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ABSTRACT

Rice, Darreri L. Ph.D., Purdue University, May 1992. Finite Element Analysis of
Concrete Subjected to Ordnance Velocity Impact. Major Professor: Dr. Edward C.
Ting.

Ordnance velocity impact of materials such as concrete results in complex
reaction phenomena. Attempts to analyse the problem have taken the form of
empirical solutions, analytical models, and numerical methods. The form which
currently shows the greatest ability to predict the solution to the impact problem is

numerical methodology. One such form of solution is the finite element method.

The finite element method traditionally relies on inter-element continuity and,
thus, cannot represent fragmentation failure modes found in concrete impact. To
more accurately model the physical phenomena present, a fragmentation algorithm
is incorporated into the finite element method. As fragmentation results in large
displacements, a large deformation formulation based on updated material

geometry is also developed.

Example problems using frame, plane-stress/strain, and axisymmetric elements
are presented to demonstrate the fragmentation and large deformation capabilities.
A final series of problems is also shown which uses the resulting modified finite
element method in solving low-velocity and ordnance velocity impact of

unreinforced concrete.




CHAPTER 1 BACKGROUND AND RESEARCH OBJECTIVES

1.1 Introduction

A majority of the ecarly effort in the study of ballistic impact is due to its
applications in military technology. The need for information in the development of
weapons and in the defense of weapons has led to extensive research into the impact
response of many materials such as metals, composites, ceramics, and concrete. Non-
military applications have more recently become equally important. Some of these
include particle impact on space vehicles, impact on nuclear reactor containment
facilities, and projectile impact used in the rock mining industry. Of particular interest
to this study are those applications, both military and civilian, where the target is
composed of concrete as the unique properties of concrete can create complex response

mechanisms.

Regardless of the application, Wright and Frank [90] state the basic problem of
ballistic penetration as:
"Given a projectile, target, and details of the initial geometry,
kinematics, and materials; determine whether or not the target will be
perforated upon impact. If perforated, determine what the residual
characteristics of projectile and target will be, and if not, determine how
deep a hole will be made.”
This seemingly simple statement is the cover for a diverse multitude of response and

failure mechanisms which, to this day, are not fully understood to the point where they

A




may be accurately and completely predicted.

The objective of this review is to summarize the problem development of ordnance
velocity impact of general targets, with special focus on the projectile impact of
concrete targets. This problem is important in both military applications for the
analysis of protective shelters and in the nuclear energy industry in reactor containment
facility design. The ordnance velocity range of concrete impact possess response
mechanisms which makes its study particularly interesting. These mechanisms include

stress wave and contact induced failures and the resulting fragmentation of the material.

1.2 Behavior and phenomena

State-of-the-art surveys pertaining to projectile impact have been reported in the
literature. One of these surveys which deserves special mention is the paper, "The
mechanics of penetration of projectiles into targets” (Backman and Goldsmith [8])
which presents an overview of the subject detailing impact mechanics and various
solution techniques. One important aspect of the paper is the reference list which
contains 278 books and papers spanning over 100 years. Another paper, "Ballistic
impact: the status of analytical and numerical modeling” (Anderson and Bodner [4]) is
the follow-on to Backman and Goldsmith treating the 10 years of progress occurring
between the two papers. These papers treat impact in general discussing most types of

projectiles and targets.

The specific topic of concrete impact is not covered extensively in the literature.

One of the papers dealing with the impact of concrete structures is "A review of




procedures for the analysis and design of concrete structures to resist missile impact
effects” (Kennedy [45]). A later survey of impact/penetration of concrete is, "Energy
release protection for pressurized systems. Part II. Review of studies into

impact/terminal ballistics” (Brown [19]).

The material contained in these reviews and other papers will be examined in order
to give a better understanding of impact mechanics in general, and also the phenomena

directly related to the impact of concrete and like materials.

1.2.1 Problem classification

The phrase "ballistic impact” can take on very different connotations depending on
the individual’s base of reference. A 16 inch naval gun shell striking armor plate, a
tornado-borne tree trunk striking a concrete containment facility, and a meteorite
striking a space vehicle at many times the speed of sound all fall into this very general
area of study. As could be expected, the responses of the targets and projectiles are as
different as the situations themselves. These differences dictate the need for special
analysis techniques or may allow the use assumptions which do not apply to all forms
of impact. Thercfore, the problems are commonly divided into sub-areas by three
parameters: a) Impact velocity, b) Projectile type, and c¢) Target type which will be

defined in this section.




1.2.1.1 Impact velocity

In many engineering applications, the loading on a structure acts relatively
independent of time and may be treated using static solutions. When the structure is
loaded in a manner which is not independent of time, a dynamic analysis must be

considered.

Seely [77], states there are two ways to treat the dynamic responses. The first
method deals with relatively low rates of loading Which impart a structural response
qualitatively very similar to the static response. The main difference between the static
and dynamic loadings is the magnitude of response. The dynamic problem may be
solved using a static loading method including a magnification factor. This is the
primary method of analysis found in standard design codes like the LRFD and
AASHTO manuals. The second method of analyzing the dynamic loadings is intended
for applications where the rate of loading is increased such that the induced response no
longer resembles an amplified static response. This type of problem requires a more
accurate analysis as the dynamic effects can change material propenies, effective
boundary conditions, and failure modes. The broad range of loading rates can also
create unique response mechanisms which require specific means of analysis. One
common method of classifying the loading rate in impact problems is by the velocity of

the impacting projectile.

Backman and Goldsmith (8] give a rough outline of impact velocity ranges as: a)
Sub-ordnance range of 25-100 m/sec, b) Ordnance range of 500-1300 m/sec (so-named

as this is the usual velocity range of conventional firearms), ¢) Ultra-ordnance range of




1300-3000 m/sec, and d) Hypervelocity range of above 3000 m/sec. Seely [77] states
the ranges depend on changes in material and structural behavior and, thus, implies
different interacting material properties may give a different class of reaction. This can
be seen in another definition set given by Backman and Goldsmith [8] which uses target
and projectile properties to define velocity ranges. The first range defined is that where
only elastic response occurs in both the target and projectile. The second range is one
in which plastic deformations occur. The third range is where the predominant
response is produced through the propagation of elastic, plastic, and hydrodynamic
stress waves. The region beyond the hydrodynamic range includes shock wave
response. The highest velocity regime considered is termed hypervelocity and is

characterized by comminution, phase changes, etc.

Zukas [98] gives a very general classification of impact velocities in terms of
response mechanisms. In the low-velocity range (<250 m/sec), there is a combination
of both a local response at the point of impact and an overall structural response away
from the impact area. In these velocities the response time can be described in the
milli-seconds range. In the next class of velocities (0.5-2.0 km/sec), wave effects
predominate and the overall structural response becomes subordinate to the much
greater localized response at the point of impact. This localized deformation is usually
confined to 2-3 times the diameter of the projectile according to Zukas [98]; but, as
shown later, can be larger for concrete targets. The reaction occurs in the micro-second
time domain. Higher speeds (2-3 km/sec) create large localized pressures greatly

exceeding the impact strength of the materials strengths. Speeds above this are




classified, similar to Backman and Goldsmith [8], by explosive vaporization effects. A
chart showing these ranges along with their corresponding strain rates, effects, etc. is
extracted from Zukas [98] and presented as Table 1.1. Zukas [98] noted divisions of

these ranges are only a guideline and depend on the particular problem.

Kimsey [48] classifies the kinetic energy penetration regime as that in the 0.5 to 2
km/sec range which is the same as the ordnance velocity range of Zukas [98]. It is
stated the important characteristics involved in this regime are inertial forces and
material failure strengths. The equations needed to be solved for such a velocity range
are the equations of motion and the constitutive equations which need to include the

ability to handle large localized plastic flow.

1.2.1.2 Projectile type

Also important in classification of impact problems are the characteristics of the
projectile. The geometry, material composition, and trajectory of the projectile are a

great influence on the final condition of a target.

Table 1.2 is a compilation of projectile characteristics listed in Zukas [98). Seven
separate means of classifying the projectile are given, where the first five (basic shape,
nose configuration, density, trajectory, and impact condition) can be considered input
parameters and the last two projectile characteristics (final condition shape and

location) being the output.

Backman and Goldsmith [8] state the minimum parameters needed to determine the

“ballistic limit” for a projectile to remain intact are mass, total projectile length, nose




shape and length, diameter, and density. The ballistic limit is defined in [8] and [3] as:
"Ballistic Limit - The average of two striking velocities, one of which is
the highest velocity giving a partial penetration and the other of which is
the lowest velocity giving a complete penetration..."
Figure 1.1, though, shows the ambiguity between partial and complete penetration
which are defined somewhat different by different agencies (Backman and Goldsmith

(8D.

Backman and Goldsmith, [8] and [35], define the penctrator shape as various
degrees of “"sharp” and "blunt." This shape can play a major role in particular
deformation modes discussed later. Sharp noses are defined as having a nose half-angle
of 14° with blunt noses having the half-angle measuring 90°. "Pseudo-sharp” noses and
"Pseudo-blunt” noses are between these two limits and vary from 30° to 50°. They
then go on to a simpler definition of nose shape from [52] where the nose length is
greater than its diameter for sharp noses and less than the diameter for blunt noses. The
effectiveness of the nose shape in penetrating must be qualified by its deformability. A
sharp but deformable projectile can behave like a blunt projectile due to the relative

hardness of the target.

The projectile’s deformation upon impact will be shown to be an important
consideration when determining modes of target failure. Backman and Goldsmith [8]
point out the projectile deformation is affected by target deformation. This is seen in
tests of steel projectiles impacting sandstone and concrete targets where the projectile
acts as a rigid penetrator for one type of target material but as a deformable penetrator

for the other. Of course, the converse is also assumed to be true with a rigid projectile




imparting more energy to target deformation than the projectile which dissipates some

of the initial kinetic energy in its own deformation.

The flight of the projectile is defined [8] by its obliquity upon impact (angle
between the velocity vector and the normal vector into the target) and its orientation
(angle between the projectile’s axis of symmetry and velocity vector) as shown in
Figure 1.2. These two characteristics are important parameters in determining the

amount of energy the target will be required to absorb.

1.2.1.3 Target type

With the initial striking velocity defined and the projectile’s characteristics known,
the remaining portion of the impact problem is the type of target being impacted. The
two major characteristics of the target are its geometry and its material composition.
Backman and Goldsmith [8] give a qualitative description of target classification related
to thickness as:

"(a) semi-infinite, if there is no influence of the distal boundary on the
penetration process.
(b) thick, if there is influence of the distal boundary on the penetration
process only after substantial travel into the target element.
(c) intermediate, if the rear surface exerts considerable influence on the
deformation process during all (or nearly all) of the penetrator motion,
and
(d) thin, if stress and deformation gradients throughout its thickness do
not exist."”
In this same article, quantitative values are also given to these definitions by relating the
target thickness, h, projectile length, L, and the elastic wave speeds of the target, C,,

and projectile, C;. This is done by using the number of wave traversals in the plate




during a single traversal of the elastic wave in the projectile. Thin targets have more
than five traversals, intermediate targets have between one and five, and thick targets

have less than one.

Bodner [18] defines the target thickness as:
(a) Thin: no stress or deformation gradient through the target thickness
(b) Moderately Thick: target thickness approximately projectile
diameter
and also includes using the number of deformation modes occurring during the
penetration to define the target thickness. A thin target will exhibit only one

deformation mode while a thick target will undergo multiple modes of failure.

The other significant target property is the material composition of the target.
Backman and Goldsmith {8} divide target materials into naturally occurring (eg. soil,
rock, etc.) and those which are man-made (eg. metals, composites, concrete). One
problem with this method is the man-made material concrete behaves much more like
natural rock than other man-made materials such as metals. They also give a division
by weight with lightweight being up to a specific gravity of 3, intermediate ranging up

to 8, and heavy materials above 8.

A different means of classification which has a more direct meaning in the problem
is termed penetrability and is done by measuring relative depth of penetration in various
target materials using constant velocity and projectile parameters. Some non-
dimensional examples of this style of classification are taken from [8] and shown in

Table 1.3. Low resistant materials are mainly soils resulting from their porosity,
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anisotropy, and inhomogeneities. The moderately resistant materials are those such as
wood, concrete, and reinforced concrete. They state such materials may be represented
with the same types of models as used for the homogeneous metals which compromise

the highly resistant materials.

Backman and Goldsmith [8] give a list of the main assumptions which are valid for
most applications of ordnance velocity target modeling. The first is one of the most
important and useful of the assumptions. This assumption is that due to the velocity of
impact, the response of the structure is localized to the area of impact within a multiple
of the projectile diameter (discussed earlier). This allows the disregarding of
sometimes complicated boundary conditions away from the point of impact. The
second assumption is to neglect all substructure (defined as "any single functional or
operational unit of the target...") rigid body motion. The third is the neglecting of all
thermal effects including friction. Thermal effects, though, do play an important part in
one of the deformation modes in metals mentioned later. The neglecting of friction has
been justified in concrete impact in Yuan [94]. The fourth assumption is related to the
first by stating all targets have planar surfaces. The last states all target elements are

initially stress free.

1.2.1.4 Summary

The ballistic impact/penctration problem covers a wide range of input parameters
and, thus, is usually categorized by the three main areas of the impact velocity,

projectile type, and target type These three divisions, though, cannot be considered
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independent of the other two. For example, the term thin or thick target is highly
dependent on the projectile, and the sharpness or bluntness of the projectile is highly
dependent on the relative hardness of the target. Therefore, even though impact
problems are commonly categorized using these divisions, the entire problem must be

studied for an accurate assessment to be made.

1.2.2 Impact response and failure modes

Once input parameters are defined, the target’s reaction upon impact must be
understood. As was shown in the section on impact velocity, in order to perform a
comprehensive summary of all possible response mechanisms, quasi-static to explosive
vaporization phenomena would need to be examined. The ordnance velocity regime of
impact is that range being emphasised in this report. Therefore, the discussion of
failure and penetration modes will be restricted those common to these velocities.
Particular emphasis will be given to those modes most frequently observed during

impact of reinforced and plain concrete targets.

The response and failure modes can be divided into two groups. The first group is
that which is caused by direct contact with the projectile. The second group contains

those which are stress wave induced [4].

1.2.2.1 Contact induced response

When the projectile strikes the target, the target material must find a means of

moving out of the path of the projectile. In doing this, the target may experience modes
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of failure called contact modes.

At relatively low velocities in the sub-ordnance range, the predominant mode of
failure in materials such as concrete is closely related to a punching shear failure found
in static tests. A cross-section of a low velocity impact failure is shown in Figure

1.3(a).

As the velocity increases, the inertial properties of the target cause an increase in
damage away from the projectile at the impact surface. This mode, called cratering and
shown in Figure 1.3(b), is caused by large shear stresses being caused directly ahead of
the projectile. The tunneling mode can be a result of plugging in moderately thick
targets, Figure 1.3(c), or radial movement in thicker targets, Figure 1.3(d). Figures
1.3(e), ductile hole growth, and 1.3(f), petaling, are found in the impact of ductile

materials and will not be discussed.

Maurer and Rinehart [63] explained the mechanisms involved in the cratering and
tunneling modes of target response. The report was based on tests of steel projectiles
fired into rock (sandstone and granite) at 300 ft/sec to 6000 ft/sec but can be applied to
concrete due to their similar properties. The impact created a cross section (Figure 1.4)
similar to Nash, Zabel, and Wenzel [66], but the main emphasis was on the fractures
which occurred at relatively constant intervals between the bottom of the crater (cup)
and bottom of the tunnel (burrow). The cracks propagated along spiral paths

represented by an equation:

t(em(w%m)
r=r,e

where r = Radius vector of the spiral, r,= Distance from impact to intersection of spiral
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and free surface, 6= Polar angle from upper surface, and ¢ = Internal angle of friction
for target material. A set of these spirals is seen superimposed on a typical target
(sandstone) in Figure 1.5. Maurer and Rinehart [63] state these lines coincide with the
paths of maximum shear generated by the impact. Bauer and Calder [11] also report
the same logarithmic spiral behavior in rock targets with non-deformable projectiles. A
trace of a photograph from this test is shown in Figure 1.6 which shows these spirals.
Maurer and Rinehart [63] form an empirical relationship between the penetration depth
of the projectile and the target’s shear strength. Close correlation is reported supporting
the reasoning. Therefore, it is assumed the impact crater is formed by the uppermost of

these spirals reaching the target surface and fragmenting the material.

The fragments from the impact crater are ejected from the target at a considerable
velocity. Kumano and Goldsmith [54] reported tests where the ejecta from the crater
traveled at or near the velocity of the projectile. Experiments (Forrestal [25]) have
shown this phase of the penetration to induce a monotonic rise in the deceleration of the

projectile.

When the projectile has proceeded deep enough into the target, the shear spirals do
not reach the surface and a new mode of creating a path for the projectile to pass must
occur. This new mode is tunneling which occurs due to a crushing of the material in
front of the projectile and due to radial movement of the material away from the
projectile. The relative magnitudes of the crushing and radial movement depend on the
nose shape of the projectile. The tunneling mode is highly dependent on whether the

projectile is relatively non-deformable as shown in tests on concrete, sandstone, and
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granite (Maurer and Rinehart [63] and Nash, et. al. [66]). When a steel projectile
impacted the relatively soft concrete and sandstone, the projectile retained its original
shape and a tunnel formed. When the granite was impacted by the same type of
projectile, the projectile deformed due to the granite being stronger and only a crater
was formed. Experimental data from [25] show the peak deceleration of a projectile to
occur as the tunnel develops. Therefore if a projectile is going to experience stresses
above its yield point, it would experience them before developing the tunnel. This
yielding of the projectile would consume a great deal of its impact kinetic energy and

thus greatly reduce the chances of a tunnel forming.

1.2.2.2 Wave induced response

When a target is impacted at an ordnance velocity, the entire structure does not
participate in the energy dissipation as only a local area around the point of impact
deforms to any great extent. Even this local area does not all react at the same time: it
takes time for material through the thickness of the structure to "realize” it has been hit.
Some stresses are propagated through the structure by waves which travel at material
property dependent velocities. The type of wave most important to, and thus most
treated in, target deformation is the dilatational wave in which the particle velocity and
wave propagation velocity vectors are along the same line. Zukas [98] uses a standard

wave equation for the dilatational waves.

These stress waves cause three modes of target failure. The first two are radial

cracking and fracture. Radial cracking occurs in materials which have compressive
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strengths greater than the tensile strength and is due to the relief wave following the
initial compressive wave. Fracture occurs in targets composed of weak, low density

targets where the initial compressive wave is greater than the compressive strength.

The third mode of wave induced failure is the result of a compressive result of an
incident compressive wave reflecting off a free surface. Due to the requirement of
stress free conditions at the surface, the wave is reflected from the boundary opposite in
sign to the incident wave but equal in magnitude. Therefore, the incident compressive
wave will be reflected as a tensile wave. In materials such as concrete with lower
tensile strength than compressive strength, the compressive wave magnitude may be
lower than this strength, but the reflected tensile wave might exceed the failure strength.
As the static tensile strength of concrete is 1/10th to 1/20th of its compressive strength
(this ratio is not the same in high strain-rate applications), the tensile wave can cause
fracture and fragmentation as shown in Figure 1.3(g). Zukas [98] explains the large
tensile stress can cause multiple layers of fracture. As in the impact crater ejecta, these
fragments can fly off the target at relatively high velocities and, in some cases, are as

much of a danger as the penetrating projectile itself.

1.2.2.3 Summary

Figure 1.7 shows a breakdown of the three modes of failure which are prevalent in
the penetration process of concrete targets. These modes are cratering, tunneling, and
scabbing. The cratering due to the shear trajectories and the scabbing due to the

reflected wave will occur with both deformable and non-deformable projectiles at
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ordnance velocity. The tunneling due to the crushing and radial movement will occur
only in the rigid projectile case (Figure 1.8). Therefore, complete perforation of a plate
in deformable projectile impact will only occur if the target thickness is such the crater

and spall depths meet.

1.2.3 Remarks

Earlier in the chapter, it was stated ordnance velocity impact caused a localized
zone of damage which was approximately two to three times the diameter of the
projectile. As much of the interest in earlier works on projectile penetration lay in the
area of homogeneous, isotropic, ductile materials such as steel and aluminum, this
assumption was realistic. When targets such as concrete or rock enter the problem, the
region of deformation grows considerably. Bauer and Calder [11] have results showing
crater to projectile diameter ratios in excess of 11 to 1, Nash, Zabel, and Wenzel [66]
have shown approximately the same for semi-infinite concrete, and tests of concrete
plates at Purdue University have shown crater ratios of approximately 12 to 1 and distal
face scabbing diameter ratios in excess of 20 to 1. Even though this shows the
increased damage zone of rock and concrete targets, these effects can still be classified
as local. Halder [29] showed analytically energy absorbed by local deformations was
approximately 98% of the energy absorbed in the impact with the other 2% being due

to the overall structural response.

As can be seen, the impact/penetration phenomenon is complicated in general and

made even more complex with the introduction of concrete as the target material. The
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interaction of various modes of penetration (cratering, tunneling, scabbing) creates a

highly complex problem.

1.3 Modeling and analysis

The study of ballistic impact and penetration phenomena has been active for
centuries, but a full understanding and accurate prediction of the problem is still well
beyond current capabilities. Various solution techniques for modeling and analysing
impact can be grouped into three categories: a) Empirical approaches based on
experimental data, b) Analytical models based on simplifications, and ¢) Numerical

solutions.

1.3.1 Empirical approaches

Based on known input, measured output, and a large number of tests, a correlation
between changes in the output data and the input parameters can be determined. This is
known as an empirical approach and is widely used in design for impact and
penetration. It has been the chosen method of solution mainly due to the fact only a
rudimentary knowledge of the phenomena is needed to produce a satisfactory relation
which need not be based on a rational modeling of the processes. These relations can

give accurate, useful results as long as they are used within the parameters of the tests.

Some of the early relations for the use in impact problems have been summarized in

Backman and Goldsmith [8]:
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Morin (1833) %=2mv§/al1cD3
Dideon % =az py In(1 + a;v%)
de Marre (1886) E, = ag D' hl4

where P = Penetration depth, D = Diameter of projectile, E, = Required initial kinetic
energy for perforation, p, = Target density, m = Projectile mass, v, = Initial projectile
velocity, h, = Target thickness, and a; = Empirically derived constants. The above
relations exhibit important aspects of empirical formulae. First, as shown in Morin’s
equation, the lack of specific target information allows one to deduce (as pointed out in
{8]) this equation is only meant for one specific target material. Also, as these
equations were all formulated using SI units, a change of systems would alter the
constants. The limited number of variables in de Marre’s equation shows the
importance of the constant ag. Backman and Goldsmith [8] also reviewed common
empirical relations for each of the following categories of problems: a) Semi-infinite
target, b) Thin plate penetration and perforation, and c¢) Intermediate and thick targets.
The restrictions on the application of these equations mark the primary shortfall of
empirical approaches. One example is the limit placed on target thickness which

reduces the usefulness of the formulae.

Reviews of the empirical relations used in concrete for concrete
penetration/perforation problems can be found in Kennedy [45], Sliter [80], and Brown
[19]. A commonly used relation when dealing with a non-deformable projectile on a
semi-infinite concrete target is the modified Petry formula [45]:

v2
X=12KpAplOglo 1+ 21s(xx)) (1.1

where x = Penetration depth, K, = Coefficient depending on concrete (0.00799 for
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massive concrete, 0.00426 for "normally” reinforced concrete, and 0.00284 for
"specially” reinforced concrete), A, = Weight of projectile per unit projected arca
(1b/ft2), and V = Projectile velocity. Amirikan, from [45], extended this formula to the
perforation of concrete slabs where the maximum thickness of slab which would be
perforated would be twice the calculated penetration depth, and the maximum thickness
of a slab which will experience scabbing is approximately 2.2 times the penetration

depth.

The Army Corps of Engineer (ACE) formula established in 1946 is:

as [y )
[%] _ 282;)020 [1000] +05 (12)
[+

where x,V = Defined previously, d = Projectile diameter, D = Projectile weight /d’,

and f, = Concrete compressive strength. The perforation thickness, e, and scabbing

thickness, s, based on Equation 1.2 are:

[ X [
3'1‘32“’24 3 (353518) (1.3)
s _ X s
3-2.12+1.36 5 (3sd518) (1.4)

Notice the limits on e/d and s/d in Equations 1.3 and 1.4.

The National Defense Research Committee (NDRC) proposed its own formula in

1946 using:

Gwa=KNd*®D

1.80
V_
1000 ]

where
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2
X X
Ga) = E’] r <20 (1.5a)
Gty = %]-1 =|z20 (1.5b)

N = Missile shape factor (0.72 for flat nosed, 0.84 for blunt nosed, 1.00 for spherical

nosed, and 1.14 for sharp nosed) and K = Concrete penetrability factor (Defined later in

1966 as K = lSO/‘\jf_;' ). For the previously stated range of x/d 2 3, Equations 1.5a and
1.5b can be used with Equations 1.3 and 1.4 for the perforation and scabbing
thicknesses. One of the NDRC formula’s strengths was its ability to be used to also
calculate time histories of the impact force and penetration depth. Brown [19] gave a
comprehensive listing of most of the known empirical impact formulac used in
calculation of concrete penetration. Table 1.4 shows some formulac from Brown [19]
which were not covered above. As these relationships are trying to describe the same
phenomena, the results do not differ greatly from one equation t the other. Figure 1.9
(Kennedy [45]) shows computed penetration using the NDRC formula versus
experimental penetration data for a semi-infinite target at various x/d values. It shows
the empirical relations can be accurate within stated parameters but error grows quickly

as x/d falls below (.5.

Another set of empirical relations can be found in Maurer and Rinehart [63]. The
main reason to mention their results is, even though the equation is based on the impact
of rock targets, the research showed an important point in the mechanics of the
penetration. The equation has the form

P=K; M/A) (vo — v¢)
where K; = Constant related to target material properties, M = Projectile mass, a =
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Projectile cross-sectional area, v, = Initial projectile velocity, and v, = Minimum
velocity at which cratering will occur. This equation is shown to apply to both
sandstone and granite (materials shown to be weaker and stronger than concrete). They
also showed the inverse of the experimentally determined K; for various materials is
linearly related to the material’s shear strength. The relationship shows the importance
of the shear strength of the target material in impact problems. However, it should be
noted the relationship was based on the static shear strengths and not the dynamic

strengths.

Empirical relations are useful tools in the analysis of impact problems. As long as
they are used in applications where the actual conditions are within the test parameters,
they can give accurate results. For new design considerations not within the given
limits, a new set of tests has to be performed. The time and cost to develop accurate
formulas can be prohibitive. Thus, it would be preferable to study the actual physical
processes and propose rational analytical models. Such analyses are more easily
adaptable to various ranges of parameters and thus reduce the total number of test

required.

1.3.2 Analytical modeling

Analytical models are designed such that the physical problem is formulated by a
set of simplified equations which are more easily solved. The simplification is done by
using assumptions to reduce the number of unknowns or to simplify a complex process

to a more solvable one. The solution usually centers on one predominant failure mode
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and, according to Anderson and Bodner [4], mainly solves for the contact modes (i.c.

plugging or tunneling) as opposed to the wave induced modes.

An example of the derivation of equations used in an analytic model for ductile hole
enlargement in a thin plate metal target is given in Backman and Goldsmith {8]). Even
though this is a relatively simple problem with only one mode of penetration present,
the final equation can be complicated. For a more complicated failure series such as
those shown in Figure 1.10 (Ravid and Bodner [73]), the equations become

considerably more involved.

Most of the analytical models [2,57,71,89,9;1] considered the impact of projectiles
on metal targets using ductile type failure modes. Only a few solutions considered
concrete impact. A model was developed by Luk and Forrestal [59] for the penetration
of a rigid projectile into a semi-infinite reinforced concrete target. The reinforcing was
assumed only to control radial cracking and did not have a significant effect on the
overall behavior. The failure mode assumed in this model was tunneling approximated
by a spherical cavity expansion model which had been used successfully in the
representation of rigid projectiles penetrating metal targets by Goodier, from [59]. The
equations are formulated by first neglecting friction between the projectile and target.
Therefore the incremental forces on the spherical projectile nose in the axial direction
can be calculated as:

dF, =2 xR a cosb ¢,(V,,0) d0
where ©,(V,,0) is the normal stress on the nose which is a function of projectile

velocity, and the other variables are shown in Figure 1.11. Therefore the total force on




the projectile is:

F, =xa® [*0,(V,,0) 5in20 d0
In order to derive an expression for 6,(V,,0) the response is approximated by the
clastic-plastic cavity expansion of a sphere. The final form of the penetration equation
takes on two parts as a locked hydrostat response is more accurate for the high initial
velocities during the early stages of penetration but at a certain velocity, V, which
occurs after a penetration to a depth Py, a linear hydrostat model is more accurate.

Theses two parts are:

- 28 a+Pv? 2p a

where only a and B are constants which depend on the shape of the projectile nose and

2 2
a+pv
P,=-=1In BYo | nd p=p,+-i‘-‘-1n[1+ﬁl]

are solved for with the linear and locked hydrostat models. The analysis gives
penetration values close to the tests but the values are consistently overestimated. One
possible reason is the modsl treats the process as a steady state expansion of a sphere
neglecting the transfer of energy needed to start the expansion and to propagate the
axial fracture to allow the forward progress of the projectile. Also, no triaxial data were
available from the original tests and the triaxial data were extrapolated from uniaxial
data which were available. Other models for the penetration of concrete [24] and
gc'omaterials [54,58,91] assume a semi-infinite target and limit the mode of failure.

These models are not sufficiently general for the prediction of overall behaviors.

The analytical models are important tools for the understanding of impact

mechanics. They permit one to study the predominant mode of penetration by
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comparing the results to experimental data. This also leads a primary drawback of the
method as it is most useful in problems where one mode is the dominant failure process
such as thin plate perforation. As shown previously, Ravid and Bodner [73] have
derived an analytical model capable of treating multiple failure modes present in the
penetration of intermediate and thick targets. The complexity of the problem dictates

some simplifications be made in the deformation processes.

The limitations of the empirical and analytical approaches have shown a need for an
alternate technique. Desirable attributes of this technique would be the ability to
predict response as opposed to merely repeating it and to incorporate all phenomena
involved instead of requiring simplifications to reduce the complexity. It is then natural

to consider numerical modelings.

1.3.3 Numerical approaches

The desired result in the solution of impact/penetration problems is to input
projectile velocity, projectile characteristics, and target characteristics and receive as
output the complete time histories of target deformation, failure, and residual projectile
characteristics without altering the problem geometry and loading conditions or
introducing material simplifications. Numerical study of impact, reported since 1958
[4], is thus becoming more prevalent as computing facilities become increasingly

powerful and accessible.

There are two major divisions of numerical methods used in the study of impact

problems. The finite block method, distinct element method, etc. constitute the first of
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these groups and are mainly used in the qualitative simulation of impact. The other
group consists of such methods as the finite element method, finite difference method,
etc. and is termed numerical analysis. The objective is to obtain qualitative predictions

of the failure mode and accurate evaluations of stress and deformation for design.

The numerical simulation techniques such as the finite block method and distinct
element method are usually applied to discontinuous media such as soils or jointed rock
to obtain the motion history of the penetrator and target. This is done by modeling the
system as a grouping of separate blocks. The block interaction consists of contact
forces which are determined by restricting block inter-penetration. These systems are
then put into equilibrium using iterative techniques, or time integration can be used to

solve for the resulting displacements.

One example of a numerical simulation technique applied to an impact problem is
by Gelman, Nelson, and Ito [27]. A distinct element method is applied to ordnance
velocity impact (2500, 2000, and 1500 fit/sec) of a steel penetrator into boulders. Target
and penetrator configurations at various times are shown for the 2000 ft/sec impact in
Figure 1.12. An observation of the results is no boulder elements are fractured which
do not come into direct contact with the penetrator. This result is interesting if
experimental data is able to confirm this. It is possible the joints between the boulders
do dissipate enough energy to localize the damage to these elements and not create the

greater fragmentation found in a more continuous system such as concrete.

A possible limitation in the application of numerical simulation techniques to

concrete targets can be observed in the results of Figure 1.12. The path of the
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penetrator and the resulting target damage can be highly dependent on the initial mesh
used. This is acceptable in the study of discontinuous media where joints and element
boundaries can be clearly defined. In continuous media such as concrete, the use of

direction oriented finite blocks or distinct elements can lead to unreliable predictions.

The numerical analysis used in impact and penetration problems consist mainly of
finite difference and finite element methods. The finite difference method discretizes a
continuum into points whose differences replace the derivatives in governing equations
[98]. The finite element method divides the continuum into small regions where all the
field variables within the element are interpreted by the value of the variable at the
nodes of the element. All of the elements together are put into equilibrium defined by a

force balance or a variational principle.

These two methods of discretization commonly use one of two ways of describing
the field variables. A Lagrangian formulation tracks the difference points or the
clement nodes, whereas an Eulerian formulation tracks the material passing through
fixed control volumes. The Lagrangian formulation is commonly used in solid
problems and has the advantages:

1) Relatively complex convected equations of mass flow are not
required.

2) The tracking of specific material points allows distinct definition of
structural boundaries and material layers.

3) Specific material properties (e.g. inelastic or anisotropic) are more

easily handled.
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One problem with a Lagrangian formulation, though, is large local distortions of the
mesh can occur in impact problems. These distortions can lead to elements folding and
negative element areas if other than three-node elements are used. Also, if element size
controls the time step in the time integration scheme, uneconomical requirements in the
step can result. This problem can be treated by re-meshing the structure during the
computer run by hand or with an automatic mesh processor within the program. This
has been proven successful in the TOODY and DYNA codes [98]. The Eulerian
formulation handles the large deformations much more easily but at the cost of creating
non-distinct material interfaces and structure boundaries. Some success has been

achieved by combining the strengths of both of these in mixed formulations [98].

The previous discussion treats spatial variables. Equally important is the method of
representing the dimension of time. The two general classifications of time integration
schemes are implicit and explicit both of which use finite difference discretization of
time. Without going into details, it is generally accepted the explicit scheme is more
appropriate for wave propagation found in ordnance velocity impact [98]. This scheme
requires a relatively small time step as it is conditionally stable. This can be
uneconomical in penetration problems as only a limited portion of the mesh is actually
undergoing the large deformation requiring a small time step. Belytschko and Liu [16]
considered one remedy by introducing a method of applying different time increments
to different parts of the mesh. The small time step, though, is not necessarily a
hindrance as the large deformations and strain rates of impact may require a small time

step for reasonable accuracy thus negating the benefits of using an implicit algorithm
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with unlimited time step size.
The choice of which type of code is more appropriate for a specific problem is

important in the numerical analysis of impact. Reviews of current codes and their

capabilities can be found in Zukas, et. al. [98] and Belytschko [13].

As the code should have the proper choice of time and space discretization, it
should also contain the proper material models for the penetration process. Without
this ability the numerical analysis often degenerates to a qualitative measure and leads
to empirical curve fitting and matching known test data and lose the ability to predict

response.

For the impact and penetration study, local failure behavior of the structure is very
important and must be properly modeled in order to achieve an accurate prediction.
The failure process may be considered as a two step sequence. The first step is defining
what constitutes a local failure, or a failure criterion. The second step is defining how a
particular failure will affect future response, or a material model for post-failure

concrete medium.

A complete failure model for concrete impact must be capable of detecting various
modes of failure. Tensile strength is important in the distal face spalling. Shear
strength can be used to determine the cratering caused by the shear spirals.
Compressive strength is crucial in the crushing and radial expansion present in the
tunneling. As the failure is localized in impact, the surrounding concrete acts as
confinement. Thus, the important effect of three-dimensional hydrostatic pressure upon

the failure criterion and the failure mode must be included in the concrete modeling.
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The main underlying principle involved with the correct representation of the
failure involves the ability to correctly describe the material stress-strain response and
its failure criteria at the high strain-rates. Experiments and theories proposed in the
area of concrete behavior, fracture, and failure [2, 12, 17, 20, 28, 39, 40, 43, 49, 50, 64,
65, 70, 74, 78, 81-83, 85] have not provided definitive answers. The one agreed upon
fact is the material properties such as ultimate compressive, tensile, and shear strengths

are strain-rate dependent and need to be accounted for in the numerical modeling.

The manner in which the failure is treated once it has been detected can be
extremely important. Tensile failure has been assumed which includes restricting failed
elements to sustaining hydrostatic compressive stresses only and accumulative damage
models to redistribute post-failure stresses. Elements failed in compression are often
assumed to lose the ability to sustain any stress and only retaining mass. Considerably

more research is needed in this area.

An important part of the impact response analysis is to predict the path of the
projectile through the target. To model this, phenomenon requires the ability to create
and relocate a sliding surface which does not allow penetration of projectile
nodes/elements into target nodes/elements. The handling of sliding surfaces has been
extensively discussed in the literature [4, 16, 48, 53, 98] and can be treated with
impenetrability conditions using a master-slave nodes concept [16]. Failed elements
along the sliding path may be redefined to have mass but no stress sustaining capability

thus allowing the projectile to follow any newly created paths [4].
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A prevalent result of ordnance velocity impact in concrete targets is the creation of
fragments due to the cratering and spalling failure modes. These fragments may be
ejected at considerable velocity. They may be of great importance in the analysis for
two reasons. They may cause damage themselves to surrounding structures which may
be significant. The fragmentation due to spallation may also be crucial as the loss of
material off the distal face of the target can influence the ability if the projectile to
completely perforate the target. Finite element solutions of concrete impact have

largely ignored this question of fragmentation.

There are examples of attempts to numerically solve concrete impact problems
found in the literature. One of these analyses was conducted by Johnson, Stryk, and
Nixon [42]. In this problem, the penetration of a semi-infinite concrete target by a
non-deformable steel projectile is solved in 2 and 3-Dimensions using 3-node triangular
planar and axisymmetric finite elements shown in Figure 1.13. The only failure mode
considered is termed "erosion" which creates a tunnel for the projectile by treating
elements stressed beyond a limit to be non-stress sustaining lumped nodal masses. A
finite element solution which uses a different method of creating a path for the
projectile is used as the baseline. The baseline program uses a simple radial expansion
of the material around the projectile to model the "tunneling” type of penetration. This
second method is similar to the approach considered in Luk and Forrestal [59] which

used an analytical method.

The two finite element processes give close results. Part of the final target

configuration results are reproduced in Figure 1.13. Quantitatively, an 11% greater
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depth of penetration was found for the "eroding” target. The main advantage cited for
the "eroding” model of penetration is the use of only 18% of the CPU time of the
"tunneling” model. This is due to the fact the eroding process removes highly deformed
clements from controlling the time integration step size whereas the tunneling leaves

these greatly compressed elements in the calculations.

Another finite element solution for concrete impact was reported by Heider [31].
This work used a 3-D finite element model to simulate the impact of a kinetic energy
projectile into a target with the desired results being a failure analysis (maximum
allowable strain) of the penetrator. The penetrators were in the lower limits of the
ordnance velocity range (500-600 m/s). The concrete model used does not allow failure
of the concrete but creates a path for the penetrator by releasing target nodes at the axis
of symmetry if the target node enters a defined "impact zone.” It did not allow for
cratering or spalling and could, thus, be considered a conservative model for

determination of penetrator failure.

Several of the finite element solutions for concrete impact deal with sub-ordnance
velocities [23, 62] and do not represent the wave effects critical to the ordnance
velocity problem. Examples which involve the ordnance velocity impact of metal
targets are also shown. Although metal targets are much simpler to analyse, they are
included to show capabilities in finite element codes which would be desirable to

implement in concrete impact applications.

One such example is found in Zukas [98] involving the hypervelocity impact (5.182

km/sec) of a nylon sphere (9.53 mm diameter) against an armor-steel target (12.7 mm
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thick). The resuits, shown schematically in Figure 1.14, show the ability of finite
clements to accurately represent the actual processes involved (cratering and spalling)
with the dimensions of the crater diameter and depth, spall thickness and length, and
other dimensions nearly duplicating the experimental results. The CDC 6600 time used
for such a problem is around 12 hours with the Lagrangian code also requiring user

input during the run to rezone the deformed mesh.

Another example of metal plate perforation was given by Kimsey [48]. The
interesting aspects of this model are the ability to replicate complete perforation of the

plate and terminal ballistics of the projectile as shown in Figure 1.15.

As shown above, the numerical studies of impact/penetration problems for metal
targets have the ability to model the detailed processes in the impact. Research is

needed to extend similar solution capability to concrete impact.

1.4 Conclusions

Ballistic impact analysis, though studied for centuries, remains in its infancy. The
processes involved during the impact/penetration of targets at ordnance velocities are
complex and involve both wave induced and contact induced mechanisms. The
impact/penetration of concrete has received much attention but mainly through the use
of empirical studies. These studies are useful in practice as long as they are applied
within the narrow ranges for which the experiments are performed. The simplified
analytical studies have the ability to handle a greater range of problems. However, this

advantage is offset by the simplifications required in the processes in order to constrain
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the equations to manageable proportions.

Numerical methods such as the finite element method are the most likely to be able
to predict response in ordnance velocity impact. The use of general continuum
mechanics formulations allows a broader range of application. The discretization of the
continuum and the use of efficient solution algorithms should allow more realistic

processes to be modeled.

Of the three general classifications of concrete target response (cratering, tunneling,
and spalling), cratering and spalling involve fragmenting with tunneling involving it to
a lesser degree. Thus, a truly accurate finite element solution to the concrete impact

problem is not possible until these phenomena can be properly modeled.

The finite element method assumes continuity between elements. The finite block
method and distinct element method primarily treat contacts between blocks and no
initial tension between blocks. Thus, the present finite element method is suited for the
stress analysis at the earlier stages of the impact before fragmentation and the discrete
block methods show more capability in the later stages after the fragmenting has
occurred. What is required is a hybrid technique which utilizes finite element mesh
continuity until fracture with the trajectory of each individual fragmented element being

traced after failure by a discrete approach.

1.5 Research objectives

The goal for this research is to develop and implement finite element algorithms

capable of modeling the impact response of concrete targets to ordnance velocity




impact.

A primary objective in modeling impact response is the ability to allow
fragmentation of finite eclements which is a predominant phenomenon in impact.
Fragmentation is first developed for frame and rod elements due to the single-
dimensionality of the problem. It is then extended to plane-stress, plane-strain, and
axisymmetric elements which are used to model thin and moderately thick concrete

targets.

Also involved in the research is the development of an updated geometry finite
clement formulation to treat the extremely large displacements found in fragmentation.
As in the previous algorithm, the updated geometry is first developed for frame

elements and then extended to the planar and axisymmetric elements.

Since this research is oriented to the analysis of problems for which little
quantitative data is available, it is hoped these newly developed algorithms will
reproduce the qualitative results of concrete impact. In order to compare the results to
experimental tests and mechanics of behavior, several algorithms developed by other
researchers are also incorporated into the code. These include non-linear concrete
modeling, projectile penetration, and inter-clement penetration. These are intended to

more completely simulate the actual phenomena.




Table 1.1 Range of impact response from Zukas (1982)

Strain Rate

Velocity Range Response
< 50 m/sec 10° /sec Mostly Elastic, Some Plastic
50-500 m/sec 10° fsec Mostly Plastic
500-1000 m/sec 10°* /sec Transition to Fluid Behavior
1-3 km/sec 10’ /sec . Mainly Fluid Behavior
3-12 kmy/sec 10 /sec Compressibility Significant
>12 km/sec 10° /sec Vaporization of Solids
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Table 1.2 Projectile characteristics from Zukas (1982)

36

Geometry
Basic shape  Solid rod Nose configuration =~ Cone
Sphere- Ogive
Hollow shell Hemisphere
Irregular solid Right cirular
cylinder
Material
Density Lightweight
wood, plastics
ceramics, aluminum
Intermediate
steel, copper
Heavy
lead, tungsten
Flight characteristics
Trajectory Straight (stable) Impact condition Normal
Curve (stable) Oblique
Tumbling (unstable)
Final condition
Shape Undeformed Location Rebound
Plastically deformed Partial penetration
Fractured Perforation

Shattered
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Figure 1.1 Definitions of partial and complete penetration for (a) Army Ballistic Limit,
(b) Protection Ballistic Limit, and (c) Navy Ballistic Limit from Backman
and Goldsmith (1978)
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Figure 1.2 (a) Obliquity angle® and (b) orientation angle ¢

Table 1.3 Relative target penetrability from Backman and Goldsmith (1978)

Target Material Relative Penetration

Wet Mud 3700 |
Sand 580 |
Concrete (2500 psi) 60 |
Concrete (5000 psi) 42

Aluminum Alloy 2024-T3 2.5

Steel (BHN) 100 1.0
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Figure 1.3 Failure modes of (a) punching, (b) cratering, (c) plugging, (d) radial expansion,
(e) ductile hole growth, (f) petaling, and (g) spalling




Figure 1.4 Target cross-section with cratering and tunneling from
Nash, Zabel, and Wenzel (1985)

S

—

N"—" ~

RN

\/

Figure 1.5 Shear spirals on target cross-section from Maurer and

Rinehart (1960)
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Figure 1.6 Trace of shear spirals from photograph of target cross-section from
Bauer and Calder (1969)
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Figure 1.7 Concrete failure modes of (a) cratering, (b) spalling or scabbing,
and (c) tunneling
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Figure 1.8 Concrete impact by (a) deformable projectile and (b) non-deformable
projectile
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Figure 1.9 NDRC empirical formula compared to experimental data at various x/d ratios
from Kennedy (1976)
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Figure 1.10 5-stage failure process from Ravid and Bodner (1983)




Figure 1.11 Projectile parameters from Luk and Forrestal (1987)
for analytical solution of concrete impact
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Figure 1.12 Distinct element simulation of 2,000 ft/sec penetrator impact into boulder
mesh at (a) 0.5 sec, (b) 1.5 sec, (c) 2.5 sec, and (d) 3.5 sec
from Gelman, Nelson, and Ito (1987)
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Figure 1.13 Finite element analysis of concrete impact from Johnson, Stryk, and
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Figure 1.14 Finite element analysis of hypervelocity impact from Zukas (1982)




49

(a)
—
\\
(b)
—

/

Figure 1.15 Finite element analysis of imapct on a metal plate at (a) SO pus and (b) 120 s
from Kimsey (1983)




50

An%\m.oy v, 2ISS=8 e[nuwioj Suiqqess [aIyoag

ail(PQ/7231EY' 1="A  uoneiopad Joj ejnunioy Jq3-va4D

$/\J 000T 1240 SurjaAen sjudw3ey ,\ooo1/ Al A0, PANZ8DI=P/x  ejnuuoy Aomyp pue uvewwry

SSOWOIY
a7=s Suiqqess oy pue uonesoprad
103 e|nuLIO) TYYH PAYIPON
¢c£0001/ M), 2D/ pALLY)]=P/? ejnuwoj (T4 4)

¢¢-(0001/A),. PAS L=P/2 A1o1810qR] Yoressay ousijjeq

91910U09 Jo 3z1s dedaid8e wnuw = ¢ (P 1+26 T=P/(2-3) :
81>(p/2)>¢ pue gE ' 1<p/x NG /X)81L0-P/X61 C=P/(E-9) uoneloyrad 105 eynuLIoj 1rey

SEI>p/X

(9861) umoig woy 1oedwr 91215009 U 3sn Joj se[nunioy [eourdwsg 41 9(qe],




51

CHAPTER 2 DISCRETIZATION OF CONTINUA

2.1 Introduction

The basis of numerical analyses is the discretization of a continuum into a finite
number of volumes, points, etc. The method used in this discretizing depends largely
on the continuum, the type of problem being solved, and, to some extent, the preference
of the user. The problem of solid impact requires the discretization of both time and

space due to the inherent dynamic nature of the analysis.

As shown in Chapter 1, there is extensive research into which numerical techniques
are best suited for the study of solid impact. In this research, the finite difference
method is used for discretization of time and the finite element method is used for

discretization of space.

2.2 Explicit time integration

There are two broad categories of methods used in direct time integration of
structural problems. The explicit methods are conditionally stable depending on the
chosen time step but do not require the solution of a system of equations when used
with lumped nodal mass matrices. The implicit methods do not, in general, have these

stability problems but are computationally more complex as they do form a system of
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equations and may also require iterative techniques. There is extensive literature on the
strengths and weaknesses of both methods with explicit time integration using lumped
nodal masses being favored in transient dynamic problems such as impact [14, 16, 26,

46, 47, 60, 72, 98].

The time integration technique used in the current research is the central-difference
explicit method which extrapolates the displacement at the time step ta, by using
displacements, velocities, etc., from previous time steps [88]. Using the variables

defined in Figure 2.1, the acceleration of a point at time i, u;, is given by

. 1
u; = 'F[“i-m — 2u; + Ujadl (2.1)

and the velocity at the same time, u;, by

. 1
u; = Z\T[Uim = Uj-a) (2.2)

Assume a multi-degree of freedom system is expressed by the equation
MU+CU+KU=F* 23)
where M, C, K, and U are the mass, damping, stiffness, and displacement matrices for
the system, respectively. Equation 2.3 can be rearranged to give
U=M'E=-CU-KU) 2.4)
The use of a diagonal lumped nodal mass matrix allows M" to be the reciprocal of the
diagonal term. By solving an undamped system and denoting the stiffness term, K U,

as the internal force at the node, f ™, Equation 2.4 is effectively decoupled becoming

i, = ;11?«;" — fim) @.5)

where m, u, ™, and f™ are the mass, displacement, external force, and internal force
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give
L[u- =2u; + Ul = —l-(f""“ ™ | (2.6)
A t2 At 1 HAL m .
which, when rearranged, gives the displacement at time i+At as
Uipar = 2::2 (™ — ) + 2u; — u_p 2.7)

Therefore, the displacements from the current time step and previous time step along
with the internal and external forces at the current time step are used to extrapolate the
displacement at the next time step. This procedure is performed for each node and then
used throughout the time interval of the problem. The time algorithm is started by first
calculating a pseudo-displacement at time O—-At. This is done using the initial

displacement, ug, velocity, ug, and acceleration, ug, of the problem in the equation

W ¢ = g — Atilg +A2t-2-iio 2.8)

As previously discussed, the explicit time integration techniques are conditionally
stable. The critical time step, At, is defined by the equation
2
®y
with @, the highest frequency present in the mesh and T, the lowest period found in the

T,
Brg=—=—2 2.9)

mesh [88].

2.3 Finite element formulation

The discretization of the space continuum is accomplished using the finite element

method. This method divides the structure being analysed into areas called elements.

of node j. Dropping the subscript "j" and substituting Equation 2.1 into Equation 2.5 -
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Each element has a discrete number of points called nodes. The values of the field
variables (c.g. displacement, velocity, etc.) at these nodes are used to interpolate the
values throughout the element to which the nodes are connected. The elements form a

continuous structure, or mesh, by sharing nodes with other elements.

In a "conventional” finite element analysis, the stiffness and mass matrices for each
element are calculated and then combined, or assembled, into the structure stiffness and
mass matrices which are the same as those found in Equation 2.3. With the use of the
explicit time integration discussed above and lumped nodal masses, the assemblage of
stiffness matrices is not necessary which eliminates the need to solve a system of
equations. Instead, the nodal masses and the internal nodal forces are calculated at the

element level and then assembled in a vector form for the terms found in Equation 2.5.

2.3.1 Nodal masses

There are various techniques of modeling the inertial resistance of a structure in
dynamic analyses. One method is to use the same shape functions used in interpolating
the field variables through the element to calculate the element mass matrix. This type

of matrix is called a consistent mass matrix and is given by

M.=[N'Npdv (2.10)

The consistent mass matrix is not generally diagonal and therefore does not lend itself

well to explicit time integration.

The type of mass matrix commonly used in conjunction with explicit time

integration is the lumped nodal mass matrix. There are various means of lumping the
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masses to the nodes. The method used in the present study is given by the equation

m§ = L N;pdVv, (2.11)
where mj is the mass of the jth node of element e, p is the mass density of the material,
and N; is the j™ shape function (Zienkiewicz and Taylor [96]). The total mass of node j
is then found by traditional assemblage techniques of the elements. As the present
study uses three element types (2-D frame, plane-stress/strain, and axisymmetric) the

equations used in the three different mass matrices will be discussed.

The frame element in the study is developed in two dimensions with the
translational masses calculated in the X-Y plane. The masses, m,; and my,, are lumped

at each end of the element and are given by

My =My, = 5 (2.12)
with A being the element cross-sectional area and 1 being the element length. The

rotational inertia, m,, is only needed about the Z axis and is given by (Saha and Ting

[75))

_pAP LA
24 2
The restricting of the frame element to two dimensions simplifies the treatment of the

(2.13)

My

rotational equations of motion as there is no need to calculate the directions and values
of the principal rotational inertias. As the translational masses are the same in both

directions, this added step is not necessary.

As the plane-stress/strain element and the axisymmetric element do not include

rotational degrees-of-freedom, only the translational masses are calculated. Both types
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of eclements have four nodes per element #nd are formulated using isoparametric
transformations. The mass for ihe j® (j=1,2,3,4) node of element ¢ in a plane-
stress/strain element is
+1 +1
m{ =bp _jl _jl Nj(s,t) |J] dsdt (2.14)
with b being the element thickness, N;(s, ) the j™ isoparametric shape function, [J] the
determinant of the jacobian, and s and t the isoparametric coordinates. The mass of the
same node in an axisymmetric element is given by
+1+1
m§ =2x p _jl _jl Nj(s,) (s, 1) |J| dsdt (2.15)

with r(s,t) being the radius of the integration point in the isoparametric coordinates.

The integration is done using Guassian four-point numerical integration.

2.3.2 Internal nodal forces

The second purpose of the finite element discretization is to calculate the internal
nodal forces, f}"‘, found in Equation 2.5. The current study calculates the internal
forces in the frame elements assuming linear-elastic, small deformation beam theory to
calculate the internal moments and an uncoupled linear force-displacement relationship
for the axial forces. The frame element may undergo large displacements causing a
non-linear displacement-deformation relationship (sometimes referred to as
geometrically non-linear) which is treated with a co-rotational formulation. The plane-
stress/strain element also assumes a linear elastic material and incorporates the co-

rotational formulation. The axisymmetric element includes a non-linear material model
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but does not use co-rotational coordinates in its formulation.

2.3.2.1 Co-rotational formulation

Formulations for the finite element analysis of structures undergoing large
deflection have been proposed for both static and dynamic loadings [9, 10, 38, 46, 47].
One which is widely used is the co-rotational formulation. This method uses the

approach that it is easier to treat large deflection of structures by separating the rigid-

body (or approximate rigid-body) displacements of the i element, d{, from the total

displacements, d;, of the element leaving only the deformation displacements , df, as
df =d; - df (2.16)

allowing the application of infinitesimal strain-deformation relations to the material

properties. The separation is accomplished by using convected, or co-rotational,

coordinate systems [61, 68].

Earlier formulations based on convected coordinates were introduced by Argyris, et.
al. [5] for the static analysis of large displacement but small deformation problems
using an incremental approach. Transient dynamic analyses were proposed by
Belytschko and Hsieh [14] using a total formulation. This latter formulation has been
proven effective in dynamic analyses with moderate rotations. A number o_f references
[15, 60] and general purpose computer codes, such as DYPLAS and WHAM ([13],

STRAW [44], and DYNA3D [30] have been reported in recent years.

The co-rotational approach uses three stages of displacement history, shown in

Figure 2.2, which are: 1) The original geometry, X, at time=0, 2) The current deformed
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geometry, X, at time=t, and 3) The convected geometry, X, at the same time as in stage
2. The approach is based on the premise that each element has its own local, or
convected, coordinate system, x, which rotates and translates with the eclement
throughout its load-displacement history [61]. This rigid-body motion is represented by
the Q matrix shown in Figure 2.2. Therefore, the transformation of the global
displacements of the element into these convected coordinates creates a "pure
deformation” displacement field

d¢=Qf ¢; 2.17)
Separating the rigid body motion from the displacement terms allows the elimination of
higher order terms in the element kinematic functions which account for geometry

induced non-linearity which is now treated by the previously mentioned transformation.

The element displacement vector, u, may be represented by using the nodal
displacement vector, d;, and the element displacement shape function, N, allowing:

u=Nd; (2.18)

As only the deformation displacement contributes to internal force and using Equation

2.18, the shape function may be simplified to 1}_1' giving

7=

ud=N

d 2.19)

where njd is the vector of element deformation displacements. As the rigid body
displacement has effectively been removed from the finite element formulation and

assuming small deformation, the strain in the element, £, is given by

lc)
{33

(2.20)

M

f
with l:)f defined for a plane stress or plane strain problem by
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LORE0)
| dy x|
Using Equation 2.19, Equation 2.20 becomes

~

é=Bd{ (2.22)

where B is the matrix of shape function derivatives given by

W
[[ =%

IU)

B=DN
The system can be put into equilibrium using a virtual work formulation where

Swint = gwext (223)
The term on the left of Equation 2.23 is the internal virtual work and can be represented

by
S
sw"“=zjvag G dv (2.24)
=1V
where G is the stress in the element. Using Equations 2.18, 2.19, and 2.22 in Equation

2.24 gives
. kl -~
sW™ =3 &) Q) [, BTG av 225)
=l i

The term on the right of Equation 2.23 is a combination of external virtual work. Using

d’Alembert’s principle to account for inertial forces gives

kl (e
W™ =3 [&.i'a"f -8dlf, PNTNG; dV] (2.26)
=1 '
where f {* is the vector of external forces in global coordinates, p is the mass density,

and g, is the acceleration vector. Define




£=Qif, BTG dv 2.27)
and
m=[, NTN dv (228)
Combining Equations 2.24-2.28 results in
&.iT'fi' [rpaéi +Lf?“—ff"‘)] =0 (2.29)
=

where d is the global displacement matrix. As 3d{ are arbitrary,

> [ md + ¢ " f"‘)] =0 (2.30)

=1

or in an assembled global form

Md +F® = (2.31)

If a lumped nodal mass matrix is used, the acceleration vector, c'_i, is given by

= < (B —F™), 12,3, 232)
J

where ML are the reciprocals of the diagonal terms of M and "n" the total number of
| .

degrees of freedom.
The co-rotational formulation in combination with explicit time integration has
been proven very effective in applications involving transient dynamic problems. The

formulation, however, becomes ineffective when (sec Equation 2.16) df dominates d§

by such a magnitude d¥ becomes numerically insignificant.
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2.3.2.2 Planar-frame element forces

The co-rotational approach in calculating internal forces for a planar-frame element
uses the geometries shown in Figure 2.3. The deformation displacements necessary for
the calculation are the rotations at the nodes, 61, and 62,, and the change in length of
the element, / —[,. These internal force calculations are based on small deformation

assumptions.

To calculate the two angles of rotational deformation, the rigid body rotation of the
element, y,, must be calculated. One method of doing this is to assign the unit
directional vector ¢, to the initial geometry and e to the current geometry. These
vectors are defined by nodes 1 and 2 of the respective geometries. Using the cross

product of these vectors gives the rigid body rotation as

v, =sin™! [l eoxe | ] 2.33)

Subtracting v, from the total local end rotations 6y, and 6,,, gives the frame end slopes

in the convected coordinates, X

01,=61; —V, (2.342)
02, =62, -V, (2.34b)

shown in Figure 2.3.
The internal nodal forces can be calculated by using the direct-stiffness equations
based on small deformation assumptions thus allowing superposition of simple beam

theory and axial force-displacement relationship. The end moments are :
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my, = — (204, +65,) (2.35a)
2EI, - .
g, = — (012 +202,) (2.35b)

where E = Young’s Modulus of Elasticity, I; = Second Moment of Inertia of the
Section about z-axis, and / = Element'Length The end moments are then used to

calculate the end shear forces, f;, and f;,, by enforcing element static equilibrium

giving:
(my,+my,)
fiy = -LIE-’- (2.36a)
fay == fuy (2.36b)

The axial forces, f)x and fa4, can be calculated by using the current element length and
the initial element length in a force displacement relation and element equilibrium
giving:

-EA
l

fix= (-,) (2.37a)

fay =—fix (2.37b)
where A is the element cross-sectional area.
These local forces, £™, (shown in Figure 2.4) can then be transformed and the
global forces, F™, are given by:
Fo=T]f™ (2.38)
where Tj is the transformation matrix between the current convected coordinates to the

global coordinates.
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2.3.2.3 Plane-stress/strain element forces

The plane-stress/strain eclement used in the current study is a four-node
isoparametric as shown in Figure 2.5. The co-rotational formulation uses the global
nodal coordinates and displacements shown in Figure 2.6 to calculate the deformation

displacements using the same basis as found in the frame element.

The co-rotational approach for the four-node isoparametric element is an extension
of the approach used on the three-node triangular element developed by Belytschko and
Hsieh [14]. The (approximate) rigid body rotation, 8, shown in Figure 2.7 is calculated
by using the nodal coordinates, x and y, and displacements, u and v, of nodes 1, 2, and 4
giving

V2 —YaVa + U — X
0 = arctan Y4V2 —Y2V4 + XqU2 — X2U4 (2.39)
4A + yquz — youq — X4v2 + X2V4

where the nodal coordinates and displacements of nodes 2 and 4 are relative to the
coordinates and displacements of node 1 and A is the area of the "pseudo-triangle”
formed by nodes 1, 2, and 4. The deformation displacements, u%f and v¥, are then

given by using 0 giving

w ([ D4 =234 2.40
V?ef —9 Vi +(§ ..) yi (1—9 )) (. )

with all displacements and coordinates being relative to node 1, I being the identity

matrix, and a given by

cosO sin®
a= [—sin@ cose] (241)
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The deformation displacements are used to find the internal nodal forces for the
element by using a finite element relationship at the element level which gives

f& =k g (2.42)

where d%f are the deformation displacements given by Equation 2.40 and k. is the

element stiffness matrix for a standard 4-node isoparametric planar element. This

matrix is defined as

1
ke=b [ [BTDB |J| dsdt (2.43)
-1

ey

[+

with b the element thickness, B defined earlier by Equation 2.22 and given by

1
B= -lTl-[Bl B2 B3 B4 (2.44)
with J being
J= Xs Ys
Xt N
and B; being
¥iNis — ¥sNi 0
B;= 0 XN — xNj

XsNi: —xNis; yNis— ysNi

The components of these matrices are defined by

oN; oN;
Nu=gr Nu=5e
4 oN; 4 oN;

N=E=—¥ B=X%
‘E;a:‘ 'E;as

i oN; i oN;
X=T=—X X=X —=—X;
' =1 ot & 0s

The elastic material properties matrix, D, is formed to reflect either plane-stress or
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plain-strain conditions. The stiffness matrix is calculated using four-point Gaussian

numerical integration.

The element forces given in Equation 2.27 are in the convected coordinates. The

transformation to global coordinate forces, f#, is accomplished using the a matrix

defined in Equation 2.41 giving
f=ATf, (2.45)
with AT defined by
aT 0 o 0]
T
éLT= 0 a (')r 0
0 0aT o
[0 0 0 aT|

2.3.2.4 Axisymmetric element forces

The axisymmetric element used in the study is also a four-node isoparametric
clement which allows the same approximate development of the internal forces as
detailed for the plane-stress/strain element. The use of a non-linear material model
dictates some changes as does not including the co-rotational approach in the element

formulation.

The element uses the same coordinate system as shown for the planar-element. The
internal nodal forces are calculated at the element level as with the planar-frame and
planar-membrane elements. The element stiffness matrix, k., is not formed as the
element forces, fi,“‘, are calculated using the standard (not co-rotational) form of

Equation 2.27 giving
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fe=[, BToav (2.46)
i
The B matrix is of the same general form as shown in Equation 2.44 but with the B;

sub-matrix now defined for axisymmetric conditions as

¥itNis — ¥sNi: 0
0 XsNit — xNj s
Bi= 131 (2.47)
=2 0
X
XsNit = XiNis yiNis = ysNi
The vector of strains, given by
d h
&
&
€ = > (2-48)
- &
Exy
(g, is the tangential strain) is calculated by the relationship
e=Bd, (2.49)

Determining the stress vector, @, using the strains will be discussed in Chapter 4 which

describes the concrete material model.
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Figure 2.2 Stages of deformation in co-rotational formulation
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Figure 2.3 Initial and current geometries used for planar frame element in co-rotational
approach




70

myg fox
f2y

my,
flf% \ fiy

Figure 2.4 Internal element forces in local coordinates for planar frame
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Figure 2.5 4-node isoparametric plane-stress/strain element in (a) global and
(b) natural coordinates
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Figure 2.6 Element nodal coordinates and displacements
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Figure 2.7 Initial configuration of 4-node isoparametric planar element and
displaced configuration showing co-rotational coordinate system
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CHAPTER 3 FINITE ELEMENT FRAGMENTATION ALGORITHM

3.1 Introduction

There are two common groupings of numerical methods used in the study of
structural response. One of these groups can be classified as numerical analysis and
consists of the finite element method, finite difference method, etc. These techniques
are intended mainly for the pre-failure and failure analysis of a continuous medium by
giving quantitative predictions of stress, strain, and displacement values. The second
group can be termed numerical simulation and consists of the finite block method,
distinct element method, etc. This group is utilized chiefly in modeling discontinuous
media to qualitatively recreate the behavior of granular or jointed materials through
motion histories using the contact forces acting on the discrete bodies (Babosa and

Ghaboussi 7], Heuze, et. al. [32], Shi {79]).

The study of structures subjected to high-rate transient loads known as impacts and
shocks can necessitate the ability to analyze a continuous medium which transitions to
multiple distinct bodies due to fragmentation. Currently, neither one of these two
groups of numerical methods can accurately predict this entire spectrum of behavior.
To develop such a capability, the numerical technique is required to be able to calculate
pre-failure displacements, stresses, and displacements in the continuous medium and

then transition to a discontinuous structure due to the fragmentation, track these
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fragments, and still be able to calculate stresses and displacement histories in the
fragments as well as the remaining structure. As a step in this direction, a finite element
based fragmentation algorithm is proposed. This algorithm uses the finite element
method and explicit time integration coupled with the ability to allow fragmentation of
elements if a failure criterion is violated. Through the use of an updated geometry
formulation, the algorithm is capable of creating new surfaces due to fragmentations,
tracking these fragments, providing good prediction of further fragment development,

and calculating stresses and displacements in all the fragmented structural components.

3.2 The algorithm

The objective of developing an element fragmentation algorithm is straightforward:
to create two nodes where only one previously existed if a fracture criterion is violated,
as shown in Figure 3.1. To simplify the process, a new node is created in the element
where the violation is detected, and the original node stays with the other adjacent
elements at the point of fracture. As these two nodes are not connected, the elements,

originally connected, are moved apart and new free surfaces are formed.

In this study, the algorithm is applied to the study of impact response of structures
and thus, its implementation is illustrated by a code designed for dynamic analysis. The
specific code selected for implementation adopts an explicit time integration technique
with lumped nodal masses which has been proven effective in transient dynamic
problems (Fu [26] and Park [72]). This combination of solution procedure seems to be

very convenient for fragmentation analysis since there is no need to renumber the entire
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mesh when a node is added, and the memory management is straightforward.

An algorithm flowchart, shown in Figure 3.2, gives a schematic representation of
the operations. The bold boxes are those steps unique to the fragmentation technique
with the non-bold boxes being steps used in a typical explicit time integration scheme.
The reader is referred to Belytschko and Liu [16] for a list of references on explicit

algorithms for impact problems.

In the following, the basic modifications of the explicit co-rotational approach to
include element fragmentation are briefly outlined. The steps can be categorized as:
- Stress/strain calculations and fracture criterion
- Nodal connectivity check
- Dynamic allocation and storage expansion
- Force calculations

- Time increment considerations

3.2.1 Fracture Criterion

To determine the location of a surface formation, the elements’ internal stresses (or
strains depending on the criterion used) are first calculated for each time step. The use
of a finite element formulation, based on the co-rota&onal approach seem to
compliment the explicit time integration quite well. Adopting these formulations
greatly simplifies the modifications necessary for the implementation of failure criteria
and the fragmentation. For details of the application of the co-rotational approach, the

reader is referenced to Belytschko and Hsieh [14], Belytschko and Schwer [15],
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Marchertas and Belytschko [60], and Mattiasson [61], for example.

Briefly, the equations of motion can be written in the form

d = '1\71[" (F{™ —Fi™), j=1,2,...,n G.D

j
where d is the acceleration, M is the nodal mass, F* is the external nodal force, and
Fi™ js the internal nodal force for the jth degree of freedom. The element forces, f o
which make up the vector of internal nodal forces, F™, are calculated at the element

level where f ™ can be given by

fint = jv BT ¢ dV, (32)
where BT is the matrix of shape function derivatives and g is the element internal stress
vector. For the explicit approach, stresses are computed using the nodal displacements

and material parameters calculated during the previous time step.

After the current state of stress is calculated, the fracture criterion is examined. The
criterion may be implemented in terms of stresses, strains, displacements, or a hybrid
form. Empirical formulations may also be considered. If the state of stress and
deformation in a particular element exceeds the failure criterion, the fragmentation
algorithm starts by first storing the element and nodal numbers. The program sequence
is then redirected to determine whether a new surface is allowed to form at this node for

the current state of stress and deformation.

3.2.2 Nodal connectivity check

The relatively small time step required in the conditionally stable explicit time
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integration procedure and the lumped nodal masses used for ease of calculation can
result in non-zero stresses being calculated at what should be stress free surfaces. For
this reason, the node where the state of stress has exceeded the failure criterion must
first be checked to ensure there is some type of restraint currently existing at the node.
This restraint may be in the form of a support or another element being attached. If the
node where the criterion is exceeded is found to be an unrestrained node, the program
returns to the normal looping as if no failure had been detected. If the node does have
some existing restraints, fracture is allowed to occur and the program drops out of the

normal looping and redirected to create the new surfaces.

The type of element used in the algorithm determines the type of fracture allowed.
For example, a frame element containing a nodal stress exceeding the criterion would
create the fracture by releasing that node from all other elements connected to ig. This
non-directionality of the fracture means the nodal connectivity search requires only
finding one other element in any direction sharing the fracture node for fracture to be
allowed as shown in Figure 3.3. A plane or three-dimensional solid element, though,
raises an additional consideration of direction of fracture. If, for example, a 4-node
plane-stress element is used; fracture may occur in any one of three directions for each
node of the element as shown in Figure 3.4(a-d). The direction of fragmentation is first
determined by using the state of stress (or strain) calculated for the node of the element
to find the direction of maximum tensile stress relative to the element’s current
orientation. The face to be released is chosen by comparing this direction to the stress

rosette shown in Figure 3.5. If the maximum tensile stress direction falls within the
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range of face 1 on the rosette, the node is released in the vertical direction as in part (b)
of Figure 3.4. If the direction is within the face 2 range of the rosette, the release is in
the horizontal direction (Figure 3.4(c)). The diagonal release is dictated by the
geometry of the element and the particular node where the fracture occurs. Nodes 1
and 3 can only sustain a release in the face 4 region and nodes 2 and 4 can only release
in the face 3 region. This directionality of the release requires a layer connectivity

check.

An example of a layer connectivity check is shown in Figure 3.6. Node "n" of
element "e” in horizontal layer "i" is found to exceed the failure criterion with the
principal tensile stress, 61, shown. Thus, the crack will form in the horizontal direction
between layers "i" and "i-1". Layer "i-1" is searched to determine if any element in the
layer also contains node "n."” If this layer does not contain "n", no fracture is allowed
and the program is continued. If "n" is found, fracture is allowed at this interface and

node "n" remains the same in layer "i-1" and becomes "N+1" in layer "i" as seen in

Figure 3.6(b) where "N" is the total of nodes in the mesh prior to fracture.

In the present algorithm, the maximum tensile stress is used to determine the
fracture surface direction. Other criteria can be introduced based on a similar
consideration. Except for the connectivity check, other aspects of the fragmentation
algorithm are essentially the same for all types of elements. Hence, the rest of this

chapter will only treat nodal fracture of a frame element for simplicity of explanation.
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3.2.3 Update dynamic allocation

Once it is confirned a new surface needs to be created, the next step in the
algorithm is to create an expanded dynamic storage array. The objective of this
subroutine is to reposition the existing memory locations in the dynamic allocation
array and add new values appropriate for the new mesh. For example, a mesh with "N"
nodes with "D" degrees of freedom per node stores "N x D" displacements before
fracture. After the fracture of node "n" (1 < n £ N) occurs, there are "N+1" nodes and,
therefore, "(N+1) x D" displacements. The displacements of the newly created node,
"N+1", are the same as node "n" and are stored in the last "D" spaces of the

displacement sub-array which is now dimensioned to "(N+1) x D."

The reallocation may also reflect options of the computer code. For example,
selected output values may be stored. If a fractured node is the one for which output is

requested, storage for both the original node and the newly created node are allocated.

Additional modifications needed for the new dynamic allocation array include the
new mesh characteristics. The external nodal force array must be changed and
expanded for the fracture node and the new node. In the present algorithm, any pre-
existing external forces are arbitrarily zeroed at both of the nodes after fracture occurs.
Similarly, the lumped mass matrix requires recalculation and reallocation based on the

updated element connectivity.

To simplify coding the reallocation/expansion, a "dummy array” may be used where
the values of the original array are temporarily stored in their new positions without

writing over other array values. After this relocation and addition of values is
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accomplished, the dummy array values are passed back to the original array for use in

the main program.

3.2.4 Internal force calculation

After the storage re-allocation is completed, the algorithm returns to the internal
force calculation within the same time increment. The force calculation starts from
calculating stresses in the same element where the fracture occurs, thus allowing more
than one fracture to occur in the same element. The process repeats until all elements
in the mesh are fracture checked and modified. For the coding, when the program
returns to the internal force sub-routine after creating a new surface, the algorithm is
back to the original looping until the next fracture is detected. Thus, no new coding is

necessary for the force calculations.

3.2.5 Time increment considerations

The time increment used in the current study is constant throughout the time history
and is based on the highest frequency found within the elements in the mesh. If the
time step chosen is close to the maximum stable time increment, the sudden change in
displacements and velocities caused by fragmentation of the mesh can cause problems
in the time integration stability. However, throughout the numerical examples, this has
not been a major hindrance as the time step necessary for the higher velocity impact
response is usually small enough this instability did not occur. Hence, modifications

were not necessary. For slower loading conditions, time increment considerations may
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need more careful evaluation when element fragmentation occurs.

3.3 Numerical results

To illustrate the algorithm, the fragmentation of plane frames is first considered. In
the experience of this research, the fragmentation of frame elements due to bending
seems to create the most severe numerical problems. Plane solids appear to be much

more stable.

The code selected for modification is a code called LADDAS (Large Displacement
Dynamic Analysis of Space Frames). LADDAS is designed for space frame analysis
using the traditional co-rotational approach and explicit time integration. The present
modifications include both the fragmentation algorithm and updated co-rotational

approach for large displacements.

Examples presented are designed to illustrate special features of the technique. The
first two examples show the ability of the algorithm to create a surface if a criterion is
violated and to numerically follow the trajectory of each fragmented component. The
third shows the capability to quantitatively predict stresses and fracture sequence. The

last problem shows the application of the algorithm using axisymmetric solid elements.

Problem 3.1 is a fixed base three story, one bay frame subjected to seismic
excitation in the form of ground acceleration data. The base acceleration values used
are ten times the values recorded from the 1940 El-Centro earthquake in the north-south
direction with the acceleration history shown in Figure 3.7(a). Th~ frame is made up of

three different frame element properties and a weakened element to simulate a
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structural flaw with the frame’s geometry and member properties shown in Figure
3.7(b). The mesh is composed of 37 nodes and 38 elements with each element being 36
inches in length. There are 5 elements in each bottom story column and 4 elements in

each column in the top two stories. The two cross members consist of 4 elements each.

The weakened member is located in the right second story column at the upper joint
and causes the stress at node 14 to exceed the fracture criterion of 3,600 psi in tension.
This causes a discontinuity to form between element 14 and the two other elements
previously connected by node 14 as shown in Figure 3.8. The parting of element 14 and
the other two elements causes a severe change in the structure’s frequency as shown by
the displacement histories of nodes 14a, 14b, and 34 in Figures 3.9(a-c) and 3.10(a-c).
The ability to fragment elements thus allows the study of a rapid change in structural
frequency during the middle of loading. The time step size used is 1x10~* seconds and
the 10,000 time steps used take approximately 4 CPU minutes on a Gould NP-1

computer.

Problem 3.2 is a fixed-fixed beam subjected to impact forces at nodes 7, 8, and 9
which are located in the middle of the beam. This example is intended to show the
algorithm’s ability to create multiple fragments which are completely separate of the

original mesh.

The problem geometry, material properties, section properties, and load history are
shown in Figure 3.11. The mesh is made up of 14 elements with each element being 5
inches in length. The external forces at a node are set to zero once the maximum

tensile stress of 1,200 psi is exceeded. The 200,000 time steps of 0.5x10~® seconds are
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used to show the structure through one second of real time. The entire event takes
approximately 25 minutes of CPU time on a Gould NP-1 computer in the Purdue

University Engineering Computer Network.

After the load is applied, two elements between the forces and two elements
immediately adjacent to the forces show fracture. Thus, the structure is broken into six
components as shown in Figure 3.11(c). Figures 3.12 and 3.13 are traces of the end
nodes of each of the six separate structural components. Figure 3.13 is an enlarged
views of the middle portion of the mesh where extremely large translations and
rotations are encountered. The numbers shown are the node numbers traced with the
subscript being the element with which the nodes remain after fragmentation occurs. It
is apparent the traditional co-rotational approach is not capable of tracking the large
rotations of the middle four fragments which leads to errors and instability. As a result,
the fragmented elements experience unreasonably large changes of length. Figure 3.14

shows the deformed configurations of the structure at 0.1 second intervals.

Problem 3.3 considers a longitudinal stress wave which induces fracture in a rod
with free-free end conditions. The rod is composed of 51 nodes and 50 elements 0.1
inches long. A compressive force history, shown in Figure 3.15(a), creating a
maximum stress of 310 psi is applied at the right end of the rod which imparts a
compressive stress wave traveling to the left. The incident wave is reflected by the left
end as a tensile wave due to the requirement of stress free conditions at the free end.

The tensile failure strength of the material is arbitrarily set at 300 psi.
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Based on uniaxial elastic stress wave theory, the wave velocity is calculated as ¢ =
135,000 in/sec. The wave should take 3.7 x 10°5 sec to reach the left end of the 5" rod.
The incident wave will reduce the reflected wave until 3/4 of the wave has been
reflected resulting in a net tensile stress of over 300 psi (assumed material tensile
strength) at 4.6x 1075 secs which agrees with the numerical prediction of
4.7 x 1075 secs. The fragmenting should occur at 1/4 of the wave’s length from the left
end which is 0.404 inches which also agrees with the numerical prediction of
fragmenting occurring within element 46. After the first failure occurs in the rod, no
failure was predicted in the right portion of the rod which agrees with the expected
physical phenomenon. The initial structure and the final geometry after fracture are
shown in Figure 3.15(h-c). Stress histories of element 10 with and without the

fragmenting are shown in Figure 3.16(a-b).

Problem 3.4 is an application of the fragmentation algorithm to an axisymmetric
problem using 4-node isoparametric elements. The geometry of the problem is shown
in Figure 3.17(b) with the initial structure being a cylinder with a cylindrical interior
void subjected to the pressure history shown in Figure 3.17(a). The mesh is composed
of 600 elements with dimensions of 0.2 x 0.2 inches in the plane of symmetry. The
time step was taken as 1x107® seconds. For 2000 time steps, the computation required

approximately 100 minutes of CPU time on the Gould NP-1 computer.

The Hsieh-Ting-Chen 4-Parameter failure criterion (Hsieh, Ting, and Chen [33])
for concrete material was used for fragmentation. Figure 3.18 shows the mesh for the

clastic-fragment case at various times throughout the displacement history.
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Figure 3.1 (a) Pre-release and (b) post-release of node
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Figure 3.5 Stress rosette for fracture direction calculation
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Figure 3.8 Problem 3.1 fragmented structure configuration
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Figure 3.9 Problem 3.1 x-displacement history of (a) node 14a, (b) node 14b, and

!

(c) node 34 without and with fragmenting permitted




Y-Displacement (in) Y-Displacement (in)

Y-Displacement (in)

0.02 oF -
w/o Fragmentin
0.01
l J
° |
-0.01 ‘
0.0 | Frflgmentmg
0 0.2 1
5 (b) w/o Fragmentin
0
-1
-2 w/ Fragmenting
| | ]
0.2 04 0.6 1
2 (c) w/o Fragmenting
. _
-1
5 w/ Fragmenting ™
] I |
0 0.2 04 0.6 1

Time (seconds)

Figure 3.10 Problem 3.1 y-displacement history of (a) node 14a, (b) node 14b, and

(c) node 34 without and with fragmenting permitted
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Figure 3.13 Enlargement of Figure 3.12 middle section showing displacement trace of
fragments
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CHAPTER 4 LARGE DEFORMATION FORMULATION

4.1 Introduction

The co-rotational approach like that proposed by Belytschko and Hsieh and detailed
in Chapter 2 has been proven effective in transient dynamic problems. As shown in
Problem 3.2 of the previous chapter, though, the extremely large deformations
encountered in fragmentation cannot be accurately tracked by the traditional co-
rotational approach. A different means of calculating intemal forces must be developed
which is capable of handling problems where the rigid body rotation of an element can

be very large, for example in excess of 360° rotation.

A modified co-rotational formulation is proposed which is intended to more
accurately handle problems where large rigid body motions are encountered. This
approach uses a total formulation similar to that used in Belytschko and Hsieh [14] and
combines it with adaptive periodic updating of the mesh geometry. This updating of
the geometry allows the formulation to be applied to problems of extremely large rigid
body displacements and moderate deformations and still allows the use of small

deformation theories for material characterization.
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4.2 General formulation

In order to handle problems where the displacements may be extremely large, a
modified co-rotational approach is proposed where element geometry is periodically
updated for the total deformation formulation. The amount of updating is dependent on
the rotation and translation of the clements in the mesh and, thus, adapts to the
particular problem. Between one update and the next update, the traditional co-
rotational formulation can be used. For each update, the element (or mesh) geometry
and the corresponding coordinate systems are changed. A new "base-line” geometry
(or material frame) is defined. The process removes the numerical problems associated
with large differences in rigid body and deformation magnitudes. The updates also
ensure deformations between the updates remain small even though total element
deformation may be moderately large. For large element deformation, the use of small
strain theory may not remain true if the mraditional co-rotational formulation is used.

With the updated geometry, small strain assumptions can still be valid.

4.2.1 Kinematics

The updated co-rotational formulation is based on four stages of displacement
history. The four stages, shown in Figure 4.1, are: 1) The original geometry, X, at
time=0, 2) The current base-line geometry, x, at time=t, 3) The actual deformed
geometry, x , at time=t’ and, 4) The convected geometry, X , at the same time as in
stage 3. The convected geometry is obtained by an approximated rigid body rotation,

Q'T, of the current deformed geometry to the current base-line geometry such that
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dx =QTdx’'. Therefore, as:

dx =Fdx 4.1)

where F’ is the deformation gradient fromx to x , %’*‘—, it follows that:

dx"=QTF dx 4.2)

Let
F'=QTF 4.3)

Then,

det|F’| =det|QT| det|F'| (4.43)
det|QT} =1 (4.4b)
det|F'| =det|F'| (4.4c)

Let
2E'=FTF -1 4.5)

where E’ is the Lagrangian strain tensor from x to x and I is an identity matrix.

Substituting Equation 4.3 into 4.5 gives

F -1 4.6)

by using the assumption that the deformation gradient from the updated material frame,
X, to g_(' is small (using a small load increment) even though the strain from the original

material frame, X, to x_ may not be small where
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. ar ) r aA,\T-
ar u
€ =l —a-t"lh. + | = 4.7)
= 2
L =~ J - J
.
4 "N r "11'-
1]] du du
= - —— | 4 —_—
2 a} J a§ J

where @ is the deformation matrix from X to X . Also, the deformation gradient, F,

can be simplified by the following relations:

(4.8)

where l_l' and U' are the rotation matrix and right stretch matrix obtained by polar
decomposition. As Q' and l_(' are orthogonal matrices describing approximately the
same rotation

1=Q"R 49)
In addition,

F=U=I (4.10)

as small deformation is assumed from x to 5'.

For the stress relations, let ¢ be the change in the Cauchy stress from x to 5' and

§' be the change in the second Piola-Kirchoff stress in the same increment. Then,

g = % FSFT @4.11)
where p' and p are the mass densities at state )_c' and x respectively. In terms of the
deformation gradient,

o =—L QFSETQT (4.12)
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Asdet]F’| =1and F’ =], it follows that

¢ =Q§Q" (4.13)
or
§'=Q7sQ (4.14)
The corresponding change in the Cauchy stress fromx to X , G , is then
4.15)

» »

¢ =8=QTg'Q

4.2.2 Virtual work
The virtual work equations in the updated approach take on the same initial form as

the traditional approach. The differences arise due to the updating of the element

geometry and the use of the change in nodal displacements from the current base-line
geometry.
The internal virtual work at time t=t is given as

. kl »
wint =y jv 5%TG av
=1 i

where ¢ is the element stress and 8€ is the first variation of the element strain which

(4.16)

define the response from X to i& The integration is performed over the current volume

of the element.
Due to the updating, the strain, §, is a combination of the baseline strain (from X to

x), €%, and the change in strain from the update (from x to X ), € . The stress can be

written in the same form

-

11, 1
]
im>
o
+
im>

(4.17)

.q,
1
Iq;

- 4
+
lq,
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'

Taking the first variation of the strain gives

8EP+E)=8" (4.18)
Substituting Equations 4.17 and 4.18 into Equation 4.16 gives the internal virtual work

as
sw‘"‘=§':jvi 8 TG +6")dV (4.19)
=1
The strain, _é', is given by the element deformation, I_'i', and a differential operator,
Dy as
&' =Drii’ (4.20)

For small deformation, l:)f can be written in convected coordinates. The change in
nodal displacements in convected coordinates, (:1,, is then used to describe the element
deformation by the shape function, IS', giving

' =N'd; (421)
The changes in nodal displacements are found using the convected-te-global
coordinates rotation matrix, Q', and the change in nodal displacements in the global
system, g},

d;=QTd; (4.22)
Combining Equations 4.20 to 4.22 and taking the first variation give

8¢ =B'QTad; (4.23)
where 1:3 is I:)f 1:1;. Substituting Equation 4.23 into Equation 4.19 gives the expression

for the internal virtual work as

o r “el ] -~ - A~ a’ A g »
SWnt = (8d;)T . BTG®+BTG \det|F'| dV 4.29)
-;Q . (B0 F
=

with BTG® being the baseline internal virtual work and BTG " being the change in
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internal virtual work from the from the time of the update.

The external virtual work expression remains as described in Chapter 2. That is,

#el , .
W =3 [(&.ii)Tf s (agi)TfZligi] (4.25)

i=1

Using Equations 4.24 and 4.25 and letting

£i=Q f, BTG detIE"| aV (4.26)
and
aff=Q [ BTG detlF'I av 4.27)
give
TO" [midi + £+ AP -1 =0 (4.28)
i=1

As the virtual displacement is assumed to be arbitrary, the bracketed quantity after
assemblage must identically be equal to zero. Therefore, assemblage of the system
gives

Ma + fim + AEim _ Eexl =9 (4.29)

To find the quantity of interest, éi, Equation 4.29 is rearranged to give

(.-i = M—l q;ext _ Eim — AEim) (4.30)

The use of a lumped mass matrix reduces the process of inversion to a simple reciprocal

of each diagonal term.

4.3 Formulation implementation

The implementation of the updated co-rotational approach in a computer code

requires calculation of the change in the internal nodal forces and a modified time
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integration scheme due to the use of the change in displacements from the previous
update. The implementation is illustrated by using an existing co-rotational coordinate
code LADDAS [75] (Large Displacement Dynamic Analysis of Space Frames). The
original LADDAS is designed as a 3-D frame element code using explicit time

integration and the traditional co-rotational approach.

4.3.1 Planar-frame element internal forces

As detailed above, the internal forces consist of the change in internal forces and the
base-line internal forces. The calculation of both is shown. The changes in internal
forces, AE*‘“, are evaluated based on the changes in displacements, Ad. A simple
moment-curvature relationship is derived for a frame element which is superposed by
an axial force-displacement relationship. x This relationship is based on the same
assumptions used for the internal force calculations in the traditional co-rotational

approach detailed in Chapter 2.

The use of direct stiffness calculation for the moment-curvature relationship
eliminates the need for assuming shape functions and calculating strains (or
deformation gradients) as shown in the general formulations. However, the basic
concept of updated material frame (or base-line frame geometry) can be more

adequately demonstrated without involving complicated matrix or tensor operations.

The moment-curvature relationship used for small total deformation of an element
is based on the geometry shown in Figure 4.2. The two relevant geometries are the

base-line geometry with nodal coordinates x and y, end rotations 6;;, and length |/,
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and the current geometry defined by the change in displacements and rotations
u;, v;, and ¢;;. The rigid-body rotation between the two geometries is now defined by

the cross product relation

\4,z=sin'l [I Chi xg' I] 4.31)

where ey, is the base-line unit vector and g', is the current unit vector. Using the
convected coordinates to separate out the rigid body displacements gives the current
geometry as ;blz , &2, ,and !’ shown in Figure 4.3. The element internal forces are a
combination of the base-line forces, f ™!, which are stored from the latest update and the
change in forces, Af;. Letting oy, =$iz - 0;; (i=1,2) and assuming a linear elastic
simple beam theory and all the end slopes due to deformation being small, the changes

in forces are

2EI

Amy, = —I,-’-(zczlz +0y,) (4.32a)
2EI,

Amy, = -7,--(0.12 +200,) (4.32b)

Afyx = EIA a-1) (4.32¢)

The other three remaining incremental force components are found by setting the

clement into static equilibrium which gives

Am,,+Am
Afy, = ( "I, 22) (4.33a)
Afy, = - Afy, (4.33b)
Afy, =— Afy, (4.33¢)

The incremental internal forces are then transformed to the global system for

assemblage using the same relationship as shown in the traditional co-rotational
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approach

AF™ = TTAf™ (4.34)

with T4 being the transformation defined by
Fo=T{ ™ (4.35)
where T4 is the transformation matrix between the current convected coordinates to the

global coordinates.

The base-line forces for each element must be treated for the rotation of the element
after the update. These forces may be thought of as "residual forces” which remain
fixed in magnitude and direction relative to the element while the element rotates.
Figure 4.4 shows the element at the moment of the update with the new base-line forces
shown. As this element rotates and translates to its new position after the update, these
forces rotate with it as shown in Figure 4.5. These forces must be rotated back to global
coordinates using the rigid-body rotation angle, 6,, which was calculated in order to

determine the change in internal forces. This relation is

fo=0 fiff (4.36)
where
, cos(0;;) sin(0;;)
=" . 4.37)
—sin(8;;) cos(9;;)
for a planar problein.

4.3.2 Plane-stress/strain element internal forces

The updated approach for the plane stress/strain element used in the current

research is a similar to the approach used for the frame element. This is possible as the
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element uses lincar-clastic material properties allowing superposition.

The change in internal forces are calculated using the change in displacements,
Au;, and Av;, and the updated nodal coordinates in the same equations as shown in

Chapter 2. The (approximate) rigid body rotation, 6 , is calculated as

(4.38)

. [ YaAva = y2Av,4 + x48uz — x2A04 ]
0 =arctan

4A + ysAuy - yrAuy — x4Avy + x2Av,

The change in deformation displacements, Au®f and Av3, are then given by using 6’

Au?‘f Ay , X;
=a Av +@ -1 y; (i=2,3,4) (4.39)

AVidef i
with all displacements and coordinates being relative to node 1, I being the identity

matrix, and g' given by

§'= cosO' sme’ (4.40)
-~sin® cosO

These changes in displacements are then used to find the change in internal forces
for the element using the same relationship as in Chapter 2.

ATt =k, AQIS @.41)
where Ad%f are the change in deformation displacements given by Equation 4.39 and
ke is the element stiffness matrix for a standard 4-node isoparametric planar element
given in Chapter 2. The values in the stiffness matrix are'now calculated with the

updated geometry in place of the original geometry.

The element forces given in Equation 4.41 are in the convected coordinates. The

transformation to global coordinate forces, Af 2‘8‘1, is accomplished using the g' matrix
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defined in Equation 4.40 giving
AT =AT AL (4.42)
with AT defined by
aT 0 0 0]
0 af 0 0
AT=|  * 4.43
A 0 0 aT 0 (4.43)
0 0 0 2T

The base-line forces must also be updated at each time step to reflect any rigid-body
rotation in the element. This is accomplished using the g' matrix from Equation 4.40

and the relationship used for the planer-frame element in Equation 4.36.

4.3.3 Axisymmetric element internal forces

The non-linear material model used in the axisymmetric solid element dictates a
different method be used for the calculation of the internal forces. Superposition of
change in internal force and base-line force is not acceptable. Instead, the assumption
of small deformations between updates allows the use of a linear kinematic relationship
throughout the problem and the superposition of strain is possible. Therefore, the
change in displacements, Ad., are used to calculate the change in strain, A€, using the
same type of relationship as used in the total formulation for the axisymmetric element

Ae =B Ad, (4.44)
where B is the matrix of shape function derivatives for the 4-node isoparametric

element using the current geometry.

Even though the co-rotational approach is not used in the axisymmetric element
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formulation, the angle of rigid-body rotation between the base-line and current
geometries, 0 of Equation 4.38, must still be calculated. This is due to the need to
update the base-line strain for the rotation of the element between updates. The base-
line strain is transformed from the local coordinates to the global coordinates using a
standard second-order tensor transformation

efl =agapel™ G.j=1,2.3) (4.45)
where a;j are the components of the transformation matrix defined in Equation 4.40.

4.4 Time integration

For the updated approach, the incremental displacement, Ad,, is computed instead
of the total displacement, d;. The explicit algorithm should be slightly modified to give
the total displacement at time t+At

duar =d +Adua (4.46)
where d is the base-line displacement from the previous geometry update. For each

time increment, At, the displacement changes from Ad; to Ady, 5. and

Adgya +2Ad, - Ady (4.47)

_ Atz (Fext — Figit - AFim)
M

where FiI! is the internal force at the base-line. When the incremental displacement
from the latest update reaches a tolerance limit, the base-line state is updated. The

nodal coordinates, x® and y, of the baseline state are updated to

x%, =x + Ad,, (4.48a)

Yorw =y% +Ad,, (4.48b)
and the base-line displacements are updated to
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dmv =g, (4.49)

The baseline intemal forces, FH]‘, are updated at the element level by adding AF™_ The
time integration should then be "restarted" to allow for the updating of the nodal

coordinates. The new starting values for Equation 4.47 are

Adp s, =0 ~ (4.50a)
Ad, = Adyyp, — Ad, (4.50b)
The new base-line velocity and acceleration are
. (Adyp — Adiar)
d= AT (4.51)
and
e (Adt-m*zzgc'*‘Adnm) 4.52)

Without going through rigorous studies, the time increment limits originally derived
for the traditional approach seem applicable for the present updated algorithm and can

be approximated by

2
At< — (4.53)

®
where @™** is the maximum frequency of the element given for the axial mode

WM — % [%] 2 (4.54)
or the bending mode
1
@™ = 252 [p24 ] 2 (4.55)

where
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A= Cross—sectional Area
I= Second Moment of Inertia About Axis of Vibration
E= Young's Modulus /= Element Length

p=Mass Density n=1.2

4.5 Numerical results

A simple frame code, LADDAS, has been modified to accommodate the updated
geometry. A series of example problems is shown in order to compare the modified
code’s capabilities to those of the traditional co-rotational approach as well as an

Updated Lagrangian formulation.

Problem 4.1 is a beam fixed at both ends subjected to a rectangular pulse loading of
10 kips applied at the center of the span. Symmetry is used in modeling the beam with
10 elements each being 12 inches long. The modulus of elasticity, E, is
3x 10'pounds/in? and the mass density, p, is 4.567 x 10”3 pounds—secfin*. The
second moment of inertia about the z-axis, I,, is 100 in* and the cross sectional area, A,
is 21.9 in? (These section and material properties will be used for Example problems 2
through 4 also). The beam geometry and load history are shown in Figure 4.6 The time
history of the mid-span displacement in Figure 4.7 is shown along with the same time
history calculated using the original LADDAS code. The results from the two codes
match closely indicating the modified code does not lose accuracy in smaller deflection

problems.

Problem 4.2 is an undamped cantilever beam subjected to a ramp loading at the tip
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shown in Figure 4.8. The loading causes an extremely large deflection of the beam.
The tip displacement time history in Figure 4.9 shows the traditional co-rotational
approach adopted in the LADDAS code does not yield a stable solution whereas the

modified approach does.

Problem 4.3 considers a quasi-static problem. The solution is obtained by

attenuating the transient response with the introduction of artificial damping for each

load (or time) increment. The artificial damping is denoted as a,=% where C and M

are from the equation of motion MX + Cx + Kx =F**, For this problem through trial
and error, « is set as 120 sec™!. In this problem, a cmﬁleva beam is subjected to an
end moment time history, M(t), as shown in Figure 4.10. The two plateaus are
arbitrarily selected such that M(t,,) = 2rEl/! should deform the beam into a complete
circle and M(t;;) = 4nEU! should cause the beam & wrap around itself another time.
The traditional co-rotational algorithm was not able to handle the extremely large
rotations encountered in this problem but as seen in Figure 4.11, the modified code

shows very close agreement to the expected solutions.

Problems 4.4 and 4.5 are similar to the problems considered in Bathe, et al [9]. They
are intended to show the modified algorithm in comparison to Total and Updated
Lagrangian formulations. The original problems were used as examples of the ability
of the then newly developed code NONSAP to handle the geometric non-linearities
encountered in large deflection problems and that Total and Updated Lagrangian

formulations yield the same results.
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Problem 4.4 is a quasi-static solution of a uniformly loaded cantilever beam as
shown i.1 Figure 4.12. The modulus of elasticity is 1.2 x 10* psi, Poisson’s ratio is 0.2,
and the mass density is 1x 107lbs—sec?/in*. The mesh is made up of 4-node
isoparametric elements in the modified algorithm, and 8-node isoparametric elements in
the Updated Lagrangian formulation. Tip deflections using both formulations are

shown for 5 different loadings in Figure 4.13.

Problem 4.5 considers transient response of the same problem as Problem 4.4 with
no damping and the loading as shown in Figure 4.14. The time step for the modified
algorithm using central difference explicit time integration is 2 x 107 seconds and for
the Total Lagrangian formulation using Newmark time integration (8=0.50 and a=0.25)
is 4.55x 10~ ->conds. The Total Lagrangian algorithm also introduces equilibrium
iterations which are not used in the modified code. The results from both codes are

shown in Figure 4.15 for comparison.

One of the critical questions in the development of a large deformation algorithm
for a continuum is the variation of material parameters due to geometrical changes. As
a preliminary comparison, the variation is ignored herein, which leads to some
discrepancies in the comparison. Constant values of elastic moduli and mass density
were used in all the algorithms. For thin-walled structures, such as a cantilever beam,
subjected to large displacement, the discrepancies are expected to be small. This is

shown in Figures 4.13 and 4.15.

Problem 4.7 is an example of a structure undergoing extremely large displacement

and deformation throughout its load history. The load history and structure geometry
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are shown in Figure 4.16. Figure 4.17 shows the deformed configurations at 0.03

second time intervals.

Problem 4.8 is Problem 3.2 reaccomplished using the updated formulation to show
the need for the modified method. Figure 4.18 shows the traces of the fragmented
clement end-nodes for both the traditional and updated approaches. The updated
approach is capable of tracking elements through over 720° of rotation with the
elements not suffering the large distortions found in the traditional code. Figures 4.19
and 4.20 show the deformed configurations for both formulations at 0.1 second

intervals.
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Figure 4.1 Stages of deformation in updated geometry formulation
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Figure 4.2 Base-line and current geometries
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Figure 4.3 Base-line and current geometries with rigid body motion removed
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CHAPTER 5 PROJECTILE IMPACT ON CONCRETE TARGETS

5.1 Introduction

The finite element codes developed earlier in this research are extended for the
analysis of ballistic impact of non-deformable (rigid) projectiles on concrete targets. A
range of impact velocities from below the sub-ordnance range to the lower limits of the
ordnance region are studied. As the main emphasis of this research is directed to the
ordnance range of impact, a majority of the examples involve impact velocities above

300 my/s.

For a better simulation analysis, it is necessary to introduce modifications into the
finite element code to more closely model the phenomena present in the problem of
impact. These modifications include:

- Elastic-plastic-fragment concrete material model

- Algorithm for contact and sliding surfaces

- Inter-element collision of fragmented target elements

5.2 Concrete material model

Incorporation of a concrete material model based on experimental data into the
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finite element code is required if prediction of concrete impact behavior is expected.
The material model chosen for the current study is a plasticity-based model proposed
by Hsieh, Ting, and Chen [33] with the experimentally determined constants altered to
account for strain rate effects. The plasticity model is chosen due to its close
comparison to experimental data for uniaxial and multiaxial stress states and due to its

ease of implementation in a finite element program.

The Hsieh-Ting-Chen model is based in classical formulations which are modified
to represent the pre-failure incremental stress-strain behavior of plain concrete. The
model uses a scaled down version of the failure surface to determine the initial yield
surface before which, linear elastic behavior is assumed. Post-yield response is defined
by assumed hardening and flow rules. A four-parameter failure surface determines at
what stress states cracks are initiated in the concrete continuum. The state of stress at
failure is then used to calculate the mode of failure and determines the corresponding

post-failure response.

5.2.1 Failure criterion

As the initial yield surface used in the Hsieh-Ting-Chen four-parameter concrete
model is of the same shape as the failure surface, the failure surface will first be
described. The failure criterion for the model uses the stress invariants I; and J;

defined as
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1
I = < [(01-62) +(02-03)* + (63-01)’]
(o;, i=1,2,3 are the principal swresses), the maximum principal stress, ©;, the uniaxial

compressive strength, O, and four constants. The failure surface is described by the

equation
J J o] I
A 32+Bi,_2—+c—f+n—',——1=o (5.1)
GC cc oc OC

The constants A, B, C, and D are calculated based on experimental data for four stress-
states at failure. The stress-states used to calibrate the constants are: 1) Uniaxial
compression (G, = 6, =0, 63 =—0.), 2) Uniaxial tension (0, = Gy, 03 = 03 =0), 3) Bi-
axial compression (0; =0, 0, =03=-0Op), and 4) Confined compression
(c,=02 =—-c;,¢, o3 = -O';c). A schematic representation of the failure surface is

shown in Figure 5.1

5.2.2 Inelastic behavior

The initial yield surface and subsequent loading functions in the plasticity model are
of the same shape as the failure surface. Therefore, they are described by Equation 5.1
with a hardening parameter t substituted in the equation for O.. T is defined as a
percentage of O, with an initial value assumed between 0.25 and 0.35 x o, for static
analyses {56]. The use of the failure surface shape for loading functions ensures these

surfaces are compatible at failure.

The size of the loading function for the material model is defined by an isotropic
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hardening parameter t which is an experimentally determined function of the effective
plastic strain, €, = ]\jde}}ds}} (def; is the plastic strain increment). A mixed hardening
rule is used with the loading function translation defined by its kinematic hardening

parameter a;.

The value of t is determined by an experimental relationship between T and &,
given as
dt=MHds,
with M being the fraction of isotropic hardening (chosen as 0.2 from [84]) and H being
the experimentally determined slope of the 17-€; curve in a uniaxial test. Labbane [56]

uses a regression analysis of experimental data to calculate H as

H= % =1988 ¢, e 2% (5.3)

The rate of translation of the loading function, doy;;, in the kinematic hardening

assumes the Ziegler hardening rule to give [56 from 95]

doy; = % (1-M) dePo;; (5.4)
with 0 = 6;; — 0.
The hardening parameters and the loading function are used to formulate an
incremental stress-strain relationship
do;; = Cij dey (5.5)
The term C;,m is a tangential stiffness matrix which is a combination of the initial
elastic modulus, C;3, and a term based on the loading function and hardening

parameters giving
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, Cijmn CuirsG
Ci = G — H — kg} — 3F (5.6)
Gmars + —(1-M)=—0,; -HM—G,
where the term Gy = az—F-éii
mn 8

5.2.3 Effect of strain rate on concrete behavior

Increased strain rates found in the dynamic loading (shock, impact, etc.) of concrete
structures affect both concrete strength and stress-strain behavior. The experimental
data available conceming the rate effect in the concrete response is mainly for quasi-
static loadings at low strain rates. Due to increased difficulty of testing and other
reasons, there are considerably fewer results available for concrete subjected to higher

strain rate loading conditions.

A majority of the dynamic test results for concrete have been obtained from
uniaxial test conditions [28,39,50,52,81,83]. From these tests, two important general
conclusions can be drawn. The first is concrete strength increases under all loading
conditions (uniaxial and multiaxial) with increasing strain rate. The second is a
decrease in non-linear stress-strain behavior prior to the peak stress with increasing
strain rate. The increase in strength at higher strain rates is more sensitive in tensile
conditions than compressive conditions [83). A plot detailing this behavior is taken
from [83] and shown in Figure 5.2. Experimental data has shown compressive
strengths as high as 170% of the static strength at € = 200/sec. Tensile tests have shown

increases of over 350% at a strain rate of 7/sec [52].
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Kormeling [50] stated the main contributor to the rate dependency of concrete
behavior is the cement paste due to the relative stability of the various bonds. Using
this as justification to apply results of cement paste tests directly to concrete behavior
allows assumptions to be made. Jawed [39] showed through experimental data cement
paste strength increases with increasing strain rate at an approximately linear rate until
a limit state is reached (€=250/sec for these particular tests). After this point, the

strength remains constant for any increase in rate.

Kuennen, et al. [52] showed a different trend at the lower strain rate range. They
stated the strength-vs-strain rate curves for concrete describe a bi-linear pattern with
only moderate increases in strength below a critical strain rate (60/sec for compression
and S/sec for tension) with a more rapid increase after this point. These tests,
unfortunately, do not achieve strain rates as high as Jawed, et al [39]; and, thus, it is not
possible to see if their results also show the leveling off of strength beyond the
g = 250/sec range. It is also not possible to determine whether tension reaches the
constant region more quickly than the 250/sec range of compression as would be

indicated from the difference in critical point rates in the Kuennen, et al [52] tested.

The uniaxial testing of concrete at increased rates of strain has also shown the
strain-hardening behavior differs from the static response. Tests [41,82,83] have shown
the secant modulus prior to failure has increased with increased strain rate. Suaris and
Shah [83] attribute this increase to a decrease in pre-peak micro-cracking. They also
state the increase in strain rate does not affect the initial tangent modulus of the

concrete.
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The tests of biaxial loading behavior of concrete [2,65] show general trends of
increase in strengths and increase in secant modulus which are consistent with the
uniaxial tests. Ahmad and Shah [2] state the strain rate dependency of the secant
modulus in unconfined and confined tests to be so comparable they propose using an

empirical equation based on uniaxial data for confined concrete.

5.2.4 Model modifications for strain rate

The experimental data available on the behavior of concrete to different modes of
loading allow certain assumptions to be made for treating concrete at increased strain
rates. These assumptions are:

1) At strain rates achieved in ordnance velocity impact (€ > 1000/sec),
failure strengths under both uniaxial and multi-axial conditions may be
treated as constants.

2) Due to the difference in sensitivity to strain rate between tension and
compression, the tensile strength may be increased by 2 or 3 times the
static strength whereas the compressive strength may only increase by a
factor of 1.5 or 2. This results in the ration of o; to c; changing from
approximately 10 for static cases to 6 or 7 for ordnance velocities.

3) The decrease in the non-linear stress-strain response allows concrete
to be treated as a linear-elastic material well beyond the 25% to 30% of

the compressive failure strength limit of static curves.

These assumptions allow the use of the Hsieh-Ting-Chen plasticity material model
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modified for the strain rate induced behavior.

As stated previously, the four constants can be determined from four failure states
(uniaxial tension, uniaxial compression, equal biaxial compression, and confined biaxial
compression). The test results are represented as a multiple of the uniaxial compressive
strength, o;. For standard static use, Labbane [56] assumes the failure states as

6;=0.100;, Oy =1.150; Op =086, O =4.20,

which gives the constants as

A=20108 B=0.9714 C=9.1412 D=0.2312
For application in the dynamic analyses, the uniaxial tensile strength ratio is changed to
reflect the different reaction of tensile and compressive strength to increased strain
rates. With o, now given as

6, =0.1429 o, (0./0,=7)
the constants are changed to

A=10215 B=14566 C=5.9289 D=0.18151
Table 5.1 shows how the change of the compressive strength to tensile strength ratio

affects failure stresses for three stress states ( ©; =tensile, 0, =0, 03 =-2000psi,

o3 =0, 6, = compressive, 63 =-2000psi, and 6, = G, = tensile, 63 =-2000psi)

5.2.5 Post-failure region

The third region of behavior is failure defined by Equation 5.1. Once the failure
surface is reached, the modifications needed to simulate the local failure are based on

the mode of failure. This mode is determined using the state of stress at failure to
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calculate a crushing coefficient, a, given by

o (5.7

I
(2\/312 cos0)

for

- 1 —1 36 J3
10] = 3cos 2 JZ’Z

< 60°

Using the criteria of 0, being tensile for cracking and €; (maximum principal strain)
being compressive for crushing, limits of the modes become: 1) a< 1 for pure cracking,
2) a> (1+v)/(1-2v) for pure crushing, and 3) mixed crushing and cracking between

these two values. Using v=0.2 for concrete puts the limits at <1 for pure cracking and

>2 for pure crushing [76).

5.2.5.1 Pure cracking

When pure cracking is detected, the maximum principal stress direction is
determined from the existing state of stress. If this direction corresponds to the
tangential direction of the axisymmetric element, the constitutive relations are modified
to plane stress conditions. If this direction is in the plane of symmetry, the direction is
compared to the current element geometry. The node closest to the integration point
where failure occurs is released from adjacent elements in the direction of the principal
stress. This is the mode of failure which employs the nodal fragmentation algorithm

presented in Chapter 3.

No modification of material properties is enforced if pure cracking is detected. If
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the element node experiences failure stresses in following time steps, the crushing
coefficient at that time step dictates property modifications as outlined in the two

following sections.

5.2.5.2 Pure crushing

When the crushing coefficient, @, is greater than 2, the element node is de‘ermined
to fail by pure crushing. Pure crushing dictates the material behaves as a granular
material. One method of treating crushed material is to assume the material strength in
all directions ceases to exist and the material is perfectly deformable [84,92]). This is
acceptable in reinforced concrete analysis as the residual concrete strength would be
relatively insignificant as compared to the reinforcing steel strength. This assumption is
not as acceptable in problems where local behavior is dominant as plain concrete is the

material being loaded.

Chen and Yamaguchi [22] state zero strength is the lower limit on the actual
behavior and perfect plasticity is the upper limit. In order to fall somewhere between
these two values, the material properties in the code are modified. The elastic modulus
and shear modulus are set at 10% of their uncrushed values. The value of 10% is

arbitrary and meant only to model loss of the majority of the strength.

The other modification for a crushed element node is to ensure no tension is allowed
in the state of stress at the point of failure. This is done by calculating the principal
stresses, Oy, G2, and O3, at the integration point for all time steps subsequent to the

crushing. If any of the principal stresses are tensile, they are set to zero and the state of
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stress is recalculated based on the modifications.

5.2.5.3 Mixed cracking and crushing

The third mode of failure is found in the region between pure cracking and pure
crushing and can be considered a combination of the two. The post-failure behavior for
this mode is modeled by altering the calculated stress for each subsequent time step.
The stress is reduced in proportion to the amount of crushing in the failure as
determined by the crushing coefficient, a.. Thus, the reduction factor, f;, is found by

£=0920-a)+0.1 (5.8)
If o at a subsequent time step is found to exceed 2, the element node is assumed to have
crushed completely and is treated the same as if pure crushing were the initial form of
failure. In the same manner, if & becomes less than 1, the element node is released in

the direction of maximum principal stress.

5.2.5.4 Biaxial state of stresses

As stated previously, if the element is determined to have exceeded the failure
criterion in pure cracking and the tangential stress is the maximum principal stress, the
clement stress-strain relations are modified as a plane state of stresses. This dictates a

change be made in the calculation of the crushing coefficient, & [56].

The radial stress in the element may only be compressive. Therefore, if a tensile
stress is calculated, the tangential stress is set to zero. In order to determine the type of

failure for this stress condition, the original definition of a is investigated. For pure
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cracking to occur, the maximum principal stress, 6}, must be tensile. For pure crushing
to occur, the maximum principal strain, €, must be compressive. Using the biaxial

stress state of G,, Oy, and Ty, the coefficient o becomes

NG -0, +412,
with the failure mode of cracking defined as

a=

a<l
the mode of pure crushing as
a>1tY —15frv=02
and the mixed mode as
1<as ity
1-v
5.2.5.5 Element removal

The study of impact using finite elements brings with it the possibility of extremely
large deformation in the mesh. If an element is allowed to deform too much, numerical
problems may appear. To avoid such an occurrence, two checks are imposed on the
clements. The first such check is to ensure the Jacobian calculated at the gauss
integration points being positive. If it is negative or zero, the element is assumed to be
compressed beyond acceptable limits and is removed from the internal force calculation
loop but the nodal masses remain. If the element sides become extended beyond a limit
(greated than two times their original length is arbitrarily chosen in the current

computer codes) the element is also removed from the internal force calculation. This
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usually occurs in a crushed element which cannot sustain tensile stress and at a later

point in the history, is subjected to tensile forces.

5.3 Contact and sliding surfaces

The algorithm used to numerically treat the contact and sliding surfaces inherent in
the penetration of the projectile into the target mesh is based on the "master element-
slave node" concept introduced by Belytschko and Liu [16]. This concept designates
some of the elements in the mesh as master elements. Nodes from the remaining
elements are designated slave nodes. Each of these nodes’ positions is checked to
determine if the node has penetrated any of the master elements’ boundaries. If the
slave node has penetrated a boundary, the node is moved back to the element boundary
ard t-e resulting change in momentum is transferred to the nodes of the corresponding
master element. For this study, the projectile element is the master element with the

target nodes being the slave nodes.

The projectiles used in the examples consist of one of two shapes shown in Figure
5.3. These shapes are used for simplicity in computing the projectile boundaries
necessary in determining penetration. The projectile is assumed to be rigid for
computational simplicity. The use of a rigid projectile is also meant to model non-
deformable projectile impact necessary in developing all three modes of failure in the

concrete target.

Penetration is determined by first calculating the current position of the projectile

boundaries using initial coordinates and current displacements of the four projectile
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nodes. The position of each target node is then calculated in the same manner. If a
target node is found to be within the projectile, the displacement components of the
target node are modified to move the node back onto the projectile boundary as shown
in Figures 5.4 and 5.5. This change in position is then translated into a force applied to
the penetrator by calculating the change in momentum of the target node. This gives
the penetrator force, F,, as
Fp = my, x Ady/AC

with my, and Ady, the target node mass and change in position and At the time step size.
The force is divided among the projectile nodes in proportion to the projectile nodal

masses to ensure rigid body motion of the projectile.

5.4 Inter-element collision

Element fragmentation allows fragments to move independently of previously
connected elements. Therefore, fragments could possibly travel through other elements
which is not true to the actual phenomenon. To prevent this from occurring, an
algorithm analogous to the discrete, or distinct, element method used in the analysis of

discontinuous media is incorporated into the code.

The inter-element collision algorithm used in the present analyses is simplistic in its
application in order to reduce computational effort. Each element is defined as a circle.
The diameter of the circle is equal to the original side dimension of the element as
shown in Figure 5.6. The center of the circular "pseudo-element” is calculated as the

average position of the four comer nodes. The position of the element (termed "target
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element”) is then compared to the position of all other elements (termed "collider

elements") which are not currently connected to the target element.

If the circular region of a collider element is found to be within the circular region
of the target element, the inter-penetration distance is calculated as shown in Figure 5.7.
This distance is used to calculate a collision force based on an elastic collision. This
force is then equally divided between the two elements and distributed among the
elements’ nodes. The magnitude of the distribution is relative to the nodal mass versus
the element mass such that the force creates a rigid body acceleration. The direction of
the force is co-linear with the line connecting the centers of the target and collider

elements. The direction and the distribution of the forces are shown in Figure 5.8.

5.5 Numerical results

The capability of the fragmentation algorithm and large displacement formulation
developed for the analysis of projectile ballistic impact of concrete targets are
illustrated in thirteen example solutions. Problem 5.1 involves low velocity impact
(sub-ordnance range) with the remaining twelve problems treating higher velocities in
the lower end of the ordnance range. The intent of showing Problem 5.1 is to
demonstrate the ability of the code to handle the punching shear type failure found in
the lower velocity impact. The type of failure particular to the higher velocity impact

will then be contrasted to demonstrate the versatility and predictability of the algorithm.

Problem 5.1 considers low-velocity impact using parameters from experiments by

Nilsson and Sahlin [67]. The current problem is modified by removing the target’s steel
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reinforcement to show the failure mode and fragmentation more clearly.

The problem consists of a circular concrete plate with a 1.5 meter radius being
impacted by a 0.125 meter radius steel cylinder at 4.8 meters/second. The problem
geometry, mesh, material properties, and projectile characteristics are shown in Figure
5.9. The 600 time steps of a constant time increment of 2x1075 second give the real
time span of the impact as 0.0012 second. The computed failure pattern is shown in
Figure 5.10. The deformed mesh is shown at 0.0002, 0.0004, 0.0006, 0.0008, 0.0010,
and 0.0012 seconds in Figure 5.11. The crack pattern and meshes show the punching

shear type failure common to low-velocity impact of concrete.

The range of damage on the distal face is consistent with that of the Nilsson and
Sahlin test specimen. The test specimen shows two major crack rings with the larger
being approximately 200 mm in radius and the smaller about 100 mm in radius. The
finite element mesh predicts two major failure zones with the larger being
approximately 220 mm in radius and the smaller being 150 mm in radius. The problem

used 80 cpu minutes on the Purdue ECN Gould NP-1 computer.

The application of the fragmentation algorithm to higher velocity impact of
concrete is shown through a series of examples (Problems 5.2 through 5.13). Problem
parameters of velocity, projectile shape, elastic limit, and target thickness are varied.
The chosen velocities of 12,000 in/sec (305 m/sec), 15,000 in/sec (381 m/sec), and -
18,000 in/sec (457 m/sec) are intended to show problems at the low end of the ordnance
velocity region. Two of the examples also incorporate the inter-element collision

algorithm to show how this affects results.
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Problems 5.2 through 5.13 all use meshes similar to those shown in Figure 5.12.
The element size used for all the problems is 0.1x0.1 inches with the chosen time step
being 1x10~® scconds. The elastic modulus of concrete is assumed to be 4.4x10° psi
with a Poisson’s ratio of 0.2. The value of o; is 6,000 psi and the mass density is
2.2x107* lbs—sec?/in*. A compilation of individual initial problem parameters is

shown in Table 5.2.

Whereas the sub-ordnance impact of Problem 5.1 showed damage on the impact
face to be limited to the approximate dimensions of the projectile, all ordnance velocity
problems show damage zones from three to greater than 10 times the projectile
diameter. Figures 5.13 through 5.18 show the extent of damage resulting from the
ordnance velocity impact in Problems 5.2 through 5.7. Figures 5.19 through 5.30 show
deformed meshes for Problems 5.2 through 5.13 with Table 5.2 listing final parameters

for all the ordnance velocity results.

The figures of the deformed meshes are created by calculating the mid-point of each
element in an arbitrarily determined "damage zone." For these problems the damage
zone is between 3 and 3.5 inches from the axis of symmetry. The mid-point is then
plotted as a square approximately the same size as an undeformed element. If an
element is determined to have a zero or negative jacobian or if an element has become

distorted (see Chapter 5), the particular element is no longer plotted.

The numerical results from problems not using inter-element collisions show
damage consistent with that expected from high-velocity impact of concrete. The

major damage besides that caused by direct contact with the projectile spirals away
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from the projectile in the same manner as seen by Maurer and Rinehart [63] and Bauer

and Calder [11].

The deformed meshes for Problems 5.10 and 5.11 show the addition of the inter-
element collision algorithm creates a much greater damage zone than when not using
collision. The results from Problem 5.10 show the pronounced crater and ejecta
common to impact at these velocities. The results from Problem 5.11 show an immense
amount of damage to the mesh suggesting a larger target radius would have been
preferable for the problem. It also suggests the inter-element collision algorithm should
be studied and tested to a greater extent. The code used in the present research required
approximately four times the cpu time when using the collision algorithm as opposed to
not using it (approximately 1900 cpu minutes on the Ardent Titan for Problem 5.11 and

approximately 500 minutes for Problem 5.7).
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Figure 5.1 Schematic representation of H-T-C 4-parameter concrete material
model in the biaxial stress plane from Labbane (1991)
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Figure 5.2 Comparison of strain-rate sensitivity in tension and
compression from Suaris and Shah (1983)
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Table 5.1 Failure stress change with change in f’c/f’t ratio using Hsieh-Ting-Chen

4-parameter failure criterion
Failure stress
Stress state
fc/f1=10 fc/ft=7
o, =tensile o, =Opsi Gy =-2000psi o, =143psi ©, =180psi
0,= O, (tensile) Oy =-2000psi o, =132psi o, =161psi
o, (tensile) =- g, (compressive) O, =-2000psi o, =155psi o, =200psi




N

Figure 5.3 Options for projectile shape

Target
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Target

Figure 5.4 Projectile and target (a) before and (b) after penetration algorithm
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Pre-algorithm target
node position

Post-algorithm target
node position

Figure 5.5 Pre-and-post-algorithm target node position
due to projectile penetration
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Figure 5.6 (a) Element geometry used to calculate size of pseudo-element and
(b) resulting pseudo-element
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Figure 5.7 Two elements (a) before collision, (b) after collision and (c) enlargement
of collision zone
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Figure 5.8 Pseudo-forces resulting from collision shown (a) on colliding elements
and (b) distributed among nodes of one element involved




158

e Axis of symmetry
— (0.125m
/ o (4.921")
= Element size=0.0125x0.0125m
8 C
e oncrete
& | 48m/sec 6
£ & 8 | (188.96 in/sec) E =4.4x10 psi
e a a 4 2 4
S qQ Steel p=2.21x10 Ibs-sec /in
4 2 4
l p=7.35x10 lbs-sec /in
Y
I \
."5‘ § Concrete target
S wv_ Y
1.5m (59.05")
—

Figure 5.9 Problem 5.1 low-velocity impact geometry, material properties and initial
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5"

Figure 5.13 Final undamaged target configuration for Problem 5.2

Figure 5.14 Final undamaged target configuration for Problem 5.3
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Figure 5.15 Final undamaged target configuration for Problem 5.4

Figure 5.16 Final undamaged target configuration for Problem 5.5
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Figure 5.17 Final undamaged target configuration for Problem 5.6

Figure 5.18 Final undamaged target configuration for Problem 5.7
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Figure 5.19 Defo rmedm sh for Problem 5.2 at 0.2x 10 ,0.4x 10 ,0.6x 10
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Figure 5.19, continued
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Figure 5.20, continued
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Figure 5.20, continued
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Figure 5.21 Deformed mesh for Problem 54 at0. 5x10 1x10 o1 5x10
2x10 25x10 and 3x10 seconds
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Figure 5.21, continued
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Figure 5.21, continued
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Figure 5.22 Defoxmeg‘mesh for Problem 5.5 at 0.5x10 ,1x10 ,1.5x10 ,
and 2x10 seconds
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2x10 ,2.5x10 , and 2.6x10 seconds
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Figure 5.23, continued
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Figrure 5.23, continued
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Figure 5.24, continued
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Figure 5.26 Deformed Qesh for Problem 5.9 at 0.5x10 ,1x10 ,

and 1.5x10 seconds
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Figure 5.26, continued
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Figure 5.27, continued
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Figure 5.27, continued
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Figure 5.28 Deforme:fi4 mesh for Problem 5.11 at 0.5x10 ,1x10 ,1.5x10 ,
and 2x10 seconds
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Figure 5.28, continued




189

@mﬁ@m@w
S

[SessEnsasans

Y

3.5"

Fgure529Defnnedm sh for Problem 5.12 at 1x 10 22X 10 »3X 10
and 3.9x 10 seconds




190

i
i
HEHEHAHAHEH

siiicEciizisoatetisg

ﬂ

SEEiDinisienii]
CHFH R

A

T

i sarajaaaaaisasianaat

%

male s
B

=

S
Figure 5.29, continued

i3




191

IRSEITEniEn e

: B

Fgure53ODef5ncdm esh for Pmblm513 t 0.5x 10 ,1x 10 ,1.5x 10
2x10 , and 2.5x 1OSec nds




192

ﬂﬁﬂﬁﬁﬁ&ﬂmﬂﬂﬁﬁ
i R
EHEEEBEEEEEEEB@

H R S

Figure 5.30, continued




193

Figure 5.30, continued
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The solution of ordnance velocity impact of concrete targets is still in its infancy.
The solution technique which has been developed most extensively is the empirical
approach which is also the least flexible. Numerical analysis using the finite element
method is much more flexible but not as widely used due to limitations in its ability to
accurately represent physical phenomena involved in the impact process. Numerical
simulations such as the distinct element method are able to recreate some of these
processes but do not model the initial structure well due to the method’s inherent
discrete body representation of a system. This method of modeling the initial structure
restricts numerical simulations to recreating known failure patterns and from predicting

patterns and behavior.

A fragmentation algorithm is presented which has the ability to create new free
surfaces in a mesh and completely fragment pieces from the structure. The
incorporation of the algorithm into the finite element method allows the study of failure
propagation while retaining the ability of the finite element method to accurately
calculate distribution and redistribution of stresses throughout the structure. This
algorithm, thus, brings the computational methods of numerical analysis and numerical

simulation closer together and allows a much wider range of problems to be treated.
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The algorithm is shown to be well suited to the specific problem of ordnance
velocity impact. A series of example problems shows the ability of the algorithm to
create new surfaces and entirely separate fragments. The large zones of damage caused
by fragmentation at the impact and distal faces common to concrete impact are modeled

by the technique.

The high velocity impact problems indicate a possible characteristic of complete
penetration caused by a non-deformable projectile. In the literature, it is commonly
reasoned that the distal face spalling in concrete impact problems is caused by a
reflection of the tensile wave [8,98] The numerical results of Problems 5.2 through
5.12 do not show failure states of stresses in the fragmented elements at the distal face
which would indicate tensile stresses due to a reflected compressive stress wave; and,

thus, do not support this interpretation for non-deformable projectile impact.

A non-deformable projectile which completely penetrates the target does create a
strong compressive wave which is the incident wave in wave-induced spalling. It does
not, though, provide a zero stress or greatly reduced compressive stress wave which is
required to allow a net-tensile stress on reflection. (A deformable projectile impact
allows a relief wave when it is stopped.) Projectile acceleration data from the
numerical results show no significant reduction in projectile forces needed to allow the
formation of a relief wave. The assumption that the spalling is not caused by a reflected
tensile wave is also supported by experiments of Forrestal [25] into dry porous rock
which show that the magnitude of the projectile’s acceleration steadily increases during

initial cratering with the highest accelerations found at the point of tunnel creation.
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Since test data do not support the assumption that a stress wave reflection causes
distal face damage, the question remains: what does cause this damage which is
considerably wider than the projectile diameter? The numerical results suggest that it is
caused by the same spiral shear stresses which cause the impact face cratering. The
failure patterns from the examples show the damage to progress at the approximate
dilatational wave speed in the shear spiral pattern. The shear spirals with larger radii
are directed more to the distal face of the target. Therefore, only those with the smaller
radii possess sufficient energy to reach the impact face. The spirals which are medium
in size curve downward toward the distal face but then curve back toward the impact
face; they do not contain enough energy to reach that face. The largest of the spirals
curve downward and reach the distal face before they curve away from it. These are
the spirals which cause the distal face damage and create a larger damage zone than
found at the impact face. This is supported by the damage patterns observed in the

example problems.

Test results show that the damage to the target directly in front of the projectile
progresses at the same speed as the shear spirals which create the impact face and distal
face damage. This would indicate the tunneling failure is initially caused by the largest
of the spirals which travel in almost a straight line from impact face to distal face.
These spirals fracture the target material in front of the projectile with the actual tunnel
being formed by the projectile pushing the fragmented concrete out of the projectile’s
path. This suggests all modes of failure in concrete impact (cratering, tunneling, and

spalling) are caused primarily by the shear spirals.
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6.2 Recommendations

1. The greatest hindrance in any analysis of impact is the lack of reliable and
conclusive experimental test data on material properties. Before prediction of concrete
impact behavior can be verified, more data must be obtained for both pre-failure and
post-failure behaviors. A material model based on damage accumulation theory, as
opposed to classical plasticity, may be helpful in damping out excessive crack

propagation found along the impact and distal faces.

2. One possible disadvantage of the current fragmentation algorithm is its inability
to allow cracking to progress in any direction. Current numerical results do show the
failure pattern to follow expected paths even when the path is not a straight line.
Automatic mesh refinement techniques may help further. The development of an
adaptive element or re-meshing the problem during the event may be necessary for

predicting more complex failure propagation.

3. The inter-element collision algorithm used in the current code is extremely crude.
A more refined algorithm should be studied and implemented into the code to achieve

more accurate results.

4. The extreme CPU requirements (500 to over 2000 minutes on the Ardent Titan
which is approximately 75 times faster than the DEC VAX-11/780) dictate the need for

faster computational ability in order to develop the analysis further.

5. Integration of graphics capability into the program could enhance usefulness and

also facilitate future development of the algorithm.
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