AD-A258 468 - @
LT CAUISEL o5 SR-3

e Carneape Mellon University

= Software Engineering Institute

Joint Integrated Avionics
Working Group (JIAWG)
Object-Oriented Domain
Analysis Method (JODA)

Version 3.1

Robert Holibaugh
November 1992

he
e o o
¢ o o

This d @@t has been appr .
tor public¥elease and sale; its
~ fi_;strzyutxon is unlimited,

4

o

92-32847
AL TR 05 1 o G

Special Report

CMU/SEI-92-SR-3
November 1992

Joint Integrated Avionics Working Group (JIAWG)
Object-Oriented Domain Analysis Method (JODA)

Version 3.1

Robert Holibaugh

Joint Integrated Avionics Working Group

Approved for public release.
Distribution uniimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEl Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

S hwa Sl

Thomas R. Miller, Lt Col, USAF
SEI! Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright ® 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction

—t amd ok b b
L AR SR

Purpose

Goals of Domain Analysis

Background

Relationship of Object-Oriented Analysis to JODA
Relationship of the JIAWG Method to the

Other Domain Analysis Methods
1.6 Organization of the Report

2 Context for Domain Analysis
2.1 Domain Engineering

211

Domain Analysis

2.1.2 Domain Implementation
2.1.3 Active Repository
2.2 Applications Engineering

221

DoD Standard Requirements

2.2.2 Model/Requirements Transformation

3 Domain Analysis Overview
3.1 Prepare Domain
3.2 Define Domain
3.3 Model Domain (OOA)

4 Domain Analysis Products
4.1 Domain Model

4.1.1
4.1.2
413
41.4
4.1.5
4.1.6

Requirements for the Domain Model
Class Specifications

Structure Diagrams

Subject Diagrams

Scenario Diagrams

Evolution of the Domain Model

4.2 Domain Definition

421
422
423
424
425
426
4.2.7
4.2.8

Requirements for the Domain Definition
Top-Level Subject Diagram

Top-Level Whole-Part Diagrams

Top-Level Generalization-Specialization Diagram
Domain Services

Domain Dependencies

Domain Glossary

Textual Description

4.3 DoD Standard Requirements

AP OWON -

N O

10
11
14
15
15
16
17

21
22
23
23

25
25
26
27
28
28
29
29
29
30
31
32
33
33
34
35
35
36

CMU/SEI-92-SR-3

5 Prepare Domain
5.1 Acquire Domaiin Expertise for the Analysis
5.2 Collect Source and Reference Material

6 Define Domain

6.1 Define Domain Context

6.2 Analyze Systems Artifacts

6.3 Identify Domain Structure

6.4 Analyze Scenarios with Top-Level Objects

6.5 Analyze Objects for External Dependencies

6.6 Document Domain Definition

6.7 Review and Update Domain Definition
6.7.1 Distribute Domain Definition for Review
6.7.2 Review Domain Definition with Domain Experts
6.7.3 Review Analysis Approach

7 Model Domain (OOA)
7.1 Examine Object Life-Histories and State-Event Response
7.2 Identify and Walk-Through Domain Scenarios
7.3 Abstract and Group Objects
7.4 Review and Update Domain Model
7.4.1 Distribute Domain Model for Review
7.42 Compare Domain Model with an Existing System
7.4.3 Review Domain Model with Domain Experts
7.4.4 Review Modeling Approach

8 Transition to Domain Implementation
8.1 Transition to Domain Imp.ementation
8.2 Relationship of Domain Analysis to DoD-STD-2167A

Appendix A Office Building Elevator
System Diagrams55

Appendix B Office Building Elevator System Specifications
B.1 Specification Statement for the Office Building Elevator System
B.2 Specification of Elevator Lobby Object of
Office Building Elevator System
B.3 Elevator Specification for Office Building Elevator System
B.4 Controller Specification for Office Building Elevator System
B.5 Service Button Specification
B.6 Open Doors Button Specification
B.7 Status Indicator Specification
B.8 Elevator Alarm Specification

37
38
38

41
41
42
43
43
43
44
44
45
45
46

47
48
48
48
49
51
51
51
52

53
53
54

65
65

66
68
69
70
70
71
72

CMU/SEI-92-SR-3

Glossary

References

B.9 Door Specification for Office Building Elevator System
B.10 Elevator Lobby Access Door Specification

B.11 Elevator Arrival Bell Specification

B.12 Object Specification Template

Appendix C CYOOA Notation and Process
C.1 CYOOA Notation
C.2 Analysis Activities

Y

Oist

A

Accesion For l]
f"‘}'"“
NTIS CrAZI
OViC Vi 0
U.aicuzed 0
Just;f.;s.‘uc.l_“_m .

T
By ..

Drst: ibution I

Availabitity Coces
Avaid ad -} or
Special

Y~ -
DTIC QUaiins, - -

72
73
74
75

77
77
81

87

89

CMU/SEI-92-SR-3

CMU/SEI-92-SR-3

List of Figures

Figure 2-1
Figure 2-2
Figure 2-3

Figure 3-1
Figure 4-1
Figure 5-1
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure A-1

Figure A-2

Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12

Figure A-13
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5

Reuse Based Software Development

Applications Engineering Based on Domain Engineering
Relationship of the DoD Standard Requirements to the
Domain Model

Domain Analysis Process

Table of Adaptation Types

Domain Preparation Process

Domain Definition Process

Domain Definition Review Process

Domain Modeling Process

Domain Model Review Process

Top Level Subject Diagram for the

Office Building Elevator System

Assembly Structure Where the Office Building
Elevator System is a Part

Top Level Assembly Structure of an Elevator System
Top Level Classification Structure of Elevator Systems
Second Level Subject Diagram of Elevator System
Door Classification Structures for the Building Elevator System
Status Indicators Classification Structures

Elevator Arrival Bell

Service Button Classification Structures

Elevator Lobby Classification Structures

Elevator Object Diagram for Office Building Elevator
Elevator Lobby Object Diagram for

Office Building Elevator System

Controller for the Office Building Elevator System
Class/Object Notation

Gen-Spec Diagram

Instance Connection Constraint Notion

Whole-Part Notation

Subject Notation

16
22
36
37
42
45
47
50

55

55
56
57
58
58
59
59
60
61
62

63
63
77
79
80
81
81

CMU/SEI-82-SR-3

vi

CMU/SEI-92-SR-3

Joint Integrated Avionics Working Group (JIAWG)
Object-Oriented Domain Analysis (JODA) Method

Abstract: The Joint integrated Avionics Working Group (JIAWG) Reuse
Subcommittee has initiatives in several areas to demonstrate that reuse can
effectively support the JIAWG programs, and the creation of reusable assets is
an essential element of reuse. Domain analysis is the process that identifies
what is reusable, how it can be structured, and how it can be used. This report
describes a method for domain analysis that is based on Coad and Yourdon's
Object Oriented Analysis. This method, the JIAWG Object-Oriented Domain
Analysis (JODA), includes several enhancements to the method of Coad and
Yourdon and produces a domain model to support asset creation and reuse.

1 Introduction

The Joint Integrated Avionics Working Group (JIAWG) is a Tri-Service effort mandated by
Congress to exploit maturing technology to realize the economic, supportability, and interop-
erability advantages of commion avionics hardware and software. The JIAWG Reuse Subcom-
mittee, which is part of the Software Task Group, has developed initiatives in several areas to
demonstrate that software reuse can effectively support the JIAWG programs [A-12, the Air
Force’s Advanced Tactical Fighter (ATF), the Army’s Light Helicopter (LH), the Air Force's Ad-
vanced Tactical Aircraft (AF ATA), the Navy's ATF (NATF), and A-12 Preplanned 3 Product
Improvement (P 1)]. The Reuse Subcommittee initiatives are: domain analysis, contract incen-
tives, standards to support reuse, and reuse libraries.

The JIAWG Reuse Subcommittee’s domain analysis group has been chartered with:

* selecting, defining, documenting, and refining a domain analysis method,

¢ performing an example avionics domain analysis and documenting the
results, and

* documenting the lessons learned from the domain analysis effort.

1.1 Purpose

The purpose of this report is to document the JIAWG Object-Oriented Dorain Analysis (JODA
(pronounced as if written “yoda”)) method that could be used by the JIAWG programs for
domain analysis. This method has already been used by the JIAWG Reuse Subcommittee’s
domain analysis group to anatyze an avionics domain, stores management. This method and
the results of the stores management analysis are intended as examples for the JIAWG Sys-
tems Program Offices (SPO) and contractors. The Reuse Subcommitiee domain analysis
effort is also intended to demonstrate the effectiveness of domain analysis technology for avi-
onics software.

CMU/SEI-92-SR-3 1

The approach presented in this document is only one of several views of a reuse life cycle.
(For other examples, see references 14, 25, and 29.) This domain analysis method is based
on the object-oriented analysis (OOA) techniques and notation defined in Object-Oriented
Analysis by Coad and Yourdon [7,8], which we will refer to as CYOOA. In this document,
CYOOA notation has been broadened to include: performance issues, scenarios for control-
ling the objects, and rationales for how, when, where, and why to use the objects when build-
ing systems. These additions were necessary since CYOOA was originally intended for
requirements analysis in the construction of a single system. CYOOA notation was enhanced
to validate and demonstrate the effectiveness of object-oriented techniques to support domain
analysis.

We believe that software objects are more understandable, more adaptable, and less likely to
change than functions. Tactical aircraft will always carry bombs, so a bomb object will always
be part of a Stores Management System. The functions needed to manage and deliver a bomb
will change over time, but the software changes are restricted to the bomb object, making it
easier to adapt that object [5, 16]. Finally, the bomb object's functions are limited to the state
defined by the object thus making the object easier to understand and change, since the main-
tainer need only understand the bomb object and not all of Stores Management. For these rea-
sons, object-oriented techniques have been chosen instead of a functional approach. Our
domain analysis goal is to represent the requirements with OOA notation in a domain mode!
that can be used to produce object-oriented requirements, designs, code, and tests.

The office building elevator systems (OBE) example was specifically chosen to help illustrate
the domain analysis method and concepts. (The OBE problem statement is given in Appendix
B.1.) The OBE system that provides safe and equitable service for its passengers for some
number of elevators that service several floors was chosen because:

* the OBE is well understood by a large audience,

¢ the OBE illustrates the concepts of the method,

* the OBE illustrates the breadth and depth of even simple domains, and
* a clear, concise problem description was readily available.

1.2 Goals of Domain Analysis

The goal of domain analysis is to define a domain model that can be used to produce reusable
software objects (RSO), especially reusable requirements. The information in the domain
model is collected using CYOOA techniques. Domain analysis is part of the domain engineer-
ing process that uses the domain model to define a reusable software architecture, to design
reusable code (a more detailed level of design than architecture), and to define the structure
of the domain. The domain structure is the organization of the parts as dominated by the gen-
eral character of the whole [24]. The domain structure is defined by the CYOOA diagrams that
define the composition of the domain through whole-part diagrams and the variation in objects
using generalization-specialization (gen-spec) diagrams. The objects are defined by their ser-
vice and their attributes, while domain structure is defined though whole-part concepts, varia-

2 CMU/SEI-92-SR-3

tion in objects, services, attributes, and concepts, and the relationships between these objects
and concepts.

1.3 Background

Gilroy, et. al., conclude in their research that, “Domain analysis, when done right, is a signifi-
cant undertaking yet prcduces a significant benefit [13].” At a high level, domain analysis is a
combination of reverse engineering, knowledge extraction, knowledge representation, re-
quirements forecasting, and technology forecasting. In domain analysis, the essential con-
cepts are extracted, represented, and adapted for reuse. Knowledge extraction and
representation are used to establish a domain framework, while reverse engineering fills in the
details and validates the framework. Technology forecasting and requirements forecasting
techniques are used to ensure the results remain viable while the investment in domain anal-
ysis is recovered. Recent literature on reuse indicates that domain analysis is one of the first
activities that should be performed during the engineering of reusable software [21, 29]. Orga-
nizations that have conducted domain analysis prior to creating reusable software compo-
nents have shown greater success in reusability {18, 20]. Reusable components that are
constructed from the results of domain analysis capture the essential concepts required in that
domain; thus, developers find them easier to include in new systems [28].

After reviewing the literature on domain analysis, the author recognized that the information
that is commonly collected by domain analysis methods is essentially the same as that defined
by the CYOOA notation. For two additional reasons, CYOOA was selected and enhanced to
support our domain analysis needs. First, other domain analysis efforts use CYOOA notation
in thair domain analysis products. Second, selecting a commercial analysis technique makes
training, tools, and consulting support readily available. There was one major difference be-
tween CYOOA and other domain analysis representation techniques. The information that
was being represented and organized using CYOOA notation was accessible, understand-
able, and concise. Even though there is no consensus on what results to represent in domain
analysis, the core set of our needs is met by CYOOA.

After further examination of the CYOOA notation and method, another domain analysis effort
was identified that uses CYOOA for its domain model [29]. The Software Productivity Consor-
tium (SPC) has made minor additions to the notation; for example, SPC has added a textual
discussion of the variation in classes, a textual discussion of the occurrence of the number of
objects, and a discussion of performance requirements on the overall system. Since CYOOA
was being used by other reuse efforts and had commercial acceptance, training, and tools,
CYOOA techniques were chosen for extracting, organizing, and representing the domain
model.

In typical Department of Defense (DoD) software development, only the requirements, de-
signs, code, and test materials are usually recorded, and if domain knowledge is recorded, it
is never delivered. The value of the domain knowledge that is acquired by the developer is fre-
quently not even recognized, and therefore, it is not available for post deployment software

CMU/SEI-92-SR-3 3

support (PDSS). Since the JIAWG aircraft may be in the DoD inventory for as long as twenty
years, PDSS which is also concerned with change and variation is a major concern of the
JIAWG Systems Program Offices (SPO). PDSS includes two activities: first, correcting prob-
lems with the system, and second, making necessary enhancements. To locate and correct
systems problems, the maintainer must understand the system requirements, design, and
code. The organization of information collected during domain analysis supports identifying,
locating, and correcting the problem, since the domain knowledge helps the maintainer under-
stand the what, how, when, where, and why for the system data and services. The second ma-
jor PDSS activity includes making changes or enhancements to the system.

The domain model contains the information that is necessary (but seldom available) for mak-
ing changes or enhancements to an existing system. The domain model includes the rationale
for all domain services, attributes, and objects. In fact, a desired PDSS change or enhance-
ment may already be in the model, and its inclusion in the system may be relatively simple.
Domain analysis supports post deployment software support as well as reuse, because it cap-
tures and anticipates change.

1.4 Relationship of Object-Oriented Analysis to JODA

Object-oriented analysis techniques are used to define the structure and capture require-
ments, but Coad and Yourdon’s Object-Oriented Analysis (CYOOA) is not the same as the
JIAWG Object-Oriented Domain Analysis (JODA). JODA and CYOOA differ in both notation
and process: JODA has enhanced the CYOOA notation and process. The specific areas
where JODA and CYOOA differ are as follows:

¢ The problem statement’s scope is fixed before starting CYOOA, but it is not
fixed in domain analysis.

¢ CYOOA notation addresses a single system while JODA notation addresses
a family of systems.

* CYOOA notation does not include scenarios definitions that have been
include in JODA to define the use of the domain’s visible services.

¢ An abstraction activity that is notin CYOOA has been included in the analysis
phase of JODA.

* A scenario definition and walk-through activity has been added to the
modeling phase of JODA.

The problem statement is fixed at the beginning of CYOOA while it changes after the begin-
ning of the JODA process. CYOOA is a software requirements analysis technique [7,12] that
has the problem defined by System Design [8, 12] since CYOOA is intended to support the
software engineering process. Domain analysis receives input from the Business and Meth-
odology Planning steps [17], but these steps do not define the domain or bound the problem.
Domain analysis must define the domain in addition to identifying, locating, and collecting
source material.

4 CMU/SEI-92-SR-3

The second difference between CYOOA and JODA concerns the scope of the problem.
CYOOA is intended to address the analysis of a single problem and does not have all the no-
tation and techniques required for defining variation in the domain. These deficiencies do not
prevent the use of CYOOA; rather, by adding to the notation, CYOOA can be enhanced to
specify a domain instead of a single problem. Since CYOOA allows for the inclusion of addi-
tional notation, this can be done easily. For example, CYOOA does not contain a rationale for
describing how, when, where, and why to select options, services, and instances. (Rationale
is necessary when the reuser must select between options in the domain.) Also, CYOOA no-
tation does not contzin a mechanism for defining requirements which range over multiple ob-
jects and a mechanism for specifying real-time performance parameters. Additions have been
defined in JODA to specify these requirements.

CYOOA does not have notation for defining scenarios that are a series of object services that
produce a larger capability such as the stores management services that a pilot uses to re-
lease a bomb. Scenarios and their description are essential to domain and software require-
ments analysis. While a users’ manual will describe scenarios that use the system’s services,
there is no users’ manual for domain analysis. Scenarios have been added to CYOOA to iden-
tify high-level capabilities in the domain. Notation has also been added to define the rationale
for each whole-part relationship, instance connection, and gen-spec relationship.

JODA and CYOOA also differ in analysis technique. The JODA analysis technique is an ex-
tension of CYOOA. The CYOOA analysis defines five activities, but the order of the activities
is not fixed. (See Appendix C.) JODA does not prescribe an ordering, but it adds two additional
activities: (1) identify and walk-through scenarios, and (2) abstract and group objects. CYOOA
does not emphasize identifying scenarios or abstracting objects across systems.

The domain analysis team must identify, document, and simulate scenarios to validate the ob-
jects and their relationships. One reason for including scenarios is that high-level services like
delivering a bomb are a combination of other domain services. These scenarios are important
for a user to obtain a gestalt for the domain. The simulation of scenarios is a basic technique
used by experts to develop systems [1]. In JODA, these scenarios are explicitly identified, de-
fined, and simulated by the analysts. The identification and definition helps organize and clar-
ify the domain requirements. The simulation validates the classes, attributes, and services that
have been specified. Scenarios help the domain analyst and the users to understand and ap-
ply the results of domain analysis.

The process of abstracting domain analysis results is similar to but not the same as defining
gen-spec structure. The abstraction process includes defining additional gen-spec structure,
but it also includes identifying subjects (as in Figure A-5). This subject diagram provides an
overview of the objects and their relationships for OBE systems. These abstractions are part
of the CYOOA notation, but abstraction is not applied so that the results cover several sys-
tems. The merging of objects and services from similar systems into an abstract representa-
tion supports an integrated view of the domain. This integrated view is the goal of the abstract
and group objects activity of domain modeling. This goal is important because the user of the

CMU/SEI-92-SR-3 5

domain model can analyze the subjects and their associated objects on at a time. This helps
prevent confusion and reduces that amount of detail to an acceptable level. Another abstrac-
tion example is the definition of Doors in Appendix B.9. Three door types (elevator lobby, ele-
vator, and elevator rear doors) were defined during the initial pass through the domain. These
door had similar services, but the abstraction was not identified until after the CYOOA analysis
was complete. The classes Services Button (as was the style in CYOOA, all objects from the
OBE example in this document will be capitalized in the text to identify them) in Appendix B.5
and Status Indicator in Appendix B.7 were also identified during the emphasis on abstraction.
These abstractions have been useful for describing the domain especially at the high level.

Two activities have been added to CYOOA analysis: identifying and walking through domain
scenarios and abstracting and grouping objects. These additions enhance CYOOA to specify
a family of systems, and they can be interleaved with other domain analysis activities.

1.5 Relationship of the JIAWG Method to the Other Domain
Analysis Methods

The JIAWG domain analysis method is similar in many respects to the SPC approach [29], but
it also differs in some distinct ways. Before examining the similarities and differences, the SPC
products and process are listed. The SPC approach to domain analysis has four steps, and
each step creates deliverable products. The SPC steps and their products are:

¢ Domain Description produces domain definition and conceptual taxonomy,
¢ Domain Qualification produces a feasibility analysis,
e Knowledge Base Creation produces a domain knowledge base, and

e Canonical Requirements Development develops the reusable statement of
domain requirements.

Three steps in the SPC approach have a corresponding phase in JODA. The domain descrip-
tion step in the SPC approach is very similar to the JODA domain definition phase. Both efforts
produce a domain definition that controls the scope of the later analysis effort. The SPC’s
Knowledge Base Creation step identifies, locates, and gathers references and source materi-
al. This step is similar to the Domain Preparation phase in JODA. The SPC's last phase is sim-
ilar to the Domain Modeling phase of JODA. The goal of these activities in both methods is to
produce reusable domain requirements. Both the SPC approach and JODA use CYOOA to
define the domain model. The SPC Canonical Requirements Development does not address
the format of reusable requirements. For the JIAWG, the requirements must be compatible
with DoD-STD 2167A DIDs. The model/requirements transformation activity transforms the
CYOOA notation into SRS format. Before we examine the differences in the two methods, the
use of CYOOA notation is examined.

JODA and the SPC approach use the CYOOA to define the requirements, but both methods
have made enhancements to the notation. The SPC has identified three additions to the
CYOOA specifications; they are:

6 CMU/SEI-92-SR-3

¢ a textual description of object variation,
* a textual description of the occurrence of objects, and
e performance requirements for objects and their services.

These three additions are used by SPC to document the details of all objects. JODA does not
include a textual description of object variation or occurrence, but it does include performance
requirements. The JIAWG method has also included notation for documenting scenarios and
the rationale and guidelines for the how, when, where, and why for each variation. The JODA
rationale for each variation is related to SPC's textual variation. For each variation, JODA
gives the rationale for when and where that variation should be used. (The scenarios that
JODA has added are described in the previous section.)

The CYOOA analysis and notation techniques are core concepts to each approach, but the
SPC and JIAWG domain analysis methods differ in the following ways. The SPC method in-
cludes an economic analysis while the JIAWG method does not; the SPC approach does not
address converting the requirements to DoD standard format. From a reuse-based software
life cycle perspective [17], economic analysis is performed during Business Planning. JODA
expects the general domain area to have been selected, and it refines that definition based on
the domain and the time and resources available. The differences between the two methods
can be attributed to the perspectives of the two authors. JODA has focused on the analysis
activity and the use of the results by JIAWG SPOs and contractors, and JODA considers the
economic analysis to be part of a separate activity. SPC emphasizes the importance economic
aspects and domain analysis. SPC's approach is designed to support the Synthesis Method
[6], while JODA does not endorse a particular applications engineering method.

1.6 Organization of the Report

This document assumes that the reader is familiar with the notation and process presented in
CYOOA, and the report describes a domain analysis method based on CYOOA techniques
for analysis and representation. The domain analysis products are defined using the notation
of CYOOA, and most of the examples have been created using CYOOA. If one reads this doc-
ument without an understanding of CYOOA, then the description of the domain analysis prod-
ucts will be confusing. Furthermore, since the definition of the products drive the process, the
reasons for some of the process steps will be unclear.

This report provides the reader with an overview of domain analysis and a detailed description
of the products and the process. Chapter 1 provides background information on domain anal-
ysis CYOOA while Chapter 2 sets the context for domain analysis. Chapter 3 is an overview
of the domain analysis method. Chapter 4 describes the domain analysis products in detail,
while Chapters 5 through 7 discuss the three phases of domain analysis. Chapter 8 considers
the transition to domain implementation and the relationship of the domain analysis and DoD
MIL-STD-2167A. The Appendices contain examples of the application of object-oriented anal-
ysis to elevator systems and a brief description of the activities and notation for documenting
the domain model.

CMU/SEI-92-SR-3 7

CMU/SEI-92-SR-3

2 Context for Domain Analysis

In this chapter, we define the context for domain analysis. Figure 2-1 defines a high-level con-
text for domain analysis. Figure 2-1 also shows how domain engineering can be included in a
software life cycle. Business and Methodology Planning are necessary parts of both Applica-
tions Engineering and Domain Engineering, while Domain Engineering is not a necessary part
of Applications Engineering. Feedback from Applications Engineering is shown to highlight its
importance. Each application which is reuse-based acquires new information that needs to be
entered into the domain model. The new information may require the creation, modification,
or deletion of RSOs. Without this feedback, the maximum return on the reuse investment can-
not be achieved, and the domain model and RSOs will not be current or viable. Below we brief-
ly describe each activity in Figure 2-1; the relationship of Domain Analysis to Domain
Engineering and Applications Engineering is more fully examined in the following sections.
The activities in a Reuse-Based Life Cycle are: Business Planning, Methodology Planning,
Domain Engineering, and Applications Engineering.

Business Planning

This goal of this activity is to identify and select high-leve! domains that will be considered for
domain analysis. The criteria for identifying a domain are: is the domain is well understood, is
the technology predictable, and is domain expertise available to support domain engineering?
The risk of performing domain analysis must also be considered, since domain analysis tech-
nology is still not mature and requires a major investment [23]. Finally, there must be an op-
portunity to recover the investment and show a return on domain engineering. The candidates
for domain analysis need not be rigorously defined: they can be high-level domains like com-
mand, control, and communications or avionics.

Business Business
"1 Pilanning Plan
Domsin &
A Applications
Methodology| Engineering
Planning [|Methods
) Domalin
—»{ Engineering [«t—
7 Update
Active
Repository
Applications|
—*1Engineering
Software
Feedback from System
Applications
Enginesring

Figure 2-1 Reuse Based Software Development

CMU/SEI-92-SR-3 9

Methodology Planning

The goal of this activity is to define a set of methods for domain engineering that is compatible
with the methods for applications engineering. If the methods are not compatible, then the do-
main knowledge and software objects may not be reusable. CYOOA has been selected as the
basis for the JIAWG domain analysis, and the applications engineering method must be com-
patible. Objects can be reused when applications engineering is based on a functional ap-
proach. The type of domain will affect the method to be used. If the domain has hard real-time
requirements, then the domain engineering and applications methods must be able to repre-
sent hard-real time requirements, design, tests, and implementation for domain engineering.
The corresponding method in applications engineering must produce software deliverables
which support hard real-time systems. For example, code generators may not be able to meet
this hard real-time need.

Domain Engineering

Figure 2-2 provides more detailed information about the Domain Engineering activity including
the flow of specific data within Domain Engineering and what data are input to Applications
(Software) Engineering. Domain Engineering acquires and represents information that is used
to create RSOs that are reused during Applications Engineering. Note that Figure 2-1 shows
the feedback from applications (software) engineering to Domain Engineering. This feedback
is necessary to maintain the viability of the RSOs. The goal of each domain engineering activ-
ity is discussed in 2.1.

Applications Engineering

The specific data that is used during Applications Engineering is identified in Figure 2-2. Each
phase of the DoD-STD 2167A Life Cycle uses the results of Domain Engineering. The domain
model is used during Systems Requirements Analysis to produce a SRS. Note that Figure 2-
1 shows the feedback from Applications (software) Engineering to Domain Engineering. This
feedback only occurs when the software engineers and management actively support reuse
during Applications Engineering. This feedback is necessary to evolve the domain model and
RSOs and to support the evolution of reuse into a mature strategy for Applications Engineer-

ing.

2.1 Domain Engineering

The goal of domain engineering is to capture, organize and represent the domain from which
RSOs are produced to support implementing any member of the domain (a family of systems).
The activities in domain engineering are similar to software engineering, but there are two sig-
nificant differences. First, domain engineering attempts to define a software solution (a family
of systems) for a large problem space, while software engineering constructs only one solution
(a single system) that is usually a subset of the larger problem space. This difference between
domain engineering and software engineering is analogous to the ditferences in providing a
solution to the Quadratic Equation, 2Ax + Bx + C = 0, as opposed to finding the solution to one

10 CMU/SEI-92-SR-3

specific equation such as 2X? - 230X - 45439. Variation in the problem space makes one so-
lution more general than another.

To illustrate the impact of variation on a domain, consider the following. in high school algebra,
we learned several techniques for solving quadratic equations. The ability to factor quadratic
equations (common attribute) is enhanced by knowing when factoring is possible. By examin-
ing the general solution, we recognize that B%- 4AC > 0 is necessary for factoring to be feasi-
ble. Since A can always be made positive, if C < 0, then B2-4AC > 0, and the equation has real
solutions. Thus, one rationale for selecting factoring to solve a quadratic equation is that C
must be less than 0. The factoring solution is enhanced by identifying and analyzing variations
in the domain and the rationale for applying them. One major difference between domain en-
gineering and software engineering is that domain engineering provides a solution for a family
of systems, and variation in the problem space defines the family.

The second major difference is that software engineering does not attempt to represent and
deliver the domain knowledge that has been acquired. During software development, the an-
alyst acquires important domain knowledge which is rarely recorded and maintained. Domain
engineering specifically gathers, represents, and maintains that knowledge since it is neces-
sary for reuse. In domain analysis, the problem space for which we seek a general solution, is
analyzed, defined, and specified. Rationale that defines how, when, where, and why for each
variation in the domain is included in the model. Once this has been done, then general solu-
tions are identified, represented, and engineered for use. Domain engineering yields two
classes of products:

* A representation of the domain structure, requirements, architectures,
concepts, foundations, and expert opinions, and

* Reusable Software Objects (RSO) such as requirements, designs,
algorithms, code, and tests.
The process of domain engineering is composed of three activities: Domain Analysis, Domain
Implementation, and Active Repository. Figure 2-2 defines the data fiow. These activities are
described below.

2.1.1 Domain Analysis

The goal of domain analysis is to define the domain structure and requirements and capture
them in a domain model. To adequately understand the domain, existing systems must be an-
alyzed to identify the domain's traditional software requirements. Domain experts are inter-
viewed to define high-level domain abstractions and to verify the information obtained from the
analysis of existing systems. Future trends in requirements and domain technology must be
identified to ensure that the results remain viable so that a return on the domain analysis in-
vestment is obtained. The information derived from domain analysis is organized into a do-
main model that is used during Applications Engineering to produce DoD standard
requirements. These requirements are used in Applications Engineering to produce a Soft-

CMU/SEI-92-SR-3 "

ware Requirements Specification (SRS). The domain model defines the domain for reuse, but
the model may only be complete at an abstract level.

The inclusion of all requirements in the domain model is not effective. The mode! should not
contain requirements that are obsolete, one-of-a-kind, or arbitrarily allocated. The domain
model should be complete at an abstract level. If the model identifies all the detailed require-
ments, it will become rigid and difficult to understand. When the team members analyze exist-
ing systems, they will include an abstraction of the objects, services, attributes, and
relationships in the model. The model will directly reflect one existing system when that system
represents all the others. Normally, the model will not include obsolete requirements. In fact,
the model may not include current requirements if future trends will make those requirements
appear obsolete. The model will not contain unique requirements if the requirements are not
normally included in the domain. Finally, the model does not contain capabilities that have
been included in the domain, but could have been allocated to other domains without degrad-
ing performance or capability.

The analysis team will define the domain, and review questions and issues with the domain
experts. The team and the domain experts should reach consensus on determining the level
of abstraction and defining the domain. Abstract requirements which captures the essence of
several requirements are preferred over more detailed requirements. if the domain analysis
team determines that a requirement is unique, obsolete, or should not be included, and the
domain experts concur, then that requirement will be exciuded.

12 CMU/SEI-92-SR-3

System’s
Req'ts
Analysis

Requirements
Transformation

Figure 2-2 Applications Engineering Based on Domain Englineering

CMU/SEI-92-SR-3

13

2.1.2 Domain Implementation

The goal of domain implementation is to produce RSOs that can be used in a DoD deliverable.
The minimum items that domain implementation should produce are a reusable software ar-
chitecture, reusable code designs, reusable code, and reusable tests. The reusable software
architectures are a set of high level designs that can be used to implement any member of the
domain family. This family includes systems which contain the minimal set of features which
make sense for the domain, and elaborate systems which contain many optional and ad-
vanced features. The design information obtained and represented include tasking, data allo-
cation, user interface, and the packaging of the requirements from the domain analysis. The
roles identified in domain analysis support the definition of the user interface, and the triggers,
events, and parallelism support tasking definitions. The software architectures and the ratio-
nale for selecting one over another are also recorded in the Active Repository. Traceability
from the domain model to a software architecture is added to the Active Repository when the
architecture is added.

Domain implementation also produces reusable code that implements the software architec-
tures. When designing reusable code, the domain engineer selects the appropriate packaging
of the tasks, data, and user interfaces identified during architecture design. The Active Repos-
itory also records traceability back through the software architecture to the basic capabilities
defined in domain analysis. All the variations that are defined in domain analysis and domain
implementation must be implemented to complete domain implementation. This means that
there will be more code ihan is needed or delivered in any one system. If domain analysis iden-
tiies a set of capabilities that is not complete, then further analysis and implementation to com-
plete the set is a possibility, since the value of the RSOs is based on their coverage of the
domain. For each module, a test driver and test cases should be implemented to validate and
evolve the design and code.

Code components are the primitives while the software architectures define the combination
and integration of the primitives. When the variation in the architectures and designs is well
understood, then the parameters and relationships can be identified and used to create tools
that automate the reuse-based development process. While code components are relatively
small, large-grained reusable components can be more cost effective. Large-grained compo-
nents can be constructed with tools like the CAMP constructors [23). To support large-grained
reusable components, parameters and relationships must be identified. These parameters
and relationships can be represented with several different technologies that support automat-
ing the engineering process. Ada does not possess the flexibility to represent all desired pa-
rameterization for reuse [MCNI86], and even where it does, automated support is warranted
(e.g., CAMP Kalman Filter constructor). Before implementing RSOs or tools, the parametriza-
tion and relationships should be validated by domain experts to ensure that commonality and
variation have been captured. After RSOs are implemented, they should be validated against
both existing and future systems. This validation helps ensure that the RSO can be reused.

14 CMU/SEI-92-SR-3

2.1.3 Active Repository

The goal of the Active Repository is to make RSOs available during Applications Engineering.
The JIAWG library is a tool that will be part of the active repository [9,10]. During domain anal-
ysis, a domain definition and model are produced and stored in the Active Repository, but the
model is not reused directly. The information in the model must be reorganized in accordance
with DoD-STD 2167A Data ltem Descriptions (DID). The tools and techniques to support the
storage, retrieval, and maintenance of the domain model and other RSOs into DoD standard
form are also part of the Active Repository. In Section 2.2.2, the transformation of the domain
model into DoD standard form is discussed. In some cases the RSOs will be stored in libraries,
but in other cases the RSOs may be supported by tools that enhance their reusability.

Several techniques can used to create reusable products for the Active Repository. The Com-
mon Ada Missile Packages (CAMP) Project has produced tools that support template comple-
tion, constraint checking (domain rules), and requirements elicitation (iteration and options)
[21]). The Domain Specific Software Architectures Project at the SE! has also produced tem-
plates, tools, and techniques that support domain models [27, 19, 11]. Software Productivity
Solutions (SPS) has produced a preprocessor for Ada that supports adding, deleting, and
modifying capabilities through inheritance with Classic Ada (Classic Ada is a trademark of
SPS) [4]. Several techniques in addition to a library can be used to make RSOs available.
RSOs in the Active Repository cover the software life cycle, and traceability is defined between
the RSO and the requirement(s) that the RSO implements.

The traceability is added during domain implementation because the software architectures
and code do not exist during domain analysis. Furthermore, multiple implementations are pos-
sible from a single domain model, and the different implementations need to be traceable from
the model. When variation exists, traceability must exist from each variation to its implemen-
tation. Also, traceability needs to exist between each gen-spec structure and its implementa-
tion. The traceability information is also used by software engineers during domain
implementation in order to define interfaces and relationships. Traceability is used by the re-
user to locate, retrieve, and integrate the RSOs into deliverables and to satisfy DoD-STD
2167A DIDs. Traceability defines a road map for the reuser during Applications Engineering.

2.2 Applications Engineering

For each system that is constructed using reuse techniques, the goals for that application need
to be defined. These goals will depend on the coverage of the domain, the maturity of the
RSOs, and the experience of the development team. For example, if there are RSOs for a
short-range tactical missile system and a long-range strategic missile is being developed, then
the reuse goals would be less ambitious than they would be for developing another short-
range tactical missile. Qur reuse goals for JJAWG include support for Pre-Planned Product im-
provement (Pl) and PDSS. To determine if the reuse goals have been met, data must be col-
lected during applications engineering. Without data to measure the reuse goals, the benefits
and probiems can't be identified, and the reasons for success or failure may not be deter-
mined. Another reason for collecting data is to permit comparisons of subsystems developed

CMU/SEI-92-SR-3 15

from reusable assets against subsystems developed without reuse. This data can be used to
develop more accurate economic and planning models for reuse-based development. Once
the reuse goals have been identified, data on reuse is collected for each phase of the life-cy-
cle. Knowing the benefits and problems for reuse technology and identifying the reasons is an
effective means to evolve a reuse approach. The effectiveness of reuse during Applications
Engineering is difficult to measure because different applications may have different goals,
and generalization of results may be impossible without a large saraple.

For each reuse-based development, the Domain Engineering results must be updated. If there
are changes, the domain model is updated and new RSOs may be constructed while other
RSOs may be changed or deleted. The engineering of each new system and even enhance-
ments to existing systems help identify changes to the RSOs. The Applications Engineering
life cycle that is shown in Figure 2-2 is the waterfall model (although the reuse based software
development concept applies equally well to the spiral model).

The domain model that is produced during domain analysis cannot be reused directly during
Software Requirements Analysis because the CYOOA format is not compatible with the DoD-
STD 2167A DID. If the DoD SPO can not be convinced to accept CYOOA specifications, then
the domain model’s specifications must be transformed into DoD Standard Requirements that
can be used in a SRS. This transformation is performed during Software Requirements Anal-
ysis (SRA), and automation of the transformation is planned for OOA*Tool (OOA*Tool is a
trademark of Objects, International). This transformation can be performed at any time after
domain analysis, but it has been included in Applications Engineering and is discussed below.

2.2.1 DoD Standard Requirements

CYOOA assumes that the specifications produced can be used directly, but JIAWG uses DoD-
STD 2167A Data ltem Descriptions (DID) to define the software deliverables. CYOOA speci-
fications must be reformatted so that they are compatible with MIL-STD 2167A Software Re-
quirements Specification (SRS), if they are to be reused by JIAWG. Ideally, the Systems
Program Office (SPO) can be convinced to make an exception to the standard and accept
CYOOA specifications.

Active
Repository

Figure 2-3 Relationship of the DoD Standard Requirements to the Domain Model

16 CMU/SEI-92-SR-3

The domain model that collects, organizes, and records domain structure, classes, relation-
ships, attributes, and services is only one representation of the domain. The more information
that is captured and represented in the model, the more detail that exists for the lower level
classes. The existence of greater detail for the more primitive classes gives the model the
shape of a triangle. The top-level information in the model is the domain definition. Figure 2-3
represents this concept pictorially. Another representation of the domain could exist in DoD
standard requirements. DoD standard requirements represents the domain as a set of require-
ments using DoD-STD 2167A DID format. This representation of the domain is isomorphic in
most respects to the domain model, but it emphasizes the domain’s functional capabilities
through its interfaces. DoD standard requirements are shown in Figure 2-3 as another surface
of a tetrahedron, and is another view of the domain.

Figure 2-3 does not show the specifics of the mappings from the classes, structure, relations,
and services in the domain model to specific requirements paragraphs in DoD standard re-
quirements. The details of these mappings are complex and difficult to show pictorially; a de-
scription of the mappings is given in the next section.

2.2.2 Model/Requirements Transformation

For each applicable paragraph in the SRS, the relevant information in the domain model is
identified, and a means for transforming that information into DoD format is given for each ap-
plicable SRS paragraph. This discussion describes the .napping from th- DoD standard re-
quirements to the domain model, and is intended to demonstrate that the SRS paragraphs
have required information in the domain modet (as defined by CYOOA). Two general transfor-
mations steps that are easily recognized are deleting variations that are not needed and refor-
matting the information.

The first step is to make a copy of the specifications and delete all class and object variations
that are not used. The variation defined in CYOOA notation is not permitted when specifica-
tions are produced for JIAWG programs. This means that the specifications must be tailored
to specify only the system being developed. There is no mechanism in CYOOA to support tai-
loring the specifications, but tailoring is required for JJAWG use; the tailoring will have to be
done manually. Some classes and objects may be deleted, and some attributes and services
within objects may be deleted. The specifications that remain define the system currently be-
ing developed, and all services that remain are required to support the current domain speci-
fication or external subsystems. The rationale for the variation may specify a constraint for the
use of a specification. For example, if an elevator is being specified that has no Stop Button,
then that object and its specification is deleted from Figure A-11. Also, the stop service is de-
leted from the Elevator specification in Appendix B.3 and from Figures A-3, A-11, and A-13.
The result of the first step is an object-oriented specification of the system under development.
The next step reformats the specification to comply with DoD-STD 2167A DID.

In the model/requirements transformation activity, sections of the SRS for each Computer
Software Configuration Item (CSCI) are created from the information in the domain model. The
domain model is used to construct the following SRS sections:

CMU/SEI-92-SR-3 17

e CSCI External Interface Requirements (3.1),
e CSCI Capability Requirements (3.2),
e CSCI Internal Interfaces (3.3),
e CSCI Data Elements Requirements (3.4),
e Adaptation Requirements (3.5), and
e Sizing and Timing Requirements (3.6).
The information in the paragraphs listed above can be produced directly from the model, but

the model may not be useful for completing other sections. The domain model does not direct-
ly support the following SRS sections:

e Safety requirements (3.7),

e Security requirements (3.8),

¢ Design constraints (3.9),

¢ Software quality factors (3.10),

¢ Human performance/human engineering requirements (3.11), and

* Requirements traceability (to the System Segment Specification, Prime Item
Development Specification, or Critical Item Development Specification)
(3.12),

A CSCl s similar in scope to a domain, so we can relate the CSCI products to the domain anal-
ysis products. In the domain model, the information is organized by classes; in the SRS, the
information is organized topically. Therefore, for each SRS topic, we identify where the infor-
mation is obtained in the domain model and how it its transformed:

3.1 CSCI External Interface Requirements

The external interface requirements for Secticn 3.1 suggest an interface
diagram that would be the domain definition's top-level subject diagram.
The interfaces in the top-level subject diagram would be labeled with a
project unique identifier. CYOOA and JODA do not require or prohibit la-
beling the diagram. The labels must be project unique, so the interfaces
labels must be checked during software requirements analysis. This sec-
tion also requires that we describe each external interface. This informa-
tion would come from the domain definition’s service, dependencies, and
top-level whole-part diagram. References to interface requirements spec-
ifications must also be included.

3.2 CSCI Capability Requirements
The capability requirements for the CSCI (domain) are the domain defini-
tion’s services. These services are named and described in Section 3.2.
The information for each capability (service) are derived from the service
specification in the domain model. The following information is required
for each capability (service): purpose, inputs, outputs, and mode or
states. A table is created relating the capabilities by mode. The state in-
formation for the domain's classes will contain the mode information that

18 CMU/SEI-92-SR-3

must be manually collected to produce this paragraph. Scenarios may be
included if a requirement were to exist to release a bomb, since this re-
quires several domain services applied correctly. This section is an ex-
pansion on the visible domain services from the domain definition.

3.3 CSClI Internal Interface Requirements

The internal interface requirements for the Section 3.3 suggest an internal
interface diagram that would be the structure diagrams from the domain
model. An intermediate level subject diagram such as Figure A-5 in the
domain model should be produced to document the major internal inter-
faces. This diagram should group the major subjects of the domain and
identify the interfaces between them. The major services provided across
subjects will be used to document these internal interfaces. The informa-
tion for each interface (subject to subject) is derived from the classes’ ser-
vices description specification in the model. From the listed service, the
following information is extracted and provided in the SRS: a name, a ser-
vice description, and the inputs and outputs of the service.

3.4 CSCI Data Element Requirements

This section is an ordered list of all data elements in the CSCI (domain).
The attributes from all objects are listed in Section 3.4, but they are or-
dered based on the three types: external interface data, internal interface
data, and local data. The interface data elements require identification of
the interface by project unique identifier and references to the source and
destination capability. These capabilities are the domain definition’s ser-
vices and are named in Section 3.2 of the SRS. This information is de-
rived from the model’s structure diagrams and the object specifications.
All attributes in the domain model are included in this list.

3.5 Adaptation Requirements

Adaptation requirements are either installation dependent data or opera-
tional parameters. This information will be derived from class attributes in
the model. Some attributes that maintain state data will contain instalia-
tion-dependent such as latitude and longitude. This type information
could be based on aircraft type. Other attributes may contain operational
parameters such as navigation set model numbers. These attributes must
be manually extracted from the model and listed in Section 3.5.

3.6 Sizing and Timing Requirements

Sizing and timing information is specified for each object and service. This
information must be collected from the object specifications and com-
bined to specify the domain (CSCI) sizing and timing requirements.

DoD standard requirements also provide leverage when they are used in applications engi-
neering, because domain engineering creates the designs and code that implement the DoD
standard requirements. The Active Repository, Figure 2-2, contains traceability between DoD
standard requirements, software architectures, code, and tests. This traceability provides a
road map for the software engineer when doing reuse-based development.

The model/requirements transformation is not an activity of JODA, but it produces a DoD-STD
2167A SRS directly from the domain model. This activity is shown in the Software Require-

CMU/SEI-92-SR-3 19

ments Analysis phase in Figure 2-2, because that is when the activity is performed and the
results are produced. When the user is creating DoD standard requirements, he may identify
information that is missing from the domain model; this information is fed back to the Active
Repository. Transformation of the domain model into DoD Standard Requirements is a task
that is strongly related to domain analysis, and has been discussed to show how the results
are used.

20 CMU/SEI-92-SR-3

3 Domain Analysis Overview

In this chapter, we give an overview of the domain analysis process; in the following chapters,
we describe the domain analysis process and products in detail. Figure 3-1 identifies three do-
main analysis phases. These three phases: prepare domain, define domain, and model do-
main, are described in this chapter. We also explain the relationship of the phases and their
outputs. The majority of the analysis is done in model domain; prepare and define domain are
preliminary phases where sources are collected and the problem is bounded. Domain experts
are required to support each of the three phases.

Domain experts provide several important capabilities; they:

* identify source material. Domain experts are the best source for identifying
software artifacts from existing systems and reference material. Frequently,
the domain experts have taught classes or given presentations that describe
the domain. From this material, they can identify references and provide a
high-level view of the domain.

* answer questions. During the analysis process, there are issues that cannot
be resolved without assistance from someone who is experienced in the
domain. Questions can be submitted to the domain experts. The answers to
these questions keep the analysis moving and heading in the right direction.

¢ identify future trends. Domain expertise includes a broad knowledge in the
domain. The domain analysis team does not usually have access to
information on future trends. Without this information, the results of domain
analysis will not remain viable long enough to recover the cost. This
information is also necessary for defining scenarios during the model
creation phase.

* review results. The validation of domain analysis results is difficult. Domain
experts can help to validate the results by reviewing the domain definition
and model. The domain experts also can evaluate the level of detail to
determine if the results will be used. If the results are too detailed and an
abstract view is not produced, then the results may not be used. Having a
complete package that aids the reuser in understanding the domain is all
important.

CMU/SEI-92-SR-3 21

Relevant

Source Source
Materiat Material
—p] Prepare
Domain
Prelim}
7 o
— Define
Domain
Definition
Model
Domain
1 (O0A)
Domain Domain Domain
Experts Experts Experts

Figure 3-1 Domaln Analysls Process

3.1 Prepare Domain

Domain analysis is a complex, time consuming, and detailed task that requires developing
high quality abstractions of existing and proposed systems. It requires access to information
from domain experts, artifacts from the development of previous systems, domain reference
materials, and a knowledge of emerging technology and future trends in the domain [3]. Hav-
ing access to this material requires that the domain analysis team identify, locate, and gather
domain experts, artifacts, references, etcetera. The domain preparation activity that identifies
and collects source material, references, and software artifacts iterates with domain definition
activity. (lteration is not shown in Figure 3-1 because it would clutter the drawing.) The source
material is usually acquired over time, and the team members can produce a domain definition
while they collect additional source material.

Domain preparation produces two products: domain source material and support from domain
experts. Domain expertise is not the same as source material; it is help from experienced peo-
ple that augments the teams knowledge and experience. Domain experts provide the services
listed above; source material includes artifacts from previous systems, reference material,
training material, and information on future trends that is collected and analyzed by the team.
The collected source material is grist for the model creation phase. Without the source material
or domain expertise, the modeling phase is impossible, and the domain analysis cannot con-
tinue, so it is stopped. The domain definition lists all source material, references, systems, and
domain experts used for the analysis.

22 CMU/SEI-92-SR-3

3.2 Define Domain

The domain definition is delivered and maintained in the Active Repository (See Figure 2-2).
This top-level view of the domain uses the same notation as the domain analysis. The defini-
tion bounds the domain and is used by the analysts to clarify what is and what is not available
for reuse. Potential users can quickly determine if their needs can be met by the results of the
domain analysis. The domain definition includes:

¢ top-level subject diagram

¢ top-level whole-part diagrams

¢ top-level generalization-specialization diagram
® domain services

* domain dependencies,

* domain glossary, and

* textual description.

Finally, the domain definition identifies the context for potential reusers. For example, if we had
a math library for real numbers, and a developer had hardware with only integer operations,
then he would require an integer square root routine. His searching could be limited to the do-
main definition, if the definition was based on data types or objects. The developer’s use of the
domain definition could be productive, if he identified and adapted the real square root routine
for his use. The notation chosen to represent the domain definition is the same notation cho-
sen to represent the domain model. The domain definition identifies top-level objects and de-
fines visible services in the domain. So, the JODA domain definition would describe all the
objects as real number objects in the above example, but it would also describe the square
root service. Although the techniques used to produce a domain definition are the same tech-
niques used for domain analysis, the definition activity has been separated from analysis and
included in preparation because of timing and the importance of restricting the scope of the
domain. The process of domain definition is described in Chapterd.2.

3.3 Model Domain (OOA)

The JIAWG model creation phase is an extension of the CYOOA method. This phase contains
three activities: examine object life-histories and state-event response, identify and walk-
through scenarios, and abstract and group objects. These activities are iterated since all rele-
vant information cannot be identified in one pass. These activities are neither discrete nor do
they occur sequentially. The domain analysis team moves freely between activities, but the
scenario and abstraction activities are more effective when a basic model has been identified.
In fact, it is difficult to abstract and group objects without having already identified and defined
the objects.

The first activity, examine object life-histories and state-event response, is derived from
CYOOA and has not been changed. CYOOA has defined five subactivities: identify objects,

CMU/SEI-92-SR-3 23

define structure, identify subjects, define attributes, and define services. The analysts may
perform these activities in any order, but the goal is to identify, define, and relate objects.
These CYOOA activities are like scenarios but restricted to single objects; more global sce-
narios are used to validate and refine the domain model.

The second activity identifies, defines, and simulates domain scenarios. Experts use this basic
activity to define and implement software [1]. These scenarios identify a series of services that
are executed by the objects to provide high-level services to users and other systems. For ex-
ample, a basic capability of a stores management system is to help the pilot release a bomb.
The release process has several requirements that must be met before stores management
will drop the bomb. The aircraft must be in air-to-ground mode, master arm must be selected,
and a bomb and a delivery program must be selected. Once these conditions are met, the
pickle button on the stick will release a bomb. Within each domain, there are many services,
but to the external world there are only a few scenarios for each domain.

The final activity abstracts and groups objects so that the model is widely applicable and so
that the reuser is introduced to the domain gradually. The objects in the domain can be
grouped in two ways: first, by subject, and second, by whole-part structure. Whole-part struc-
ture is the decomposition technique of CYOOA, and the emphasis and discussion in CYOOA
are adequate. The description of subjects in CYOOA is adequate to understand them, but the
emphasis in identifying subjects is inadequate. In any domain, there are several detailed con-
cepts the user must grasp. A high-level view of these concepts is necessary so that the reuser
is not lost in the detail. Figure A-5 is such a description for OBE systems; it identifies the main
elevator concepts and their relationships. Abstract descriptions of the domain are necessary
to maintain the interest of the analysts, reviewers, and the reusers. Abstract views help the
domain analysts to clarify their understanding. This activity depends on the existence of a ba-
sic domain model.

This model creation phase refines the domain definition and produces the domain model, that
is stored in the active repository, consists of both diagrams, Figure A-11, and class specifica-
tions, Appendix B.3. This phase also adds terms to the domain glossary. Domain terminology
must be defined so that the analysis team, the experts, and the eventual users will understand
the information. Terminology is captured in the domain definition document and maintained in
the Active Repository. In the next chapter, we describe the products that go into the Active Re-
pository.

24 CMU/SEI-92-SR-3

4 Domain Analysis Products

In this chapter, we describe the two domain analysis products: the domain model and the do-
main definition. The domain definition represents information that is similar to the model, but
the definition serves a different purpose. The domain model is a complete view,; it contains the
codified knowledge that is extracted from domain experts, existing systems, and future trends,
and it represents the analyst's understanding of the domain. The domain definition is a top-
level view of the domain; it defines the attributes and services of visible objects, the highest
level whole-part structure, a high-level gen-spec structure, and a top-level subject diagram.
The domain glossary is a list of terms that are necessary to understand the other products,
and it is included in the domain definition. We also briefly describe DoD standard require-
ments, the specification produced by the reuser during software requirements analysis. The
DoD standard requirements are a separate view of the domain, but the information has been
transformed so that it can be included in a Software Requirements Specification (SRS). DoD
standard requirements are specifications that do not contain the variation defined in the do-
main model, but have been instantiated so that the variation is removed. DoD standard re-
quirements specify a single system in the domain.

We believe that understanding the products associated with the process will provide the read-
er with focus. Each of the products consists of diagrams and specifications, most of which are
defined in Object-Oriented Analysis [7]. Ideally, the problem space description is concise, easy
to understand, and abstract, but this isn't the case for most domains. A complex detailed de-
scription is more common. Domain analysis is a labor intensive, complex process which must
communicate a large amount of detailed information to a knowledgeable reuser. The domain
model is the key product and will be described first, while the domain definition which is simply
a high-level view of the domain will be described last. (This is not the order in which the prod-
ucts are produced, but the domain model is central to domain analysis. Therefore, it will be
discussed first.) For the domain model and domain definition, we describe:

* the requirements that must be satisfied, and
¢ the notation used to define the product.

4.1 Domain Model

The domain model is used to collect, organize, and represent all domain information. The in-
formation is collected using diagrams and specifications defined by CYOOA. Several types ot
diagrams are included in the domain model, such as gen-spec diagrams, whole-part diagrams,
state-event diagrams, scenario diagrams, etcetera. After the initial analysis, the domain model
can be modified to update the domain analysis results. Its primary use, however, is to provide
a framework in which to collect and organize information. Before we describe the domain mod-
el in detail, we list the requirements that it must support.

CMU/SEI-92-SR-3 25

4.1.1 Requirements for the Domain Model

The purpose of the domain model is to represent the problem space. it defines all the domain
capabilities and their variations and combinations. To help the user understand the domain,
the model presents an abstract view that identifies the significant relationships and services.
To help the user apply the capabilities, the domain model must describe how the capabilities
are related through scenarios, and the rationale for how and when to use each capability.
Since we want the capabilities to be widely applicable, they should also be abstract. Therefore,
the domain model must describe:

the domain’s major parts,

the objects and abstractions (classes),

the relationships between these objects or abstractions (classes),

the attributes and constraints on the abstractions (classes),

the services that are provided by these abstractions (classes),

scenarios that define the more dynamic aspects of the domain, and

N o O s~ D=

the rationale for choosing an instance, option, or variation over another (rules of
thumb). Rationale includes the: risks, trade-offs quality issues (performance,
portability understandability, etcetera), and scenarios of use.

The domain model requirements are listed above, but some quality factors are important and
need to be acknowledged. These qualities are necessary if the domain model is to be effective
and remain viable over changes in technology, time, needs, people, and budget. To support
these changes the domain model must be:

* adaptable

* understandable
® usable,

® correct, and

¢ maintainable.

To meet the requirements listed above for the domain model, we must analyze, organize, and
represent a large amount of information. The organization of this information is done graphi-
cally, but the object specifications are textual. Below, a description is given for each domain
model diagram, and we identify the requirements that the diagram supports. These descrip-
tions are listed in order of importance. The class is the basic element of CYOOA and the do-
main model; the structure and subject diagrams define the domain structure; and, the scenario
diagrams describe the dynamic aspects of the domain. The domain model includes:

* class specification. Class diagrams define the class, their attributes and
services [7]. Class diagrams make a contribution to solving domain model
requirements 4, 5, and 7.

26 CMU/SE}-92-SR-3

e structure diagrams. Structure diagrams identify the commonalities,
abstractions, and variations of the domain classes, and they identify
complexity in the domain [7]. Structure diagrams contribute to meeting
domain model requirements 1, 2, and 3.

* subject diagrams. Subject diagrams identify the amount of information that is
presented to the user at one time. The grouping of objects is a kind of
abstraction, and subject diagrams also identify interfaces between these
groupings. They address requirements 1 and 2 for the domain model.

e scenario diagrams. Scenario diagrams identify the high-level services that
the domain provides, and they bind the domain services into comprehensive
groups. Scenario diagrams define the domain event response and iife history
information similar to object life histories of Coad and Yourdon [7]. Scenario
diagrams address requirement 6 for the domain model.

4.1.2 Class Specifications

Class specifications are a major element of the domain model. They don’t define the domain
structure, but they do define the details. Class specifications are more textual than graphic.
They are template driven and a formal language, as recommended by Coad and Yourdon [7].
These class specifications list and define their attributes, connections, constraints, rationale,
and services. As the user wc ks within the domain, the services become more familiar, and
the need to refer to them ~2creases. Also, the names of the attributes and services may be
sufficiently mnemonic = that they can be understood without detailed specifications. In Ap-
pendix B.11, for e.ample, the service ring for the Elevator Arrival Bell does not need to be de-
fined. In Appendix B, examples of class specification are given; full descriptions are given in
Chapter 3 of Object-Oriented Analysis [7]. Class specification parts are described below in or-
der of importance. Attributes and services define the class; the state diagrams provide more
detailed information on that definition.

4.1.2.1 Class Attributes

The attributes of a class define the data which is used to describe an instance of a class. Fre-
quently, this data needs to be retained over time. In this sense, class attributes are very similar
to class variables from Smalitalk. (Smalltalk is a trademark of Xerox.) In the specification, we
identify the attribute and its type, define its range constraints, identify any rationale, and a tex-
tual description. For attributes that are used in an external interface, we must identify the vis-
ible service (source capability) and its naine (project unique identified), and name the attribute
with a project unique identifier. For the attributes that are used in an internal interface, we must
identify the domain service and its name (project unique identifier). We must also identify the
visible service that it supports. For example, #_elevators in Appendix B.2 is an attribute that
defines the state of the class of type integer of range 1 to max_#_of_elevators; itis the number
of elevators that is accessible from the lobby.

4.1.2.2 Class Services

The services of a class define the processing performed on or by the class when requested or
triggered. These services can be requested by other classes or caused by events or users of

CMU/SEI-92-SR-3 27

the service. For example, in Appendix B.2, the request_elevator_up service comes from the
Request Elevator Up Button. If the button is not already on, the request is sent to the Control-
ler. The lack of a service description implies that this is a simple service for which a detailed
description is not required.

4.1.2.3 State Diagrams

State diagrams are useful for defining system behavior, event-response, concurrency, and the
order of processing. These diagrams are not required by Coad and Yourdon, but they may be
used for more complex systems to describe system behavior (system dynamics). State dia-
grams, as defined in Statemate [15], are effective for specifying real-time performance require-
ments.

413 Structure Diagrams

Gen-spec and whole-part diagrams describe the complexity in the problem space. These dia-
grams define what is common and what is different in terms of classes and structure. Whole-
part diagrams define the composition of the domain while the gen-spec diagrams identify the
variation in classes; these diagrams define the structure of the domain.

Another feature of the gen-spec diagram is to indicate that a relationship for specific instances
does not exist. For example, in Figure A-10, the Top Floor Elevator Lobby does not have a
relationship with the Elevator Up Arrival Light. This light means that an elevator is at this floor
going up. One can not go up from the top floor, so this connection is not present. This is indi-
cated by an “X” at the beginning and end of the relation line. The implication of the information
in Figure A-1G is that the Top Floor Elevator Lobby does not have an Elevator Up Arrival Light
and Up Request Button and does not provide a req_elev_up service, and the Bottom Floor El-
evator Lobby does not have a Down Elevator Arrival Light, and a Down Request Button and
does not provide a req_elev_down service.

4.1.4 Subject Diagrams

Subject diagrams provide a means for controlling how much of the domain model the reader
considers at one time. The highest level subject diagram is included in the domain definition.
Other lower level views are also possible (see Figure A-5). In a large domain, subject dia-
grams that group the major elements of the domain are a necessary and an effective mecha-
nism for controlling how much of the domain the user must comprehend at one time. If the
reuser or the domain experts cannot examine the domain a piece at a time, they may conclude
that it is too complex and not worth their time. Using subject diagrams to present a simplified
view of the domain will help reusers and reviewers to understand the domain model. In the
OBE systems example, two levels of subject diagrams have been defined. At the highest level,
Office Building Elevator Systems provide services to Users. The more detailed subject dia-
gram (see Figure A-5) has seven objects (Users, Service Button, Status Indicators, Elevators,
Elevator Lobbies, Doors, and Controllers). The Users interface only with the Service Buttons
and Status Indicators, while the Controller and the Doors interface with Elevators and Eleva-
tors Lobbies. The Elevator Lobbies and the Elevators also interface with the Service Buttons

28 CMU/SEI-92-SR-3

and Status Indicators. A simplified view is essential for users to understand the domain. The
amount of detail in even small domain is so large that one must have a simplified view to get
started. This simplified view of the domain should contain seven plus or minus two subjects;
this simplicity makes it easier to understand the details.

4.1.5 Scenario Diagrams

Scenario diagrams capture the dynamic aspects of the system. Two possible notations for
scenario diagrams are R-nets as used in SREM [2] and statecharts [15]. The notation pro-
posed by Coad and Yourdon does not have a mechanism for defining performance require-
ments across classes or for showing concurrency if it is required. Statecharts have the ability
to specify these requirements and are used to define scenarios in JODA [15]. Domain services
are used by applications engineers to support larger requirements; stores management sup-
ports bomb targeting and release. These combinations of services need to be documented for
the applications engineer who uses the domain analysis results. StateCharts are being used
to define these systems. Scenarios 2lso help reduce the amount of complexity the reuser or
domain expert must comprehend, and they also define the context for domain objects and
services.

4.1.6 Evolution of the Domain Model

During the development of new systems from RSOs, there are requirements that are not cov-
ered by the domain model. These requirements must be included in the domain model, and
the appropriate reusable artifacts modified. Changes that result from applications engineering
fall into the same classes that are described above. Class attributes or services may be added
or modified, or changes may be made to the whole-part structure. We may aiso add new ob-
jects to the domain model causing the biggest change to the domain model. For example, if
the system being engineered has new requirements, these must be included in the domain
model along with the appropriate update to the domain definition. The design and implemen-
tation phases of domain engineering must also be revisited to modify the RSOs that support
new requirements. This evolution takes the domain model full circle. The domain model is cre-
ated during domain engineering, used during applications engineering, and updated again on
the basis of the changes that are identified during applications engineering.

4.2 Domain Definition

The purpose of the domain definition is to help the user determine if these domain analysis
results will be useful in the new system that he is developing. The domain definition is a top-
level view of the domain, and it describes the context in which the domain is useful. The do-
main definition answers two questions:

¢ Does this domain provide capabilities that | need in the new system?
¢ Can this domain be adapted to work in the context of the new system?

CMU/SEI-92-SR-3 29

Consider again, the need for an integer square root function when we only have real number
math routines. The domain definition for a math subroutine library (absolute value, floor, ceil-
ing, square root, trigonometric functions, and logarithmic functions) should describe the follow-
ing for the user: the data type, the function, the constraints on using the routine, and
dependencies such as the computational method and the precision of the machine. The de-
scription of the data type would tell us that we don’t have any integer functions, but we do have
a real square root function that might be adapted. The data type, function, and constraints an-
swer the first question; the dependencies, data type, and constraints answer the second ques-
tion.

4.2.1 Requirements for the Domain Definition

The domain definition is used to determine whether or not the new system is within or related
to the domain. The domain definition identifies the relationship of new problems to the results
of domain analysis. To answer the two questions identified above, the domain definition de-
fines:

-h

. the domain interfaces,
2. the services the domain provides through its interfaces,

3. the domain boundaries (i.e., what domains are very similar, but what attributes and
services determine inclusion and exclusion),

4. the source material, references, and domain experts consulted to produce the
domain model,

5. the major elements or subdomains of the domain,
6. the terminology used to define the domain, and

7. the domain dependencies (i.e., the services provided to the domain through its
interfaces)

The terms that are defined during domain analysis are necessary for the user to understand
the domain concepts, the domain definition, and the domain model. Many organizations define
and use local terms (that have evolved over many years) for concepts, abstractions, services,
and constraints. These definitions are not equivalent from one organization to another. The
domain terminology should define the relevant terms, concepts, constraints, equations, and
constants.

The domain definition requirements listed above have been identified from the planned use of
the domain definition. From these requirements, we have identified a set of diagrams that meet
those needs. Context description is another term which is frequently used to describe the set-
ting in which a domain will function. The use of context description has been derived from the
top or zero level data flow diagram of structured analysis. This diagram identifies the external
interfaces which define the system context. Domain definition is preferred over context de-
scription and will be used in this document because the user needs to know more than just the

30 CMU/SEI-92-SR-3

context. The user needs to know what is defined as in the domain. The domain definition in-
cludes:

¢ Top-Level Subject Diagram. The Top-level subject diagram identifies the
other systems or subsystems with which the domain interfaces. This diagram
helps meet requirement 1 above.

* Top-Level Whole-Part Diagrams. These diagrams define the whole of which
the domain is a part, and the parts when the domain is the whole. These
diagrams help to meet requirements 1, 2 and 5.

¢ Top-Level Gen-Spec Diagram. This diagram identifies the attributes and
services that distinguish this domain from similar domains. This diagram
helps to meet requirements 2 and 3.

* Domain Services. A list of the services which are visible to external systems
and subsystems. These service definitions satisfy requirement 2.

¢ Domain Dependencies. A list of the services that must be available from
other systems or subsystems for the domain to meet its requirements. These
dependencies satisfy requirement 7.

* Domain Glossary. The terms that are used to define domain concepts are
essential for the reuser to understand the domain. Terminology evolves over
time and represents an organizational view of the domain. These terms must
be documented to completely and accurately describe the domain. The
glossary satisfies requirement 6.

* Textual Description. The text binds these lists and diagrams together into a
integrated view. The textual description, that includes: a list of the source and
reference materials used by the analysts; a list of software life-cycle objects
from systems examined; and a list of domain experts and their areas of
expertise, should be restricted to a few pages. This description satisfies
requirement 4, but it also supports all the other requirements listed above.

4.2.2 Top-Level Subject Diagram

The subject diagram identifies the domain interfaces. If the domain is itself a whole system,
then this diagram is its external interfaces. On the other hand, if the domain is embedded in a
larger system, then these are its interfaces to other subsystems and the external world. An
example is given in Appendix B.2. The domain in this example is Office-Building Elevator
(OBE) Systems. These OBE systems interface with users and moveable equipment. Users
are transported by and receive status from the elevator system, while the equipment is moved
by the elevator system. In data flow diagrams (DFD), the highest level (zero level) diagram has
a specific name; it is called a “context diagram.” The top-level subject diagram provides the
same information as the DFD’s context diagram because it identities the domain’s external in-
terfaces; it doesn’t identify how other domains are related to the system. Related domains are
identified from the top-level whole-part diagrams.

CMU/SE!-92-SR-3 31

4.23 Top-Level Whole-Part Diagrams

Normally, there are two whole-part diagrams. The first defines the whole in which the domain
is a part; the second defines the parts of the domain.

Figure A-2 defines the relationship of the OBE systems domain to office building transportation
systems domain. An office building has elevators, stairs, and possibly escalators. There may
also be ramps, or moving sidewalks depending on the precise definition of the higher level do-
main. Today, single story office buildings may not be very common, but they are possible.
Therefore, the parts (elevators, escalators, and stairs) in Figure A-2 are optional. Also, we
may have more than one elevator system, escalator system, or set of stairs within an office
building. Therefore, multiple instances of the parts may make up the whole.

In the context of an office building, it doesn't make sense to have an escalator, stairs, or ele-
vators without an office. It also doesn’t make sense to have an elevator, escalator, or stairs
serve more than one building because these elevators, escalators, and stairs have to be phys-
ically located in the building. There is one and only one Office Building Transportation System
for each elevator, escalator, or stairs.

Figure A-3 defines the parts of the OBE systems. OBE systems are composed of a set of el-
evators, a controller, and elevator lobbies. The connections in Figure A-3 define the range of
the whole-part relationships. An elevator system is composed of at least one elevator and two
elevator lobbies. A controller is optional because a system with one elevator and two lobbies
doesn't require a controller to provide fair and equitable service.

An elevator, controller, and an elevator lobby are the parts of the elevator system. An elevator
or a controller may not be part of more than one elevator system, but an elevator lobby may
be part of more than one system when the elevators are grouped to serve a subset of the floors
in a skyscraper. These relationships are defined in Figure A-3.

After the whole-part diagrams have been examined, we can see that defining the context for
our domain is helpful. We are not looking at elevators in malls, shopping center, factories, air-
ports, or warehouses. We are examining elevators in the context where people are the primary
users. Elevators in factories and warehouses move equipment or inventory. Elevators in malls,
shopping centers and airports primarily move people, but the traffic flow is regular, and the
people are frequently carrying something. By examining the whole-part structure of the eleva-
tor, we can see that these OBE systems have not included escalators in the domain. Some
office buildings may have shopping facilitie - * . "~ lower floor and use escalators for transpor-
tation between those floors. These escalators are not part of the OBE domain. Therefore, the
elevator system ror a building with shops on the first two or three floors that are serviced by
escalators is related to but not included in the OBE domain because it has escalators, which
are not in the domain. We might consider the combined elevator escalator systems as a build-
ing transportation system, but it would be a different domain.

32 CMU/SEI-92-SR-3

4.2.4 Top-Level Generalization-Specialization Diagram

Within the domain definition, the classification (in CYOOA, generalization- specialization dia-
grams are also called classification diagrams) diagram identifies the commonality and variabil-
ity at the top level of the domain. Classification structure also helps to define the domain
boundaries. The classification structure does not accomplish this alone, but in cooperation
with the other diagrams in the domain definition. Figure A-4 defines a classification structure
on Elevator Systems. The common attributes and services are given in root class Elevator
System.

In this classification structure, four attributes of building elevator systems have been identified.
They are: #_elevators, #_elevator_lobbies, capacity, and destination_set. Two services have
also been identified: travel_up and travel_down. Each elevator system in the class shares the
attributes and services defined in the root of the gen-spec structure unless the attributes or
services are excluded by an “x.” In this case, no attributes and services are excluded, but spe-
cific values are given which define the instances of the class. In Figure A-4, for example, in the
Penthouse Elevator System, there are only two lobbies and one elevator. Also, the services
are restricted from travel_up and travel_down to go_penthouse and go_lobby. The Freight EI-
evator System has two additional attributes: padding ar~ inanual control. These attributes dis-
tinguish the freight systems from the more general Building Elevator System. Another
difference is the hold service for the Freight Elevator System. Further extension of this gen-
spec structure is possible, but it does not serve the purpose of this document to fully detail that
structure. This domain analysis is concerned with OBE systems; each of the classes in Figure
A-4 that is not included in the domain is marked with an “x” preceding the class name. This
notation further clarifies the domain definition.

The common services provided by the domain's classes are important for defining the bound-
ary. If the utility of the domain is being evaluated, then the user needs to determine whether
or not the services from the domain’s classes meet the requirements of the new application. If
they do not, then updating the domain model is one possibility. Another possibility is using only
those portions that apply. A very important benefit of the gen-spec and whole-part structure is
the ability to identify the applicability of partial solutions, since some new systems will lie out-
side the original domain boundary. The full specification of the visible domain services is in-
cluded the domain model.

4.2.5 Domain Services

In the domain definition, the domain services are used to determine whether or not a new
system’s requirements can be adequately supported by the results of a previous domain
analysis. This means that the services provided at the domain interface must meet the
requirements of the new problem statement. In the OBE systems in Figure A-1, the highest
level interface is between the user and the Elevator Lobby and Elevator classes. This dual
interface implies that some subset of the services provided by those classes defines the
domain services. From an examination of Figure A-12, the services available from the Elevator
Lobby are: req_elev_up, req elev_down, open_doors, and close_doors. Also, from an

CMU/SEI-92-SR-3 33

examination of Figure A-11, the potential services from the Elevator are: status, sound_alarm,
close_doors, open_doors, select_dest, signal_arrival, unlock_reardoor, lock_reardoor, and
stop. After examining these lists based on the subject diagram in Figure A-1, the elevator user
has access to the following services:

e req_elev_up from Elevator Lobby,

e req_elev_down from Elevator Lobby,
¢ sound_alarm from the Elevator,

¢ open_doors from the Elevator,

¢ close_doors from the Elevator,

¢ unlock_reardoor from the Elevator,

¢ lock_reardoor from the Elevator,

e stop from the Elevator, and

¢ select_dest from the Elevator.

These services are the same services defined by the Service Button class defined in Figure
A-9. One way to present the services in the domain definition, is to define a subject diagram
that includes all the classes which provide a domain service. Another effective means for iden-
tifying visible services is from the scenarios defined for the model. In the OBE example, we
have an abstraction, Service Button, which achieves the same effect.

4.2.6 Domain Dependencies

It is not sufficient to document only the boundary of the domain. Basically, all domains depend
on:

e the availability of services from external objects,

¢ the correct performance of services in the domain’s parts,
¢ the maintenance of the system,

e the availability of runtime resource, and

* the development environment support that is needed to use the domain

analysis results to construct a new system (does the compiler support the

necessary options?).
The dependency description helps to define the context for evaluation and application of do-
main RSOs. If we consider applying the RSOs derived from a domain analysis to the develop-
ment of another system, we must be able to determine whether or not the RSO will function
correctly in the system under development. Meeting the domain dependencies is an essential
part of being able to reuse RSOs; domain dependencies are the requirements which must be
met for the RSOs to function correctly.

For the OBE systems domain, the dependencies are:

¢ availability of electrical power,

34 CMU/SEI-92-SR-3

* physical and structural properties of the materials used for construction,
e structural integrity of the building,
¢ maintenance of the system.

in this section, for example, the dependencies of the OBE systems are matched with the gen-
eral classes listed above. Not all dependencies apply. There is no external interface, so there
is no dependency on external services. The subdomains of the OBE systems domain do not
add any dependencies. The OBE systems are also dependent on proper maintenance of the
hardware, motor, cables, and wiring. The availability of power and the integrity of the building
are both part of the runtime environment. The physical and structural properties of the mate-
rials used to construct the system are examples of the development environment.

4.2.,7 Domain Glossary

The terminology produced from the review of the source material and references is collected
and provided in the domain definition document. There is no CYOOA notation to capture the
terminology, but the terminology should be included as a glossary in any report that docu-
ments the model. The domain glossary should be available so that a potential user can under-
stand the domain definition and the domain model. Concepts which are essential to the
domain need to be identified and recorded; any terms which need clarification should also be
included. In Figure A-12, for example, the Elevator Up Arrival Light in the Elevator Lobby indi-
cates that the elevator is located at this floor, and the light is on from arrival through departure.
The Elevator Floor Location Light in the Elevator in Figure A-11 is on from the time it arrives
at that floor until it arrives at another floor. Thus, the semantics of the two are difterent for being
on a floor; these differences need to be identified.

4.2.8 Textual Description

The purpose of the textual description is to bind the diagrams and lists together into one doc-
ument; the goal of this definition is to help potential users determine whether or not their re-
quirements can be satisfied by the RSOs of the domain. The description also lists:

* the source material (existing systems documentation) that was used for the
analysis,

¢ the sources for, and descriptions of, future trends in the domain,

* the domain experts, reviewers, and reviews of the domain material, and

* the domain mission, i.e., the operational context that it supports.

The textual description provides an integrated view of the domain and helps the reader to
make the transition from one diagram to the next. Another benefit of the domain definition doc-
ument is that it can easily be disseminated, reviewed, and updated. It is essential that the do-
main definition be kept current through continual review and update.

CMU/SEI-92-SR-3 35

Types Common [Classesby | Classes by Structures by
Classes Restriction sgflgons and Jiteration
etions

No changes | Attributes Aftributes or The number
to RSOs'in | and Services | Services are of structural
any form. are restricted | added to or subunits of
to specific deleted from an object
instances. the class. can vary.

Kinds of
Adaptation

Structures by
Additions and
Deletions

The presence
of a structural
subunit is an
option.

Elevator Destination Elevator Elevator has
Arrival Bell | Selection Rear Door one or more
is common | Button is has added Elevator

to many an instance services lock Destination
elevator ofa and unlock. Lights.
systems, Service
Button.

Examples

Figure 4-1 Table of Adaptation Types

4.3 DoD Standard Requirements

Elevator
has an
optional
Stop Button.

DoD standard requirements are the artifacts derived from the domain model for the develop-
ment of new systems using the results of domain analysis and domain engineering. DoD stan-
dard requirements are a DoD formatted set of domain requirements-specifications that have
been tailored to specify the requirements for a single system covered by the domain definition.

The domain model includes abstract, variable, and optional specifications

while the DoD stan-

dard requirements contain concrete specifications. The domain model supports ideas that are
similar to templates, macros, and generics, where the decision and a range of selections are

known ahead of time. in the case of DoD standard requirements, the para

meters and possible

selections are defined in the domain model and the selections are made so that a member of
the domain is specified. This approach to reusable requirements is a combination of require-
ments- specifications and requirements adaptation. Figure 4-1 gives an overview of the types
of adaptation possible in the domain model to support variation in both classes and structure.

36

CMU/SEI-92-SR-3

5 Prepare Domain

In this and the following two chapters, we describe the domain analysis phases in detail. For
each phase, the purpose of the phase, the inputs to the phase, the outputs from the phase,
and the review at the end of the phase are defined. In some cases, the phase's input or output
may be more than data. For example, the output from a step can be to obtain support from a
domain expert to review and comment on the domain analysis results. Figure 3-1 provides an
overview of the entire domain analysis process while Figure 5-1 identifies the two domain
analysis preparation activities: acquiring domain expertise for the analysis and collecting
source and reference material.

The results of the preparation phase are reviewed at the end of the definition phase to ensure
their accuracy, reality, and viability for reuse. The domain definition phase is iterated with the
preparation phase because obtaining information, interacting with domain experts, and re-
viewing the definition are essential to providing a precise definition. Since it takes time to iden-
tify and acquire the required sources, the analysts will not be fully occupied during the
identification of domain expertise and source information and can begin the analysis by defin-
ing the domain. The domain definition controls the scope of the analysis effort, and may be
changed during the domain modeling phase, but an early definition is necessary to focus the
team’s activity. Before defining the domain, sources for domain analysis are identified, locat-
ed, and collected.

Avallsble
Source Acquire Domalin
Material Domain Expertise
————"1 Expertise >
for the
Analysis
Relevant
Sotlect |32
urce
and
Reference
Materlal

Figure 5-1 Domain Preparation Process

Figure 5-1 identifies the activities for gathering domain source material. The purpose of these
activities is to identify, locate, and obtain the domain expertise, reference material, and system
artifacts for the domain modeling. This activity is executed in parallel with domain definition,
and the review at the end of the domain definition activity examines the material collected and
expert support obtained in order to determine if the support is adequate.

The inputs to domain preparation are the available source material. The organization's busi-
ness plan helps to identify domain experts who recommend domain reference material and

CMU/SEI-92-SR-3 37

documentation on existing systems. These experts are the best source for identifying future
trends .n u1e domain because they have knowledge of, and experience with, several systems.
Domain experts also identify future trends that are necessary to keep the results from becom-
ing obsolete.

The outputs from the preparation activity are the sources and the material for available domain
expertise and relevant source material.

JODA recommends reviewing domain documentation from three existing systems because
the domain analysis should cover as much of the domain as possible. Analyzing three previ-
ous systems will not guarantee that coverage, but only examining one system may not provide
enough coverage. Examining two systems is better than one, but three provides even more
breadth. Examining more than three existing systems could be productive, but the analysis
may not be cost effective. We rely on the experts to identify areas that are overiooked. We use
analysis (reverse engineering) to identify detailed information and confirm expert views.

5.1 Acquire Domain Expertise for the Analysis

JODA requires the availability of domain expertise. Three potential sources for identifying do-
main experts are:

* upper-middle managers,
¢ chief architects from previous developments, and
® chiet architects from current developments.

To obtain this expertise, senior management must support the need to make a domain ex-
pert's time available. When the experts are identified, they are informed of the notation that
will be used so that they may become familiar with the CYOOA notation. Support from domain
experts must also be obtained because the results will be detailed and require a concentrated
effort from the domain expert to perform the required review. Also, the domain analysis team
must concentrate on producing results that can be quickly and easily understood. if domain
expertise cannot be obtained through this or alternative means, the domain analysis should
not continue because the results can not be adequately validated.

5.2 Collect Source and Reference Material

Domain experts can identify and recommend applicable sets of system documentation and
domain reference material for the analysis team. After a list of pertinent reference material and
domain documentation has been compiled, the materials are evaluated. The quality and cov-
erage of the system artifacts are the factors that should be used to select information for do-
main analysis. An optimal set of documentation would include broad, high quality coverage. In
reality, both quality and coverage may be lacking. Obtaining these materials will be aided by
the support of senior level management. With senior level management support and guidance
from the domain experts, the analysis team gathers the necessary reference material and sys-
tem artifacts.

38 CMU/SEI-92-SR-3

Obtaining access to classified or proprietary material can be a problem, so unclassified and
nonproprietary sources and references are preferred. The classification of a domain is a real
hindrance to open discussion and review. Regardless of the classification and sensitivity of the
material, the appropriate source material and reference must be obtained for the domain anal-
ysis to be successful.

Another potential source of information is from previous domain analyses. These efforts may
not have been called “Domain Analysis”, but they may contain essentially the saine “Generic”
or “High Level" information. Domain experts should be queried as to whether or not they are
aware of previous studies that have attempted to capture, analyze, or represent information
about the domain. These previous studies can provide an excellent starting point for further
analysis.

The domain preparation activity occurs in parallel with domain definition, and the decision
whether or not to proceed with domain modeling is made at the review. If the resources for the
domain analysis are determined to be insufficient by the domain experts, then the proposed
analysis must be re-examined with the sponsoring agent.

CMU/SEI-92-SR-3 39

40

CMU/SEI-92-SR-3

6 Define Domain

In this chapter we describe the domain definition activity. Figure 6-1 gives an overview of the
domain definition phase. The definition is used by potential users of the domain analysis re-
sults to determine if their requirements can be met by the results of a particular domain anal-
ysis.

The source and reference materials obtained during the preparation activity are analyzed to
create a domain definition that is refined during domain modeling. The better the definition in
the early phases, the easier the successive phases will be. From the domain selection process
and from discussions with the domain experts, the team will have started to form a domain def-
inition, but it is necessary for that definition to be documented, reviewed, analyzed, and updat-
ed.

The output of this activity is a domain definition which is described in detail in Section 4.2
above. The preliminary domain definition will not contain all the detail and precision that will
be present in the final version, but the following outputs are produced:

* top-level subject diagrams,
e set of whole-part diagrams,
¢ domain services,

* domain glossary,

¢ domain dependencies, and
¢ textual description.

6.1 Define Domain Context

Initially, the domain context needs to be defined. It is easier to retrieve that information from a
domain expert than to obtain it from system documentation. The domain context may not be
easy to identify from existing systems because the domain may not map directly onto the
structure of previous systems. While interviewing an expert, the domain analyst should ask the
expert to describe the major subsystems or systems with which the domain will intertace. Do
these other systems/subsystems provide service to the domain being analyzed, does the do-
main being analyzed provide them services, or are both true? The experts should also be
asked to characterize that interface: is this a common interface? Is the interface necessary or
optional? What domain requirements can be linked to this interface and service? If the domain
directly supports a user, then it is useful to review operators’ manuals, operations manuals,
and service manuals.

To document the context for the domain, JODA requires a high-level subject diagram which
identifies the customers for the domain services and shows the domain context, i.e., what oth-
er systems use its services. This diagram only identifies that there is an interface; it does not
identify the customers for each domain service. The domain customers may be users, other

CMU/SEI-92-SR-3 41

programs, or applications. To validate the subject diagram, the domain analysis team will ex-
amine artifacts from current or previous develcpments. If they extract the information from doc-
umentation, then they should review the information with a domain expent. It is important to
identify other systems and subsystems which obtain services and provide services to the do-
main. A first cut at this diagram can be made quickly, because as the analysis continues, it will
be refined based on analysis of existing systems.

gohvanl
ource
Material l?o.c::l.n Part St
—— b Whole-Part Structure,
Context Domalin Is Pant

—T Analyze

] Systems L Whale-Part Structure,
l Antifacts Domain is Whois

Domain

Expertise dentify
Domain | top Level
_ﬁ Structure T Sugloct Diagram
Systems’
Artifacts Analyze
Scomyrlos
'ﬂ with kv Domain
ng-'-l\'ﬂ Services
jects
Domain
Expertise Analyze
Objects stemns'
tor External '(—'—-sAymfag:
Dependenciss
Systems’
Artifacts
Interface
pendencies
y
o | s
main stems’
Definition | €~——— Artacts
Domaln
Definition
4
Preliminary

Review & Domain
Update Definition

onp":;: ———3{ Domain —

Figure 6-1 Domalin Definition Process

6.2 Analyze Systems Artifacts

JODA also includes in the definition a whole-part structure where the domain is one part. This
whole-part diagram is a variant of the same information presented in the subject diagram

42 CMU/SEI-92-SR-3

above, but when completed, the whole-part diagram identifies services obtained from outside
the domain. The context for the domain being analyzed need not be fully described, but the
whole-part part diagram does differentiate between peer level subsystems/systems and larger
systems or aggregates. Again, this is not a detailed figure; it need not show all services or at-
tributes for external objects.

6.3 Identify Domain Structure

JODA also includes in the definition a whole-part diagram where the domain is the whole. To
derive this whole-part structure, a domain expert is interviewed. The information could be ob-
tained from system artifacts, but again, it is easier to obtain the domain structure from an ex-
pert. In fact, the same expert does not need to provide both whole-part structures. One of the
constant difficulties the team will face is resolving different views of the domain. Therefore, re-
solving two different initial views will provide practice.

The analysis team will require access to at least one set of system artifacts and one domain
expert to produce the subject diagram and the whole-part diagrams. Access to more than one
set of documentation is recommended, but since this activity is occurring in parallel with iden-
tification of domain source material, one set of documentation may be all that is available. The
most appropriate software artifacts to review are systems and software requirements specifi-
cations, high-level software designs, and operations manuals.

6.4 Analyze Scenarios with Top-Level Objects

To identify domain services, scenarios are defined that utilize the high-level domain services.
To define scenarios, systems artifacts are analyzed and domain experts are interviewed. Sce-
narios are very useful for understanding systems [1], and they can be extracted directly from
existing documentation, like the Tactical Operations Manual for the F/A-18 that describes in
detail the procedures the pilot uses to manage his weapons. These procedures correspond
directly to services of the domain. In this early activity, one must consider the time spent ana-
lyzing scenarios, and it must be balanced with preparation effort which is occurring at the same
time. Again, it is easier to obtain scenarios from domain experts than to define scenarios from
systems artifacts. Identifying services may also be accomplished by examining an object's life
history, which is a different kind of scenario.

6.5 Analyze Objects for External Dependencies

The final step in creating the domain definition is to identify domain dependencies by examin-
ing each of the requirements listed in Section 4.2.6, Domain Dependencies, and to determine
how each requirement is applied to the domain. After recording the domain dependencies, the
analysis team is ready to document the domain definition for review by the domain experts.

CMU/SEI-92-SR-3 43

6.6 Document Domain Definition

The diagrams and services which have been derived by the domain analysis team do not con-
vey enough information. The value of such information is enhancea v!ien it is put in context
with a textual description. The domain definition document is a living document which is re-
viewed throughout the analysis and is delivered with the RSOs and domain model at the con-
clusion of domain engineering. Specifically, the document will list and Jdefine each domain
service, and each external dependency. The recommended order for these diagrams is:

¢ introduction containing references, reviewers, and background,

¢ whole-part diagram, where domain is a part,

* top-level domain classification diagram (not included in initial draft),
* top-level subject diagram,

¢ domain services,

* whole-part diagram, where domain is a whole,

¢ domain dependencies, and

¢ domain glossary as an appendix.

JODA also includes a gen-spec diagram in the domain definition, but it is too early in the do-
main analysis to accomplish this with any confidence. The gen-spec diagram requires access
to multiple system definitions or extensive discussions with a domain expert to draw out this
complex information. A top-level classification structure will always be produced during the
creation of the domain modei.

6.7 Review and Update Domain Definition

The domain definition process does not terminate until a successful review is held at the end
of the phase. Figure 6-2 identifies the activities of the review process whose purpose is 1o re-
fine the domain definition based on the knowledge of the domain experts, and to determine if
the domain analysis team has the necessary resources to perform the analysis. Reviewing the
domain definition is especially important since the definition controls the scope of domain mod-
eling that is about 75 percent of the analysis effort. The domain analysis team reviews the def-
inition with the experts, and the analysts describe their analysis approach. This approach must
be accepted before beginning model creation.

The domain definition document, references material, and documentation of existing systems
are the inputs to the review and update activity. The output from this review is a preliminary
domain definition, used for establishing and maintaining the focus of the domain analysis
team. The reviewers, who have extensive backgrounds in the domain, will be able to add detail
and clarity to the definition. They can also identify areas where the documentation and refer-
ence materials are weak and suggest additional materials. The intent of the review is to ensure
that the team has identified a coherent domain and obtained resources necessary for analysis.

44 CMU/SEI-92-SR-3

Domalin Distribute

Definition Domalin
| Definition Review
for review Package
Review Preliminary Domain
Domain Definition
Definition -
with Domain
Experts
Review Domaln Analysis

Analysis Guidance
Approach -

Figure 6-2 Domain Definition Review Process

6.7.1 Distribute Domain Definition for Review

At least two weeks prior, the domain definition is provided to the reviewers. If the domain ex-
perts are not familiar with the CYOOA notation, a meeting may be necessary to teach them
the notation.

6.7.2 Review Domain Definition with Domain Experts

In this review, the domain definition is reviewed in detail by the domain experts. The feedback
from the review is used to refine the domain definition and to identify additional documentation,
reference material, and emerging technology.

The whole-part structures that have been defined by the domain analysis team are presented
to the domain experts. These structures need to be examined from a broad perspective to clar-
ify and validate the domain context, its major classes, and their relationships. If an omission
from the domain’s whole-part structure is identified, a decision to add to the whole-part struc-
ture may increase the scope of the domain. It is important that decisions that affect the scope
of the domain be made explicitly because what appears to be a small increase in scope can
cause a large increase in the domain modeling effort. If structure is added, then the whole-part
structure diagram is updated.

The domain definition should be compared with the more abstract systems artifacts. The do-
main analysis team should examine the designs of existing systems to gain an understanding
of how the requirements are satisfied, since the issues which generated a particular implemen-
tation may be more apparent in the design than in the requirements. These issues and their
rationale are necessary to understand the domain and document the results. In addition, there
are usually services or features that have not been documented that are necessary to com-
plete the domain definition. Only by examining designs and code can these features be iden-
tified.

CMU/SEI-92-SR-3 45

The domain definition’s subject diagram and services should be reviewed together, since the
domain services define the domain interface. Omissions from the domain services are likely
because interfaces may have been overlooked. The users of the domain services can be iden-
tified by the reviewers. Walking through realistic domain scenarios will clarify issues.

The domain glossary is discussed to identify definitions that are incorrect, and to ensure that
all required terms and concept are defined. If the domain experts can direct the analysis team
to standard references from which they may obtain definition and concepts, this will aid in clar-
ifying and documenting the resuits. Terms and concepts evolve over time within organizations
and will represent the bias of the experts. It is important that these terms and concepts be doc-
umented using standard means.

Finally, the domain dependencies are examined from the perspective of what services from
other systems are necessary for the domain to function. If the domain dependencies are in-
complete, then the reviewers can help identify additional dependencies. Any external software
dependencies should be identified, examined, and accepted by the reviewers, because a do-
main will not function without these services.

6.7.3 Review Analysis Approach

Before concluding the review, the analysts will describe their approach to analyzing the do-
main. The systems that will be analyzed, the breadth of the domain that will be analyzed, and
the mix of bottom-up and top-down techniques that will be used are presented to the experts.
The experts can recommend adding, deleting, or changing the set of systems to be analyzed.
The experts should also be queried to determine what they consider proper coverage of the
domain, and how they would approach the analysis proposed by the domain analysis team.
Issues that are not resolved are recorded and reported in the review minutes. After the action
items, guidance, and suggestions recorded during the review have been discussed, the re-
viewers should meet without the domain analysis team to determine if they support beginning
domain modeling. The reviewers can identify action items for the domain analysis team to
complete before they continue. If the reviewers are not satisfied with the approach, the source
material, or the domain definition, then any concerns will be reported in the review minutes and
discussed with the domain analysis sponsor. It is more cost effective to redirect the analysis
early than to try and fix it later.

46 CMU/SEI-92-SR-3

7 Model Domain (OOA)

In this chapter, the model creation process is described in detail. The process is based on
CYOOA and uses the notation of CYOOA to define the domain model. Figure 7-1 gives an
overview of the model creation process. The goal of domain analysis is to define a domain
model that is derived from an analysis of system artifacts, references, and domain experts so
that it can be used to produce RSOs, especially reusable requirements.

The preliminary domain definition and relevant source material are the inputs to the domain
modeling phase. Information is extracted from the domain experts to define a top-level view of
the domain, while the reference material and domain artifacts will be analyzed to build up the
details of the model and increase the team members’ understanding of the domain. When a
domain expert defines the domain structure, the detailed analysis is faster and easier. The out-
put from this step is the domain definition and model that are defined in detail in Chapter 4.

Preliminary Examine Class Specifications

Befnition (Object Life- 3ol F
State-Event
Response
{dentity and cnhdn Services
- al
wagom;ﬁ'ugh Instance Connections
Scenarios
Abstract and | Subjects and
Group | SarSher
Objects
Domalin
Definition

Review and gd ;
Update | goas"”

Domain e
Mode!

Domain
Experts

Figure 7-1 Domain Modeling Process

The activities for analyzing the domain are defined in CYOOA [7]. Those activities have been
evaluated and a further refinement and extension is given below. A specific ordering for the
model creation activities is given.

From the domain definition, we get a top-level view of the domain. During the analysis, we will
enhance and refine that view by examining the details of the domain. To fully document the
domain, a model is created that defines the whole-part structure from the top of the domain

CMU/SEI-92-SR-3 47

down to the lowest level objects. If the analysis team has difficulty defining the high-level struc-
ture, they should analyze some lower level objects to get a better understanding. The analysis
iterates from the bottom-up to the top-down through the life-history and the state-event re-
sponse of classes. In general, examining complex examples, when such choices exist, will
help identify more of the structure, the services, and the classes. In the beginning, simple ex-
amples should be analyzed to ensure that the domain analysis team understands the JODA
method and notation. Simple examples are also easier for the team to understand. The simu-
lation of scenarios, which is a later activity, refines and expands the class specifications espe-
cially the attributes, services, and instance connections. Concurrently with these activities, the
domain analysis team must try to identify generalization and specialization and determine
what variations exist in the whole-part structure.

7.1 Examine Object Life-Histories and State-Event Response

There are two techniques defined in CYOOA for identifying the class services, attributes, and
instance connections. One technique is to examine the life-history of an object to identify the
state changes of each class and identify the services that produce the state changes. This
technique does not identify all the error processing and special cases. The second technique
is to examine the state-event responses of the class. This information is captured in the class
specification using statecharts techniques. For real-time control systems and device driver do-
mains, this information is necessary to define the services.

7.2 ldentify and Walk-Through Domain Scenarios

After an initial set of classes has been defined using the techniques above, a process that will
increase the precision and completeness of class specifications is to identify and walk through
scenarios. These scenarios are documented using a statechart technique and are an exten-
sion to the specifications of Coad and Yourdon. Domain experts should identify and initially
define the scenarios that are refined, documented, and simulated by the analysis team. These
scenarios are documented using statecharts that capture the details. Using the statechart
techniques from Statemate, these scenarios can be simulated and validated. The complete-
ness of the analysis will depend on accuracy and realism of the scenarios. To additionally val-
idate the scenarios, they should be reviewed with the domain experts.

7.3 Abstract and Group Objects

From the details that are drawn out through the scenarios, the domain analysis team must
raise the level of abstraction. Using the notation of Coad and Yourdon, abstraction is docu-
mented with gen-spec structure and subject diagrams. It is through the analysis of the com-
mon attributes and services that we identify the generalization-specialization (Gen-Spec)
structure that captures the domain variation. For example, an elevator may have Rear Doors
that require additional Elevator Services Buttons to open and close the Rear Doors. These ad-

48 CMU/SEI-92-SR-3

ditional services are defined in an elevator gen-spec structure. The ability of the notation to
accommodate variation is essential for reuse.

Again, simulating scenarios and case studies with the domain experts are the means to iden-
tifying the variations within the domain. The CYOOA process does not focus strongly enough
on producing or identifying abstract classes in the model. JODA requires examining the do-
main model to identify abstractions of classes and services. If there are repeating instances of
similar problems such as the processing of many message formats, these problems should be
analyzed to identify an abstraction which can be instantiated to cover all cases; an example is
the Doors object defined in Figure A-6. This abstraction was not identified untii after the anal-
ysis had been completed, but the abstraction for doors provides an abstraction which repre-
sents several domain objects. The domain model was updated to include this abstraction in
the domain. The analysis team should attempt to locate and review other domain analyses, to
identify abstractions from other domains that apply to the current domain. If the domain being
analyzed contains a horizontal domain as defined by McNicholl [21), there may be abstractions
in the horizontal domain which help to identify other abstractions.

JODA requires that the domain model be examined to identify stable interfaces where the spe-
cifics vary. For example, device drivers for a Graphics Kernel System (GKS) graphics packag-
es have a similar interface, but the implementation can be vastly different because they
depend on the capabilities of the device. These instabilities are an important aspect of the do-
main and require an explicit classification structure to define the different sets of services. To
identify these stable interfaces with variable implementations, system documentation and ref-
erence material are examined for high-level indicators, like hardware, which imply differing or
different capabilities.

A similar problem is identifying any instabilities in the domain. For example, if one can currently
use different types of sensors (e.g., infrared, laser, or radar) for targeting, and since the class-
es, attributes, and services are dependent on the sensor class, then there is some instability
in the domain. The domain analysis team should attempt to define a virtual interface with help
from the domain experts. This virtual interface would map onto the services for each different
member of the class. If a definition of a virtual interface is not possible, the instability and the
rationale associated with each variation will be identified to alert potential reusers to the vari-
ation. Instability in the domain will not invalidate the domain analysis results since there is val-
ue in a partial set of requirements.

7.4 Review and Update Domain Model

Creating and refining the domain model will continue until the reviewers agree that the model
is complete and sufficiently accurate to define the domain. Figure 7-2 gives an overview of the
review process for the domain model. The purpose of reviewing the model is not only to de-
termine that the model completely and accurately represents and abstracts the knowledge ob-
tained from the documentation, references, and experts, but aiso to determine that the review
obtains guidance and support from the domain experts on how to proceed. The termination

CMU/SEI-92-SR-3 49

conditions for this phase are that the model completely and accurately represents and ab-
stracts the domain knowledge.

Distribute
Domain Domain Review
Model 1 Model for |Date
Review
Compare
Domain Domain
5.1 Modelwith |Model
ansEx.{:tIng
m
' S (-
main
Model with | Model >
Domaln
SA!;:I&:“; Exports Domain
Review
Modeling | 8odeing
T Approach |
Domain
Experts

Experts

Figure 7-2 Domain Model Review Process

The inputs to the review process are the domain model and the domain definition. The model
and definition will be provided to the domain experts along with instructions for performing the
review. On-line access to the model may also be provided if desired.

The outputs from the review are the domain expert’s guidance, an revised domain definition,
and a updated domain model. It is important that this review be constructive so the domain
definition and model are improved. The comments of the domain experts are recorded, re-
tained, and later reviewed by the analysis team with the domain experts at the next model re-
view. This does not imply that all comments are accepted, but a valid reason must exist before
a domain expert's comment is ignored. The model review is not one review, but a series of
reviews which occur during the analysis process. The frequency of the reviews depends on
the size of the domain and the length of the analysis. With each review, the completeness and
accuracy of the model should increase; if the model is not becoming more complete, accurate,
and abstract, then external intervention in the analysis process is required to determine why
the analysis is not converging.

JODA recommends that reviewers accept the domain definition and determine if the model
represents a complete, accurate, and abstract view of that domain. If the reviewers determine
that the model does not adequately cover the domain, then the reviewers should be able pro-
vide examples and/or make recommendations for additions to the model. There will be trade-
offs between the scope of the domain definition and the completeness of the model. If, on the

50 CMU/SEI-92-SR-3

other hand, the reviewers don't believe that the domain definition covers the domain, then an
evaluation by the domain analysis team is made to determine if the resources exist to change
the scope of the domain definition.

7.4.1 Distribute Domain Model for Review

At least two weeks prior to the model review, the domain definition and model are provided to
the reviewers. It is important that the review package include both the definition and model be-
cause the definition includes the glossary and defines the domain context. If the domain ex-
perts are not comfortable with the CYOOA notation, a meeting may be necessary to review
the notation. When the experts were identified, they were provided with the notation that will
be used so that they may become familiar with it.

7.4.2 Compare Domain Model with an Existing System

One aspect of the review is to request that the reviewers compare the domain model to sys-
tems that they have or are currently working with. The differences between the model and oth-
er systems should be captured by the domain analysis team for later review and evaluation.
In some cases, the current view of the domain may not be entirely compatible with existing
systems. For example, ballistic computations have been placed in the mission computer in the
F/A-18 because that computer is more powerful, has more available memory, and the Stores
Management Computer has exhausted its available memory. The domain analysis team may,
however, include the ballistics computation in Stores Management. The reviewers should also
be asked to compare the class definitions with objects that would be in that class from their
existing systems. It is assumed that any domain expert has information on or is working on
systems in the domain.

7.4.3 Review Domain Model with Domain Experts

In addition to the model review matetial, the domain definition that includes the terms that were
compiled during analysis will be given to the reviewers. A major communications problem is
that people use the same terms with different definitions. For example, the Common Ada Mis-
sile Packages (CAMP) team did not include the guidance functions with their meaning of nav-
igation, but some companies do include guidance with their meanings of navigation. The
creation and review of a domain glossary will reduce this problem.

The domain experts are briefed by the domain analysis team on the model. This briefing pro-
vides the domain experts with an overview of the model. The domain analysis team will be
available before the review to answer question for the domain experts. A certain amount of
separation of the domain analysis team from the domain experts is valuable, but domain ex-
perts are encouraged to become more involved if they so wish.

The domain experts will have knowledge of systems that have not been included in the anal-
ysis. When the domain experts make comments, they should provide, if possible, examples
and references. If the domain experts can provide written comments to the domain analysis

CMU/SEI-92-SR-3 51

team before the review, then the domain experts will brief the domain analysis team on any
corrections that have been made as a result of the comments.

7.4.4 Review Modeling Approach

Finally, the domain experts will be briefed on how the analysis will proceed from its current
state toward the next review. Review materials for the approach are not provided in advance
so a detailed explanation is given by the reviewers.

After the domain analysis team has received, reviewed, and updated the mode! based on the
domain expert's comments, they will evaluate the domain definition once again to determine
if itis complete, accurate, and appropriately abstract. The domain experts may have increased
the scope of the domain definition by recommending the inclusion of classes, services, or
structure in the model.

52 CMU/SEI-92-SR-3

8 Transition to Domain Implementation

There are two issues that haven't been addressed which must be considered before the dis-
cussion is concluded. First, the transition to domain implementation must be considered. It is
in domain implementation where a generic software architecture is produced that is capable
of implementing any of the systems that can be derived from the domain model. Second, the
coordination of JODA with the requirements of DoD-STD-2167A must be considered, since all
the JIAWG systems listed in Chapter 1 are being acquired using 2167A.

8.1 Transition to Domain Implementation

The development of a generic software architecture which can implement any of the systems
defined by the domain definition is the initial goal of domain implementation. The approach
recommended is defined by the Parnas [26]. Parnas gives four recommendations for creating
such an architecture, and he identifies four indicators that the software architecture is not flex-
ible. The four techniques that Parnas has recommended for making software more adaptable
are:

¢ Requirements definition: identifying the subsets first. He recommends that
feasible subsets of operational features be identified. The first step in
accomplishing this task is to identify the minimal subset of domain services
which makes sense. In the object-oriented case, this implies that some
objects may not be in the minimal system. It also implies that there will be a
minimal set classes which makes up a useful capability in the domain.

e Information hiding: interface and module definition. The domain model is
intended to be general, but a software architecture must be flexible enough
to accommodate the extension and contraction. This requires information
hiding and module interface definition. One of the strengths of object-
oriented programming is that information hiding and module definitions are
automatic. Therefore, the natural transition from object-oriented analysis to
object-oriented design will support this goal.

e The virtual machine concept. Here, virtual machine is defined in the hardware
interface sense not the sense of successive refinement, i.e., interfaces are
defined where the software modules provide the instruction set necessary to
program the task on a limited set of data types. Another strength of object-
oriented programming is that it supports this same view of design. Each class
has a set of services from which the problem solution is defined. This
technique is especially useful for device drivers or domains whose main task
is to control aixd monitor external hardware.

e Designing the “Uses” structure. In this case, Parnas describes an approach
to defining the dependency of one software module on another. This
approach [26] is also consistent with the use of classes. but should be
specifically included in a method for domain implementation.

CMU/SEI-92-SR-3 53

]

The four indicators of non-flexible design identified by Parnas are:

¢ Excessive information distribution. Assumptions have been that a given
feature would or would not be present. When this assumption changes, the
design and its implementation are difficult to change.

¢ A chain of data transforming components. It is often more difficult than it is
worth to remove a transformation that is no longer required because it
changes the form of the output.

e Components that perform more than one function. Combining two simple
features into one component because they are closely related often makes it
difficult to extend the system when one functions is required without the
other. The separation of function is another reason for desiring an object-
oriented approach, because the services are usually separated to begin with,
and are easily separated if they are not.

® Loops in the “Uses” relation. If too much interdependency exists between the
major elements of a system, then nothing works until almost everything is
complete. This makes the ability to subset almost impossible.
The development of object-oriented requirements is consistent with the transition to a flexible
design as recommended by Parnas. Thus, the recommended approach will make the next
step, the development of a flexible software architecture, easier.

8.2 Relationship of Domain Analysis to DoD-STD-2167A

We have not yet considered the impact of 2167A on the JODA. Since transformation of the
domain model into DoD standard requirements produces a specification that is defined by
DoD-STD 2167A, then JODA is compatible. The other main products, the domain definition
and the domain model, are not deliverables to the customer, and therefore require no specific
format. It is important to note that the domain model needs to be maintained so that it can be
updated to incorporate new features for each new system. This is essential to maintain the vi-
ability of the model over its life time. Without revisiting the domain analysis [17], we cannot ob-
tain the maximum benefits of domain analysis.

54 CMU/SEI-92-SR-3

System Diagrams

Users

Bullding
System

] Elovator =i

Appendix A Office Building Elevator

Moveable
Equipment

Figure A-1 Top Level Subject Diagram For The Office Bullding Elevator System

~\
r Office Building
Transportation
System
#_floors
travel_up
travel_down
\. J
1 I 1 0,1
O,N O.N O,N
Office Building Building Escalator Building Stairs
Elevator System System
area serviced
#_elevators set_requests #_floors
#_fioors escalator_status
capacity walk_up
status ride_up walk_down
req_elev_up rido:down mdog:rs
req_elev_down stop_escalator -
select_dest J
open_doors _J
close_doors
sound_alarm
unlock_reardoor
lock_reardoor
stop y

Figure A-2 Assembly Structure Where The Office Bullding Elevator System Is A Part

CMU/SEI-92-SR-3

55

—
Office Building
Elevator System

#_elevators

#_floors

destination_set

capacity

req_elev_up

req_elev_down

open_doors

close_doors

unlock_reardoor

lock_reardoor

status

stop

\.
1 1 1,N
S # V' N
o,N ON | 2,N
~\
Elevator) r- Controller r Elevator Lobby

capacity set_requests #_elevators
direction elevator_status floor_#
location elevator_schedule status
status

request_elev req_elev_down
stop elevator_status req_elev_up
status elevator_dest close_doors
sound_alarm - open_doors
open_doors \. —
close_doors
select_dest

—

Figure A-3 Top Level Assembly Structure Of An Elevator System

56

CMU/SEI-92-SR-3

()

Elevator System
_floors
#_lobbies
destination_set
capacity
req_elev_up
req_elev_down
open_doors
close_doors
unlock_reardoor
lock_reardoor
status
__Stop y
)) (
Penthouse r Freight Office Building
Elevator System Elevator System Elevator System
2_floors padding
1 elevator manual control
security key
hold \.
go_top _ J
go_bottom
k unlock_top)
()
(Garage) Express
Elevator System Elevator System
lobby_floor_# top_floor
local_low_floor
2_lobbies
9 y
\. J

Figure A-4 Top Level Classification Structure of Elevator Systems

CMU/SEI-92-SR-3

Service
Status
Buttons *1 indicators
[} Users f
—

i Controller Y

- — >
Elevato Elevator

r Lobby
> st &
Doors

Figure A-5 Second Level Subject Diagram Of Elevator System

o)
Doors

status
name

open

close

Elevator
Lobby Access
rs

—

Doors

Elevator

=

(Elovator
Front Doors

(Elovator
Rear Doors

locked

lock

unlock

Figure A-6 Door Classification Structures For The Building Elevator System

58

CMVU/SEIN-92-SR-3

(" crone)

Status
Indicators
status
off
on
status
Visual Audible |
Indicators Indicators
—— ——
f
on
Elevator
Alarm
release

Figure A-7 Status Indicators Classification Structures

Elevator
Arrival Bell

ring

—

Figure A-8 Elevator Arrival Bell

CMU/SEI-92-SR-3

59

Service
Button
press
[Stop h Open Doors Close Doors

Button Button Button

press

set ———

\ feset J
a\

Elevator Elevator rDestimaticm)
Alarm Request Selection
Button Button Button

release

Up Request Down Request
Button Button
—— —

Figure A-9 Service Button Classification Structures

60

CMU/SEI-92-SR-3

G
Elevator
Lobby

#_elevators

floor_#
status

req_elev_up
req_elev__down1
open_doors
close_doors

)

r Top Floor) Elevator r Bottom Floor h

Elevator Request Elevator
Lobby

Lobby X Button X ’ X
recLelev_chJ

& req_elev_up > c

Elevator U E

p levator
Up Arrival Request Down Arrival
Light X Button Light
— ——

Figure A-10 Elevator Lobby Classlfication Structures

CMU/SEI-92-SR-3

Elevator

#_elevators
floor_#
capacity
direction

status
1 | sound_alarm 1

close_goors
open_doors
1 sglee&_dest 1
sto|
1 _reardoor I3
unlock_reardoor
M 1 L L
1 1 1
Open Doors Close Doors Elevator
Button Button Arrival Bell
— — ~—
0 1 0
. Elevator Elevator Stop
Direction Light Doors Button
— — —
OI 1
Elevator Elevator |, 1 Elevator
Floor Locator Destination _’ Destination
Light Light Button

Figure A-11 Elevator Object Diagram for Office Bullding Elevator

62 CMU/SEI-92-SR-3

(Erovator ooy
Elevator Lobby
#_elevators
floor_#
status
1 | req_elev_up 1
’ raq_elev_down ‘
1 | open_doors 1
close_doors
2 1 1
Elevator 1 Elevator
Access Down Arrival
Doors Elevator Light
closed Upﬁ;ﬂ:’ al status
open on
status on
~—— off ____J
0 \) 0
rUp Request) rDown Requesp
Button Button
press press
1 1
1 1
Up Request Down Request
Light Light
status status
on on
off off)

Figure A-12 Elevator Lobby Object Diagram for Office Bullding Elevator System

Elevator 1N g Controller) 1 2N Elevator Lobby
capacity set_requests #_elevators
direction elevator_status floor_#
location elevator_schedule status
status status
stop request_elev req_elev_down
status elevator_status req_elev_up
sound_alarm elevator_dest close_doors
open_doors - open_doors

ose_doors
select_dest J
\\ —

Figure A-13 Controller for the Office Bullding Elevator System

CMU/SEI-92-SR-3 63

64 CMU/SEI92-SR-3

Appendix B Office Building Elevator System

B.1

Specifications

1. There are 1 or more elevators serving 2 or more floors.

. On board each elevator is a set of destination push buttons, one for each floor, which

backlight when depressed, and remain lit until arrival at the selected floor.

. On board each elevator are two directional signal lights, one for going up, and the

other for going down.

. On board each elevator is a set of lights, on for each floor. One of these lights is

always lit, indicating the elevator is at that floor.

. On each floor there are two summons push buttons, one for summoning the elevator

to go up, and the other to go down. These backlight when pushed, and remain lit until
an elevator arrives that will go in the selected direction. The top and bottom floors
each have only a single summons push button.

. On each floor, beside each elevator are two floor directional lights, one showing the

direction the elevator will take. When an elevator arrives at the floor, the appropriate
light show the direction the elevator will take when leaving the floor. The top and
bottom floors have only a single directional light each.

. Each elevator has doors which are either closed or not closed. Opening, closing, or

emergency stops are not considered. On each floor, there are doors for each
elevator. Both the elevator doors and the fioor doors have to be open for people to
enter or leave the elevator at a floor.

. The specification is not concerned with what happens under failure conditions.

Specification Statement for the Office Building Elevator
System

CMU/SEI-92-SR-3 65

Specification: Elevator Lobby

definitionData
#_elevators: Integer range (1 ... max § of_ elevators)
/*The number of elevator which are accessible from
the lobby
Floor_#: Integer range (1 ... 102)
/*The floor number where the elevator lobby is
located.
externalSystemInput: Inputs are received from the Up and Down

Request Buttons.

externalSystemOutput: On and off messages are send to status
indicators: Elevator Up Arrival Light,
Elevator Down Arrival Light, Down Request
Light, and Up Request Light.

InstanceConnectionConstraint

with Controller 1:M, required

with Elevator Lobby Access Doors 1:M, required

with Elevator Up Arrival Light 1:M, required

with Elevator Down Arrival Light 1:M, required

with Down Request Button 1:M, required

with Up Request button 1:M, required
stateEventResponse: When Usexrs press UP or Down Reguest Buttons,

these requests are sent to the controllerx
unless a previous request has been sent.

intent/purpose: Provides a locus of control for elevator
doors, requests, and status indicators.

Service request_elevator up Data flow: None.
Sends request_elevator message to controller, after validation

Service request_elevator_down Data flow: None.
Sends request_elevator message to controller, after validation

Service close_access_doors Data flow: None.
Sends close_doors message to Elevator Lobby Access Doors
Service open_access_doors Data flow: None.

Sends open_doors message to Elevator Lobby Access Doors

end specification

B.2 Specification of Elevator Lobby Obiect of Office Building
Elevator System

66 CMU/SEI-92-SR-3

Specification: Elevator

definitionData
floor_#: integer range (1 ... # floors)
/*Remembers the floor on which the elevator is located
capacity: integer range (0 ... 50,000)

/*The weight or number of people the elevator can carry
direction:Enumerated (up, down)

/*Remembers the direction of travel of the elevator.
destinations:set of integers

/*Remembers what f£flooxrs the elevator will stop on.

externalSystemInput Users may request service by pressing or
activating any of the Elevators service
buttons.

externalSystemOutput Elevators status indicators are activated
to acknowledge User requests and to signal
events the User should be aware of.

InstanceConnectionConstraint

with Open Doors Button 1:1, required
with Close Doors Button 1:1, required
with Elevator Arrival Bell 0:1, optional
with Elevator Direction Light 0:2, optional
with Elevator Doors 1:2, required
with Stop Button 1:1, regquired

with Elevator Destination Button 1:M, required

stateEventResponse The elevator takes Users requests,
acknowledges them, forwards them to the
controller, and takes the actions directed
by the controller.

objectLifeHistory

intent /purpose The purpose of the Elevator is to move the
Users from floor to floor. The Elevator does
not control its movements, this is normally
done by the controller.

CMU/SEI-92-SR-3 67

Service status Data flow: None.

When requested by the controller, or when the status of the
elevator changes, the Elevator sends its status to the
controller.

Service sound_alarm Data flow: None.

When the User presses the Alarm Button, the Elevator turns on
the alarm. When the User releases the Alarm Button, the Elevator
turns off the alarm.

Service close_doors Data flow: None.

When the Elevator Doors are open, and either the Users presses
the Close Door Button or the controller directs the elevator to
close the doors, the doors are closed. This action is
synchronized by the Elevator Lobby.

Service open_doors Data flow: None.

When the elevator is located at a floor, and either the User
presses the Open Door Button, or the controller directs the
elevator to open the doors, the doors are opened. This action is
synchronized by the Elevator Lobby.

Service select_dest Data flow: None.

The Users presses one of the Elevator Destination Buttons and
the request is sent to the controller, after ensuring that the
request is not currently active.

Sexvice Stop Data Flow: None.

When the users activates the stop button, the elevator is
stopped, and remains stopped until the User releases the stop
button.

end specification

B.3 Elevator Specification for Office Building Elevator System

68 CMU/SEI-92-SR-3

Specification: Controller

definitionData

set_requests: set of recorxds, record contains: type_of req,
orig_of request, destination

/*The controller remembers each request it receives
until that request is handled by adding a stop to an
elevator_schedule

elevator_schedule: set of records, record contains: elevator_#,
location, elevator_ destinations

/*The controller remembers on what floor the elevator
each elevator is located, and where it will stop.

alwaysDerivableAttribute

elevator_status: set of records, record contains: elevator_#,
location, direction

/*The controller keeps the status of all the elevators.
The status the controller needs for each elevator is
the location (floor #), and its direction of travel.

InstanceConnectionConstraint

with Elevator 1:M, required
with Elevator Lobby 1:M, required

cbjectlifeHistory The controller receives request, and assigns
them to elevators.

intent /puzrpose The controller manages the assets of the OBE
system, the elevators. It provides fair and
equitable service to the Users.

Service request_elev Data Flow: None.
This request is received from an Elevator Lobby. The request is
added to the set_requests and serviced in a FIFO order.
Service elevator status Data Flow: None.
This message is received from an Elevator to update its status
and elevator_schedule.
Sexvice elevator dest: Data Flow: None.

elevator_dest is a message received from an Elevator to request
that it stop at a given floor. The request is validated against
the elevator_ schedule, assigned based on the elevators schedule
and direction.

end specification

B.4 Controller Specification for Office Building Elevator System

CMU/SEI-92-SR-3 69

Specification: Service Button

externalSystemInput Users press the button to request service.

externalSystemOutput The associated light is 1lit to acknowledge
the user’s request.

InstanceConnectionConstraint

with Elevator Lobby 1:1, required
with Elevator 1:1, required
with Status Indicator 0:1, optional
stateEventResponse Users presses a Service Button, light is
turned on, and request is sent for service.
objectLifeHistory
intent/purpose Provide the Users with means to access
system services.
Service Press Data flow: None.

If a previous request has not been satisfied, illuminate the
associated Status Indicator, if present, and request service.

end specification

B.5 Service Button Specification

Specification: Open Doors Button

externalSystemInput Users press button to open Elevator Doors.
InstanceConnectionConstraint

with Elevator 1:1, required

is-a Service Button
stateEventResponse Users presses a the button, and request is

sent for service.

intent/purpose Provide the Users with means to open the
Elevator Doors.
Service Press Data flow: None.

If the Elevator doors are not already open a request is send to
the Elevator to open the doors. Elevator determines if the doors
should be opened.

end specification

B.6 Open Doors Button Specification

70

CMU/SEI-92-SR-3

Specification: Status Indicator

definitionData:
status: logical range (true, £alse)
/*Remembers whether the indicator is on or off.
externalSystemOutput Light is illuminated to acknowledge a User
request or to signal an event the User
should be aware of.

InstanceConnectionConstraint

with Service Button 0:1, optional
with Elevator Lobby 0:1, optional
with Elevator 0:1, optional
cbjectLifeHistory Indicator is turned on and off as directed
through its instance connections.
intent /purpose To notify the User of status, either to
acknowledge a User request or to signal an
event.
Service On Data flow: None.

Turn on the indicator.

Sexvice Off Data flow: None.
Turn off the indicator

Service Status Data flow: None.
Returns whether or not the indicator is on.

end specification

B.7 Status Indicator Specification

CMU/SEI-92-SR-3

n

Specification: Elevator Alarm

externalSystemOutput Sound is generated to alert other building
occupants to problems with an elevator.

InstanceConnectionConstraint
with Elevator Alarm Button 1:1, required.

intent/purpose The means for the User to signal a problem.

Service On/Off Data flow: None.
Turn on/off the alarm.

end specification

B.8 Elevator Alarm Specification

Specification: poors

descriptiveAttribute
Name : String range (1 ... 32) characters
/*used to distinguish between different doors

definitionData
status: enumerate range (open, closed)
/*Maintains if the doors are open or closed.

externalSystemOutput When directed the Doors are open and closed.

InstanceConnectionConstraint

with Elevator Lobby 1:1, required
with Elevator 1:1, required
stateEventResponse When User presses Open/Close Doors Button,
or when directed, Doors are opened/closed.
intent/purpose The Doors control access to the elevators.
Service open/close Data flow: None.
When directed, the Doors are opened/closed.
Service status Data flow: None.

When requested or when the status has changed, this message is
sent to the Elevator or Elevator Lobby as appropriate.

end specification

B.9 Door Specification for Office Building Elevator System

72 CMU/SEI-92-SR-3

Specification: Elevator Lobby Access Doors

descriptiveAttribute
Name: String range (1 ... 32) characters
/*used to distinguish between different doors

definitionData
status: enumerate range (open, closed)
/*Maintains if the doors are open or closed.

externalSystemOutput When directed by Elevator Lobby the Doors
are open and closed.

InstanceConnectionConstraint
with Elevator Lobby 1:1, required
stateEventResponse When the Elevator arrives at the floor, the
controller directs both the Elevator and
the Elevator Lobby to open the doors
associated with the Elevator. When the
Elevator Lobby Access Doors in the lobby

sense, the Elevator Doors opening, the
Elevator Lobby Access Doors also open.

intent /purpose The Doors control access to the elevators.

Service open Data flow: None.
When directed, the Doors are opened.

Service close Data flow: None.
When directed, the Doors are closed.

Service status Data £flow: None.

When requested or when the status has changed, this message is
sent to the Elevator Lobby.

end specification

B.10 Elevator Lobby Access Door Specification

CMU/SEI-92-SR-3 73

Specification: Elevator Arrival Bell
externalSystemOutput Sound is made to alert the User.

InstanceConnectionConstraint

with Elevator 1:1, required
objectLifeHistory The bell is used by the Elevator only.
intent/purpose To notify the User that the Elevator has
arrived at a floor where the doors will
open.
Service ring Data flow: None.

When requested by the Elevator the bell is rung to signal arrival
at a floor.

end specification

B.11 Elevator Arrival Bell Specification

74 CMU/SEI-92-SR-3

Specification: <Name of Object>

descriptiveAttribute
<Name>: <Type> range (<Low> ... <Bigh>)
/*English description
definitionData
<Name>: <Type> range (<Low> ... <High>)

/*English description

alwaysDerivableAttribute
None.

occasionallyDerivableAttribute
None.

externalSystemInput
None.

externalSystemOutput
None.

InstanceConnectionConstraint

with <Name> <0 | 1>:<1 | W,
<required | optional>

stateEventResponse
objectLifeHistory
notes

intent /purpose

Service <Name> Data f£low: None.
<English description>

end specification

B.12 Object Specification Template

CMU/SEI-92-SR-3 75

76

CMU/SEI-92-SR-3

Appendix C CYOOA Notation and Process

In this Appendix, we define the CYOOA process and notation that are used throughout the
document to define the process and products of object-oriented domain analysis. The purpose
in describing the notation is to:

¢ define the notation which is used in the domain definition and the domain
knowledge base, and

e define the activities that are used in object-oriented analysis.

C.1 CYOOA Notation

As stated previously, the domain analysis method presented here is based on Object-Oriented
Analysis [7] by Coad and Yourdon and uses the notation from that book. We have not deter-
mined whether or not this notation is adequate to cover all situations, and in general, Coad
and Yourdon recommend using whatever is needed. Figure C-1, Figure C-2, Figure C-3, Fig-
ure C-4, and Figure C-5 describe much of the notation used by Coad and Yourdon. The ex-
ample presented in Appendix A uses this notation. Furthermore, we use this notation when
describing the domain analysis process.

C.1.1 Class/Object Notation

Figure C-1 gives the generic definition of a class/object. The class/object name goes in the top
section. All class/object names will begin with capital letters. For example, the top object in
Figure C-2 describing an elevator lobby is “Elevator Lobby”. This use of lower case will distin-
guish between descriptive terms and class/object names. The attributes associated with the
class/object are given in the middle box. There may be as many attributes as needed. Finally,
the names of the services are given in the bottom section. Once again, there maybe as many
services as needed. For a large number of attributes or services consider using two columns.

Class/Object

Name

Attribute 1
Attribute 2
efc.

Service 1
Service 2
\ etc. J

Figure C-1 Class/Object Notation

C.1.2 Generalization-Specialization Notation

Figure C-2 is an example of a Generalization-Specialization diagram (also referred to as a
“Gen-Spec Diagram” and “Gen-Spec Structure.”) (denoted by the “O” at the junction of lines

CMU/SEI-92-SR-3 77

below the Elevator Lobby Object) defined by Coad and Yourdon. Figure C-2 defines the Gen-
Spec structure for the class Elevator Lobby. In addition to the class Elevator Lobby, there are
two objects: Top Floor Elevator Lobby, and Bottom Floor Elevator Lobby. In the class definition
for Elevator Lobby, there are four attributes:

#_elevators The number of elevators which stop at this floor.
floor_# The floor number for the elevator lobby.
up_elev_arr The status of whether an elevator has stopped at this floor and will

discharge or take-on passengers before continuing up.

down_elev_arr The status of whether an elevator has stopped at this floor and will
discharge or take-on passengers before continuing down.

This description identifies two services performed by the elevator lobby:

up_elev_req User requests that an elevator stop at this floor to transport them up.
down_elev_req User requests an elevator stop at this floor to transport them down.

In the elevator lobby example in Figure C-2, two specializations of elevator lobby have been
identified: Top Floor Elevator Lobby, and Bottom Floor Elevator Lobby. When an “x” appears
before an attribute or service in an class definition, the “x” means that this class does not pos-
sess that attribute or service.

The presence of a “return” service in the Bottom Floor Elevator Lobby is a service the building
management can set to cause elevators to return to the bottom floor when not in use. This ser-
vice is only available in this instance/subclass.

This is not a complete description of the options or notation for Gen-Spec structure; please
examine Chapter 4 of Object-Oriented Analysis [7]. For a more complete description of at-
tributes and services read chapters 6 and 7 respectively of Object-Oriented Analysis [7].

78 CMU/SEI-92-SR-3

(Erovator Lobby
Elevator Lobby

#_elevators
floor_#
up_selev_arr
down_elev_arr

req_elev_up
req_elev_down

—

e ~\
Top Floor [Bottom Filoor
Elevator Elevator
Lobby Lobby
X up_elev_arr X down_elev_arr
X up_elev_req x down_elev_req
return
\) § J
Figure C-2 Gen-Spec Diagram

C.1.3 Whole-Part Notation

Figure C-4 is an example of Coad and Yourdon's whole-part diagram (also referred to as a
“whole-part diagram” or “whole-part structure”). The triangles below the Elevator Lobby class
indicate that this is a whole-part diagram, and the triangle points from the part to the whole.
This is similar to an ER Diagram where the relationship between the higher class and the lower
object is one of the whole to its parts. Figure C-4 shows that an Elevator is composed of Ele-
vator Access Doors, Service Buttons, and Status Indicators. Service Buttons and Status Indi-
cators are examples of another class. In Figure C-4, the specific service buttons and status
indicators that are part of an Elevator Lobby have not been defined. From the relation connect-
ing Elevator Lobby to Elevator Access Doors, each Elevator Access Door is defined to be as-
sociated with one and only one Elevator Lobby. This constraint is defined by the “1~ nearest
Elevator Lobby on that relation.

At the other end of that relation, the “1,N” indicates there can be muitiple Elevator Access
Doors in an single Elevator Lobby, but there must be at least “1”, Elevator Access Door asso-
ciated with each Elevator Lobby. Also, please note that there is a relation between Service
Buttons and Status Indicators. The “0,1"'s on this relation identify this as an option. That
means that we can have Service Buttons defined with and without associated Status Indica-
tors. Examining the relation in the other direction, we see that each Status Indicator may be
associate with or without Service Button, but each Status Indicator is associated with at most
one Service Button.

CMU/SEI-92-SR-3 79

Examining this notation, we see that there are four possibilities:

e Either 0 or1 object B associated with each object A.

¢ between 0 and N object B's associated with each object A.
* one and only object B associated with each object A.

¢ between 1 and N object B’s associated with each object A.

Once again, this is not a full description of either Whole-part Notation or instance connections
(relations). For a more comprehensive treatment read Chapters 4 and 6 of Object-Oriented
Analysis [7].

C.1.4 Subject Diagrams

Subject diagrams are used to group classes and subjects into higher level views. Figure C-5
is a very simple subject diagram, which provides a slightly higher view of the interaction be-
tween Users, Service Buttons, and Status Indicators. The arrows are unidirectional, i.e., the
arrow which points from Status Indicators to User means that a message is sent from the Sta-
tus Indicator to the User. The User sends a message to the Service Button (the message is
really the “Press” service), and finally, Service Buttons send messages (like On/Off) to Status
Indicators. It is essential to have a grouping mechanism to control the amount of information
that the users are exposed to at one time. Another example is the second level decomposition
of the Elevator System given in Appendix A, Figure A-5.

0,1
f e B In the relation between class A to class B, there are between 0 and
1 instances of class B associated with each instance of class A.
o,N
A--emmemmeee B in the relation betwaen class A to class B, there are between 0 and
n > 0 instances of class B associated with each instance of class A.
1
A-meeeenemees B In the relation between class A to class B, there is 1 and only 1 in-
stance of class B associated with each instance of class A.
1,N .
A-emeemea B in the relation between class A to class B, there are between 1 and
n > 0 instances of class B associated with each instances of class A.

Figure C-3 Instance Connection Constraint Notion

80 CMU/SEI-92-SR-3

ﬁ
Elevator Lobby

elavators
floor_#
up_elev_arr
down_elev_arr

up_elev_req
down_elev_req

1,N 1,N
Elevator Status
Access Doors Buttons 0.1 Indicators
status On/Off ’ On/Off
Open_doors Press On
Close_doors Off
Status \)

Figure C-4 Whole-Part Notatlon

Status > Service
| *indicator > User Button

Figure C-5 Subject Notation

C.2 Analysis Activities

Object-Oriented Analysis [7] defines five activities for the analysis process. They do not pre-
scribe a specific ordering for those activities, but the analysis moves from one activity to an-
other and back very freely. The steps of these activities below are outlined below, but the order
is not prescribed. In Chapter 4, we describe an approach to applying these activities.

CMU/SEI-92-SR-3 81

C.21

Identity Classes

A Class is an encapsulation and an abstraction: an encapsulation of attributes and exclusive
services on those attributes and an abstraction of the problem space, representing one or
more occurrences of something in the problem space. To find Classes, look at problem space,
text, and pictures (previous systems).

What to look for:

U R

7.

Gen-Spec and Whole-part structure (see C.2.2).

Other Systems that the system under development (SUD) will interact with.
Devices (documents, formal) that the SUD will interact with.

Events that must be remembered by the SUD.

Roles played by humans who interact with the SUD and about whom information is
kept by the system.

Locations (physical), offices, or sites that the system under consideration will need
knowledge of.

Organizational units that humans belong to.

What to consider:

2 U

Does the SUD need to remember anything about this potential Class?
Does the system need to provide processing on behalf of this Class?
Does the Class have more than one attribute?

Are there attributes which apply to all instances of an Class?

Are there a common set of services for all instances?

Essential requirements - Are there requirements that system must have, regardless
of the technology used for implementation?

What to challenge:

1.

Unneeded remembrance - If a system does not need to hold information about a real
world thing over time or provide Services for it, remove the Class.

Unneeded Services - If a system does .ot need to hold information about a real world
thing over time or provide Services for it, remove the Class.

Single occurrences - If there is only one occurrence of a Class try to identify Classes
with the same attributes and services and just use one of them.

Derived resuits - Examine the model for derived results, e.g., customer’s age in a
system that already remembers the customer’s date of birth.

82

CMU/SEI-92-SR-3

How to name:

1. Use a singular noun, or adjective+noun
2. Use a name that describes a single instance of a Class

3. Use standard subject matter vocabulary - match the names to the domain expert’s
vocabulary.

4. Use readable names, with upper and lower case; don’t use prefix and suffixes.

C.2.2 Identify Structure
Structures represent complexity in the problem space:

1. Generalization-Specialization (Gen-Spec) Structure represents class-member orga-
nization, reflecting generalization-specialization.

2. Whole-Part Structure represents aggregation, reflecting whole and component parts.
How to define:

1. Gen-Spec Structure: Consider each Class as a generalization, then as a specializa-
tion. Does the specialization reflect meaningful real-world specialization, and is it
within the problem space?

2. Whole-part Structure: Consider each Class as a whole, then as a component part.
Examine the next higher level Class to check problem space and scope.

Checks: Is this real-world structure, within the problem space, anc within the
scope of the domain?

C.2.3 Identifying Subjects
This is a mechanism for controlling how much of a model a reader considers at one time.
How to define:

Add a subject for each Class.
Add a Subject for each structure.
Group Subjects if more than 7 +- 2.

ol

Combine tightly coupled subjects to provide a better overview after attributes and
services are defined.

5. For very large projects, iterate quickly over Classes, Structure, and Subjects.
Show communications between Subjects with connections, and number the Subjects.

C.2.4 Defining Attributes
Attributes are data elements used to describe an instance of a Class or Gen-Spec Structure.

How to define Attributes:

CMU/SEI-92-SR-3 83

1. Retumn to the problem space description and the user to get the values (state) of the
domain objects.

2. Insure attributes really model reality.

3. Identify each Attribute at the atomic level, e.g. address, not street, city, state, and zip
code.

Position the Attributes:

1. Place the attribute using inheritance in Gen-Spec Structures.
2. Place at the highest level where it applies to most specializations.
3. Add specializations when they only exist in the specialization.

Identify and Define instance connections:

1. Add instance connection lines between Classes to identify problem space connec-
tions (relationships).

2. Add instances to specializations if the instance doesn’t apply to ALL specializations.

3. Define multiplicity, i.e. define whether the instance is 1:1 or 1:m for both ends of the
instance. Add a “1” for 1-1; add “N" for multiples.

4. Define participation, is the instance connection mandatory or optional for each end
of the connection. Add “1" for required; “0” for optional.

5. Check for special cases

a. Connections across three or more Classes. Add an instance of A to
C, if Ato B or B to Cis optional.

b. Many-to-many instance Connections. Examine the connection to
determine if the attributes describe the connection between the
Classes. If so, then add a Class of things remembered.

c. Instance Connections between instances of the same Ciass or Gen-
Spec Structure. If the instance connection has descriptive Attributes,
then introduce a new Class to capture the Instance Connection.

d. Multiple Instance Connections between two Classes or Gen-Spec
Structures. Examine the meaning of the two connections, capture the
underlying semantic distinction with one or more Attributes, and
remove one instance.

Class and connection identifiers are defined by the system during design phase since real-
world identifiers will repeat.

Revise Classes:

1. Attributes with value of “Not Applicable”. If some Attributes do not apply to all instanc-
es, then consider adding more Gen-Spec Structure.

2. Single Attributes. If a Class or an instance of a Gen-Spec Structure has only a single
Attribute, then the model can be revised to refiect a higher level of abstraction.

84 CMU/SEI-92-SR-3

3. Repeated values for one or more Attributes. If an attribute can simultaneously have
more than value, then consider adding a new Class.

4. Adaptation Parameters. For site specific data, add a site Class with installation
Attributes. For operational data, parameterize the range Attributes.

Specify the Attributes:

1. For each Class or structure, specify the Attributes with names and descriptions.

2. For each Class or Structure, identify each category of attribute (e.g., descriptive,
definition, always derivable, occasionally derivable).

Specify instance connection constraints. For each Class and structure, specify the instance
connection constraints.

C.2.5 Defining Services
Services are the processing to be performed upon receipt of a message.

How to define Services:

1. Identify the Services (Primary Strategy):
a. Occur (instance add, change, delete, and select)

b. Calculate Services - calculate results for an instance or on behalf of
another instance.

c. Monitor Services - performs on-going monitor of an external system,
device, or user.

2. Identify the Services (Secondary Strategies)
a. Object Life History:

i. Define the basic Object Life History sequence.
ii. Check for variations on each step.
iii. Add to the basic sequence.
iv. Add Services.
b. State-Event Response:
i. Define major system states.
ii. For each state, list the external events and required responses.
iii. Expand the Services (and Message Connections).

3. Identify the Message Connections. Begin by adding Message Connections between
Classes and Gen-Spec Structures already connected with Instance connections.
Arrows are unidirectional (meaning send, receive, and response).

CMU/SEI-92-SR-3 85

4. Specify the Services

a. Focus on required externally observable behavior. Can this
requirement be externally observed (tested)? Shall --> observable
when the system is tested, Will --> something that will happen, but it
is not under the control of the system, Present tense --> all others.

b. Use a template. Specify the occur, state-event response, etcetera,
with structured English to include exceptions.

c. Add Diagrams to simplify Service specifications. Use data flow
diagrams, statecharts, etcetera.

d. Add supporting tables. To summarize the interactions between
Classes, especially for real-time systems, utilize:

i. A summary of Services and applicable states
ii. Threads of execution analysis
iii. Timing and sizing budgets

e. Develop Service Narratives--If you must.

i. Services specified with bullet lists keep the textual specification concise and
well-focused.

ii. If narrative text is required and/or desired, get a technical writer to transiate.
f. Put the documentation set together. The full package contains:

i. OOA Diagrams: Subject, Class, Structure, Attribute, Services Layers

ii. OOA Repository (one entry per Service or Gen-Spec Structure)

iii. Supporting Tables (if any), Services and Applicable States Table, Critical
Threads of Execution Table, Timing and Sizing Table.

86 CMU/SEI-82-SR-3

Glossary

We would prefer to have more commonly accepted definitions, but the process of domain analysis is insufficiently

mature for this agreement.

attribute

application engineering

class

domain

domain analysis

domain engineering

domain entity

domain implementation

domain model

entity

gen-spac diagram

model/requirements transformation

a data element used to describe an instance of an object or classifi-
cation structure

the process of analyzing, specifying, designing, implementing, inte-
grating, and testing software (systems) based on the existence of a
reuse-based software engineering methodology, domain knowledge,
domain assets, and reuse tools

a collection of objects which can be described with the same at-
tributes and services

1. a territory or range of rule or control: realm; 2. a sphere of concern
or function; field: the domain of history

the process of identifying, collecting, organizing, analyzing, and rep-
resenting important entities in a domain model from the study of ex-
isting systems, underlying theory, emerging technology, and
development histories within the domain of interest

the process of identifying candidate domains from a cost perfor-
mance analysis, selecting domain analysis, design, and implementa-
tion methods, performing domain analysis, domain design, and
domain implemantation, and creating domain assets to support Re-
use-Based Software Engineering (Application Engineering)

an object, relationship, operator, process, fact or rule of a domain [14]

1.the construction of a software architecture, components, methods,
and tools and their supporting documentation to solve the problems
of system/subsystem devaelopment by the application ot the knowl-

edge in the domain model; 2. the process of building reusable soft-

ware objects using domain analysis work products (domain models,
domain languages, and taxonomies); 3. the creation of domain lan-
guage processors and allied tools

a formal, concise, representation of a domain [14]

1. the fact of existence; being; 2. something that exists independent-
ly, not relative to other things; 3. a particular and discrete unit; an en-
tirety

a representation of class-member organization, reflecting generaliza-
tion-specialization

the process of converting the domain modal into requirements that
are definad by DOD-STD 2167A Data ltem Description DI-MCCR
80025A

CMU/SEI-92-SR-3

87

object

reusable software object

service

software architecture

whole-part diagram

an abstraction of something in the real world, refiecting the capabili-
ties of a system to keep information about it, interact with it, or both;
an encapsulation of attribute values and their exclusive services.

Lite-cycle products that are created during the software development
process that are needed to operate, maintain, and upgrade deliver-
able avionics during its lifetime and that have the potential for reuse.
The objects may include, but are not limited to: requirements specifi-
cations, design documents (both top level and detailed), source and
object code, test specifications, test code, test support data, users
manuals, programmaer notes and algorithms.

a processing to be performed upon receipt of a message by an object

the packaging of functions and objects, their interfaces, and control
to implement applications in a domain

a representation of aggregation, reflecting the whole and its compo-
nent parts

88

CMU/SEI-92-SR-3

References

1]

(2]

(3]

[4]

[5]

[6]

(7]

8]

9]

(10]

(1]

[12]

[13]

[14]

Adelson, B. and Soloway, E. “The Role of Domain Experience in Software De-
sign.” IEEE Transactions on Software Engineering SE-11(11) (November
1985): 1351-1360.

Alford, Mack W. “A Requirements Engineering Methodology for Real-Time Pro-
cessing Requirements.” IEEE Transactions on Software Engineering 3(1)
(January 1977): 60-69.

Arango, G. and Prieto-Diaz, R. Domain Analysis: Concepts and Research Di-
rections. 1990.

Bach, William W. “Is Ada Really an Object-Oriented Programming Language.”
Journal of Pascal, Ada & Modula-2 8(2), (Mar/Apr, 1989).

Basili, V. “Viewing Maintenance as Reuse-Oriented Software Development.”
IEEE Software 7(1) (January 1990): 19-25.

Campbell Jr., G., Faulk, S., and Weiss, D. Introduction to Synthesis. (IN-
TRO_SYNTHESIS-90019-N) Herndon, Virginia: SPC, June, 1990.

Coad, P., and Yourdon, E. Object-Oriented Analysis. Englewood Cliffs, New
Jersey: Prentice-Hall, 1990.

Coad, Peter. New Advances in Object-Oriented Analysis. (IV-400). Austin, Tex-
as, 1990.

CTA, Incorporated. JIAWG Reuse System Description. (CDRL B004 (GMAX)).
Ridgecrest, California: CTA, Incorporated, September 1990.

CTA, Incorporated. JIAWG Prototype Library Test Results. (CDRL B004
(GMBF)). Ridgecrest, California: CTA, Incorporated, September 1990.

D’lppolito, Richard S. “Using Models in Software Engineering.” Proceedings of
Tri-Ada ‘89 (October 1989): 256-265.

Department of Defense. Defense System Software Standard. Washington,
D.C.: Department of Defense, 1988.

Gilroy, Kathleen A., Comer, Edward R., J. Kaye Grau, J. Kaye, and Merlet,
Patrick J. Impact of Domain Analysis on Reuse Methods. Indialantic, Florida:
Software Productivity Solutions, 1989.

Gish, James W. and Prieto-Diaz, Ruben. Domain Analysis: Procedural Mode!
Refinement and Experimental Proposal. (87-126.05). Waltham, Massachu-
setts: GTE Laboratories, April 1988.

CMU/SEI-92-SR-3 89

(151

(16]

[17]

(8]

[19]

(20]

(21]

[22]

(23]

(24]

(23]

(26]

(27]

Harel, David. “On Visual Formalisms.” Communications of the ACM31(5) (May
1988): 514-530.

Hoare C. A. R., ed. Internation Series in Computer Science: Object-oriented
Software Construction. Hemel Hempstead: Prentice Hall, 1988.

Holibaugh, Robert R., Cohen, Sholom G., Kang, Kyo C., and Peterson, Spen-
cer. “Reuse: Where to Begin and Why.” Proceedings of Tri-Ada ‘89 (October
1989): 266-277.

Lanergan, R.G. and Poynton, B.A. “Reusable Code: The Application Develop-
ment Technique for the Future.” Proceedings of the IBM SHARE/GUIDE Soft-
ware Symposium. (October, 1979).

Lee, K. and Rissman, M. An Object-Oriented Solution Example: A Flight Simu-
lator Electrical System. (CMU/SEI-83-TR-5). Pittsburgh, Pennsylvania: Soft-
ware Engineering Institute, Carnegie Mellon University, February 1989.

Matsumoto, M. “Reusable Software Parts Paradigm and Automatic Program
Synthesis Using Them.” Proceedings of the National Conference on Software
Reusability and Maintainability. (September 1986).

McNicholl, Daniel G., et. al. Common Ada Missile Packages (CAMP) - Volume
I: Overview and Commonality Study Results. (AFATL-TR-85-93). St. Louis,
Missouri: McDonnell Dougtas Astronautics Company, May 1986.

McNicholl, D., et. al. Common Ada Missile packages. (AFATL-TR-85-93). Eglin
AFB, Florida: Air Force Armament Laboratory, May 1986.

McNicholl, D., Palmer, C., and Cohen, S. Common Ada Missile Program--
Phase2. (AFATL-TR-88-62). Eglin AFB, Florida: Air Force Armament Labora-
tory, November 1988.

Mish, Fredick, ed. Webster’s Ninth New Collegiate Dictionary. Springfield, Mas-
sachusetts: Merriam-Webster, 1985.

Moore, J. and Bailin, S. Domain Analysis: A Framework for Reuse. Rockville,
Maryland: CTA, INCORPORATED, October 1989.

Parnas, D. "Desiging Software for Ease of Extension and Contraction.” IEEE
Transaction on Software Engineering SE-5(2) (March 1979):128-138.

Plinta, C., Lee, K., and Rissman , M. A Mode! Solution for C3/ Message Trans-
lation and Validation. (CMU/SEI-89-TR-12), Pittsburgh, Pennsylvania: Soft-
ware Engineering Institute, Carmnegie Mellon University, December 1989.

90

CMU/SEI-92-SR-3

[28] Prieto-Diaz, Ruben. “Domain Analysis for Reusability.” Proceedings of COMP-
SAC 87:The Eleventh Annual International Computer Software & Applications
Conference (October 1987): 23-29.

[29] SPC. A Domain Analysis Process. (Domain_Analysis-90001-N). Herndon, Vir-
ginia: Software Productivity Consortium, January 1990.

CMU/SEI-92-SR-3 91

92

CMU/SEI-92-SR-3

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU-SEI-62-SR-3 J
6s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute é“é}”““"“’ SEI Joint Program Office

6¢c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)

Carnegie Mellon University ESC/AVS

Pittsburgh PA 15213 Hanscom Air Force Base, MA Q1731

BagRAédE OFF_IL_IJT&I?IH\IG/SPONSORING (81!; OFllqui"Ii: §YMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ANZA tppricable F1962830C0003
SEI Joint Program Office ESC/AVS
8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.
ggmggiehMPeAlo% éJniversity E{ZEOGRAMNO PROJECT Iz%sx WORK UNIT
ittsbur 15213 MENT - -
g 63756E N/A N/A N/A

11. TTTLE (Include Security Classification)

Joint integrated Avionics Working Group (JIAWG) Object-Oriented Domain Analysis Method (JODA) Version 3.1 i
12. PERSONAL AUTHOR(S)

Robert Holibaugh

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Final FROM TO November 1992 92 pp.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. domain analy sis
object-oriented

19. ABSTRACT (continue on if y and idenufy by block number)

The Joint Integrated Avionics Working Group (JIAWG) Reuse Subcommittee has initiatives in several areas to dem-
onstrate that reuse can effectively support the JIAWG programs, and the creation of reusable assets is an essential
element of reuse. Domain analysis is the process that identifies what is reusable, how it can be structured, and how it
can be used. This report describes a method for domain analysis that is based on Coad and Yourdon's “Object Ori- H
ented Analysis.” This method, the JIAWG Object-Oriented Domain Analysis (JODA), includes several enhancements

to the method of Coad and Yourdon and produces a domain model to support asset creation and reuse.

(please um over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSTFIEDUNUMITED Jf] saMEAsRrPI[] pricusers | Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) [22¢. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEl)

UNLIMITED, UNCLASSIFIED
DD FORM 1473,83 APR EDITION of 1 JAN 7315 OBSOLETE SECURITY CLASSIFICATION OF THIS

ABSTRACT — continued from page one, block 19

