
Technical Report
CMU/SEI-92-TR.13
ESC-92-TR-01 3

AD-A258 466

A Classification and
Bibliography of Software Prototyping

David P. Wood
- Kyo C. Kang

DTTIC October 1992•ELEC TE

d~ L~ l~ a be~ f ý ppovwd
for ubl~ rel ase a d ,so~e Its

d~isutiib on0 un 3;it

_ BEST
AVAILABLE COPY

<•> g2 Iz 28 024

Technical Report
CMU/SEI-92-TR-13

ESC-92-TR-013
October 1992

A Classification and Bibliography
of Software Prototyping

David P. Wood
Kyo C. Kang

- . Requirements Engineering Project

For

H.;.
By
Ci A ibnJtioi,. I

Av,*ilabilty C:Ces

Avail anli Oe
Dist j iIli -I I

.. .Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Ann: FDRA, Cameron Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Literature Identifier Directory vii
1 Introduction 1

1.1 Report Outline 1
1.2 A Suggested Starting Point 2

2 A Prototyping Technology Framework 3
2.1 Impetus for Early and Continuous Validation 3
2.2 Basis for Prototyping as a Software Engineering Paradigm 5

2.2.1 Classifying Prototyping Approaches 7
2.2.2 A Generic Prototyping Process 9
2.2.3 Common Prototyping Activities 10
2.2.4 Different Approaches for Different Needs 11

2.3 A Framework for Method and Tool Selection 12

3 Summary and Directions 14

4 Taxonomy and Classification 15

5 Bibliography 23
5.1 Bibliography Selection Criteria 23
5.2 Annotated References 24

Index by Author 69

Index by Keyword 73

Index by Source 75

Index by Title 77

Index by Year 81

Additional References 85

CMU/SEI-92-TR-13

ii CMUISEI-92-TR-1 3

List of Figures

Figure 2-1 The Importance of Early Requirements Validation 3
Figure 2-2 Types of Errors in Requirements 4
Figure 2-3 Evolving Mission Needs into Validated Requirements 6
Figure 2-4 Prototyping as a Continuous Process 7
Figure 2-5 Common Prototyping Activities 10
Figure 2-6 Examples of Prototyping Model Focus 11
Figure 2-7 Different Approaches for Different Needs 12
Figure 2-8 A Prototyping Technology Framework 13

CMU/SEI-92-TR-13

iv CMU/SEI-92-TR., 3

List of Tables

Table I Prototyping Approach Taxonomy 17
Table 2 Prototyping Literature Classifications 18

CMU/SEI-92-TR-13 v

vi CMU/SEI-92-TR-1 3

Literature Identifier Directory

Andriole89 24 IEE89 42
Andriole90 24 Jain89 43
Andrulis90 24 Jones90 43
Bagrodia9O 25 Koch88 43
Bailes87 25 Konrad 44
Bajwa89 25 Kordon9O 44
Barbacci9l 26 KozubaI9O 45
Bartschi89 27 Kreutzer90a 45
Berardi89 27 Kreutzer90b 46
Biggie89 28 Krista89 46
Birch89 28 Lea9O 46
Black9l 29 Luckey90 47
Brooks87 29 Luqi86 47
CASEOut9O 29 Luqi87 47
Chang90 30 Luqi89 47
Cohen90 30 Luqi90a 48
Cooling89 31 Luqi9Ob 48
Cooper9O 31 Luqi9l 48
Cordy9l 32 Luqi92 49
Degl'lnnocenti90 33 Madison89 49
Demeure89 33 Matsumoto 49
DeSoi89 32 McEnery9O 50
Diaz-Gonzalez9l 34 Mclnroy89 50
Edmonson89 34 Milovanovic90 51
Ekambareshwar89 35 Minkowitz89 51
Espinosa90 35 Nugent88 52
Fisher87 35 O'NeiI89 52
Ganti90 36 Ortner88 53
Gerber9O 36 Overmyer90 53
Gimnich87 36 Powers89 54
Giordano9l 37 Purtilo9l 54
Gomaa8l 37 Rizman90a 55
Gonzalez89 37 Rizman90b 55
Gregorio9O 38 Royce89 56
Gutierrez89 38 Rzepka86 57
Harris87 39 SEKE90 57
Hartson9l . 39 Shirota89 58
Hawryszkiewycz87 40 Smith90 58
Heisler88 41 Smymiotis90a 59
Hekmatpour90 41 SmyrniotisgOb 59
Henskes87 41 Son88 60
Henskes90 42 Tamanaha90 60
Hughes89 42 Tenazas90 61

CMU/SEI-92-TR-1 3 vii

ThayergO 61
Trenouth9l 62
Tsai89 62
Tsai9Oa 63
Tsai9Ob 63
Tucherman9O 64
Turnheim89 64
Tyszberowicz89 65
Wallentinson89 65
Warkowski9O 65
Wellner89 66
Whatmore9l 66
Wing9l 67
Zhao9l 67
ZompigO 68

viii CMU/SEI-92-TR-1 3

A Classification and Bibliography of Software Prototyping

Abstract: Prototyping, the creation and enaction of models based on
operational scenarios, has been advocated as a useful software engineering
paradigm because it lends itself to intense interaction between customers, users,
and developers, resulting in early validation of specifications and designs. An
extensive and widespread interest in software prototyping in recent years has
resulted in a daunting amount of literature and dozens of proposed methods and
tools. As with any immature and growing technology, the expanding literature
and approaches have resulted in correspondingly expansive and confusing
terminology.

This report presents an overview of technology and literature relating to the
creation and use of software system prototypes. In addition to an annotated
bibliography of recent prototyping literature, a technology framework, taxonomy,
and series of classifications are provided. The intent of this report is to provide a
basic road map through the available literature and technology.

1 Introduction

The purpose of this report, compiled as a part of the work of the Software Engineering Modeling
Project at the Software Engineering Institute (SEI), is threefold:

" A technology overview and framework are presented with the purpose of providing
a basic road map through the available literature and technology.

" A taxonomy and classifications are presented to provide a means for structuring,
managing, and selecting literature relating to software prototyping.

" An annotated bibliography is presented to provide an historical background on the
field as well as necessary background for further work in the discipline both for
projects both at the SEI and elsewhere.

1.1 Report Outline
This document contains the following major sections:

1. A prototyping technology overview, including a discussion of prototyping
processes and activities and an abstract framework for method and tool
selection (Section 2, "A Prototyplng Technology Framework")

2. A taxonomy of prototyping approaches and classifications of prototyping
literature (Section 4, "Taxonomy and Classification")

3. A set of full literature citations and annotations (Section 5, "Bibliography")

CMU/SEI-92-TR-13

4. A set of cross-reference indices to facilitate document search and
identification, including:

* An alphabetical cross reference by author's name ("Index by Author" on page
69)

- An alphabetical cross reference by keyword ("Index by Keyword" on page 73)

* An alphabetical ordering by publication source ("Index by Source" on page 75)

• An alphabetical index listing by title and the page number where the full citation
may be found ("Index by Title" on page 77)

• A chronological ordering by year of publication ("Index by Year" on page 81)

1.2 A Suggested Starting Point

For those readers unfamiliar with software systems prototyping, the following references may
provide a suitable starting point:

"* General Overview

"• S.J. Andriole; Modern Life Cycling: Some System Design Principles
for the 90s [Andriole90]

"* H. Gomaa and D.B.H. Scott; Prototyping as a Tool in the Specification of User
Requirements [Go maa81]

"* A. Hekmatpour and P. Chau; Al Techniques and Object-oriented Technology for
VLSI Design-space Representation, Optimization, and Management
[Hekmatpour90]

"• A.P. Sage and J.D. Palmer; Software Systems Engineering [Sage90]

"* Acquisition and Standards

* H. Black, D. Leciston, R. McGhee, and J. Zimmerlich; Acquisition Models for the
Capture and Management of Requirements for Battlefield Software Systems
[Black9l]

"* Process, Method, and Tool Support

"* F.P. Brooks, Jr.; No Silver Bullet: Essence and Accidents of Software
Engineering [Brooks87]

"• CASE Outlook 90, No. 4; Survey of Rapid Prototyping Tools (CASEOut9O]
"* R.H. Thayer and M. Dorfman; System and Software Requirements Engineering

[Thayer90]
Additional suitable references have been noted in Table 2 under the Roadmap category.

2 CMU/SEI-92-TR-13

2 A Prototyping Technology Framework

2.1 Impetus for Early and Continuous Validation

Although there have been substantial advancements in software engineering methods and

tools during the past twenty years, requirements engineering still remains a key problem area

in the development of complex, software-intensive systems. The report of the Defense Sci-

ence Board Task Force on Military Software concluded that "the hardest part of the software

task is the setting of the exact requirements" [DSB87]. One of the primary sources of continued

difficulty is the lack of early requirements validation. Validation of requirements is problematic

because requirements often are not well understood prior to development, change frequently

during development, and multiply as a result of development.

Time Spent in Each Phase Source of Errors

660 56

maintenance requirements

desin teting44

rqirmment 1 16 otheron~ ine~eering8

Implementation Relative Cost of Error Correction
Stage Relative Cost

of Repair
Requirements 1

Design 5
Implementation 10
Unit Test 20
Acceptance Test 50
Maintenance 200

Figure 2-1 The Importance of Early Requirements Validation
(adapted from *Software Requirements", Davis, Alan, Prentice-Hall 1990)

Statistical data has testified to the importance of early validation (Figure 2-1). Boehm reported

that 54% of all errors ever detected in software projects studied at TRW were detected after

the coding and unit testing stages and most of these errors (83%) were attributable to the re-

quirements and design stages rather than the coding stage (17%) [Boehm75]. 1 Also, DeMarco

reported that 56% of all bugs detected could be traced to errors in requirements [Tavolato84].

Many requirements errors are passed undetected to the later phases of the life cycle, and cor-

recting these errors during or after implementation has been found to be extremely costly

[CONG90]. The DoD Software Technology Plan states that "early defect fixes are typically two

' While this data does not differentiate problems attributable to requirements from those attributable to

design, it does serve to support the contention that errors discovered significantly later than their intro-
duction are expensive to address,

CMU/SEI-92-TR-13 3

orders of magnitude cheaper than late defect fixes, and the early requirements and design de-

fects typically leave more serious operational consequences." [DOD91] Clearly, better tech-

niques are needed for early validation.

Further, the types of errors most frequently made during requirements engineering have been

found to be technical ones (Figure 2-2). Basili reported that 77% of all requirements errors

found from the Navy A-7E aircraft's operational flight program were non-clerical errors, of
which 49% were incorrect facts and 31% were omissions [Basili8l]. Inconsistency and ambi-
guity account for about 18% of all non-clerical errors.

40

40 NonClerical •

30 3

2023

1013
S~2

incorrect omission inconsistency ambiguity misplaced
fact requirement

Figure 2-2 Types of Errors In Requirements
(adapted from *Software Requirements', Davis, Alan, Prentice-Hall 1990)

The waterfalllife cycle model, which requires a complete requirements spccification before de-
velopment, also contributes to these problems [Royce70]. For large, complex systems, it is dif-

ficult to completely specify requirements in advance of and independent from design and
implementation. The assumption that it is possible to create a complete specification prior to

development has been a major cause of problems due to frequent changes to the specification
during and after development.

4 CMU/SEI-92-TR-13

2.2 Basis for Prototyping as a Software Engineering Paradigm

The validation of requirements early in the life cycle is one of the key issues in software devel-

opment because failure to validate requirements can result in frequent and expensive changes
in later life cycle phases. The DSB report concluded that:

"We believe that users cannot, with any amount of effort and wisdom,
accurately describe the operational requirements for a substantial software
system without testing by real operators in an operational environment, and
iteration on the specification. The systems built today are just too complex for
the mind of man to foresee all the ramifications purely by the exercise of the
analytic imagination." [DSB87]

Prototyping has been discussed in the literature as an important approach to early require-
ments validation. A prototype is an enactable1 mock-up or model of a software system that
enables evaluation of features or functions through user and developer interaction with oper-
ational scenarios. Prototyping exposes functional and behavioral aspects of the system as
well as implementation considerations, thereby increasing the accuracy of requirements and
helping to control their volatility during development. The DSB report specifically recommends
prototyping:

"In the decade since the waterfall model was developed, our discipline has
come to recognize that setting the requirements is the most difficult and crucial
part of the software building process, and one that requires iteration between
the designers and users. In best modern practice, the early specification is
embodied in a prototype, which the intended users can themselves drive in
order to see the consequences of their imaginings. Then, as the design effort
begins to yield data on the cost and schedule consequences of particular
specifications, the designers and the users revise the specifications." [DSB87]

One example of the usefulness of validation via prototyping in real-time systems development
is discussed in Bennett's "Modeling Radar Countermeasure Systems":

'When military intelligence identifies a new radar capability, a countermeasure
is resultingly identified. Over time, the cycle of radar-threat identification,
followed by countermeasure design, repeats itself. Each new set of ECM
requirements becomes the starting point for additional engineering
development. The particular requirements depend on the nature of the threat,
and on the set of responses that might effectively be deployed. [...] The ECM
system's real-time nature mandates that requirements analysis methods
thoroughly support performance analysis and prediction. Whether the ECM is
synchronous or asynchronous, the response's timing must be specified in
such a way that its feasibility can be determined." [Bennett89]

1 An enactable model is one against which operational scenarios can be exercised in some automated
fashion. Examples of model enaction include simulations, animations, mathematical dynamic analyses,
and code execution.

CMU/SEI-92-TR-1 3 5

The requirements of a system or a class of systems are gathered in an evolutionary fashion.
Requirements knowledge is never complete, but rather evolves over time as new require-
ments are identified, existing requirements are expanded, and obsolete requirements are dis-

carded (Figure 2-3).

Mission Needs

SNeed Elicitation Need Validation

Specification

Figure 2-3 Evolving Mission Needs Into Validated Requirements

While requirements are gathered in an evolutionary and incremental fashion, product devel-
opment is usually managed in a stepwise fashion. The widespread use of variations of the wa-
terfall process model is indicative of the tendency of managers and developers to think in
terms of idealized discrete phases, such as Requirements Analysis, High-Level Design, De-
tailed Design, Coding, Integration, and so forth. Strict adherence to such a process can be
considered to be in direct conflict with the notion of evolutionary requirements engineering

[Boehm88], inasmuch as the delivery of a complete requirements spacification prior to the ini-
tiation of software design presumes that requirements can be fully understood before design
activities begin.

Although the waterfall approach seems inimical to evolutionary development, it is undeniable
that for a given requirement or set of requirements, the basic activities of requirements engi-
neering, design, and implementation do take place, generally in an orderly fashion. In other
words, one cannot implement a solution before one considers potential solutions, and one
cannot consider potential solutions until one has a handle on the nature of the needs to be
addressed. Thus, the difficulty with the waterfall view is not the specific activities or their order-
ing, but rather in the attempt to apply those activities to the development of the entire system
as a whole unit. If instead we consider the entire system to be a collection of requirements
(perhaps tens of thousands of them), we can successfully apply the waterfall to each require-
ment or to approachable subsets of requirements. This approach is more supportive of the
evolutionary understanding of volatile requirements. In doing so, we can view software devel-
opment as a continuous sequence of activities that are closely interrelated (Figure 2-4).

6 CMU/SEI-92-TR-13

* Behavioral =•

* Performance
* Implementation EiiainAayi

G~oals

Concept Prototypes U ' •

*Behavioral Vldto pcfcto

* User Interface /

* Architecture
* Performance

Evolutionary Prototypes ,
* Laboratory

Figure 2-4 Prototyping as a Continuous Process

2.2.1 Classifying Prototypi ng Approaches

2.2.1.1 A General Purpose Taxonomy
The literature is replete with descriptions of software development and validation approaches
that are referred to generically as prototyping, yet little consensus seems to exist regarding the
exact process of creating and using prototypes. Sage and Palmer's "Software Systems Engi-
neering" identified no less than eighteen prototyping approaches described by six different au-
thors, and also showed the high degree of commonality among classes of approaches by
mapping the different approaches into three classes [Sage9O]. Because it is difficult to distin-
guish between the many proposed approaches based on a simplified classification scheme,
we have provided a less generalized taxonomy in Table 1. Using this table, a given prototyping
approach may be classified based on clear distinguishing characteristics rather than relatively
ambiguous abstractions. Table 1 identifies five classification categories and twelve subcate-
gories that help to determine the nature of the various approaches.

2.2.1.2 Two Prototyplng Perspectives
Another useful way to classify prototyping approaches is according to the intended use and
users of the prototype. In this sense, there are really two broad categories of prototyping ap-
proaches: those that involve the creation of a series of fielded prototypes, and those intent on
exploring ideas without resorting to field deployment. The former are most commonly referred
to as field or evolutionary prototypes, while the latter go by many names, including rapid, con-

CMU/SEI-92-TR-1 37

cept, throw-away, experimental, and exploratory prototypes. For convenience, we will refer to

these broad categories as evolutionary and concept prototypes respectively.

In essence, concept prototyping is a mechanism for achieving validation prior to commit-
ment. Concept prototyping may be used to validate requirements prior to commitment to spe-
cific designs. Similarly, concept prototyping may be used to validate potential designs prior to
commitment to specific implementations. In this sense, prototyping as a software development
paradigm can be seen as tacit acceptance that requirements are not fully known or understood
prior to design and implementation. Concept prototyping can be used as a means to explore
new requirements and thus assist in the ongoing evolution1 of requirements.

Viewed from a different perspective, the entire lifecycle of a product can be seen as a series
of increasingly detailed evolutionary prototypes. Traditionally, the lifecycle is divided into
two distinct phases: development and maintenance. Experience has shown that this distinc-
tion is somewhat arbitrary and betrays the reality that much or most of the cost of the software
product lifecycle occurs after the product has been delivered [Lientz80]. This traditional view-
point leads to numerous difficulties related to multiple perspectives on the concept of quality.
For example:

"* to a developer, a quality product is one that functions properly according to
specification

"* to a maintainer, a quality product might be considered one that readily lends
itself to modification and enhancement

"* to a user, a quality product is one that has the "right" look and feel, performance,
and behavior

"* to a customer, each of the above views are important aspects of quality

Because of this fundamental disparity in perceptions, it is not unusual for the maintaining or-
ganization to spend considerable time and effort in understanding the design and implemen-
tation of the product at hand [Lientz80], even while the resulting products do not meet user
expectations. Further, the tendency to consider maintenance as a separate (and subsidiary)
activity from development often results in severe underestimation of lifecycle costs.

The evolutionary view of the software lifecycle considers the first delivery to be an initial fielded
prototype. Subsequent modifications and enhancements result in delivery of further, more ma-

ture prototypes. This process continues until eventual product retirement. Adoption of this view
eliminates the arbitrary distinction between developers and maintainers, resulting in an impor-
tant shift in mindset affecting strategies for cost estimation, development approach, and prod-
uct acquisition.

' Note that evolution in this context refers specifically to the evolution of requirements. By contrast, evo-
lutionary prototyping refers to the use of prototypes for the evolution of a fielded system.

8 CMU/SEI-92-TR-1 3

2.2.2 A Generic Prototyping Process
While the purposes and detailed processes of concept and evolutionary prototyping differ, there
is a common abstract process that encompasses both views (Figure 2-4).ln either case, there
is a tightly interwoven sequence of process steps by which a set of system goals are trans-
formed into an enactable model. System goals in the form of requirements or design constraints
must be elicited from the originating source (e.g., customers, users, documentation). Elicited
goals must be analyzed for various properties such as consistency and completeness, and sub-
sequently codified in some form of specification (e.g., textual, graphical, mathematical). This
specification then can form the basis for validation via prototyping or some other means. While
this generic process is intuitively simple, a number of issues are worthy of note:

" As implied by Figure 2-4, each of the process steps drives and is driven by the
other process steps. In other words, the elicitation of new needs and goals drives
the analysis process, and by extension also the specification and validation
processes. Similarly, the process of validation will lead to the elicitation of new or
refined needs and goals.

"* The individual process steps might range in formality from ad-hoc to highly formal.

"* During the entire product lifecycle, the number of iterations of the sequence of
activities from elicitation through validation will be very high, perhaps in the
thousands or tens of thousands.1

" During any given iteration, any of the process steps might approach zero in terms
of time or effort expended. For example, a well-understood subset of
requirements from a precedented domain might require little or no significant
analysis once those requirements have been elicited. Further, their specification
might be recorded informally, and validation might consist of an informal
confirmation by the customer of the specification.

The interwoven, continuous sequence of process steps described by Figure 2-4 apply equally
well to any type of system needs, including user (high-level), functional, behavioral, and user
interface requirements, and also design and implementation constraints on architecture and
performance. Both concept and evolutionary prototyping can be used as validation mechanisms
supporting this process view.

1. A fallacy of the waterfall view is that the sequence of activities occur in a single iteration.

CMU/SEI-92-TR-13 9

2.2.3 Common Prototyping Activities

In addition to the generic abstract process discussed in the preceding section, the various pro-
totyping approaches share a common set of high-level activities (Figure 2-5). Regardless of

Basis for Enaction Scenario Basis
Model Focus CASE Simulation • Ad Hoc

Horizontal (boundary and Software Simulation • Stochastic
interface definition) Lab Emulation Mission Analysis
Vteriac(e Hardware Prototype * Risk Profile

Veca (idea ex) Field Operations

DvlpDevelop Develop
System Operational Validation
Mode Evironment cenario

Figure 2-5 Common Prototyping Activities

the prototyping approach used, it is necessary to:

"* create an enactable model of the system under development

"* create an environment in which the system model will operate

"* create a validation suite comprised of operational scenarios

The system model may exhibit varying amounts of breadth and depth of detail depending on
the purpose of the prototype (Figure 2-6). For example, one might use a concept prototyping
approach to explore the feasibility of certain requirements (i.e., a vertical slice) or to validate
the boundaries and interfaces of the proposed system (i.e., a horizontal slice). An evolutionary
prototype might involve the enhancement of an existing fielded system by insertion of new pro-
totype functionality suitable for user exploration.

The environment in which the system model will operate may be the actual field environment
in which the final product will operate (particularly for evolutionary prototypes), or the environ-
ment may consist of combinations of software simulation environments and hardware proto-
types. An example of the latter would be a test and evaluation lab for a flight control system,
where the prototype software is embedded within prototype hardware and operates in an en-
vironment consisting of real-time sensor simulators.

The validation suite may be derived in a variety of ways depending upon the intent of the pro-
totype. For example, scenarios might be generated on an ad-hoc basis if the intent is to allow
the users to become acquainted with a proposed user interface at their own convenience and

10 CMU/SEI-92-TR-1 3

pace. By contrast comprehensive functional validation requires a more formal approach to cre-
ation of the validation suite.

Concept Prototyping: Concept Exploration Concept Prototyping: Boundary/Interface Definition

Existing
Field .New Prototype

SystemFunctionality

Evolutionary Prototyping

Figure 2-6 Examples of PrototypIng Model Focus

2.2.4 Different Approaches for Different Needs
As discussed in the preceding sections, the generic process depicted in Figure 2-4 and activ-
ities depicted in Figure 2-5 apply to both the concept prototyping and evolutionary prototyping
approaches. While recognition of this abstract commonality is useful, it is also important to rec-
ognize that there are significant differences among the various prototyping methods. The tax-
onomy presented in Table 1 highlights several general categories for recognizing these
differences among classes of prototyping approaches. As a matter of practicality, it is impor-
tant to consider specific approaches from the perspective of the types of needs that they ad-
dress.

Figure 2-7 depicts one possible mapping between types of needs and potential validation
methods. For example, one might apply a user interface mock-up or hypermedia approach to
produce workable prototypes for validation of user-level requirements. If the intent is to vali-
date functional and behavioral requirements that involve a much greater level of detail than
user-level requirements, one might use an executable specification approach that provides an
interactive animation capability. Laboratory simulation or analytical methods might form a
good basis for validation of architectural and performance requirements. Finally, successive
fielded prototypes might provide the best mechanism for validation of detailed implementation
constraints upon the system under development. The salient point is that the perspectives of

CMU/SEI-92-TR-13 11

Mission Needs

Increasing
Detail

"-.o.,.o......

TyeVlidation Approaches

Specification

Figure 2-7 Different Approaches for Different Needs

concept prototyping and evolutionary prototyping are orthogonal and their purposes are com-
plimentary. It should be possible to select a set of prototyping techniques based on specific
needs and to apply those techniques in a complimentary fashion.

2.3 A Framework for Method and Tool Selection

While Figure 2-7 provides a high-level mapping of validation strategies for specific needs, it
should not be taken to indicate that only one strategy is applicable or useful for a given devel-

opment effort. In fact, because a project will exhibit varying needs during its lifecycle, it is likely
that the development effort can benefit from a selection of several prototyping techniques.
Section 2.2 indicated that the two broad categories of prototyping approaches, concept and
evolutionary prototyping, have a common process in the abstract but have somewhat different
purposes. A closer examination of these broad categories reveals that they are in fact highly
complimentary.

Figure 2-8 provides a sample framework for the selection of prototyping methods and tools.
The matrix indicates approximate coverage areas of various methods and tools against two
dimensions, Acquisition Phase and Validation Focus. Other dimensions are possible, and cer-
tainly additional methods, tools, and categories could be added; however the figure clearly il-
lustrates the complimentary nature of concept prototyping (Types I through VIII) and
evolutionary prototyping (Type IX).

12 CMU/SEI-92-TR-1 3

Ld cc E C/

LLJ C 1> cc .M (
E E

0- .o (A
C/, E0~ <n

2n _

0 0~ 0

z L E 0. E..L

.- z, .0-

LU CD LL,

0I -I 0MU

M .: 0- 0 0

MCe

P. o. i - 0 L a-

a 0- 2 21 e

C0
CDO :1.~ 0 UJ A-
WU-U C

0 0:
00

(es~qd O.IJ!Siflb)

Figure 2-8 A Prototyp~ILgTcnooyFrmwr

CMU/EI-9-TR- 3 C

3 Summary and Directions

Poor understanding of system requirements, and by extension the lack of adequate validation
of the correctness of requirements, has been discussed as a major cause of system failure
and customer dissatisfaction. It has been proposed that an underlying cause of requirements
difficulties is a reliance on idealized software lifecycle models that fail to take into consideration
the fact that requirements evolve over time. It has been suggested that the adoption of lifecycle
models and development paradigms that exploit the evolutionary nature of requirements may
resolve requirements problems. Examples of these technologies include iterative and spiral
lifecycle models and continuous prototyping paradigms.

Two major prototyping approaches have been identified: concept and evolutionary prototyp-
ing. Concept prototyping involves the exploration of new concepts, usually by experimentation
in an isolated non-field environment and often through the use of simulation, mock-up, or 4th
Generation languages. Evolutionary prototyping involves the iterative augmentation of a field-
ed system with new capabilities that have been developed without the usual developmental
constraints in order to emphasize rapid deployment for prototype experimentation.

It has been suggested that both concept and evolutionary prototyping are indicative of a con-
tinuous, iterating, tightly-integrated process of elicitation, analysis, specification, and valida-
tion, and that both kinds of prototyping involve certain fundamental activities, such as model
development, operational environment development, and scenario development.

Examination of some of the various proposed prototyping techniques and tools has revealed
that there are many sub-categories of prototyping approaches. Some approaches are more
suitable for validation of specific types of requirements than others. Similarly, some forms of
prototyping may be more useful during certain acquisition phases than others. A framework
has been proposed to highlight some of the relationships between prototyping techniques. An
expanded framework should prove to be a useful aid for selection of a set of prototyping tech-
niques that best meet the unique needs of particular programs and organizations.

Significant work remains in both the extension and elaboration of the proposed framework and
in the examination of and experimentation with specific prototyping techniques with a goal of
integration of requirements engineering and validation technology with other software engi-
neering techniques. For example, the creation and use of domain-based specification libraries
in support of rapid prototype generation will help to further establish engineering discipline for
software development.

14 CMU/SEI-92-TR-13

4 Taxonomy and Classification

Two tables are provided as guidelines illustrating the breadth of prototyping technology. Table

1 presents a taxonomy for classifying software prototyping approaches. Many authors have

analyzed prototyping technology and attempted to provide a means for describing different ap-
proaches, creating unique terminology in the process. Table 1 attempts to provide a more

atomic list of categories against which the proposed taxonomies of previous authors may be
compared and contrasted. In this way, our taxonomy can help to identify areas of both redun-
dancy and uniqueness. This table provides the following categories:

1. Phase - orientation of the approach in terms of requirements exploration/ def-
inition or architecture and design.

2. Purpose - orientation in terms of learning/ eliciting requirements, validation of
requirements, or exploration of feasibility or design alternatives.

3. Process - orientation toward concept or evolutionary prototyping.

4. Platform - model enaction occurs in a CASE or laboratory simulation
environment or in a field environment.

5. Format - development of model accomplished with "4th Generation"

languages, simulation languages, or target languages.

For the most part, the technique classes discussed in Table 1 do not specify platforms or for-

mats, but these categories should prove useful in classifying specific techniques in each class.

Table 2 presents a comprehensive classification of literature found in the annotated bibliogra-

phy (see Section 5, "Bibliography"). This table classifies the content of each bibliography
entry in terms of purpose, techniques espoused, paradigms described, domain orientation,
and prototyping process. These classifications, combined with the cross-indices provided at
the end of this report, should help readers to rapidly locate literature relevant to their particular
needs. Short descriptions of each category follow:

"* Purpose

"* Learning/ Elicitation - identification of user needs, understanding of operational
context, understanding of interface with other components.

"* Requirements Validation - user or customer confirmation of correctness and
appropriateness of requirements, design, or implementation.

" Alternatives Evaluation - examination of multiple scenarios for possible
requirements variants.

"* Feasibility Assessment - determine and demonstrate the capability, suitability, or
reasonableness of particular solutions to defined problems.

"* Design Issues Comprehension - explore design issues and alternatives to
deepen understanding of decision implications.

"* Techniques

CMU/SEI-92-TR-13 15

"• Mock-ups - prototypes are created as models presented in a format that is
immediately recognizable to the users; normally, a mock-up is a user interface
model that may or may not be skeletal in terms of functional capability.

"* Executable Specifications - prototypes are created through the use of
specification languages that are directly machine-interpretable.

"* 4th Generation Languages - prototypes are developed by using a high-level
language that is application-oriented; a 4th Generation Language is usually
highly parameterized, allowing creation of an application through the selection of
specific feature parameters.

"* Module Construction - prototyping techniques that provide mechanisms and
environments for creation, instantiation, interconnection, and use of reusable
modules.

"* Design and Coding - prototypes are created through traditional design and
coding in the target programming language.

"* Graphical - prototypes are created using a primarily graphical modeling
language, such as mock-up editors or executable graphical specifications.

"• Textual formalism - prototypes are created using a primarily textual modeling
language, such as formal executable specifications or target code.

"* Paradigm

* Object-oriented - model orientation is object-oriented.
* Functional - model orientation is based on functional components or data flow.

* Knowledge-based - model is based on knowledge-assisted creation of
prototypes.

"• Domain Type

* Database - domain is database/ transaction processing management
information systems.

• Real-time - domain involves real-time and embedded systems.

• Distributed - domain involves distributed processing over multi-processor, local,
or wide-area networks.

• User Interface - primarily oriented toward user interface development.
• Knowledge-base - prototyping approach is oriented toward development of

knowledge-based systems.

"* Process

"* Concept Prototyping - approach involves exploration of specific concepts where
the prototype will not result in a fielded system.

"* Evolutionary Prototyping - approach involves initial use of prototypes that will be
evolved eventually into a fielded system.

"* Miscellaneous

"* Survey/ Collection - literature represents a technology survey or a collection of
papers related to the subject of prototyping.

"* Roadmap - literature represents a useful part of a basic roadmap through
prototyping technology.

"• Support Tool/ Environment - literature identifies or discusses an approach
dependent upon one or more specific tools or environments.

16 CMU/SEI-92-TR-13

* *I*I I * *

s , :V :V

fu cin l* C; ,~ ; ' , 0

C D

'COO (DO

Authrc etlpore aq ' r• ID .90

: 1 ,,
CD CO X E Z -, E'-

Sage/ Palmer structural W . v
functional: t

___________purposeful V: v
Church et al explore reqs. V: V: Z t

invest. altern. z

feasibility dem. - " g: a.'

Riddle/Williams evolutionaryV

experimental :v, V" •V v' ,

exploratory V: v'
Carey/Mason Version 0 :v' vV' :•V Y.V

demonstration V' V: VV v ,
scenario v 10 V;. ,V .V.V

Hekmatpour incremental V: S/ 6/' b'

evolutionary V'l vv:' :V' %V V

throw-away V v'0v': v'; V'IV V'iv':

Schneider concept .V:0 v'j ,

laboratory V I V: Vi
field V a V;':1 V W1 , ,

Freeman decision iv., V,

preliminary -0 0 0

concurrent VI !V, v': , ,

STEP concept expl. v' V I: :

solution eval. ,v v v a-'
devel. eval. I:V V _ ;

Table 1 Prototyping Approach Taxonomy

CMU/SEI-92.TR-13 17

0 p1 :~ 0, P :
0 E

t5 .I : 0 0:o~~~ ~ ~ o= cn (' .1
oo 2,- (n*-O

CD <-'o '-DX 1 1600i 0. *

Reference ID 0' 75,' 0 E :~ 1jo

'0 10 oo

Anro*8 VV: V* V: 400 W, v 40" V: W, v: V V V 6

Andriole9O I oV 0" 0" ', V - o:Vv,

Andrulis9O 400. o

Ba rdi9 1 60 : ' 00, :0 *0ý 600,

Bajwa89 400'V -l IO P

Bailes87 6 :: V:v *

'0 0

0 1 P

Black9l vv'

CASEOut9O 0 :
Chang9O :400 OPP 0.: 0: '0 6,IW

4 0 0 4 4

00 0. o

0ol n 8 0 .4 0 -0 o.Y p *
Cooper9O -0 0

* '0 0, '0 60 '0 V..* *

*od~ 400 . 0 too, *

DeSoi89 -H Wh11 V~ 60",
Degl'Innocenti9O 0,.v ~ :v: ~~

Diaz-Gonzalez9l 0 01 '0~

0 *

Ekambareshwar89 'l V, ~ v

Espinosa9O 400:v o . v

Fisher87 _______
0 0

* * 0 o 0 00 0 10 0 0 0 : :

Gerber9O 60," I~

Gimnich87 0001 v# 400"'

Table 2 Prototyping Literature Classifications

18 CMU/SEJ-92-TR-1 3

Purpose Iachnigues Paradigm DomaiJni yePocs MiLL

9, 9 'A 9 *9

'E' : CD' .

09, " ' 9,' =~, 'a 00 c

Reeec ID: SD cD 2:: 0 I
090.v)9 0 ~ ~ ~ 00 f. --. 9 -0 6

_ _DM__ _ _ _- CD 2 .

HeislerBB r- 'LL''
'Emtpu9 :v5 CD :s '1 § -0 3

9-' 9 0 9IA
00 9D M9 9 0 :

0____________ : * =o

- 9 9 9 -z- fV:

Grgro9hB V: V: 0

Krutier9Ob 99 '0~

Karist89 W- v v
* '* .

Luckeyn9O V : ,-: v

999999iwyzB 99 V99 9

Hese8 0 0 10

Luqi9a Wv-uv: O v ' ~vV:~1
Henskes87

Tables ~ 2 rttpn ieatr lsiiain
CM /SI-2- R- 3 19

PUMOIaSmGa Eeh'oe aradiam DomainI Tye Poe jr

1 0 0 tq 0 0 Z
-, 0 CDf ,0 U *n 1 4) CM I *0 C : __O

OA2 : *~ 1, (n a,! 0 oc
0 f f :o: Cu :* I~C .&

R' 0' r

Reernc ID : U ;Ej~
~,0:>0w o OSX 0,:.n ~ C u . CD)0M 00> (L

l v; E 0 U. -

M A OM .0 m S:2

-0
0 0 '0 L) (D *

LI -P t5

VSko it8 :v1 D -6'4-

M (AOD:0Z* 0 1

CD 0 > 0" C 0 > M0 a

00 cc * U 2 w * 2t o 02 in 0a" , o, j u0 c:,u

Luqi~~l Se e , " A

Masm t * 0 0 t

Mcnr9 'A0

Mcno8 60 V, v
0

hinkowta89 0t- ve*. VA V

00~$

* ./0

0 5 00yr9 0 Go 0V
5 5 ' 0

Po es90 0' 01 0 0 * *

0 0 to

TSait9Ob
e.

20 0M /E-2T -

Pumos Iechnogue Earadiam DomainTyp Process Mim

. 0 B a * . ~
.9 tv: f, : -

aM Oo a.a a

CDc a~a ~ .. a, 0 0 Ca0 : m'

Sja aa a a'Tuhema9 CD , (D aa a a~ a10 a a. aI- a a aa0 a LL a a a

Reference-y ID(h t .?3 '

aD a) a a6 a: aDTi~h rnwE*7S a a a 6 a a a a a am: aI a acc a 'a a M a: aD a0 a aMa
>-~g C a , DC n

Tyszberowicz89la~Vv i v : :
a a a a a a a a a aA

Tyszberowicz9l a 6eyj ~ a : :i v: v ~ V

Warkowski9Q *aa00 * * aa $

WeIlner89 Vv v :vo

Whatmore9l .Va:1 ~

VWing9l : *: 4 v : a

Zhao9la a a a a a a aa a a

Table 2 Prototyplng Literature Classifications
CMU/SEI-92-TR-1 3 21

22 CMU/SEI-92-TR-1 3

5 Bibliography

This section presents an annotated bibliography of references on prototyping technology for
the development of computer-based systems. In addition to the appropriate publication infor-
mation for each document type, all bibliographic citations include either 1) an abstract taken
from the document itself, usually written by the author, or 2) an annotation written for the doc-
ument by the compilers of this bibliography. In most cases, the author's abstract was used.
Annotations are provided in those instances where the document did not include an abstract,
or where the abstract was considered insufficient. These abstracts and annotations should
help the reader to determine if there is interest in a given citation. Various indices are also in-
cluded to simplify the task of locating a particular reference or a range of articles in a subject
area.

5.1 Bibliography Selection Criteria

The amount of available literature describing software system prototyping is enormous and
continues to grow. Due to this growth, it is impossible to call any bibliography "complete" by
the time it is published; in fact, it is unlikely to include every relevant publication while the bib-
liography is being researched. In order to produce a relevant yet manageable bibliography, the
authors applied the following selection criteria to each potential reference:

"* key words and phrases used for the search included "software" and "rapid
prototyping"

"* primary references were limited to those dating from 1988 to present

"* some additional references were included as seminal historical references
upon which later work in prototyping was based

Some otherwise relevant citations were excluded from the bibliography if they were:

"* proprietary to an organization

"* copies of slide presentations (which are typically unpublished and difficult to
understand without the accompanying talk)

"* especially difficult to obtain, or

"* superseded by later, better defined work of the same author(s)

If an appropriate publication has been omitted from this bibliography, please contact the au-
thors at:

Requirements Engineering Project
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

CMU/SEI-92-TR-13 23

5.2 Annotated References

Identifier: Andrlole89
Title: Modem Life Cycling: Some System Design Principles for the 90s
Author: Andriole, S.J.
Source: AFCEA International Press, Fairfax, Virginia
Date: 1989
Keywords: process, methods, survey
Notes: The author makes a case for far-ranging re-examination of the way systems are

engineered, including (1) the need for multidisciplinary information systems
engineering, (2) the need for flexible life cycle methods and models, and (3)
renewed commitment to multidisciplinary education, training, and research.
Communication with models and prototypes is emphasized, particularly conceptual
prototypes. Calls for elimination of exising life cycle models in favor of a "situational
life cycling" approach.

Identifier: Andriole9O
Title: Command and Control Information Systems Engineering: Progress and Prospects
Author: Andriole, S.J.
Source: Advances in Computers, Vol. 31, Academic Press, Inc.
Date: 1990
Keywords: process, methods, survey

Identifier: Andrulls90
Title: Object-oriented Development Aids Prototyping and Delivery
Author: Andrulis, M. W.
Source: Signal, Volume 45, No. 4, pp. 76-8
Date: December, 1990
Keywords: object-oriented, Ada, process, survey
Abstract: The author explains how [object-oriented] development seeks to strike a balance

between the rigid, stylized and incremental waterfall life cycle and the loosely
defined rapid prototyping approach. She commends its combination with Ada
software as an aid to prototyping, reuse and delivery. Managers relying on the
combination enjoy the visibility of a system view and can better understand and
control progress against schedule while ensuring better software engineering.

24 CMU/SEI-92-TR-4 3

Identifier: Bagrodla9O
Title: An Integrated Approach to the Design and Performance Evaluation of

Distributed Systems
Author: Bagrodia, R.L.
Source: Systems Integration '90 Proceedings; pp 662-71; IEEE Computer Society Press
Date: April, 1990
Keywords: real-time, distributed processing, methods
Abstract: Iterative transformation of performance models into operational systems is a

desirable goal for rapid prototyping technologies. The author describes an
approach to transforming a hybrid model into an operational system that can be
shown to satisfy its performance specifications. A hybrid model merges operational
modules with abstract simulation modules. The capabilities supported by the
methodology include: (a) interrupt handling, (b) integration of distributed software
and hardware components, and (c) evaluation of the effect of upgrading existing
hardware components. The author also describes how simulation algorithms can
be adapted to execute hybrid modules. The PIPS (partially implemented
performance models) methodology can handle interruptible processes and include
the execution of hybrid models in which the physical module executes faster than
the logical module.

Identifier: Balles87
Title: Software Development by Functional Language Prototyping
Author: Bailes, P. A.; Salzman, E. J.
Source: Technical Report, University of Queensland Department of Computer Science
Date: 1987
Keywords: formalism

Identifier: Bajwa89
Title: Lessons Learned from the Use of a Spiral Model for an Ada Development Effort:

the Software Life Cycle Support Environment (SLCSE)
Author: Bajwa, L. Y.
Source: Proceedings of the IEEE 1989 NAECON, May, 1989; pp.1807-12, vol. 4
Date: 1989
Keywords: applications: environment, process, Ada
Abstract: A description is given of the software life cycle support environment (SLCSE), a

VAX-based software development environment. The project was 80% Ada, subject
to DOD-STD-2167 reviews and documentation. SLCSE adopted an incremental-
build/rapid-prototyping methodolo., similar to Boehm's spiral model. Eight
prototype builds (and the final product) were delivered during the course of the
development effort. At the heart of the system is an integrated database
implemented via a commercial relational database management system overlaid
with an entity-relationship layer that models the entire information content of DOD-
STD-2167A. The lessons learned from this project are discussed. Among these
lessons are the findings that incremental builds help to prove the viability of critical
design approaches and that the use of a spiral-type model requires a new mindset.

CMU/SEI-92-TR-13 25

Identifier: Barbaccl9l
Title: Durra: An Integrated Approach to Software Specification, Modeling and Rapid

Prototyping
Author: Barbacci, M. R.; Lichota, R. W.
Date: 1991
Keywords: real-time, distributed processing, methods, executable specifications, structured

analysis
Abstract: Software specification, modeling and prototyping activities are often performed at

different stages in a software development project by individuals who use different
specialized notations. The need to manually interpret and transform information
passed between stages can significantly decrease productivity and can serve as a
potential source of error. The recent development of commercial executable
specification tools represents a potential semi-automated link between
specification, modeling and prototyping activities. Many of these tools use a
graphical notation based on real-time structured analysis to represent software
models and provide a built-in simulation capability. Unfortunately, these tools can
be inadequate for analyzing the performance of complex real-time systems.
Moreover, the prototypes generated from realistic software specification tend to be
much too inefficient for these applications. We feel that to effectively link
specification, modeling, and prototyping activities, integration must occur at the
level of a technical architecture. This corresponds to a software architecture
augmented to include formal descriptions of task behavior. We believe that Durra,
currently under development at the Software Engineering Institute, can provide this
integration. Durra is a non-procedural language designed to support the
development of distributed applications consisting of multiple, concurrent, large-
grained tasks executing in a heterogenous network. Durra provides a framework
through which one can specify the structure of an application in conjunction with its
behavior, timing, and implementation dependencies. These specification may be
validated by passing behavioral and timing information associated with each Durra
task description to a runtime interpreter. Similarly, software prototypes may be
constructed by directing this information to a suitable source code generator. We
have already developed and interpreter and source code translator for a language
based on simple timing expressions. We are presently constructing a source code
generator for a more complex language defined by SMARTS (the Specification
Methodology for Adaptive Real-Time Systems) developed by Hughes Aircraft
Company).

26 CMU/SEI-92-TR-13

Identifier: Bartschl89

Title: Information Systems Design and Prototyping Using an Object-oriented Software
Engineering Environment

Author: Bartschi, M.; Rieche, B.; Tresch, M.
Source: TOOLS '89. Technology of Object-Oriented Languages and Systems Proceedings;

pp. 423-36; Paris, France; 13-15 Nov. 1989 Paris, France; SOL; 1989; 591 pp.
Date: November, 1989
Keywords: methods, database, object-oriented, graphical specification, tools
Abstract: A collection of methods is presented that allow the integration of all design steps of

interactive information systems into a uniform software engineering environment.
This methodology combines advanced database design techniques with object-
oriented design methods and allows subsequent prototype generation on the basis
of the graphical system specification. For this purpose, features for alphanumeric
form management and for 2D graphical editing are combined in a unified user
interface management system. Further, the architecture of PARADISE, an
environment implementing these methods, is described and an application
example given to show the methods' strengths.

Identifier: Berard189
Title: Rapid Prototyping of Complex Avionics Systems
Author: Beradi, L.
Source: AGARD Lecture Series 164. Systems Engineering (AGARD-LS-164); pp. 7/1-18;

Kettering, OH, USA; 15-16 May 1989 Sponsored by: AGARD Neuilly sur Seine,
France; AGARD; 1989; v+134 pp.

Date: May, 1989
Keywords: applications: avionics, methods, tools, knowledge-based
Abstract: The use of a rapid prototyping approach in the initial stages of complex avionics

system design can complement some traditional computer design methods. In fact
most of the computer aids in engineering and design is aimed to a better, coherent
and, as far as possible, complete description of the project, but not too much is
done on the verification of the proposed concept implementation. The author
discusses the advantages to have available during the early design stages a
software prototype of the system to highlight undesirable characteristics or
possible improvements when the system has a high degree of complexity. Then a
design tool called ECATE (Expert Consultant for Avionics System Transformation
Exploitation), developed by Avionics Systems Group of Aeritalia, is described.
ECATE is an expert system that prototypes the information handling architecture
of an avionics system. The use of knowledge engineering and, in general, artificial
intelligence approach for the rapid prototyping has been proven very effective,
because of the high flexibility, complex domain mastering capability, and heuristic
methods typical of these techniques. A description of a complete, integrated
environment for the rapid development of prototypes of avionics systems, by using
artificial intelligence and computer tools, is given of the high flexibility, complex
domain mastering capability, and heuristic methods typical of these techniques. A
description of a complete, integrated environment for the rapid development of
prototypes of avionics systems, by using artificial intelligence and computer tools,
is given.

CMU/SEI-92-TR-13 27

Identifier: Biggie89
Title: A Multimedia Rapid Prototyping Tool for the Development Of Computer-assisted

Instructicn
Author: Biggie, A.V.L.; Buchanan, W.E.; Hazan, P.L.; Kossiakoff, A.
Source: Johns Hopkins APL Technical Digest; vol.10, no.3; July-Sept. 1989; pp. 246-53
Date: September, 1989
Keywords: tools, applications: education
Abstract: A rapid prototyping tool has been designed to aid in the creation of computer-

assisted instruction (CAI) software for children with learning disabilities and mental
retardation. The tool, which was conceived and developed under the collaborative
program between APL and the JHU Division of Education in the School of
Continuing Studies, has enabled a multidisciplinary team of educators and
computer engineers to visualize and test all features of proposed CAI programs on-
line during regular design sessions held around a conference table. Computer
program development time has thereby been significantly shortened, and
significant gains have been made in the quality of educational products produced.

Identifier: Birch89
Title: A Knowledge Base Approach to the Specifation Of Real Time System

Requirements
Author: Birch, M.; Whiteley, K.
Source: Second International Conference on Software Engineering for Real Time Systems

(Conf. Publ. no.309); pp. 21-5; Cirencester, UK; 18-20 Sept. 1989 London, UK;
lEE; 1989; xii+287 pp.

Date: September, 1989
Keywords: knowledge-based, real-time
Abstract: The use of pattern recognition based on a Holland classifier produced a fast,

efficient expert system with a malleable rule base. By decoupling the inference
mechanism from the knowledge base it is a simple process to add new rules or
extended the scope of the rules within the rule base. In addition, Smalltalk-80
provided a highly interactive rapid prototyping environment which, with its resident
bit block transfer mechanism, is ideal for the fast manipulation of large character
strings implemented as bitmap masks. By using breakpoints in the code at run-
time, debug windows can be opened which provide such facilities as single-step
execution and inspection of bitmaps using the bit editor. Such powerful debugging
facilities greatly reduced the implementation time for the tool.

28 CMU/SEI-92-TR-13

IdentIfier: Black9l
Title: Acquisition Model for the Capture and Management of Requirements for Battlefield

Software Systems
Author: Black, H.; Leciston, D.; McGhee, R.; Zimmerlich, J.
Source: CECOM-TR-90-2
Date: January, 1991
Keywords: user-interface, real-time, process
Notes: This report presents an acquisition model that meets the needs of new and

unprecedented systems that are software intensive, large, complex, and have
extensive man-machine interface requirements. When properly applied, it should
reduce the cost, schedule, and quality risks that have been associated with these
types of procurements. This model is proposed within the context of DOD-STD-
2167A and can be tailored to apply to a wide range of acquisitions. This model
acknowledges that requirements have not and perhaps can not be fully and
adequately specified up front, prior to acquisition, especially for large and complex
systems. Rather, they evolve throughout the system life cycle. It stresses that
requirements must be engineered and managed, not merely written. The model
proposes six risk reduction strategies, which have been previously recommended
by numerous DoD studies. This report provides guidance for the project manager
on their implementation.

Identifier: Brooks87
Title: No Silver Bullet: Essence and Accidents of Software Engineering
Author: Brooks, F. P. Jr.

Source: IEEE Computer
Date: April, 1987
Keywords: process, methods
Abstract: Fashioning complex conceptual constructs is the essence; accidental tasks arise

in representing the constructs in language. Past progress has so reduced the
accidental tasks that future progress now depends upon addressing the essence.

Notes: Brooks argues persuasively that requirements refinement and rapid prototyping is
one of only a handful of technologies that hold promise for attacking the essential
rather than accidental difficulties of software development (other cited technologies
are: buy rather than build, develop incrementally, and develop great designers).
This article is closely related to the [DSB87] report.

Identifier: CASEOut9O
Title: Survey of Rapid Prototyping Tools

Source: CASE Outlook 90, No. 4
Date: 1990
Keywords: survey, tools
Abstract: Rapid software prototyping, also known as Rapid Applications Development (RAD)

continues to become increasingly visible as a CASE development strategy. Rapid
prototyping success stories hold out the promise of applications that better match
real-world needs, decreased development time, and responsive accommodation to
changing requirements. Software prototyping still lies in the nether world between
techniques methodologies, and tools, but it is clearly a valuable approach in many
situations.

CMU/SEI-92-TR-13 29

Identifier: Chang9O
Title: A Real-time Distributed Simulation of PBX with Software Reuse
Author: Chang, C.K.; Young-Fu Chang; Aoyama, M.
Source: Simulation; vol.54, no.2; Feb. 1990; pp. 71-9
Date: February, 1990
Keywords: real-time, distributed processing, reuse, applications: telephony, simulation
Abstract: Rapid prototyping has proven to be a promising way of accomplishing a feasibility

study. It cuts costs and reduces the complexity of the development of real-time
distributed systems. UICPBX is a simulator of private branch exchange (PBX), an
important member in the family of telephone switching systems. It has been
prototyped using the C language in a SUN workstation environment under UNIX.
During the development of UICPBX, techniques of software reusability were
applied. First, a software hierarchy with three layers (kernel, basic supporting and
calling functions) was employed according to the functional characteristics of the
application system. Secondly, a software library was established to provide an
effective environment to support reuse of functions developed at the middle (basic
supporting) layer of the software hierarchy.

Identifier: Cohen9O
Title: Rapid Prototyping of Communications Protocols Using a New Parallel Language
Author: Cohen, D.M.; Guinther, T.M.; Ness, L.A.
Source: Systems Integration '90. Proceedings of the First International Conference on

Systems Integration (Cat. No.90TH0309-5); pp. 196-204; Morristown, NJ, USA;
23-26 April 1990 Sponsored by: IEEE; New Jersey Inst. Technol.; ACM; AT&T; Bell
Commun. Res.; Gesellschaft fur Math. & Datenverarbeitung Los Alamitos, CA,
USA; IEEE Comput. Soc. Press; 1990; xvi+800 pp. ISBN 0 8186 9027 5

Date: 1990
Keywords: languages, executable specifications, applications:communications
Abstract: A description is given of the L.0 language, a parallel, high-level executable

specification language created for the design and implementation of software
systems with inherent concurrency, such as communications protocols, services
and networks. L.0 was explicitly designed to express coordination, simultaneity,
and the hierarchical composition of systems from component subsystems. L.0 has
been used to prototype communications protocols and services and to study
network architectures and switching systems. The application of L.0 to the
prototyping of a large portion of an experimental data communication services
network architecture is discussed.

30 CMU/SEI-92-TR-13

Identifier: Coollng89
Title: The Emergence of Rapid Prototyping as a Real-time Software Development Tool
Author: Cooling, J.E.; Hughes, T.S.
Source: Second International Conference on Software Engineering for Real Time Systems

(Conf. Publ. no.309); pp. 60-4; Cirencester, UK; 18-20 Sept. 1989 London, UK;
lEE; 1989; xii+287 pp.

Date: September, 1989
Keywords: real-time, tools, applications: industrial, survey
Abstract: It is demonstrated that there is both the need and the means for rapid prototyping

to establish itself as a software development tool for real-time embedded systems.
The authors describe the problems that software developers face and in particular
the nature of embedded real-time systems. The aims of rapid prototyping stand out
quite clearly against this background. With the emergence of new concepts in
software engineering, such as computer aided software engineering and object-
oriented design these aims are becoming increasingly realisable as practical
methodologies and tools. The authors examine some of these tools which have
particular relevance to the development of real-time systems. The analysis yields
several useful pointers as to the elements required of a full scale rapid-prototyping
system for use in commercial industrial projects. They also outline some projects
which demonstrate both the benefits and the difficulties encountered when using
rapid prototyping in real-time systems.

Identifier: Cooper9O
Title: Between Man and Machine
Author: Cooper, S.
Source: Systems International; vol.18, no.1; Jan. 1990; pp. 37-8, 40
Date: January, 1990
Keywords: user-interface, object-oriented, tools
Abstract: The author discusses the need for man-machine interfacing tools (MMI tool). She

emphasizes the importance of the object oriented approach to software
development with its encapsulation, instantiation/classes, and inheritance
components. Object orientation offers conceptual benefits extensibility,
robustness, and rapid prototyping/modification. An example of an MMI
development system incorporating the above technologies in the Graphical
Modelling System (GMS) from Sherrill-Lubinski. It provides facilities for users to
build their own graphic representations of data together with the interaction models
necessary for the application. Using GMS the MMI is distributed to dedicated user
workstations managing the data display and interpretation demands from several
applications.

CMU/SEI-92-TR-13 31

Identifier: Cordy9l
Title: TXL: A Rapid Prototyping System for Programming Language Dialects
Author: Cordy, J.R.; Halpern-Hamu, C.D.; Promislow, E.
Source: Computer Languages; vol.16, no.1; 1991; pp. 97-107
Date: 1991
Keywords: applications: programming languages
Abstract: Describes a rapid prototyping system for extensions to an existing programming

language. Such extensions might include new language features or might
introduce notation specific to a particular problem domain. The system consists of
a dialect description language used to specify the syntax and semantics of
extensions, and a context sensitive syntactic transducer that automatically
implements the extensions by transforming source programs written using them to
equivalent programs in the original unextended language. Because the
transformer is context sensitive, it is more powerful than traditional context-free
preprocessors and extensible languages can be used to prototype language
extensions involving significantly new programming paradigms such as object-
oriented programming.

Identifier: DeSo189
Title: Graphical Specification of User Interfaces with Behavior Abstraction
Author: DeSoi, J.F.; Lively, W.M.; Sheepard, S.V.
Source: SIGCHI Bulletin; spec. issue.; May 1989; pp. 139-44 Conference on Human

Factors in Computing Systems (CHI 89); Austin, TX, USA; 30 April-4 May 1989
Sponsored by: IEEE; ACM

Date: May, 1989
Keywords: user-interface, graphical specification, knowledge-based, methods, tools
Abstract: The Application Display Generator (ADG) is a graphical environment for the design

and implementation of embedded system user interfaces. It is a major component
of the Graphical Specification Subsystem (GSS) in Lockheed's Express
knowledge-based software development environment. ADG gives non-
programmers simple and flexible methods for graphically specifying the
presentation and behavior of embedded system user interfaces. In the ADG
methodology arbitrary presentations are attached to abstract object behaviors.
This approach makes it possible to provide unconstrained presentations, intelligent
user support, rapid prototyping, and flexible facilities for composing complex
objects.

32 CMU/SEI-92-TR-13

Identifier: Degl'lnnocenti9O
Title: RSF: A Formalism for Executable Requirement Specifications
Author: Degl'lnnocenti, M.; Ferrari, G.L.; Pacini, G.; Turini, F.
Source: IEEE Transactions on Software Engineering; vol.16, no.11; Nov. 1990; pp. 1235-

46
Date: November, 1990
Keywords: executable specifications, logic programming, real-time, formalism
Abstract: RSF is a formalism for specifying and prototyping systems with time constraints.

Specifications are given via a set of transition rules. The application of a transition
rule is dependent upon certain events. The occurrence times of the events and the
data associated with them must satisfy given properties. As a consequence of the
application of a rule, some events are generated and others are scheduled to occur
in the future, after given intervals of time. Specifications can be queried, and the
computation of answers to queries provides a generalized form of rapid
prototyping. Executability is obtained by mapping the RSF rules into logic
programming. The rationale, a definition of the formalism, the execution techniques
which support the general notion of rapid prototyping and a few examples of its use
are presented.

IdentifIer: Demeure89
Title: Prototyping and Simulating Parallel, Distributed Computations with VISA
Author: Demeure, I.M.; Nutt, G.J.
Source: Technical report. University of Colorado, Boulder. Dept. of Computer Science; CU-

CS-450-89 Prototyping and simulating with VISA.
Date: 1989
Keywords: distributed processing, tools, simulation, graphical specification
Abstract: Designing high performance distributed computations is a challenging task. In this

paper, we describe VISA (VISual Assistant), a software tool to support the design,
prototyping, and simulation of parallel, distributed computations. In particular, VISA
is meant to guide the choice of partitioning and communication strategies for such
computations, based on their performance. VISA uses ParaDiGM (Parallel
Distributed computation Graph Model) as a basis for its graphical interface. VISA
supports the editing of ParaDiGM graphs, and the animation of these graphs to
provide visual feedback during simulations. Summary results are available when a
simulation terminates. We introduce the ParaDiGM constructs and describe the
functionality of VISA. We illustrate its utility by providing simulations of two
computations under various load conditions.

CMU/SEI-92-TR-13 33

Identifier: DIaz-Gonzalez9l
Title: Language Aspects of EN VISA GER: an Object-oriented Environment for the

Specification of Real-time Systems
Author: Diaz-Gonzalez, J.P.; Urban, J.E.
Source: Computer Languages; vol.16, no.1; 1991; pp. 19-37
Date: 1991
Keywords: languages, object-oriented, real-time, formalism
Abstract: Requirements engineering is the area of software engineering that deals with the

study and practice of the activities related to the generation of software
requirements. This paper concentrates on the concepts that are relevant to the
specification of requirements for real-time systems. A specification language
based on an object-oriented conceptual model is presented. Interval temporal
logic, a variation of temporal logic that provides mechanisms for specifying time-
varying properties of systems, is used as the underlying formalism for representing
behavioral constraints on the objects. The mechanism used for the interpretation
and satisfaction of the constraints is also discussed.

Identifier: Edmonson89
Title: DETAIL: An Approach to Task Analysis
Author: Edmonson, D.; Johnson, P.
Source: Simulation and the User Interface; pp. 147-58; Brighton, UK; 18-19 May 1989

London, UK; Taylor & Francis; 1990; 269 pp. ISBN 0 85066 803 4
Date: May, 1989
Keywords: methods, simulation, tools
Abstract: The authors describe a tool to support task analysis, by helping users to specify

steps of a task procedure. Features of the task are captured in the early stages of
system development using an interactive simulation environment. The orientation
of the approach is a development cycle based on rapid prototyping and simulation
whereby the purpose of task analysis is to minimize the number of iterations in the
prototype/evaluate cycle and so provide a commercially viable approach to
interactive systems design. The approach to task analysis and modelling is
intended to be timely, easy to validate and relevant; criteria which are not fully met
by most existing analytic approaches. The tool has been developed using Apple
Macintosh HyperCard. This is used to simulate the task in order to provide a task
model which can then be refined to provide a formal input early in the development
cycle.

34 CMU/SEI-92-TR-13

Identifier: Ekambareshwar89
Title: Rapid Prototyping of Software Systems Using Prolog
Author: Ekambareshwar, S.; Downs, T.
Source: Conference on Computing Systems and Information Technology 1989. Preprints

of Papers; pp. 6-10; Sydney, NSW, Australia; 8-10 Aug. 1989 Sponsored by: Instn.
Eng. Australia; IEEE; et al Barton, ACT, Australia; Instn. Eng. Australia; 1989; 195
PP.

Date: August, 1989
Keywords: languages, formalism
Abstract: Rapid prototyping of software is an important method of providing customers with

a means of assessing the suitability of specified requirements. This paper is
concerned with a method of generating a rapid prototype for software that has been
formally specified using the Z specification language. It gives an overview of Z and
illustrates how example specifications can be transformed into Prolog procedures.
The role of type-checking to ensure correctness of the representation is discussed.

Identifier: Esplnosa90
Title: QUISAP: An Environment for Rapid Prototyping of Real-time Systems
Author: Espinosa, A.; Garcia-Fornes, A.; Crespo, A.; de la Puente, J.A.
Source: COMPEURO '90. Proceedings of the 1990 IEEE Intematiorz! Conference on

Computer Systems and Software Engineering (Cat. No.90CH2867-0); pp. 502-8;
Tel-Aviv, Israel; 8-10 May 1990 Sponsored by: IEEE; Inf. Processing Assoc. Israel
Los Alamitos, CA, USA; IEEE Comput. Soc. Press; 1990; xiii+574 pp. ISBN 0 8186
2041 2

Date: May, 1990
Keywords: tools, real-time, languages, formalism, Ada
Abstract: An environment for rapid prototyping and analysis of real-time systems is

presented. The real-time system is specified using the language QUISAP and,
from this specification, a model based on timed Petri nets for formal analysis and
a prototype written in Ada for behavior analysis are built. Inappropriate handling of
temporal constraints violations during prototype execution due to the Ada language
can be improved with a new scheduling of tasks. Other improvements relate to the
model of application objects, its definition, concurrency, and communication.

Identifier: FIsher87
Title: Application Software Prototyping and Fourth Generation Languages
Author: Fisher, G.E.
Source: Computer Science And Technology NBS special publication; 500-148
Date: May, 1987
Keywords: survey

CMU/SEI-92-TR-13 35

Identifier: Ganti90
Title: An C 2, ,'oriented Application Development Environment
Author: Ganti, M.; Goyal, P.; Nassif, R.; Podar, S.
Source: COMPCON Spring '90: Thirty-Fifth IEEE Computer Society International

Conference. Intellectual Leverage. Digest of Papers. (Cat. No.90CH2843-1); pp.
348-55; San Francisco, CA, USA; 26 Feb.-2 March 1990 Sponsored by: IEEE Los
Alamitos, CA, USA; IEEE Comput. Soc; 1990; xvi+644 pp. !SBN 0 8186 2028 5

Date: March, 1990
Keywords: object-oriented, tools, reuse
Abstract: The ROPE (rapid object-based prototyping environment) application development

environment (ROPE-ADE) is a collection of tools that assists in the development of
new software systems. One of the distinguishing features of this environment is
that it assists in the reuse of both designs and code. The environment currently
consists of two tools which are themselves reused in the development of other
tools in the environment. One of the major aims of this environment is to facilitate
rapid prototyping of applications. These prototypes are to assist in the analysis of
the application and its evolution into a product. Another distinguishing feature of
this environment is that it is being developed using an object-oriented design and
implementation language.

Identifier: Gerber90
Title: Knowledge-based Software in a Realtime Alarm-handling System
Author: Gerber, S.; Baumann, R.
Source: Der Elektroniker; no.10; Oct. 1990; pp. 89-94
Date: October, 1990
Keywords: knowledge-based, applications: process control
Abstract: The authors examine the use of expert systems in analyzing alarm states in

process control systems by giving particular attention to the interface between the
expert system and the process itself. They illustrate this interface by describing a
prototype for a PC, i.e the RTAS (realtime alarm handling system) prototype. They
indicate the advantages of the method of rapid prototyping over the strictly
sequential steps in the classical waterfall model for developing software and
describe the iteration cycle that allows the performance, configuration and function
of software to be analyzed before final creation. The features of the process PC
and of the expert PC and their cooperation are described.

Identifier: GImnlch87
Title: Constructive Formal Specifications for Rapid Prototyping
Author: Gimnich, R.; Ebert, J.
Source: Human-Computer Interaction - INTERACT '87. Proceedings of the Second IFIP

Conference; pp. 1047-52; Stuttgart, West Germany; 1-4 Sept. 1987 Amsterdam,
Netherlands; North-Holland; 1987; xli+1 138 pp. ISBN 0 444 70304 7

Date: September, 1987
Keywords: formalism
Abstract: The approach presented suggests a way to translate software specifications into

an operational form which can be used as a prototype, for revising the
requirements, and for testing purposes by relating it to the actual implementation
developed later.

36 CMU/SEI-92-TR-13

Identifier: Glordano9l
Title: Rapid Development Speeds Path for Command System
Author: Giordano, F.; Wong, B.; McCollum, L.
Source: Signal; vol.45, no.8; April 1991; pp. 52-6
Date: April, 1991

Keywords: applications: C2, real-time
Abstract: The US Army European tactical command and control system (UTACCS) is a

project combining rapid prototyping based on minimum, or thin, specifications with
frequent operational deliveries to field users. This approach ensures that
developers achieve system requirements in a timely and cost-effective manner.

Identifier: Gomaa81
Title: Prototyping as a Tool in the Specification of User Requirements
Author: Gomaa, H.; Scott, D.B.H.
Source: IEEE CH1627-9/81/0000/0333
Date: 1981
Keywords: applications: process control, process
Abstract: One of the major problems in developing new computer applications is specifying

the user's requirements such that the Requirements Specification is correct,
complete and unambiguous. Although prototyping is often considered too
expensive, correcting ambiguities and misunderstandings at the specification
stage is significantly cheaper than correcting a system after it has gone into
production. This paper describes how a prototype was used to help specify the
requirements of a computer system to manage and control a semiconductor
processing facility. The cost of developing and running the prototype was less than
10% of the total software development cost.

Identifier: Gonzalez89
Title: Protolog: A Conceptual Schema Facility for Automated Prototype Generation
Author: Gonzalez de Rio, A.; Alpuente, M.; Cassamayor, J.C.; Pastor, M.A.; Ramirez, M.J.;

Ramos, I.
Source: Proceedings of the lASTED International Symposium. Applied Informatics - AI '89;

pp. 43-6; Grindlewald, Switzerland; 8-10 Feb. 1989 Sponsored by: lASTED
Anaheim, CA, USA; ACTA Press; 1989; 288 pp. ISBN 0 88986 117 X

Date: February, 1989
Keywords: tools, executable specifications, conceptual modeling
Abstract: This paper presents PROTOLOG: a conceptual schema facility (CSF) for

automated prototype generation. The authors introduce a new approach to
conceptual modelling, which is proposed as an alternative to the operational and
deductive approaches and covers the existing gap between them. The introduction
of time concept is essential in the model and allows, not only to deal with historical
information but also to dispose of a better expressiveness in the language. In this
way, more accurate models of reality (as in the unified view of dynamic and static
constraints) can be obtained. On the other hand, rapid prototyping makes the
design phase easier, which allows the validation of the requirements. PROTOLOG/
PG automatically translates PROTOLOG models into executable prototypes.

CMU/SEI-92-TR-13 37

Identifier: Gregorlo90
Title: A Display Rapid Prototyping and Simulation System

Author: Gregorio, D.D.; Forger, A.F.; McArdle, B.R.

Source: Proceedings of the 1990 Summer Computer Simulation Conference; pp. 424-9;
Calgary, Alta., Canada; 16-18 July 1990 Sponsored by: SCS San Diego, CA, USA;
SCS; 1990; xix+1202 pp. ISBN 0 911801 74 X

Date: July, 1990

Keywords: tools, real-time, user-interface, simulation, applications: C31

Abstract: The objective of the Display Rapid Prototyping and Simulation (DRPS) system is

to allow its users to identify and refine both system hardware and software
requirements for proposed command, control, communication and intelligence

(C3 1), avionics, space, armament, and other large scale defense systems by
quickly prototyping user interfaces and subjecting them to the actual performance
characteristics of the proposed system. DRPS does this by providing its users with
the ability to: (a) define and execute a model of the target system in order to assess
feasibility and performance; and (b) define within the model the operational
displays of the target system and user interactions with the target system through
these displays, and evaluate their operation throughout the simulation. The
software is developed with VAX Ada, using a DEC version of XWindows on a DEC
GPX workstation. It uses pull-down menus and graphical icons to build a system
model, eliminating the need for extensive programming skills by the user. This
paper examines DRPS from a user's standpoint, describing how to build a system
model using the tool. It provides an overview of the tool and its capabilities. An
example of a project which details the development of a model using DRPS is also
provided.

Identifier: Gutlerrez89
Title: Prototyping Techniques for Different Problem Contexts
Author: Gutierrez, 0.
Source: SIGCHI Bulletin; spec. issue.; May 1989; pp. 259-64 Conference on Human

Factors in Computing Systems (CHI 89); Austin, TX, USA; 30 April-4 May 1989
Sponsored by: IEEE; ACM

Date: May, 1989
Keywords: methods, survey
Abstract: Rapid prototyping and other experimental techniques are playing an increasingly

important role in software development. Some common issues that concern their
adoption are identifying the place in a system's life cycle where they may be
appropriate, and selecting which tools to use. The author presents a model of
different problem types, suggesting that a fit must be found between the nature of
the problem at hand and the features associated with available techniques.
Emphasis is placed on the fact that most commercial tools are suitable for only
certain problem types. Some areas of further development are highlighted and
implications concerning human-computer interaction discussed.

38 CMUWSEI-92-TR-13

Identifier: Harris87
Title: Evaluation of Rapid Prototyping Methodology in a Human Interface

Author: Harris, JR.; Parker, D.W.

Source: Human-Computer Interaction - INTERACT '87. Proceedings of the Second IFIP
Conference; pp. 1059-63; Stuttgart, West Germany; 1-4 Sept. 1987 Amsterdam,
Netherlands; North-Holland; 1987; xli+1138 pp. ISBN 0 444 70304 7

Date: September, 1987
Keywords: applications: health care, user-interface

Abstract: The authors present experiences in developing a prototype for the human interface
for a database containing surveillance records for handicapped children, which will
be used by clinicians and administrators in a health board authority. The user
requirements were: regular assessment of a child's condition: monitoring of the
child's access to, and take up of, certain special services needed; and easy
compilation of figures relating to the health of the children. They describe the types
of changes required by the user in the early phases of the prototype and the
limitations which should be imposed on the extent of the rapid prototyping
technique. They also discuss the contributions to understanding of the exact needs
of the user and how iterative design methodologies achieve those needs. They
highlight the benefits that speed and low investment of effort have on the design
process.

Identifier: Hartson9l
Title: Rapid Prototyping in Human-Computer Interface Development
Author: Hartson, H.R.; Smith, E.C.
Source: Interacting with Computers; vol.3, no.1; April 1991; pp. 51-91
Date: April, 1991
Keywords: user-interface

Abstract: Some conventional approaches to interactive system development tend to force
commitment to design detail without a means for visualizing the result until it is too
late to make significant changes. Rapid prototyping and iterative system
refinement, especially for the human interface, allow early observation of system
behavior and opportunities for refinement in response to user feedback. The role
of rapid prototyping for evaluation of interface designs is set in the system
development life-cycle. Advantages and pitfalls are weighed, and detailed
examples are used to show the application of rapid prototyping in a real
development project. Kinds of prototypes are classified according to how they can
be used in the development process, and system development issues are
presented. The future of rapid prototyping depends on solutions to technical
problems that presently limit effectiveness of the technique in the context of
present day software development environments.

CMU/SEI-92-TR-13 39

Identifier: Hawryszkiewycz87

Title: Prototyping with the Entity-relationship Model
Author: Hawryszkiewycz, I.T.

Source: Australian Computer Conference - 1987. Proceedings; pp. 332-42; Melbourne,
Vic., Australia; 8-11 Sept. 1987 Watson, ACT, Australia; Australian Computer
Society; 1987; xvi+904 pp.

Date: September, 1987
Keywords: conceptual modeling, database, methods,
Abstract: One of the problems in using conceptual modelling is the transfer of analysis

results rapidly into a working system. In many cases the conceptual model is
transferred to database by a manual process and as a result the model structure is
either partially ignored or incorrectly transferred into an implementation. Manual
conversion also does not meet the requirement of many end-user systems, which
are based on prototyping or evolutionary design rather than the linear development
cycle. Again this requirement needs a rapid transfer of any data model to the
implementation and calls for support of changes to the system. These problems
can be overcome with software support for conceptual modelling and conversion
from the model to a database definition. Furthermore prototyping can be supported
by special conversions that generate screens and reports of primitive operations
such as adding or deleting entities and relationships and constraint checks. The
paper describes the development of a system for rapid prototyping based on these
ideas. It describes an E-R modelling tool that assists end users to develop correct
E-R models and converts these models directly into a database definition for an
application generator. The paper then outlines further requirements that automated
tools must satisfy to support prototyping. These include screen and report
generation and support for change at the conceptual model level.

40 CMU/SEI-92-TR-13

Identifier: Heisler88
Title: Integrating the Role of Rapid Prototyping and Requirements Specification Using

the Object-oriented Paradigm
Author: Heisler, K.G.; Tsai, W.T.
Source: Technical report. University of Minnesota. Institute of Technology. Computer

Science Dept.; TR-88-65
Date: 1988
Keywords: object-oriented

Identifier: Hekmatpour9O
Title: Al Techniques and Object-oriented Technology for VLSI Design-space

Representation, Optimization and Management
Author: Hekmatpour, A.; Chau, P.
Source: Proceedings of the SPIE - The International Society for Optical Engineering;

vol.1293, pt.1; 1990; pp. 85-94 Applications of Artificial Intelligence VIII; Orlando,
FL, USA; 17-19 April 1990 Sponsored by: SPIE

Date: April, 1990
Keywords: object-oriented, knowledge-based, tools
Abstract: The VLSI design process consists of many highly specialized tasks. Algorithmic,

computationally-intensive and mundane tasks which used to be performed
manually, have been automated by traditional VLSI CAD tools. These tools have
automated many aspects of VLSI design synthesis, analysis, optimization and
verification. However, the successful and efficient utilization of these tools has
proved to be very knowledge intensive, requiring the interaction and guidance of
domain experts. In recent years, many expert systems for VLSI design have been
reported, but these stand-alone expert systems have to be integrated with
traditional CAD tools to be able to provide automated decision-making, judgment-
based opportunity ranking and tighter data source integration. Furthermore, an
integrated and distributed knowledge-base is essential for rapid prototyping of
expert design assistants, design techniques and optimization heuristics. The
authors report an experimental VLSI design environment based on a central
object-oriented model-base. The object-oriented design kernel is capable of
accommodating traditional CAD tools as well as knowledge-based tools.

Identifier: Henskes87
Title: Rapid Prototyping of Man-machine Interfaces for Telecommunications Equipment

Using Interactive Animated Computer Graphics
Author: Henskes, D.T.; Tolmie, J.C.
Source: Human-Computer Interaction - INTERACT '87. Proceedings of the Second IFIP

Conference; pp. 1053-8; Stuttgart, West Germany; 1-4 Sept. 1987 Amsterdam,
Netherlands; North-Holland; 1987; xli+1 138 pp. ISBN 0 444 70304 7

Date: September, 1987
Keywords: user-interface, graphical specification, simulation
Abstract: The concept of rapid prototyping can be extended from software development

support to simulation of man-machine interfaces. This approach will help meeting
the challenge imposed on telecommunications engineering by the evolution of an
European broadband network system with its subsequent need for highly
acceptable user services. Animated computer graphics is a cost effective way for
introducing simulation into the earliest possible phase of the design cycle

CMU/SEI-92-TR-13 41

Identifier: Henskes90

Title: Prototyping and Visualisation in Interface Design
Author: Henskes, D.T.; Tolmie, J.C.

Source: Electrical Communication; vol.64, no.4; 1990; pp. 321-6
Date: 1990
Keywords: user-interface, tools, simulation
Abstract: To meet the needs of software engineering in telecommunications, Alcatel SEL

has created a design and simulation toolkit. The system is built on the X11 window
system standard and the OSF/Motif widget set, thereby providing portability across
a wide range of hardware platforms. The toolkit separates the components of the
software system, allowing the user interface to be constructed independently of the
application. This strict isolation of the user interface allows easy integration of the
tools into existing software engineering environments. Emphasis is placed on high
quality visualisation and realism. A dialogue component enables the designer to
stimulate the application, making thp toolkit ideal for rapid prototyping. Object-
oriented techniques have been used, permitting the interface objects to be used by
other applications. The toolkit is being used to prototype a wideband cross-connect
system Multipart, which is a modification of the Alcatel CX41 11.

Identifier: Hughes89
Title: The Emergence of Rapid Prototyping as a Real-time Software Development Tool
Author: Hughes, T.S.; Cooling, J.E.
Source: lEE Colloquium on 'Specification of Complex Systems' (Digest No.145); pp. 2/1-3;

London, UK; 30 Nov. 1989 Sponsored by: lEE London, UK; lEE; 1989; 29 pp.
Date: November, 1989
Keywords: real-time, methods
Abstract: Recent years have seen an explosion in the demand for high quality software. The

complexity and size of these projects has also increased. Software developers
have been forced to recognize the shortcomings of conventional methods for
producing software. As new methods for controlling and managing production have
emerged, researchers have emphasized the importance of the system
specification. The task of constructing the system specification involves a great
deal of communication between the developers and the clients. The use of
specialized technical language by both parties makes precise exchange of ideas
difficult. There is thus a need for both parties to be able to explore a commonly
agreed definition of the problem. This requires a method of presenting the problem
definition which is easily understood by both parties. The use of rapid prototyping
is one approach to solving this problem and the authors discuss its use as a
software development tool.

Identifier: IEE89
Title: lEE Colloquium on 'Specification of Complex Systems' (Digest No. 145

Source: London, UK; 30 Nov. 1989 Sponsored by: lEE London, UK; lEE; 1989; 29 pp.
Date: 1989
Keywords: structured analysis, real-time
Abstract: The following topics were dealt with: rapid prototyping as a real-time software

development tool; specification and procurement of complex systems; structured
analysis at VSEL; mathematical precision and user understanding; project
feasibility; and specification quality assurance

42 CMU/SEI-92-TR-13

Identifier: Jaln89
Title: Software Quality via Rapid Prototyping
Author: Jain, A.K.; Tink, P.D.
Source: GLOBECOM '89. IEEE Global Telecommunications Conference and Exhibition.

Communications Technology for the 1990s and Beyond (Cat. No.89CH2682-3);
pp. 642-6 vol.1; Dallas, TX, USA; 27-30 Nov. 1989 Sponsored by: IEEE New York,
NY, USA; IEEE; 1989; 3 vol. xxxii+1975 pp.

Date: November, 1989
Keywords: process, applications: networks
Abstract: Rapid prototyping is described as a software development process which provides

improved software quality and increases software productivity, in addition to
providing other benefits such as reduced costs, reduced risk, shorter schedules,
and customer satisfaction. This process does not usually produce throwaway
prototypes; rather, prototyping methodology is employed without using any specific
rapid prototyping tools to produce field-grade products. The approach emphasizes
selection of smaller teams working closely with the customers. Using rapid
prototyping, many successful software systems that perform planning,
provisioning, monitoring, and maintenance operations support for various AT&T
network services have been developed.

Identifier: Jones90
Title: HyperCard- The Legend: Summary
Author: Jones, M.L.R.
Source: lEE Colloquium on 'Software Tools for Interface Design' (Digest No.146); pp. 4/1-

4; London, UK; 8 Nov. 1990 Sponsored by: lEE London, UK; lEE; 1990; 78 pp.
Date: November, 1990
Keywords: tools
Abstract: The paper is intended as an essentially practical account of the strengths and

weaknesses of HyperCard as a rapid prototyper of product interfaces. It is
assumed that the reader is familiar with the basic components of HyperCard:
stacks, cards, backgrounds, fields, buttons and scripts.

Identifier: Koch88
Title: Methodical and Management Experiences from an Extensive Software Project
Author: Koch, W.H.
Source: Experience with the Management of Software Projects 1988. Proceedings of the

2nd IFAC/IFIP Workshop; pp. 31-6; Sarajevo, Yugoslavia; 27-29 Sept. 1988
Sponsored by: IFAC; IFIP Oxford, UK; Pergamon; 1990; viii+95 pp. ISBN 0 08
036928 6

Date: September, 1988
Keywords: methods, survey
Abstract: A project involving the software redevelopment for durable investment goods is

discussed. The major pre-design, design and implementation decisions are
reflected. Important topics are the use of rapid prototyping as a design aid and the
use of symbolic debuggers in a multitasking environment. Finally the most
important methods used are reviewed and suggestions for future developments
are made.

CMU/SEI-92-TR-13 43

Identifier: Konrad
Title: Functional Prototyping with Proto
Author: Konrad, M.1 D.; Welch, T. A.
Source: Book: Sample CASE Tools and Perspectives in CASE, Chapter 12
Keywords: languages, reuse, tools, methods, executable specifications
Abstract: Rapid prototyping is pursued as a means to develop and validate functional

specifications prior to extensive code development in a large software system.
Four critical components of a functional prototyping capability are: 1) a language
for specifying the functions being examined, 2) a library of reusable software
modules to expedite specification, 3) a set of interactive tools for constructing and
analyzing the specification, and 4) a methodology that guides the analyst in
construction, analysis, and validation of the functional specification. The authors
illustrate how they have realized these four components in Proto, a functional
prototyping capability they have developed. In Proto, one creates a specification of
the functionality to be examined, augments it to be an exe:utable functional
prototype, and validates it via demonstration of system capabilities to potential
end-users.

Identifier: Kordon90
Title: Rapid Ada Prototyping: Principles and Example of a Complex Application
Author: Kordon, F.; Estraillier, P.; Card, R.
Source: Ninth Annual International Phoenix Conference on Computers and

Communications (Cat. No.90CH2799-5); pp. 453-60; Scottsdale, AZ, USA; 21-23
March 1990 Sponsored by: IEEE; Arizona State Univ.; Univ. Arizona Los Alamitos,
CA, USA; IEEE Comput. Soc. Press; 1990; xxii+910 pp. ISBN 0 8186 2030 7

Date: March, 1990
Keywords: applications: telephony, formalism, real-time
Abstract: The automatic prototyping methodology presented is derived from Petri net theory

and has been developed for the PNTAGADA project (Petri Net Translation,
Analysis, and Generation of Ada code). Colored Petri nets allow concise modeling
and verification of distributed systems. Their quantitative analysis provides
invariants which are of particular interest for rapid prototyping of parallel
applications. Management of a phone conversation, or a complex application, is
used as an example to demonstrate the methodology of the Ada code generator.
A description of subscriber behavior and services available at a private automatic
branch exchange (PABX) is presented, along with a qualitative analysis of the
model. A listing abstract of the task associated with a given subscriber is provided.
Execution of the code generated for that model presents the process sequence
involved in management of different subscribers.

44 CMU/SEI-92-TR.13

Identifier: Kozubal90
Title: Run-time Environment and Application Tools for the Ground Test Accelerator

Control System
Author: Kozubal, A.J.; Kerstiens, D.M.; Hill, J.O.; Dalesio, L.R.
Source: Nuclear Instruments & Methods in Physics Research, Section A (Accelerators,

Spectrometers, Detectors and Associated Equipment); vol.A293, no.1-2; 1 Aug.
1990; pp. 288-91 International Conference on Accelerator and Large Experimental
Physics Control Systems; Vancouver, BC, Canada; 30 Oct.-3 Nov. 1989
Sponsored by: TRIUMF; Eur. Phys. Soc.; IEEE

Date: August, 1990
Keywords: applications: control systems, distributed processing
Abstract: The control system for the ground test accelerator (GTA) at Los Alamos provides

capabilities and tools that considerably reduce the amount of programming
required to perform many applications. These qualities have proved to be valuable
on early GTA experiments, where rapid prototyping has paid off. For instance, the
initial controls for a 1 MW RF power supply provided supervisory control with no
application-dependent programming. These same qualities will enable the authors
to automate the start-up, operation and shutdown of the GTA. The run-time
environment makes effective use of the distributed, nonhierarchical control-system
architecture by providing a standard interface to the distributed data base. This
paper gives an overview of the run-time software environment and the tools that
simplify building the run-time data base, the operator interface screens, and
application-specific control operations-sequential and continuous.

Identifier: Kreutzer9Oa
Title: The Modeller's Assistant- A First Step Towards Integration of Knowledge Bases

and Modelling Systems
Author: Kreutzer, W.
Source: Proceedings of the 1990 Summer Computer Simulation Conference; pp. 874-9;

Calgary, Alta., Canada; 16-18 July 1990 Sponsored by: SCS San Diego, CA, USA;
SCS; 1990; xix+1 202 pp. ISBN 0 911801 74 X

Date: July, 1990
Keywords: tools, object-oriented, graphical specification, knowledge-based, simulation
Abstract: The Modeller's Workbench project explores the benefits of applying object

orientation, a methodology of layered design, exploratory programming, graphical
interaction, and knowledge-based software architectures to the domain of
simulation development and execution. One of its facets provides rapid prototyping
of graphically animated queueing scenarios using a 'desktop-style' modelling
environment written in Smalltalk, and the 'Modeller's Assistant' is the name of an
expert system supporting this framework. The simulation method and Al-style
knowledge-based systems are characterized and contrasted, leading to the
conclusion that all expert systems are essentially 'model-based'. The Modeller's
Assistant's architecture and a simple example of the way in which it is intended to
be used from the core of the paper. The author concludes with a discussion of
further research in this area, and some comments on promise and problems of
modelling environments characterized by large numbers of interacting knowledge
sources.

CMU/SEI-92-TR-13 45

Identifier: Kreutzer9Ob
Title: Tiny Tim-a Smalltalk Toolbox for Rapid Prototyping and Animation of Models
Author: Kreutzer, W.
Source: Journal of Object-Oriented Programming; vol.2, no.5; Jan.-Feb. 1990; pp. 27-36
Date: February, 1990
Keywords: tools, graphical specification, simulation
Abstract: The motivation and justification for developing a modeller's workbench are

discussed. The author goes on to describe Tiny Tim, a Smalltalk toolbox for
graphical model design and animation. The advantages of using Smalitalk, with its
object-oriented programming approach, are considered. To demonstrate the
desktop-style modelling interface of Tiny Tim, a Monte Carlo simulation is
conducted. Future developments in simulation systems for desktop development
environments are also discussed.

Identifier: Krista89
Title: A Computer Aided Prototyping Methodology
Author: Krista, R.; Rozman, I.
Source: SIGSOFT Software Engineering Notes; vol.14, no.6; Oct. 1989; pp. 68-72
Date: October, 1989
Keywords: methods, graphical specification, structured analysis
Abstract: A methodology for rapid prototyping is described. Modified data flow diagrams are

used as a graphical tool and the prototyping system description language is
developed. The advantages of the methodology and of the prototyping tool, which
is being build, are as follows: a possibility to describe a system in an
understandable graphical way without global data, a possibility to describe the
system by parallel activities and a possibility to verify the whole system or only a
part of it. A simple and understandable specification of the new system is enabled
by decomposition.

Identifier: Lea90
Title: Rapid Prototyping from Structured Analysis: Executable Specification Approach
Author: Lea, R.J.; Chung, C.G.
Source: Information and Software Technology; vol.32, no.9; Nov. 1990; pp. 589-97
Date: November, 1990
Keywords: executable specifications, graphical specification, structured analysis
Abstract: A rapid prototyping approach is proposed, by which an executable prototype can

be quickly constructed from the result of structured analysis (SA). Thus user
feedback can be obtained earlier in requirement analysis. To accord with SA, two
different specification schemes specify the operation logic of system service
functions and the characteristics of data objects. The prototyping procedure and
the environment for supporting prototype execution are also presented.

46 CMU/SEI-92-TR-13

Identifier: Luckey9O
Title: Rapid Prototyping in Ada in the Rational Environment Emphasizing Software

Reuse
Author: Luckey, P.H.; DuPont, F.G.
Source: Proceedings of the Seventh Washington Ada Symposium; pp. 71-5; McLean, VA,

USA; 25-28 June 1990 Sponsored by: ACM; NASA; Fed. Aviation Adm.; et al New
York, NY, USA; ACM; 1990; 341 pp.

Date: June, 1990
Keywords: Ada, reuse, database
Abstract: A recent experience at IBM/FSD Owego demonstrates how prototyping in Ada is

enhanced via the incorporation of software reuse technologies in an integrated
development environment. In response to a recent new business proposal at
Owego, a user interface for a database application was prototyped. The purpose
of the prototyping exercise was three fold: (1) to aid in the size estimation of a
program to be developed; (2) to confirm the viability of developing the program in
Ada; and (3) to demonstrate the productivity possible when developing with reuse
in mind in the Rational environment. The results of the exercise were that the
purpose was accomplished and an object-oriented prototyping process was
developed.

Identifier: Luqi86
Title: Rapid Prototyping for Large Software System Design
Author: Luqi
Source: Dissertation, University of Minnesota; UMI Dissertation Service
Date: 1986
Keywords: methods, real-time, graphical specification

Identifier: LuqI87
Title: Research Aspects of Rapid Prototyping
Author: Luqi.
Source: Defense Technical Information Center, AD-A179 007; NPS52-87-006
Date: 1987
Keywords: methods, real-time, graphical specification

Identifier: Luqi89
Title: Software Evolution through Rapid Prototyping
Author: Luqi
Source: IEEE Computer
Date: May, 1989
Keywords: tools, methods, process

CMU/SEI-92-TR-13 47

Identifier: Luqi9Oa
Title: Graphical Support for Reducing Information Overload in Rapid Prototyping
Author: Luqi; Barnes, P.D.; Zyda, M.
Source: Proceedings of the Twenty-Third Annual Hawaii International Conference on

System Sciences; pp. 514-22 vol.2; Kailua-Kona, HI, USA; 2-5 Jan. 1990
Sponsored by: IEEE; Univ. Hawaii; PRIISM; ACM Los Alamitos, CA, USA; IEEE
Comput. Soc. Press; 1990; 4 vol. (x+449+xii+575+xii+673+xi+515) pp.

Date: January, 1990
Keywords: graphical specification tools
Abstract: The authors discuss the capability of graphical representations to ease the

prototyping process and reduce the problem of information overload. The
application of information-hiding and multiple views, coupled with ensuring
consistency and automatic programming, can improve user productivity. The
development of a graphical editor for performing hierarchical decomposition of
composite PSDL (prototype system description language) operators for CAPS
(computer aided prototyping system) is also discussed. Research on the graphical
editor, as it relates to PSDL, indicates that a prototype design can be developed
with much greater ease using the graphical editor than with only the syntax-
directed editor. The graphical editor will also enhance prototype modification,
presentation, and documentation.

Identifier: Luqi90b
Title: Graphical Tool for Computer-aided Prototyping
Author: Luqi; Barnes, P.D.; Zyda, M.
Source: Information and Software Technology; vol. 32, no. 3; pp. 199-206
Date: April, 1990
Keywords: tools, graphical specification, real-time
Abstract: The basic problem in rapid prototyping of software is information overload. Graphic

interfaces can help by providing multiple views, where each view is limited to
providing information relevant to a particular task or problem. The graphical editor
under development for the computer aided prototyping system (CAPS) proposes a
dataflow-diagram-based model with multiple views and automatic program
generation to manage the quantity of information necessary to prototype large,
real-time systems.

Identifier: Luq191
Title: CAPS as a Requirements Engineering Tool
Author: Luqi; Steigerwald, R.; Hughes, G.; Naveda, F.; Berzins, V.
Source: Proceedings, Requirements Engineering and Analysis Workshop, SEI
Date: 1991
Keywords: process, tools, executable specifications
Abstract: The process of determining user requirements for software systems is often

plagued with uncertainty, ambiguity, and inconsistency. Rapid prototyping offers
an iterative approach to requirements engineering to alleviate the problems
inherent in the process. CAPS (the Computer Aided Prototyping System) has been
built to help software engineers rapidly construct software prototypes of proposed
software systems. We describe how CAPS as a prototyping tool helps firm up
software requirements through iterative negotiations between customers and
designers via examination of executable prototypes.

48 CMU/SEI-92-TR-13

Identifier: Luql92
Title: Computer-Aided Prototyping for a Command-and-Control System Using CAPS
Author: Luqi
Source: IEEE Software
Date: January, 1992
Keywords: process, tools, executable specifications

Identifier: Madlison89
Title: Rapid Prototyping for Healthcare Applications
Author: Madison, D.E.
Source: Computers in Healthcare; vol.10, no.11; Nov. 1989; pp. 35-6, 38
Date: November, 1989
Keywords: applications: health care, user-interface, knowledge-based, logic programming
Abstract: One way automation can increase efficiency is through rapid prototyping,

particularly of user interfaces. Al and logic programming offer good user interface
tools and a suitable prototyping environment.

Identifier: Matsumoto
Title: Japanese Perspectives in Software Engineering
Author: Matsumoto, Y.; Ohno, Y.
Source: Book
Keywords: survey, collection

CMU/SEI-92-TR-13 49

Identifier: McEnery90
Title: Pantheon: Rapid Prototyping of Natural Language Interfaces to Large Databases
Author: McEnery, A.M.; Oakes, M.P.; Reid, D.
Source: Proceedings of the 12th BCS IRSG Research Colloquium on Information Retrieval;

pp. 135-51; Huddersfield, UK; 3-5 April 1990 Huddersfield, UK; Polytech.
Huddersfield; 1990; 160 pp.

Date: April, 1990
Keywords: database, tools
Abstract: Pantheon is a software package of natural language processing units that have

been developed at Lancaster and Liverpool over the past two years. The aim of
Pantheon has been to provide a natural language processing facility to applications
requiring it by providing specific modules that can be tailored to applications.
Pantheon has been used to convert limited natural language input into legal search
terms for a large pharmaceutical database, RINGDOC, which is published by
Derwent Publications Ltd. In parallel to the development of the natural language
interface for the system, a suite of menu generating programs, Greek, were
developed to carry out a parallel study into the feasibility of menu based
approaches. The Greek package was concerned with generating menus to a
specific application area rapidly, and enabling search intermediaries to encode
their knowledge of a domain in a structured format. In interfacing the packages to
the database a critical evaluation was undertaken between the merits and demerits
of both natural language and menu driven interactions. The paper shows how the
use of the Pantheon and Greek suites of programs facilitated rapid prototyping of
user interfaces. It considers some of the realities of linguistics and interfacing, and
on this basis compares the interfaces in terms of user friendliness and functionality.

Identifier: Mclnroy89
Title: Rapid Prototyping Capabilities in the Expert Requirements Expression and System

Synthesis (EXPRESS) Environment
Author: Mclnroy, J.W.
Source: Proceedings of the SPIE - The International Society for Optical Engineering;

vol.1095, pt.2; 1989; pp. 1020-30 Applications of Artificial Intelligence VII; Orlando,
FL, USA; 28-30 March 1989 Sponsored by: SPIE

Date: March, 1989
Keywords: tools, knowledge-based, executable specifications
Abstract: The Expert Requirements Expression and System Synthesis (EXPRESS)

environment is being developed at the Lockheed Software Technology Center in
Palo Alto, California. EXPRESS provides rapid prototyping and will support full-
scale engineering development (FSED) via integrated, knowledge-based,
executable specifications and related capabilities. That is, EXPRESS provides
automatic programming via two key technologies: (1) executable specifications,
written in very high-level languages (VHLLs) and (2) knowledge base technology.
EXPRESS provides four integrated, very high-level specification languages.
EXPRESS is based on the Refine language and knowledge base management
system. Specifications written in the four specification languages are translated
into Refine language constructs and knowledge base constructs, through which
the specifications communicate. The initially resulting code is not optimized, but it
serves for a rapid prototype. Capabilities both for humans to make design
decisions and for EXPRESS to perform automatic optimization are being explored.
EXPRESS runs on networks of Symbolics workstations, at both system
specification time and at run time.

50 CMU/SEI-92-TR-13

Identifier: MIlovanovic9O
Title: Experience with the Management of Software Projects 1988

Author: Milovanovic, R.; Elzer, P.
Source: Proceedings of the 2nd IFAC/IFIP Workshop Sarajevo, Yugoslavia; 27-29 Sept.

1988 Sponsored by: IFAC; IFIP Oxford, UK; Pergamon; 1990; viii+95 pp. ISBN 0
08 036928 6

Date: 1990
Keywords: survey
Abstract: The following topics were dealt with: software project support tools and

environments; project team management; rapid prototyping; large project
management; software metrics experiences; software quality; safety critical
software; software productivity; and CASE tools.

Identifier: Minkowltz89
Title: Software Architecture Modelling
Author: Minkowitz, C.

Source: Software Engineering for Large Software Systems; pp. 325-44; Bristol, UK; 26-29
Sept. 1989 Barking, UK; Elsevier Applied Science Publishers; 1990; x+373 pp.
ISBN 1 85166 504 8

Date: September, 1989
Keywords: formalism, object-oriented, methods, tools
Abstract: Techniques such as formal methods and object-oriented design allow software

engineers to describe the structure and design of a system at a high level of
abstraction. They free software engineers from concerns about implementation
details so that the engineers can concentrate on the gross organization of the data
structures and algorithms that constitute the system. This kind of software
architecture modelling enables software engineers to explore the design space of
a system and to clear up conceptual errors and misunderstandings about a
system's basic structure. The me too method makes use of three techniques-
formal specification, functional programming and rapid prototyping-to model
software architecture. This paper discusses the use of me too to model the
architecture of part of a large software system that is being developed for the Esprit
IMSE (Integrated Modelling Support Environment) project.

CMU/SEI-92-TR-13 51

Identifier: Nugent88
Title: A Distributed Interactive Scenario Generator for Command, Control And

Communications
Author: Nugent, E.R.; Moody, S.A.
Source: Proceedings of the 1988 Summer Computer Simulation Conference; pp. 536-41;

Seattle, WA, USA; 25-28 July 1988 Sponsored by: SCS San Diego, CA, USA;
SCS; 1988; xxxiv+960 pp. ISBN 0 911801 38 3

Date: July, 1988
Keywords: user-interface, simulation, applications: C31
Abstract: The Interactive Scenario Generator (ISG) is a simulation-based software tool

designed to provide a dynamic environment model for RAPID (RApid Prototyping
of Interface Design). RAPID is a collection of distributed hardware and software
components executing on a local area network. It is used by computer-literate
domain experts to model command, control, communication and intelligence (C31)
workstation interface concepts. The ISG emulates message traffic arriving at the
workstation as defined by the operational model that is employed. It has the
capability to respond to workstation actions that affect the course of the scenario.
This provides a live environment for testing workstation interface concepts.
Scenarios are modeled using a high-level general-purpose simulation language.
Interprocess communication allows the simulation to provide real-time status
messages to the prototype workstation. This paper presents an overview of the
RAPID environment and provides a detailed discussion of the ISG implementation.

Identifier: O'Nel189
Title: Rapid Prototyping of Formal Specifications Using Miranda
Author: O'Neil, G.
Source: Nat. Phys. Lab., Teddington, UK; NPL DITC 150/89; Nov. 1989; 30 pp.
Date: November, 1989
Keywords: formalism, executable specifications, database
Abstract: A discussion is given on the use of the functional programming language Miranda,

in the early stages of the software lifecycle, to produce executable versions of
formal specifications. Two examples are given; the first showing a rapid-
prototyping approach in which the user requirements and the formal specification
for a small database system are developed together by means of a Miranda
prototype and the second illustrating the animation of a VDM specification using
Miranda.

52 CMU/SEI-92-TR-1 3

Identifier: Ortner88
Title: Dictionary-supported Prototyping of Database Applications
Author: Ortner, E.; Rohrle, J.
Source: Experience with the Management of Software Projects 1988. Proceedings of the

2nd IFAC/IFIP Workshop; pp. 21-5; Sarajevo, Yugoslavia; 27-29 Sept. 1988
Sponsored by: IFAC; IFIP Oxford, UK; Pergamon; 1990; viii+95 pp. ISBN 0 08
036928 6

Date: September, 1988
Keywords: database, methods
Abstract: Rapid Prototyping as a software development method should not be implemented

without regard to existing applications. Since prototypes are produced with the aid
of special tools, the question arises, how relevant components of existing
applications can be integrated into prototype development and how the results of
the prototyping process can be integrated into existing applications. One possible
way of achieving this goal is communication between the enterprise data dictionary
for existing applications and the data dictionary of the prototyping environment on
the basis of a common documentation structure. This process of exchanging
metadata between the two dictionary systems must be guaranteed by suitable
tools and consistency enforcement routines.

Identifier: Overmyer9O
Title: The Impact of DoD-Std-2167A on Iterative Design Methodologies: Help or Hinder?
Author: Overmyer, S.P.
Source: SIGSOFT Software Engineering Notes; vol.15, no.5; Oct. 1990; pp. 50-
Date: October, 1990
Keywords: process
Abstract: Many experts in software engineering agree that the emerging iterative

requirements engineering software engineering and software design
methodologies present excellent ways to identify and validate user requirements.
These methodologies often include innovative techniques for elicitation and
validation of user requirements including various forms of human engineering
analysis, rapid prototyping, and knowledge acquisition tasks. The paper addresses
the compatibility of these techniques with DoD-Std-2167A. Assessment is made
regarding the compatibility of the standard with innovative requirements
techniques, and how and where these techniques may be inserted into the life
cycle.

CMU/SEI-92-TR-13 53

Identifier: Powers89
Title: Ensemble: A Graphical User Interface Development System for the Design and

Use of Interactive Toolkits
Author: Powers, M.K.
Source: UIST. Proceedings of the ACM SIGGRAPH Symposium on User Interface

Software and Technology: pp. 168-79; Williamsburg, VA, USA; 13-15 Nov. 1989
Sponsored by: ACM New York, NY, USA; ACM; 1989; vii+179 pp. ISBN 0 89791
335 3

Date: November, 1989
Keywords: user-interface, tools
Abstract: User interface development systems (UIDS), as opposed to user interface

management systems or UI toolkits focus on supporting the design and
implementation of the user interface. The paper describes Ensemble, an
experimental UIDS that begins to explore the electronic creation of interaction
techniques as well as the corresponding design processes. Issues related to the
impact on the components of the development system are discussed. Finally,
problems with the current implementation and future directions are presented.

Identifier: Purtllo91
Title: A Methodology for Prototyping-in-the-Large
Author: Purtilo, J.; Larson, A.; Clark, J.
Source: Proceedings, IEEE 13th International Conference on Software Engineering
Date: 1991
Keywords: methods, languages, tools
Abstract: Just as programming-in-the-small entails fundamentally different activities from

programming-in-the-large, so is prototyping necessarily different when performed
within very large scale applications. This paper defines prototyping as an
experimental activity intended to reduce risk of failure in a software product. In this
context, we explore the effect of scale in prototyping, then describe a methodology
for prototyping a large application. Next we describe a system being developed to
evaluate this methodology, featuring a pair of languages (Promo and Moblog) to
serve both large-scale and component-level prototyping needs. We conclude with
a presentation of how our methodology would be applied to a sample problem, a
fault-prediction subsystem within the Space Station Freedom Project.

54 CMU/SEI-92-TR-13

Identifier: Rlzman90a
Title: Using Data-flow Description Supported by the Rapid Prototyping Tool for

Specifying and Developing of Knowledge-based Systems
Author: Rizman, K.; Rozman, I.
Source: SEKE '90. Proceedings. Software Engineering and Knowledge Engineering. 2nd

International Conference; pp. 58-63; Skokie, IL, USA; 21-23 June 1990 Sponsored
by: Knowledge Syst. Inst.; Inst. Inf. Ind.; S.W.I.F.T.; Univ. Pittsburgh Skokie, IL,
USA; Knowledge Syst. Inst; 1990; iii+277 pp.

Date: June, 1990
Keywords: graphical specification knowledge-based, tools, structured analysis
Abstract: A rapid prototyping tool-RPT for the development of knowledge-based systems is

described. The RPT enables rapid prototyping of knowledge-based systems
associated with the more traditional software development. The fact that describing
knowledge bases directly corresponds to the description by means of data flow
diagrams/data dictionary (DFD!DD) used for program specifications is investigated
and applied. Data flow diagrams give a nonprocedural program description used in
software engineering and a graphical representation of knowledge bases used in
knowledge engineering. The development by the help of the RPT is focussed on
how outpus• will be computed from inputs, instead of what transformations (the
structure of knowledge base's rules) are required. The RPT provides a natural
hierarchical way to describe and document knowledge-based systems. It enables
the execution of knowledge-based prototypes and the testing of the correctness of
their structure and contents.

Identifier: Rlzman9Cb
Title: A Rapid Prototyping Approach to Software Development and our Tool for

Developmrnlt of RPT Prototypes
Author: Rizman, K.; Rozman, I.; Verber, D.
Source: Elektrotehniski Vestnik; vol.57, no.4; Aug.-Oct. 1990; pp. 294-8
Date: October, 1990
Keywords: methods, tools
Abstract: The paper presents research in automating i;,e software development process

carried out at the Laboratory for Informatics at the Faculty of Technical Sciences in
Maribor. The rapid prototyping approach to software development is described
together with the rapid prototyping tool-RPT, which is being designed.

CMU/SEI-92-TR-13 55

Identifier: Royce89
Title: Reliable, Reusable Ada Components for Constructifig Large, Distributed Multi-task

Networks: Network Architecture Services (NAS)

Author: Royce, W.

Source: Proceedings. TRI-Ada '89; pp. 500-16; Pittsburgh, PA, USA; 23-26 Oct. 1989 New
York, NY, USA; ACM; 1989; xxvi+670 pp. ISBN 0 89791 329 9

Date: October 1989
Keywords: Ada, reuse, distributed processing, applications: networks
Abstract: The key concepts of TRW's Reusable Message Based Design Software (Network

Architecture Services-NAS) which has proven to be key to the CCPDS-R project's
progress to date, are presented. The NAS software and supporting tools have
provided the CCPDS-R project team with reliable, powerful building blocks that
have been integrated into extensive demonstrations to validate the critical design
approaches. The CCPDS-R PDR demonstration consisted of 130 Ada tasks
interconnected via 450 different task to task interfaces, executing in a network of 3
VAX nodes. The advantages of NAS usage are twofold: value added operational
software through reuse of mission independent, performance tunable components
which support open architectures; and overall project productivity enhancement as
a result of NAS support for rapid prototyping, runtime instrumentation toolsuite, and
encapsulation of the difficult capabilities required in any distributed real-time
system into a standard set of building blocks with simple applications interfaces.
The author describes the message based design techniques which led to the
development of NAS, the capabilities and components inherent in the NAS product
and the CCPDS-R experience in using NAS in a stringent real time command and
control environment.

56 CMU/SEI-92-TR-13

Identifier: Rzepka86
Title: A Prototyping Tool to Assist in Requirements Engineering
Author: Rzepka, W. E.; Daley, P.C.
Source: Proceedings of the Nineteenth Annual Hawaii International Conference on

Systems Sciences
Date: 1986
Keywords: tools, real-time, reuse, user-interface, methods
Abstract: Rome Air Development Center is currently developing a Requirements

Engineering Testbed whose goal is to support the research and development of
methods and tools for the purpose of applying and evaluating them in the
development of requirements for Air Force embedded computer systems. The
testbed will incorporate several techniques. This paper describes one of its
components-- a prototyping tool to assist in requirements engineering. This tool's
objective is to help requirements engineers answer questions about key facets of
embedded computer systems early in their conceptual development. The
questions concern aspects of the system's operator/analyst interface, subsystem
communications, system data flow, operator work flow, data base management
strategy and system performance. The tool utilizes existing software packages
which can be easily parameterized to quickly fabricate and model relevant aspects
of embedded computer systems. The result is a combination of interface,
functional and performance prototypes which assist the requirements engineer in
improving his understanding of a system's requirements. The prototypes are
"throwaways" in the sense that they are not intended to become part of the
eventual system development, but are retained for reuse in examining the
requirements of other systems. This paper describes the conceptual requirements
and design of the tool, a methodology for using it, and the results, of building a
prototype to demonstrate its feasibility and validate its user interface requirements.

Identifier: SEKE90
Title: SEKE '90. Proceedings. Software Engineering and Knowledge Engineering. 2nd

International Conference
Source: SEKE '90, Skokie, IL, USA; 21-23 June 1990 Sponsored by: Knowledge Syst. Inst.;

Ins*. Inf. Ind.; S.W.I.F.T.; Univ. Pittsburgh Skokie, IL, USA; Knowledge Syst. Inst;
1990; iii+277 pp.

Date: 1990
Keywords: collection
Abstract: The following topics were dealt with: knowledge-based software engineering

methodologies; object-oriented systems; rapid prototyping; Al research;
knowledge-based systems; software engineering of expert systems; logic
programming and knowledge representation; database systems; software design;
and graphics and graph models

CMU/SEI-92-TR-13 57

Identifier: Shlrota89
Title: Specification and Automatic Generation of Intelligent Graphical Interfaces
Author: Shirota, Y.; Kunii, T.L.
Source: Technical report. University of Tokyo. Faculty of Science. Dept. of Information

Science; 89-026
Date: 1989
Keywords: user-interface, methods, tools
Abstract: This paper outlines a new type of visual interface called Enhanced Menu-Based

Software (EMBS), and describes a visual specification and automatic generation
method for such software. In EMBS, data management facilities of spreadsheets,
and CAD facilities are successfully integrated. The EMBS generation system
serves also as a visual interface prototyping system for non-computer specialist,
which helps them overcome the initial learning barrier. The Program-Specification-
by-Examples paradigm and visual programming by icons are key factors that
facilitate the development of the above software. The users are allowed to specify
the constraints and relationships among the cell values and the graphical elements
displayed on the screen (e.g. a point, a line, line inclination), so that the cell values
and graphical elements can be automatically updated as they are changed. As a
case study of actual implementation, the paper describes the EMBS for
determining air conditioning loads. In designing an air conditioning system, an
equipment designer calculates heating and cooling loads and so forth for
comfortable air conditioning. The EMBS can embody such users' expertise and
offers and environment to perform their task more efficiently.

Identifier: Smith9O
Title: ES-Kit: Rapid Prototyping of Scalable High Performance Systems
Author: Smith, K.S.
Source: Advanced Research in VLSI. Proceedings of the Sixth MIT Conference; pp. 60-76;

Cambridge, MA, USA; 2 April 1990 Cambridge, MA, USA; MIT Press; 1990; vi+398
pp. ISBN 0 262 04109 X

Date: April, 1990
Keywords: tools, real-time
Abstract: An open kit of software and hardware building blocks is being developed at MCC,

for application in rapid prototyping of innovative accelerators and other high
performance parallel computing systems. Experimental Systems Kit (ES-Kit)
hardware modules are small boards that can be stacked in very flexible three-
dimensional arrangements, to implement scalable parallel architectures. Seven
first generation module types became operational during 1989, including a 15
MIPS RISC processor, an 8 Mbyte memory, a 40 Mbyte/sec message
communication co-processor, a message router motherboard, and a SCSI host
adapter with integral 200 Mbyte magnetic disk. By late 1990, the ES-Kit project
expects to complete development of at least a dozen different hardware module
types. Architecturally insensitive supporting software modules now provided to
users include a retargetable optimizing C++ compiler, parallel symbolic debugger,
object-oriented OS kernel, librarian, dynamic linker, diagnostics, configurator,
instrumentation data analysis tools, and 3n interactive front-end for Sun3
workstations. High performance experimcints based on ES-Kit are already under
development by collaborating research groups.

58 CMU/SEI-92-TR-13

Identifier: Smyrnlotls90a
Title: Rapid Prototyping: A Practitioner's Viewpoint in Software Development

Author: Smyrniotis, C.

Source: SEKE '90. Proceedings. Software Engineering and Knowledge Engineering. 2nd
International Conference; pp. 64-9; Skokie, IL, USA; 21-23 June 1990 Sponsored
by: Knowledge Syst. Inst.; Inst. Inf. Ind.; S.W.I.F.T.; Univ. Pittsburgh Skokie, IL,
USA; Knowledge Syst. Inst; 1990; iii+277 pp.

Date: June, 1990
Keywords: applications:miscellaneous, knowledge-based, process, methods, survey
Abstract: In spite of all advances in conventional software development tools and

methodologies, software development is still under the constant threat of the
software crisis. The benefits of prototyping to software development have been
known for a long time but only recent advents in artificial intelligence (AI) have
made prototyping feasible for software development and have given rise to 'rapid
prototyping'. The author has applied rapid prototyping to a number of diverse
application areas including resource management, design validation, imagery
exploitation, and requirements analysis. In the process he has found rapid
prototyping to be a powerful approach for conceptualizing, defining, and building
systems, while guarding against software crisis threats. The author examines rapid
prototyping and its benefits to software development and offers guidelines for
successful implementation. Six prototypes which have been built along with
experience gained are discussed.

Identifier: Smyrnlotis90b
Title: Rapid Prototyping: A Cure for Software Crisis
Author: Smyrniotis, C.
Source: Proceedings of the Twenty-Third Annual Hawaii International Conference on

System Sciences; pp. 202-10 vol.2; Kailua-Kona, HI, USA; 2-5 Jan. 1990
Sponsored by: IEEE; Univ. Hawaii; PRIISM; ACM Los Alamitos, CA, USA; IEEE
Comput. Soc. Press; 1990; 4 vol. (x+449+xii+575+xii+673+xi+515) pp.

Date: January, 1990
Keywords: process, knowledge-based, applications:miscellaneous

Abstract: The failure to produce reliable software within a reasonable time and cost and the
predicted shortage of software engineers to meet demands for new software have
given rise to the so-called software crisis. Rapid prototyping was applied to a
number of diverse application areas as the applicability of Al (artificial intelligence)
technology was explored. Prototypes have been developed in resource
management and scheduling, fluid network design and validation, and imagery
exploitation. The authors examine the benefits of rapid prototyping in software
development and discuss prototypes they have built and experience they have
gained.

CMU/SEI-92-TR-13 59

IdentifIer: Son88
Title: A Prototyping Environment for Distributed Database Systems
Author: Son, S.H.; Kim, Y.

Source: Computer science report / University of Virginia. School of Engineering and
Applied Science. Dept. of Computer Science; no. TR-88-20 Computer science
report (University of Virginia. Dept. of Computer Science); no. TR-88-20.

Date: 1988
Keywords: tools, distributed processing, database

Abstract: This paper describes a software prototyping environment for the development and
evaluation of distributed database systems. The prototyping environment is based
on concurrent programming kernel which supports the creation, blocking, and
termination of processes, as well as scheduling and interprocess communication.
The paper proposes the port construct to represent a flexible and modular
message-communication facility. A general blocking construct is used for process
scheduling and message-communication in simulated time. Based on these two
notions, the paper describes the prototyping environment that has been developed
and a series of experimentation performed for performance evaluation of a
multiversion database system. One of the key aspects of the prototyping
environment, can be easily ported to a target hardware system for embedded
testing.

Identifier: Tamanaha90
Title: Rapid Prototyping of Large Command, Control, Communications and Intelligence

(C3 1) Systems
Author: Tamanaha, D.Y.; Bourgeois, P.J.
Source: 1990 IEEE Aerospace Applications Conference Digest (Cat. No.90TH0223-8); pp.

253-63; Vail, CO, USA; 4-9 Feb. 1990 Sponsored by: IEEE New York, NY, USA;
IEEE; 1990; iv+318 pp.

Date: February, 1990

Keywords: real-time, process, methods, structured analysis, applications: C31
Abstract: Rapid prototyping is examined from three points of view: management, rapid

analysis, and design. A rapid prototyping approach is presented for end-user
requirements of large, data-intensive, command and control (C2); command,

control, communications and intelligence (C3 1); and command and control
information systems (CCIS). It is noted that participatory management, highly
motivated personnel, thorough knowledge of the targeted system's operations,
sound prototyping methodology, appropriate tools, and innovative techniques used
by an integrated team allow for severe schedule constraints and provide the edge
for fast implementation. Modified structured methods and further innovations allow
a rapid prototype cycle. Experience gained and examples are cited to illustrate the
ideas and methods used in successful C31 and CCIS prototypes. The authors
discuss the compressed usage of known methods and introduce an innovative
design method for the rapid development of operational threads as an integrating
design technique to quickly assemble knowledge of disparate design views and
disciplines under severe prototyping schedule constraints

60 CMU/SEI-92-TR-13

Identifier: Tenazas9O
Title: DPSOI: An Executable Requirements Specification Language for Information

Processing Systems
Author: Tenazas, R.A.; Concepcion, A.I.; Villafuerte, R.M.

Source: Proceedings of the Twenty-Third Annual Hawaii International Conference on
System Sciences; pp. 47-54 vol.2; Kailua-Kona, HI, USA; 2-5 Jan. 1990
Sponsored by: IEEE; Univ. Hawaii; PRIISM; ACM Los Alamitos, CA, USA; IEEE
Comput. Soc. Press; 1990; 4 vol. (x+449+xii+575+xii+673+xi+515) pp.

Date: January, 1990
Keywords: languages, tools, executable specifications
Abstract: The authors present the Delphi project, which deals with the design and

implementation of a software engineering environment (SEE) to enhance software
productivity, in particular, one that targets information systems (IS) for business
data processing problems. A set of specification languages was designed to
specify the IS in a modular manner. Collectively, these languages are called the
data processing specification outlining language (DPSOL). DPSOL is
customizable, executable, extensible, and translatable and can be used in rapid
prototyping or in automatic translation to a target 3GL/environment. The authors
present the expressive power of DPSOL to specify the IS, and its automated
process of checking referential integrity and computational consistency. The
approach is translational (using templates) instead of transformational. Templating
is a powerful concept in automatic programming, at least for IS. The templates can
be edited and modified to generate customized 3GL source code. Moreover,
documentation can also be automatically generated

Identifier: Thayer9O
Title: System and Software Requirements Engineering
Author: Thayer, R.H.; Dorfman, M.
Source: Book
Date: 1990
Keywords: collection
Notes: This IEEE tutorial includes seminal works on the following topic areas:

requirements engineering for systems and software, system and software
engineering, software requirements analysis and specification, software
requirements methodologies and representation methods, software requirements
engineering tools and techniques, requirements and quality management,
software systems engineering process models, and case studies. Also included is
an extensive glossary and annotated bibliography.

CMU/SEI-92-TR-13 61

Identifier: Trenouth91
Title: A Survey of Exploratory Software Development
Author: Trenouth, J.
Source: Computer Journal; vol.34, no.2; April 1991; pp. 153-63
Date: April, 1991
Keywords: process, methods, survey
Abstract: Exploratory software development is an important style of software development

that has a markedly different flavor from conventional software engineering
methodologies. Originally used in artificial intelligence programming, it has much
in common with both rapid prototyping and software maintenance. The paper
surveys the area, by examining the methodology, technology, and related issues.

Identifier: Tsa189
Title: Knowledge-based System for Rapid Prototyping
Author: Tsai, J.J.P.; Lie, A.
Source: Knowledge-Based Systems; vol.2, no.4; Dec. 1989; pp. 239-48
Date: December, 1989
Keywords: knowledge-based, process, languages
Abstract: Rapid prototyping produces better software products and research on combining

artificial intelligence and software engineering has been conducted for a number of
years. A knowledge-based system for rapid prototyping is presented. In the
system, the Frame-and-Rule Oriented Requirements Language and a
methodology are developed to provide an integrated means of prototyping
throughout the software life cycle. The particular application domain to be modelled
is represented in terms of objects and activities. FRORL, which uses the concept
of frames and production systems, describes the problem domain's objects and
activities in a natural way. With the support of a knowledge base, a software
prototype can be rapidly developed using FRORL. The system has been
implemented using Prolog on a VAX-1 1/780 computer.

62 CMU/SEI-92-TR-13

Identifier: Tsai90a
Title: A Knowledge-based Approach to Rapid Prototyping Systems
Author: Tsai, S.T.; Yang, C.C.; Lien, C.C.
Source: Journal of the Chinese Institute of Engineers; vol.13, no.5; Sept. 1990; pp. 505-18
Date: September, 1990
Keywords: knowledge-based, tools, languages
Abstract: A developing system for supporting the construction of software prototypes should

provide some automatic tools in order that the prototypes can be generated in
shorter time and with lower cost. The authors present an integrated knowledge-
based rapid prototyping system (KBRPS). This system contains a graphic
conceptual model for describing system behaviors; a frame-based software
requirements specification language (FSRSL) to represent the internal forms of the
conceptual model and to further specify detailed activities and constraints; a
database for storing specification files; and a knowledge base for storing rules of
specification analysis and specification transformation. The specification analysis
can check the consistency and completeness of requirements specifications.
Specifications written in FSRSL can also be executed as a software prototype. If
the prototype specifications meet the user's requirements, they can be
automatically transformed into C language programs; otherwise the original
specifications can be modified iteratively until a satisfactory prototype or system is
obtained.

Identifier: Tsai90b
Title: Automated Retrieval of Consistent Documentation for Rapid Prototyping Systems

and Software Maintenance
Author: Tsai, S.T.; Yang, C.C.; Lien, C.C.
Source: Information and Software Technology; vol.32, no.8; Oct. 1990; pp. 521-30
Date: October, 1990
Keywords: documentation, knowledge-based, languages
Abstract: As effective software understanding is dependent on the correctness and

clearness of system documentation, automated support for the documents of
software prototypes and maintenance clearly points to the use of database
technology. A knowledge-based rapid prototyping system (KBRPS) has been
developed that effectively helps the construction of software prototypes. KBRPS
contains a graphic representation of the conceptual model for modelling system
structures, a frame-based software requirements specification language (FSRSL)
for describing the textual form of the conceptual model and specifying detailed
system behaviors, a database for stored specifications files, and a knowledge base
for stored rules of software development. The system emphasizes that, first,
software development or maintenance should comprehend the real system
requirements, then the requirements specifications can be transformed into
program code. The FSRSL specifications stored in the database can be retrieved
by a query system for generating formal documents. These documents, which are
helpful in understanding the developed system for prototype modification and
software maintenance, include the conceptual model, FSRSL specifications, the
abstract relations of hierarchical specifications, and even answers to particular
questions.

CMU/SEI-92-TR-13 63

Identifier: Tucherman90
Title: The CHRIS Consultant- A Tool for Database Design and Rapid Prototyping

Author: Tucherman, L.; Casanova, M.A.; Furtado, A.L.
Source: Information Systems; vol.15, no.2; 1990; pp. 187-95
Date: 1990
Keywords: tools, database, knowledge-based
Abstract: CHRIS is an expert software tool to help in the design and rapid prototyping of

information systems containing a database component. CHRIS involves an
extended entity-relationship information model, the relational data model and a
database management system. A prototype version of the tool, written in Prolog
extended with a query-the-user facility, is fully operational. The prototype includes
an interface for experimental use which enforces the integrity constraints of the
application.

Identifier: Turnhelm89
Title: Rapid Prototyping of the Operational Definition of Command and Control Consoles
Author: Tumheim, A.; Lachaover, I.
Source: Proceedings. Fourth Israel Conference on Computer Systems and Software

Engineering (Cat. No.89CH2660-9); pp. 133-8; Herzlia, Israel; 5-6 June 1989
Sponsored by: IEEE Washington, DC, USA; IEEE Comput. Soc. Press; 1989;
iii+192 pp. ISBN 0 8186 1972 4

Date: June, 1989
Keywords: tools, knowledge-based, user-interface
Abstract: A description is given of a software package that defines the operational modes of

a command and control console using an interactively editable simulation of this
operation. The package runs on a TI-Explorer Lisp machine and uses rapid-
prototyping techniques and Al tools and methodology. The future prospects of
similar programs as lifetime support for small command and control systems are
predicted, showing possible support in the areas of sales, definition, coding,
integration, and maintenance.

64 CMU/SEI-92-TR-13

Identifier: Tyszberowicz89
Title: OBSERV: A Prototyping Language and Environment Combining Object Oriented

Approach, State Machines and Logic Programming
Author: Tyszberowicz, S.; Yehudai, A
Source: Computer science technical report series / University of Maryland; CS-TR-2304

Computer science technical report series (University of Maryland at College Park);
CS-TR-2304.

Date: August, 1989
Keywords: languages, methods, formalism

Identifier: Wallentinson89
Title: Rapid Prototyping in Command and Control System Development
Author: Wallentinson, C.
Source: Conference Proceedings MILCOMP 89, Military Computers Systems and

Software; pp. 70-1; London, UK; 26-28 Sept. 1989 Tunbridge Wells, UK;
Microwave Exhibitions & Publishers; 1989; 425+22 pp. ISBN 0 946821 86 0

Date: September, 1989
Keywords: user-interface, tools
Abstract: Rapid prototyping is a method that starts with the man-machine interface and

builds a prototype system that from the operator's point of view acts like a real
system. This paper describes a rapid prototyping system based on commercial PC
computers and high resolution color monitors. The system is designed to fulfil the
demands of small to medium scale command and control systems

Identifier: Warkowskl9O

Title: IC3: A Neural ASIC for Real-time Prototyping
Author: Warkowski, F.; Spaanenburg, L.; Nijhuis, J.A.G.
Source: Parallel Processing in Neural Systems and Computers; pp. 319-22; Dusseldorf,

West Germany; 19-21 March 1990 Sponsored by: Robert Bosch; IBM; Philips;
Siemens; et al Amsterdam, Netherlands; North-Holland; 1990; xv+626 pp. ISBN 0
444 88390 8

Date: March, 1990
Keywords: applications: neural network, simulation
Abstract: The architecture and application of a master-slice concept for rapid prototyping of

neural networks is presented. After simulation with the NNSIM neural network
simulation environment a netlist specifies the interconnection on a master of neural
building blocks, which can be personalized to various architectures with
metallization; while maintaining a range of options for mask-and software
programmability.

CMU/SEI-92-TR-1 3 65

Identifier: Wellner89
Title: Statemaster: A UIMS Based on Statecharts for Prototyping and Target

Implementation
Author: Wellner, P.D.
Source: SIGCHI Bulletin; spec. issue.; May 1989; pp. 177-82 Conference on Human

Factors in Computing Systems (CHI 89); Austin, TX, USA; 30 Aphl-4 May 1989
Sponsored by: IEEE; ACM

Date: May, 1989
Keywords: user-interface, tools
Abstract: Most user interface management systems are state based and some use state

transition diagrams for dialog specification. Although these diagrams have
significant advantages, they suffer from drawbacks that make them impractical for
the specification of complex user interfaces. Statecharts are a hierarchical
extension of state transition diagrams and are well suited for specification of
complex user interface dialogs. Statemaster is a UIMS implemented in C++ that
uses statecharts for dialog specification. It has been successfully used both for
rapid prototyping and target implementation of user interfaces. The paper
describes the use of statecharts for dialog specification and the implementation of
Statemaster.

Identifier: Whatmore9l
Title: Simulation of Modem Electronic Combat Scenarios by Means of a Flexible Generic

Computer Model
Author: Whatmore, L.C.; Smith, A.M.
Source: lEE Colloqium on 'Electronic Warfare Systems' (Digest No.009); pp. 10/1-5;

London, UK; 14 Jan. 1991 Sponsored by: lEE London, UK; lEE; 1991; 54 pp.
Date: January, 1991
Keywords: simulation, real-time, parameterized models, applications: electronic warfare
Abstract: The effectiveness of EW equipment and tactics is becoming more difficult to predict

as the level of complexity of ECCM and ECM increases. Simulation, when
validated, is an important tool in the evaluation of EW equipment and tactics. It
complements traditional methods such as laboratory measurements or trials,
providing a cost effective, secure and repeatable means of extrapolating into
dense scenarios, performing sensitivity analysis, rapid prototyping of proposed
enhancements, quantitative comparisons of alternative designs, and performance
evaluation against current or postulated threats. To be most cost-effective, a tool
should be flexible. A generic simulation model, with parametric functional models
of equipment, provides maximum flexibility if it is based on a framework which
imposes no unnecessary limitations. The requirements for such a framework have
been given and an implementation of a pulse-by-pulse functional model by
Software Sciences outlined. Sample applications of this model and others in the
family have been given to demonstrate the simulation of modern electronic combat
scenarios by means of a flexible generic computer model.

66 CMU/SEI-92-TR-13

Identifier: Wing9l
Title: Unintrusive Ways to Integrate Formal Specifications in Practice
Author: Wing, J.M.; Moormann Zaremski, A.
Source: Research paper. Carnegie Mellon University, Computer Science Dept.; CMU-CS-

91-113
Date: 1991
Keywords: formalism, methods, structured analysis
Abstract: Formal methods can be neatly woven in with less formal, but more widely-used,

industrial-strength methods. We show how to integrate the Larch two-tiered
specification method [GHW85a] with two used in the waterfall model of software
development: Structured Analysis [Ros77] and Structure Charts [YC791. We use
Larch traits to define data elements in a data dictionary and the functionality of
basic activities in Structured Analysis data-flow diagrams; Larch interfaces and
traits to define the behavior of modules in Structure Charts. We also show how to
integrate loosely formal specification in a prototyping model by discussing ways of
refining Larch specifications as code evolves. To provide some realism to our
ideas, we draw our examples from a non-trivial Larch specification of the graphical
editor for the Miro visual languages [HMT+90]. The companion technical report,
CMU-CS-91 -111, contains the entire specification.

Identifier: Zhao9l
Title: An Environment for Rapid Prototyping of Interactive Systems
Author: Zhao, J.; Liu, S.
Source: Journal of Computer Science and Technology (English Language Edition); vol.6,

no.2; April 1991; pp. 135-44
Date: April, 1991
Keywords: user-interface, tools, methods, languages
Abstract: The paper shows an environment which supports the development of multi-thread

dialogue interactive systems. The environment includes several tools and run-time
support programs for the design and implementation of the user interface of an
interactive system. First, methods of user interface specification with elementary
nets are discussed. Then, the syntax of a user interface specification language
based on elementary nets and the pre-compiler for the language as well as a
graphic editor for elementary nets construction are described. Finally, an example
is given to illustrate the design process of a user interface.

CMU/SEI-92-TR-13 67

Identifier: Zompl90
Title: Rapid Prototyping through Graphical Operational Specification and Automated

Code Generation

Author: Zompi, R.; Russi, V.
Source: COMPEURO '90. Proceedings of the 1990 IEEE International Conference on

Computer Systems and Software Engineering (Cat. No.90CH2867-0); pp. 509-17;
Tel-Aviv, Israel; 8-10 May 1990 Sponsored by: IEEE; Inf. Processing Assoc. Israel
Los Alamitos, CA, USA; IEEE Comput. Soc. Press; 1990; xiii+574 pp. ISBN 0 8186
2041 2

Date: May, 1990
Keywords: graphical specification, tools, object-oriented, distributed processing

Abstract: The application of PROTOB, an object-oriented CASE system based on high-level
Petri nets, to rapid prototyping of distributed systems is presented. PROTOB
consists of several tools supporting specification, modeling and prototyping
activities within the framework of the operational software life-cycle paradigm. As
its major application area it addresses distributed systems, such as real-time
embedded systems, communication protocols and manufacturing control systems.
The PROTOB methodology and its support environment can be used in software
development of distributed discrete-event dynamic systems at three different
levels. The functionality of the system can be formally defined and also analyzed
quantitatively by building a PROT net based model, which is actually a simulation
model. The model becomes more detailed and the timing of the transitions is real,
being managed by the host operating system. The PROTOB objects emulating the
physical environment are replaced by a suitable interface which has the task of
transforming signals coming from the plant into tokens to be introduced into the
PROTOB model and, likewise, of converting tokens coming from the PROTOB
model into appropriate commands issued to the plant.

68 CMU/SEI-92-TR-13

Index by Author
Alpuente, M. 37 Ebert, J. 36
Andrulis, M. W. 24 Edmonson, D. 34
Aoyama, M. 30 Ekambareshwar, S. 35

Elzer, P. 51
Bagrodia, R.L. 25 Espinosa, A. 35
Bailes, P. A. 25 Estraillier, P. 44
Bajwa, L. Y. 25
Barbacci, M. R. 26 Ferrari, G.L. 33
Barnes, P.D. 48 Fisher, G.E. 35
Bartschi, M. 27 Forger, A.F. 38
Baumann, R. 36 Furtado, A.L. 64
Beradi, L. 27
Berzins, V. 48 Ganti, M. 36
Biggie, A.V.L. 28 Garcia-Fornes, A. 35
Birch, M. 28 Gerber, S. 36
Black, H. 29 Gimnich, R. 36
Bourgeois, P.J. 60 Giordano, F. 37
Brooks, F.P. Jr. 29 Gomaa, H. 37
Buchanan, W.E. 28 Gonzalez de Rio, A. 37

Card, R. 44 Goyal, P. 36
Casanova, M.A. 64 Gregorio, D.D. 38

Cassamayor, J.C. 37 Guinther, T.M. 30

Chang, C.K. 30 Gutierrez, 0. 38

Chau, P. 41 Halpem-Hamu, C.D. 32
Chung, C.G. 46 Harris, J.R. 39
Clark, J. 54 Hartson, H.R. 39
Cohen, D.M. 30 Hawryszkiewycz, I.T. 40
Concepcion, A.I. 61 Hazan, P.L. 28
Cooling, J. E. 31, 42 Heisler, K.G. 41
Cooper, S. 31 Hekmatpour, A. 41
Cordy, J.R. 32 Henskes, D.T. 41, 42
Crespo, A. 35 Hill, J.0. 45

Hughes, G. 48
Daleysi, L.R. 57 Hughes, T.S. 31, 42

de la Puente, J.A. 35
Degl'lnnocenti, M. 33 Jan, A.K. 43
Demeure, I.M. 33 Johnson, P. 34
DeSoi, J.F. 32 Jones, M.L.R. 43
Diaz-Gonzalez, J.P. 34 Kossiakoff, A. 28Dorfman, M. 61KosaoA.2
Downs, T. 35 Kozubal, A.J. 45DuPont, F.G. 47 Kreutzer, W. 45, 46Krista, R. 46

CMU/SEI-92-TR-1 3 69

Halpem-Hamu, C.D. 32 Nassif, R. 36
Harris, J.R. 39 Naveda, F. 48
Hartson, H.R. 39 Ness, L.A. 30
Hawryszkiewycz, I.T. 40 Nijhuis, J.A.G. 65
Hazan, P.L. 28 Nugent, E.R. 52
Heisler, K.G. 41 Nutt, G.J. 33
Hekmatpour, A. 41
Henskes, D.T. 41, 42 O'Neil, G. 52
Hill, J.O. 45 Oakes, M.P. 50
Hughes, G. 48 Ohno, Y. 49
Hughes, T.S. 31, 42 Ortner, E. 53

Overmyer, S.P. 53
Jain, A.K. 43
Johnson, P. 34 Pacini, G. 33
Jones, M.L.R. 43 Parker, D.W. 39

Pastor, M.A. 37
Kossiakoff, A. 28 Podar, S. 36
Kozubal, A.J. 45 Powers, M.K. 54
Kreutzer, W. 45, 46 Promislow, E. 32
Krista, R. 46 Purtilo, J. 54
Kunii, T.L. 58

Ramirez, M.J. 37
Lachaover, I. 64 Ramos, I. 37
Larson, A. 54 Reid, D. 50
Lea, R.J. 46 Rieche, B. 27
Leciston, D. 29 Rizman, K. 55
Lichota, R. W. 26 Rohrle, J. 53
Lie, A. 62 Royce, W. 56
Lien, C.C. 63 Rozman, I. 46, 55
Uu, S. 67 Russi, V. 68
Lively, ,,.M. 32 Rzepka, W.E. 57
Luckey, P.H. 47
Luqi 47,48 Salzman, E. J. 25

Scoff, D.B.H. 37
Madison, D.E. 49 Sheepard, S.. 32
Matsumoto, Y 49 Shirota, Y. 38
McArdle, B.R. 38 Smith, A.M. 66
,McCollum, L. 37 Smith, E.C. 39
McEnery, A.M. 50 Smith, K.S. 58
McGhee, R. 29 Smyrniotis, C. 59
Mclnroy, J.W. 50 Son, S.H. 60
Milovanovic, R. 51 Spaanenburg, L. 65
Minkowitz, C. 51 Steigerwald, R. 48
Moody, S.A. 52
Moormann Zaremski, A. 67

70 CMU/SEI-92-TR-13

Tamanaha, D.Y. 60
Tenazas, R.A. 61
Thayer, R.H. 61
Tink, P.D. 43
Tolmie, J.C. 41, 42
Trenouth, J. 62
Tresch, M. 27
Tsai, J.J.P. 62
Tsai, S.T. 63
Tsai, W.T. 41
Tucherman, L. 64
Turini, F. 33
Turnheim, A. 64
Tyszberowicz, S. 65

Urban, J.E. 34

Verber, D. 55
Villafuerte, R.M. 61

Wallentinson, C. 65
Warkowski, F. 65
Welch, T.A. 44
Wellner, P.D. 66
Whatmore, L.C. 66
Whiteley, K. 28
Wing, J.M. 67
Wong, B. 37

Yang, C.C. 63
Yehudai, A 65
Young-Fu Chang 30

Zhao, J 67
Zimmerlich, J. 29
Zompi, R. 68
Zyda, M. 48

CMU/SEI-92-TR-13 71

72 CMU/SEI-92-TR-1 3

Index by Keyword
Ada 24, 25, 35, 47, 56 58, 59, 60, 62, 65, 67
applications object-oriented 24, 27, 31, 34, 36, 41, 45, 52, 68

avionics 27
C2 37031 38, 52, 60 parameterized models 66
communications 30 process 24, 25, 29, 37, 43, 48, 49, 54, 59, 60,

commniction 3062
control systems 45
education 28
electronic warfare 66 real-time 25, 26, 28, 29, 30, 31I, 33, 34, 35, 37,
environment 25 38, 42, 44, 48, 49, 57, 58, 60, 66
health care 39, 49 reuse 30, 36, 44, 47, 56, 57
industrial 31
miscellaneous 59 simulation 30, 33, 34, 38, 41,42, 45, 46, 52, 65,
networks 43, 56 66
neural network 65 structured analysis 26, 42, 46, 55, 60, 67
process control 36, 37 survey 24, 29, 31, 36, 39, 43, 50, 51, 59, 62
programming languages 32
telephony 30, 44 tools 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 41,

42,43,44,45,46,48,49,50,51,52,54,
collection 50, 57, 61 55, 56,57,58,60,61, 63,64, 65,66, 67,
conceptual modeling 38, 40 68

database 27, 40, 47, 50, 53, 60, 64 user-interface 29, 31, 32, 38, 39, 40, 41, 42, 49,
distributed processing 25, 26, 30, 33, 45, 52, 54, 57, 58, 64, 65, 66, 67

56, 60,68
documentation 63

executable specifications 26, 30, 33, 38,
44, 46,49,51,53,61

formalism 25, 33, 34, 35, 37, 44, 52, 53, 65,
67

graphical specification 27, 32, 33, 41, 45,
46, 48, 49, 55, 68

knowledge-based 27,28,32,36,41,45,49,
51, 55, 59, 62, 63, 64

languages 30, 34, 35, 44, 55,61, 62, 63,65,
67

logic programming 33, 49

methods 24, 25, 26, 27, 29, 32, 34, 39, 40,

42,43,44, 46,48,52,53, 55,56, 57,

CMU/SEI-92-TR-13 73

74 CMU/SEI-92-TR-1 3

Index by Source

Book Simulation 30
AGARD Lecture Series 27 Systems International 31
Japanese Perspectives in Software

Engineering 50Sample CASE Tools and Perspectives Proceedings
in CASE 44 12th BCS IRSG Research Colloquium on
Sim n CAE te Information Retrieval 50Simulation and the User Interface 34 1988 Summer Computer Simulation

Software Engineering for Large Conference 52
Software Systems 52 1990 IEEE Aerospace Applications

System and Software Requirements Conference Digest 60
Engineering 61 1990 IEEE International Conference on

Computer Systems and Software
Periodical Engineering 35, 68

Case Outlook 90 29 1990 Summer Computer Simulation
Computer Journal 62 Conference 38, 45
Computer Languages 32, 34 2nd IFAC/IFIP Workshop 43, 51, 53
Computer Science And Technology 36 2nd International Conference 59
Computers in Healthcare 49 ACM SIGGRAPH Symposium on User
Der Elektroniker 36 Interface Software and Technology
Electrical Communication 42 54
Elektrotehniski Vestnik 56 Advanced Research in VLSI 58
lEE Colloqium on 'Electronic Warfare Australian Computer Conference - 1987 40

Systems' 66 COMPCON Spring '90 36
lEE Colloquium on 'Software Tools for COMPEURO '90 35, 68

Interface Design' 43 Conference on Computing Systems and
lEE Colloquium on 'Specification of Information Technology 1989 35

Complex Systems' 42 Experience with the Management of
IEEE Computer 29,48 Software Projects 1988 43, 53
IEEE Transactions on Software First International Conference on Systems

Engineering 33 Integration 30
Information and Software Technology Fourth Israel Conference on Computer

46, 49, 63 Systems and Software Engineering
Information Systems 64 64
Interacting with Computers 40 GLOBECOM '89 43
Johns Hopkins APL Technical Digest lASTED International Symposium 38

28 lEE Colloquium on 'Specification of
Journal of Computer Science and Complex Systems' 42

Technology 67 IEEE 13th International Conference on
Journal of Object-Oriented Software Engineering 55

Programming 46 IEEE 1989 NAECON 25
Journal of the Chinese Institute of IEEE Global Telecommunications

Engineers 63 Conference and Exhibition.
Knowledge-Based Systems 62 Communications Technology for
SIGCHI Bulletin 32, 39, 66 the 1990s and Beyond 43
Signal 24, 37 INTERACT '87 37, 39, 41
SIGSOFT Software Engineering Notes International Conference on Accelerator

46, 54 and Large Experimental Physics
Control Systems 45

CMU/SEI-92-TR-13 75

MILCOMP 89 65 Technology 41
Military Computers Systems and National Physics Laboratory 53

Software 65 Naval Postgraduate School 48
Nineteenth Annual Hawaii International Queensland, University of, Department of

Conference on Systems Computer Science 25
Sciences 57 Tokyo, University of, Dept. of Information

Ninth Annual International Phoenix Science 58
Conference on Computers and University of Minnesota (dissertation) 48
Communications 44 Virginia, University of, Dept. of Computer

Parallel Processing in Neural Systems Science 60
and Computers 65

Second IFIP Conference 37, 39, 41
Second International Conference on

Software Engineering for Real
Time Systems 28, 31

SEI Requirements Engineering and
Analysis Workshop 49

SEKE '90 55, 57, 59
Seventh Washington Ada Symposium

47
Sixth MIT Conference 58
Software Engineering and Knowledge

Engineering 59
Software Engineering and Knowledge

Engineering. 2nd International
Conference 55, 57

SPIE - The International Society for
Optical Engineering 41, 51

Systems Integration '90 25, 30
Technology of Object-Oriented

Languages and Systems 27
Thirty-Fifth IEEE Computer Society

International Conference 36
TOOLS '89 27
TRI-Ada '89 56
Twenty-Third Annual Hawaii

International Conference on
System Sciences 48, 59, 61

Technical Report
Carnegie Mellon University, Computer

Science Dept. 67
CECOM-TR-90-2 29
Colorado, Boulder, University of, Dept.

of Computer Science 33
IEEE CH1627-9/81/0000/0333 37
Maryland, University of 65
Minnesota, University of, Institute of

76 CMUISEI-92-TR-13

Index by Title

Acquisition Model for the Capture and Management of Requirements for
Battlefield Software Systems 29

Al Techniques and Object-oriented Technology for VLSI Design-space Representation,
Optimization and Management 41

Application Software Prototyping and Fourth Generation Languages 36
Automated Retrieval of Consistent Documentation for Rapid Prototyping Systems and

Software Maintenance 63

Between Man and Machine 31

CAPS as a Requirements Engineering Tool 49
CHRIS Consultant- A Tool for Database Design and Rapid Prototyping, The 64
Computer Aided Prototyping Methodology, A 46
Constructive Formal Specifications for Rapid Prototyping 37

DETAIL: An Approach to Task Analysis 34
Dictionary-supported Prototyping of Database Applications 53
Display Rapid Prototyping and Simulation System, A 38
Distributed Interactive Scenario Generator for Command, Control And Communications, A 52
DPSOI: An Executable Requirements Specification Language for

Information Processing Systems 61
Durra: An Integrated Approach to Software Specification, Modeling and Rapid Prototyping 26

Emergence of Rapid Prototyping as a Real-time Software Development Tool, The 31, 42
Ensemble: A Graphical User Interface Development System for the Design and

Use of Interactive Toolkits 54
Environment for Rapid Prototyping of Interactive Systems, An 67
ES-Kit: Rapid Prototyping of Scalable High Performance Systems 58
Evaluation of Rapid Prototyping Methodology in a Human Interface 39
Experience with the Management of Software Projects 1988 51

Functional Prototyping with Proto 44

Graphical Specification of User Interfaces with Behavior Abstraction 32
Graphical Support for Reducing Information Overload in Rapid Prototyping 48
Graphical Tool for Computer-aided Prototyping 49

HyperCard- The Legend: Summary 43

IC3: A Neural ASIC for Real-time Prototyping 65
lEE Colloquium on 'Specification of Complex Systems' (Digest No.145) 42
Impact of DoD-Std-2167A on Iterative Design Methodologies: Help or Hinder?, The 54
Information Systems Design and Prototyping Using an Object-oriented

CMU/SEI-92-TR-13 77

Software Engineering Environment 27
Integrated Approach to the Design and Performance Evaluation of Distributed Systems, An 25
Integrating the Role of Rapid Prototyping and Requirements Specification Using the

Object-oriented Paradigm 41

Japanese Perspectives in Software Engineering 50

Knowledge Base Approach to the Specification Of Real Time System Requirements, A 28
Knowledge-based Approach to Rapid Prototyping Systems, A 63
Knowledge-based Software in a Realtime Alarm-handling System 36
Knowledge-based System for Rapid Prototyping 62

Language Aspects of ENVISAGER: an Object-oriented Environment for the
Specification of Real-time Systems 34

Lessons Learned from the Use of a Spiral Model for an Ada Development Effort
the Software Life Cycle Support Environment (SLCSE) 25

Methodical and Management Experiences from an Extensive Software Project 43
Methodology for Prototyping-in-the-Large, A 55
Modeller's Assistant- A First Step Towards Integration of Knowledge Bases and

Modelling Systems, The 45
Multimedia Rapid Prototyping Tool for the Development Of Computer-assisted Instruction, A

28

No Silver Bullet: Essence and Accidents of Software Engineering 29

Object-oriented Application Development Environment, An 36
Object-oriented Development Aids Prototyping and Delivery 24
OBSERV: A Prototyping Language and Environment Combining Object Oriented Approach,

State Machines and Logic Programming 65

Pantheon: Rapid Prototyping of Natural Language Interfaces to Large Databases 50
Protolog: A Conceptual Schema Facility for Automated Prototype Generation 38
Prototyping and Simulating Parallel, Distributed Computations with VISA 33
Prototyping and Visualisation in Interface Design 42
Prototyping as a Tool in the Specification of User Requirements 37
Prototyping Environment for Distributed Database Systems, A 60
Prototyping Techniques for Different Problem Contexts 39
Prototyping Tool to Assist in Requirements Engineering, A 57
Prototyping with the Entity-relationship Model 40

QUISAP: An Environment for Rapid Prototyping of Real-time Systems 35

Rapid Ada Prototyping: Principles and Example of a Complex Application 44
Rapid Development Speeds Path for Command System 37

78 CMU/SEI-92-TR-13

Rapid Prototyping Approach to Software Development and our Tool for
Development of RPT Prototypes, A 56

Rapid prototyping Capabilities in the Expert Requirements Expression and System
Synthesis (EXPRESS) Environment 51

Rapid Prototyping for Healthcare Applications 49
Rapid Prototyping for Large Software System Design 48
Rapid Prototyping from Structured Analysis: Executable Specification Approach 46
Rapid Prototyping in Ada in the Rational Environment Emphasizing Software Reuse 47
Rapid Prototyping in Command and Control System Development 65
Rapid Prototyping in Human-Computer Interface Development 40
Rapid Prototyping of Communications Protocols Using a New Parallel Language 30
Rapid Prototyping of Complex Avionics Systems 27
Rapid Prototyping of Formal Specifications Using Miranda 53
Rapid Prototyping of Large Command, Control, Communications and

Intelligence (C31) Systems 60
Rapid Prototyping of Man-machine Interfaces for Telecommunications Equipment Using

Interactive Animated Computer Graphics 41
Rapid Prototyping of Software Systems Using Prolog 35
Rapid Prototyping of the Operational Definition of Command and Control Consoles 64
Rapid Prototyping through Graphical Operational Specification and

Automated Code Generation 68
Rapid Prototyping: A Cure for Software Crisis 59
Rapid Prototyping: A Practitioner's Viewpoint in Software Developmen 59
Real-time Distributed Simulation of Pbx with Software Reuse, A 30
Reliable, Reusable Ada Components for Constructing Large, Distributed Multi-task Networks:

Network Architecture Services (NAS) 56
Research Aspects of Rapid Prototyping 48
RSF: a Formalism for Executable Requirement Specifications 33
Run-time Environment and Application Tools for the Ground Test Accelerator Control System

45

SEKE '90. Proceedings. Software Engineering and Knowledge Engineering. 2nd International
Conference 57

Simulation of Modem Electronic Combat Scenarios by Means of a Flexible Generic Computer
Model 66

Software Architecture Modelling 52
Software Development by Functional Language Prototyping 25
Software Evolution through Rapid Prototyping 48
Software Quality via Rapid Prototyping 43
Specification and Automatic Generation of Intelligent Graphical Interfaces 58
Statemaster: A UIMS Based on Statecharts for Prototyping and Target Implementation 66
Survey of Exploratory Software Development, A 62
Survey of Rapid Prototyping Tools 29
System and Software Requirements Engineering 61
Tiny Tim-a Smalltalk Toolbox for Rapid Prototyping and Animation of Models 46
TXL: A Rapid Prototyping System for Programming Language Dialects 32

CMU/SEI-92-TR-13 79

Unintrusive Ways to Integrate Formal Specifications in Practice 67
Using Data-flow Description Supported by the Rapid Prototyping Tool for

Specifying and Developing of Knowledge-based Systems 55

80 CMU/SEI-92-TR-13

Index by Year

1981
Prototyping as a Tool in the Specification of User Requirements 37

1986
Prototyping Tool to Assist in Requirements Engineering, A 57
Rapid Prototyping for Large Software System Design 48

1987
Application Software Prototyping and Fourth Generation Languages 36
Constructive Formal Specifications for Rapid Prototyping 37
Evaluation of Rapid Prototyping Methodology in a Human Interface 39
No Silver Bullet: Essence and Accidents of Software Engineering 29
Prototyping with the Entity-relationship Model 40
Rapid Prototyping of Man-machine Interfaces for Telecommunications Equipment Using

Interactive Animated Computer Graphics 41
Research Aspects of Rapid Prototyping 48
Software Development by Functional Language Prototyping 25

1988
Dictionary-supported Prototyping of Database Applications 53
Distributed Interactive Scenario Generator for Command, Control And Communications, A

52
Experience with the Management of Software Projects 1988 51
Integrating the Role of Rapid Prototyping and Requirements Specification Using the

Object-oriented Paradigm 41
Methodical and Management Experiences from an Extensive Software Project 43
Prototyping Environment for Distributed Database Systems, A 60

1989
Applications and Automatic Generation of Intelligent Graphical Interfaces 58
Computer Aided Prototyping Methodology, A 46
Emergence of Rapid Prototyping as a Real-time Software Development Tool, The 31, 42
Ensemble: A Graphical User Interface Development System for the Design and

Use of Interactive Toolkits 54
Graphical Specification of User Interfaces with Behavior Abstraction 32
lEE Colloquium on 'Specification of Complex Systems' (Digest No.145) 42
Information Systems Design and Prototyping Using an Object-oriented

Software Engineering Environment 27
Knowledge Base Approach to the Specification Of Real Time System Requirements, A 28
Knowledge-based System for Rapid Prototyping 62
Lessons Learned from the Use of a Spiral Model for an Ada Development Effort

the Software Life Cycle Support Environment (SLCSE) 25
Multimedia Rapid Prototyping Tool for the Development Of Computer-assisted

Instruction, A 28
OBSERV: A Prototyping Language and Environment Combining Object Oriented

Approach, State Machines and Logic Programming 65
Protolog: A Conceptual Schema Facility for Automated Prototype Generation 38
Prototyping and Simulating Parallel, Distributed Computations with VISA 33
Prototyping Techniques for Different Problem Contexts 39
Rapid Prototyping Capabilities in the Expert Requirements Expression and System

Synthesis (EXPRESS) Environment 51

CMU/SEI-92-TR-13 81

Rapid Prototyping for Healthcare Applications 49
Rapid Prototyping from Structured Analysis: Executable Specification Approach 46
Rapid Prototyping in Command and Control System Development 65
Rapid Prototyping of Complex Avionics Systems 27
Rapid Prototyping of Formal Specifications Using Miranda 53
Rapid Prototyping of Software Systems Using Prolog 35
Rapid Prototyping of the Operational Definition of Command and Control Consoles 64
Reliable, Reusable Ada Components for Constructing Large, Distributed Multi-task

Networks: Network Architecture Services (NAS) 56
Software Architecture Modelling 52
Software Evolution through Rapid Prototyping 48
Software Quality via Rapid Prototyping 43
Statemaster: A UIMS Based on Statecharts for Prototyping and Target Implementation 66

1990
Al Techniques and Object-oriented Technology for VLSI Design-space Representation,

Optimization and Management 41
Between Man and Machine 31
C31: A Neural ASIC for Real-time Prototyping 65
CHRIS Consultant- A Tool for Database Design and Rapid Prototyping, The 64
DETAIL: An Approach to Task Analysis 34
Display Rapid Prototyping and Simulation System, A 38
DPSOI: An Executable Requirements Specification Language for

Information Processing Systems 61
ES-Kit: Rapid Prototyping of Scalable High Performance Systems 58
Graphical Support for Reducing Information Overload in Rapid Prototyping 48
Graphical Tool for Computer-aided Prototyping 49
HyperCard- The Legend: Summary 43
Impact of DoD-Std-2167A on Iterative Design Methodologies: Help or Hinder?, The 54
Integrated Approach to the Design and Performance Evaluation of Distributed Systems,

An 25
Knowledge-based Approach to Rapid Prototyping Systems, A 63
Knowlege-based Software in a Realtime Alarm-handling System 36
Modeller's Assistant- A First Step Towards Integration of Knowledge Bases and

Modelling Systems, The 45
Object-oriented Application Development Environment, An 36
Object-oriented Development Aids Prototyping and Delivery 24
Pantheon: Rapid Prototyping of Natural Language Interfaces to Large Databases 50
Prototyping and Visualisation in Interface Design 42
QUISAP:An Environment for Rapid Prototyping of Real-time Systems 35
Rapid Ada Prototyping: Principles and Example of a Complex Application 44
Rapid Prototyping Approach to Software Development and our Tool for Development of

RPT Prototypes, A 56
Rapid Prototyping in Ada in the Rational Environment Emphasizing Software Reuse 47
Rapid Prototyping of Communications Protocols Using a New Parallel Language 30
Rapid Prototyping of Large Command, Control, Communications and

Intelligence (C31) Systems 60
Rapid Prototyping through Graphical Operational Specification and Automated

Code Generation 68
Rapid Prototyping: A Cure for Software Crisis 59

82 CMU/SEI-92-TR-13

Rapid Prototyping: A Practitioner's Viewpoint in Software Developmen 59
Real-time Distributed Simulation of Pbx with Software Reuse 30
Retrieval of Consistent Documentation for Rapid Prototyping Systems and

Software Maintenance 63
RSF: A Formalism for Executable Requirement Specitications 33
Run-time Environment and Application Tools for the Ground Test Accelerator 45
SEKE'90. Proceedings. Software Engineering and Knowledge Engineering. 2nd

International Conference 57
Survey of Rapid Prototyping Tools 29
Sytem and Software Requirements Engineering 61
Tiny Tim-a Smalltalk Toolbox for Rapid Prototyping and Animation of Models 46
Using Data-flow Description Supported by the Rapid Prototyping Tool for 55

1991
Acquisition Model for the Capture and Management of Requirements for

Battlefield Software Systems 29
CAPS as a Requirements Engineering Tool 49
Durra: An Integrated Approach to Software Specification, Modeling and Rapid Prototyping

26
Environment for Rapid Prototyping of Interactive Systems, An 67
Language Aspects of ENVISAGER: an Object-oriented Environment for the Specification

of Real-time Systems 34
Methodology for Prototyping-in-the-Large, A 55
Rapid Development Speeds Path for Command System 37
Rapid Prototyping in Human-Computer Interface Development 40
Simulation of Modern Electronic Combat Scenarios by Means of a Flexible Generic

Computer Model 66
Survey of Exploratory Software Development, A 62
TXL:A Rapid Prototyping System for Programming Language Dialects 32

CMU/SEI-92-TR-13 83

Additional References

[BasiliBi] Basili, V., and Weiss, D., "Evaluation of a Software Requirements Documents by Analysis

of Change Data," Proceedings of the 5th ICSE, 1981.

[Bennett89] Bennett, M.J., "Modeling Radar Countermeasure Systems," Defense Computing, July-Au-

gust, 1989.

[Boehm75] Boehm, B. W., et al., "Some Experience with Automated Aids to the Design of Large-Scale

Reliable Software," IEEE Transactions on Software Engineering, vol 1, no 1, March 1975.

[Boehm88l Boehm, B.W., "A Spiral Model of Software Development and Enhancement," IEEE Com-

puter, p. 61, May 1988.

[CONG90 "Bugs in the Program: Problems in Federal Government Computer Software Development

and Regulation," Staff Study by the Subcommittee or. Investigations and Oversight, One
Hundred First Congress, April 1990.

[Davis90] Davis, A., Software Requirements: Analysis and Specification, Prentice-Hall, 1990.

[LOD91] "Software Technology Plan: Vol. 11 Plan of Action," Draft 5, August 15, 1991.

[DSB87] "Report of the Defense Science Board Task Force on Military Software," Office fo the Under

Secretary of Defense for Acquisition, U.S. DoD, September 1987.

[Graham89] Graham, D.R., "Incremental Development: Review of Nonmonolithic Liie-Cycle Develop-
ment Models," Information and Software Technology, 31, 1, pp. 7-20, Jan 1989.

[Humphrey89] Humphrey, W.S., Managing the Software Process, Addison-Wesley, 1989.

[Lientz80] Lientz, B., and E. Swenson, Software Maintenance Management, Addison-Wesley, 1980.

INOSC90] "Models of Software Evolution: Life Cycle and Process," Naval Ocean Systems Center,
NOSC-TD-1893, July 1990.

[Royce70] Royce, W., "Managing the Development of Large Software Systems, " IEEE WESCON, Au-

gust 1970, pp. 1-9.

[SE191] Proceedings of the Requirements Engineering and Analysis Workshop, Software Engi-

neering Institute, March 1991.

[Sage90] Sage, A.P., and J.D. Palmer, Software Systems Engin-ering, John Wiley and Sons, 1990.

[Tavolato84j Tavolato, P., K. Vincena, "A Prototyping Method and Its Tool," Approaches to Prototyping,
R. Budde et al., eds., Berlin: Springer-Verlag, 1984. pp. 434-446.

CMU/SEI-92-TR-13 85

UNLIM=D, UNCLASSIFD
SEQCI'RY CLASSIFICATION OF HIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAIIABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONTORIRNG ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-13 ESC-TR-92-013

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONT1ORING ORGANIZATION

Software Engineering Institute (if aplicable) SEI Joint Program OfficeSEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

&a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1962890C0003

SEI Joint Program Office ESC/AVS

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDLNG NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNLT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63756E N/A N/A N/A
11. TITLE (Include Security Claaification)

A Classification and Bibliography of Software Prototyping

12- PERSONAL AUTHOR(S)
David P. Wood and Kyo C. Kang

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Final FROM T October 1992 90
16. SUPPLEMEN'TARY NOTATION

17. COSATI CODES S1. SUBJECT TERMS (Continue an rovere of neonsary and ideicfy by block number)

FIELD GROUP SUB. OR. bibliography

software process

software prototyping

19. ABSTRACT (Contnue on mev¢ if necsUary and identify by block number)

Prototyping, the creation and enaction of models based on operational scenarios, has been advocated as a
useful software engineering paradigm because it lends itself to intense interaction between customers, users,
and developers, resulting in early validation of specifications and designs. An extensive and widespread inter-
est in software prototyping in recent years has resulted in a daunting amount of literature and dozens of pro-
posed methods and tools. As with any immature and growing technology, the expanding literature and
approaches have resulted in correspondingly expansive and confusing terminology.
This report presents an overview of technology and literature relating to the creation and use of software sys-
tem prototypes. In addition to an annotated bibliography of recent prototyping literature, a technology frame-
work, taxonomy, and series of classifications are provided. The intent of this report is to provide a basic road
map through the available literature and technology.

(please turn ova)

20. DISTRIBUTION/AVAILABUMIL OF ABSTRACT 21. ABSTRACT SECURrTY CLASSIFICATION

UNCLASSIEDUNLIN'IED SAME AS RPTDF=C USERS* Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DD FORM 1473.83 APR EDMON of I JAN 73 IS OBSOLETE UNICM R rED, UNCLASSIFIED
SECURITY CLASS IOCATION OF TM

STRACr -- oaimumud fran paep me, blork 19

