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Preface

The purpose of this research was to examine the use of function point

analysis in estimating source lines of code for projects in the earliest stages
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prepare me for the future challenges I would face in the Air Force. It has.

During this grueling effort, I had a lot of support from a number of

people. Tf he one I'd like to thank most is my fiancee', Mary Mouritsen.

Without her loving support and patience throughout the thesis process, the

thesis would not have been possible. I'd also like to thank Linda Weston for

praying me through another tough time, as she has for years. I owe a great

deal of thanks to my thesis advisors, Mr. Dan Ferens and Major Wendell

Simpson. Without their patience, advice, and encouragement, this would

have been a far more difficult task. I would also like to thank my family for

their continuing support. A special thanks goes to Captain Robert Gurner for

his pearls of wisdom and ideas.

Finally, I would like to thank God for his love and guidance during the

thesis experience. As He continues to bless me, I hope that I will continue to

grow in Him as He molds me through experiences like the thesis.

Garland S. Henderson
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Abstract

This research investigated the results of using function point analsis-

based estimates to predict source lines of code (SLOC) for software

development projects. The majority of software cost and effort estimating

parametric tools are categorized as SLOC-based, meaning SLOC is the primary

input. Early in a program, an accurate estimate of SLOC is difficult to project.

Function points, another parametric software estimating tool, bases

software cost and effort estimates on the functionality of a system. This

functionality is described by documents available early in a program.

Using a modeling methodology, the research focuses on function

point's ability to accurately estimate SLOC in the military and commercial

environments. Although a significant relationship exists in both

environments, none of the models provided a goodness of fit, predictive

capability, and significance level to make them acceptable models, especially

noted in the variability of the estimates of SLOC. The need to use models

developed in similar environments was made clear.

The concept of function point to SLOC conversion tables was assessed

and was justified. However, the conversion tables to be used should be

based on similar programs developed in similar environments. Universally

applicable function point to SLOC conversion tables were not supported by

this research.

ix



THE APPLICATION OF FUNCTION POINTS TO PREDICT SOURCE

LINES OF CODE FOR SOFTWARE DEVELOPMENT

I. Introduction

Only by effectively quantifying and measuring a software project

effort, in size or man-hours, can a manager successfully manage a program.

More specifically, a project manager needs to be able to derive an adequate

cost and schedule estimate before that manager can manage the overall

project effectively (14:147). By measuring software project status in size

and man-hours, managers may improve the quality and accuracy of their

cost estimates.

A software manager needs to plan and control the software

development process. Planning involves using estimates of the size, costs,

and projected schedule to allocate the needed resources to a software project

to ensure coimpletion. Control involves comparing actual software schedules,

size and cost data to estimated data to assess performance of the soft,\are

development team. These two managerial functions go hand-in-hand.

Measurement of project parameters may lead to productivity improvement

once inefficiencies and productivity problem areas are discovered. The

military needs to be able to successfully estimate, measure, and manage

military software efforts as well. In 1988, the House Armed Services

Committee cut all procurement funding for the OTH-B Radar because the

software was behind schedule (55:142).



In order to justifN, fund, and staff a software project, managers must

understand and be able to predict cost. Software cost estimation techniques

are also necessary to give managers the information to make cost-benefit

analysis, breakeven analysis, or make-or-buy decisions.

Background

In 1980, the annual cost of software in the U.S. was about 217( of the

Gross National Product, approximately $40 billion. Since 1980, the softlare

rate of growth has surpassed the economy's rate of growth(7:17) With

demand for software rising 12% annually and the average length of softNare
development programs growing by 25%, project managers involved with

software development must be able to plan and control software efforts

(55: 144).

In the 1990, the Department of Defense spent approximately $30

billion on software (18:7b). A study of U.S. Defense Department mission

critical software costs predicted a 12 percent annual growth rate from $11.4

billion in 1985 to $36 billion in 1995 (9:1462). As the Department of

Defense steadily grows more reliant on software systems, it needs to develop

accurate and reliable software cost estimation tools.

A study by Boehm describes three problem areas associated with the

inability to provide accurate software cost estimates (7:30). First, without a

reasonably accurate cost estimate, a project manager has no firm basis from

which to compare budgets and schedules; nor does the manager have the

ability to make accurate reports to management, the customer, or sales

personnel. Second, without an accurate software cost estimate, it is

impossible to formulate a valid hardwvare-software tradeoff analysis for

2



managerial decision-making. Third, project managers need to understand

how well the software effort is proceeding in order to manage the overall

project effectively. Otherwise, funding could be misallocated, or projects

could be cut if the software effort is not provided in a timely manner.

Software Estimation Methodology Background

Numerous methods are available to help managers estimate software

costs. Among these are analogy, bottom-up, expert opinion, parametric

models, and top-down methods (47:198). Parametric models are the

methods most often used by the Department of Defense and industrX

(20:88-1). Parametric models estimate via the use of mathematical formulas

derived from statistical relatiknships between parameters of interest, called

cost drivers, and the dependent variable being estimated, such as project

cost, size or duration. Typically, these models are automated using software

programs. Benefits of parametric models include their repeatability and

ability to preform sensitivity and domain analyses (47:197).

Most parametric models used to estimate effort may be categorized as

either Source Line of Code (SLOC) based models or Function Point based

models (20:88-5). "Most of the existing models use the size of the softm'are

product as an independent variable; this is usually expressed in the number

of lines of source code [SLOC]" (28:38, 44:417). Function point counting,

instead of using estimated SLOC as an input, counts the number of user

functions, then adjusts them for processing complexity to estimate level of

effort on a project (44:418).

SLOC is a measure of the size of a software project and is typicall. not

considered a measure of software effort. When someone in the softmare
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estimation profession speaks of effort, they are typically speaking of the

number of man-months or cost associated with a project (18). However, the

relationship between SLOC and level of effort is so pronounced that SLOC is

actually used as a significant predictor in many established effort estimating

models (8:17, 44:417, 2:639, 28:38). Early in the lifecycle of a software

program, managers do not know SLOC ahead of time. However, managers do

know function points which are based on the functionality of the system.

This research investigates the ability of function points to predict SLOC so

that managers can use the SLOC based models.

Although most software effort estimation models are SLOC based,

some studies have found function point models to be superior to SLOC

models for estimatin% effort in a software project (44:422, 2:643", 46:71).

Kemerer evaluated four software cost estimation models. Kemerer found

that the non-SLOC, function point based models performed better than the

SLOC-based models. The data used in his study was from the business data-

processing environment (44:427). In a similar study, Albrecht and GaffneN

found that "basing applications development effort estimates on the amount

of function to be provided by an application rather than an estimate of 'SLOC'

may be superior" (2:644). Low and Jeffery concluded that function points

are a more consistent a priori measure of system size than lines of code

measures (46:64). It is not clear whether the weakness of the SLOC-based

models used in these studies is due to "bad" models or inputs of inaccurate

SLOC estimates. Inaccurate SLOC model inputs would definitely be a

problem early in a program lifecycle before the first line of code is written.

While the above studies show that function points may yield better

level of effort estimations, experts have also noted that there is a marked

4



relationship between function points and the lines of code in a project. One

of the conclusions of the Kemerer study was that the "functionalitN

represented bN function points is related to eventual SLOC" (44:425). The

Albrecht and Gaffney research concluded that the measures of effort and

application size in SLOC are "strong functions" of function points (2:644).

Genuchten and Koolen note that SLOC may be useful in describing completed

projects, however, it is difficult to estimate SLOC for prediction of future

projects (28:39). In other words, even though SLOC models are good

predictors of effort, some method is needed to estimate SLOC early in

program development.

The study by Albrecht and Gaffney found a "high degree of correlation

between 'function points' and the eventual 'SLOC' (source lines of code) of the

program. . . The strong degree of equivalency between 'function points and

'SLOC' shown in the paper suggests a two-step work-effort validation

procedure, first using 'function points' to estimate 'SLOC,' and then 'SLOC' to

estimate the work-effort" (2:639). As in the Albrecht and Gaffney stud%,

applying function points to estimate SLOC in the pre-development stages ol a

project could prove useful if function points are a good measure of SLOC.

The Albrecht and Gaffney study justifies this research.

The focus of this research is to determine the reliability and validity

of function point based methodologies in providing SLOC estimations for Air

Force and commercial projects. The concept will follow the concept presented

in the Albrecht and Gaffney study (2). Function point based models may

differ between the Air Force and industry due to differing developmental

environments, techniques, and regulations. Jones explains that the amount

of specifications, other supporting paperwork, and government requirements

5



could add significantly to the increase in the number of functions on militarx

projects (35:18). If true, this would make military based function point

counts higher than commercial function point counts on programs that

perform the same basic functions.

Specific Problem

The purpose of this research is to test function point derived estimates

on Air Force projects for reliability and validity in predicting SLOC values on

completed Air Force software projects. Although estimates based on

function points have been validated on non-Air Force projects (2, 35), their

use has not been proven on Air Force projects. This maN be due to the fact

that many groups do not collect relevant software project data. According to

Cuelenaere et al., there is a general lack of data providing relevant

information on completed software projects (13:558). This lack of historical

software costing and sizing data holds true for Air Force projects as well

(17:37).

Objectives

The first objective of this research is to assess the strength of the

predictive relationship of function point counts to source lines of code (SLOC)

for the military given a detailed description of what the software is to

functionally perform. By assessing the predictive capability of function

points in estimating SLOC, function points ability to predict the level of effort

required for development is implicitly tested. The second objective is to

compare predictive capabilities of function points in the military and the

commercial environment.

6



Research Question

How well do function point values predict SLOC for MIS/ADP projects?

Investigative Questions

Three specific questions must be answered in o-der to properly assess the

usage of function point based methods in estimating SLOC:

1) How well do function point values predict SLOC for Air Force MISi.ADP

projects?

2) Does the strength of the prediction relationship between function points

and SLOC differ for Air Force and non-Air Force projects?

3) How well do function point-to-SLOC conversion tables created from Air

Force and commercial data compare to function point-to-SLOC conversion

tables provided by industry experts (61:164, 15:136, 34:73-78, 33:97-98)?

As a package, the answers to these investigative questions answer the

research question, "how well do function point values predict SLOC for

MIS/ADP projects?" If a strong relationship is discovered in the ans%%er to

question one, then function point counting could provide accurate SLOC

estimates for future Air Force MIS/ADP programs. These SLOC estimates can

then be used to predict effort using SLOC-based models. If the answer to

question two is not affirmative, then function point counting might be used

to provide accurate SLOC estimates for future commercial MIS/ADP

programs. The conclusion whether function points are more effective at

providing accurate SLOC estimates in the military or commercial

environment is dependent on the answers to questions one and two. As

Jones mentioned, military based function point counts could be higher than

commercial function point counts on programs that perform the same basic
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functions because of the additional constraints levied by regulation on

military projects (35:18). Additionall,, if both of the answers to questions

one and two are affirmative, it will validate the other studies supporting the

use of function points in estimating SLOC for MIS/ADP programs. The third

research question attempts to validate the use of function point to SLOC

conversion tables for Air Force and commercial project effort estimation as

well as further support historical findings in this area.

Organization of Research

This first chapter hac highlighted the problem, provided a brief

introduction to the area of study, and proposed research objectives and a set

of investigative questions. The second chapter will review the literature

pertaining to software cost estimation, particularly function point

information, in detail. The third chapter will provide a step-by-step detailed

methodology for testing the above investigative questions. This

methodology is to the level of detail that wvould allow for duplication of this

research stud,. The fourth chapter presents the analysis and findings. The

fifth chapter provides a summary and recommendations.
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II. Literature Review

Introduction

This section describes prior research on the estimation of SLOC and

level of effort required for software projects. First, a description comparing

research on function point counting and line of code based estimation

methods is presented. Then, the mechanics of function point usage is

presented. Then, a number of empirical validations of the function point

method are discussed. The next section introduces Feature Points, a

modified version of function points. Because function points have not been

validated for embedded and realtime software systems, the use of Feature

Points is being pursued as a better estimator. Finally, another modification

to the original function point estimation model, called Mark (Mk) II Function

Points, is introduced as well.

SLOC Models

Although many factors potentially influence the level of effort on a

software project, the number of source instructions, SLOC, is among thc most

important. Boehm has identified the following factors as being less

important: personnel/team capability, product complexity, use of modern

programming practices, software required reliability, requirements

volatility, and language experience (9:1465).

The liT Research Institute found that more than 25 soft%%are cost

models existed in 1988 (32). Some experts cited in the study found 127

potential attributes in the various models that could influence softwxare cost.

Many of the prominent models are variations on the basic effort equation,

9



E = c*ab

where E = effort in some selected units, and a is normally the size of the

project in lines of code, and b and c are empirically derived constants

(12:195-196). The study points out that, "if the factors of the model

developer's environment that generated the historical statistics differ from

those of another organization, the use of the model as a predictor for the

second organization will be unreliable at best" (12:196). The studN also

agrees with Boehm that "one critical input parameter in nearly every

software cost estimating methodology is the size of the system, given in LOC

[Lines of Code]" (12:196). Genuchten and Koolen concur that "most of the

existing models use the size of the software product as an independent

variable; this is usually expressed in the number of lines of source code"

(28:38).

Humphrey states, "Line-of-code (LOC) estimates typically count all

source instructions and exclude comments and blanks... Perhaps the most

important advantage of the LOC is that it directly relates to the product to be

built" (31:90-91). Furthermore, "size measures are important in software

engineering because the amount of effort required to do most tasks is

directly related to the size of the program involved.., the line of code (LOC)

measure is probably most practical for measuring program size" (31:309).

Reese and Tamulevicz agree:

The most popular measure of software size is the number of lines of
code. The estimation of the number of lines of code is important since
most cost estimating tools base their projected estimate upon this
number. There are many other parameters used in conjunction with
various cost estimating tools including complexity, personnel
capabilities, and reliability requirements of the system to name a few.
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Hom•ever, the number of lines of source code is the most important
factor. A poor lines of code estimate can result in a bad estimate of
the total project effort (60:35).

Table 1, from a recent Fortune article on software programming,

compares four different software projects as for their lines of code, labor

required, and cost. It is readily apparent that the lines of code, labor

required, and costs are all positively related to each other.

Table 1

Software Cost and Effort Comparisons

Project Lines-of-Code Labor Cost
(man-years) ($ millions)

1989 Lincoln 83517 35 1.8
Continental
Lotus 1-2-3 400000 263 7

v.3

Citibank 780000 150 13.2
AutoTeller I I

Space 25600000 22096 1200
Shuttle I I I _I

(64:100-108)

To summarize the above information, SLOC is a wvell-established, good

estimator of effort.

Weaknesses of SLOC-based Estimating Models

For a number of years, software managers based their cost and

schedule models on SLOC. Boehm identifies the biggest difficulty xith using

such models is that they require an estimate of SLOC to be developed, and

11



SLOC is extremely difficult to determine in advance (8:17). Ferens adds that

one of the major problems in using SLOC for cost estimating is that this

number is unknow\n until the program is written (19:1). Kemerer states,

"SLOC was selected early as a metric by researchers, no doubt due to its

quantifiability and seeming objectivity. Since then an entire subarea of

research has developed to determine the best method of counting SLOC"

(44:417). Kemerer goes on to say that many estimators complained about

the "difficulties in estimating SLOC before a project was well under %va.."

To combat the problem of unknown SLOC, Albrecht and GaffneN

suggest the use of a two-step software effort estimation procedure. They

used function points to estimate SLOC, and then SLOC to estimate the work-

effort. Albrecht and Gaffney had found a "high degree of correlation"

between function points, SLOC, and the amount of effort to develop the code.

Because of the "strong degree of equivalency" between function points and

SLOC, they suggest a two-step level of effort validation procedure. The

Albrecht and Gaffnev studv concluded that "it appears that basing

applications development effort estimates on the amount of function to be

provided by an application rather than an estimate of 'SLOC' ma.y be

superior" (2:644).

Jones observed a difficulty with the SLOC approach due to the fact that

different languages require different numbers of statements required to

implement one function point (33:97). However, Jones advances the concept

that source statement per function point conversion tables could be

developed for each programming language, similar to a chemistry periodic

table of elements (34:73-78, 33:97-98). This would imply a direct linear

relationship between function points and SLOC with a ,-intercept of tero.

12



This concept "-as supported by two other authors. Dreger in his book,

concurs with Jones (14:136). Reifer provides a SLOC per function point

conversion table for 13 different languages. For example, the chart reflects

that there are 100 COBOL SLOC per function point with a 0.913 correlation

from his database (61:164). Industry experts don't agree on the exact

conversion factors. For example, Jones differs from Reifer because Jones

feels that there are 105 SLOC per function point (33:98, 34:76).

Without adjustment for language, SLOC is a poor metric for level of

effort. The natural assumption with software metrics is that as

improvements in productivity occur, they will be reflected in the metric. It

was discovered that productivity measures expressed in SLOC paradoxically

decreased as real productivity improved (65:21). By using a higher-order

language, programmers are able to produce more with fewer lines of code.

Thus, SLOC measures were showing programmer's productivity decreasing

when their productivity was actually increasing. Higher order languages

generally require less SLOC to perform the same functionality. When more

powerful programming languages are used, the trend is to reduce the

number of SLOC that must be produced for a given program or system

(15:3).

Explanation of Function Point Concepts

To overcome problems with SLOC-based estimation, Albrecht

developed a software effort evaluation method known as Function Point

Analysis in 1979 (34:9). Function Point Analysis is dependent on the end-

user defined functionality of the system. "Function Points measure soft\\are

by quantifying the functionality external to itself, based primarily on logical

13



design" (27:3). With respect to 'quantifying the functionalit.,' the objectives

of function point counting are to:

* Measure what the user requested and received
* Measure effort independent of technology used for

implementation
* Provide a sizing metric to support quality and productivity

analysis
* Provide a vehicle for software estimation
* Provide a normalization factor for software comparison (27:3).

The function point counting process needs to be simple to minimize overhead

and be concise to ensure consistency (27:3). Function Point Analysis is based

on the user's requirements. Dreger states, "A function point is defined as one

end-user business function" (15:5). Function points are identified and

categorized in a systematic manner.

Figure 1 depicts how the five function point categories are observed in

a system working within and between files, applications, and end users. All

of these are depicted above and can be categorized into one of the five

categories listed below. The five categories of function points are:

* An Internal Logical File (ILF) is a user identifiable group of logically
related data or control information maintained and utilized wvithin the
boundary of the application. An example would be the usage of
memory files within an application or file.

* An External Interface File (ElF) is a user identifiable group of
logically related data or control information utilized by the application
which is maintained by another application. An example of this is
depicted by information passing between A files and B files or
between application A and application B such as a shared database.
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End User

Transactions
Application Application
Boundarv (A) Boundarv (B)

General Application G (;eneral Application
Characteristics C Characteristics
(Complexity Adjustment) •1 (Compledit\ Adjustment)

Interface

Shared lnterfT
(A Fi~les ] -inefc 0 B Files

APPLICATION A APPIRCAULON B

INInput

Transaction Output lom Transactions
l nqui" ..

Figure 1. Relationships of Users, Applications, and Business Functions

(15:8)

An External Input (El) processes data or control information w hich
enters the application's external boundary, and through a unique
logical process, maintains an internal logical file, initiates or controls
processing. An example of this would be the the arrowed lines leading
from outside application A into it.

* An External Output (EO) processes data or control information which
exits the application's external boundary. An example of this %\ould
be the the arrowed lines leading from inside application A out of it.

0 An External Inquiry (EQ) is a unique input/output combination
where an input causes an immediate retrieval of data and an internal
logical file is not updated. An example of this would be the two-%\a.
arrows leading into and out of application A (59:4-8).

After categorizes and enumerating the function point component

values, the ILF's, ElF's, El's, EO's, and EQ's, the function point multiplies each
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component by its functional complexity N•eighting factor. Each function point

type is assigned its own "eighting factor (low, average, or high) based on the

number of record element types, data element types, and file types

referenced for the function point type in question. This complexity

adjustment was part of Albrecht's 1984 revision to function points:

The impact of complexity was broadened so that the range became
approximately 250 percent. To reduce the subjectivity of dealing Nwith
complexity, the factors that caused complexity to be higher or lower
than normal were specifically enumerated and guidelines for their
interpretation were issued. Instead of merely counting the number of
inputs, outputs, master files, and inquiries as in the 1979 function
point methodology, the current methodology requires that complexitx
be ranked as low, average, or high. In addition, a new parameter,
interface files, has been added. . . With the 1984 IBM
implementation, each major feature such as external inputs must be
evaluated separately for complexity (34:60).

Application of the functional complexity factor is based on the number of

record element types, data element types, and file types referenced (25:5,

57:5-9). The sum of all the weighted component values p.roduces the

unadjusted function point value (15:7). The various weightings for each

function type used to derive this unadjusted function point total is seen in

Figure 2. For example, Albrecht's unadjusted function point model equation

would be based on the following equation if each of the function point

components were considered to have an average complexity:

UFP = 4EI + 5EO + 4EQ + 1OILF + 7EIF

Then, the unadjusted function point value, UFP above, is adjusted b%

applying a Value Adjustment Factor (VAF) (25:5). The VAF is based on 14

general system characteristics. Each characteristic is assigned a value
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Functional Complexity

Func~tionType Laow__ .Average ... High
External Inputs x3 x4 x6

External Outputs x4 x5 x7

Internal Logical x7 xlO x15

Files

External Interface x5 x7 x 10

External Inquiries x3 x4 x6

Figure 2. Unadjusted Function Point
Count Weighting Framework

(34:61)

between 0 and 5. The VAF is another complexity adjustment to the

unadjusted function point total (34:67). The 14 VAF factors are listed

below (25:6-7, 34:67-68, 57:9-12):

-data communications
*distributed data processing
-performance
oheavily used configuration
*transaction rate
-on-line data entry
-end user efficiency
-on-line update
-complex processing
*reusabilityv
*installation ease
-operational ease
-multiple sites
-facilitate change
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"In considering the weights of the 14 influential factors, the general

guidelines are these: score a 0 if the factor has no impact at all on the

application; score a 5 if the factor has a strong and pervasive impact; score a

2, 3, 4, or some intervening decimal value such as 2.5 if the impact is

something in between" (34:65). For example, the data communication

influential factor would be scored as follows (34:65):

0 - Batch applications
1 - Remote printing or data entry
2- Remote printing and data entry
3 - A teleprocessing front end to the application
4 - Applications with significant teleprocessing
5 - Applications that are dominantly teleprocessing

These influential factors are then summed, and entered into the following

equation:

VAF = sum * 0.01 + 0.65

The value adjustment factor has a range of 0.65 to 1.35. Adjusted function

points are then calculated by multiplying VAF by the UFP total. For the

remainder of this paper, the term "function point" will refer to the adjusted

function point count.

Function Points' usefulness in size estimation spans a number of

languages. In fact, it has been applied to over 250 different softw•are

languages (15:4). More recent information states that function points can be

used to size more than 300 languages. The following are some examples

from Capers Jones:

"* COBOL requires an average of about 105 SLOC per function point.
"* The Ada language requires about 71 SLOC per function point.
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* The C language requires about 128 SLOC per function point (35:2).

By being dependent on end-user defined functionality, the assigned

Function Point value will more closely match an application's requirement

definition than will a lines of code methodology. Function point analysis

"accurately and reliably evaluates (to within 10% for existing systems and

15-20% for planned systems):

"• the business value of a system to the user
"• project size, cost, and development time
"* MIS shop programmer productivity and quality
"* maintenance, modification, and customization effort
* feasibility of in-house development" (15:4)

Kemerer found that function point estimation models outperformed

SLOC-based methods. For this study, Kemerer used data from 15 completed

software projects relating to comprehensive business applications. He

estimated man-months required with four uncalibrated models. (A model is

considered calibrated when adjustment factors are updated based on

historical data.) Two of the models used function point anal. sis; and two

used lines of code methodology to arrive at estimates. Estimated number of

man months for the two Lines of Code methods, COCOMO and SLIM, each

over estimated the actual values by 601%k and 7727(, respectively. The tmo

models using a function point methodology, FPA and ESTIMACS, each

overestimated the actual values by 100% and 857c, respectively (13:559,

44:422). Ourada concludes that the software line of code estimation models

used in his research were ineffective without calibration (58:5.1). One could

conclude that an uncalibrated function point estimate may not be

"significantly accurate, how\ever it will provide a much closer relative

19



estimate than Line of Code methods. To not calibrate a model prior to testing

it would not make sense unless the the person either did not have the data

from the historical projects or didn't have the time or knowledge to model

properly.

Albrecht and Gaffney showed a relationship between function points

and SLOC. The study used data from three organizations to calibrate four

different SLOC estimation models based on function points. Testing these

models at 17 other organizations showed a better-than-92% correlation

between the estimated and actual number of lines of code (2:643). Lo%% and

Jeffery found that function points are a more consistent a priori

measurement of system size than SLOC methods (46:71). Other studies

further support the function point concept by showing that a similar number

of functions are used to solve a given problem even where programming

techniques differ (11:44). Apparently, function points perform well enough

to be considered for usage in the workplace. As a case in point, the Air Force

Standards Systems Center has transitioned to the use of function point

counting methods for software estimation as an adjunct to lines of code

methods (39).

Function Point Advantages and Disadvantages

When sizing a software effort for cost or measurement purposes,

function point analysis sizes an application from an end-user rather than a

programmer perspective. "There was found to be a strong correlation

between program size in SLOC, and function points. In fact, the researchers

concluded that function points could be more effective than size [SLOCI as a

key parameter for estimating program cost, or level of output" (17:31).
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Function points are welI-validated for management information s\stems

(17:34). Low and Jeffery found that estimating software effort with function

points is recommended because function points measure the functionalit\

delivered to the user. "In comparison, it is extremely difficult to estimate

lines of code prior to the program specification stage" (46:69). One author

feels that another advantage to function points is that it is "not excessively

time consuming. . . [it is] reported that one corporation found that it takes

between one and four hours for an analyst to count function points for a

one-person-year project" (29:24).

The use of Function Points provides information on completeness,

granularity, and usefulness of the software project by basing its output on

such factors that impact the project as worker skills, methods, tools,

languages, constraints, problems, and the office work environment. Once a

reasonable sample of software projects have been measured and stored b\ a

company, this measured data can be used to create customized estimating

templates for other projects. "Such templates could be tailored exactly to

match the tools, methods, [and] environment" of each company (35:6). It has

been inferred that software managers must be able to size a software effort

before it is possible to estimate the work involved. In the past, many such

sizing estimates were based on expert opinion, similar project estimates, and

historical information. Function points considers all of these in its estimate.

Function point analysis is flexible. "Ratios established for

programming subactivities such as design, coding, integration, or testing
often move in unexpected directions in response to unanticipated factors"

(15:3). For example, the use of CASE tools will decrease coding and

integration time but w-.ill require more upfront system design time. Also,
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user requirements typicalil change in projects as they progress. Function

points can be calibrated to take such contingencies into account. Because of

the embedded expertise in function point software and user orientation,

function point estimating tools "can augment and improve the capabilities of

new managers or experienced managers facing new kinds of projects with

which they have not dealt before" (35:4).

Despite the advantages to using function point based estimating

methodologies, there are some disadvantages. Software estimating tools are

expensive. A single tool may cost more than $15,000 due to the high market

value of the expertise used to create the estimation tool (35:4). "A weakness

of function point models is that they are generally not regarded as suitable

for applications other than data processing, such as for real time programs"

(17:32). Since defining function points involves learning a new "language", it

can be comparatively hard to learn and time-consuming. Function point

related methods will require more upfront, start-up work (65:20).

Feature Points

In 1986, Feature Points, an extended version of function points, was

developed for systems with embedded and real-time software. Because it

has been found that function points are not suitable for applications other

than data processing, the basic function point equation has been modified

with additional inputs to adapt it to scientific and real-time applications.

Feature Points, an experimental approach, includes the same five parameters

as function points and one additional parameter accounting for the number

of algorithms included in the application. Systems and embedded softwnare

applications tend to be high in algorithmic prx)cessing (36:4). Once again,
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"an algorithm is defined as the set of rules %ihich must be completely

expressed in order to solve a significant computational problem" (65:30).

Since algorithms in a program account for a significant portion of real-time,

embedded, and scientific programs, function points do not accuratcly predict

their size or cost. Algorithms can vary vastly in size because of the amount

of complexity, and amount of subroutines occurring in one algorithm. Capers

Jones' Feature Point model is based on the following equation (34:115):

Feature Points = 1AT + 4EI + 5EO + 4EQ + 7ILF + 7EIF
with a Complexity Adjustment
(EI) represents External Inputs
(EO) represents External Outputs
(EQ) represents External Inquiries
(ILF) represents Internal Logical Files
(EIF) represents External Interface Files
(AT) represents the number of Algorithms

This methodology is a potential breakthrough considering that real-time,

embedded, and scientific software comprise 487 of U. S. software (65:4). In

addition to the independent and significant variable of algorithmic

complexity, the Feature Points equation lowers the empirical, function point

weighting of the data file parameter (El) since input/output operations are

not as critical outside the MIS world (34:114).

Feature Points have not yet been validated (17:32). This maN be

caused by the unclear definition of an algorithm wvhich does not lend itself to

a clear counting methodology. By the developer's definition of an algorithm,

"the number of algorithms and number of significant computational

problems is the same" (65:20).

However, it is possible to provide valid estimates for real-time

s stems using function point based methods also. One studN by Gaffne\ and
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Werling, using a modified function point equation, achieved a greater than

94% correlation on lines of code estimation for nineteen aerospace (non-MIS)

software systems (26:2-3). The function point equation used on/. the four

"external" function point functional types: external inputs, external outputs,

external inquiries, and external interface files. Internal logical files were not

used in their research. After the four external function point types were

counted, "their complexity [wvas] ascertained as loxv, medium, or high. Then

they [werel weighted correspondingly and then summed to determine the

'function count'. The next step in the calculation of function points [xwasi to

determine the 'value adjustment factor'. . . . Finally, the 'function point' count

[was] calculated by multiplying the 'function count' bN the 'value adjustment

factor'." (26:2) In this one case, the use of function point based methods

appear to be valid for real-time systems as wvell.

Mark (Mk) I1 Function Points

Charles Symons of Nolan, Norton, & Company in London announced the

Mark II Function Point Metric in 1983 in England. The Mark II metric was

not well known in the United States until January 1988 when the description

was published in the IEEE Transactions on Software Engineering. The

impetus for this new metric was based on Symon's function point studies at

Xerox. These studies lead him to four areas of concern surrounding the

usage of Albrecht's function point model:

• He wanted to reduce the subjectivity in dealing with files by
measuring entities and relationships among entities.
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* He wNanted to modify the function point approach so that it x~ould
create the same numeric totals regardless of whether an application
was implemented as a single system or as a set of related subssstems.

• He wanted to change the fundamental rationale for function points
away from value to users and switch it to the effort required to
produce the functionality.

* He felt that the 14 influential factors cited by Albrecht and IBM
were insufficient, and so he added six factors (34:96).

According to Symons, "the Mk I1 Function Point Analysis Method was

designed to achieve the same objectives as those of Allan Albrecht, and to

follow. his structure as far as possible, but to overcome the weaknesses

outlined above" (67:22).

In Symons model, Albrecht's five function point function types-

external inputs, external outputs, external interfaces, external enquiries, and

internal logical files- are replaced by "a collection of logical transactions, with

each transaction consisting of an input, process, and output component. A

logical transaction type define as a unique input/process/output

combination triggered by a unique event of interest to the user, or a need to

retrieve information" (67:23). These logical transactions consist of three

types: number of input data element-types, number entity-types referenced

and the number of output data element-types. An entity is "anything in the

real world (object, transaction, time-period, etc, tangible or intangible, and

groups or classes thereof) about which we want to know information. For

example, in a personnel system 'employee' is an entity. 'Date of birth',

however, is not." (67:53) The number of input data element-types and

output data element-types mirror those similar measures in the Albrecht
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function point model (67:70). An unadjusted function point (UFP) is

determined by weighting each of these factors as seen in the belowv equation:

UFP's = WI * (# of input data element-types)
+ WE * (# of entity-types referenced)
+ WO * (# of output data element-types)

(67:23)

Based on industry averages, the value of each of these weights are WI=0.58,

WE=1. 6 6, and WO=0.26 (67:30). Once the unadjusted function point count is

derived, it is multiplied by a technical complexity adjustment (TCA) to

compute the Mk II function point total. The TCA factor consists of a

technical complexity factor multiplied by a calibration factor, C. The TCA is

computed using the following equation:

TCA = 0.65 + C*(Total Degree of Influence)

(67:27)

The Total Degree of Influence mirrors the Albrecht function point Value

Adjustment Factor. It has the original factors from Albrecht's model and

five additional [value adjustment] factors:

"• Interfaces to other applications
"* Special security features
"* Direct access requirement
"* Special user training facilities
"• Documentation requirements.

(67:26)

The calibration factor, C is derived from the ratio of wvork-hours to perform

the technical complexity factors (Y) to work-hours for information processing

size (X) (67:28). Figure 3 provides a general overview of the Mk II Function

Point Method.
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The relative wxorth of the Mark II Function Points has been compared

to Albrecht's original function point model. The purported advantages of

Symons model are that it is more objective than Albrecht's function points, it

is easier to count via automated counting tools, and it is standardized in the

United Kingdom (18:6). Symons claims that Albrecht's function points are

not highly correlated to lines of code. He also contends that the Mark II

Application Boundary

Logical
Transactions 19+ General
each consisting of Application
"* Input
"* Process Characteristics
"* Output

Function ("Infocration Xf( echnical )Processin X I Complexity

Points Size" kAdjustment"

Figure 3. Components of the Mark II
Function Point Method

(66:22)

Function Points are not highly correlated to Albrecht's function point counts

on sample programs. However, the depictions of the scatterplots in the

Symon's book do not support these assertions (67:35-36). Since there are no

numbers to support/detract from either method in the book, the reader is

still unclear as to their utility. According to Capers Jones, the developer of

Feature Points, "when counting the same application, the resulting function

point totals differ between the IBM [Albrecht's] and Mark I1 bN sometimes
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more than 30 percent, with the Mark II technique usually generating the

larger totals" (34:96). Once again, the reader is only left to supposition in

assessing this information since no quantifications are given. Jones does

prefer Albrecht's function points to the Mark II concept because "function

points measure the size of the features in an application that users care

about" (34:97).

Synopsis of Literature Review

The literature shows that SLOC is a well-established, good estimator of

effort. The major problem with SLOC models is determining SLOC early in

the development program. Additionally, function point counting is a valid

software estimating technique in industry. bne way to make use of SLOC

models and overcome its major problem is to use function points to estimate

SLOC. Then, the predicted SLOC can be used as an input into SLOC models to

estimate the level of effort in cost or man-months.

This review has also shown the need for effective management of

software projects by first establishing the current position in the project.

Also, effective measurement comes only from using effective measurement

tools. Through calibration, function point estimation models can be even

more accurate estimators. With 48% of U. S. software being comprised of

sy stems, embedded, and real-time software, software managers could

benefit by using and validating an estimation system that accounts for the

number of algorithms included in these applications. A studN of Feature

Points as a tool could prove beneficial to software project managers and cost

estimators. Also, the use of Mark II Function Points seems to hold some

promise yet data in this area is rather sparse. Since it is an upgrade to the
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Albrecht function point model, it could provide better estimates. However,

this also could make for a good possible validation stud.
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III. Methodology

Introduction

This chapter presents the procedures to be used in gathering and

analyzing data to answer the research question noted in Chapter I. The first

section will provide an explanation of the method and research design to be

used. The following section will provide a description of the data. This is

followed by a section discussing the statistical techniques to be employed in

the analysis.

Explanation of Method and Research Design

As of September 1991, a database of completed Air Force

management information systems (MIS)/automatic data processing (ADP)

projects with function point count information did not exist. As mentioned

above, the information was available but had never been collected in a

database, much less a database with all the necessary information to derive

a complete function point estimate. In their efforts to become a center of

expertise in MIS/ADP projects for the Air Force, the Standard Systems

Center (SSC) has collected this function point information in the Software

Process Database System (SPDS) database. In implementing function points,

the SSC used the function point counting criteria set by the International

Function Point Users Group (IFPUG) rather than a function point counting

methodology included with a software package or published elsewhere (42).
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Addressing the Investigative Questions

The road map for the methodology is included in the investigative

questions from chapter one. The thesis will use a standard modeling

approach to determine whether a relationship exists between function points

and SLOC in order to address the investigative questions. The answers to

these questions will give some indication as to how well function points

values predict SLOC for MIS/ADP projects. The modeling steps to be

followed in this methodology are as follows: identifN drivers, snecify the

functional relationship between the drivers and the dependent variable,

gather data, construct a model, and validate the model. Each of the modeling

steps are executed for each of the individual investigative questions.

The case has been built that function points should be used to predict

effort on software projects. Refer to Figure 4.

A

Function Points

Figure 4. Thesis Modeling Concept

The hypothesis is depicted in B above. In the literature review, it was

established that SLOC has historically been a good predictor of effort, as seen

in relationship A in Figure 4 above. The problem with relationship A is that
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SLOC is not easily determined in the early phases of a program. One solution

is to use function points to predict SLOC, as seen in relationship B. Then, use

predicted SLOC to predict effort as in relationship A. Note that "A" is

used to denote a predicted value based on the regression equation.

SLOC = f (Function Points) (1)

then\

Effort = f (SLOC) (2)

This two step process may seem cumbersome at first. Many might querN as

to why the research does not simply use function points to predict effort, as

seen in the below relationship.

Effort = f (Function Points) (3)

There are a number of reasons to predict the number of SLOC from function

points instead. As previously discussed, there are numerous commercial

software models that already exist that model relationship A in Figure 4.

Because there are less function point-based models, and function point

estimation came into existence after SLOC-based models, less is known about

function point usage. Therefore, this research is valuable because it might

yield a method to obtain better estimates from the established SLOC-based
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models. FinallN, the data does not exist to support the development of a

model of the form in (3) for Air Force MIS/ADP systems.

Discussion of Investigative Questions

Investigative Question I (IQI): How well do function point values predict

SLOC for Air Force MIS/ADP projects?

As stated earlier, this thesis will use a standard modeling approach to

determine whether a relationship exists between function points and SLOC in

order to address the investigative questions. There are several subquestions

which bear on answering this investigative question concerning the military

data. Each of these individual subquestions for the military data will be

annotated by "IQI" followed by an assigned letter designator. For example,

the second subquestion to answer investigative question one will be

designated "IQIb". The modeling methodology delineated below will be used

as the basis for answering each of the investigative questions.

Military Database Investigative Questions

Investigative Question Ia (IQIa): How well do adjusted function points

predict SLOC in the military environment?

As a reminder, adjusted function points, simply called function points,

are the unadjusted function point counts multiplied by their value

adjustment factor. The equation is represented in equation (1) above.

The independent variable will be adjusted function points, and the

dependent variable will be SLOC. Function point count information is

provided in the SPDS database (Table 11).

33



Investigative Question lb (IQIb): How well do unadjusted function points

predict SLOC in the military environment?

IQIb assesses the relationship between the unadjusted function point

count and SLOC. As discussed in the literature review, one of the strengths

of function points is that it can be applied early in a software project. The

unadjusted function point information comes from the requirements

document. The Value Adjustment Factor (VAF) is based on 14 general

system complexity characteristics, such as reusability of code, operational

ease to the user, or the design of the software to facilitate change. Since this

type of information may not be available in the earliest stages of the

program, unadjusted function points may be a better predictor of SLOC.

Additionally, Kemerer research showed that unadjusted function points had

a higher correlation to SLOC than adjusted function point counts (44:425).

The relationship is represented by equation (4) below.

SLOC = f (Unadjusted Function Points) (4)

The independent variable will be unadjusted function points, and the

dependent variable will be SLOC.

Investigative Question Ic (IQIc): How well do external function points

predict SLOC in the military environment?

IQIc assesses the relationship between external function points and

SLOC. As discussed in the literature review, a study by Gaffney and Werling,

using a modified function point equation, achieved a greater-than-94'7

correlation on lines of code estimation for nineteen aerospace (non-MIS)

software systems (26:2-3). The function point equation used only the four
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"external" function point functional types: external inputs, external outputs,

external inquiries, and external interface files. Internal logical files i'ere not

used in their research. After the four external function point types x"ere

counted, "their complexity [was] ascertained as low, medium, or high. Then

they [werei weighted correspondingly and then summed to determine the

'function count'. The next step in the calculation of function points [was] to

determine the 'value adjustment factor'. . . . Finally, the 'function point' count

[was] calculated by multiplying the 'function count' by the 'value adjustment

factor'." (26:2) The same technique will be used to determine external

function points for this research. The relationship is represented in equation

(5) below.

SLOC = f (External Function Points) (5)

The independent variable will be external function points, and the

dependent variable will be SLOC. External function points will be counted

using the same procedure as function points, except only the total of the four

external function point types will be multiplied by the VAF to obtain the

total external function point count, as in the Gaffney and Werling study.

Investigative Question Id (IQId): To what degree is the relationship between

function points and SLOC affected by language?

As discussed in the literature. review, a number of function point

experts feel that the ratio of SLOC per function point vary with the language

that the software is coded in (15:136, 34:76, 61:164). Since there are fec

programs in the SPDS database coded in a single language other than COBOL

and just under half of the programs in the SPDS are in COBOL, indicator
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variables wiII be used to assess if there is a significant difference bet\meen

the COBOL function point to SLOC predictions and the other mixed and single

languages. Therefore, this procedure will test to see if there is a difference

between the ability of function points to predict SLOC written in COBOL

versus in another language. Of the 55 programs with function point

information in the SPDS Database, 26 are written in COBOL, six are written in

single, other languages, and 23 in a mixture of different languages. This

indicator variable procedure will be described in detail later in this

methodology chapter. The relationship is represented in equation (6) below\.

SLOC = f (Function Points, Language) (6)

The independent variables will be function points and language, and the

dependent variable will be SLOC.

Investigative Question Ie (IQIe): To what degree is the relationship between

function points and SLOC affected by program complexity9

As mentioned in the literature review, it has been suggested by

experts such as Boehm, McCabe, and Jones that program complexity could

affect effort (9:1465, 18, 34:237-241). In fact, the Boehm article suggests

that unnecessary program complexity could increase effort (9:1465). There

are two measures of complexity that will be used in this analysis, the VAF

and the system obsolescence complexity rating, both included in the SPDS.

The VAF is the complexity factor composed of the 14 areas outlined in

Chapter 2 (34:64). Of the programs in SPDS with function point and

unadjusted function point information, each also was subjectively assessed

by the program managers, called automated data systems (ADS) managers.
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These subjective complexity assessments %%ere called s~stem obsolescence

complexity ratings. So as not to confuse the reader, this complexity rating

will be referred to as the obsolescence factor for the remainder of the paper.

Obsolescence is the "process by which property becomes useless, not because

of physical deterioration, but because of changes outside the property,

notably scientific or technological advances" (24:392). It is a summary of the

obsolescence factors including:

hardware platform (possible rating of 0-3),
security level (possible rating of 0-3),
language used (possible rating of 0-4),
customer complexity (possible rating of 0-5),
inputs complexity (possible rating of 0-5),
output complexity (possible rating of 0-5),
interfacing system complexity (possible rating of 0-5),
type of system it is (possible rating of 0-3) and
type of database it is (possible rating of 0-3).

The complexity rating has a range of 0-36 (69). Additionally, unadjusted

function points will be used in lieu of function points because function points

consists of a product of unadjusted function points and the VAF. The

relationship is represented in equation (7) below.

SLOC = f (UFP. Complexity) (7)

The independent variables will be unadjusted function points, and either of

the two measures of complexity. The dependent variable will be SLOC.

Investigative Question If (IQlf): To what degree is the relationship betmecn

function points and SLOC affected by program complexity and program

language?
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This relationship combines the relationships in (6) and (7). The

relationship is represented in equation (8) below%.

SLOC = f (UFP, Complexity, Language) (8)
The independent variable will be unadjusted function points as affected by

differing complexities and languages, and the dependent variable will be

SLOC. Unadjusted function points are used because the VAF and

obsolescence factor are included separately in the relationship as an explicit

measure of complexity.

Investigative Question Ig (IQIg): Using all the available independent

variables and interactions between these variables, what is the best

predictive model of SLOC in the military environment?

While questions IQla-f investigate the nature of the underlying

relationship, this question seeks the best model for predicting SLOC. This

model will consider all significant drivers of SLOC as independent variables

and will use stepwise regression as a modeling tool.

Commercial Database Investigative Questions

Investigative Question II (IQII): Does the strength of the prediction

relationship between function points and SLOC differ for Air Force and non-

Air Force projects?

The source of data to answer this question is found in the AFIT thesis

entitled, A Comparative Study of the Reliability of Function Point Analysis in

Software Development Effort Estimation Models by Robert B. Gurner (30:15-

17). Function point count information is provided in the commercial

38



database. Although Gurner used the data to validate how well function

points predict effort in man-months, the function point and SLOC data from

his research will be used in this research. The data originallN comes from

two separate databases of MIS projects used to validate earl. function point

usage (2:639-648, 44:416-429). This data is discussed later in this chapter

and is displayed in Table 12, Appendix B. The basic methodology to address

this investigative question will closely follow the methodology used to

address the first investigative question.

Investigative Question Ila (IQIIa): How well do adjusted function points

predict SLOC in the commercial environment? The relationship is

represented by equation (9) below.

SLOC = f (Function Points) (9)

The independent variable will be function points, and the dependent

variable will be SLOC.

Investigative Question lib (IQIIb): How well do unadjusted function points

predict SLOC in the commercial environment? The relationship is

represented by equation (10) below.

SLOC = f (Unadjusted Function Points) (10)

The independent variable will be unadjusted function points, and the

dependent variable will be SLOC.
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Investigative Question llc (IQllc): To wNhat degree is the relationship

between function points and SLOC affected by language? The relationship is

represented in equation (11) below.

SLOC = f (Function Points, Language) (11)
The independent variables will be function points and language, and

the dependent variable will be SLOC. Since all of the programs in the

commercial database are coded in a single language, indicator variables will

be used to assess if there is a significant difference between the COBOL

function point to SLOC predictions and the other languages. Therefore, this

procedure will test to see if there is a difference between the abilitN of

function points to predict SLOC written in COBOL ver'sus in another language.

Of the 39 programs with function point information, 31 are written in COBOL.

four in PL/1, two in DMS, one in BLISS, and one in NATURAL.

Investigative Question Ild (IQIld): To what degree is the relationship

between function points and SLOC affected by complexity? The relationship

is represented in equation (12) below.

SLOC = f (Function Points, Complexity) (12)

The independent variables will be function points and complexity, and

the dependent variable will be SLOC. The measure of complexit\ that "ill be

used in the analysis is the VAF. The Obsolescence factor is not available for

this data set.
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Investigative Question lie (IQIIe): To what degree is the relationship

between function points and SLOC affected bN program complexity and

program language in the commercial environment? This relationship

combines the relationships in (11) and (12). The relationship is represented

in equation (13) below.

SLOC = f (UFP, Complexity, Language)
The independent variables will be unadjusted function points, VAF, and

language. The dependent variable will be SLOC. As before, unadjusted

function points are used because the VAF is included separately in the

relationship as an explicit measure of complexity.

Investigative Question Ilf (IQIIf): Using all the available independent

variables and interactions between these variables, what is the best

predictive model of SLOC in the commercial environment?

While questions IQlIa-e investigate the nature of the

underlying relationship, this question seeks the best model for predicting

SLOC. This model will consider all significant drivers of SLOC as independent

variables and will use stepwise regression as a modeling tool.

Investigative Question Ill (IQIII): How well do function point-to-SLOC

conversion tables created from Air Force and commercial data compare to

function point-to-SLOC conversion tables provided by industry experts?

To address this question, regression using only the 26 COBOL programs

will be applied to test the relationship between function points and COBOL

SLOC using the military database. The test is limited to onl% the COBOL
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programs because that is the only single language w'ith enough programs. 26,

to be considered a statistically valid sample. The regression %%ill be run to

model the relationship without controlling the y-intercept as well as with

setting the y-intercept to zero. The function point-to-SLOG conversion tables

reflect a linear relationship in which the Y-intercept is set to zero. By

including the regression with the y-intercept, a comparison to the forced x-

intercept of zero is possible. These ANOVA tables help to validate the merit

of the SLOC to function point conversion tables, at least for COBOL. A similar

analysis will be used to test the 31 COBOL programs in the commercial

database. Additionally, an analysis of the answers to investigative questions

IQId and IQIIc will be included. These are the questions that determine the

degree of the relationship between function points and SLOC is affected bN

language. While the data is limited, there is an adequate number of COBOL

programs to make an assessment of that portion of the conversion tables.

Modeling Methodology

This portion of the chapter will describe the methodology involved in

developing parametric models to capture the SLOC prediction estimates of

the above investigative questions. As appropriate, each of the above

relationships will be modeled in a single independent variable (SIV)

relationship or a multiple independent variable (MIV) relationship. Usin2

SAS, a statistical analysis software package available on the Air Force

Institute of Technology (AFIT) VAX computer system, these SlY and MIV

models will be developed using linear regression. The discussion belo%%

provides specific procedures and techniques to develop and validate the

models. The techniques mentioned below are from the COST 671 (Defense
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Cost Modeling) and COST 672 (Model Diagnostics) courses taught at AFIT

(50,51). These were synopsized in A Model for Estimating Aircraft

Recoverable Spares Annual Costs by Phillip L. Redding (59). This

methodology section of this thesis will closely follow portions of Redding's

work except where information pertaining specifically to this research is

concerned. Each of the steps involved in developing the above SLOC

estimating relationships are provided below a- a general framework.

Step I-Identify Cost Drivers. The identification problem is one of

identifying the major factors that affect/influence the amount of SLOC of a

project. This was accomplished to a large extent in the first portion of this

chapter. The first step is to define the population. The population is limited

to the MIS/ADP environment because research has shown that functioi1

points are more effective in the MIS/ADP environment (13:559, 44:422).

With the system's definition and purpose in mind, the system can be

characterized using physical and performance characteristics. By restricting

the population to MIS/ADP, it is easier to identify the major factors affecting

SLOC. The purpose of this step is to identify important factors for the model

that actually cause SLOC to either increase or decrease. Although there are

numerous factors, such as ability/experience of the programmer, mood of

the programmer, and the use of automatic programming tools that could

influence the amount of SLOC in a program; it is hypothesized that the

factors outlined in the previous section are the determinants of the eventual

effort required for the MIS/ADP programs.

There is even more to model identification according to Redding.

A specific consideration under the general 'model identification'
heading is testing for interaction effects and indicator variables. .. If
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one changes the value of an independent variable and the resulting
change in cost is dependent upon the value of another independent
variable, there is an 'interaction effect' between the independent
variables (59:60).

For example, if the change in SLOC related to a change in function points also

depends on complexity of the program, there is interaction between these

two variables. Function points and complexity were tested for an interaction

effect, along with function points and language. By multiplying the variables

by each other in each of the above pairs, the resultant products became new

independent variables.

"Indicator variables are used to determine if the sample population

can be divided into separate classes based upon qualitative differences"

(59:60). In terms of this thesis, the class variable introduced is language.

Indicator variables were included to determine if SLOC is related to the

following classes of software programming language: 1) COBOL or 2) other.

Of the 55 programs with function point information in the SPDS database, 26

were written strictly in COBOL, 6 were written in single other languages, and

23 were written in mixed languages. Of the 39 programs with function point

information in the commercial program database, 31 are written in COBOL,

four in PL/I, two in DMS, one in BLISS, and one in NATURAL. For the

purposes of this study, the indicator variable for language reflects that the

systems were either COBOL or "other".

Step ll-Specify. Functional Form of the Estimating Relationship. When

trying to assess how SLOC will respond to a change in function points,

specification distinguishes the nature of the relationship. This step involves

hypothesizing the expected relationships between the dependent variable

(SLOC) and various independent variables (IVs). An example would be to
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hypothesizc that the relationship between the IV and DV is either linear or

non-linear. The first and second derivatives of the SLOC estimating function

will characterize the relationship within the relevant range of the function

between IVs and SLOC. The application of linear regression will lead to the

most accurate and reliable estimate of the population regression line only if

the underlying relationship is linear. If the relationship is nonlinear, the

regression line will not provide accurate estimates unless the data is

transformed. Identification of the relevant range, where the model is

applicable, will ensure that the model will be useful for the input data. The

further from the mean, the less accurate the regression line will be.

When specifying the model, one should ensure that the model makes

logical sense. For example, it makes logical sense that as the amount of

functionality of a program increases (reflected in function points), the SLOC

of the program will increase. As alluded to earlier, the expectation is to see a

positive relationship between the independent variable, function points, and

the dependent variable (DV), SLOC. This contention is supported by fact that

experts feel that lines of code increase as functionality increases (2:639,

17:31). Therefore, it is expected that the first derivative of the function

between adjusted function points and SLOC will be positive. The first

derivative is a measure reflecting the slope of the function. The second

derivative determines whether the slope is constant, increasing, or

decreasing. Some experts contend that the relationship is a linear one

(15:136, 34:76, 61:164, 49). This is seen in the discussion pertaining to

function point to SLOC conversion tables. This implies a zero second

derivative. Symbolically, this situation is represented bN the notation, (+, 0).

This research accepts the hypothesis that the linear single independent
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variable (SIV) model could be represented by a (+, 0) relationship. Hox\ever,

each of the three possible transformations of each of the IVs that have a

positive first derivative, (+,+), (+,-), or (+,0) will be assessed via residual plot

analysis (discussed below). These three relationships are represented below\

in Figure 5. An article by Boehm suggests that unnecessary program

complexity could increase effort (9:1465). This could imply a (+,+)

relationship as complexity increases.

LL__
(+,0) (+,-) (+,+)

Figure 5. 1st and 2nd Derivatives of
a Function

Because SAS can only work with linear relationships, the

data is transformed to investigate nonlinear relationships. Transformation of

the variable occurs by setting the independent variable equal to itself raised

to a power thereby the relationship would be linear as transformed. The

initial SAS runs were made using the presumed linear independent

variables. Additional runs were then performed based upon the results of

this initial analysis (59:64-65).

Since the experts generally agree that the SIV model would yield a

(+,0) relationship, this will be the first model to be investigated. There is

another check to see if the models are properly specified. In SAS, the

difference between the observed values and the predicted values derived

from the regression equation can be calculated. These differences are called
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residuals. SAS allows the residual values to be plotted against the

independent variable data. By examining the residual plots for patterns in

the data, the need for a transformation of the independent variable can be

assessed. If the residual plot information appears random, then one maN

assume that the model is properly specified, and no transformation of the

data is required (59:69-70).

This information would be used to assess if the relationship is a (+,+)

or (+,-) curve. When discussing the these functions, the SIV model follows

the below relationship:

Y = bo + blXk

For a (+,+) relationship, the parameter values are bl > 0 and k > I (example is

y=x 2). Transforming the IV to ex has also been recommended (52:143). The

(+,+) relationship is also seen in logarithmic transformations of the both the

independent and dependent variables simultaneously, known as "In-In"

transformations. For a (+,-) relationship, the parameter values are

bl < 0 and k < 0 (examples are y=x-1 y=x-112 ) or bl > 0 and 0 < k < I

(example is v=xl/ 2). For a (+,0) relationship, bl > 1 and k = I holds true

(example is y=3x).

The residual plots will also provide information pertaining to

heteroscedasticity of the data. "The condition of error variance

not being constant over all cases is called heteroscedasticitv" and is a

violation of the assumptions of regression modeling (52:423).

Heteroscedasticitv wvould be readily apparent if the residuals become larger

or smaller as the function point (DV) measure becomes larger. To combat

heteroscedasticity, a logarithmic transformation of the dependent variable is

recommended (51, 52:146).
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Step 111-Collect and Normalize Data. This step involves collecting and

normalizing the data needed to investigate the proposed model. The militar%

function point information to be analyzed came from the Software Process

Database System (SPDS) at the Air Force Standard System Center, Gunter

AFB, AL. Information on the database was gathered through direct

interviews of two personnel intimately familiar with its history, information

therein, and capability/limitations. This information is described below.

In an interview on 23 March 1991 with Dub Jones, the most

knowledgeable person about the development of the SPDS, he provided the

following description of SPDS: The database contains the following

information: adjusted function point counts, unadjusted function point

counts, 14 general application characteristics, and the computed value

adjustment count for each case. Also, it contains the following information:

actual project SLOC, pages of documentation, and the five components of the

function point count (external inputs, external inquiries, external outputs,

internal logical files and external interface files). These components are

given low, average, or high ratings which lead to the unadjusted function

count. The methodology used to derive the function point related

information used the IFPUG Function Point Counting Practices Manual,

Release 3.3 as well as training sessions by a support contractor, Productivit\

Management Group (PMG). The database has read/write privilege protection.

Only ADS managers have write privileges. An important point to note is that

the function point counts in the database were performed after the programs

were completed, not prior to the start of work.

The second database consisting of commercial business programs is an

aggregate of t•-o industry-based function point databases that had been
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previously empirically validated with function point based counting

methodologies were used in the validation of SPANS, Checkpoint, and Costar

in a thesis by Gurner (30:15-26). Both databases will be used in this thesis.

The first 24 programs in the commercial function point database used in this

thesis originated from a study by Albrecht and Gaffney that validated

function point usage in 1983 (2:640). The second 15 programs in the

commercial function point database used in this thesis originated from a

study in 1987 by Kemerer that further validated function point usage

(44:421-424).

Normalization refers to adjusting the data for any anomalies. An

anomaly is anything that distorts the data. The purpose of normalization is

to capture the true underlying relationship after removing the anomalous

effects. For example, normalizing could involve placing different year dollar

values into a common year equivalent by taking inflation into account.

There is no dollar information on the programs taken from SPDS. However,

the data was checked for internal validity by ensuring that the function

point values in the SPDS were derived from the Value Adjustment Factor

(VAF) and the unadjusted function point count. Additionally, VAF i•as

checked to ensure that it calculated correctly from the 14 program

characteristic degrees of influence. Also, the SPDS data was collected bN

individuals with the program development offices, then checked and

reported by the individual automated data system (ADS) managers. When

performing the function point counts, the personnel involved were

knowledgeable in function point counting procedures using a standardized

methodology, the IFPUG Function Point Counting Practices Manual, Release

3.3. In fact the Standard Systems Center, keeper of the SPDS database,
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enlisted the aid of a contractor, ProductivitN Management Group (PMG). Inc.,

to implement proper counting practices. Some of the function point counts

are performed by PMG, some performed with PMG oversight, and some had

been totally transitioned to SSC personnel once the SSC personnel had been

fully trained. Therefore, it seems safe to assume that the SPDS function

point data is free of errors (39).

Dub Jones did advance a number of possible problems with

information in the database. First, actual line of code counting methods

differ between systems. As in industry, there are different interpretations

of a line of code. For example, some personnel only count executable source

lines of code while others include comment lines in programs. Also, some of

the ADS offices used automated code counters while others did not. Second,

possible different levels of training of function point counters and lack of

accessibility to "experts" for function point information in the development

offices may taint information. Third, there may be a risk that personnel

providing counts may expand function point counts as large as possible to

enhance their own productivity levels as reported to their supervisors (39).

The initial analysis, derived from the first stepwise regression

equation, yielded the obsolescence complexity factor as a significant variable

selected for the model. The author is choosing to not use the obsolescence

complexity factor variable in the analysis. There are numerous reasons for

this decision. First, the obsolescence complexity factor is subjectively

assessed by the ADS managers at Gunter Air Force Base on nine obsolescence

complexity factors. The lack of a more detailed and robust criteria causes

doubt as to its validity as a measure of complexit%. The criteria for selection

do not seem rigorous enough at this point in time. Second, the obsolescence
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complexity factor is not a standardized term in function point knowleddeable

groups like the Value Adjustment Factor is. One of the purposes of this

research is to provide useful information to potential users of function point

measures. Since the obsolescence complexity factor is only used bN

personnel at Gunter AFB from the detailed literature review, it is

subjectively assessed that this measure is too obscure to be useful. Third,

the data seem to show that this factor estimates KSLOC too well which causes

doubt as to its validity. The obsolescence complexity factor is correlated to

KSLOC at the 0.5726 level. Additionally, in most of the above models, the

obsolescence factor (OBSOL) came in at the 99.9% level of significance.

Additionally, the obsolescence complexity factor is not highly correlated to

the well established complexity factor of VAF, implying that it may not

necessarily measure complexity as is understood by the function point

community. Table 2 depicts these relationships.

Table 2. Correlation Analysis of VAF to Obsolescence Factor

CO~RR A OBSOL

KSLOC 0.4835 0.5726
FP 0.3748 0.4045
UFP 0.3806 0.4078
VAF 1.0000 0.4938
OBSOL 0.4938 1.0000

For all these reasons, the obsolescence complexity factor variable has becn

eliminated from inclusion in the final model.

Step IV-Calculate Parameter Estimates. In this step, SIV and MIV

model are constructed with the dependent variable being SLOC. This step

involves "actually using SAS to specify the relationship between the
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dependent and independent variables in mathematical terms. A regression

line is fit to the data via SAS using the method of least squares best fit"

(59:64). Each regression line is expressed in the following equation form:

Yi = BO + BJXiJ + B2Xi2 + • .. + Bp-IXip-l + ej (14)

w here

B0, BI, ..., Bp-i are parameters Xil, Xi, .... Xi,p-1 are known constants

e I are independent N(O, 2) i = 1 ... , n

(52:229)

Note that the Bj's are estimates of the influence of an explanatory variable

on the dependent variable. Using the concept of LSBF modeling, these values

for Bx are determined via SAS using LSBF modeling concepts. For example, if

Y1 represents an estimate of the number of KSLOC (thousand lines' of SLOC)

and X,1 represents function points, Bo would be the LSBF N-intercept and BI

would be the estimate of the influence function points has on KSLOC.

The possible models were fit by estimating parameter values using

LSBF on the transformed data if applicable. These SAS data runs "viiI

provide all the standard regression equation information to include, an

ANOVA table, R2 , slope, intercept, F, t, p, and confidence interval

information.

Prior to equation formulation, a discussion of how to handle the

different classes of language used on each of the programs is needed. BN

reviewing the database, it is clear that programming language used could

affect function point estimates because of the differing levels of this

qualitative attribute. "A treatment corresponds to a factor level (53:524)"

The treatments in this research are the two categories of language (COBOL or

Other). To explain factor level, "a level of a factor is a particular form of that
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factor. in a study of the effect of color of the questionnaire paper on

response rate in a mail survey, color of paper is the factor under studN, and

each different color used is a level of that factor (53:523)". "The treatments

included should be able to provide some insights into the mechanism

underlying the phenomenon under study (53:525)".

This is important, because once the data is regressed based on each

treatment type, the regression lines from the basic IV-DV relationship

depending on the class of the treatment effect may differ in slope and

intercept. Potential example is depicted below in Figure 6 based on the

language treatment effect. Note that differing treatments can change the
slope and the Y-intercept of the regression line if there is a significant

difference between language types.

Each of the investigative questions wiHl be restated in a format

similar to equation (14) above. The independent variable (IV) in each of

the equations is one of the various function point measures, represented by

X. The dependent variable in each case will be an estimate of SLOC, in

KSLOC, represented by Y-hat, the predicted value of Y. The basic equation

that will model the relationship depicted in equation (3) for IQla is as

follows:

Y = BO+ B X (15)

where X = the adjusted function points from the SPDS database.

The basic equation that will model the relationship depicted in equation (4)

for IQIb is as follows:

Y= Bo + B1 X (16)

where X = the unadjusted function points from the SPDS database.
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Other Languages

COBOL only

KSLOC

Function Points

Figure 6. Treatment Effects on the
Regression Equation

The basic equation that will model the relationship depicted in equation (5)

for IQIc is as follows:

Y = Bo + BI X (17)

where X = the "external" function points from the SPDS database.

The basic equation that will address all the possible permutations of

complexity and the language indicator variables are as follows:

Y = Bo + B1X (accounts for adjusted function
point or unadjusted portion)

+ B2V + B3VX (accounts for complexitN
effects)

+ B4L + B5LX (accounts for language effects)

+ B16VL + B7V(L)X (accounts for interaction effects
between language and
complexity)

(18)
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Where V is the value adjustment factor, and L is the language indicator

factor.

Step V-Validate the Model. This step validates the model. This step

involved using model diagnostics which can be performed to check a model's

internal validity (see below). This is accomplished by assessing the analysis

of variance (ANOVA) table containing many statistics for evaluating the

model. The ANOVA table will yield information such as R2 , adjusted R2, F-

value and others (52:92-93). The format of the ANOVA table is provided in

Table 3 below.

There are a number of factors that must be evaluated to ensure that

the correct final estimating relationship between the dependent variable, DV

and the independent variable, IV is chosen. The first factor to ascertain is if

the signs of the parameter estimates are supported by logic. For example,

the expectation is to observe a positive BI since logic and the experts agree

that there is a positive relationship between a program's functionality and

size in SLOC. Next, the values from the ANOVA table will be used to

determine the overall predictive strength of the model. Each of these is

discussed below.

The coefficient of determination (R2 ) measures the proportion of
the total variability in the dependent random variable which is
explained by the independent variables through the fitting of the
regression line or the percentage of total squared error accounted
for by the regression line. The closer R2 is to 1.0, the stronger the
relationship between the random dependent variable and the
independent variable in the selected model. The R2 measures the
strength of the relationship between the variables (59:67).
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TABLE 3

ANOVA Table Format (SAS)

Source Degrees Sum of Mean
of of Squared Squared
Emor Freedom E=r Emrr -Va• u P-aluc

Model (R) P-1 SSR=X(Y - y)2  MSR=SSR/df MSR/MSE *

Error (E) n-P SSE=X(Y - y)2 MSE=SSE/df

Total (T) n-I SST=X(Y - y)2  MST=SST/df

Root MSE * R-squared *

Dep Mean * Adj R-sq *

C.V. *

Parameter Estimates
Paramneter Standard T for HO:

Variable DF Estimate Error Paramcter=(O
Prob>{T}
Intercept * * * * *

Driver#1 * * * * *

Driver#2 * * * * *

Driver#3 * * * * *

Where

i = the ith fitted value on the regression line

Y= the mean of the observed values in sample set

', = the ith observation from the sample set

P = the number of parameters in the model

n = the number of observations in the sample set

• denotes actual numerical values in actual SAS output
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For this research, an R2 of 8()q or greater is preferred " ith an

acceptance threshold of no less than 70g. Note that the R2 value can be

artificially driven higher by increasing the number of independent variables

whether they are valid SLOC drivers or not. To combat this possibility, the

adjusted R2 was compared to the adjusted R2 value. If both values are not

within 20% of one another, it can be assumed that insignificant variables are

present within the model and are affecting the R2 (59:67)

The F-value significant at 70% or greater is a typical rule of thumb for

acceptance (59, 50). An 80% or better is preferred in final model selection.

This criteria will allow the determination of the statistical significance of the

selected model. An F-value with a 95% confidence level tells us that the

probability of rejecting a true null hypothesis (Type I error) is 5'1. The F-

value tests the null hypothesis, that the regression coefficients in the

selected model are insignificant (equal to zero), against the alternative

hypothesis that at least one of the regression coefficients, excluding the v-

intercept, is significant (not equal to 0). An F-value calculated from the

ANOVA table, based on the selected model, which exceeds the F-value from

the F-distribution table will allow us to reject the null hypothesis. If the

model is statistically significant, the F-value will mandate rejecting the null

hypothesis and concluding that the compound effect of the independent

variables in the selected model significantly impact the dependent random

variable, cost.

The t-value significant at 707(' or greater is a typical rule of thumb for

acceptance (50, 59). An 80% or better is preferred in final independent

variableselection. The t-value tests the individual significance of each

independent variable as a SLOC driver. A t-value with a 95%k confidence
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level tells us that the probability of rejecting a true null hypothesis (Tspe I

error) is 57(T. The t-value tests the null hypothesis, that the regression

coefficient of each individual variable in the selected model is insignificant

(equal to 0), against the alternate hypothesis that the variable is significant

(not equal to 0).; A t-value is calculated from the parameter estimates and

its associated standard error. A t-value which exceeds the t-distribution

table value will allow us to reject the null hypothesis and conclude that the

individual independent variables in the selected model are significant cost

drivers. On a SIV model, the t statistic squared and the F statistic are the

same.

The p-value denotes the probability of getting an Fratio as big as Fcalc

or larger when X and Y are truly independent. In other words, the p-value

is "the smallest significance level at which the null hypothesis can be

rejected" (54:357). For example, a p=.0077 says that you are 99.2311

confident that the Fratio was not just due to sampling error and the X and Y

are really dependent. Therefore, the lower the p value, the better chance

that there is a statistical relationship between X and Y. For comparison's

within this research, the p-values will be used to show the significance of the

F and t statistics since these statistics change with sample size. As pointed

out above, by taking (1 - p-value) for each model and parameter, it will be

easier to understand their level of significance.

Coefficient of Variation (CV) should be less than 50'3 (50, 59).

Multiplying CV by two gives the 95(T prediction bounds, in terms of

percentage, around the center of the data (Y-bar) if Y is normally

distributed. "For example, the coefficient of variation tells you that if you

estimated at the center of your data, 2 * CV gives you the approximate
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interval that the prediction may fall at the 95(7( level of confidence" (51). The

smaller CV is, the greater the possibility of getting good estimates of the

dependent variable at the center of the data. CV is calculated by the square

root of the MSE divided by the Y-bar as seen below.

CV = Syx/Y

As significance parameters are include in the model, MSE %%ill

decrease. The square root of MSE is the standard error of the estimate and

measures the absolute fit of the sample data points to the regression line, i.e.,

the variance of Y given X. As MSE decreases, CV decreases and the F-value

increases. The CV is one tool that is currently available to me for comparison

between the logarithmic and non-logarithmic models is the comparison

between the non-logarithmic CV and the logarithmic SyX. In the non-

logarithmic case, the CV gives the size of the estimated error relative to the

estimate. In the logarithmic case, the MSE yields the average percent

squared estimating error. Therefore, the Syx gives the average percent

estimating error.

The chosen model, once shown to be significant, should have

the highest R2 , highest Fcalc (lowest p for the model), highest

tcalc (lowest p for the variable), lowest MSE, lowest CV. Since the

measures used above are only valid in comparisons between models with

the same dependent variable, this step will narrow the selection to best

model of tne logarithmic and the best of the non-logarithmic possibilities.

The final portion of the analysis section will include a qualitative

analysis for similarities and differences between the Air Force and industry

databases. It will also discuss potential confounds in the collection of data,
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i.e. improper function point counting methods. The qualitative portion of

the study will only be able to be further refined once more information is

known about the database, collection method, and outcome of the ANOVA

comparison.

The answers to investigative questions IQIg and IQIIf provide the best

predictive models of SLOC. To be useful, these models should be devoid of

collinearity. To address these questions, collinearity is defined and

discussed. Collinearity among significant SLOC drivers becomes a constraint

on the use of the model. Collinearity can adversely effect a model. It can

inflate the variances of the regression coefficients for model variables that

are correlated to each other. These inflated variances could cause the

regression coefficients to be unstable, have the wrong sign, or make

significant variables become insignificant. Therefore, the interpretation of

the regression coefficients is unclear (51).

To answer investigative questions IQIg and IQIIf, an interactive

stepwise procedure is developed. The first step is to implement one of the

stepwise regression tools in SAS coupled with collinearity analysis to obtain

the "best" possible model devoid of collinearity. In this first step, all the

possible combinations of the function point information that made sense,

including interactions of two variables (e.g. FP * Lang). SAS has five

different stepwise variable selection procedures. The one chosen for

implementation is Maximum R2 improvement (MAXR) procedure. This

procedure focuses on selecting variables based on an examination of all

pairwise interchanges of variables not already in the model. This process

will result in the largest increase in R2. The SAS text states that this

procedure has the best chance of finding nearly optimal models (23:83).
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Additionally, this procedure is chosen over a significance based procedure

because initial data runs exhibited 99.97: significance levels but had lo%,er R2

values.

The specific technique to be used in employing the MAXR involves

inputting all the possible variables and their interactions with other

variables that made sense. The top six variable model would be used as a

starting point. The reason for stopping at a six variable model is that some

of the variables will begin to appear many times in interactive variables and

by themselves implying collinearity was present. This is due to the fact that

there were so few variables involved initially.

The next step is to implement the SAS COLLINOINT procedure. This

performs "an eigenanalysis of matrices derived from the sums of squares

and cross products of these variables" yielding analyses of relationships

among a set of variables (23:81). For more detailed information on the

theoretical specifics of eigenanalysis, the author suggests reading Chapter 3.2

in the book, Regression Diagnostics by David A. Belsey et al. A detailed

discussion of collinearity diagnostics theory is beyond the scope of this

research. Specifically, COLLINOINT will provide eigenvalues, condition

numbers, and variance proportions. The closer to zero an eigen value is the

more collinearity is present. The condition numbers reflect relationships

between the eigen values. The rule of thumb is that if the condition number

is greater than 10, the amount of collinearity in the model is significant.

Once collinearity is determined to be present via the condition number, the

variance proportion values can be calculated to determine which two

independent variables are being affected by collinearity. For example, if

COLLINOINT was performed on a model that displayed a condition number
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greater than 10, the two variables that have the highest variance

proportions (VAR PROP) have the most collinearitN. Thus, one would havc to

be eliminated to mitigate collinearity (51).

The technique used is an iterative process. The author will find the

best six variable model with the MAXR procedure. Then, COLLINOINT

procedure will be performed on these six variables. If the condition number

exceeds 10, then the highest two VAR PROPs variables will be run with the

MAXR procedure to determine which will be dropped from the model. The

highest R2 variable for MAXR purposes is always kept. If there are more

than one condition number out of bounds at a time, the highest condition

number variables will be addressed first. The process will result in a

condition number of less than ten.

Another topic that falls under model diagnostics is data outlier

analysis. "Outliers are extreme observations. . . Outliers are points that lie

far beyond the scatter of the remaining residuals [in residual plotsj, perhaps

four or more standard deviations from zero" (52:121). In the statistical

analysis of the data, it is possible that a model may have a bad fit of the

regression line through the data caused by an outlier. Even if the statistics

indicate a good fit, a model's predictive capability could be low. This

situation could also be caused by outlier data. Outliers may have large

residuals, may have great impact on the regression function and resulting

statistics, or may be extreme values. Extreme values will always appear as

outliers simply because of their position in the data set. The hypothetical

effects of an outlier on the regression line can be seen in Figure 7 belowv.
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/* Regression Line

Regression Line with Outlier Removed

Function Point Measure

Figure 7. Outlier Effects on Regression Line

As is readily obvious from the Figure 7, the one outlier has "pulled" the

regression line to a new slope and intercept. It is important to note that

outliers with respect to Y will always impact the model but outliers with

respect to X may or may not impact the model (51).

Outliers with respect to X. The first step in the analysis of

outliers is to examine those observations that were outliers with respect to X.

This is accomplished by analyzing the leverage values obtained from the Hat

matrix. The Hat matrix is used to express the fitted values of Y-hat as linear

combinations of the observed values of Y. The values that lie on the diagonal

of the Hat matrix are called leverage values. These leverage values are used

to indicate the distance between the X values for the individual observations

and the means of the X values (independent variables). A large leverage

value is indicative of an outlier. A rule of thumb used to determine potential
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outliers was (2*p)/n, where p is the number of parameters including the

intercept, and n is the number of observations. If the leverage value "as

greater than (2*p)/n, it was identified as an outlier with respect to X (51).

Outliers with respect to Y. An outlier with respect to Y is

defined as an observation that the model doesn't predict very well. Possible

causes include wrong population, incomplete model identification, incorrect

model specification, data entry errors, and measurement errors. The

studentized residual analysis is used to identify outliers with respect to Y. If

the t-value is less than the absolute value of the system studentized residual

it is identified as an outlier with respect to Y (51).

Influential Outliers. Once the potential outliers with respect to

X and Y have been identified, the next step is to determine if these had a

significant impact on the model. An outlier that is influential is one that

affects the functional form of the fitted regression line. The three methods

that will be used to identify the amount of influence of outliers are: the

influence of the fitted values (DFFITS), the influence on the regression

coefficients (DFBETAS), and Cook's distance test.

DFFITS is a measure of the influence that a system has on the

predicted regression value of Y. The criteria used to determine the influence

of an outlier is if the DFFITS absolute value is greater than 1, then the outlier

is influential (51).

DFBETAS are based on the difference between individual regression

coefficients for the models based on the data sets with and without that

observation. The criteria is that systems with DFBETAS greater than one

were considered potentially influential. DFBETAS greater than 1 suggest that
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the observation has a large influence on the value of the regression

coefficient estimates.

Cook's distance measure is an overall measure of the combined impact

of the individual system on all of the estimated regression coefficients. If

Cook's D is greater than Fratio for a 0.5 alpha, it is indicative that it is an

influential outlier.

Typically, if a data point is identified as an outlier, it is not deleted

from the database unless it is determined that it is part of the wrong

population as defined upfront in the research. Being an extreme value is not

always enough to justify throwing out a datapoint. This is a subjective

assessment on the part of the researcher (51).
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IV. Analysis and Findings

Introduction

This chapter discusses the analysis and findings generated from the

procedures described in Chapter III, "Methodology." The discussion is

divided into five main sections. The first section, entitled "Initial Results,"

will present the statistical analysis to support the investigative questions in

Chapter III. The second section, entitled "Outlier Analysis," discusses

influential outliers with respect to X and Y. This section will provide details

as to whether any of the programs in the databases should be deleted. The

third section, entitled "Transformation Analysis," analyses and reviews the

regression plots and residual plots in order to determine the need to

transform the IVs and/or DV. The finalized "best" models for each database

and the investigative questions will be addressed here. The fourth section,

entitled "Function Point to SLOC Conversion," will summarize the results of

the research on function point's ability to answer IQIII. The investigative

question queried as to how well the function point-to-SLOC conversion

information contained within the military and commercial databases

compare to that same information provided by industry experts.

Initial Results (Military Database)

This section addresses how well function point measures can predict

SLOC for both environments, military and commercial. Both sets of raw data

can be found in Appendix B. The military database is listed in Table 11, and

the commercial database is listed in Table 12. Each of the investigative

questions is answered and the information from the ANOVA charts is
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summarized in a table format according to the criteria mentioned in Chapter

3. For more detail, all ANOVA tables from which these charts were derived

is placed in Appendix E.

The statistics resulting from fitting the models proposed in Chapter III

are presented in Table 4 below. It should be noted that all of the models

representing each of the investigative questions were found to have a 99.9%

level of significance for the F-statistic as seen in the first column. You'll also

note that in each model, except model I, the R2 value far surpasses the 0.70

criteria. In addition, each of the coefficient's t-test significance levels are

represented by p-values in brackets. The vast majority of them are

significant at the 99.9% level of significance. At the onset, the reader might

assume that all of these are good models because the models are highly

significant; the coefficients are highly significant; and their measures of

goodness of fit (R2) are high. However, the reader will note that the measure

of the predictive capability of the model (CV) fails well beyond the criteria of

50. From Chapter 3, note that the CV denotes the percentage error of the

estimate at the center of the data.

This information shows that function point measures are a significant

measure of SLOC providing a high goodness of fit but the variability in the

data cause doubt as to its predictive capability. Model D shows that the

coefficient for the language indicator variable (Lang) is significant at a

0.9865 confidence level. This indicates a significant difference between the

predictive capability of models in one language (COBOL) versus other non-

COBOL languages and mixed languages. Model E shows that the coefficient of

the interaction of Lang and function points is significant also. However,

when this interaction takes place, the coefficient for Lang becomes
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insignificant. This happens because of collinearity between the two Lang

terms as discussed in Chapter 3. In model F, the complexity factor of VAF is

significant to the 99.9% level. In model G, the R2 increases slightly with the

inclusion of the interaction of UFP and VAF.

Table 4

ANOVA Results of Military Data, All Programs. Straight Linear
Regression

Dependent Variable: Ln KSLC Coefficients -Value in Brackets)

Model P-Value C.V. bo bl b2 b3

A 0.0001 0.8559 86.4937 144.866 0.01362

[.0001] [.0001]

B 0.0001 0.8602 85.1845 138.319 0.01761

H .0001] [.0001]

C 0.0001 0.8656 83.5298 140.007 0.01681

1.0001] [.0001]

D 0.0001 0.872 82.2964 64.3617 0.0138 149.6248

[.1431] [.0001] [.0135]

E 0.0001 0.9056 71.3503 69.4969 0.0134 55.987 0.018734

[.07001 [.0001] [.3158] [.0001]

F 0.0001 0.8871 77.26671 -475.45 0.01647 632.3268

[._0951 [.0001] [.0009]
G 0.0001 0.8943 75.4981 -385.7 0.15185 492.5689 -0.104759

[.0359] [.0418] [.0127] [.0685]

a 0.0001 0.89 77.0205 -408.59 0.01678 523.8808 71.359744

1 1 11[.0318] [.0001] [.0124] [.2537]
I 0.0001 0.9064 72.7444 -210.49 320.404 0.012931 0.015897

Models:_ 1__1 _1[.16511 [.04871 [.0001] [.0004]

A: KSLOC=bO + blFP

B: KSIOC=bO + b1UFP

C: KSILOC-bO + b1EFP

D: KSU)C=bO + blFP + b2Lang

E: KSLCU,,bO + b1FP + b2Lang + b3(FP)Lang

F: KSLOC=bO + b1UFP + b2VAF

G: KSLOC=bO + blUFP + b2VAF + b3(UFP)VAF

H: KSLOC-bO + b1UFP + b2VAF + b3Lang

I: KSIflC-bO + b1VAF + b2(UFP)(VAF) + b3(UFP)(Lang)(VAF)
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Outlier Analysis (MilitarY Database)

As is readily obvious from the above discussions, every model

associated with the investigative questions meets/surpasses all the

preestablished criteria except the CV measure where each model did NOT

meet the criteria of a CV less than 50. Once again, the Coefficient of

Variation (CV) should be less than 50% (50, 59). Coefficient of variation tells

you that if you estimated at the center of your data, 2*CV gives you the

approximate interval that the prediction may fall at the 95% leiel of

confidence if Y is normally distributed (51). The smaller CV is, the greater

the possibility of getting good estimates of the dependent variable at the

center of the data. CV is calculated by the square root of the MSE divided by

the mean of Y as seen below.

CV = Syx/Y

Since the mean of Y is not changing, it is safe to assume that the variability

around the regression line of the actuals (reflected in Syx) is the reason for

the CV failing to meet the pre-established criteria. This may be caused by a

bad fit of the regression line through the data. However, the R2

statistics indicate a good fit. The possible cause is that outlier data is

adversely affecting the fit of the regression line and resulting statistics.

Outliers with respect to X. The first step in the analysis of outliers for

the military database was to examine those observations that were outliers

with respect to X. Once again, the rule of thumb used to determine potential

outliers was (2*p)/n, where p is the number of parameters including the

intercept, and n is the number of observations. If the leverage value was
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greater than (2*p)/n (which equals 0.1311 in this case) it was identified as

an outlier (51). The CAMS and the SPAS programs in the military database

were the only programs that exceeded the leverage value criteria, therefore

they were identified as potential outliers. Note that SAS outlier data is found

in Appendix C.

Outliers with respect to Y. The military data was examined for

outliers with respect to Y. Once again, the studentized residual analysis was

used to identify outliers with respect to Y. If the t-value is less than the

absolute value of the system studentized residual it is identified as an outlier

(51). The t-statistic used was based on an alpha of 0.10 with degrees of

freedom equal to 57. The value from the t-tables was approximately 1.674.

Five programs, SPAS, CAMS, OLVIMS, CWIMS, and GAFS, had studentized

residuals that were greater than the t-value and were identified as potential

outliers with respect to Y.

Influential Outliers. Now that the potential outliers with respect to X

and Y have been identified, our i'ext step was to determine if these had a

significant impact on the model. The three methods that were used to

identify the amount of influence of outliers are: the influence of the fitted

values (DFFITS), the influence on the regression coefficients (DFBETAS), and

Cook's distance test. Once again, the criteria used to determine the influence

of an outlier is if the DFFITS absolute value is greater than 1, then the outlier

is influential (51). Two systems had DFFITS values greater than 1. The two

systems were CAMS and SBSS with DFFITS values of 63.8782 and 1.4844. It

can be concluded that these systems had a significant influence on the

functional form of the fitted regression line, e-necially the CAMS program.

DFBETAS greater than I suggest that the observation has a large influence on
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the value of the re2ression coefficient. The analysis revealed two

observations that had a significant influence on the regression coefficients.

CAMS had a large impact on the coefficients of external function points

(109.688) and the interaction of unadjusted function points and language

value, as well as language value by itself. SBSS had a large impact on the

coefficient of unadjusted function points (1.927). And, if Cook's D is greater

than Fratio for a 0.5 alpha, it is indicative that it is an influential outlier. The

Fratio is approximately 0.849. The CAMS was the only system to surpass the

0.849 criteria with a Cook's D of 2204.903.

CAMS has a significant influence on the regression fit. Typically, if a

data point is identified as an outlier, it is not deleted unless it is determined

that it is not a member population as defined for the research. Being an

extreme value is not always enough to justify deleting a data point. To

investigate the CAMS system outlier potential, Dub Jones, developer of the

SPDS, was called. Jones stated that the CAMS system was similar in terms of

functionality to the other systems in the database. It differed only in size

because it had to simultaneously handle thousands of users at a number of

different sites (43). The added complexity and number of inputs/outputs

should be explained within the function point counts and VAF value. CAMS

was identified as an outlier in all of the outlier tests to a significant degree.

However, it appears that CAMS belongs to the population of MIS/ADP

systems. This produces a dilemma in that the CAMS system is clearly much

larger than the other systems in the sample, and all of the outlier diagnostics

indicate that it is influential in terms of the fit regression line. A decision

was made to re-estimate the parameters for all models with the CAMS

system deleted from the database. Such an analysis will reveal the nature of
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the relationships for smaller MIS/ADP systems. Additionally, with the

program differing in magnitude from the rest of the other programs, residual

plot analysis (for possible independent transformations), is next to

impossible.

To analyze the effectiveness of deleting the CAMS system, another

series of SAS runs were performed to ascertain the effects on the regression

line via ANOVA table analysis. The measures to be compared to the criteria

in Chapter 3 are exhibited in Table 5 below. At first glance, it appears that

the outlier deletion has made for a worse fit of the data. Models A through

H, testing the IQI questions no longer meet the R2 criteria of 70(1, and the CV

shows an even worse predictive capability. While all the models have a

significance of 99.9%, a number of the model coefficients have become

insignificant. Using the iterative MAXR and COLLINOINT procedure

described above, model I in Table 5 shows an improvement over the "best"

model in Table 4 prior to the deletion of the outlier. The post-outlier

removal "best" model met all the criteria set in Chapter 3 except the CV N•as

83.6433, still implying a lack of predictive capability. Table 5 also shows

that there is no marked difference between the eight models (A-H)

addressing the IQIs. It is noted that the induction of Lang (model E) does

increase the predictive capability of the model somewhat. The ANOVA

tables supporting Table 5 can be found in Appendix E.

An examination of Figure 6 in Chapter 3 will enhance the explanation

for the worse fit of the data and deteriorated predictive capability after

CAMS was removed. With CAMS included, the statistical values were better

because SAS fit a line between a point, CAMS, and a relatively close group of
points providing better statistic measures. Without the relatively huge
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measures associated with CAMS, the new relative residuals associated with

the remainder of the data provide for the wkorse R2 and CV values.

Table 5

ANOVA Results of Military Data, CAMS Removed, Straight Linear
Regression

Dependent Variable: Ln KSLOC Coefficients (P-Value in Brackets)

Model P-Value R-Sa C.V. bo bl b2 b3

A 0.0001 0.64 90.97059 74.32397 0.03631

[.0076] [.0001]

B 0.0001 0.6399 90.98417 65.182325 0.044129

[.02021 [.00011O _

C 0.0001 0.6428 90.62233 77.766863 0.039314

[.00491 [.0001]

D 0.0001 0.6547 89.95806 40.533097 0.034759 72.29029

1 [.2521] (.0001] (.1462]

E 0.0001 0.6966 85.16085 -9.399213 0.07029 134.8831 -0.0382

[.8066] [.0001] [.0126] [.0114]

F 0.0001 0.6506 90.4926 -143.85792 0.040347 224.9578

[.39921 [.0001] [.21641,

G 0.0001 0.6604 90.10807 -129.78269 -0.057615 230.3153 0.08043

[.4458] [.4851] [.2042] [.2364]

H 0.0001 0.6578 90.45341 -98.344593 0.040177 148.9262 54.5603
1 [.5764] [.0001] [.4474] [.3118]

1 0.0001 0.7074 83.64332 -12.282559 136.47359 -0.0398 0.0718

[.7443] [.0102] [.0069] [.0001]

Models:

A: KSLOC=bO + blFP

B: KSLOC=bO + bIUFP

C: KSIMflbO + blEFP

D: KSIBC=bO + b1FP + b2Lang

E: KSLOC-bO + bWFP + b2Lang + b3(FP)Lang

F: KSLOC=bO + blUFP + b2VAF

G: KSLOC=bO + b1UFP + b2VAF + b3(UFP)VAF

H: KSLXC=bO + b1UFP + b2VAF + b3Lang

I: KSLOCIbO + blLang + b2(FP)Lang + b3(UFP)VAF
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Transformation AnalYsis (Military' Database)

Because none of the models surpassed the criteria set forth in Chapter

3, the author assumes that the relationship may have been mis-specified.

The actual relationship between the IVs and KSLOC may not be linear.

Proper specification can be ascertained using prediction plots and residual

plot analysis. A prediction plot will show predicted values plotted against

the actual values. The prediction plot of each of the SIV model variables will

depict the actual relationship between the actual and predicted values. It

will show that the slope specified is correct. In this research, it was

hypothesized that the function point measures increased as KSLOC increased.

This implies a positive first derivative of the regression equation as depicted

in Figure 5 in Chapter 3. To ensure a good fit, the actual values should be

equally scattered around the prediction line (62:67, 47). A residual plot will

plot the residuals (actual values minus the predicted values). A good model

will have residuals that are randomly scattered about the line where

predicted equals actual values (62:68). If a pattern emerges in the residual

plot, it implies that the SIV variable in question should be transformed to

provide a better fit (50).

Predication and residual plots for each of the IVs in the entire SPDS

database were plotted. These are found in Appendix D, Table 15. The

analysis of each of the individual vari,.oles is somewhat obscured by the

magnitude of the CAMS outlier data point. Since the CAMS was deleted from

the data, a clearer view of these relationships will be seen in Appendix D,

Table 16. Because CAMS was deleted, patterns in the data are easily seen.

The plots in the data still support (+,0) relationships for the variables of FP,

UFP, and EFP as advocated by industry experts. The (+,+) relationship of the

74



VAF variable to KSLOC is definite. The VAF variable will be ANOVA tested

using a y=x 2 relationship. In a (+,+) relationship, a logarithmic

transformation of the both the independent and dependent variables

simultaneously, known as "In-In" transformations is also recommended (51).

The In-In transformation will not be used on any IVs except VAF. The

residual plot analysis also reveals heteroscedasticity in the data. As the IVs

become larger, so do the error variances. To correct for these unequal error

variances, the DV of KSLOC will be transformed by taking its natural

logarithm (51, 52:146). These models are depicted below in Table 6. VAF

Squared, VAF, and the natural log of VAF are each displayed being added to

UFP in relation to the natural log of KSLOC. A comparison of models F, G, and

H in Table 6 show VAF squared to be the best transformation of the VAF

variable. Note that only the "best" transformation of VAF (VAF Squared) are

shown in equations used to answer investigative questions in Table 6. The

ANOVA tables depicting these transformations are in Appendix E.

The iterative MAXR/COLLINOINT procedure discussed in Chapter 3

was used to develop model K in Table 6. Model K is the "best" model %%ith

collinearity mitigated using the model acceptance criteria in Chapter 3.

Model K does not include the CAMS data as discussed earlier. The choice of

WVs for model K included all the initial IVs as well as the transformations of

VAF and its interactions with other variables. The DV, KSLOC, has been

transformed to the natural log of KSLOC to correct for the heteroscedasticitN

seen in the residual plots. Note that the measures of R2 and CV each get

slightly worse in Table 6 after the transformations than prior to the

transformations. Additionally, these models do not meet the criteria set in

Chapter 3 except for the overall significance level of the model. The variable
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Table 6

ANOVA Results of Military Data. CAMS Deleted, VAF & KSLOC
Transformed

Dependent Variable: Ln KSLO Coefficients (P-Value in Brackets_

Model P-Value R-pred Root MSE bO bl b2 b3 b4

A 0.0001 0.3595 1.18832 3.80709 0.00014

[.0001] [.0001]

B 0.0001 0.3742 1.17461 3.76231 0.00017

1 1_ [.0001] [.0001]

C 0.0001 0.3469 1.19987 3.82883 0.00015

([.00011 [.0001]
D 0.0001 0.4742 1.08713 3.32641 0.00012 1.02833

[.0001] [.0001] [.0016]

E 0.0001 0.598 0.96008 2.88898 0.00043 1.57668 -0.00033

[.0001] [.0001] [.0001] [.0003]

F 0.0001 0.513 1.04624 -0.0713 0.0001 4.12556

[.9444] [.00301 [.00041
G 0.0001 0.5199 1.03882 1.78061 9.5E-05 2.24609

.[.0015] [.0065] [.0003]

H 0.0001 0.5053 1.05447 4.07427 0.00011 3.67924
[.0001] [.00131 [.0006]

I 0.0001 0.5402 1.02677 1.6579 0.00048 2.23348 -0.00026

[.0029] [.0714] [.0002] [.1439]

J 0.0001 0.5625 1.00149 1.89528 9.4E-05 1.76343 0.675375

[.0005] [.0055] [.0045] [.0319]

K 0.0001 0.6267 0.91858 2.0794 0.00037 1.07081 -0.0002 1.077551

[ .0001] [.0005] [.0013] [.0043] [.0524]
Models:

A: LR ,LOCbO + bl(FP)

B: LNKSIDCbO + bl(UFP)

C: LNKSIC-bO + bl(EFP)

D: LNKSI.LC=bO + bl(FP) + b2Lang

E: LMSIDC=b0 + bl(FP) + b2Lanq + b3(FP)Lang

F: LNKSLCbO + bl(UFP) + b2(VAF)

G: LNKSLOC=bO + bl(UFP) + b2(VAF Squared)

H: USIOL•bO + bl(UFP) + b2(Ln of VAF)

I: LNKSU)C-bO + b1UFP + b2(VAF Squared) + b3(UFP)(VAF Squared)

J: LNKSIlC-bO + blUFP + b2(VAF Squared) + b3Lang

K: LMNKSLCMbO + b1UFP + b2(VAF)(Lang) + b3(UFP)(Lang)(VAF Squared)

+ b4(VAF Squared)

Model K is the "best" available model in this
category with collinearity mitigated using the

condition number < 10 standard.
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coefficient's significance have become less significant as well.

Military Database Investigative Questions Addressed

Investigative Question I (IQI) was How well do function point values

predict SLOC for Air Force MIS/ADP projects? IQI will be addressed after

answering the subquestions associated with it. The information from Table 6

is used to answer the investigative questions. The first subquestion was

Investigative Question Ia (IQIa): How well do adjusted function points

predict SLOC in the military environment? Adjusted function points is a

very significant predictor of the natural log of KSLOC as demonstrated in

model A, Table 6. The model was significant to the 99.9% level. This model

does not provide a very good fit of the regression line as demonstrated by a

R2 of 0.3595. This is well below the recommended R2 value of 0.70. The

predictive capability of the adjusted function points is very low as

demonstrated by the CV equivalent of Root MSE of 118.83. This is well

beyond the recommended CV value of 50.

Investigative Question lb (IQIb): How well do unadjusted function

points predict SLOC in the military environment? The relationship between

unadjusted function points and the natural log of KSLOC as demonstrated in

model B, Table 6 is significant. The model was significant to the 99.9(7( level.

This model does not provide a very good fit of the regression line as

demonstrated by a R2 of 0.3742. This is well below the recommended RZ

value of 0.70. The predictive capability of the adjusted function points is

very low as demonstrated by the CV equivalent of Root MSE of 117.46. This

is well beyond the recommended CV value of 50. Note that unadjusted

function points has a slightly better goodness of fit and predictive capability

than adjusted function points.
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Investigative Question Ic (IQIc): How well do external function points

predict SLOC in the military environment? The relationship between

external function points and the natural log of KSLOC is very significant as

demonstrated in model B, Table 6. The model was significant to the 99.9%

level. This model does not provide a very good fit of the regression line as

demonstrated by a R2 of 0.3469. This is well below the recommended R2

value of 0.70. The predictive capability of the adjusted function points is

very low as demonstrated by the CV equivalent of Root MSE of 119.99. This

is well beyond the recommended CV value of 50. Note that external function

points has a slightly worse goodness of fit and predictive capability than the

other function point measures.

Investigative Question Id (IQId): To what degree is the relationship

between function points and SLOC affected by language? This question is

addressed by models D and E in Table 6. The inclusion of the Lang variable

in the model significantly enhances the model. By adding only Lang to the

model, the R2 and Root MSE improved significantly over the function point

only model. In model D, the coefficient of Lang was significant to the 99.84(

level. In model E, the coefficient of the Lang term was significant to the

99.99§7 level, and the coefficient of the interaction of function points and

Lang was significant to the 99.97% level. This demonstrates that the

segregation of function point measures by language is significant and

enhances function point's predictive capability. However, note that the Lang

models do not meet the criteria for the R2 or Root MSE established in Chapter

3.

Investigative Question Ie (IQIe): To what degree is the relationship

between function points and SLOC affected b% program complexit-? This
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question is addressed by models F, G. H, and I in Table 6. Models F, G, and H

are used to select the best transformation of VAF. As was the case with

Lang, the inclusion of a VAF-related variable in the model significantlN

enhances the model. By adding a VAF-related variable to the model, the R2

and Root MSE improved significantly over the function point only model.

The best VAF-related variable selected was VAF squared due to its R2 and

Root MSE values. In model G, the coefficient of VAF squared was significant

to the 99.97% level. In model I, the coefficient of the VAF squared term was

significant to the 99.98% level, and the coefficient of the interaction of

unadjusted function points and VAF squared was significant to the 85.617

level. This demonstrates that complexity in programs, measured by VAF

squared, is significant and enhances function point's predictive capability.

However, note that the VAF squared models do not meet the criteria for the

R2 or Root MSE established in Chapter 3.

Investigative Question If (IQIf): To what degree is the relationship

between function points and SLOC affected by program complexit, and

program language? This question is addressed by model J in Table 6. The

combination of VAF squared and Lang in a single equation definitelN

provides for a better model than an unadjusted function point model as

would be expected. Additionally, it provides for a better fit and predictive

capability than the previous models except for model E. This could impli

that more of the error of the estimates is explained by the Lang variable

than the VAF squared variable. The measures of R2 and CV do not differ

enough to support this contention though.

Investigative Question Ig (IQIg): Using all the available independent

variables and interactions between these variables, what is the best
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predictive model of SLOC in the military environment? This question is

addressed by model K in Table 6. Once again, this was the "best" model from

the SPDS database after the outlier (CAMS) was removed, appropriate IVs

and KSLOC were transformed after residual plot analysis, and the iterative

MAXR/COLLINOINT procedure was implemented to mitigate collinearity.

The model is exhibited below in equation (18).

LNKSLOC=2.0794 + 0.0004(UFP) + 1.0708(VAF)(Lang)
+ (-0.0002)(UFP)(Lang)(VAF Squared)

+ 1.0776(VAF Squared) (19)

where UFP is Unadjusted Function Points

LNKSLOC is the natural logarithm of KSLOC

Lang is the language indicator variable

Note that this model does not meet the acceptance criteria set in Chapter 3.

Each of the coefficients are statistically significant from the 94.76%7 to the

99.99% level. The model itself is statistically significant to the 99.999 level.

The model's goodness of fit falls short of the criteria. The model only has an

R2 of 62.677-. The predictive capability of the model is also lacking. With a

CV criteria of less than 50o7, the model exhibits a Root MSE (CV equivalent

measure under the logarithmic transformation of the DV) of 91.86g. As an

additional note, this model is to be used for programs of roughly the same

function point count as those in the cluster of data points in the SPDS

database after the deletion of the CAMS program. The relevant range for

future function point counts using this data will be 0 to 40,372 function

80



points. The 40,372 function point count is derived from the largest program

in the SPDS after the deletion of CAMS.

Outside of this relevant range, the ability to estimate SLOC is even

more tenuous because estimates would cnly be based on a regression line

fitted to the cluster of data and the CAMS data point. However, with the

limited data, an estimate based on minimal data is preferred to one based on

no data. The basis for an estimate outside the relevant range is found in

model I in Table 4. This is the "best" model for the entire SPDS database and

is displayed below.

KSLOC=-210.49 + 320.40(VAF) + 0.0129(UFP)(VAF)

+ 0.0159(UFP)(Lang)(VAF)

where UFP is Unadjusted Function Points

Lang is the language indicator variable

When this model was suggested, it was prior to the residual plot analysis

step. Since this model is based essentially on a regression line between the

cluster of data and the CAMS data point, two points in essence, assessing the

residual plots for transformations of the IVs would be inappropriate.

Howvever, the residual plot of this "best" equation's predicted values versus

the actual SLOC values will provide information on the variance of error

terms. The predicted values of the regression model are represented b\ the

term "pred". The residual plot is found in Appendix D, Table 17. Note that

the residual plot only depicts residuals in the relevant range since inclusion

of the CAMS residual would occlude detailed analysis of the residual plot due

to its magnitude.
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The residual plot reveals the existence of heteroscedasticity in the

data. As mentioned previously, transforming the DV by taking its natural

logarithm will mitigate the effects of heteroscedasticity (51). The new

equation is exhibited below:

LNKSLOC= -0.1056 + 4.279(VAF) + 9.950*10-6(UFP)(VAF)

+ 2.468* 10- 5(UFP)(Lang)(VAF) (20)

Where LNKSLOC is the natural logarithm of KSLOC

UFP is Unadjusted Function Points

Lang is the language indicator variable

Equation (20) represents the regression equation for function point

values outside the cluster of data points in the range of 40,372 to 297,313

function points. The statistics that describe this model are in Appendix E,

Table 22. This model is significant to the 99.99% level. Each of the non-v-

intercept coefficients are significant to the 98.1% level or higher. However,

the model does have a low predictive capability and substandard goodness

of fit. The model's R2 was 55.84%, well below the R2 acceptance criteria in

Chapter 3. With a CV criteria of less than 50%, the model exhibits a Root MSE

(CV equivalent measure under the logarithmic transformation of the DV) of

104.6%.

The answered IQI subquestions are the foundation for answering the

Investigative Question I (IQI) of how well do function point values predict

SLOC for Air Force MIS/ADP projects? Based on the SPDS database

information, a significant relationship exists between function points and

SLOC. In fact, all of the function point related values, including unadjusted

function points, external function points, VAF, and the language indicator
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variable, were highly significant. However, none of the models provided a

goodness of fit that met the crite-ia set in Chapter 3. Additionally, the

predictive capability of the models is lacking. The CV criteria measure of

less than or equal to 50 was nearly doubled. Therefore, expect high

variability in SLOC predictions when using these military models. Note that

unadjusted function points provides a better model than function points or

external function points. In fact, unadjusted function points appears twice in

the "best" model, model K in Table 6, whereas function points and external

function points do not appear at all. In conclusion, models based on the SPDS

data do not provide good predictions for SLOC. If the models depicted in

equations (18) or (19) are used, they should be used with caution and used

only in the relevant ranges of function points previously discussed.

Initial Results (Commercial Database)

The same general steps will be used to analyze the data in the

commercial database as used for the military database. The ANOVA

information to answer the IQII investigative questions is exhibited in Table

7 below. As in the military data, all of the models representing each of the

investigative questions were found to have a 99.9% level of significance as

seen in the first column. Also, note that in each model, except model A, the

R2 values surpasses the 0.70 criteria. In addition, each of the coefficient's

t-test significance levels for the function point oriented measures are

represented by p-values in brackets. The all of them are significant at the

99.9% level of significance. The coefficients for Lang, the language indicator

variable, in the various models appear significant except where the equation

contains another variable with Lang in it. This is attributed to collinearity

83



Table 7

ANOVA Results of Commercial Data, All Programs Included

Deendent Variable: KSLOC Coefficients (P-Value in Brackets)

Model P-Value R-euared C.V. Bo B1 B2 B3

A 0.0001 0.6521 62.74605 -22.6198 0.168594

[.2483] [.0001]

B 0.0001 0.7111 57.17882 -30.3988 0.180566

[.0950] [.0001]

C 0.0001 0.714 57.6754 -6.93042 0.166857 -69.8577

[.7116] [.0001] [.0083]

D 0.0001 0.7403 55.73963 -16.1114 0.178449 13.29625 -0.1106

(.3928] [.0001] [.7933] [.0681]

E 0.0001 0.7148 57.59059 27.29712 0.181938 -58.548

1 [.7522] [.0001] [ .4961]

F 0.0001 0.7464 55.07422 -239.775 0.612086 209.9718 -0.4281

[.1234] [.0055] [.17631 [.04401

G 0.0001 0.7566 53.95971 -20.3715 0.1777 5.122305 -60.4898

[.8069] [.0001] [.9517] [.0194]

H 0.0001 0.7746 51.93001 -23.6614 0.183943 3.548406 -0.09041

1 1 [.7667] [.00011 [.964b] [.0044]

Models:

A: KSLOC=b0 + bl(FP)

B: KSWO=bO + bl(UFP)

C: KSLOC=bO + bl(FP) + b2(Lang)

D: KSLOC=bO + bl(FP) + b2Lang + b3(FP)Lang

E: KSLOC=bO + bl(UFP) + b2VAF

F: KSIfLC=bO + bl(UFP) + b2(VAF) + b3(UFP)VAF

G: KSLOC=bO + bl(UFP) + b2(VAF) + b3Lang

H: KSLOC=bO + bl(UFP) + b2(VAF) + b3(UFP)Lang

Model H is the "best" available model in this

category with collinearity mitigated using the

condition number < 10 standard.

between Lang and the interactive variable. This is not thf" case for the

complexity rating of VAF. VAF appears highly insignificant bN itself as a

variable except when combined with another variable. The CV values for

each of these models is better than the best model in all the militarv

database ANOVA tables. Therefore, even the worst model in this table

provides better predictive capabilities than the best model in the military
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database. Another point is that the UFP based model proved to be a better

model of KSLOC than FP. The information needed to derive the EFP measure

was not available for this database. The same MAXRi'COLLINOINT procedure

used for the military data was used to obtain the "best" model for the

commercial database. This "best" model, model H, comes very close to

meeting the criteria set in Chapter 3. The coefficient for VAF is statistically

insignificant and the CV is just over the criteria threshold of 50 with a CV of

51.93. Model H also includes UFP instead of FP. This information shows that

unadjusted function points are a good measure for SLOC but the variabilit,

in the data cause doubt as to its predictive capability in the commercial

environment as well. As before, the supporting ANOVA tables will be found

in Appendix E.

Outlier Analysis (Commercial Database)

As is readily obvious from the above discussions, every model

associated with the investigative questions meets/surpasses the all the

preestablished criteria except the CV measure (and significance of the VAF

oriented coefficients) where each model did NOT meet the criteria of a CV

less than 50. Once again, the Coefficient of Variation (CV) should be less than

50%k (50, 59). The same procedure to check for outliers will be used on the

commercial database as was used on the military database to check for

outliers. The data used for outlier analysis is found in Appendix C, Table 14.

Outliers with respect to X. The first step in the analysis of outliers was

to examine those observations that were outliers with respect to X. The rule

of thumb used to determine potential outliers was, if the leverage value was

greater than (2"p)in (which equals 0.205 in this case), it w\as identified as an
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outlier (51). The observation #14 and the observation #29 programs in the

commercial database were the only programs that exceeded the leverage

value criteria. Therefore they were identified as potential outliers with

respect to X.

Outliers with respect to Y. To identify outliers with respect to Y the

studentized residual analysis was used. If the t-value is less than the

absolute value of the system studentized residual it is identified as an outlier

(51). The value from the t-tables was approximately 1.691 based on an

alpha of 0.10 with degrees of freedom equal to 35. Two programs,

observations #1 and #30 had studentized residuals that were greater than

the t-value and were identified as potential outliers with respect to Y.

Influential Outliers. The three methods used to identify the amount of

influence of outliers are: the influence of the fitted values (DFFITS), the

influence on the regression coefficients (DFBETAS), and Cook's distance test.

The criteria used to determine the influence of an outlier is if the DFFITS

absolute value is greater than 1, then the outlier is influential (51). Two

systems had DFFITS values greater than 1. The two systems were #1 and

#30 with DFFITS values of 1.4102 and 1.6647. Another criteria used to

determine the influence is if systems with DFBETAS greater than one were

considered potentially influential. The analysis revealed two observations

that had a significant influence on the regression coefficients of unadjusted

function points. #1 had a DFBETA of 1.2165 as did #30 with a DFBETA of

1.1919. Finally, if Cook's D is greater than Fratio for a 0.5 alpha, it is

indicative that it is an influential outlier. The Fratio is approximately 0.849.

None of the systems surpass the Cook's D criteria.
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None of the systems had a significant influence on the regression fit

consistently on all of influence criteria. The author is subjectively assessing

that the extent of the influence present is not large enough to warrant

deleting any observation.

Transformation Analysis (Commercial Database)

A similar procedure as was performed on the military data will be

used here to ascertain if any of the variables need to be transformed. If a

pattern emerges in the residual plot, it implies that the SIV variable in

question should be transformed to provide a better fit (50). Predication and

residual plots of the entire commercial database were plotted. These are

found in Table 18 in Appendix D. The two function point measures did not

appear to form any pattern. The VAF plots did show a definite (+,+)

relationship. The VAF variable will be transformed using a y=x 2 relationship

as well as in logarithmic transformations of the both the independent and

dependent variables simultaneously, known as "In-In" transformations. Also,

the logarithmic transformation of the DV is justified because the residual

plots of function points, unadjusted function points, and VAF show definite

heteroscedastic tendencies. The result of these transformations appear in

Table 8 below. Note that VAF squared appeared in model F as a better

variable than the Ln of VAF or VAF alone. Model J is the model, for the

commercial database, obtained from the MAXR/COLLINOINT procedure as

being the "best" possible model in the table with collinearity mitigated using

the condition number less than 10 standard.
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Commercial Database Investigative Questions Addressed

Investigative Question II (1Q11) was "Does the strength of the

prediction relationship between function points and SLOC differ for Air Force

Table 8

ANOVA Results of Commercial Data, VAF & KSLOC Transformed
Dependent Variable: IJKSLOC

Coefficients (P-Value in Brackets)

Model P-Value R-Scmred Root MSE bo bl b2 b3

A 0.0001 0.6117 0.66409 3.02872 0.001496

[.0001] [.0001]
B 0.0001 0.6245 0.65299 2.999831 0.00155

[.0001] [.0001]

C 0.0001 0.697 0.59473 3.19743 0.001477 -0.751191

[.0001L [.0001] [.0030]

D 0.0001 0.7037 0.59639 3.24008 0.001423 -1.137485 0.000514

(.0001] [.0001] [.0270] [.3775]

E 0.0001 0.6247 0.66187 3.101147 0.001553 -0.102812

[.0015] [.0001] [.9092]

F 0.0001 0.625 0.66155 3.098582 0.001554 -0.099679

_ [.0001] [.0001] [.82721

G 0.0001 0.6245 0.66199 2.99653 0.00155 -0.007033

[.0001] [.0001] [.9936]
H 0.0001 0.6272 0.66904 3.426312 0.001041 -0.427803 0.000504

[.0005] [.3792] [.6251] [.6589]

I 0.0001 0.6961 0.60401 2.883376 0.001497 0.30001 -0.725319

[.0001] [.0001] [.4967] [.0071]

J 0.0001 0.7141 0.58588 3.251622 0.001417 -1.122414 0.000516

[(.0001] [.0001] [.0128] [.2910]

Models:

A: LNKSLOC'bO + b1FP

B: LNKSLEC4b0 + b1UFP

C: L1KSLOC-bO + b1FP + b2Lang

D: L•NSLOC-0 + b1FP + b2Lang + b3(FP)(Lang)

E: LNKSLOC-bO + b1EJP + b2VAF

F: LNKSU)C-bO + b1UFP + b2(VAF Squared)

G: LNKSLO(CbO + b1UFP + b2(Ln of VAF)

H: L•KSLOC-bO + b1UFP + b2(VAF Squared) + b3(UFP)(VAF Squared)

I: LNKSLOC-bo + b1UFP + b2(VAF Squared) + b3Lang

J: LNKSLOC-bO + b1FP + b2(VAF)(Lang) + b3(UFP)(Lang)(VAF Squared)

Model G is the "best" available model in this category with

collinearity mitigated using the condition number < 10 standard.
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and non-Air Force projects?" IQII will be addressed after answering the

associated subquestions using information from Table 8. The first

subquestion was Investigative Question Ila (IQIlIa): How well do adjusted

function points predict SLOC in the commercial environment? Adjusted

function points is a very significant predictor of the natural log of KSLOC as

demonstrated in model A, Table 8. The model was significant to the 99.9%

level. This model does not provide the goodness of fit of the regression line

specified in the selection criteria. The R2 of 0.6117 is well below the

recommended R2 value of 0.70. The predictive capability of the adjusted

function points is low as demonstrated by the CV equivalent of Root MSE of

66.409. This is well beyond the recommended CV value of 50.

Investigative Question hIb (IQlIb): How well do unadjusted function

points predict SLOC in the commercial environment? Unadjusted function

points is a very significant predictor of the natural logarithm of KSLOC as

demonstrated in model B, Table 8. The model was significant to the 99.9/'

level. This model does not provide a good fit of the regression line as

demonstrated by a R2 of 0.6245, well below the recommended R2 value of

0.70. The predictive capability of the unadjusted function points is very low

as demonstrated by the CV equivalent of Root MSE of 65.299. This is does

not meet the recommended CV value of 50. Note that unadjusted function

points has a slightly better goodness of fit and predictive capability than

adjusted function points.

Investigative Question Ilc (IQIIc): To what degree is the relationship

between function points and SLOC affected by language? This question is

addressed by models C and D in Table 8. The inclusion of the Lang variable
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in the model significantly enhances the model. By adding only Lang to the

model, the R2 and Root MSE improved significantly over the function point

only model. In model C, the coefficient of Lang was significant to the 99.7/

level. In model D, the coefficient of the Lang term was significant to the

97.3% level, and the coefficient of the interaction of function points and Lang

was insignificant. It was probably insignificant due to collinearity with the

Lang term. The significant Lang variables demonstrate that the segregation

of function point measures by language is significant and enhances function

point's predictive capability in the commercial environment. However, note

that the Lang models do not meet the criteria for the R2 or Root MSE

established in Chapter 3.

Investigative Question Ild (IQIld): To what degree is the relationship

between function points and SLOC affected by complexity? This question is

addressed by models E, F, G, and H in Table 8. Models E, F, and G are used to

select the best transformation of VAF. By adding a VAF-related variable to

the model, the R2 did not change significantly and Root MSE marginally

degraded over the unadjusted function point only model. The best VAF-

related variable selected was VAF squared due to its R2 and Root MSE

values. In model F, the coefficient of VAF squared was insignificant. In

model H, the coefficient of the VAF squared term was insignificant, as %%as

the coefficient of the interaction of unadjusted function points and VAF

squared. These models demonstrate that complexity in programs, measured

by VAF squared, is insignificant and do not enhance function point's

predictive capability. As would be suspected, note that the VAF squared

models do not meet the criteria for the R2 or Root MSE established in Chapter

3.
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Investigative Question HIe (IQIIe): To what degree is the relationship

between function points and SLOC affected by program complexity and

program language in the commercial environment? This question is

addressed by model I it, Table 8. The combination of VAF squared and Lang

in a single equation provides for a minimally better model than an

unadjusted function point model as would be expected. Additionally, it

provides for a better fit and predictive capability than the previous models

except for model D. This could imply that more of the error of the estimates

is explained by the Lang Variable than the VAF squared variable. The

measures of R2 and CV do not differ enough to support this contention

though.

Investigative Question lIf (IQIIf): Using all the available independent

variables and interactions between these variables, what commercial model

provides the best statistical attributes devoid of collinearity? This question

is addressed by model J in Table 8. Once again, this was the "best" model

from the SPDS database after the outlier (CAMS) was removed, appropriate

IVs and KSLOC were transformed after residual plot analysis, and the

iterative MAXR/COLLINOINT procedure was implemented to mitigate

collinearity. The model is exhibited below in equation (21).

LNKSLOC=bO + bIFP + b2(VAF)(Lang) + b3(UFP)(Lang)(VAF Squared) (21)

where FP is Adjusted Function Points

LNKSLOC is the natural logarithm of KSLOC

Lang is the language indicator variable
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Note that this model does not meet the acceptance criteria set in Chapter 3.

Each of the coefficients are statistically significant from the 70.97 to the

99.99% level. The model itself is statistically significant to the 99.9917( level.

The model's goodness of fit narrowly surpasses the criteria. The model only

has an R2 of 71.41%. The predictive capability of the model is lacking. With

a CV criteria of less than 50, the model exhibits a Root MSE (CV equivalent

measure under the logarithmic transformation of the DV) of 58.588. The

relevant range for future function point counts using this data will be 0 to

2,307 function points. The 2,307 function point count is obtained from the

largeýst program in the commercial database.

The answered IQI subquestions are the foundation for answering the

Investigative Question II (IQII), "Does the strength of the prediction

relationship between function points and SLOC differ for Air Force and non-

Air Force projects?" The commercial database information exhibited a

significant relationship exists between function points and SLOC as was the

case in the SPDS data. Unlike the SPDS data, all of the function point related

values, including unadjusted function points, VAF, and the language indicator

variable, were not significant. All the VAF term coefficients in the

commercial database were insignificant. While none of the SPDS models

provided a goodness of fit that met the criteria set in Chapter 3, only the

"best" commercial model (model J) marginally surpassed the R2 criteria of

70%. Therefore, both database's models do not measure the total variability

in the dependent random variable explained by the regression line very

well. Additionally, the predictive capability of all of the models is lacking.

Neither the SPDS nor the commercial database models met the CV criteria

measure of less than or equal to 50. Therefore, expect high variability in
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SLOC predictions when using the commercial and military models, especially

with the military based models. Also, note that unadjusted function points

provided a better model than function points in both cases. In the military

models, unadjusted function points appears twice in the "best" model, model

K in Table 6, whereas function points and external function points do not

appear at all. Comparatively, in the commercial "best" model, function points

and unadjusted function point measures were selected. In conclusion, as was

the case with the SPDS models, models based on the commercial data do not

provide good predictions for SLOC. If the SPDS or commercial models

depicted in equations (19), (20), or (21) are used, they should be used with

caution and used only in the relevant ranges of function points previously

discussed.

Function Point to SLOC Conversion

Investigative Question III (IQIII) asked "How well do function

point-to-SLOC conversion tables created from Air Force and commercial data

compare to function point-to-SLOC conversion tables provided b% industrN

experts?" This section summarizes how well function point-to-SLOC

information within the SPDS database (military database) and the

commercial database compare to function point-to-SLOC conversion tables

provided by industry experts. Table 9 summarizes the supporting

information. To address this question for the military database, regression

using the 26 COBOL only programs from the military database was applied to

test the relationship between function points and COBOL SLOC. The test is

limited to only the COBOL programs because that is the only single language
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Table 9

Function Point to SLOC Conversion Comparisons
(Military & Commercial Databases)

MILITARY DATA:
Coefficients (P-Value in Bracketsj

I•de P-Value R-Squared C.V. Bo Bl B2 B3

A 0.0001 0.872 82.29642 64.361749 0.013804 149.62475

1 [.1431] (.0001] 1.01351

B 0.0001 0.9056 71.35031 69.496854 0.013403 55.987004 0.018734

[.07001 [.0001] [.3158] [.0001]

C 0.0001 0.9631 64.59484 69497 13.402644

[.0359] [.00011

D 0.0001 0.9594 69.49692 13.663468

________ .0001] ________

Modx~lels:

A: LSWCC-O + blFP + b2Lang

B: KSLOC=bO + blFP + b2Lang + b3(FP)Lang

C: SLICb0 + bl(FP)

D: SLOC-bO(FP)

NOTE: Models C & D are limited to the COBOL only programs. Model D

has no intercept in the equation.

COMMERCIAL DATA:
Coefficien (P-Value in Brackets

Model P-Value R- mared C.V. Bo BI B2 B3

E 0.0001 0.714 57.6754 -6.930423 0.166857 -69.85771

[.7116] [.00011 [.0083]

F 0.0001 0.7403 55.73963 -16.1114 0.178449 13.296245 -0.110602

- [.3928] [.0001] [.7933] [.06811

G 0.0001 0.7174 53.23012 -16111 178.4488
[ .45531 [ .00011

H 0.0001 0.8603 52.89721 165.13743

[.00011

Models:

E: KSLOC-W + b1FP + b2Lang

F: KSLO.=bO + blFP + b2Lang + b3(FP)Lang

G: .. ,C=b + bl(FP)

H: SfLC-bO(FP)

NOTE: Models G & H are limited to the COBOL only programs. Model H

has no intercept in the equation.

with enough programs, 26, to be considered a statistically valid sample.

Models of the relationship between function points and SLOC will allow for a
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regression-based y-intercept as well as a v-intercept set to zero. The

function point-to-SLOC conversion tables reflect a linear relationship in

which the Y-intercept is set to zero. By including the regression with the N-

intercept, a comparison to the forced y-intercept of zero is possible. The

statistics will validate the merit of the SLOC to function point conversion

tables, at least for the COBOL. A similar analysis was used to test the 31

COBOL programs in the commercial database. Additionally, an analysis of the

answers to investigative questions IQId and IQIIc will be included. These

are the questions that determine the degree of the relationship between

function points and SLOC is affected by language. While the data is limited,

there is an adequate number of COBOL programs to make an assessment of

that portion of the conversion tables.

For the military database with CAMS included, models A and B are

provided to show that Lang is a significant factor. In model A, the coefficient

of Lang is significant to the 98.65% level. As a reminder, Lang is the variable

that measures the significance in the difference between COBOL only

programs and the remaining programs. Testing was limited to programs

written onl in COBOL because that is the only single language with enough

samples to be considered valid. Models C and D depict ANOVA table values

for these 26 military COBOL programs. Note in model C that the y-intercept

is large in magnitude and is significant. Model C is also a better model based

on R2, CV, and F-test criteria than model D, implying that the linear

relationship with a zero y-intercept hypothesized may not be appropriate.

Since the SLOC to function point conversion table concept implies a direct

linear relationship between the two, the y-intercept is zero. Model D, via

SAS, has forced the y-intercept to zero in order to test this hypothesis.
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Model D has a significance level of 99.9(4 and a R2 of 0.9594. Hoinerer, its

poor predictive capability is reflected in the CV of 69.49692. Therefore, it

appears that the model and its goodness of fit are very significant, but its

predictive capability is lacking. The coefficient of function points is 13.663.

This yields a 13.663 COBOL SLOC/function point conversion factor. This

differs significantly from the 100 COBOL SLOC/FP suggested by Reifer

(61:164) and the 105 COBOL SLOC/FP suggested by Jones (33:98, 34:76). It

can be concluded that based on the data from the SPDS database, the

industry standard SLOC/FP conversion factors should not be used on military

ADP programs.

For the commercial database, models E and F are provided to showv

that Lang is a significant factor. In model E, the coefficient of Lang is

significant to the 99.17% level. In the commercial database there are 31

COBOL only programs. Once again, testing was limited to the COBOL only

programs because COBOL is the only single language with enough samples to

be considered valid for the commercial database as well. Models G and H

depict ANOVA table values for these 31 commercial COBOL programs. Model

H forced the y-intercept to zero in order to address the investigative

question. Model H has a significance level of 99.9% and a R2 of 86.0317.

However, its predictive capability is reflected in the CV of 52.89721. Note in

model G that the y-intercept ii large in magnitude but insignificant,

supporting the notion that the 0-intercept model is appropriate. Therefore,

it appears that the model and its goodness of fit are very significant, but its

predictive capability is slightly worse that the criteria set in Chapter 3. The

coefficient of function points is 165.14. This yields a 165.14 COBOL

SLOC/function point conversion factor. As in the military database, this
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differs significantly from the 100 COBOL SLOCETP suggested by Reifer

(61:164) and the 105 COBOL SLOC/FP suggested by Jones (33:98, 34:76). A

possible reason for such a vast difference is that the programs in the

commercial database were being developed when function points was a new

concept and standardized counting methodologies were hadn't been

developed yet. It can be concluded that based on the data from the

commercial database, the industry standard SLOC/FP conversion factors are

not supported based on data from older, commercial ADP programs. With

such a large range (13 tO 165) for COBOL SLOC to function points between

these two databases, conversion factors as useful SLOC estimating tools are

tenuous at best. Additionally, conversion factors should only be used on

programs that are very similar (same development group or company, same

timeframe, same type of application) to the database from which they were

developed.
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V. Suminnarv and Recommendations

Introduction

Chapter 5 summarizes the results of the research based on iterations

of modeling the relationships between various function point-related

independent variables and the number of SLOC on a software project. The

summary discusses these relationships in the military and commercial

environment. The recommendations for use of the models and for future

study are also provided.

Summary

The major objective of this research was to determine how v well

function point values predict SLOC for MIS/ADP projects. Based on the use

of a database of programs developed by the military and a database of

programs developed commercially, a comparison between the function point

to SLOC predictive capabilities was performed. The methodology for this

comparison was divided into two parts. First, for each development

environment, the various function point measures and their derivatives

were incorporated into models to ascertain these measure's predictive

capability, significance level, and measure of fit of the predicted regression

line. Second, for each of the two environments, the "best" possible model

was developed having the most predictive capability, having the highest

significance, and providing the best measure of fit of the predicted SLOC

values to the SLOC values. Finally, some industry experts have supported

the use of function point to SLOC conversion tables. The concept was tested

using the limited data available in the two databases for each environment.
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Military Models

Using information from the military environment, each of the various

function point measures and their derivatives were assessed using modeling

techniques. Outlier analysis revealed the need to delete one observation, the

CAMS program from the SPDS database. Analysis of prediction and residual

plots revealed the need to transform the VAF variable and the dependent

variable of KSLOC. After assessing the various transformations of the

independent variables, dependent variables, and deletions of the possible

outlier observations, it was demonstrated that the unadjusted function point

measure by itself to be a better predictor of SLOC than the function point

measure. Unadjusted function points is the function point count prior to

being multiplied by the VAF. External function points, function point

measures based solely on external inputs/outputs to an application

boundary, proved to be the worst predictor of SLOC of the three function

point measures. Note that none of the function point measure models

fulfilled the criteria of a 70% significance level, a 70% R2, and a coefficient of

variation less than 50%.

In the military environment, the significance of the independent

variables, the Lang variable and the Value Adjustment Factor (VAF) were

also assessed. The Lang variable measured the significance of the the COBOL

only programs ability in the military data in the database to aid in predicting

SLOC versus the other programs with mixtures of languages and other

languages. Lang was extremely significant, implying a significant difference

between function point counts in differing languages. VAF, the variable

measuring complexity, was an extremely significant contributor to SLOC

estimations. VAF's significance supported the need to account for differing
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levels of program complexity. Residual plot analysis had identified that the

variable VAF increases at an increasing rate in relation to SLOC.

Combining the VAF term and Lang variables simultaneously onlN added

marginal improvements over models with these terms included singularly.

Using all the available independent variables and interactions

between these variables, a military model providing the best statistical

attributes devoid of collinearity was developed. The model is exhibited

below.

LNKSLOC=2.0794 + 0.0004(UFP) + 1.0708(VAF)(Lang)
+ (-0.0002)(UFP)(Lang)(VAF Squared)

+ 1.0776(VAF Squared)

where UFP is Unadjusted Function Points

LNKSLOC is the natural logarithm of KSLOC

Lang is the language indicator variable

The model itself is statistically significant to the 99.99% level, has an R2 of

62.67%, and a Root MSE (CV equivalent measure under the logarithmic

transformation of the DV) of 91.867c. For usage, the relevant range for

future function point counts using this data will be 0 to 40,372 function

points. For programs outside this relevant range, a regression line was fitted

to the cluster of data and the deleted influential outlier. Although a very

tenuous model, the model is displayed below.

LNKSLOC= -0.1056 + 4.279(VAF) + 9.950*10-6(UFP)(VAF)
+ 2.468* 10-5(UFP)(Lang)(VAF)

Where LNKSLOC is the natural logarithm of KSLOC
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UFP is Unadjusted Function Points

Lang is the language indicator variable

This equation represents the regression equation for function point values in

the range of 40,372 to 297,313 function points. This model is significant to

the 99.99% level, has an R2 of 55.84%, and a Root MSE (CV equivalent

measure under the logarithmic transformation of the DV) of 104.6%.

Although a significant relationship exists between function points and

SLOC, none of the military models provided a goodness of fit, predictive

capability, and significance level simultaneously to make it an acceptable

model. Therefore, expect high variability in SLOC predictions when using

these military models. If either of the military models depicted above are

used, they should be used with caution and used only in the relevant ranges

of function points mentioned.

Commercial Models

Using information from the commercial environment, each of the

various function point measures and their derivatives were assessed using

modeling techniques. Outlier analysis revealed that no observations were

influential enough to be deleted. As with the military data, analysis of

prediction and residual plots revealed the need to transform the VAF

variable and the dependent variable of KSLOC. After assessing the various

transformations of the independent variables, dependent variables, and

deletions of the possible outlier observations, it was demonstrated that the

unadjusted function point measure by itself to be a better predictor of SLOC

than the function point measure.
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In the commercial environment, the significance of the independent

variables, the Lang variable and the Value Adjustment Factor (VAF) were

also assessed. The Lang variable measured the significance of the the COBOL

only programs ability in the commercial data in the database to aid in

predicting SLOC versus the other programs with mixtures of languages and

other single languages. Lang was extremely significant, implying a

significant difference between function point counts in differing languages.

Differing from the military data, VAF and its possible tranforms were an

insignificant contributor to SLOC estimations. Residual plot analysis had

identified that the VAF variable increases at an increasing rate in relation to

SLOC. The combination of VAF squared and Lang in a single equation

provided for a minimally better model than an unadjusted function point

model as would be expected.

Using all the available independent variables and interactions

between these variables, a commercial model providing the best statistical

attributes devoid of collinearity was developed. The model is exhibited

below.

LNKSLOC=bO + blFP + b2(VAF)(Lang) + b3(UFP)(Lang)(VAF Squared)

where FP is Adjusted Function Points

LNKSLOC is the natural logarithm of KSLOC

Lang is the language indicator variable

The model itself is statistically significant to the 99.99% level, has an R2 of

71.41%, and a Root MSE (CV equivalent measure under the logarithmic

transformation of the DV) of 58.588§7. For usage, the relevant ranke for
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future function point counts using this data will be 0 to 2,307 function

points. Each of the coefficients are statistically significant from the 70.9Y to

the 99.99% level.

Although a significant relationship exists between function points and

SLOC in the commercial environment, none of the commercial models

provided a goodness of fit, predictive capability, and significance level

simultaneously to make it an acceptable model. Note that the models

derived from the commercial data were consistently better models than

those derived from the military data. However, expect high variabilitN in

SLOC predictions when using these commercial models. As with the military

models, the "best" commercial model should be used with caution and used

only in the relevant range of function points mentioned.

SLOC to Function Point Conversion Factors

The research shows that there is some validity to the concept of

creating function point to SLOC conversion tables. However, it does not

necessarily support the function point to SLOC conversion tables provided by

industry experts. The military database, using solely the COBOL only

programs and an ANOVA with the intercept set to zero as would be the case

in a function point to conversion table. The relationship yielded a 99.9q

significance level, an R2 of 95.94%, and a CV of 69.5. This function point

conversion relationship was highly significant and provided a good fit of the

data. However, it did have a lot of variability in its predictive capability

though. Industry experts submit that the number of COBOL SLOCs to

function points are 100 COBOL SLOC/function point (61:164) or 105 COBOL
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SLOCs/function point (34:105). The military data yielded a 13.66 COBOL

SLOC/function point conversion factor.

As with the military data, the commercial data research also shows

that there is some validity to the concept of creating function point to SLOC

conversion tables. However, it did not necessarily support the function point

to SLOC conversion tables provided by industry experts. The COBOL only

programs in the commercial database yielded a 99.9% significance level, an

R2 of 86.03%, and a CV of 52.89. This function point conversion relationship

was highly significant and provided a good fit of the data. It did have some

variability in its predictive capability though. Once again, industry experts

submit that the number of COBOL SLOCs to function points are 100 COBOL

SLOC/function point (61:164) or 105 COBOL SLOCs/function point (34:105).

The commercial data yielded a 165.14 COBOL SLOC/function point conversion

factor.

Recommendations for Use

There is definitely a relationship between the various function point

measures and KSLOC. The "best" models for the commercial and military

databases are only recommended for future use on other programs that are

similar to the programs in the database used to build the model. By looking

at the differences in the "best" models from each of the two environments.

the need to use models developed in similar environments is made clear.

The "best" models for each environment contain much variability from the

actual KSLOC values. This variability in the military data may have come

from different SLOC counting methodologies used or the different levels of

training that individual function point counters had received at the Standard
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Systems Center. The variability in the commercial models maN be attributed

to the lack of well established function point counting methodologies at the

time that the counts were made. The International Function Point Counting

Practices Manual is recommended as an current, definitized standard for

making function point counts.

The concept of function point to SLOC conversion tables is justified.

However, the conversion tables to be used should be based on similar

programs developed in similar environments. Universally applicable

function point to SLOC conversion tables were not supported by this

research.

Finally, there is a need to perform statistical modeling techniques for

model function point equations rather than use the standard function point

equation. This research definitely supports the concept that transformations

of and interactions between the standard function point variables can lead to

better models than the standard function point model.

Recommendations for Future Study

There are several areas related to this research which would benefit

from additional study. For example, the effects of different SLOC counting

methods have on function points ability to model SLOC should be researched.

If all the programs under consideration could have the SLOC counted under

the various SLOC counting methodologies, it would be possible to perform a

similar analysis as in this paper to assess which SLOC counting method

provides the best results.

A study of the repeatability of function point counts using the IFPUG

User's Counting Practices Manual with different personnel at differing levels
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of training would be justified. There maN be some subjectivity as to the

interpretation of the IFPUG standards leading to variability in the function

point counts as counted by different personnel.

Further study into the validity of the use of function points,

unadjusted function points, and external function points would be justified.

They are all based on functionality, but, may differ in validity and

predictability as the type of application differs outside the military

environment.
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Appendix A: Definition of Terms

Function Point Analysis (FPA): FPA is dependent on the end-user defined

functionality of the system. "A function point is defined as one end-user

business function" (15:5). More specifically, "initial application

requirements statements are examined to determine the number and

complexity of various inputs, outputs, calculations, and databases required"

which are weighted and then summed to derive a function point count,

which is then used to provide an estimate of the software project (31:91).

Software Sizing: "predicting the quantities of source code, specifications, test

cases, user documentation, and other tangible deliverables that are the

outputs of software projects" (35:2).

International Function Point Users Group (IFPUG): The lFPUG is a group of

function point users, mostly from industry, who are providing and

maintaining function point counting standards and procedures in an effort to

promote consistency in the area of function points (27:v,1).

IFPUG Function Point Counting Practices Manual: "a collection of many

interpretations of the rules to a truly coherent document which represents a

consensus view of the rules of function point counting" (27:iii).

Software Process Database System (SPDS): The database repository of

function point data collected on all Air Force automated data processing

projects at the Standard Systems Center (SSC), Gunter AFB, AL. (41:1).
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SLOC: "An instruction written in assembler or higher order language is often

referred to as a source line of code (SLOC) to differentiate it from a machine

instruction" (21:3).

Management Information System (MIS)! Automated Data Processing

Systems (ADP): "System providing uniform organizational information to

management in the areas of control, operations, and planning. MIS usuallN

relies on a well-developed data management system, including a data base

for helping management reach accurate and rapid organizational decisions"

(22:342). Data processing is defined as "sorting, recording, and classifying

data for making calculations or decisions" (22:143). For the purposes of this

research, MIS and ADP will be used interchangeably since they are used that

way in the literature. The idea is to differentiate business oriented systems

from highly complex, algorithmic scientific oriented systems as is done in the

literature. One author states that non-business applications are "applications

that have a higher proportion of logic to functions" (29:26).

Scientific. Embedded (as in embedded algorithms), and Real-time Systems: A

system "high in algorithmic complexity but sparse in inputs and outputs...

An algorithm is defined as the set of rules which must be completely

expressed in order to solve a significant computational problem" (34:82-83).

Being more mathematically intense than MIS systems, these systems

typically involve parallelism, synchronization, and concurrency processing

problems not associated with MIS systems (61:161). Parallelism and

concurrent processing mean that computer processing will perform tasks
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simultaneously rather than one task at a time. Synchronization carries this

concept one step further, meaning that the parallel tasks are completed in a

precise timely manner in order to effect the time critical processing

required. Examples of this type of software would be observed in the

following type systems: missile defense systems, radar navigation packages,

telephone switching systems, computer aided design systems, and simulation

software (34:81-82). For the purposes of this research, real-time, embedded,

and scientific systems will be used interchangeably since they are used that

way in the literature.

Validity: "The ability of an instrument (e.g., a test, a questionnaire, an

interview, etc.) to actually measure the quality or characteristic it was

originally intended to measure" (4:278).

Reliability: "The reliability of a measure refers to its trustworthiness. In

other words, it expresses the repeatability, stability, or consistency of the

measure. The reliability coefficient, which is typically obtained through usc

of the simple correlation coefficient (although other methods of computing

reliability are possible), indicates how consistent the scores obtained on a

measure are" (4:282-283).

Accuracy: According to the 1991 on-line American Heritage Dictionary,

accuracy is "having no errors; correct."
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Appendix B: Function Point Databases

Table 10: Appendix Variable Explanation

KSLOC: Kilo-SLOC

FP: adjusted function points

UFP: unadjusted function points

EFP: external function points

CMPLX: a subjective obsolescence complexity tactor of 1, 2, or 3

LANGUAGE: an indicator variable denoting that the program is COBOL-

only, other single language, or a mixed language program

VAF: the value adjustment factor

OBSOL: the obsolescence complexity factor

LANG: the language indicator; 0 if COBOL-only, I if other

VAFLANG" LANG*VAF

OBSLANG: LANG*OBSOL

FPLANG: FP*LANG

UFPOBS: UFP*OBSOL

RPOBS: FP*OBSOL

UV: UFP*VAF

FV: FP*VAF

UL: UFP*LANG

ULV: UFP*LANG*VAF

FPSQRT: FPo.5

FPSQOVR: FP(-0 5 )

FPOVR: FP(-1 )

UFPSQRT: UFPo-5
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UFPSQOVR: 1jFP(-( 5).

UFPOVR: UFP( 1I)

EFPSQRT: EFPO 5

EFPSQOVR: EFP(-0 5)

EFPOV R: EFP(1)

VAFSQD: VAF-2

LNVAF: natural logarithm of VAF

LNKSLOC: natural logarithm of KSLOC

UVSQD: UFP*VAFSQD

FPSLANG: FPSQRT*LANG

ULVSQD: UFP*LANG*VAFSQD

SLOC: KSLOC* 1000



Table 11
SPDS Database

L
A
N

K CG 0

P S MU BL
OR L U EPA V SA
BG 0 F F FLG A ON
S x c p p PXE F I-G

1 SPDS 30.00 2859.04 2672 2106.83 2 1 1.07 16 1

2 SPAS 302.01 16378.20 15165 14965.56 2 1 1.08 16 1

3 CALM 61.00 1095.48 1074 1023.06 1 1 1.02 . 1

4 ATRAS 52.47 385.44 438 247.28 2 0 0.88 16 0

5 AIRMDD 32.70 487.32 524 402.69 1 0 0.93 . 0

6 AIS1IRA 18.52 52.56 73 47.52 2 0 0.72 18 0

7 B-TWRAPS 6.42 549.78 561 516.46 2 0 0.98 17 0

8 CEERS 9.06 105.82 143 u-;..2 1 C 0.7, 0

9 CEM0 30.15 149-L0 210 114.31 1 0 0.71 0

10 COARS 124.32 2291.10 2182 1937.25 2 0 1.05 18 0

11 CMDS 144.66 2974.14 2542 2817.36 1 0 1.17 0

12 CMD-RP 20.17 931.84 896 794.56 1 0 1.04 0

13 C-WIle 596.64 10552.41 8721 8421.60 1 0 1.21 0

14 CAMS 4028.06 297312.75 230475 241596.36 3 0 1.29 28 0

15 fLGFUR 38.86 577.68 696 535.35 1 0 0.83 0

16 LOGPIAN 32.88 697.48 742 660.82 1 0 0.94 0

17 M-TWRAPS 6.39 614.46 627 585.06 2 0 0.98 17 0

18 MMAS 76.40 769.46 974 669.92 2 0 0.79 15 0

19 MR 9.98 304.95 321 228.80 2 0 0.95 15 0

20 1•UIS 26.56 352.00 440 312.80 2 0 0.80 22 0

21 FMIS-C 5.95 425.60 608 399.70 2 0 0.70 17 0
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Table 11 Continued
SPDS Database

L
A
N

K CG 0
P S MU BL

OR L U EPA V SA
BG 0 F F FLG A ON

___& c p P p x E F L -G

22 OLVIMS 771.01 6770.50 6396 5865.20 3 0 1.10 24 0

23 CPSMDD 41.28 881.10 979 774.00 1 0 0.90 0

24 PPl' 40.06 1709.68 1988 1619.38 1 0 0.86 0

25 RAFAS-A 35.74 100.80 140 95.76 2 0 0.72 18 0

26 RAFAS-B 20.35 107.28 149 102.24 2 0 0.72 18 0

27 T-MIL 11.68 827.52 862 801.60 2 0 0.96 15 0

28 TRAFDIST 73.98 2500.69 2213 2304.07 1 0 1.13 . 0

29 UMM 8.28 14.28 21 9.52 2 0 0.68 16 0

30 AFSCAPS 157.19 3296.88 2892 2823.78 2 2 1.14 19 1

31 AFOR1M 265.60 3171.37 3079 2811.90 3 2 1.03 24 1

32 ADRSS 22.20 199.95 215 153.45 - 2 0.93 23 1

33 BMDS-M 26.35 258.96 249 227.76 2 2 1.04 19 1

34 E•DS 31.63 390.10 415 346.86 2 2 0.94 14 1

35 BLISS 91.89 1595.16 1477 1434.24 2 2 1.08 16 1

36 ELAMES 23.51 89.27 113 61.62 2 2 0.79 14 1

37 BASE-WIM 655.58 9506.70 7545 8399.16 1 2 1.26 . 1

38 BAS 18.86 1825.95 1739 1599.15 2 2 1.05 18 1

39 BCAS 277.43 4958.40 4132 4314.00 3 2 1.20 23 1

40 CBAS-I 169.67 4613.44 4436 4304.56 2 2 1.04 17 1

41 CBAS-II 375.50 16627.82 13742 13510.86 2 2 1.21 22 1

42 CSS 100.16 1719.39 1549 1548.45 2 2 1.11 18 1
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Table 11 Continued
SPDS Database

L
A

N
K CG 0
S M U B L

O R L U E P A V S A
BG 0 F F FLG A ON
SM C p p PXE F LG

43 DDS 83.00 1028.61 1039 952.38 2 2 0.99 22 1

44 WARS 71.29 1814.58 1779 1743.18 2 2 1.02 21 1

45 DMS1100- 361.85 556.25 625 500.18 3 2 0.89 26 1

46 GAFS 774.63 9184.00 8896 9117.92 3 2 1.12 28 1

47 IOOGMOD-B 240.98 1885.95 1905 1810.71 1 2 0.99 . 1

48 MAMS 38.02 247.64 302 151.70 2 2 0.82 18 1

49 MEDU)G 514.67 5554.26 4707 5015.00 2 2 1.18 22 1

50 S3AS 480.21 3233.44 2887 2653.28 2 1 1.12 21 1

51 S1100-UT 21.59 249.30 277 212.40 2 2 0.90 21 1

52 SBSS 1501.61 40371.92 32558 38232.92 3 2 1.24 25 1

53 SIMS 608.98 6201.09 5211 5814.34 3 2 1.19 23 1

54 UMS 10.57 423 2 2 0.65 14 1

55 IO-AUIMD 36.06 1096 2 1 0.65 14 1

56 JAMPS 76.85 660.38 623 588.30 3 1 1.06 24 1

55 IO-AUr1D 36.06 1096 2 1 0.65 14 1

56 HAMPS 76.85 660.38 623 588.30 3 1 1.06 24 1

57 PDS 26.64 1111 2 1 0.65 20 1

58 SIS 756.00 430.55 545 273.34 2 1 0.79 19 1

59 RIMS 19.79 727 2 2 17 1

60 PDOS 78.88 6887 2 0 15 0

61 IPMS 122.35 9304 1 2 1.11 1
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TABLE 12
Commercial Database

OBS PROJECT LANGUAGiE KSLOC UEP EP MAE

1 1 C )BOL 130 1750 1750 1.00

2 2 COBOL 318 1902 1902 1.00

3 3 COBOL 20 522 428 0.82

4 4 PL/I 54 660 759 1.15

5 5 COBOL 62 479 431 0.90

6 6 COBOL 28 377 283 0.75

7 7 COBOL 35 256 205 0.80

8 8 COBOL 30 263 289 1.10

9 9 COBOL 48 716 680 0.95

10 10 COBOL 93 690 794 1.15

11 11 COBOL 57 465 512 1.10

12 12 COBOL 22 299 224 0.75

13 13 COBOL 24 491 417 0.85

14 14 PL/I 42 802 682 0.85

15 15 COBOL 40 220 209 0.95

16 16 COBOL 96 488 512 1.05

17 17 PL/I 40 551 606 1.10

18 18 COBOL 52 364 400 1.10

19 19 COBOL 94 1074 1235 1.15

20 20 PL/i 110 1310 1572 1.20

21 21 COBOL 15 476 500 1.05

22 22 DMS 24 694 694 1.00

23 23 DMS 3 166 199 1.20
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TABLE 12 Continued

Commercial Database

OHS PROJECT LANGU E KSLQC UEP EP VAF

24 24 COBOL 29 263 260 0.99

25 25 COBOL 254 1010 1217 1.20

26 26 COBOL 214 881 788 0.89

27 27 COBOL 254 1603 1611 1.00

28 28 COBOL 41 457 507 1.11

29 29 COBOL 450 2284 2307 1.01

30 30 COBOL 450 1583 1338 0.85

31 31 BLISS 50 411 421 1.02

32 32 COBOL 43 97 100 1.03

33 33 COBOL 200 998 993 0.99

34 34 COBOL 39 250 240 0.96

35 35 COBOL 129 724 789 1.00

36 36 COBOL 289 1554 1593 1.09

37 37 COBOL 161 705 691 0.98

38 38 COBOL 165 1375 1348 0.98

39 39 NATURAL 60 976 1044 1.07
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Appendix C: Outlier Data Analysis

Table 13
Outlier Data Analysis for the Military Database

Dep Var Predict Std Err Lawer95% Upr95%
Obe KSLOC Value Predict Predict Predict Residual

1 30.0000 212.4 35.472 -167.7 592.5 -182.4
2 302.0 677.0 67.430 279.9 1074.2 -375.0
3 61.0000 162.2 38.284 -219.0 543.4 -101.2
4 52.4700 72.1772 37.354 -308.7 453.0 -19.7072
5 32.7000 74.7445 37.328 -306.1 455.6 -42.0445
6 18.5200 68.8771 37.388 -312.0 449.7 -50.3571
7 6.4200 76.6240 37,309 -304.2 457.5 -70.2040
8 9.0600 69.1679 37.385 -311.7 450.0 -60.1079
9 30.1500 69.9805 37.377 -310.9 450.8 -39.8305

10 124.3 100.1 37.090 -280.7 480.8 24.2247
11 144.7 114.6 36.970 -266.1 495.3 30.0253
12 20.1700 81.2182 37.263 -299.6 462.0 -61.0482
13 596.6 207.2 36.511 -173.3 587.7 389.4
14 4028.1 4059.2 185.827 3531.4 4587.1 -31.1848
15 38.8600 76.9361 37.306 -303.9 457.8 -38.0761
16 32.8800 79.0088 37.285 -301.8 459.8 -46.1288
17 6.3900 77.7573 37.297 -303.1 458.6 -71.3673
18 76.4000 79.1591 37.283 -301.7 460.0 -2.7591
19 9.9800 71.8719 37.357 -309.0 452.7 -61.8919
20 26.5600 73.2595 37.343 -307.6 454.1 -46.6995
21 5.9500 74.6951 37.328 -306.1 455.5 -68.7451
22 771.0 165.0 36.655 -215.6 545.6 606.0
23 41.2800 80.8785 37.267 -299.9 461.7 -39.5985
24 40.0600 94.8441 37.136 -285.9 475.6 -54.7841
25 35.7400 69.6741 37.380 -311.2 450.5 -33.9341
26 20.3500 69.7811 37.379 -311.1 450.6 -49.4311
27 11.6800 81.3345 37.262 -299.5 462.1 -69.6545
28 73.9800 106.2 37.038 -274.6 486.9 -32.1752
29 8.2800 68.2494 37.395 -312.6 449.1 -59.9694
30 157.2 228.7 35.224 -151.4 608.7 -71.4736
31 265.6 232.2 35.044 -147.7 612.2 33.3572
32 22.2000 130.5 40.449 -251.6 512.6 -108.3
33 26.3500 132.4 40.356 -249.7 514.5 -106.1
34 31.6300 137.7 39.910 -244.2 519.6 -106.1
35 91.8900 177.1 37.415 -203.7 558.0 -85.2502
36 23.5100 126.9 40.732 -255.3 509.2 -103.4
37 655.6 414.7 38.789 33.2819 796.1 240.9
38 18.8600 185.2 36.905 -195.5 565.8 -166.3
39 277.4 278.3 34.540 -101.5 658.1 -0.8871
40 169.7 284.3 34.561 -95.4880 664.1 -114.6
41 375.5 624.3 61.097 231.2 1017.3 -248.8
42 100.2 180.5 37.271 -200.3 561.3 -80.3206
43 83.0000 160.3 38.364 -220.9 541.6 -77.3369
44 71.2900 188.3 36.831 -192.3 569.0 -117.1
45 361.9 144.5 39.365 -237.2 526.2 217.3
46 774.6 453.9 42.516 70.8345 836.9 320.8
47 241.0 192.0 36,606 -188.6 572.6 48.9794
48 38.0200 132.2 40.212 -249.8 514.3 -94.2100
49 514.7 301.5 34.641 -78.3095 681.3 213.2
50 480.2 225.7 35.229 -154.3 605.8 254.5
51 21.5900 132.7 40.280 -249.3 514.8 -111.1
52 1501.6 1412.6 153.681 928.2 1896.9 89.0448
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Dep Var Predict Std Err Lower95% Upper95%
Obe KSLOC Value Predict Predict Predict Residual

53 609.0 324.9 34.948 -55.0421 704.8 284.1
54 10.5700
55 36.0600
56 76.8500 145.9 39.371 -235.7 527.6 -69.0734
57 26.6400
58 756.0 139.1 39.570 -242.6 520.9 616.9
59 19.7900
60 78.8800
61 122.4

Std Err Student Cook's Hat Diag
Obs Residual Residual -2-1-0 1 2 D Rstudent H

1 182.579 -0.999 *1 0.009 -0.9989 0.0364
2 173.339 -2.164 **0.177 -2.2478 0.1314
3 182.010 -0.556 0.003 -0.5523 0.0424
4 182.203 -0.108 0.000 -0.1071 0.0403
5 182.208 -0.231 0.001 -0.2286 0.0403
6 182.196 -0.276 0.001 -0.2739 0.0404
7 182.212 -0.385 0.002 -0.3820 0.0402
8 182.197 -0.330 0.001 -0.3270 0.0404
9 182.198 -0.219 0.001 -0.2166 0.0404

10 182.257 0.133 0.000 0.1316 0.0398
11 182.281 0.165 0.000 0.1631 0.0395
12 182.222 -0.335 0.001 -0.3321 0.0401
13 182.374 2.135 I ** 0.046 2.2156 0.0385
14 7.855 -3.970 * 2204.903 -4.7288 0.9982
15 182.213 -0.209 0.000 -0.2070 0.0402
16 182.217 -0.253 0.001 -0.2508 0.0402
17 182.215 -0.392 0.002 -0.3884 0.0402
18 182.217 -0.015 0.000 -0.0150 0.0402
19 182.202 -0.340 0.001 -0.3367 0.0403
20 182.205 -0.256 0.001 -0.2539 0.0403
21 182.208 -0.377 0.001 -0.3741 0.0403

22 182.345 3.324 ******I 0.112 3.7179 0.0388
23 182.221 -0.217 0.000 -0.2153 0.0401
24 182.248 -0.301 0.001 -0.2979 0.0399
25 182.198 -0.186 0.000 -0.1845 0.0404
26 182.198 -0.271 0.001 -0.2688 0.0404
27 182.222 -0.382 0.002 -0.3790 0.0401
28 182.267 -0.177 0.000 -0.1748 0.0397
29 182.195 -0.329 0.001 -0.3263 0.0404
30 182.627 -0.391 0.001 -0.3881 0.0359
31 182.661 0.183 0.000 0.1809 0.0355
32 181.541 -0.597 * 0.004 -0.5928 0.0473
33 181.562 -0.584 * 0.004 -0.5804 0.0471
34 181.660 -0.584 * 0.004 -0.5803 0.0460
35 182.190 -0.468 0.002 -0.4643 0.0405
36 181.478 -0.570 * 0.004 -0.5660 0.0480
37 181.903 1.324 0.020 1.3343 0.0435
38 182.294 -0.912 * 0.009 -0.9107 0.0394
39 182.757 -0.005 0.000 -0.0048 0.0345
40 182.753 -0.627 * 0.004 -0.6235 0.0345
41 175.671 -1.416 ** 0.061 -1.4306 0.1079
42 182.220 -0.441 0.002 -0.4373 0.0402
43 181.993 -0.425 0.002 -0.4215 0.0425
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Std Err Student Cook's Hat Diaq
Obs Residual Residual -2-1-0 1 2 D Ratudent H

44 182.309 -0.642 I I 0.004 -0.6383 0.0392
45 181.779 1.196 * 0.017 1.2008 0.0448
46 181.068 1.772 **0.043 1.8107 0.0523
47 182.355 0.269 I 0.001 0.2661 0.0387
48 181.594 -0.519 *I 0.003 -0.5150 0.0467
49 182.738 1.166 I** 0.012 1.1707 0.0347
50 182.626 1.393 I ** 0.018 1.4067 0.0359
51 181.579 -0.612 *1 0.005 -0.6083 0.0469
52 104.764 0.850 1* 0.389 0.8476 0.6827
53 182.680 1.555 I ** 0.022 1.5777 0.0353
54
55
56 181.778 -0.380 Ij 0.002 -0.3768 0.0448
57

58 181.735 3.394 j***** 0.137 3.8199 0.0453
59
60

61

Cov INTERCE EFP LAW UL
Obs Ratio Dffits Dfbetas Dfbetas Dfbetas Dfbetas

1 1.0379 -0.1941 -0.0005 0.0023 -0.1347 0.0432
2 0.8479 -0.8744 -0.0042 0.0188 0.0243 -0.7434
3 1.1032 -0.1162 0.0001 -0.0005 -0.0852 0.0495
4 1.1269 -0.0220 -0.0220 0.0047 0.0148 -0.0008
5 1.1232 -0.0468 -0.0468 0.0099 0.0316 -0.0017
6 1.1213 -0.0562 -0.0562 0.0123 0.0379 -0.0021
7 1.1147 -0.0782 -0.0782 0.0164 0.0527 -0.0027
8 1.1184 -0.0671 -0.0671 0.0147 0.0452 -0.0025
9 1.1238 -0.0444 -0.0444 0.0097 0.0299 -0.0016

10 1.1257 0.0268 0.0268 -0.0049 -0.0180 0.0008
11 1.1246 0.0331 0.0330 -0.0054 -0.0223 0.0009
12 1.1178 -0.0679 -0.0679 0.0139 0.0458 -0.0023
13 0.7741 0.4436 0.4365 -0.0195 -0.2938 0.0033
14 138.3314 -111.865 2.7653 -109.688 -2.4812 18.3193
15 1.1239 -0.0424 -0.0424 0.0089 0.0286 -0.0015
16 1.1221 -0.0513 -0.0513 0.0106 0.0346 -0.0018
17 1.1143 -0.0795 -0.0795 0.0166 0.0536 -0.0028
18 1.1277 -0.0031 -0.0031 0.0006 0.0021 -0.0001
19 1.1178 -0.0690 -0.0690 0.0149 0.0465 -0.0025
20 1.1221 -0.0520 -0.0520 0.0111 0.0351 -0.0019
21 1.1153 -0.0766 -0.0766 0.0163 0.0517 -0.0027
22 0.4242 0.7474 0.7417 -0.0738 -0.4995 0.0123
23 1.1235 -0.0440 -0.0440 0.0090 0.0297 -0.0015
24 1.1194 -0.0607 -0.0607 0.0114 0.0409 -0.0019
25 1.1249 -0.0378 -0.0378 0.0083 0.0255 -0.0014
26 1.1215 -0.0552 -0.0552 0.0120 0.0372 -0.0020
27 1.1148 -0.0775 -0.0775 0.0158 0.0522 -0.0026
28 1.1244 -0.0355 -0.0355 0.0062 0.0239 -0.0010
29 1.1185 -0.0670 -0.0670 0.0148 0.0451 -0.0025
30 1.1093 -0.0749 -0.0000 0.0001 -0.0515 0.0145
31 1.1193 0.0347 0.0000 -0.0002 0.0236 -0.0058
32 1.1048 -0.1321 0.0002 -0.0008 -0.0976 0.0679
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Cov INIEIACEP EFP LAIG UL
Obi Ratio Dffits Dfbetas Dfbetas Dfbetas Dfbetas

33 1.1058 -0.1290 0.0002 -0.0009 -0.0954 0.0659
34 1.1046 -0.1275 0.0002 -0.0007 -0.0942 0.0631
35 1.1088 -0.0954 0.0001 -0.0003 -0.0694 0.0362
36 1.1083 -0.1270 0.0002 -0.0008 -0.0940 0.0665
37 0.9839 0.2845 -0.0003 0.0014 0.1059 0.1275
38 1.0550 -0.1844 0.0000 -0.0001 -0.1332 0.0641
39 1.1211 -0.0009 0.0000 -0.0000 -0.0006 0.0000
40 1.0869 -0.1179 -0.0002 0.0009 -0.0714 -0.0043
41 1.0335 -0.4975 -0.0024 0.0108 -0.0093 -0.4063
42 1.1106 -0.0894 0.0001 -0.0004 -0.0650 0.0332
43 1.1146 -0.0889 0.0001 -0.0003 -0.0652 0.0382
44 1.0906 -0.1290 0.0001 -0.0003 -0.0931 0.0442
45 1.0114 0.2600 -0.0002 0.0010 0.1917 -0.1232
46 0.8859 0.4252 0.0010 -0.0046 0.1150 0.2452
47 1.1197 0.0534 -0.0000 0.0001 0.0384 -0.0175
48 1.1117 -0.1141 0.0001 -0.0005 -0.0843 0.0577
49 1.0064 0.2219 -0.0001 0.0004 0.1307 0.0168
50 0.9613 0.2714 0.0003 -0.0014 0.1865 -0.0525
51 1.1027 -0.1349 0.0002 -0.0008 -0.0997 0.0686
52 3.2225 1.2434 -0.0024 0.0108 -0.3084 1.1927
53 0.9239 0.3018 -0.0005 0.0020 0.1673 0.0450
54
55.
56 1.1204 -0.0816 0.0001 -0.0005 -0.0602 0.0387
57
58 0.4071 0.8317 -0.0002 0.0009 0.6133 -0.4003
59
60
61

Sum of Residuals 0
Sum of Squared Residuals 1764255.0796
Predicted Resid SS (Press) 307677609.01
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Table 14

Outlier Data Analysis for the Commercial Database

Dep Var Predict Std Err lawer95% Upper95%
Obs KSLOC Value Predict Predict Predict Residual

1 130.0 301.8 19.781 179.7 423.9 -171.8
2 318.0 329.7 22.089 206.0 453.5 -11.7475
3 20.0000 75.2668 16.961 -45.0546 195.6 -55.2668
4 54.0000 42.1486 19.297 -79.6149 163.9 11.8514
5 62.0000 67.6411 12.932 -50.5996 185.9 -5.6411
6 28.0000 48.3466 21.965 -75.2655 172.0 -20.3466
7 35.0000 26.2668 19.444 -95.5928 148.1 8.7332
8 30.0000 28.6190 16.233 -91.2880 148.5 1.3810
9 48.0000 111.4 10.461 -5.8160 228.6 -63.4131

10 93.0000 107.3 16.309 -12.6088 227.3 -14.3402
11 57.0000 65.7755 14.500 -53.2126 184.8 -8.7755
12 22.0000 33.9990 22.303 -89.8623 157.9 -11.9990
13 24.0000 69.6710 15.314 -49.7364 189.1 -45.6710
14 42.0000 54.3653 27.159 -73.4301 182.2 -12.3653
15 40.0000 20.1771 13.813 -98.4736 138.8 19.8229
16 96.0000 69.8288 12.184 -48.0843 187.7 26.1712
17 40.0000 31.7765 16.258 -88.1445 151.7 8.2235
18 52.0000 47.1972 15.292 -72.1985 166.6 4.8028
19 94.0000 178.0 16.700 57.8038 298.1 -83.9745
20 110.0 103.1 35.838 -33.2065 239.4 6.8799
21 15.0000 67.6215 12.273 -50.3295 185.6 -52.6215
22 24.0000 44.7964 18.880 -76.6975 166.3 -20.7964
23 3.0000 -3.8775 21.494 -127.1 119.4 6.8775
24 29.0000 28.2286 13.152 -90.1122 146.6 0.7714
25 254.0 166.4 19.608 44.4115 288.3 87.6204
26 214.0 141.6 13.020 23.2705 259.8 72.4491
27 254.0 274.7 17.635 154.0 395.5 -20.7484
28 41.0000 64.3395 15.074 -54.9421 183.6 -23.3395
29 450.0 400.0 28.104 271.4 528.7 49.9507
30 450.0 270.5 21.312 147.4 393.7 179.5
31 50.0000 18.3985 13.680 -100.2 137.0 31.6015
32 43.0000 -2.1640 15.728 -121.8 117.5 45.1640
33 200.0 163.4 10.794 46.0738 280.8 36.5729
34 39.0000 25.7309 13.364 -92.7078 144.2 13.2691
35 129.0 113.1 10.028 -4.0108 230.1 15.9379
36 289.0 266.1 18.226 145.0 387.1 22.9455
37 161.0 109.5 10.037 -7.5799 226.6 51.5038
38 165.0 232.7 14.663 113.7 351.8 -67.7383
39 60.0000 71.4200 25.644 -55.0781 197.9 -11.4200

Std Err Student Cook's Hat Diag
Obe Residual Residual -2-1-0 1 2 D Ratudent H

1 53.234 -3.227 j******I 0.359 -3.7949 0.1213
2 52.318 -0.225 0.002 -0.2215 0.1513
3 54.198 -1.020 0.025 -1.0203 0.0892
4 53.411 0.222 0.002 0.2189 0.1155
5 55.298 -0.102 0.000 -0.1006 0.0519
6 52.371 -0.389 0.007 -0.3837 0.1496
7 53.358 0.164 0.001 0.1614 0.1172
8 54.421 0.025 0.000 0.0250 0.0817
9 55.818 -1.136 **0.011 -1.1409 0.0339

10 54.398 -0.264 0.002 -0.2601 0.0825
11 54.908 -0.160 0.000 -0.1576 0.0652
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Std Err Student Cook's Hat Diag
Obs Residual Residual -2-1-0 1 2 D Rstudent H

12 52.227 -0.230 0.002 -0.2266 0.1542
13 54.686 -0.835 0.014 -0.8315 0.0727
14 49.875 -0.248 0.005 -0.2446 0.2287
15 55.085 0.360 0.002 0.3553 0.0592
16 55.468 0.472 0.003 0.4665 0.0460
17 54.413 0.151 0.001 0.1490 0.0820
18 54.693 0.088 0.000 0.0866 0.0725
19 54.279 -1.547 **0.057 -1.5798 0.0865
20 44.054 0.156 0.004 0.1540 0.3982
21 55.448 -0.949 * 0.011 -0.9476 0.0467
22 53.560 -0.388 0.005 -0.3835 0.1105
23 52.565 0.131 0.001 0.1290 0.1432
24 55.246 0.014 0.000 0.0138 0.0536
25 53.298 1.644 **0.091 1.6868 0.1192
26 55.278 1.311 I** 0.024 1.3247 0.0526
27 53.983 -0.384 I 0.004 -0.3796 0.0964
28 54.753 -0.426 I 0.003 -0.4212 0.0705
29 49.348 1.012 I ** 0.083 1.0126 0.2449
30 52.639 3.409 I******I 0.476 4.1116 0.1408
31 55.118 0.573 I * 0.005 0.5678 0.0580
32 54.569 0.828 I* 0.014 0.8238 0.0767
33 0.656 I * 0.004 0.6505 0.0361
34 5ý ý95 0.240 I 0.001 0.2371 0.0554
35 5.898 0.285 ! 0.001 0.2814 0.0312
305 53.786 0.427 F 0.005 0.4216 0.1030
37 55.896 0.921 1* 0.007 0.9194 0.0312
38 54.865 -1.235 * 0.027 -1.2443 0.0667
39 50.671 -0.225 0.003 -0.2223 0.2039

Co' INTERCEP UFP VAF UL
Obs Ratio Dffits Dfbetas Dfbetas Dfbetas Dfbetas

1 0.3112 -1.4102 0.0605 -1.2165 0.0520 0.3428
2 1.3155 -0.0935 0.0044 -0.0834 0.0041 0.0208
3 1.0928 -0.3193 -0.2776 0.0541 0.2466 0.0062
4 1.2624 0.0791 -0.0284 -0.0148 0.0322 0.0510
5 1.1829 -0.0235 -0.0156 0.0076 0.0121 0.0035
6 1.2978 -0.1609 -0.1493 0.0357 0.1351 -0.0087
7 1.2682 0.0588 0.0503 -0.0222 -0.0432 0.0008
8 1.2228 0.0075 -0.0031 -0.0043 0.0044 -0.0027
9 1.0002 -0.2138 -0.0897 0.0093 0.0629 0.0635

10 1.2142 -0.0780 0.0532 0.0112 -0.0614 0.0343
11 1.1978 -0.0416 0.0719 0.0169 -0.0265 0.0172
12 1.3197 -0.0968 -0.0888 0.0270 0.0794 -0.0054
13 1.1173 -0.2328 -0.1893 0.0551 0.1622 0.0140
14 1.4457 -0.1332 -0.0838 -0.0042 0.0847 -0.1112
15 1.1760 0.0891 0.0325 -0.0583 -0.0148 -0.0179
16 1.1475 0.1025 -0.0259 -0.0431 0.0439 -0.0420
17 1.2200 0.0445 -0.0098 -0.0137 0.0134 0.0282
18 1.2097 0.0242 -0.0108 -0.0121 0.0149 -0.0094
19 0.9259 -0.4860 0.3382 -0.1249 -0.3565 0.2160
20 1.8609 0.1253 -0.0265 0.0228 0.0205 0.1059
21 1.0613 -0.2098 0.0524 0.0910 -0.0896 0.0853
22 1.2409 -0.1352 -0.0350 0.0142 0.0312 -0.1181

122



Coy IWrErCEP UFP VAF UL
Obs Ratio Dffits Dfbetas Dfbetas Dfbetas Dfbetas

23 1.3081 0.0527 -0.0326 -0.0293 0.0402 -0.0072
24 1.1866 0.0033 0.0005 -0.0021 0.0002 -0.0009
25 0.9244 0.6206 -0.4881 0.0894 0.5165 -0.2658
26 0.9691 0.3120 0.2117 0.0679 -0.1942 -0.0478
27 1.2219 -0.1240 0.0046 -0.1021 0.0035 0.0331

28 1.1832 -0.1160 0.0593 0.0468 -0.0772 0.0477
29 1.3205 0.5767 -0.0477 0.5381 -0.0159 -0.1101
30 0.2601 1.6647 0.8613 1.1919 -0.9673 -0.1282
31 1.1480 0.1409 0.0199 -0.0690 -0.0017 0.0810
32 1.1238 0.2375 -0.0154 -0.1772 0.0642 -0.0654
33 1.1088 0.1259 0.0106 0.0482 -0.0040 -0.0480
34 1.1809 0.0574 0.0181 -0.0369 -0.0067 -0.0129
35 1.1483 0.0505 0.0025 -0.0034 0.0044 -0.0208
36 1.2260 0.1429 -0.0595 0.1021 0.0527 -0.0511
37 1.0507 0.1651 0.0341 -0.0142 -0.0111 -0.0611
38 1.0068 -0.3325 -0.0271 -0.2432 0.0392 0.0942

39 1.4024 -0.1125 -0.0037 -0.0091 0.0061 -0.1020

Sum of Residuals 0
Sum of Squared Residuals 112879.1419
Predicted Resid SS (Press) 143341.0896
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Appendix D: Prediction and Residual Plots

Table 15
Transformation Analysis of SPDS Data

Plot of KSIDC*FP. Legend: A = 1 obs, B 2 obo, etc.
Plot of PREDICrT*FP. Symbol used is 'P'.
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Plot of RESID1*FP. Legend: A = 1 obs, B = 2 obe, etc.

RESIDI I

800 + A

600 + A

A
A

400 +
AA

A
B

200 + A

A
AA

0 +----A---- -------------------------------------------
C

B A
G
PA
IA

A
-200 +

0 50000 100000 150000 200000 250000 300000

FP

125



Plot of KSLOC*UFP. Legend: A = 1 obs, B = 2 c'bs, etc.
Plot of PREDICT2*UFP. Symbol used is 'P'.

KSmLC
4500 +

P

4000 + A

3500 +

3000 +

2500 +

2000 +

1500 + A

1000 +

I B
IA

P
AA

500 + B
AA

PP
B A
P

AB
PPP

I~CB

P

0 + ZA

0 50000 100000 150000 200000 250000

UFP

126



Plot of RESID2*UFP. Legend: A = iobe, B = 2 obB, etc.
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Plot of KSLOC*EFP. Legend: A = 1 obs, B = 2 obs, etc.
Plot of PREDICT3*EFP. Symbol used is 'P'.
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Plot of RESID3*EFP. Legend: A = 1 obs, B = 2 obe, etc.
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Plot of KSILC*LAZG. Legend: A = 1 obs, B = 2 obs, etc.
Plot of PREDICT4*FPSQRT. Symbol used is 'P'.
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Plot of RESID4*LAN3. Legend: A - 1 obs, B - 2 obs, etc.
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Plot of KSLOC*VAF. Legend: A - 1 obe, B = 2 obe, etc.
Plot of PREDICT5*VAF. Symbol used is 'P'.
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Plot of RESID5*VAF. Legend: A = 1 obs, B - 2 obs, etc.
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Table 16

Transformation Analysis of SPDS Data with CAMS Removed
Plot of KSLOC*FP. Legend: A = 1 obs, B = 2 obe, etc.
Plot of PREDICrT*FP. Symbol used is 'P'.
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Plot of RESIDl*FP. Legend: A = 1 obe, B = 2 obs, etc.
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Plot of KSLOC*UFP. Legend: A = 1 obs, B = 2 obs, etc.
Plot of PREDICT2*UFP. Symbol used is 'PI.
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Plot of RESID2*UFP. Legend: A = 1obe, B = 2 obs, etc.
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Plot of KSLOC*EFP. Legend: A = 1obs, B = 2 obe, etc.
Plot of PREDICT3*EFP. Symbol used is 'P'.
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Plot of RESID3*EFP. Legend: A = 1 obs, B = 2 obs, etc.
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Plot of KSLOC*LAIW. Legend: A = I obs, B f 2 obe, etc.
Plot of PREDICT4*LAN. Symbol used is 'P'.
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Plot of RESID4*LANG. Legend: A = 1 obe, B = 2 obs, etc.
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Plot of KSLOC*VAF. Legend: A = 1 obs, B = 2 obs, etc.
Plot of PREDICr5*VAF. Symbol used is P'.
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Plot of RESID5*VAF. Legend: A = 1 obs, B = 2 obe, etc.
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Table 17

Heteroscedasticity & Transformation Analysis of SPDS
Data "Best" Model

Plot of KSIOC*PRED. legend: A - 1 oba, B 2 obs, etc.

Plot of PREDICTI*PRED. Symbol used is 'P'.
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Plot of RESID1*PRED. Legend: A = 1 obe, B = 2 obs, etc.
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Table 18

Transformation Analysis of Commercial Data

Plot of KSLOC*FP. Legend: A - 1 obe, B = 2 obs, etc.
Plot of PREDICT2*FP. Symbol used is 'P'.
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Plot of RESIDI*FP. Legend: A = I oba, B = 2 obs, etc.
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Plot of KSLOC*UFP. Legend: A = I obs, B = 2 obs, etc.
Plot of PREDICT2*UFP. Symbol used is 'P'.

500 +

A A
II

400 +

P

A
P

300 +
A

P

A A
PP

A
P

200 + A
P

A
A

PP

PP
A A

P

A
P

100 + A A A
P

P

P
AAB A A

PPP
A AA AA AA

PP

CAA A A
PP

AA
PP

0+ A
PI

P
-------------------------- +-------- -----

0 500 1000 1500 2000 2500
UFP

148



Plot of RESID2*UFP. Legend: A = 1 obs, B = 2 obe, etc.
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Plot of KSIC)*VAF. Legend: A = 1 obe, B 2 obe, etc.
Plot of PREDICT3*VAF. Symbol used is IPI.
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Plot of RESID3*VAF. Legend: A = 1 obe, B 2 obe, etc.
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Plot of KSIDC*LANG. Legend: A = 1 obe, B = 2 obe, etc.
Plot of PREDICr4*LANi. Symbol used is 'P'.
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Plot of RESID4*LANG. Legend: A = 1 obs, B = 2 obs, etc.
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Appendix E. Supporting ANOVA Tables

Table 19

ANOVA Tables for Military Database, All SPDS Data. Straight
Linear Regression

Model: MDDEL A
Dependent Variable: KSILC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 16139532.952 16139532.952 314.682 0.0001

Error 53 2718282.9124 51288.356838
C Total 54 18857815.865

Root MSE 226.46933 R-square 0.8559

Dep Mean 261.83327 Adj R-sq 0.8531
C.V. 86.49372

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > IT

INTERCEP 1 144.865807 31.24087739 4.637 0.0001

FP 1 0.013617 0.00076760 17.739 0.0001

Model: MDDEL B

Dependent Variable: KSU3C
Analysis of Variance
sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 16221200.298 16221200.298 326.071 0.0001
Error 53 2636615.5666 49747.463521
C Total 54 18857815.865

Root MSE 223.04139 R-square 0.8602

Dep Mean 261.83327 Adj R-sq 0.8575
C.V. 85.18451

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 138.318643 30.84292932 4.485 0.0001
UFP 1 0.017610 0.00097521 18.057 0.0001

Model: MDDEL C
Dependent Variable: KSIlC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 16322638.507 16322638.507 341.238 0.0001
Error 53 2535177.3576 47833.535049
C Total 54 18857815.865

Root MSE 218.70879 R-square 0.8656
Dep Mean 261.83327 Adj R-sq 0.8630
C.V. 83.52979
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INITECEP 1 140.007216 30.21909910 4.633 0.0001
EFP 1 0.016809 0.00090994 18.473 0.0001

Model: MDDEL D
Dependent Variable: KSLOC

Analysis of Variance
SUm of Mean

Source DF Squares Square F Value Prob>F

Model 2 16443384.48 8221692.2398 177.072 0.0001
Error 52 2414431.385 46431.372788
C Total 54 18857815.865

Root MSE 215.47940 R-square 0.8720
Dep Mean 261.83327 Adj R-sq 0.8670
C.V. 82.29642

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > IT I

INI'AEP 1 64.361749 43.28867531 1.487 0.1431
FP 1 0.013804 0.00073402 18.806 0.0001
LAM 1 149.624751 58.48957852 2.558 0.0135

Model: MDDEL E
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 17077850.18 5692616.7265 163.106 0.0001
Error 51 1779965.685 34901.287941
C Total 54 18857815.865

Root MSE 186.81886 R-square 0.9056
Dep Mean 261.83327 Adj R-sq 0.9001
C.V. 71.35031

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 69.496854 37.55024408 1.851 0.0700
FP 1 0.013403 0.00064332 20.833 0.0001
LAN 1 55.987004 55.26139900 1.013 0.3158
FPLAG 1 0.018734 0.00439381 4.264 0.0001
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Model: MDDEL F
Dependent Variable: KSO)C

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 16729493.273 8364746.6363 204.371 0.0001
Error 52 2128322.592 40929.280615
C Total 54 18857815.865

Root MSE 202.30986 R-square 0.8871
Dep Mean 261.83327 Adj R-sq 0.8828
C.V. 77.26667

Parameter Estimates
Parameter standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INsREP 1 -475.445954 176.39796643 -2.695 0.0095
UFP 1 0.016471 0.00094171 17.491 0.0001
VAF 1 632.326825 179.43270652 3.524 0.0009

Model: MDDEL G
Dependent Variable: KSIfLC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 16864889.345 5621629.7817 143.860 0.0001
Error 51 1992926.5197 39076.990581
C Total 54 18857815.865

Root MSE 197.67901 R-square 0.8943
Dep Mean 261.83327 Adj R-sq 0.8881
C.V. 75.49805

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

I )TEREP 1 -385.699734 178.97666180 -2.155 0.0359
UFP 1 0.151850 0.07273462 2.088 0.0418
VAF 1 492.568920 190.72569448 2.583 0.0127
UV 1 -0.104759 0.05627917 -1.861 0.0685

Model: M=DEL H
Dependent Variable: KSIDC

Analysis of Variance

Sum of mean
Source DF Squares Square F Value Prob>F

Model 3 16783704.776 5594568.2585 137.564 0.0001
Error 51 2074111.089 40668.844883
C Total 54 18857815.865

Root MSE 201.66518 R-square 0.8900
Dep Mean 261.83327 Adj R-sq 0.8835
C.V. 77.02046
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

REEP 1 -408.589850 185.12534762 -2.207 0.0318
UJFP 1 0.016778 0.00097553 17.199 0.0001
VAF 1 523.880813 202.02437936 2.593 0.0124
IANG 1 71.359744 61.80711578 1.155 0.2537

Model: MXDDE I

Dependent Variable: KSLOC
Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 17253038.343 5751012.7809 177.564 0.0001
Error 55 1781360.6112 32388.374748
C Total 58 19034398.954

Root MSE 179.96770 R-square 0.9064
Dep Mean 247.39746 Adj R-sq 0.9013
C.V. 72.74436

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITI

IN CEP 1 -210.491063 149.63471375 -1.407 0.1651
VAF 1 320.403524 158.92487137 2.016 0.0487
Uv 1 0.012931 0.00064509 20.045 0.0001
DLV 1 0.015897 0.00424572 3.744 0.0004

Variance
Variable DF Tolerance Inflation

INTE EP 1 0.00000000
VAF 1 0.72156960 1.38586770
UV 1 0.89219717 1.12082848
ULV 1 0.79848370 1.25237372

Collinearity Diagnostics(intercept adjusted)
Condition Var Prop Var Prop Var Prop

Number Eigenvalue Number VAF UV ULV

1 1.60158 1.00000 0.2056 0.1175 0.1659
2 0.90605 1.32953 0.0028 0.6515 0.2952
3 0.49237 1.80355 0.7916 0.2310 0.5389
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Table 20

ANOVA Tables for Military Database. CAMS Removed. Straight
Linear Regression

Model: NDDEL A
Dependent Variable: KSIWC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 2822834.8096 2822834.8096 92.445 0.0001
Error 52 1587842.039 30535.423826
C Total 53 4410676.8486

Root MSE 174.74388 R-square 0.6400
Dep Mean 192.08833 Adj R-sq 0.6331
C.V. 90.97059

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 74.323970 26.74864132 2.779 0.0076
FP 1 0.036310 0.00377649 9.615 0.0001

Model: MDD=L B
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 2822360.5207 2822360.5207 92.401 0.0001
Error 52 1588316.3279 30544.544767
C Total 53 4410676.8486

Root M1E 174.7699d R-square 0.6399
Dep Mean 192.08833 Adj R-sq 0.6330
C.V. 90.98417

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTECEP 1 65.182325 27.20174558 2.396 0.0202
UFP 1 0.044129 0.00459073 9.613 0.0001

Model: MDDEL C
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 2834968.8878 2834968.8878 93.557 0.0001
Error 52 1575707.9607 30302.076168
C Total 53 4410676.8486

Root MSE 174.07492 R-square 0.6428
Dep Mean 192.08833 Adj R-sq 0.6359
C.V. 90.62233
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > IT'

INTERCEP 1 77.766863 26.47346186 2.938 0.0049
EFP 1 0.039314 0.00406457 9.672 0.0001

Model: .X)EL D
Dependent Variable: KSIUC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 2887843.8665 1443921.9333 48.357 0.0001
Error 51 1522832.982 29859.470236
C Total 53 4410676.8486

Root MSE 172.79893 R-square 0.6547
Dep Mean 192.08833 Adj R-sq 0.6412
C.V. 89.95806

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Param0ter=0 Prob > ITI

INEEP 1 40.533097 34.98720905 1.159 0.2521
FP 1 0.034759 0.00387965 8.959 0.0001
IANE 1 72.290289 48.99300521 1.476 0.1462

Model: HDDEL E
Dependent Variable: KSIlOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 3072689.7391 1024229.913 38.275 0.0001
Error 50 1337987.1095 26759.742189
C Total 53 4410676.8486

Root MSE 163.58405 R-square 0.6966
Dep Mean 192.08833 Adj R-sq 0.6784
C.V. 85.16085

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Paranmter-0 Prob > ITI

ITERCEP 1 -9.399213 38.18337594 -0.246 0.8066
FP 1 0.070290 0.01400896 5.017 0.0001
LAMG 1 134.883071 52.13747478 2.587 0.0126
FPLAW, 1 -0.038153 0.01451674 -2.628 0.0114
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Model: MDDEL F
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 2869692.4529 1434846.2264 47.487 0.0001
Error 51 1540984.3957 30215.380308
C Total 53 4410676.8486

Root MSE 173.82572 R-square 0.6506
Dep Mean 192.08833 Adj R-sq 0.6369
C.V. 90.49260

Parameter Estimates
Paramter Standard T for HO:

Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 -143.857924 169.19642296 -0.850 0.3992
UFP 1 0.040347 0.00547535 7.369 0.0001
VAF 1 224.957782 179.73718583 1.252 0.2164

Model: MDDEL G
Dependenit Variable: KSIfLC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Abdel 3 2912719.9186 970906.63955 32.408 0.0001
Error 50 1497956.9299 29959.138598
C Total 53 4410676.8486

Root MSE 173.08708 R-square 0.6604
Dep Mean 192.08833 Adj R-sq 0.6400
C.V. 90.10807

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 -129.782693 168.88634006 -0.768 0.4458
UFP 1 -0.057615 0.08192434 -0.703 0.4851
VAF 1 230.315261 179.02925564 1.286 0.2042
UV 1 0.080428 0.06711218 1.198 0.2364

lidel: !VDEL H
Dependent Variable: KSILC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 2901215.9484 967071.9828 32.034 0.0001
Error 50 1509460.9001 30189.218003
C Total 53 4410676.8486

Root MPE 173.75045 R-square 0.6578
Dep Mean 192.08833 Adj R-sq 0.6372

C.V. 90.45341
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-O Prob > IT

INTE1CEP 1 -98.344593 174.88975911 -0.562 0.5764
UFP 1 0.040177 0.00547548 7.338 0.0001
VAF 1 148.926222 194.45719690 0.766 0.4474
LANG 1 54.560347 53.39318978 1.022 0.3118

Model: MDL I
Dependent Variable: KSILC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 3119949.4128 1039983.1376 40.287 0.0001
Error 50 1290727.4358 25814.548715
C Total 53 4410676.8486

Root MSE 160.66907 R-square 0.7074
Dep Mean 192.08833 Adj R-sq 0.6898
C.V. 83.64332

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INIERCEP 1 -12.282559 37.45206700 -0.328 0.7443
IANG 1 136.473585 51.07967882 2.672 0.0102
FPLANG 1 -0.039795 0.01411536 -2.819 0.0069
UV 1 0.071800 0.01358643 5.285 0.0001

Variance
Variable DF Tolerance Inflation

INTERCEP 1 0.00000000
LANG 1 0.73692616 1.35698806
FPLANG 1 0.05997298 16.67417485
UV 1 0.06495952 15.39420320

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop
Number Eigenvalue Number IANG FPLANG UV

1 2.14736 1.00000 0.0479 0.0124 0.0126
2 0.82114 1.61713 0.7650 0.0029 0.0085
3 0.03150 8.25598 0.1871 0.9847 C.9788

Model I is the "best" available model in this category with collinearity mitigated using
the condition number < 10 standard.
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Table 21

ANOVA Tables for Military Database, CAMS Removed. VAF &
KSLOC Transformed

Mxiel: MDOEL A
Dependent Variable: LNKSLC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 41.20743 41.20743 29.182 0.0001
Error 52 73.42918 1.41210
C Total 53 114.63660

Root MSE 1.18832 R-square 0.3595
Dep Mean 4.25703 Adj R-sq 0.3471
C.V. 27.91425

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob > IT I

InTmIj 1 3.807086 0.18189988 20.930 0.0001
FP 1 0.000139 0.00002568 5.402 0.0001

Model: HDDEL B
Dependent Variable: LNKSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 42.89198 42.89198 31.088 0.0001
Error 52 71.74463 1.37970
C Total 53 114.63660

Root MSE 1.17461 R-square 0.3742
Dep Mean 4.25703 Adj R-sq 0.3621
C.V. 27.59220

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

IWTERCEP 1 3.762305 0.18281969 20.579 0.0001
UFP 1 0.000172 0.00003085 5.576 0.0001

Model: MDDEL C
Dependent Variable: LNKSLO

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 39.77235 39.77235 27.626 0.0001
Error 52 74.86425 1.43970
C Total 53 114.63660

Root MEE 1.19987 R-square 0. 3469
Dep Mean 4.25703 Adj R-sq 0.3344
C.V. 28.18570
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Paramter-0 Prob > ITI

INTERCEP 1 3.828832 0.18247783 20.982 0.0001
EFP 1 0.000147 0.00002802 5.256 0.0001

Model: MJEL D
Dependent Variable: LNKSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

model 2 54.36207 27.18103 22.999 0.0001
Error 51 60.27454 1. 18185
C Total 53 114.63660

Root MSE 1.08713 R-square 0.4742
Dep Mean 4.25703 Adj R-sq 0.4536
C.V. 25.53731

Parameter Esti" ztes
Parameter Standard T for HO:

Variable DF Estimate Error ParaTeter-0 Prob > ITI

INTERCEP 1 3.326410 0.22011523 15.112 0.0001
EP 1 0.000117 0.00002441 4.780 0.0001
IAIM 1 1.028330 0.30822998 3.336 0.0016

Model: MDDEL E
Dependent Variable: LWKSLOC

Analysis of Variance
SUmOf Mean

Source DF Squares Square F Value Prob>F

Model 3 68.54853 22.84951 24.789 0.0001
Error 50 46.08808 0.92176
C Total 53 114.63660

Root MSE 0.96008 R-square 0.5980
Dep Mean 4.25703 Adj R-sq 0.5738
C.V. 22.55291

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITI

INTERCEP 1 2.888975 0.22410042 12.891 0.0001
EP 1 0.000428 0.00008222 5.205 0.0001
LAZG 1 1.576678 0.30599782 5.153 0.0001
FPLANG 1 -0.000334 0.00008520 -3.923 0.0003
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Model: MDDEL F
Dependent Variable: LNKSIOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 58.81104 29.40552 26.864 0.0001
Error 51 55.82557 1.09462
C Total 53 114.63660

Root MSE 1.04624 R-square 0.5130
Dep Mean 4.25703 Adj R-sq 0.4939
C.V. 24.57677

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter• O Prob > ITI

INTEICEP 1 -0.071337 1.01837709 -0.070 0.9444
UFP 1 0.000103 0.00003296 3.115 0.0030
VAF 1 4.125557 1.08182094 3.814 0.0004

Model: HDDEL G
Dependent Vqriable: LWSIX

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 59.59996 29.79998 27.614 0.0001
Error 51 55.03665 1.07915
C Total 53 114.63660

Root MEE 1.03882 R-square 0.5199
Dep Mean 4.25703 Adj R-sq 0.5011
C.V. 24.40249

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > IT I

INTERCEP 1 1.780607 0.52895277 3.366 0.0015
UFP 1 0.000095250 0.00003355 2.839 0.0065
VAFSQD 1 2.246087 0.57082837 3.935 0.0003

Model: MDDEL H
Dependent Variable: LNKSLOC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 57.92892 28.96446 26.049 0.0001
Error 51 56.70768 1.11192
C Total 53 114.63660

Root MSE 1.05447 R-square 0.5053
Dep Mean 4.25703 Adj R-sq 0.4859
C.V. 24.77018
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > iT I

INIRMEP 1 4.074269 0.18474963 22.053 0.0001
UFP 1 0.000110 0.00003242 3.396 0.0013
Ik4AF 1 3.679235 1.00049189 3.677 0.0006

Model: MDDEL I
Dependent Variable: LNKSIAC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Moel 3 61.92383 20.64128 19.579 0.0001
Error 50 52.71277 1.05426
C Total 53 114.63660

Root MSE 1.02677 R-square 0.5402
Dep Mean 4.25703 Adj R-sq 0.5126
C.V. 24.11938

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > IT I

INTEICEP 1 1.657901 0.52930836 3.132 0.0029
UFP 1 0.000475 0.00025771 1.842 0.0714

VAFSQD 1 2.233479 0.56426975 3.958 0.0002
UVSQD 1 -0.000256 0.00017231 -1.485 0.1439

Model: MDDEL J
Dependent Variable: LNKSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 64.48716 21.49572 21.432 0.0001

Error 50 50.14945 1.00299

C Total 53 114.63660

Root MSE 1.00149 R-square 0.5625
Dep Mean 4.25703 Adj R-sq 0.5363
C.V. 23.52564

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > IT I

INTERCEP 1 1.895277 0.51258497 3.697 0.0005
UFP 1 0.000093833 0.00003235 2.901 0.0055
VAFSQD 1 1.763427 0.59216424 2.978 0.0045

LAW3 1 0.675375 0.30595903 2.207 0.0319
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Model: MDDEL K
Dependent Variable: LNKWISL

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 4 75.07075 18.76769 22.242 0.0001

Error 53 44.72097 0.84379
C Total 57 119.79172

Root MSE 0.91858 R-square 0.6267

Dep Mean 4.20538 Adj R-sq 0.5985
C.V. 21.84300

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITI

InTERCEP 1 2.079403 0.41882736 4.965 0.0001

UFP 1 0.000374 0.00010024 3.730 0.0005

VAFLANG 1 1.070811 C.31478651 3.402 0.0013

tLVSQD 1 -0.000197 0.00006600 -2.982 0.0043

VAFSQD 1 1.077551 0.54289885 1.985 0.0524

Variance
Variable DF Tolerance Inflation

INTEICEP 1 0.00000000

UFP 1 0.05587852 17.89596327
VAFLANG 1 0.55186160 1.81204853
ULVSO 1 0.05847874 17.10023088
VAFSQD 1 0.47968440 2.08470403

Collinearity Diagnostics(intercept adjusted)
Condition Var Prop Var Prop Var Prop Var Prop

Number Eigenvalue WNuber UFP VAFLANG ULVSQD VAFSQD

1 2.71484 1.00000 0.0063 0.0333 0.0067 0.0387
2 0.77041 1.87720 0.0139 0.3893 0.0113 0.0721
3 0.48631 2.36273 0.0001 0.3167 0.0083 0.6419

4 0.02843 9.77148 0.9796 0.2606 0.9738 0.2473
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Table 22

ANOVA Table for Military Database. All Data.
Transformed DV into Ln of KSLOC

Model: MDDEL A
Dependent Variable: UNKSLO

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 76.09626 25.36542 23.180 0.0001
Error 55 60.18556 1.09428
C Total 58 136.28183

Root MSE 1.04608 R-square 0.5584
Dep Mean 4.27480 Adj R-sq 0.5343
C.V. 24.47085

Parameter Estimates
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 -0.105559 0.86976634 -0.121 0.9038
VAF 1 4.278940 0.92376629 4.632 0.0001
UV 1 0.000009950 0.00000375 2.654 0.0104
ULV 1 0.000059622 0.00002468 2.416 0.0190
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Table 23

ANOVA Tables for Commercial Database, All Commercial Data
Included, Straight Linear Regression

Model: MODEL A
Dependent Variable: KSLDC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

model 1 326482.84028 326482.84028 69.339 0.0001
Error 37 174214.13408 4708.49011
C Total 38 500696.97436

Root MSE 68.61844 R-square 0.6521
Dep Mean 109.35897 Adj R-sq 0.6427
C.V. 62.74605

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITJ

INTEWREP 1 -22.619786 19.28564643 -1.173 0.2483
FP 1 0.168594 0.02024662 8.327 0.0001

Model: MODEL B
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 356026.12609 356026.12609 91.055 0.0001
Error 37 144670.84827 3910.02293
C Total 38 500696.97436

Root MSE 62.53018 R-square 0.7111
Dep Mean 109.35897 Adj R-sq 0.7033
C.V. 57.17882

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > IT

INTERCEP 1 -30.398752 17.74169554 -1.713 0.0950
UFP 1 0.180566 0.01892272 9.542 0.0001

Model: M?.DEL C
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 357480.62254 178740.31127 44.930 0.0001
Error 36 143216.35182 3978.23200
C Total 38 500696.97436

Root MSF 63.07323 R-square 0.7140

Dep Mean 109.35897 Adj R-sq 0.6981
C.V. 57.67540
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Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob > ITI

TNI'REP 1 -6.930423 18.59684424 -0.373 0.7116
FP 1 0.166857 0.01862084 8.961 0.0001
LANG 1 -69.857710 25.02615257 -2.791 0.0083

Model: MDDEL D
Dependent Variable: KSILC

Analysis of Variance
SUM of Mean

Source DF Squares Square F Value Prob>F

Model 3 370648.55192 123549.51731 33.251 0.0001
Error 35 130048.42244 3715.66921
C Total 38 500696.97436

Root MSE 60.95629 R-square 0.7403
Dep Mean 109.35897 Adj R-sq 0.7180
C.V. 55.73963

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > IT I

INTERCEP 1 -16.111402 18.62261378 -0.865 0.3928
FP 1 0.178449 0.01902015 9.382 0.0001
IANG 1 13.296245 50.35968946 0.264 0.7933
FPLABG 1 -0.110602 0.05875193 -1.583 0.0681

Model: MDDEL E
Dependent Variable: KSIfC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

m•del 2 357901.50191 178950.75095 45.115 0.0001
Error 36 142795.47245 3966.54090
C Total 38 500696.97436

Root MSE 62.98048 R-square 0.7148
Dep Mean 109.35897 Adj R-sq 0.6990
C.V. 57.59059

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-O Prob > ITI

INTIECEP 1 27.297124 85.79029188 0.318 0.7522
UFP 1 0.181938 0.01916323 9.494 0.0001
VAF 1 -58.548003 85.14789104 -0.688 0.4961
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Model: MODEL F
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 373735.02344 124578.34115 34.343 0.0001
Error 35 126961.95092 3627.48431
C Total 38 500696.97436

Root MSE 60.22860 R-square 0.7464
Dep Mean 109.35897 Adj R-sq 0.7247
C.V. 55.07422

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 -239.775295 151.89513159 -1.579 0. 1234
UFP 1 0.612086 0.20670226 2.961 0.0055
VAF 1 209.971803 152.14896761 1.380 0.1763
UV 1 -0.428096 0.20490626 -2.089 0.0440

Model: MODEL G
Dependent Variable: KSIlC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 378821.55152 126273.85051 36.263 0.0001
Error 35 121875.42284 3482. 15494
C Total 38 500696.97436

Root MSE 59.00979 R-square 0.7566
Dep Mean 109.35897 Adj R-sq 0.7357
C.V. 53.95971

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INrERCEP 1 -20.371481 82.70074981 -0.246 0.8069
UFP 1 0.177000 0.01806773 9.796 0.0001
VAF 1 5.122305 83.90210664 0.061 0.9517
LAW 1 -60.489773 24.67883454 -2.451 0.0194

Model: MODEL H
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 387817.83247 129272.61082 40.083 0.0001
Error 35 112879.14189 3225.11834
C Total 38 500696.97436
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Root MSE 56.79013 R-square 0.7746
Dep Mean 109.35897 Adj R-sq 0.7552
C.V. 51.93001

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > IT I

INTlhCEP 1 -23.661420 79.14668651 -0.299 0.7667
UFP 1 0.183943 0.01729221 10.637 0.0001
VAF 1 3.548406 79.43965933 0.045 0.9646
UL 1 -0.090414 0.02968622 -3.046 0.0044

Variance
Variable DF Tolerance Inflation

INTERCEP 1 0.00000000
UFP 1 0.98771655 1.01243621
VAF 1 0.92399424 1.08225783
UL 1 0.93032886 1.07488872

Collinearity Diagnostics(intercept adjusted)

Condition Var Prop Var Prop Var Prop
Number Eigenvalue Number UFP VAF UL

1 1.30746 1.00000 0.0988 0.3191 0.2972
2 0.95735 1.16864 0.8821 0.0279 0.1128
3 0.73519 1.33356 0.0190 0.6530 0.5900
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Table 24

ANOVA Tables for Commercial Database, All Commercial Data
Included, VAF & KSLOC Transformed

Model: MDDEL A
Dependent Variable: LNKSLOC

Analysis of Variance

Sam of Mean
Source DF Squares Square F Value Prob>F

Model 1 25.70152 25.70152 58.278 0.0001
Error 37 16.31749 0.44101
C Total 38 42.01901

Root MSE 0.66409 R-square 0.6117
Dep Mean 4.19971 Adj R-sq 0.6012
C.V. 15.81272

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITI

INTERCEP 1 3.028720 0.18664621 16.227 0.0001
F? 1 0.001496 0.00019595 7.634 0.0001

Model: MDDEL B
Dependent Variable: LNKSILEC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 26.24251 26.24251 61.546 0.0001
Error 37 15.77650 0.42639
C Total 38 42.01901

Root MSE 0.65299 R-square 0.6245
Dep Mean 4.19971 Adj R-sq 0.6144
C.V. 15.54838

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > IT

INT1EREP 1 2.999831 0.18527209 16.191 0.0001

UFP 1 0.001550 0.00019761 7.845 0.0001

Model: MDOEL C

Dependent Variable: LNKSLOX

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 29.28581 14.64290 41.399 0.0001
Error 36 12.73321 0.35370
C Total 38 42.01901

Root MSE 0.59473 R-sqware 0.6970
Dep Mean 4.19971 Adj R-sq 0.6801
C.V. 14.16114
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Para-eter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITj

INIERCEP 1 3.197430 0.17535,46 18.234 0.0001
FP 1 0.001477 0.00017558 8.413 0.0001
LAWG 1 -0.751191 0.23597538 -3.183 0.0030

Model: MDEL D
Dependent Variable: LNWLC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 29.56998 9.85666 27.712 0.0001
Error 35 12.44903 0.35569
C Total 38 42.01901

Root MSE 0.59639 R-square 0.7037
Dep Mesan 4.19971 Adj R-sq 0.6783
C.V. 14.20085

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INfECEP 1 3.240080 0.18220314 17.783 0.0001
EP 1 0.001423 0.00018609 7.649 0.0001
IAB 1 -1.137485 0.49271782 -2.309 0.0270
FPLANG 1 0.000514 0.00057483 0.894 0.3775

Model: MDDEL E
Dependent Variable: LNKSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 26.24829 13.12415 29.959 0.0001
Error 36 15.77072 0.43808
C Total 38 42.01901

Root MEE 0.66187 R-square 0.6247
Dep Mean 4.19971 Adj R-sq 0.6038
C.V. 15.75996

Paramter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITi

ITERCEP, 1 3.101147 0.90158504 3.440 0.0015
UFP 1 0.001553 0.00020139 7.710 0.0001
VAF 1 -0.102812 0.89483394 -0.115 0.9092
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Model: MODEL F
Dependent Variable: LNKSLX

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 26.26368 13.13184 30.005 0.0001
Error 36 15.75534 0.43765
C Total 38 42.01901

Root MSE 0.66155 R-square 0.6250
Dep Mean 4.19971 Adj R-sq 0.6042
C.V. 15.75227

Parameter Estimates

Parameter standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > IT I

INT'ElEP 1 3.098582 0.48667570 6.367 0.0001
UFP 1 0.001554 0.00020100 7.732 0.0001
VAFSQD 1 -0.099679 0.45324342 -0.220 0.8272

Model: MODEL G
Dependent Variable: LWS1A

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Hxwel 2 26.24254 13.12127 29.941 0.0001
Error 36 15.77647 0.43824
C Total 38 42.01901

Root MSE 0.66199 R-square 0.6245
Dep Mean 4. 19971 Adj R-sq 0.6037
C.V. 15.76284

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parazter-O Prob > IT I

INTEACEP 1 2.999653 0.18910252 15.863 0.0001
UFP 1 0.001550 0.00020177 7.684 0.0001
ILVAF 1 -0.007033 0.86827526 -0.008 0.9936

Model: MODEL H
Dependent Variable: LISLC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 26.35242 8.78414 19.624 0.0001
Error 35 15.66659 0.44762
C Total 38 42.01901
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Root MSE 0.66904 R-square 0.6272
Dep Mean 4.19971 Adj R-sq 0.5952
C.V. 15.93067

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob > ITI

]IRITCEP 1 3.426312 0.88543739 3.870 0.0005
UFP 1 0.001041 0.00116931 0.891 0.3792
VAPSOD 1 -0.427803 0.86784818 -0.493 0.6251
UVSQD 1 0.000504 0.00113255 0.445 0.6589

Model: MODEL I
Dependent Variable: IW.SLOC

Analysis of Variance
SuM of Mean

Source DF Squares Square F Value Prob>F

Model 3 29.25009 9.75003 26.725 0.0001
Error 35 12.76893 0.36483
C Total 38 42.01901

Root MSE 0.60401 R-square 0.6961
Dep Mean 4.19971 Adj R-sq 0.6701
C.V. 14.38215

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 2.883376 0.45066645 6.398 0.0001
UFP 1 0.001497 0.00018460 8.109 0.0001
VAFSQD 1 0.300010 0.43676439 0.687 0.4967
LANG 1 -0.725319 0.25351170 -2.861 0.0071

Model: 1DDEL J
Dependent Variable: LNKSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 30.00509 10.00170 29.138 0.0001
Error 35 12.01393 0.34326
C Total 38 42.01901

Root MSE 0.58588 R-square 0.7141
Dep Mean 4.19971 Adj R-sq 0.6896
C.V. 13.95048

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 3.251622 0.17884489 18.181 0.0001
"P 1 0.001417 0.00018278 7.754 0.0001

VAFLAG 1 -1.122414 0.42801323 -2.622 0.0128
LLVSQD 1 0.000516 0.00048166 1.072 0.2910
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Variance

Variable DF Tolerance Inflation

INTERCEP 1 0.00000000
EP 1 0.89451497 1.11792428

VAFLANG 1 0.25223958 3.96448494
ULVSQD 1 0.24688410 4.05048355

ColLinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop

Number Eigenvalue Number FP VA-ANG ULVSWD

1 1.85974 1.00000 0.0049 0.0661 0.0667

2 1.00875 1.35780 0.8601 0.0073 0.0002

3 0.13151 3.76048 0.1350 0.9265 0.9331
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Table 25

ANOVA Tables for Military Database, All Data Included. for
Function Point to SLOC Conversion Discussion

Model :A
KSLOC to FP, Lang
Dependent Variable: KSLOC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 16443384.48 8221692.2398 177.072 0.0001
Error 52 2414431.385 46431.372788
C Total 54 18857815.865

Root MSE 215.47940 R-square 0.8720
Dep Mean 261.83327 Adj R-sq 0.8670
C.V. 82.29642

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 64.361749 43.28867531 1.487 0.1431
FP 1 0.013804 0.00073402 18.806 0.0001
LANG 1 149.624751 58.48957852 2.558 0.0135

Model: B
KSLOC to FP, Lang, FPLANG
Dependent Variable: KSLOC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 17077850.18 5692616.7265 163.106 0.0001
Error 51 1779965.685 34901.287941
C Total 54 18857815.865

Root MSE 186.81886 R-square 0.9056
Dep Mean 261.83327 Adj R-sq 0.9001
C.V. 71.35031

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > T j

INTERCEP 1 69.496854 37.55024408 1.851 0.0700
FP 1 0.013403 0.00064332 20.833 0.0001
LANG 1 55.987004 55.26139900 1.013 0.3158
FPLANG 1 0.018734 0.00439381 4.264 0.0001
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Model: C
KSLOC TO FP (COBOL ONLY PROGRAMS)
Dependent Variable: SLOC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

M•el 1 1.5148239E13 1.5148239E13 625. 760 0.0001

Error 24 580985629439 24207734560
C Total 25 1.5729224E13

Root MSE 155588.34969 R-square 0.9631

Dep Mean 240868.07692 Adj R-sq 0.9615
C.V. 64.59484

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error parameter=0 Prob > ITI

INTERCEP 1 69497 31272.968810 2.222 0.0359

FP 1 13.402644 0.53577998 25.015 0.0001

Model: D
KSLOC TO FP (COBOL ONLY PROGRAMS & NO INTERCEPT)
Dependent Variable: SWC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 1.6537143E13 1.6537143E13 590.161 0.0001
Error 25 700534702688 28021388108
U Total 26 1.7237677E13

Root MSE 167395.90230 R-square 0.9594
Dep Mean 240868.07692 Adj R-sq 0.9577
C.V. 69.49692

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

FP 1 13.663468 0.56243911 24.293 0.0001
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Table 26

ANOVA Tables for Commercial Database, All Data Included, for
Function Point to SLOC Conversion Discussion

Model: MDDEL E
Dependent Variable: KSILC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 357480.62254 178740.31127 44.930 0.0001
Error 36 143216.35182 3978.23200
C Total 38 500696.97436

Root MSE 63.07323 R-square 0.7140
Dep Mean 109.35897 Adj R-sq 0.6981
C.V. 57.67540

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=-0 Prob > ITI

INTEUCEP 1 -6.930423 18.59684424 -0.373 0. 7116
FP 1 0.166857 0.01862084 8.961 0.0001
LAM 1 -69.857710 25.02615257 -2.791 0.0083

Model: MDDEL F
Dependent Variable: KSLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 370648.55192 123549.51731 33.251 0.0001

Error 35 130048.42244 3715.66921
C Total 38 500696.97436

Root MSE 60.95629 R-square 0.7403
Dep Mean 109.35897 Adj R-sq 0.7180
C.V. 55.73963

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > IT I

INTERCEP 1 -16.111402 18.62261378 -0.865 0. 3928
FP 1 0.178449 0.01902015 9.382 0.0001
LAWG 1 13.296245 50.35968946 0.264 0.7933
FPLAW 1 -0.110602 0.05875193 -1.883 0.0681

179



Model: G

KSLOC to FP (COBOL Only Programs)
Dependent Variable: SLOC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 327066637326 327066637326 73.609 0.0001
Error 29 128854782029 4443268345.8
C Total 30 455921419355

Root MSE 66657.84534 R-square 0.7174
Dep Mean 125225.80645 Adj R-sq 0.7076
C.V. 53.23012

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > IT

INTERCEP 1 -16111 20364.482850 -0.791 0.4353
FP 1 178.448804 20.79920757 8.580 0.0001

Model: H
KSLOC TO FP (COBOL ONLY PROGRAMS & NO INTERCEPT)
Dependent Variable: SILC

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 810412080466 810412080466 184.694 0.0001
Error 30 131635919534 4387863984.5
U Total 31 942048000000

Root MSE 66240.95398 R-square 0.8603
Dep Mean 125225.80645 Adj R-sq 0.8556
C.V. 52.89721

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

FP 1 165.137425 12.15119904 13.590 0.0001
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