THE DYNAMIC SEMANTICS OF KERNEL ELLA

Author: M G Hill

DEFENCE RESEARCH AGENCY, MALVERN, WORCS.

UNLIMITED
Reports quoted are not necessarily available to members of the public or to commercial organisations.
Title: THE DYNAMIC SEMANTICS OF KERNEL ELLA

Author: M G Hill

Date: August 1992

Summary

This document describes the dynamic semantics of the Kernel of ELLA. The Kernel is a set of data structures into which any ELLA circuit can be transformed. The semantics of two simple languages are explored in order to demonstrate the implementability of the approach undertaken. Correspondence between this work and former analysis is shown.
Intentionally Blank
1 Introduction

In this memorandum we give a formal definition of the dynamic semantics of the Kernel of ELLA. The Kernel is a set of data structures defined in [MH91] into which any ELLA description can be transformed. In [HM92] a set of transformational rules are given which have been used to define the implementation of a compiler from Core ELLA to the Kernel. Core ELLA represents the heart of the ELLA language and consists of those constructs into which any ELLA description can be transformed via the commercial ELLA system. For a complete description of ELLA the reader is referred to [Com90].

In this memorandum we start by looking at a subset of the Kernel, which we shall call K1, which is equivalent to a previously defined language, called L, described by Davies in [Dav88]. We demonstrate how the semantics of this language can be given by the definition of an evaluator. We then proceed to extend K1 to allow function declarations, this is done by introducing the concept of an environment. The definition and application of an evaluator for describing the semantics of a language with an environment are given.

Having demonstrated the evaluation process for these two simple languages we then extend the process to describe the dynamic semantics of the Kernel. Throughout this memorandum use will be made of the VDM notation (see [Jon90]).

2 Language K1

2.1 Language Definition

The language K1 will be defined to be that subset of the Kernel which encompasses the language constructs defined in [Dav88]. We begin by restating the language L specified in [Dav88], which is

```
variables v E E V E
constant c E E C E
pair (a, b) E E a, b E E
delay Δ, a E E a E E
case □ a: A E E a E E A = {(c,e)}
recure μ v. a E E v E V, a E E
```

where E represents expressions, C constant values and V variable names. The Δ feature allows timing to be incorporated within the language. The Δ, is taken to be a unit delay, with initial value s, i.e. it passes its input to its output after one time step, with the value at time zero being s. The case expression, □ a: A, is a multiplexer-like construct which selects its output expression from A, based on the dynamic value of its input a. The set 'A' comprises the complete set of tests and expression-results for the Case construct. The language can describe recursive expressions by means of the last construct, for example a case statement which toggles its input value and which feeds its output into its input via a delay, is represented as (see figure 1)

```
μ b. Δ, □ b: ({{(t,f),(f,t)}})
```

Having stated the Language as defined in [Dav88] we now rewrite this language using a recursive-let style to show the connection with the Kernel, and we will call this language K1. We begin by giving the types which can be used in K1.
Types:

\[T \subseteq \{ \text{typename}, \text{[enum]}^* \} \]

\[\text{Time} \subseteq \mathbb{N} \]

where \(T \) represents a basic enumerated type and \(\text{Time} \) will be used to represent evaluation time, analogous to simulator time steps in the full ELLA system.

The language classes which are needed for K1 are the following:

Variables, \((v \in \text{Var})\) given by:

\[v ::= \text{id} \]

where 'id' is an identifier by which the variable is known,

Constants, \((c \in \text{Const})\) given by:

\[c ::= \text{enum} \]

where 'enum' is a basic enumerated value from a type declaration

Expressions, \((e \in \text{Expr})\) given by:

\[e ::= v \mid c \mid (e_1, e_2) \mid \text{Delay}_e(e) \mid \text{Case} (e, [(c, e)]^*) \mid \text{let } d \text{ in } e \]

and Declarations, \((d \in \text{Decl})\) given by:

\[d ::= v = e \]

where in declarations the expression \(e \) could contain references to \(v \). The \(\text{Delay}_e(e) \) is a unit delay with initial value 'c' and input expression 'e'. The \(\text{Case} (e, [(c, e)]^*) \) is a multiplexer-like construct which delivers the expression part, 'e', of one of the tuples in the sequence, this choice being made by the correspondence between 'c' and the dynamic evaluation of its input 'e'.

2.2 Language Evaluation

In order to be able to define the evaluation of expressions in K1 we first introduce the idea of signal history, by means of the following data structure. This data structure will allow dynamic signal values to be collected for each evaluation time step:

\[
\text{History} ::= \text{name} : \text{Var} \\
\quad \quad \text{const} : \text{Const} \\
\quad \quad \text{time} : \text{Time}
\]

The sequence \(\text{History}^* \) will be the set which contains a constant assignment to each variable at every time unit.

The use of \(\text{History} \) means that the dynamic semantics of K1 can be defined by means of the following evaluation function
Kernel Dynamic Semantics

Evaluate-Exp: Expr × History* × Time → Const

Evaluate-Exp(e, history, t) Δ
cases e of
 v → let val = (i ∈ inds history) . history[i] = (v, t) in
 val[2]
 c → c
 (e₁, e₂) → (Evaluate-Exp(e₁, history, t), Evaluate-Exp(e₂, history, t))
 Delay(e) → if t > 0
 then Evaluate-Exp(e, history, t-1)
 else c
 Case(e, [(c, e)])* → let Evaluate-Exp(e, history, t) = c; in
 let (cᵢ, eᵢ) ∈ [(c, e)]* in
 Evaluate-Exp(eᵢ, history, t)
 let d in e → let history* = Update-History(d, history, t) in
 Evaluate-Exp(e, history*, t)
end

where val in the first alternative represents the unique element in the history with the correct identifier and time. When a let declaration is being evaluated its result could depend on values from previous times. Thus in order to obtain the latest value of the expression a list of relevant history values must be known. The function Update-History calculates these and hence delivers a sequence of History values of all possible identifiers from the previous time value back to time zero. It does this by calculating the value of the let expression at all previous times. At each time step the history sequence delivered will contain all necessary variable values for the calculation of the value of the expression. Once all previous time calculations have been performed the current value of the expression can be evaluated. The function Update-History is given by

Update-History: Decl x History* × Time → History*

Update-History(d, history, t) Δ
cases d of
 v := e → let history¹ = history in
 let historyᵢ = historyᵢ⁻¹ ∪ [(v, Evaluate-Exp(e, historyᵢ⁻¹, i), i)], for i = (t-1)..0 in
 historyᵢ⁻¹ ∪ [(v, Evaluate-Exp(e, historyᵢ⁻¹, t), t)]
end

Within the Kernel functions are described as collections of signal declarations with the function body being an expression which, possibly, contains references to the signal declarations. If we restrict ourselves to only one function in a Kernel environment then the evaluation of that function is equivalent to the evaluation of the functions body expression. Expressions in K1 can therefore be thought of as function body expressions with the let construct representing the signal declarations. In the section 3 we extend K1 by introducing the essence of the Kernel environment and demonstrate how the evaluator defined in this section can be enhanced to describe its semantics.

However before proceeding we give a simple example of the evaluation of a function in K1.
2.3 Example

In this example we consider the expression which is shown pictorially in figure 1, and is equivalent to the expression given in section 2.1. In figure 1 the triangular object represents a unit delay, and the Case statement is represented by a box, with the details of the Case statement not shown.

Let \(b \) have type \((\text{bool}, [h,l])\) and define the expression as follows

\[
exp \equiv \text{let } b = \text{Delay}_2(\text{Case}(b, [(h,l),(l,h)])) \text{ in } b
\]

Figure 1: Simple Recursive Example

Now consider the evaluation of the expression at time = 1, with an initial history set to empty e.g. \(\text{history} = [] \), this is possible since there is no direct input to the expression. In this example we will use the shorthand notation of ‘...’ to represent hidden text.

\[
\text{Evaluate-Exp}(exp, [], 1) = \text{let } \text{history}^* = \text{Update-History}(b = \text{Delay}_2(\text{...}), [], 1) \text{ in } \\
\text{Evaluate-Exp}(b, \text{history}^*, 1)
\]

where

\[
\text{Update-History}(b = \text{Delay}_2(\text{...}), [], 1) = \text{let } \text{history}^1 = [] \text{ in } \\
\text{let } \text{history}^0 = [(b, \text{Evaluate-Exp}(\text{Delay}_2(\text{...}), [], 0), 0) \text{ in } \\
\text{history}^0 \cap [(b, \text{Evaluate-Exp}(\text{Delay}_2(\text{...}), \text{history}^0, 1), 1]
\]

and

\[
\text{Evaluate-Exp}(\text{Delay}_2(\text{...}), [], 0) = l \\
\text{Evaluate-Exp}(\text{Delay}_2(\text{...}), [(b,l,0)], 1) = \text{Evaluate-Exp}(\text{Case}(b, [(h,l),(l,h)]), [(b,l,0)], 0) = h
\]

thus

\[
\text{Update-History}(b = \text{Delay}_2(\text{...}), [], 1) = [(b,l,0),(b,h,1)]
\]

and hence

\[
\text{Evaluate-Exp}(exp, [], 1) = \text{Evaluate-Exp}(b, [(b,l,0),(b,h,1)], 1) = h
\]

Similarly it can be shown that

\[
\text{Evaluate-Exp}(exp, [], 2) = l \\
\text{Evaluate-Exp}(exp, [], 3) = h ...etc
\]

Notice that since the expression has no direct inputs it is possible to start any evaluation with an empty history, the history of internal signals always get built up as the evaluation process progresses.
3 Language K2

3.1 Language Definition

We now proceed to define the language K2, which is a direct extension of K1, that introduces an environment with function declarations. The main evaluation function is called Evaluate-Fn and this evaluates the result of a function given a specified input history. This model of evaluation is 'backward-looking' in the sense that the value of the present output is calculated from the dependency of values from a previous time.

The language classes have been changed from K1 to
Expressions, \((e \in \text{Expr}) :\)

\[
e ::= \text{Sig}(\text{no}) \mid c \mid (e_1, e_2) \mid \text{Delay},(e) \mid \text{Case}(e_{ch}, [(c, e)]^*) \mid \text{Call}(\text{fnno}, e) \mid \text{Index}(e, \text{ind})
\]

Constants, \((c \in \text{Const}) :\)

\[
c ::= \text{enum} \mid (c_1, c_2)
\]

where 'Sig(no)' is defined to be the result delivered by the \(n^{th}\) signal declaration of the enclosing function declaration (see below). Function calls are all implicit and are represented by 'Call(fnno, e)' which is the instantiation of a function which is the \(fnno^{th}\) declaration in the environment with 'e' assigned to its input expression. Tuples and indexing have been included within K2 to demonstrate how structured function inputs can be handled.

An environment which collects together all the type and function declarations is given by

\[
\text{Env} :: \text{typedec} : \text{Typedec}^* \\
\text{fndec} : \text{Fndec}^*
\]

with

\[
\text{Typedec} :: \text{typename} : \text{Id} \\
\text{enum} : \text{Enum}^*
\]

\[
\text{Fndec} :: \text{fname} : \text{Id} \\
\text{signal} : \text{Signal}^* \\
\text{expr} : \text{Ezpr}
\]

\[
\text{Signal} :: \text{name} : \text{Id} \\
\text{expr} : \text{Ezpr}
\]

where a function declaration is defined to have three fields. The first field is the name of the function, the second is a sequence of signal declarations which closely correspond to the 'let signalname in expression' of K1. The last field is the expression delivered by the function. Signal declarations in a function are referenced by their position in the signal declaration field of the function declaration. Thus \(\text{sig}(3)\) represents the result of the third signal declaration.

3.2 Language Evaluation

In a similar manner to K1 we need to define a history-like data structure in order to hold function input data history. The History concept of K1 can however be simplified for K2 by means of the introduction of an Input data structure as defined by
Here we see that, compared with History, an identifier field is no longer necessary. This is possible since Input is defined to be a sequence of values (over time) which are the inputs to a function. Thus all function inputs will be represented within Input as having only one input terminal. Naturally some function definitions may contain inputs which are structures of named types. In this case within the function signal field the first element will be defined as (input,) and then named input terminals will refer to this field. For example if a function signal field contained the following entry (input1, sig(1)), it would imply that the function had one named input, called 'input1'. For functions with structured inputs the following could be possible within the function signal field (input2, Index(sig(1),2)), which would mean that 'input2' was the second input terminal of the function. For this language we shall limit the size of a structure to two items, this restriction will be removed in the next section.

As in the case of K1 some expressions could need the results of expressions from previous time steps. Thus to evaluate each function a sequence of Inputs will be needed. These sequences define collections of input values to the function from time 0 to the current time i.e. input = [(ct, timer), ..., (co, timeo)]. By using a model of evaluation which calculates the present function value by recourse to all previous function inputs, the storing of the values of signals internal to a function declaration is avoided.

Since the structure Input has replaced History the function Update-History of K1 needs to be replaced by a function Update-Inputs. This function performs a similar operation to Update-History, but instead of calculating all possible values of each variable it calculates all values to the input of the function from previous times. This naturally means that in order to evaluate a function, F say, at some time, t say, the evaluation of F will need to know the complete history of all inputs to F from time zero to time t. Any internal function calls within F can calculate the history of inputs to those functions by knowing the history of inputs to F. In such cases, as can be seen by Evaluate-Exp, a function call needs to generate a history of all local inputs to that function call.

Thus the function for generating a sequence of input values (over time) is defined as

\[
\text{Update-Inputs: Expr} \times \text{Signal}^* \times \text{Input}^* \times \text{Time} \rightarrow \text{Input}^*
\]

\[
\text{Update-Inputs}(e, \text{signals}, \text{inputs}, t) \triangleq \\
\begin{array}{l}
\text{if } t \geq 0 \\
\quad \text{then let } \text{inputs}' = \text{Update-Inputs}(e, \text{signals}, \text{inputs}, (t-1)) \text{ in} \\
\quad \quad \text{inputs}' \uparrow [(\text{Evaluate-Exp}(e, \text{signals}, \text{inputs}', t), t)] \\
\quad \text{else } \text{inputs}
\end{array}
\]

Concatenation in the definition of Update-History in K1 has been replaced by overwrite for Update-Inputs. This is chosen since each function references its input by the tag .input. Thus two different function calls would both reference their respective inputs by this tag. By using the notion of overwriting of Input values we can avoid the stacking and unstacking of Input sequences. This is of course only possible since each Input sequence is local to a function call, and there are no local scoping rules.
Evaluation of an expression has a similar format to that for K1. The following function defines
the evaluation for each expression in K2.

\[\text{Evaluate-Exp: Expr} \times \text{Signal}^* \times \text{Input}^* \times \text{Time} \rightarrow \text{Const} \]

\[
\text{Evaluate-Exp}(e, \text{signals}, \text{inputs}, t) \triangleq \\
\text{cases } e \text{ of } \\
\text{sig}(\text{no}) \rightarrow \text{let } \text{signal} = \text{signals}[\text{no}] \text{ in } \\
\hspace{1em} \text{if signal.name} = "\text{-input}" \text{ then let } \text{val} = \lambda (i \in \text{inds inputs}). \text{inputs}[i] = (_, t) \text{ in } \\
\hspace{2em} \text{val}[1] \text{ else Evaluate-Exp(signal.expr, signals, inputs, t)} \\
\text{c} \rightarrow c \\
(c_1, c_2) \rightarrow (\text{Evaluate-Exp}(c_1, \text{signals}, \text{inputs}, t), \\
\hspace{1em} \text{Evaluate-Exp}(c_2, \text{signals}, \text{inputs}, t)) \\
\text{Delay}(e) \rightarrow \text{if } t > 0 \text{ then Evaluate-Exp}(e, \text{signals}, \text{inputs}, t-1) \text{ else } c \\
\text{Case}(e, [(c, e)^*]) \rightarrow \text{let } \text{Evaluate-Exp}(e, \text{signals}, \text{inputs}, t) = c_i \text{ in } \\
\hspace{1em} \text{let } (c_i, e_i) \in [(c, e)^*] \text{ in } \\
\hspace{2em} \text{Evaluate-Exp}(e_i, \text{signals}, \text{inputs}, t) \\
\text{Call}(fnno, e) \rightarrow \text{let } \text{inputs}' = \text{Update-Inputs}(e, \text{signals}, \text{inputs}, t) \text{ in } \\
\hspace{1em} \text{Evaluate-Fn(fnno, inputs', t)} \\
\text{Indez}(e, \text{ind}) \rightarrow \text{let } (c_1, c_2) = \text{Evaluate-Exp}(e, \text{signals}, \text{inputs}, t) \text{ in } \\
\hspace{1em} \text{if } \text{ind} = 1 \text{ then } c_1 \text{ else } c_2 \end{align*}

end

where signal.name is the name field of the signal data structure, and val is the unique input
element with the desired value of time.

The above two functions can now be combined into a function for evaluating the fnnoth function
in an environment, given a specific input history list, at a specific time as

\[\text{Evaluate-Fn: Fnname} \times \text{Input}^* \times \text{Time} \rightarrow \text{Const} \]

\[
\text{Evaluate-Fn}(fnno, \text{inputlist}, \text{time}) \triangleq \\
\text{let } fdec = (\text{EnvFnDec})[fnno] \text{ in } \\
\hspace{1em} \text{Evaluate-Exp(fdec.expr, fdec.signal, inputlist, time)}
\]

where env is the complete environment containing the function, EnvFnDec the operator which
returns the function declaration field of the environment, and index [fnno] the fnnoth element
of the resulting sequence (a glossary of the symbols used in this document is given in appendix
A).

In order to show the evaluation process we now give two examples. The first example is a repeat
of that given in section 2.3, the second example is of a reset/set flip-flop.
3.3 Example 1

Here we rewrite the example of the section 2.3 as two functions, called A and B, to demonstrate evaluation in K2. The environment is given by

\[
\text{Env} = ([(\text{bool}, [h,l])),
[A, ([\text{-input}, .]), \text{Case}(\text{sig}(1), [(h,l),(l,h)])),
(B, ([\text{-input}, .]), (b, \text{Delay}([\text{Call}(1, \text{sig}(2))]), \text{sig}(2))
\]

This environment can be written more readably as

\[
\text{Type bool} = (h \mid 1).
\]

Fn A = (bool:_input) -> bool:
CASE _input OF
 h: 1,
 l: h
ESAC.

Fn B = (bool:_input) -> bool:
 (Let b = Delay{l} (A b)
 In b
)

It should be noted that this format does not conform to any particular language, its purpose is to give a visualisation of the above environment where the calls of signals can be more readily seen.

Now consider the Evaluation of function B at time '1' with signal inputs set to initial = [(h,1),(h,0)]. In this case we start with a non-empty input history in order to show the overwriting of input values. In the following the syntax '...' is used to signify that parts of the expression have been left out in order to aid readability.

\[
\text{Evaluate-Fn}(2, \text{initial}, 1) = \text{Evaluate-Exp}(\text{sig}(2), [(b, \text{Delay}(...))], \text{initial}, 1)
 = \text{Evaluate-Exp}(\text{Delay}(...), [(b, ...)], \text{initial}, 1)
 = \text{Evaluate-Exp}(\text{Call}(1, \text{sig}(2)), [(b, ...)], \text{initial}, 0)
 = \text{let } i' = \text{Update-Input}(\text{sig}(2), [(b, ...)], \text{initial}, 0) \text{ in } \text{Evaluate-Fn}(1, i', 0)
\]

where

Update-Input(sig(2), [(b...)], initial, 0) =
 let i' = initial in
 i' \uparrow [(\text{Evaluate-Exp}(\text{sig}(2), [(b...)], i', 0), 0]
 = i' \uparrow [(\text{Evaluate-Exp}(\text{Delay}(...), i', 0), 0]
 = i' \uparrow [(i, 0)]
therefore
\[
\text{Evaluate-Fn}(2, \text{initial}, 1) = \text{let } i' = \text{initial } \uparrow [(l, 0)] = [(h, 1), (l, 0)] \text{ in }
\]
\[
\text{Evaluate-Fn}(1, i', 0)
\]
\[
= \text{Evaluate-Exp}(\text{Case(...)}, \text{[input, -]}, i', 0)
\]
\[
= \text{let } cc = \text{Evaluate-Exp}(\text{sig(1)}, \text{[input, -]}, i', 0) = l \text{ in }
\]
\[
\text{let } (cc, e) \in [(h, l), (l, h)] \text{ in }
\]
\[
\text{Evaluate-Exp}(e)
\]
\[
= h
\]

and hence the result of evaluating B is the same as for evaluating the expression in the previous section.

3.4 Example 2

In this example we demonstrate the result of evaluating of an RS Flip Flop. The definition of an appropriate environment is given by

\[
\text{env} = \\
\quad ([(\text{bool}, [h,l])]
\quad (\text{NOR}, [(\text{input}, -)], \text{Case}(\text{sig(1)}, [(l,l), (l,h), (h,l), (h,h), (l,h)]))
\quad (\text{RSFF}, [(\text{input}, -),
\quad (\text{in1}, \text{Index}(\text{sig(1)}, 1)),
\quad (\text{in2}, \text{Index}(\text{sig(1)}, 2)),
\quad (\text{del1}, \text{Delay}(\text{sig(6)})),
\quad (\text{del2}, \text{Delay}(\text{sig(7)})),
\quad (\text{nor1}, \text{Call}(1, (\text{sig(2)}, \text{sig(5)}))],
\quad (\text{nor2}, \text{Call}(1, (\text{sig(3)}, \text{sig(4)}))),
\quad],
\quad \text{sig(4)})
\]

It can be noted that the function RSFF has an input which is a structure of two items called in1 and in2. There are two function calls to NOR the outputs of which are named nor1 and nor2, with the result of RSFF being the expression 'sig(4)'. This circuit is shown in figure 2.

![Figure 2: RSFF](image-url)
When this circuit is evaluated for time $t = 3$, say, an input list of the form $[((1,h),0), ((1,h),1), ((1,h),2), ((1,h),3)]$ is needed. Evaluation for this case gives

$$\text{Evaluate-Fn}(2, [((1, h), 0), ((1, h), 1), ((1, h), 2), ((1, h), 3)], 3) = \text{Evaluate-Exp}(\text{sig}(4), [\text{input}, \ldots, \text{nor2}, \ldots], [((1, h), 0) \ldots ((1, h), 3)], 3) =
\ldots = h$$

where the result has been obtained from a computer implementation of the evaluation functions defined in this section. The result of applying Evaluate-Exp at the outer level at time $t=3$ is to 'unwrap', or fold back, the circuit in time. The result of this is most readily seen in pictorial form and a representation is given in figure 3.

![Figure 3: Time Expanded RSFF at time $t = 3$]

4 The Semantics of the Kernel

4.1 Kernel verses K2

We now proceed to give the definition of the Kernels dynamic semantics. The Kernel is really an extended version of K2 where the following extensions have been made (the names under the Kernel column refer to Kernel data structures, see appendix B)

<table>
<thead>
<tr>
<th>K2</th>
<th>Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>Unit</td>
</tr>
<tr>
<td>constant</td>
<td>Const</td>
</tr>
<tr>
<td>environment</td>
<td>Env</td>
</tr>
<tr>
<td>typedec</td>
<td>Typedecl</td>
</tr>
<tr>
<td>fndec</td>
<td>Fndec</td>
</tr>
<tr>
<td>signal</td>
<td>Signaldec</td>
</tr>
</tbody>
</table>

Some of the structures in the Kernel, like signaldec, have fields which hold typing information. This is not strictly necessary for the definition of the dynamic semantics but we leave the
structures as defined in [MH91] for completeness. The Input history of a function declaration remains unaltered. The evaluation of a Kernel function will follow the same process as that of a K2 function. However, due to the large increase of terms in going from expressions in K2 to units in the Kernel, before we can define the Evaluate-Fn function for the Kernel a number of other functions are needed, these are defined in the subsequent sections.

4.2 Environment Access Operators

A Kernel environment contains all the Type and Function declarations, see [MH91], and the operators in this section define how declarations are accessed.

Extracting a Type declaration:-

\[
\text{EnvTypedec}() \rightarrow \text{Env}
\]

Extracting a Function declaration:-

\[
\text{EnvFndec}() \rightarrow \text{Env}
\]

Since the environment is not going to be altered by the evaluation of a function there is no necessity for operators which update the environment (the environment only gets updated during compilation, see [HM92] for a description of the operators necessary for compilation).

4.3 General Functions

In this section we define functions which are general to the evaluation process. We start by looking at two functions which deliver the type of an expression. The first delivers the type of a constant expression and is given by

\[
\text{Type-Of-Const} : \text{kConst} \rightarrow \text{kType}
\]

\[
\text{Type-Of-Const}(\text{const}) \triangleq
\begin{cases}
\text{enum}(\text{typeno}, \ldots) & \rightarrow \text{typeno(\text{typeno})} \\
\text{string}(\text{typeno}, [\text{tag}_1, \ldots, \text{tag}_n]) & \rightarrow \text{stringtype}(n, \text{typeno(\text{typeno})}) \\
\text{conststring}(\text{size}, c) & \rightarrow \text{stringtype}(\text{size}, \text{Type-Of-Const}(c)) \\
\text{consts}([c_1, \ldots, c_n]) & \rightarrow \text{types}([\text{Type-Of-Const}(c_1), \ldots, \text{Type-Of-Const}(c_n)]) \\
\text{constassoc}(\text{enum}(\text{typeno}, \ldots), \ldots) & \rightarrow \text{typeno(\text{typeno})} \\
\text{constquery}(\text{type}) & \rightarrow \text{type} \\
\text{constvoid} & \rightarrow \text{typevoid}
\end{cases}
\]

The type of a unit expression can be found by means of the following function. For some of the unit expressions, e.g. extract, the required typing information is not held directly in the unit data structure. In such cases the information needs to be located within the environment. For
the case of extract this means finding the correct type declaration, selecting the sequence of enumerated values of the type, locating the desired element of that sequence and then finding the type of the optional part, which will only be a valid type in the case of an associated value.

\[\text{Type-Of-Unit: } k\text{Unit} \times \text{Signaldec}^* \rightarrow k\text{Type} \]

\[\text{Type-Of-Unit}(\text{unit}, \text{sigdecs}) \triangleq \]

\begin{align*}
\text{cases unit of} & \\
\text{enumerated} & \rightarrow \text{Type-Of-Const} \ (\text{enumerated}) \\
\text{conc}(-,-,\text{type}) & \rightarrow \text{type} \\
\text{instance}(\text{fnno},-) & \rightarrow (Env\text{Fndec}[\text{fnno}].\text{outputtype}) \\
\text{unitassoc}(\text{enum}((\text{typeno},-),-)) & \rightarrow \text{typeno}(\text{typeno}) \\
\text{extract}(\text{enum}(\text{typeno},\text{tagno}),-) & \rightarrow ((Env\text{TypeDec}[\text{typeno}].\text{new})[\text{tagno}].\text{typeopt}) \\
\text{signal}(\text{signalno}) & \rightarrow \text{sigdecs}[\text{signalno}].\text{type} \\
\text{index}(-,-,\text{outputtype}) & \rightarrow \text{outputtype} \\
\text{trim}(-,-,\text{outputtype}) & \rightarrow \text{outputtype} \\
\text{dyindex}(-,-,\text{outputtype}) & \rightarrow \text{outputtype} \\
\text{replace}(u,-,-) & \rightarrow \text{Type-Of-Unit}(u, \text{sigdecs}) \\
\text{unitquery}(\text{type}) & \rightarrow \text{type} \\
\text{unitvoid} & \rightarrow \text{typevoid} \\
\text{unitstring}(\text{size}, u) & \rightarrow \text{stringtype}(\text{size}, \text{Type-Of-Unit} (u, \text{sigdecs})) \\
\text{caseclause}(-,-,u) & \rightarrow \text{Type-Of-Unit} (u, \text{sigdecs}) \\
\text{units}([u_1,\ldots, u_n]) & \rightarrow \text{types}([\text{Type-Of-Unit} (u_1, \text{sigdecs}), \ldots, \text{Type-Of-Unit} (u_n, \text{sigdecs})]) \\
\end{align*}

end

In some cases when handling constant strings it is easier to convert them into enumerated strings. Although this removes replication information it simplifies the evaluation process and is therefore desirable. The following function defines the conversion

\[\text{Conv-String: } k\text{Const} \rightarrow k\text{Const} \]

\[\text{Conv-String}(c) \triangleq \]

\begin{align*}
\text{cases c of} & \\
\text{string}(-,-) & \rightarrow c \\
\text{conststring}(\text{size}, \text{enum}(\text{typeno}, \text{tagno})) & \rightarrow \text{string}(\text{typeno}, [\text{tagno}^\text{size}]) \\
\text{others} & \rightarrow \text{constquery}(\text{Type-Of-Const}(c)) \\
\end{align*}

end

Within the Kernel there are a number of Built-in Operators which are optimal in their handling of ambiguity. The following function checks that the biop name \(nm\) is one of them.

\[\text{Optimal-Biop: } \text{Biopname} \rightarrow \text{B} \]

\[\text{Optimal-Biop}(nm) \triangleq \]

\begin{align*}
(nm = \text{EQ}.\text{US}) \lor (nm = \text{GT}.\text{US}) \lor (nm = \text{GE}.\text{US}) \lor (nm = \text{LT}.\text{US}) \lor (nm = \text{LE}.\text{US}) \\
\lor (nm = \text{EQ}.\text{S}) \lor (nm = \text{GT}.\text{S}) \lor (nm = \text{GE}.\text{S}) \lor (nm = \text{LT}.\text{S}) \lor (nm = \text{LE}.\text{S}) \\
\end{align*}

Within the Kernel it is possible to have an aliased type. Before any checks on the type can be performed the alias name must be removed by means of the following function
Kernel Dynamic Semantics

Get-Type : kType → kType

Get-Type(ty) △

cases ty of

 types([ktype_1, ..., ktype_k]) → types([Get-Type(ktype_1), ..., Get-Type(ktype_k)]),
 typename(., ktype) → Get-Type(ktype)
 stringtype(size, ktype) → stringtype(size, Get-Type(ktype))

 others ty

end

The equality of two types can be confirmed by the following

Type-Equals : kType × kType → B

Type-Equals(ty_1, ty_2) △

cases (Get-Type(ty_1), Get-Type(ty_2)) of

 (typeno(tyeno_1), typeno(tyeno_2)) → (typeno_1 = typeno_2)
 (stringtype(s_1, tn_1), stringtype(s_2, tn_2)) → (s_1 = s_2) ∧ Type-Equals(tn_1, tn_2)
 (types([t_1, ..., t_k]), types([s_1, ..., s_l])) → \(j = k \land \bigwedge_{i=1}^{k} \) Type-Equals(t_i, s_i)
 (typevoid, typevoid) → true

 others false

end

In some expressions the ELLA unknown, or query, value can be passed into its input. In certain cases, e.g. RAM, this needs to be checked for so that an appropriate query value can be returned. The following function checks to see whether a constant expression contains any part which has a query value.

Has-Query: kConst → B

Has-Query(c) △

cases c of

 consts([c_1, ..., c_k]) → \bigvee_{i=1..k} Has-Query(c_i)
 conststring(., c) → Has-Query(c)
 constassoc(., c) → Has-Query(c)
 constquery(., c) → true

 others false

end

ELLA integers are tagged integers where the value of an integer signal is represented as an enumerated data structure with a tag number offset from the types lower bound value. Thus some constructs, e.g. dynamic indexing, will need to know the range of an integer signal so that the appropriate offset can be used. The following function looks in the environment type declarations and returns the type information for the integer in question.
Find-Integer-Type: $kType \rightarrow \text{Tagname} \times \text{Lowerbound} \times \text{Upperbound}$

Find-Integer-Type$(ktype) \triangleq$
let typeno(typeno) = Get-Type$(ktype)$ in
cases $(EnvTypedec)[typeno]$ of
typedec(_, ellaint$(t, l, u)) \rightarrow t, l, u$
end

In some functions, eg. BIOPs, it is necessary to ensure that the input types supplied are from a two valued enumerated type. This is particularly important for bit string operations where the type must be a two valued character type. It can be noted that two valued ELLA integers are not allowed in the BIOPs and hence they need not be checked for by this function. The complete function is therefore

Check-Two-Val : $kType \rightarrow \mathbb{B}$

Check-Two-Val$(ty) \triangleq$
let typeno(typeno) = Get-Type(ty) in
cases $(EnvTypedec)[typeno].new$ of
tags$(TagSeq) \rightarrow \text{len } (TagSeq) = 2$
chars$(Charseq) \rightarrow \text{len } (CharSeq) = 2$
end

The REFORM function reforms one type structure into another. In order for this to be allowed the types must flatten to the same basic structure. The following function takes a structured constant expression and flattens it to its lowest form. The REFORM evaluation function will then build up the new type from this flattened form, via comparison with the desired output type.

Flatten-const: $kConst \rightarrow kConst^*$

Flatten-const$(c) \triangleq$
cases c of
consts$([c_1, \cdots, c_k]) \rightarrow Flatten-Const(c_1) \cdots Flatten-Const(c_k)$
others $\mathsf{[]}$
end

The following function, which converts a constant expression into a unit expression, will be used by the evaluation function for the built in function bodies at the outer level. This is needed to reduce the necessity for two different evaluation functions for the built in function bodies. Namely, one for function calls with unit inputs and one for outer function instances with constant inputs. Since the basic evaluation for the built in functions would be equivalent in both cases we can combine their calling function by using this convert function.
\textit{Convert-Const-Unit} : k\textit{Const} \rightarrow k\textit{Unit}

\textit{Convert-Const-Unit}(c) \triangleq \\
\text{cases } c \text{ of } \\
\text{conststring}(\text{size}, c_1) \rightarrow \text{unitstring}(\text{size}, \textit{Convert-Const-Unit}(c_1)) \\
\text{consts}([c_1, \ldots, c_k]) \rightarrow \text{units}([\textit{Convert-Const-Unit}(c_1), \ldots, \\
\text{Convert-Const-Unit}(c_k)]) \\
\text{constassoc}(\text{enum}, c_1) \rightarrow \text{unitassoc}(\text{enum}, \textit{Convert-Const-Unit}(c_1)) \\
\text{constquery}(\text{ty}) \rightarrow \text{unitquery}(\text{ty}) \\
\text{constvoid} \rightarrow \text{unitvoid} \\
\text{others } c \\
\text{end}

4.4 Unit Evaluation

In this section functions are defined which will be used by the main evaluation function for unit expressions. It can be noted that the static semantics of Core ELLA (see [MH91]) ensures checks on the bounds of arrays. Therefore in the functions defined in this section it will be assumed that such items need no further checking. Some functions will however return the query, or unknown, value for the cases when the signal input is undefined.

The value of a signal declaration is given by the following function. In the Kernel an input signal is denoted by the structure \textit{input} in the signal declaration field of a function declaration. Unlike K2 there is no unique input field and hence an appropriate index needs to be generated in the case of structured inputs. In the case of an input signal the value of \textit{val} is the unique input which has the correct 'time' value. \textit{Evaluate-Index} is then called if a function specification has more than one named input terminal and the appropriate value from the input structure is sort. If a signal is not an input then the function returns the value of its associated expression.

\textit{Sig: }\mathbb{N} \times \text{Signaldec}^* \times \text{Input}^* \times \text{Time} \rightarrow k\textit{Const} \\
\text{Sig}(\text{signo, sigdec, inputs, time}) \triangleq \\
\text{let signaldec} = \text{sigdec}[\text{signo}] \text{ in } \\
\text{if signaldec.unitorinput} = \text{input} \\
\text{then let } \text{val} = (i \in \text{inds inputs}) \cdot \text{inputs}[i] = (_, \text{time}) \text{ in } \\
\text{if (len sigdec} > 1) \wedge \text{sigdec}[2].\text{unitorinput} = \text{input} \\
\text{then } \textit{Evaluate-Index}(\text{val}[1], \text{signo, signaldec.type}) \\
\text{else } \text{val}[1] \\
\text{else } \textit{Evaluate-Unit}(\text{signaldec.unitorinput, sigdec, inputs, time}) \\

We now define a function which delivers the value of the extracted part of an associated type

\textit{Evaluate-Extract: }k\textit{Const} \times k\textit{Enum} \rightarrow k\textit{Const} \\
\textit{Evaluate-Extract}(c, \text{enum}) \triangleq \\
\text{cases } c \text{ of } \\
\text{constassoc}(\text{enum, const}) \rightarrow \text{const} \\
\text{others } \text{constquery}(\text{Type-Of-Const}(c)) \\
\text{end}
To obtain the value of a structure which has been indexed we need the following function. Since ind is a static index no checking on its value is needed here since this would have occurred at the static semantic stage.

\[
\text{Evaluate-Index: } k\text{Const} \times \mathbb{N} \times k\text{Type} \to k\text{Const}
\]

\[
\text{Evaluate-Index}(c, \text{ind}, ty) \triangleq \\
\text{cases } c \text{ of} \\
\text{string(\text{typeno}, [tg_1, \cdots, tg_k])} \to \text{enum(\text{typeno}, tg_{\text{ind}})} \\
\text{conststring}(-, \text{const}) \to \text{const} \\
\text{consts}([c_1, \cdots, c_k]) \to c_{\text{ind}} \\
\text{others constquery}(ty)
\]

To obtain the result of a structure which has been trimmed we have a similar function to that of an index, namely

\[
\text{Evaluate-Trim: } k\text{Const} \times \mathbb{N} \times \mathbb{N} \times k\text{Type} \to k\text{Const}
\]

\[
\text{Evaluate-Trim}(c, \text{ind}_1, \text{ind}_2, ty) \triangleq \\
\text{cases } c \text{ of} \\
\text{string(\text{typeno}, [tg_1, \cdots, tg_k])} \to \text{string(\text{typeno}, [tg_{\text{ind}_1}, \cdots, tg_{\text{ind}_2}])} \\
\text{conststring}(-, \text{const}) \to \text{conststring}(\text{ind}_2 - \text{ind}_1 + 1, \text{const}) \\
\text{consts}([c_1, \cdots, c_k]) \to \text{consts}([c_{\text{ind}_1}, \cdots, c_{\text{ind}_2}]) \\
\text{others constquery}(ty)
\]

To obtain the value of a structure which has been indexed dynamically we first locate the appropriate integer type declaration, calculate what corresponding static index is required and then perform that index. If the signal which is indexing is the query value then a query result is returned.

\[
\text{Evaluate-Dyindex: } k\text{Const} \times k\text{Const} \times k\text{Type} \to k\text{Const}
\]

\[
\text{Evaluate-Dyindex}(c_1, c_2, ty) \triangleq \\
\text{cases } c_2 \text{ of} \\
\text{constquery}(\text{..}) \to \text{constquery}(ty) \\
\text{others let } \text{enum(\text{typeno}, tagno)} = c_2 \text{ in} \\
\text{let } (lwb, upb) = \text{Find-Integer-Type(\text{typeno(\text{typeno})})} \text{ in} \\
\text{Evaluate-Index}(c_1, lwb + tagno - 1, ty)
\]

The replacing of an element of a structure by a new element whose location is determined by a dynamic index is carried out by the REPLACE primitive. The semantics of REPLACE can be given by the following function
Evaluate-Replace: $kConst \times kConst \times kConst \rightarrow kConst$

Evaluate-Replace $(c_1, c_2, c_3) \triangleq$

\[
\text{cases } c_2 \text{ of }
\]
\[
\begin{align*}
\text{constquery}(.) & \rightarrow \text{constquery}(ty) \\
\text{others let } \text{enum}(\text{typeno}, \text{tagno}) &= c_2 \text{ in } \\
& \text{let } (_, \text{lwb}, \text{upb}) = \text{Find-Integer-Type}(\text{typeno}(\text{typeno})) \text{ in } \\
& \text{let ind} = \text{lwb} + \text{tagno}\cdot1 \text{ in } \\
& \text{cases } c_1 \text{ of }
\end{align*}
\]
\[
\begin{align*}
\text{string}(\text{typeno},[tg_1,\cdots,tg_k]) & \rightarrow \text{let } c_3 = \text{enum}(\text{typeno}, \text{tag}) \text{ in } \\
& \text{let } \text{string}(\text{typeno},[tg_1,\cdots,tg_{\text{ind}}+1,\cdots,tg_k]) \text{ in } \\
& \text{Evaluate-Replace}(\text{string}, c_2, c_3) \\
\text{conststring}(\text{size}, \text{const}) & \rightarrow \text{let } \text{const} = \text{enum}(\text{typeno}, \text{tg}) \text{ in } \\
& \text{let } \text{string}(\text{typeno},[tg_{\text{size}}]) \text{ in } \\
& \text{Evaluate-Replace}(\text{string}, c_2, c_3) \\
\text{consts}([c_1,\cdots,c_k]) & \rightarrow \text{consts}([c_1,\cdots,c_{\text{ind}}+1,\cdots,c_k]) \\
\text{others } \text{constquery}(\text{Type-of-Const}(c_j))
\end{align*}
\]

\[
\text{end}
\]

\[
\text{end}
\]

Concatenation can be split into two parts, namely strings and structures. The concatenation of structures is defined by

Conc-Const: $kConst \times kConst \times kType \rightarrow kConst$

Conc-Const $(c_1, c_2, \text{ty}) \triangleq$

\[
\text{cases } c_1 \text{ of }
\]
\[
\begin{align*}
\text{consts}(\text{cseq}_1) & \rightarrow \text{cases } c_2 \text{ of } \\
\text{consts}(\text{cseq}_2) & \rightarrow \text{if } \text{Type-Equals}(\text{Type-Of-Const}(\text{cseq}_1[1]), \\
& \text{Type-Of-Const}(\text{cseq}_2[1])) \\
& \text{then } \text{consts}(\text{cseq}_1 \sim [\text{cseq}_2]) \\
& \text{else if } \text{Type-Equals}(\text{Type-Of-Const}(\text{cseq}_1[1]), \\
& \text{Type-Of-Const}(c_2)) \\
& \text{then } \text{consts}(\text{cseq}_1 \sim [c_2]) \\
& \text{else } \text{consts}([c_1] \sim \text{cseq}_2) \\
& \text{constquery}(.) \rightarrow \text{constquery}(\text{ty}) \\
\text{others } \text{consts}([c_1] \sim \text{cseq}_2)
\end{align*}
\]

\[
\text{end}
\]

\[
\text{constquery}(.) \rightarrow \text{constquery}(\text{ty}) \\
\text{others } \text{consts}([c_1] \sim \text{cseq}_2)
\]

\[
\text{end}
\]

To obtain the value of concatenating two string structures we have
Conc-String: kConst × kConst × kType → kConst

Conc-String(c₁, c₂, ty) △
cases (c₁, c₂) of
 (string(ty, [tg₁₁, · · · , tg₁k])
 string(ty, [tg₂₁, · · · , tg₂m])) → string(ty, [tg₁₁, · · · , tg₁k, tg₂₁, · · · , tg₂m])
 (string(ty, [tg₁₁, · · · , tg₁k])
 conststring(→, −)) → Conc-String(c₁, Conv-String(c₂))
 (conststring(→, −), −) → Conc-String(Conv-String(c₁), c₂)
others constquery(ty)
end

The evaluation of a Case statement is defined by the following functions where the result delivered is the query value whenever the input chooser has an unknown element. The function Match compares the chooser value against all alternatives in the Case statement and is defined as

Match: kConst × kConstset → B

Match(const, constset) △
cases (const, constset) of
 (enum(−, tagno₁₁), enum(−, tagno₂₂)) → tagno₁₁ = tagno₂₂
 (string(−, [tagno₁₁, · · · , tagno₁k]),
 string(−, [tagno₂₁, · · · , tagno₂k])) → ∩
 (tagnoᵢ₁ = tagnoᵢ₂)
 i∈ {1..k}
 (constassoc(enum(−, tagno₁₁), const₁),
 constsetassoc(enum(−, tagno₂₂), constset₂)) → tagno₁₁ = tagno₂₂ ∧
 Match(const₁, constset₂)
 (const([c₁, · · · , cₖ]),
 constsets([c₁, · · · , cₖ])) → ∩
 Match(cᵢ, csᵢ)
 i∈ {1..k}
 (−, constsetalts([csa₁, · · · , csaₖ])) → ∪
 Match(const, csaᵢ)
 i∈ {1..k}
 (conststring(sizeₗ, cₗ),
 constsetstring(sizeₗ, csetₗ)) → (sizeₗ = sizeₗ) ∧ Match(cₗ, csetₗ)
 (conststring(size, c),
 string(ty, [tg₁, · · · , tgₖ])) → (size = k)
 ∩
 Match(c, enum(ty, tgᵢ))
 i∈ {1..k}
 (string(ty, [tg₁, · · · , tgₖ]),
 constsetstring(size, cset)) → (size = k)
 ∩
 Match(enum(ty, tgᵢ), cset)
 i∈ {1..k}
 (−, constsetany(ctype)) others false
end

The evaluation of a Case statement is defined as
Evaluate-Case: \(k\text{Const} \times \text{Case}^* \times k\text{Unit} \times \text{Signaldec}^* \rightarrow k\text{Unit} \)

\[
\text{Evaluate-Case}(\text{chooser}, \text{cseq}, \text{unit}, \text{sigdec}) \triangleq \\
\text{if } \exists (i \in \text{inds } \text{cseq}) \cdot \text{Match}(\text{chooser}, \text{cseq}[i].\text{constset}) \\
\text{then let } \text{match} = i (i \in \text{inds } \text{cseq}) \cdot \text{Match}(\text{chooser}, \text{cseq}[i].\text{constset}) \text{ in} \\
\text{let } \text{case}(_ \rightarrow \text{u}) = \text{cseq}[\text{match}] \text{ in} \\
\text{u} \\
\text{else if } \text{Has-Query}(\text{chooser}) \\
\text{then } \text{unitquery}(\text{Type-Of-Unit}(\text{unit}, \text{sigdec})) \\
\text{else unit}
\]

4.5 Evaluation of Primitive Functions

This section defines the semantics of the primitive function bodies. The definition of the delays and sample function have been taken from [HWM90a] with the definition of the Biops taken from [Tai88a].

To obtain the sequence of all relevant input values to any delay we need a function similar to Update-Inputs. This function, called Get-Delay-Input, differs from Update-Inputs since it does not necessarily have to go back to time zero. This is because a Delay has a finite history and hence there is a maximum depth of time that needs to be considered. The function Get-Delay-Input therefore collects together only those inputs to a Delay which will be needed for evaluation of a delay.

Get-Delay-Input: \(k\text{Unit} \times \text{Signal}^* \times \text{Input}^* \times k\text{Const} \times \text{Time} \times \text{Time} \rightarrow k\text{Const}^* \)

\[
\text{Get-Delay-Input}(u, \text{signals}, \text{inputs}, \text{initial}, t, s) \triangleq \\
\text{if } t = s \\
\text{then } [] \\
\text{else if } t < 0 \\
\text{then } [\text{initial}] \leftarrow \text{Get-Delay-Input}(u, \text{signals}, \text{inputs}, \text{initial}, t-1, s) \\
\text{else } [\text{Evaluate-Unit}(u, \text{signals}, \text{inputs}, t)] \leftarrow \\
\text{Get-Delay-Input}(u, \text{signals}, \text{inputs}, \text{initial}, t-1, s)
\]

The function Get-Delay-Input is now incorporated into the following function which evaluates the result of the ambiguity delay primitives.

Evaluate-Delay: \(\text{Fnbody} \times \text{Signaldec}^* \times \text{Input}^* \times k\text{Unit} \times \text{Time} \rightarrow k\text{Const} \)

\[
\text{Evaluate-Delay}(\text{delay}, \text{sigdec}, \text{inputs}, \text{unit}, \text{time}) \triangleq \\
\text{let } \text{delay}(\text{initial}, m, \text{mbig}, n) = \text{delay} \text{ in} \\
\text{let } r = [\text{Min}(1, m), \ldots, m] \text{ in} \\
\text{if } \text{time} < 0 \\
\text{then } \text{initial} \\
\text{else let } \text{dinum} = \text{Get-Delay-Input}(\text{unit}, \text{signals}, \text{inputs}, \text{initial}, \text{time-1}, \text{time-m-n}) \text{ in} \\
\text{if } \exists j \in r \cdot \forall i \in [1..n] \text{dinum}[n + i-j] = \text{dinum}[n] \\
\text{then } \text{dinum}[n] \\
\text{else if } \exists j \in r \cdot \forall i \in [1..n] \text{dinum}[n + i-j] = \text{dinum}[n] \lor \text{constquery}(_)
\text{then } \text{constquery}(\text{Type-Of-Const}(\text{mbig})) \\
\text{else mbig}
\]

The function Get-Delay-Input is now incorporated into the following function which evaluates the result of the ambiguity delay primitives.
An inertial delay behaves in a different way to an ambiguity delay in that it filters out any input which is not stable for at least the length of the specified delay period (see [HWM90a] for a complete definition of the delay primitive). The resulting evaluation function is given by

\[
\text{Evaluate-Idelay: } \text{Fnbody} \times \text{Signaldec}^* \times \text{Input}^* \times k\text{Unit} \times \text{Time} \rightarrow k\text{Const}
\]

\[
\text{Evaluate-Idelay}(\text{idelay, sigdec, inputs, unit, time}) \triangleq
\begin{align*}
\text{let } \text{idelay}(\text{initial, n}) &= \text{idelay} \text{ in} \\
\text{if } \text{time} < 0 &\text{ then initial} \\
\text{else let } \text{dinput} = \text{Get-Delay-Input}(\text{unit, signals, inputs, initial, time-1, time-n}) \text{ in} \\
\text{if } \forall i \in [1..n] \text{dinput}[1] = \text{dinput}[i] &\text{ then dinput}[n] \\
\text{else if } \forall i \in [1..n] \text{dinput}[1] = \text{dinput}[i] \vee \text{constquery(.)} &\text{ then constquery(\text{Type-of-Const}(\text{initial}))} \\
\text{else } \text{Evaluate-Idelay(idelay, sigdec, inputs, unit, time-1)}
\end{align*}
\]

The REFORM construct is a way of taking a structured input and restructuring it. The function for performing this is defined below where \(cseq\) is the input structure of constant values, which have been flattened to its lowest level.

\[
\text{Evaluate-Reform: } k\text{Const}* \times k\text{Type} \rightarrow k\text{Const}* \times k\text{Const}
\]

\[
\text{Evaluate-Reform}(cseq, t) \triangleq
\begin{align*}
\text{if } \text{len}(cseq) &= 1 \land \text{Has-Query}(cseq[1]) &\text{then constquery(t)} \\
\text{else cases } \text{Get-Type}(t) &\text{of} \\
\text{types([t_1, \cdots, t_k])} &\rightarrow \text{let } cs_1 = cseq \text{ in} \\
\text{let } (cs_i, c_i) &= \text{Evaluate-Reform}(cs_i, t_i) &i \in [1..n] \text{ in} \\
(cs_n, \text{consts([c_1, \cdots, c_n])}) \\
\text{others (tl cseq, hd cseq)}
\end{align*}
\]

The SAMPLE construct is a sample-and-hold primitive which samples its input at specified intervals and holds that value over the interval. The formal definition of this construct can be given by

\[
\text{Evaluate-Sample: } \text{Fnbody} \times \text{Signaldec}^* \times \text{Input}^* \times k\text{Unit} \times \text{Time} \rightarrow k\text{Const}
\]

\[
\text{Evaluate-Sample}(\text{sample, sigdec, inputs, unit, time}) \triangleq
\begin{align*}
\text{let } \text{sample}(\text{interval, initial, skew}) &= \text{sample} \text{ in} \\
\text{if } \text{time} < 0 &\text{ then initial} \\
\text{else let } t' &= t-((t-skew)MOD\text{interval}) \text{ in} \\
\text{Evaluate-Unit(unit, sigdec, inputs, t')}
\end{align*}
\]

The RAM construct is a general read/write memory device. The size of the Ram is specified by
Kernel Dynamic Semantics

its enclosing function definition, elements of which can be written to at each simulation time. In order to define the evaluation of a Ram for a given address two auxiliary functions are needed. The first function, \textit{Get-Ram-History}, behaves like \textit{Update-Inputs} and calculates all the inputs to the Ram from time zero. The function is similar to \textit{Update-Inputs} but uses concatenation since there is no local function calls within a RAM function.

\begin{verbatim}
Get-Ram-History: kUnit \times Signaldec^* \times Input^* \times Time \rightarrow Input^*

Get-Ram-History(unit, sigdec, inputs, time) \triangleq
\begin{align*}
& \text{if } time = 0 \\
& \quad \text{then } [] \\
& \text{else } [(Evaluate-Unit(unit, sigdec, inputs, time), time)]' \\
& \quad Get-Ram-History(unit, sigdec, inputs, time-1)
\end{align*}
\end{verbatim}

The following function searches through a sequence of inputs to a ram for the desired read address. Since the list will be traversed starting at the most recent entry (in time) the first value located with the correct read address will be the last input to that address. Hence the explicit interrogation of time is not required.

\begin{verbatim}
Search-History: Input^* \times kConst \times kConst \rightarrow kConst

Search-History(history, initial, read) \triangleq
\begin{align*}
& \text{if } history = [] \\
& \quad \text{then } initial \\
& \text{else if } (\text{hd } history)[1] = \text{consts}(\text{[d, read, _, enum(_, 1)]}) \\
& \quad \text{then } d \\
& \text{else if } (\text{hd } history)[1] = \text{consts}(\text{[_, constquery(_, _), _, constquery(_, _)]}) \lor \\
& \quad \text{consts}(\text{[_, constquery(_, _), enum(_, 1)]}) \lor \\
& \quad \text{consts}(\text{[constquery(_, read, _), _, constquery(_, _)]})) \\
& \quad \text{then } constquery(Type-Of-Const(initial)) \\
& \text{else } Search-History(tl(history), initial, read)
\end{align*}
\end{verbatim}

The above two functions can now be combined into the RAM evaluation function which is defined as

\begin{verbatim}
Evaluate-Ram: kConst \times Signaldec^* \times Input^* \times kUnit \times Time \rightarrow kConst

Evaluate-Ram(initial, sigdec, inputs, unit, time) \triangleq
\begin{align*}
& \text{let } \text{consts}(\text{[data, write, read, enable]}) = \text{Evaluate-Unit(unit, sigdec, inputs, time)} \text{ in} \\
& \quad \text{if } Get-Type(enable) = \text{enum(_, 1)} \lor \text{Type-Equals(write, read)} \\
& \quad \text{then } data \\
& \quad \text{else if } Has-Query(read) \lor Has-Query(write) \lor Has-Query(enable) \\
& \quad \quad \text{then } constquery(Type-Of-Const(initial)) \\
& \quad \quad \text{else let } \text{ramhistory} = \text{Get-Ram-History(unit, sigdec, inputs, time)} \text{ in} \\
& \quad \quad \quad \text{Search-History(ramhistory, initial, read)}
\end{align*}
\end{verbatim}

Within the Kernel there are a number of Built in Operators (BIOP) which perform operations on enumerated types and bit strings. In the following section we define the semantics for each BIOP, here we merely state the enclosing calling function for a BIOP.
Evaluate-Biop: fdec $\times k$Const $\rightarrow k$Const

Evaluate-Biop(fdec, const) Δ

if Has-Query(const) \land Optimal-Biop(fdec.fnbody.biopname)
then const\backslashquery($\text{Get-Type}(f$dec.outputtype))
else let intype = Get-Type(fdec.inputtype) in
let outtype = Get-Type(fdec.outputtype) in
cases fdec.fnbody.biopname of
 AND \rightarrow Biop-And(const, intype, outtype)
 OR \rightarrow Biop-Or(const, intype, outtype)
 XOR \rightarrow Biop-Xor(const, intype, outtype)
 NOT \rightarrow Biop-Not(const, intype, outtype)
 EQ \rightarrow Biop-Eq(const, outtype)
 GT \rightarrow Biop-Gt(const, outtype)
 GE \rightarrow Biop-Ge(const, outtype)
 LT \rightarrow Biop-Lt(const, outtype)
 LE \rightarrow Biop-Le(const, outtype)
 EQ..US \rightarrow Biop-UsEq(const, outtype)
 GT..US \rightarrow Biop-UsGt(const, outtype)
 GE..US \rightarrow Biop-UsGe(const, outtype)
 LT..US \rightarrow Biop-UsLt(const, outtype)
 LE..US \rightarrow Biop-UsLe(const, outtype)
 EQ-S \rightarrow Biop-Seq(const, outtype)
 GT-S \rightarrow Biop-Sgt(const, outtype)
 GE-S \rightarrow Biop-Sge(const, outtype)
 LT-S \rightarrow Biop-Slt(const, outtype)
 LE-S \rightarrow Biop-Sle(const, outtype)
 SL \rightarrow Biop-SL(const, outtype)
 SR-US \rightarrow Biop-SRus(const, outtype)
 SR-S \rightarrow Biop-SRs(const, outtype)
 PLUS-US \rightarrow Biop-USplus(const, outtype)
 MINUS-US \rightarrow Biop-USminus(const, outtype)
 NEGATE-US \rightarrow Biop-USneg(const, outtype)
 TIMES-US \rightarrow Biop-UStimes(const, outtype)
 DIVIDE-US \rightarrow Biop-USdivide(const, outtype)
 SQRT-US \rightarrow Biop-USsqrt(const, outtype)
 MOD-US \rightarrow Biop-USmod(const, outtype)
 RANGE-US \rightarrow Biop-USrange(const, outtype)
 TRANSFORM-US \rightarrow Biop-TUs(const, intype, outtype)
TRANSFORM-S \rightarrow Biop-TS(const, intype, outtype)
end
4.6 Built-in Operators

In this section we present the semantics of all the Built-in Operators included within the Kernel. In particular these definitions express the way in which the type-ambiguity value is handled. For a fuller description of all ELLA's BIOPs see [Tai88b].

Throughout this section it is assumed that the input to a BIOP is a constant expression, called 'c'. Where necessary the input and output type of a BIOP are passed into the semantic definitions and in those cases they are referred to as 'intype' and 'outtype', respectively.

4.6.1 Auxiliary Functions

This section defines some functions which are necessary for the definition of the BIOPs.

Enumerated type selection:

\[e2b : \text{kConst} \rightarrow \text{B} \]

\[e2b(c) \begin{cases} \text{if Check-Two-Val(Type-Of-Const(c))} \\ \text{then } c = \text{enum}(_, 2) \\ \text{else } \bot \end{cases} \]

\[b2e : \text{B} \rightarrow \text{kConst} \]

\[b2e(b) \begin{cases} \text{if Check-Two-Val(t)} \\ \text{then let typeno(typeno) = Get-Type(t) in} \\ \text{enum(typeno, if } b \text{ then 2 else 1) } \\ \text{else constquery(t)} \end{cases} \]

Bit-String conversion: (functions not shown)

\[\text{Int-2-Sbit}(n, i) = \text{Integer } i \text{ to signed bit string of length } n \]
\[\text{Int-2-Ubit}(n, i) = \text{Integer } i \text{ to unsigned bit string of length } n \]
\[\text{Sbit-2-Int}(b) = \text{Signed bit string } b \text{ to integer value} \]
\[\text{Ubit-2-Int}(b) = \text{Unsigned bit string } b \text{ to integer value} \]

Unsigned bit string evaluation:

\[ust : \text{kConst} \rightarrow \text{N} \]

\[ust(c) \begin{cases} \text{let stringtype(n, _) = Type-Of-Const(c) in} \\ \text{let string(_ [(tg1, \cdots, tgn)]) = Conv-String(c) in} \\ \text{let } bit_i = tgn, 1 \quad \forall i \in \{1..n\} \text{ in} \\ \text{Ubit-2-Int("bit1 \cdots bit_n")} \end{cases} \]
\(\text{ust}^{-1}_i : \mathbb{N} \to k\text{Const} \)

\(\text{ust}^{-1}_i(v) \triangleq \)

\begin{align*}
\text{let } & \text{stringtype}(n, ty) = t \text{ in} \\
\text{let } & \text{typeno}(\text{typeno}) = \text{Get-Type}(ty) \text{ in} \\
\text{if } & v < 2^n + 1 \\
\text{then let } & "b_1 \cdots b_n" = \text{Int-2-Unit}(n, v) \text{ in} \\
& \text{let } t_{g_i} = b_i + 1 \quad \forall i \in \{1..n\} \text{ in} \\
& \text{string}(\text{typeno}, \{t_{g_1}, \cdots, t_{g_n}\}) \\
\text{else } & \text{constquery}(t)
\end{align*}

Signed Bit string evaluation:

\(\text{sst} : k\text{Const} \to \mathbb{N} \)

\(\text{sst}(c) \triangleq \)

\begin{align*}
\text{let } & \text{stringtype}(n, _ \text{=} \text{Type-Of-Const}(c) \text{ in} \\
\text{let } & \text{string}(_ \text{=} \{t_{g_1}, \cdots, t_{g_n}\}) = \text{Conv-String}(c) \text{ in} \\
\text{let } & b_i = t_{g_i} - 1 \quad \forall i \in \{1..n\} \text{ in} \\
\text{Sbit-2-Int("bit_1 \cdots bit_n")}
\end{align*}

\(\text{sst}^{-1}_i : \mathbb{N} \to k\text{Const} \)

\(\text{sst}^{-1}_i(v) \triangleq \)

\begin{align*}
\text{let } & \text{stringtype}(n, ty) = t \text{ in} \\
\text{let } & \text{typeno}(\text{typeno}) = \text{Get-Type}(ty) \text{ in} \\
\text{if } & -2^{n-1} \leq v < 2^{n-1} \\
\text{then let } & "b_1 \cdots b_n" = \text{Int-2-Sbit}(n, v) \text{ in} \\
& \text{let } t_{g_i} = b_i + 1 \quad \forall i \in \{1..n\} \text{ in} \\
& \text{string}(\text{typeno}, \{t_{g_1}, \cdots, t_{g_n}\}) \\
\text{else } & \text{constquery}(t)
\end{align*}

Quotient Evaluation: (quotient function not shown)

\(\text{OVER} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \)

\(\text{OVER}(n_1, n_2) \triangleq \)

\begin{align*}
\text{if } & n_2 \neq 0 \\
\text{then } & \text{"Quotient of } n_1 \text{ over } n_2" \\
\text{else } & \perp
\end{align*}

4.6.2 Biop Evaluation

4.6.2.1 Logical Operators
\(\text{Biop-And: } k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-And}(c, \text{intype}, \text{outtype}) \triangleq \\
\text{if Get-Type} (\text{intype}) = \text{types(}[-, -]) \\
\text{then Biop-EAnd}(c, \text{outtype}) \\
\text{else Biop-SAnd}(c, \text{outtype})
\]

\(\text{Biop-Or: } k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Or}(c, \text{intype}, \text{outtype}) \triangleq \\
\text{if Get-Type} (\text{intype}) = \text{types(}[-, -]) \\
\text{then Biop-EOr}(c, \text{outtype}) \\
\text{else Biop-SOr}(c, \text{outtype})
\]

\(\text{Biop-Xor: } k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Xor}(c, \text{intype}, \text{outtype}) \triangleq \\
\text{if Get-Type} (\text{intype}) = \text{types(}[-, -]) \\
\text{then Biop-EXor}(c, \text{outtype}) \\
\text{else Biop-SXor}(c, \text{outtype})
\]

\(\text{Biop-Not: } k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Not}(c, \text{intype}, \text{outtype}) \triangleq \\
\text{if Get-Type} (\text{intype}) \neq \text{stringtype}(-, -) \\
\text{then Biop-ENot}(c, \text{outtype}) \\
\text{else Biop-SNot}(c, \text{outtype})
\]

Logical Operators on enumerated values:

\(\text{Biop-EAnd: } k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-EAnd}(c, \text{outtype}) \triangleq \\
\text{let const}(c_1, c_2) = c \text{ in} \\
\text{if Check-Two-Val} (\text{Type-Of-Const}(c_1)) \land \text{Check-Two-Val} (\text{Type-Of-Const}(c_2)) \land \\
\text{Check-Two-Val} (\text{outtype}) \\
\text{then \(\text{b2e}_{\text{outtype}}(\text{e2b}(c_1) \land \text{e2b}(c_2)) \) \\
\text{else constquery} (\text{outtype})
\]

\(\text{Biop-EOr: } k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-EOr}(c, \text{outtype}) \triangleq \\
\text{let const}(c_1, c_2) = c \text{ in} \\
\text{if Check-Two-Val} (\text{Type-Of-Const}(c_1)) \land \text{Check-Two-Val} (\text{Type-Of-Const}(c_2)) \land \\
\text{Check-Two-Val} (\text{outtype}) \\
\text{then \(\text{b2e}_{\text{outtype}}(\text{e2b}(c_1) \lor \text{e2b}(c_2)) \) \\
\text{else constquery} (\text{outtype})
\]
Biop-EXor: $kConst \times kType \rightarrow kConst$

Biop-EXor(c, outtype) \triangleq

\[
\text{let} \ consts(c_1, c_2) = c \ \text{in} \ \\
\text{if} \ Check\TwoVal\(\text{Type-Of-Const}(c_1)\) \land Check\TwoVal\(\text{Type-Of-Const}(c_2)\) \land \Check\TwoVal\text{outtype}
\text{then} \ b2e_{\text{outtype}}(\ e2b(c_1) \oplus e2b(c_2)) \\
\text{else} \ constquery(outtype)
\]

Biop-ENot: $kConst \times kType \rightarrow kConst$

Biop-ENot(c, outtype) \triangleq

\[
\text{if} \ Check\TwoVal\(\text{Type-Of-Const}(c)\) \land Check\TwoVal\text{outtype}
\text{then} \ b2e_{\text{outtype}}(\neg e2b(c)) \\
\text{else} \ constquery(outtype)
\]

Logical Operators on unsigned strings:

Biop-SAnd: $kConst \times kType \rightarrow kConst$

Biop-SAnd(c, outtype) \triangleq

\[
\text{let} \ consts(c_1, c_2) = c \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_1) \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_2) \ \text{in} \ \\
\text{let} \ stringtype(n, ty) = \text{outtype} \ \text{in} \\
\text{let} \ typeno\(\text{typeno}) = \text{Get-Type}(ty) \ \text{in} \ \\
\text{string}(\text{typeno}, (\{ b2e_{\text{typ}1}(\ e2b(c_1[1]) \land e2b(c_2[1])) , \ldots , b2e_{\text{typ}n}(\ e2b(c_1[n]) \land e2b(c_2[n]))))))
\]

Biop-SOr: $kConst \times kType \rightarrow kConst$

Biop-SOr(c, outtype) \triangleq

\[
\text{let} \ consts(c_1, c_2) = c \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_1) \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_2) \ \text{in} \ \\
\text{let} \ stringtype(n, ty) = \text{outtype} \ \text{in} \\
\text{let} \ typeno\(\text{typeno}) = \text{Get-Type}(ty) \ \text{in} \\
\text{string}(\text{typeno}, (\{ b2e_{\text{typ}1}(\ e2b(c_1[1]) \lor e2b(c_2[1])) , \ldots , b2e_{\text{typ}n}(\ e2b(c_1[n]) \lor e2b(c_2[n]))))))
\]

Biop-SXor: $kConst \times kType \rightarrow kConst$

Biop-SXor(c, outtype) \triangleq

\[
\text{let} \ consts(c_1, c_2) = c \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_1) \ \text{in} \ \\
\text{let} \ stringtype(n, .) = \text{Type-Of-Const}(c_2) \ \text{in} \ \\
\text{let} \ stringtype(n, ty) = \text{outtype} \ \text{in} \\
\text{let} \ typeno\(\text{typeno}) = \text{Get-Type}(ty) \ \text{in} \\
\text{string}(\text{typeno}, (\{ b2e_{\text{typ}1}(\ e2b(c_1[1]) \oplus e2b(c_2[1])) , \ldots , b2e_{\text{typ}n}(\ e2b(c_1[n]) \oplus e2b(c_2[n]))))))
\]
Kernel Dynamic Semantics

Biop-SNot: \(k \text{Const} \times k \text{Type} \rightarrow k \text{Const} \\
Biop-SNot(c, outtype) \triangleq \\
\quad \text{let } \text{stringtype}(n,-) = \text{Type-Of-Const}(c) \text{ in} \\
\quad \text{let } \text{stringtype}(n,ty) = outtype \text{ in} \\
\quad \text{let } \text{typeno}(\text{typeno}) = \text{Get-Type}(ty) \text{ in} \\
\quad \text{string}(\text{typeno}, ([b_{2e}(-e_{2b}(c[1])), \cdots, b_{2e}(-e_{2b}(c[n]))]))

4.6.2.2 Relational Operators on Enumerated Types

Biop-Eq: \(k \text{Const} \times k \text{Type} \rightarrow k \text{Const} \\
Biop-Eq(c, outtype) \triangleq \\
\quad \text{let } \text{consts}(\text{enum}(-,tag_1), \text{enum}(-,tag_2)) = c \text{ in} \\
\quad \text{if } \text{Check-Two-Val}(\text{outtype}) \\
\quad \text{then } b_{2e}(\text{tag}_1 = \text{tag}_2) \\
\quad \text{else } \text{constquery}(\text{outtype})

Biop-Gt: \(k \text{Const} \times k \text{Type} \rightarrow k \text{Const} \\
Biop-Gt(c, outtype) \triangleq \\
\quad \text{let } \text{consts}(\text{enum}(-,tag_1), \text{enum}(-,tag_2)) = c \text{ in} \\
\quad \text{if } \text{Check-Two-Val}(\text{outtype}) \\
\quad \text{then } b_{2e_{\text{outtype}}}(\text{tag}_1 > \text{tag}_2) \\
\quad \text{else } \text{constquery}(\text{outtype})

Biop-Ge: \(k \text{Const} \times k \text{Type} \rightarrow k \text{Const} \\
Biop-Ge(c, outtype) \triangleq \\
\quad \text{let } \text{consts}(\text{enum}(-,tag_1), \text{enum}(-,tag_2)) = c \text{ in} \\
\quad \text{if } \text{Check-Two-Val}(\text{outtype}) \\
\quad \text{then } b_{2e_{\text{outtype}}}(\text{tag}_1 \geq \text{tag}_2) \\
\quad \text{else } \text{constquery}(\text{outtype})

Biop-Lt: \(k \text{Const} \times k \text{Type} \rightarrow k \text{Const} \\
Biop-Lt(c, outtype) \triangleq \\
\quad \text{let } \text{consts}(\text{enum}(-,tag_1), \text{enum}(-,tag_2)) = c \text{ in} \\
\quad \text{if } \text{Check-Two-Val}(\text{outtype}) \\
\quad \text{then } b_{2e}(\text{tag}_1 < \text{tag}_2) \\
\quad \text{else } \text{constquery}(\text{outtype})
Biop-Le: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

\[
\text{Biop-Le}(c, \text{outtype}) \triangleq \\
\text{let } \text{consts}(\text{enum}(._._\text{tag}_1), \text{enum}(._._\text{tag}_2)) = c \text{ in} \\
\text{if Check-Two-Val(outtype)} \\
\text{then } \text{b2e}_{\text{outtype}}(\text{tag}_1 \leq \text{tag}_2) \\
\text{else } \text{constquery(outtype)}
\]

4.6.2.3 Relational Operators on Unsigned Bit Strings

Relational optimisation test on unsigned bit strings:

\textit{B-U-Test: }$\mathbb{N} \times \mathbb{N} \times k\text{Const} \rightarrow \mathbb{B}$

\[
B-U-Test(m, n, c) \triangleq \\
(m > n) \land (\text{string}(._.[\text{tg}_1, \ldots, \text{tg}_m]) = \text{Conv-String}(c)) \land \\
(\exists i \in \{1..(m-n)\}. \text{tg}_i = 2)
\]

\textit{Biop-USeq: }$k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

\[
\text{Biop-USeq}(c, \text{outtype}) \triangleq \\
\text{let } \text{consts}(c_1, c_2) = c \text{ in} \\
\text{let } \text{stringtype}(n,_.) = \text{Type-Of-Const}(c_1) \text{ in} \\
\text{let } \text{stringtype}(m,_.) = \text{Type-Of-Const}(c_2) \text{ in} \\
\text{if } B-U-Test(m, n, c_2) \lor B-U-Test(n, m, c_1) \\
\text{then } \text{b2e}_{\text{outtype}}(\text{false}) \\
\text{else if } \text{Has-Query}(c_1) \lor \text{Has-Query}(c_2) \\
\text{then } \text{constquery(outtype)} \\
\text{else } \text{b2e}_{\text{outtype}}(\text{ust}(c_1) = \text{ust}(c_2))
\]

\textit{Biop-USgt: }$k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

\[
\text{Biop-USgt}(c, \text{outtype}) \triangleq \\
\text{let } \text{consts}(c_1, c_2) = c \text{ in} \\
\text{let } \text{stringtype}(n,_.) = \text{Type-Of-Const}(c_1) \text{ in} \\
\text{let } \text{stringtype}(m,_.) = \text{Type-Of-Const}(c_2) \text{ in} \\
\text{if } B-U-Test(m, n, c_2) \\
\text{then } \text{b2e}_{\text{outtype}}(\text{false}) \\
\text{else if } B-U-Test(n, m, c_1) \\
\text{then } \text{b2e}_{\text{outtype}}(\text{true}) \\
\text{else if } \text{Has-Query}(c_1) \lor \text{Has-Query}(c_2) \\
\text{then } \text{constquery(outtype)} \\
\text{else } \text{b2e}_{\text{outtype}}(\text{ust}(c_1) > \text{ust}(c_2))
\]
4.6.2.4 Relational Operators on Signed Bit Strings

Relational optimisation test on signed bit strings:
\begin{align*}
B-S-Test : & \mathbb{N} \times \mathbb{N} \times k\text{Const} \rightarrow B \\
B-S-Test(m, n, c) & \triangleq \\
& (m > n) \land \left(\text{string}([t_{g_1}, \cdots, t_{g_m}]) = \text{Conv-String}(c) \right) \land \\
& (t_{g_1} = 1) \land (\exists i \in \{2..(m-n)\}. t_{g_i} = 2) \\
\end{align*}

\begin{align*}
\text{Biop-Seq} : & k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \\
\text{Biop-Seq}(c, \text{outtype}) & \triangleq \\
& \text{let} \ \text{consts}(c_1, c_2) = c \ \text{in} \\
& \text{let} \ \text{stringtype}(n, \cdot) = \text{Type-Of-Const}(c_1) \ \text{in} \\
& \text{let} \ \text{stringtype}(m, \cdot) = \text{Type-Of-Const}(c_2) \ \text{in} \\
& \text{if} \ B-S-Test(m, n, c_2) \lor B-S-Test(n, m, c_1) \\
& \text{then} \ \text{b2e}_{\text{outtype}}(\text{false}) \\
& \text{else if} \ \text{Has-Query}(c_1) \lor \text{Has-Query}(c_2) \\
& \quad \text{then} \ \text{constquery}(\text{outtype}) \\
& \quad \text{else} \ \text{b2e}_{\text{outtype}}(\text{sst}(c_1) \leq \text{sst}(c_2)) \\
\end{align*}

\begin{align*}
\text{Biop-Sgt} : & k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \\
\text{Biop-Sgt}(c, \text{outtype}) & \triangleq \\
& \text{let} \ \text{consts}(c_1, c_2) = c \ \text{in} \\
& \text{let} \ \text{stringtype}(n, \cdot) = \text{Type-Of-Const}(c_1) \ \text{in} \\
& \text{let} \ \text{stringtype}(m, \cdot) = \text{Type-Of-Const}(c_2) \ \text{in} \\
& \text{if} \ B-S-Test(m, n, c_2) \\
& \text{then} \ \text{b2e}_{\text{outtype}}(\text{false}) \\
& \text{else if} \ B-S-Test(n, m, c_1) \\
& \quad \text{then} \ \text{b2e}_{\text{outtype}}(\text{true}) \\
& \quad \text{else if} \ \text{Has-Query}(c_1) \lor \text{Has-Query}(c_2) \\
& \quad \quad \text{then} \ \text{constquery}(\text{outtype}) \\
& \quad \quad \text{else} \ \text{b2e}_{\text{outtype}}(\text{sst}(c_1) > \text{sst}(c_2)) \\
\end{align*}

\begin{align*}
\text{Biop-Sge} : & k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \\
\text{Biop-Sge}(c, \text{outtype}) & \triangleq \\
& \text{let} \ \text{consts}(c_1, c_2) = c \ \text{in} \\
& \text{let} \ \text{stringtype}(n, \cdot) = \text{Type-Of-Const}(c_1) \ \text{in} \\
& \text{let} \ \text{stringtype}(m, \cdot) = \text{Type-Of-Const}(c_2) \ \text{in} \\
& \text{if} \ B-S-Test(m, n, c_2) \\
& \text{then} \ \text{b2e}_{\text{outtype}}(\text{false}) \\
& \text{else if} \ B-S-Test(n, m, c_1) \\
& \quad \text{then} \ \text{b2e}_{\text{outtype}}(\text{true}) \\
& \quad \text{else if} \ \text{Has-Query}(c_1) \lor \text{Has-Query}(c_2) \\
& \quad \quad \text{then} \ \text{constquery}(\text{outtype}) \\
& \quad \quad \text{else} \ \text{b2e}_{\text{outtype}}(\text{sst}(c_1) \geq \text{sst}(c_2)) \\
\end{align*}
Kernel Dynamic Semantics

Biop-Slt: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

Biop-Slt$(c, \text{outtype})$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n, _ _ _) = \text{Type-Of-Const}(c_1)$ in
let $\text{stringtype}(m, _ _ _) = \text{Type-Of-Const}(c_2)$ in
if $B-S-Test(n, m, c_1)$
then $\text{b2e}_{\text{outtype}}(\text{false})$
else if $B-S-Test(m, n, c_2)$
then $\text{b2e}_{\text{outtype}}(\text{true})$
else if $\text{Has-Query}(c_1) \lor \text{Has-Query}(c_2)$
then constquery(\text{outtype})
else $\text{b2e}_{\text{outtype}}(\text{sst}(c_1) < \text{sst}(c_2))$

Biop-Sle: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

Biop-Sle$(c, \text{outtype})$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n, _ _ _) = \text{Type-Of-Const}(c_1)$ in
let $\text{stringtype}(m, _ _ _) = \text{Type-Of-Const}(c_2)$ in
if $B-S-Test(n, m, c_1)$
then $\text{b2e}_{\text{outtype}}(\text{false})$
else if $B-S-Test(m, n, c_2)$
then $\text{b2e}_{\text{outtype}}(\text{true})$
else if $\text{Has-Query}(c_1) \lor \text{Has-Query}(c_2)$
then constquery(\text{outtype})
else $\text{b2e}_{\text{outtype}}(\text{sst}(c_1) \leq \text{sst}(c_2))$

4.6.2.5 Shift Operators on Unsigned and Signed Bit Strings

Biop-SL: $k\text{Const} \times k\text{type} \rightarrow k\text{Const}$

Biop-SL$(c, \text{outtype})$

let $\text{stringtype}(n, ty) = \text{Type-Of-Const}(c)$ in
let $\text{stringtype}(n + m, ty) = \text{outtype}$ in
let $\text{string}([\text{typeno}, [t_1, \cdots, t_n]]) = \text{Conv-String}(c)$ in
$\text{string}([\text{typeno}, [t_1, \cdots, t_n]] \wedge [(1)^m])$

Biop-SRus: $k\text{Const} \times k\text{type} \rightarrow k\text{Const}$

Biop-SRus$(c, \text{outtype})$

let $\text{stringtype}(n, ty) = \text{Type-Of-Const}(c)$ in
let $\text{stringtype}(n + m, ty) = \text{outtype}$ in
let $\text{string}([\text{typeno}, [t_1, \cdots, t_n]]) = \text{Conv-String}(c)$ in
$\text{string}([\text{typeno}, [(1)^m] \wedge [t_1, \cdots, t_n]])$
34

Biop-SRs: kConst x ktype → kConst

\[\text{Biop-SRs}(c, \text{outtype}) \triangleq \]

let stringtype(n, ty) = Type-Of-Const(c) in
let stringtype(n + m, ty) = outtype in
let string(ty, [t_{g_1}, \ldots, t_{g_n}]) = Conv-String(c) in
string(ty, [t_{g_1}, \ldots, t_{g_n}])

4.6.2.6 Arithmetic Operators on Unsigned Bit Strings

Biop-USplus: kConst x kType → kConst

\[\text{Biop-USplus}(c, \text{outtype}) \triangleq \]

let consts(c_1, c_2) = c in
let stringtype(n, ..) = c_1 in
let stringtype(m, ..) = c_2 in
let stringtype(MAX(m, n) + 1, ..) = outtype in
ust^{1}_{\text{outtype}}(ust_{c_1} + ust_{c_2})

Biop-USminus: kConst x kType → kConst

\[\text{Biop-USminus}(c, \text{outtype}) \triangleq \]

let consts(c_1, c_2) = c in
let stringtype(n, ..) = c_1 in
let stringtype(m, ..) = c_2 in
let stringtype(MAX(m, n) + 1, ..) = outtype in
ust^{1}_{\text{outtype}}(ust_{c_1} - ust_{c_2})

Biop-UNeg: kConst x kType → kConst

\[\text{Biop-UNeg}(c, \text{outtype}) \triangleq \]

let stringtype(n, ..) = c in
let stringtype(n + 1, ..) = outtype in
ust^{1}_{\text{outtype}}(\neg ust_{c})

Biop-UMtimes: kConst x kType → kConst

\[\text{Biop-UMtimes}(c, \text{outtype}) \triangleq \]

let consts(c_1, c_2) = c in
let stringtype(n, ..) = c_1 in
let stringtype(m, ..) = c_2 in
let stringtype(m + n, ..) = outtype in
ust^{1}_{\text{outtype}}(ust_{c_1} \times ust_{c_2})
Kernel Dynamic Semantics

Biop-USdivide: kConst \times kType \rightarrow kConst

Biop-USdivide\(c, outtype\) \(\triangleq\)
\[
\text{let } \text{consts}(c_1, c_2) = c \text{ in}
\text{let } \text{stringtype}(n, _) = c_1 \text{ in}
\text{let } \text{stringtype}(m, _) = c_2 \text{ in}
\text{let } \text{types}(ty, ty1, ty2) = outtype \text{ in}
\text{let } \text{stringtype}(n, _) = ty1 \text{ in}
\text{let } \text{stringtype}(m, _) = ty2 \text{ in}
\text{if } \text{ustc}_2 \neq 0
\text{then } \text{consts}([[\text{b2e}_{ty}(false), \text{ust}^{-1}_{ty1}(\text{ustc}_1 \text{OVER ustc}_2),
\text{ust}^{-1}_{ty2}(\text{ustc}_1 \text{OVER ustc}_2) \cdot \text{ustc}_2)])
\text{else } \text{consts}([[\text{b2e}_{ty}(true), \text{constquery}(ty1), \text{constquery}(ty2)])
\]

Biop-USsqrt: kConst \times kType \rightarrow kConst

Biop-USsqrt\(c, outtype\) \(\triangleq\)
\[
\text{let } \text{stringtype}(n, _) = c \text{ in}
\text{let } \text{stringtype}((n + 1)\%2, _) = outtype \text{ in}
\text{ust}^{-1}_{outtype}(\sqrt{\text{ustc}})
\]

Biop-USmod: kConst \times kType \rightarrow kConst

Biop-USmod\(c, outtype\) \(\triangleq\)
\[
\text{let } \text{consts}(c_1, c_2) = c \text{ in}
\text{let } \text{stringtype}(n, _) = c_1 \text{ in}
\text{let } \text{stringtype}(m, _) = c_2 \text{ in}
\text{let } \text{types}([ty, \text{stringtype}(m, _)]) = outtype \text{ in}
\text{if } \text{ustc}_2 \neq 0
\text{then } \text{consts}([[\text{b2e}_{ty}(false), \text{ust}^{-1}_{outtype}[2]\text{ustc}_1 MOD ustc}_2)])
\text{else } \text{consts}([[\text{b2e}_{ty}(true), \text{constquery}(outtype[2])])
\]

Biop-USrange: kConst \times kType \rightarrow kConst

Biop-USrange\(c, outtype\) \(\triangleq\)
\[
\text{let } \text{stringtype}(n, _) = c \text{ in}
\text{let } \text{types}([ty, \text{stringtype}(m, _)]) = outtype \text{ in}
\text{if } \text{ustc} < 2^m
\text{then } \text{consts}([[\text{b2e}_{ty}(false), \text{ust}^{-1}_{outtype}[2]\text{ustc}]])
\text{else } \text{consts}([[\text{b2e}_{ty}(true), \text{constquery}(outtype[2])])
\]
4.6.2.7 Arithmetic Operators on Signed Bit Strings

Biop-Splus: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

$\text{Biop-Splus}(c, \text{outtype}) \triangleq$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n,.) = c_1$ in
let $\text{stringtype}(m,.) = c_2$ in
let $\text{stringtype}(\text{MAX}(m, n) + 1,.) = \text{outtype}$ in
$sst^{-1}_{\text{outtype}}(sst c_1 + sst c_2)$

Biop-Sminus: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

$\text{Biop-Sminus}(c, \text{outtype}) \triangleq$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n,.) = c_1$ in
let $\text{stringtype}(m,.) = c_2$ in
let $\text{stringtype}(\text{MAX}(m, n) + 1,.) = \text{outtype}$ in
$sst^{-1}_{\text{outtype}}(sst c_1 - sst c_2)$

Biop-USneg: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

$\text{Biop-USneg}(c, \text{outtype}) \triangleq$

let $\text{stringtype}(n,.) = c$ in
let $\text{stringtype}(n + 1,.) = \text{outtype}$ in
$sst^{-1}_{\text{outtype}}(\neg sst c)$

Biop-Stimes: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

$\text{Biop-Stimes}(c, \text{outtype}) \triangleq$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n,.) = c_1$ in
let $\text{stringtype}(m,.) = c_2$ in
let $\text{stringtype}(m + n,.) = \text{outtype}$ in
$sst^{-1}_{\text{outtype}}(sst c_1 \ast sst c_2)$

Biop-Sdivide: $k\text{Const} \times k\text{Type} \rightarrow k\text{Const}$

$\text{Biop-Sdivide}(c, \text{outtype}) \triangleq$

let $\text{consts}(c_1, c_2) = c$ in
let $\text{stringtype}(n,.) = c_1$ in
let $\text{stringtype}(m,.) = c_2$ in
let $\text{types}(ty, ty_1, ty_2) = \text{outtype}$ in
let $\text{stringtype}(n,.) = ty_1$ in
let $\text{stringtype}(m,.) = ty_2$ in
if $sst c_2 \neq 0$
then $\text{consts}([\text{b2e}_{ty}(\text{false}), sst^{-1}_{ty_1}(sst c_1 \text{OVER} sst c_2),
sst^{-1}_{ty_2}((sst c_1 \text{OVER} sst c_2) \ast sst c_2)])$
else $\text{consts}([\text{b2e}_{ty}(\text{true}), \text{constquery}(ty_1), \text{constquery}(ty_2)])$
Kernel Dynamic Semantics

\textbf{Biop-Smod:} \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Smod}(c, \text{outtype}) \triangleq \\
\quad \text{let } \text{consts}(c_1, c_2) = c \text{ in} \\
\quad \text{let } \text{stringtype}(n, -) = c_1 \text{ in} \\
\quad \text{let } \text{stringtype}(m, -) = c_2 \text{ in} \\
\quad \text{let } \text{types}([ty, \text{stringtype}(m, -)]) = t \text{ in} \\
\quad \text{if } \text{sstc}_2 = 0 \\
\quad \quad \text{then } \text{consts}([b2e_{ty}(\text{true}), \text{constquery}(\text{outtype}[2]))] \\
\quad \quad \text{else } \text{consts}([b2e_{ty}(\text{false}), \text{sstc}_2^{-1}\text{outtype}[2](\text{sstc}_1 \text{MOD sstc}_2)])
\]

\textbf{Biop-Srange:} \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Srange}(c, \text{outtype}) \triangleq \\
\quad \text{let } \text{stringtype}(n, -) = c \text{ in} \\
\quad \text{let } \text{types}(ty, \text{stringtype}(m, -)) = \text{outtype} \text{ in} \\
\quad \text{if } \text{sstc} < 2^m \\
\quad \quad \text{then } \text{consts}([b2e_{ty}(\text{false}), \text{sstc}_1^{-1}\text{outtype}[2](\text{sstc})]) \\
\quad \quad \text{else } \text{consts}([b2e_{ty}(\text{true}), \text{constquery}(\text{outtype}[2]))]
\]

\textbf{Biop-Sabs:} \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-Sabs}(c, \text{outtype}) \triangleq \\
\quad \text{let } \text{stringtype}(n, -) = c \text{ in} \\
\quad \text{let } \text{stringtype}(n, -) = \text{outtype} \text{ in} \\
\quad \text{sstc}_1^{-1}\text{outtype}(\text{ABS sstc})
\]

\textbf{4.6.2.8 Transformation Operators}

This section defines transformational operators on unsigned, signed strings and integer types

\textbf{Biop-TUS:} \(k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-TUS}(c, \text{intype}, \text{outtype}) \triangleq \\
\quad \text{if Get-Type}(\text{intype}) = \text{stringtype}(\text{--}) \\
\quad \quad \text{then Biop-STS}(c, \text{outtype}) \\
\quad \quad \text{else Biop-ETS}(c, \text{outtype})
\]

\textbf{Biop-TS:} \(k\text{Const} \times k\text{Type} \times k\text{Type} \rightarrow k\text{Const} \)

\[
\text{Biop-TS}(c, \text{intype}, \text{outtype}) \triangleq \\
\quad \text{if Get-Type}(\text{intype}) = \text{stringtype}(\text{--}) \\
\quad \quad \text{then Biop-STUS}(c, \text{outtype}) \\
\quad \quad \text{else Biop-ETUS}(c, \text{outtype})
\]
\section*{Biop-STUS: \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const}\)}

\begin{verbatim}
\texttt{Biop-STUS}(c, outtype) \triangleq
\quad \text{let } \text{stringtype}(n, _) = \text{Type-Of-Const}(c) \text{ in}
\quad \text{let } \text{types}(ty1, ty2) = outtype \text{ in}
\quad \text{let } (_{-}, lwb, upb) = \text{Find-Integer-Type}(ty2) \text{ in}
\quad \text{if } ustc < upb
\quad \quad \text{then } \text{consts}([b2e_{ty1}(false), ustc])
\quad \quad \text{else } \text{consts}([b2e_{ty1}(true), constquery(ty2)])
\end{verbatim}

\section*{Biop-ETUS: \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const}\)}

\begin{verbatim}
\texttt{Biop-ETUS}(c, outtype) \triangleq
\quad \text{let } ty = \text{Type-Of-Const}(c) \text{ in}
\quad \text{let } (_{-}, lwb, upb) = \text{Find-Integer-Type}(ty) \text{ in}
\quad \text{let } \text{enum}(_{-}, tagno) = c \text{ in}
\quad \text{let } \text{types}(ty1, \text{stringtype}(m, _)) = outtype \text{ in}
\quad \text{let } \text{int} = lwb + \text{tagno}-1 \text{ in}
\quad \text{if } \text{int} < 2^m
\quad \quad \text{then } \text{consts}([b2e_{ty1}(false), ust^{-1}_{outtype}[2]c])
\quad \quad \text{else } \text{consts}([b2e_{ty1}(true), constquery(outtype[2])])
\end{verbatim}

\section*{Biop-STS: \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const}\)}

\begin{verbatim}
\texttt{Biop-STS}(c, outtype) \triangleq
\quad \text{let } \text{stringtype}(n, _) = \text{Type-Of-Const}(c) \text{ in}
\quad \text{let } \text{types}(ty1, ty2) = outtype \text{ in}
\quad \text{let } (_{-}, lwb, upb) = \text{Find-Integer-Type}(ty2) \text{ in}
\quad \text{if } sstc < upb
\quad \quad \text{then } \text{consts}([b2e_{ty1}(false), sstc])
\quad \quad \text{else } \text{consts}([b2e_{ty1}(true), constquery(ty2)])
\end{verbatim}

\section*{Biop-ETS: \(k\text{Const} \times k\text{Type} \rightarrow k\text{Const}\)}

\begin{verbatim}
\texttt{Biop-ETS}(c, outtype) \triangleq
\quad \text{let } ty = \text{Type-Of-Const}(c) \text{ in}
\quad \text{let } (_{-}, lwb, upb) = \text{Find-Integer-Type}(ty) \text{ in}
\quad \text{let } \text{enum}(_{-}, tagno) = c \text{ in}
\quad \text{let } \text{types}(ty1, \text{stringtype}(m, _)) = outtype \text{ in}
\quad \text{let } \text{int} = lwb + \text{tagno}-1 \text{ in}
\quad \text{if } -2^{m-1} \leq \text{int} < 2^{m-1}
\quad \quad \text{then } \text{consts}([b2e_{ty1}(false), sst^{-1}_{outtype}[2]c])
\quad \quad \text{else } \text{consts}([b2e_{ty1}(true), constquery(outtype[2])])
\end{verbatim}
4.7 Function Evaluation

In the previous sections we have defined all the functions necessary for the evaluation of a Kernel function instance. It now remains to construct the appropriate calling functions. The outer most function will be one which takes a function instance with a specified input value list and a specified evaluation time and returns a constant value result. A function instance body can either be a basic built in function, such as Delay, Ramn etc, or it can be a unit clause. The following two functions define the evaluation calling process for these two cases.

The evaluation of a unit expression is defined by

\[
\text{Evaluate-Unit: Unit} \times \text{Signaldec}^* \times \text{Input}^* \times \text{Time} \rightarrow \text{Const}
\]

\[
\text{Evaluate-Unit(unit, sigdecs, inputs, time)} \triangleq
\begin{cases}
\text{conc}(u_1, u_2, ty) & \rightarrow \text{let } c_1 = \text{Evaluate-Unit}(u_1, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{let } c_2 = \text{Evaluate-Unit}(u_2, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{if } \text{stringtype}(\cdot, \cdot) = \text{Get-Type}(ty) \\
& \text{then } \text{Conc-String}(c_1, c_2, ty) \\
& \text{else } \text{Conc-Cons}(\cdot, \cdot, c_1, c_2, ty) \\
\text{unitstring(size, unit)} & \rightarrow \text{let } c = \text{Evaluate-Unit}(\text{unit, sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{conststring(size, c)} \\
\text{units([u_1, \ldots, u_k])} & \rightarrow \text{let } c_i = \text{Evaluate-Unit}(u_i, \text{sigdecs}, \text{inputs}, \text{time}) \forall i \in [1..k] \text{ in } \\
& \text{consts}([c_1, \ldots, c_k]) \\
\text{instance(fnno, unit)} & \rightarrow \text{let } fdec = (\text{EnvFndec})[\text{fnno}] \text{ in } \\
& \text{if } fdec.\text{fnbody} \in kUnit \\
& \text{then let inputs' = Update-Inputs(unit, sigdecs, inputs, time) in } \\
& \text{Evaluate-Fn(fnno, inputs', time)} \\
& \text{else } \text{Evaluate-Builtin(fdec, sigdecs, inputs, unit, time)} \\
\text{unitassoc(enum, unit)} & \rightarrow \text{let } c = \text{Evaluate-Unit}(\text{unit, sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{constassoc(enum, c)} \\
\text{extract(unit, enum)} & \rightarrow \text{let } c = \text{Evaluate-Unit}(\text{unit, sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{Evaluate-Extract(c, enum)} \\
\text{signal(signalno)} & \rightarrow \text{Sig(signalno, sigdecs, inputs, time)} \\
\text{index(unit, ind, ty)} & \rightarrow \text{let } c = \text{Evaluate-Unit}(\text{unit, sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{Evaluate-Indez(c, ind, ty)} \\
\text{trim(unit, ind1, ind2, ty)} & \rightarrow \text{let } c = \text{ Evaluate-Unit}(\text{unit, sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{Evaluate-Trim(c, ind1, ind2, ty)} \\
\text{dyindex(u_1, u_2, ty)} & \rightarrow \text{let } c_1 = \text{Evaluate-Unit}(u_1, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{let } c_2 = \text{Evaluate-Unit}(u_2, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{Evaluate-Dyindex(c_1, c_2, ty)} \\
\text{replace(u_1, u_2, u_3)} & \rightarrow \text{let } c_1 = \text{Evaluate-Unit}(u_1, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{let } c_2 = \text{Evaluate-Unit}(u_2, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{let } c_3 = \text{Evaluate-Unit}(u_3, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{Evaluate-Replace(c_1, c_2, c_3)} \\
\text{unitquery(ty)} & \rightarrow \text{constquery(ty)} \\
\text{caseclause(u_1, cseq, u_2)} & \rightarrow \text{let } chooser = \text{Evaluate-Unit}(u_1, \text{sigdecs}, \text{inputs}, \text{time}) \text{ in } \\
& \text{let } u = \text{Evaluate-Case(chooser, cseq, u_2, sigdecs)} \text{ in } \\
& \text{Evaluate-Unit(u, sigdecs, inputs, time)} \\
\text{unitvoid} & \rightarrow \text{constvoid} \\
end
and the evaluation of the built-in primitives is defined by

\[
\text{Evaluate-Builtin: } kFndec \times \text{Signaldec}^* \times \text{Input}^* \times k\text{Unit} \times \text{Time} \rightarrow k\text{Const}
\]

\[
\text{Evaluate-Builtin}(\text{fdec, sigdec, inputs, unit, time}) \triangleq
\]

cases \text{fdec.fnbody} of

reform \rightarrow \text{let } \text{cseq } = \text{Flatten-Const(Evaluate-Unit(unit, sigdec, inputs, time)) in}
\]

\text{Evaluate-Reform(cseq, fdec.outputtype)}[2]

biop \rightarrow \text{Evaluate-Biop(fdec, Evaluate-Unit(unit, sigdec, inputs, time))}

delay \rightarrow \text{Evaluate-Delay(fdec.fnbody, sigdec, inputs, unit, time)}

delay \rightarrow \text{Evaluate-Idelay(fdec.fnbody, sigdec, inputs, unit, time)}

\text{sample} \rightarrow \text{Evaluate-Sample(fdec.fnbody, sigdec, inputs, unit, time)}

\text{ram} \rightarrow \text{Evaluate-Ram(fdec.fnbody.initial, sigdec, inputs, unit, time)}

end

For completeness we restate the function which calculates all the necessary inputs for a function call, this function is the same as defined for K2.

\[
\text{Update-Inputs: } \text{Ezpr} \times \text{Signal}^* \times \text{Input}^* \times \text{Time} \rightarrow \text{Input}^*
\]

\[
\text{Update-Inputs}(e, \text{signals, inputs, t}) \triangleq
\]

cases \text{t} \geq 0

then \text{let } \text{inputs' } = \text{Update-Inputs(e, signals, inputs, (t-1)) in}

\text{inputs' } \uparrow [(\text{Evaluate-Ezp(e, signals, inputs', t), t})]

else \text{inputs}

We can now define the top level function which evaluates a Kernel function instance at a given time and with a given input history

\[
\text{Evaluate-Fn: } \text{Nat} \times \text{Input}^* \times \text{Time} \rightarrow \text{Const}
\]

\[
\text{Evaluate-Fn(fnno, inputs, time)} \triangleq
\]

cases \text{fnno} in

\text{fdec}\in k\text{Unit}

then \text{Evaluate-Unit(fdec.fnbody, fdec.signaldecseq, inputs, time)}

else \text{let } (c, \text{time}) \in \text{inputs} in

\text{Evaluate-Builtin(fdec, fdec.signaldecseq, inputs, Convert-Const-Unit(c), time)}

This now completes the definition of the dynamic semantics of the Kernel. In the next subsection we revisit an example shown previously to show how an ELLA description transforms into a Kernel expression and what the input to its evaluation function would be.

4.8 Example

In this example we present the example of a Reset/Set Flip Flop as given in section 3.4. An ELLA description of this circuit is
TYPE bool = NEW (h | 1).

FN DEL = (bool)->bool: DELAY(1,1,1,1).

FN NOR = ([2]bool:in) -> bool:
CASE in OF
 (1,1) : h,
 (1,h) : 1,
 (h,1) : 1,
 (h,h) : 1
ELSE 1
ESAC.

FN RSFF = (bool: in1, bool: in2) -> bool:
BEGIN
 MAKE DEL: del1.
 MAKE DEL: del2.
 MAKE NOR: nor1.
 MAKE NOR: nor2.
 JOIN (in1, del2) -> nor1.
 JOIN (in2, del1) -> nor2.
 JOIN nor1 -> del1.
 JOIN nor2 -> del2.
 OUTPUT del1
END.

The resulting Kernel environment, which is obtained by passing the above ELLA description of the circuit through the implementation of the semantic rules defined in [HM92], is given by

```plaintext
([TYPEDEC ("bool" Tags([[Tag(h, NIL),Tag(1, NIL)]))]),
 [FNDEC( DEL, Typono(1), []), Typono(1), Delay(Enum(1, 2), 1, Enum(1, 2), 1))
 FNDEC( NOR, Types([Typono(1), Typono(1)])),
   Signaldec("in", Types([Typono(1), Typono(1)]), input)],
   Typono(1),
   Caseclause(Signal(1),
     [Case(Constsets([Enum(1, 2), Enum(1, 2)]), Enum(1, 1)),
     Case(Constsets([Enum(1, 2), Enum(1, 1)]), Enum(1, 2)),
     Case(Constsets([Enum(1, 1), Enum(1, 2)]), Enum(1, 2)),
     Case(Constsets([Enum(1, 1), Enum(1, 1)]), Enum(1, 2)]]))
 FNDEC( RSFF, Types([Typono(1), Typono(1)])),
 [Signaldec("in1", Typono(1), input),
  Signaldec("in2", Typono(1), input),
  Signaldec("del1", Typono(1), Instance(1, Signal(6))),
  Signaldec("del2", Typono(1), Instance(1, Signal(6))),
  Signaldec("nor1", Typono(1), Instance(2, Units([Signal(1), Signal(4)]))),
  Signaldec("nor2", Typono(1), Instance(2, Units([Signal(2), Signal(3)])))]),
 Typono(1),
 Signal(3))
)
```

The correspondence with the environment given for this circuit in section 3.4, for the language K2, can be noted. Evaluation of this circuit follows the approach given for K2 e.g. Evaluation of RSFF at time t=3 is
Evaluate-Fn(3, inputs, 3)

where

\[
\text{inputs} = [(\text{consts}(\text{enum}(1,2), \text{enum}(1,1)), 0), \quad \# (l,h) \#
\text{consts}(\text{enum}(1,2), \text{enum}(1,1)), 1), \quad \# (l,h) \#
\text{consts}(\text{enum}(1,2), \text{enum}(1,1)), 2), \quad \# (l,h) \#
\text{consts}(\text{enum}(1,2), \text{enum}(1,1)), 3) \quad \# (l,h) \#
\]

The result of the evaluation would be \text{enum}(1,1) \# h \#.

5 Conclusion

In this report we have defined the dynamic semantics of Kernel ELLA. A link between the work described here and earlier investigations has been shown. An implementation of the rules for a reduced Kernel language, called K2, has been carried out. The semantics given for the Kernel in this document are meant to reflect the semantics of the full ELLA system, however as only limited checking of the definitions given here has been carried out their correctness or otherwise remains to be established.

6 Acknowledgements

The author would like to acknowledge the support of the IED project 4/1/1357 "Formal Verification Support for ELLA".

ELLA™ is a registered Trade Mark of the Secretary of State for Defence, and winner of a 1989 Queens Award for Technological Achievement.
A Glossary of Symbols

Functions
- \(f: D_1 \times D_2 \rightarrow R \)
 - signature
- \(f \triangle \ldots \)
 - function definition
- \(f(d) \)
 - application
- \(if \ldots then \ldots else \ldots \)
 - conditional
- \(let \ z = \ldots \ in \ldots \)
 - local definition
- \(case \ z \ of \ldots \ else \ldots end \)
 - choice
- \(post \)
 - post-condition
- \(ext \ rd \)
 - external read

Sets
- \(T\text{-set} \)
 - finite subset of \(T \)
- \(\{t_1, \ldots, t_k\} \)
 - set enumeration
- \(\{\} \)
 - empty set
- \(t \in T \)
 - set membership
- \(T_1 \cap T_2 \)
 - set intersection
- \(T_1 \cup T_2 \)
 - set union
- \(T_1 \subseteq T_2 \)
 - set containment
- \(T_1 \setminus T_2 \)
 - overwriting
- \(I \)
 - \(\{\ldots, -1, 0, 1, \ldots\} \)
- \(N \)
 - \(\{1, 2, \ldots\} \)
- \(B \)
 - \(\{\text{true, false}\} \)

Sequences
- \(S^* \)
 - finite sequence
- \([s_1, \ldots, s_k] \)
 - sequence enumeration
- \([] \)
 - empty sequence
- \(\text{len } l \)
 - length of sequence \(l \)
- \(s_1 \triangleright s_2 \)
 - concatenation
- \(l \{i \in \text{inds sequence}\} \cdot \text{sequence}[i] = s \)
 - The unique element of sequence which equals \(s \)

Environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E = \text{Env}(\ldots,\ldots,\ldots,\ldots))</td>
<td>Transformation Environment</td>
</tr>
<tr>
<td>(E.fieldname)</td>
<td>field selection in the Kernel</td>
</tr>
<tr>
<td>((E.fieldname)[number])</td>
<td>indexing</td>
</tr>
</tbody>
</table>

Kernel

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{typedec}(\ldots,\ldots))</td>
<td>Kernel data structure with wild-card entries</td>
</tr>
<tr>
<td>(\text{TypeOpt})</td>
<td>Type structure with optional element (\text{nil})</td>
</tr>
<tr>
<td>(\text{TypeSeq})</td>
<td>Non-empty sequence of (\text{Types})</td>
</tr>
<tr>
<td>(kType)</td>
<td>'Type' belonging in the Kernel</td>
</tr>
</tbody>
</table>
Intentionally Blank
B Kernel of ELLA Data Structure

B.1 Conventions

<table>
<thead>
<tr>
<th>abc</th>
<th>∈</th>
<th>Abc (i.e. it is an element of the set Abc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexer, Size, Fno</td>
<td>⊂</td>
<td>N₁</td>
</tr>
<tr>
<td>Typeno, Tagno, Inputno</td>
<td>⊂</td>
<td>N₁</td>
</tr>
<tr>
<td>Signalno, Delaytime</td>
<td>⊂</td>
<td>N₁</td>
</tr>
<tr>
<td>Interval, Ambigtime</td>
<td>⊂</td>
<td>N</td>
</tr>
<tr>
<td>Skew</td>
<td>⊂</td>
<td>Z</td>
</tr>
<tr>
<td>Inputtype, Outputtype</td>
<td>⊂</td>
<td>Type</td>
</tr>
<tr>
<td>Initialvalue, Ambigvalue</td>
<td>⊂</td>
<td>Const</td>
</tr>
<tr>
<td>Fnname, Biopname</td>
<td>⊂</td>
<td>Upper case identifier or operator</td>
</tr>
<tr>
<td>Name, Signalname</td>
<td>⊂</td>
<td>Lower case identifier</td>
</tr>
<tr>
<td>Typename, Tagname</td>
<td>⊂</td>
<td>Lower case identifier</td>
</tr>
<tr>
<td>Lowerbound, Upperbound</td>
<td>⊂</td>
<td>positive or negative integer</td>
</tr>
<tr>
<td>Character</td>
<td>⊂</td>
<td>printable character</td>
</tr>
</tbody>
</table>

B.2 Data Structures

Enumerated Type Values

Enumerated ::= Enum
 | string(Typeno × TagnoSeq)

Enum ::= enum(Typeno × Tagno)

Signal Types

Type ::= typeno(Typeno)
 | typename(Tyename × Type)
 | stringtype(Size × Type)
 | types(TypeSeq)
 | typevoid

Constants (Initialisation parameters)

Const ::= Enumerated
 | conststring(Size × Const)
 | consts(ConstSeq)
 | constassoc(Enum × Const)
 | constquery(Type)
 | constvoid
Constant Sets (Case Clause chooser values)

\[
\text{Constset} ::= \text{Enumerated} \\
| \text{constsetalts}(\text{ConstsetSeq}) \\
| \text{constsetstring}(\text{Size} \times \text{Constset}) \\
| \text{constsets}(\text{ConstsetSeq}) \\
| \text{constsetassoc}(\text{Enum} \times \text{Constset}) \\
| \text{constsetany}(\text{Type})
\]

Units (Value delivering expressions)

\[
\text{Unit} ::= \text{Enumerated} \\
| \text{conc}(\text{Unit} \times \text{Unit} \times \text{Outputtype}) \\
| \text{unitstring}(\text{Size} \times \text{Unit}) \\
| \text{units}(\text{UnitSeq}) \\
| \text{instance}(\text{Fnno} \times \text{Unit}) \\
| \text{unitassoc}(\text{Enum} \times \text{Unit}) \\
| \text{extract}(\text{Unit} \times \text{Enum}) \\
| \text{signal}(\text{Signalno}) \\
| \text{index}(\text{Unit} \times \text{Indexer} \times \text{Outputtype}) \\
| \text{trim}(\text{Unit} \times \text{Indexer} \times \text{Indexer} \times \text{Outputtype}) \\
| \text{dyindex}(\text{Unit} \times \text{Unit} \times \text{Outputtype}) \\
| \text{replace}(\text{Unit} \times \text{Unit} \times \text{Unit}) \\
| \text{unitquery}(\text{Type}) \\
| \text{caseclause}(\text{Unit} \times \text{CaseSeq} \times \text{Unit}) \\
| \text{unitvoid}
\]

\[
\text{Case} ::= \text{case}(\text{Constset} \times \text{Unit})
\]

Function Declarations

\[
\text{Fndec} ::= \text{fndec}(\text{Fnname} \times \text{Inputtype} \times \text{SignaldecSeq} \times \text{Outputtype} \times \text{Fnbody})
\]

\[
\text{Signaldec} ::= \text{signaldec}(\text{Signalname} \times \text{Type} \times \text{Unitorinput})
\]

\[
\text{Unitorinput} ::= \text{Unit} \\
| \text{input}
\]

\[
\text{Fnbody} ::= \text{Unit} \\
| \text{reform} \\
| \text{biop}(\text{Biopname}) \\
| \text{delay}(\text{Initialvalue} \times \text{Ambigtime} \times \text{Ambigvalue} \times \text{Delaytime}) \\
| \text{idelay}(\text{Initialvalue} \times \text{Delaytime}) \\
| \text{sample}(\text{Interval} \times \text{Initialvalue} \times \text{Skew}) \\
| \text{ram}(\text{Initialvalue})
\]

Kernel Dynamic Semantics

Type Declarations

Typedec ::= typedec(Typename × New)

New ::= tags(TagSeq)
| ellaint(Tagname × Lowerbound × Upperbound)
| chars(Tagname × CharacterSeq)

Tag ::= tag(Tagname × TypeOpt)

Environment Closure

Closure ::= TypedecSeq × FndecSeq
Intentionally Blank
References

INTENTIONALLY BLANK
This document describes the dynamic semantics of the Kernel of ELLA. The Kernel is a set of data structures into which any ELLA circuit can be transformed. The semantics of two simple languages are explored in order to demonstrate the implementatability of the approach undertaken. Correspondence between this work and former analysis is shown.