORTRAN ’90 standard, differing only in the syntax for declaring the AL-
LOCATABLE attribute of the affected arrays. Removal of this extension entails changing the
declarations of the affected arrays to specify fixed dimensions and replacing the ALLOCATE
and DEALLOCATE statements, calls to the ALLOCATED() intrinsic function, and associated
error handling code with code to check the adequacy of the fixed dimensions.
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